A ppendices to the Economic Analysis for the Sage 2 Disinfectants and Disinfection Byproducts Rule: Appendices A-M

# PREPARED FOR:

**U.S. ENVIRONMENTAL PROTECTION AGENCY Office of Ground Water and Drinking Water** 

# PREPARED BY:

THE CADMUS GROUP, INC. 1600 Wilson Boulevard Suite 500 Arlington, VA 22209

**US EPA CONTRACT: 68-C-02-026** 

Work Assignment: 3-05

OMB
Draft
Stage 2
DRPR EA

August 2005

# Appendix A Surface Water Compliance Forecasts

# Appendix A Surface Water Compliance Forecasts

The Surface Water Analytical Tool (SWAT) is the primary tool used by EPA to predict treatment technology changes in surface water systems to achieve compliance with the Stage 2 Disinfection and Disinfectants Byproducts Rule (DBPR). Treatment technology changes are the basis for calculating national cost estimates in this Economic Analysis (EA). SWAT is also one of the primary tools used to predict changes in national chlorination disinfection byproduct (DBP) occurrence levels as a result of the treatment technology changes. Changes in DBP occurrence levels are used to quantify benefits (specifically, reduced bladder cancer) of the Stage 2 DBPR.

The purpose of this appendix is to review the major components in SWAT; summarize its operations; itemize the uncertainties in SWAT and discuss their potential impact on cost and benefits estimates; present an alternative compliance forecast methodology for comparison to SWAT; and present detailed compliance forecast results for all sizes of surface water systems. It is organized as follows:

# **Part I: SWAT Operations**

- A.1 SWAT: An Introduction
- A.2 Model Configuration
- A.3 User Inputs for Stage 2 DBPR Model Runs
- A.4 Model Operation
- A.5 Description of WTP Model Calibration Process and Results

# Part II: Evaluation of SWAT Predictions

A.6 Uncertainties in SWAT Results

# **Part III: Compliance Forecasts**

- A.7 SWAT-based Compliance Forecasts for Large Surface Water Systems
- A.8 SWAT based Compliance Forecasts for Medium Surface Water Systems
- A.9 SWAT based Compliance Forecasts for Small Surface Water Systems

# **Part I: SWAT Operations**

# A.1 SWAT: An Introduction

One of the major tools developed in conjunction with the Microbial-Disinfectants/Disinfection Byproducts Federal Advisory Committees Act (M-DBP FACA) process is the SWAT. SWAT is a decision support computational model designed to predict treatment technology choices and resulting changes in water quality for different rule alternatives and input conditions based on the Information Collection Rule (ICR) data. SWAT model outputs are used to generate compliance forecasts and DBP exposure estimates. The Environmental Protection Agency (EPA) used SWAT outputs to estimate costs and benefits of the Stage 2 Disinfectants and Disinfection Byproducts Rule (DBPR) regulatory alternatives.

# A.1.1 Overview

This section presents an overview of how SWAT predicts DBPs and treatment technology selections for a given rule alternative<sup>1</sup>. The steps of a SWAT model run that predict DBPs and treatment technology selections for regulatory alternatives include the following (also shown in Exhibit A.1).

- DBP occurrence estimates are a function of total organic carbon (TOC), Ultraviolet-254 Absorbance (UVA), bromide, pH, temperature, residence time, and primary and secondary disinfectants. These data, from each valid month used in the SWAT analysis, are input from Auxiliary Database 8 (AUX8) into the Water Treatment Plant (WTP) Model.
- The WTP Model calculates trihalomethanes (THMs), haloacetic acids (HAAs), bromate, and chlorite concentrations with empirical equations at three different residence times—one representing finished water, one representing distribution system average, and one representing distribution system maximum.
- Based on an input compliance scheme (usually involving Maximum Contaminant Levels
  [MCLs] and a compliance aggregation method, such as running annual average), the Decision
  Tree Program assesses whether the plant meets the compliance criteria.
- If the plant meets the criteria, the WTP Model results are stored and no further change is made to the treatment process of the plant.
- If the plant fails to meet the criteria, the Decision Tree Program selects the next least cost treatment technology feasible for that plant (see Exhibits A.5 and A.6).
- The WTP Model is then run with the same influent water characteristics, but with the new treatment technology added to the plant record.
- The resulting DBP predictions are then compared with the compliance scheme.
- The process is repeated until either compliance is achieved or the end of the treatment technology tree is reached.

For details on SWAT components or operation beyond the descriptions in this appendix, refer to Surface Water Analytical Tool (SWAT) Version 1.1—Program Descriptions and Assumptions (USEPA 2000a).

<sup>&</sup>lt;sup>1</sup>The SWAT program can also be run in a mode to evaluate all possible treatment technology choices for each plant and the resulting DBP concentrations (called "Monster" SWAT runs). This section, however, focuses on regulatory compliance analyses

7

8 9

10 11

12

13 14

# **A.2** Model Configuration

This section provides an overview of SWAT's configuration. Exhibit A.2 shows the four main components and how they interact. These components can be grouped into two categories:

- The input/output components, i.e., the user interface and the AUX8 database
- The computational/analytical components, i.e., the Decision Tree Program, and the WTP Model

Sections A.2.1 through A.2.4 describe these components in more detail.

1516

17

# **Exhibit A.2 SWAT Components**



#### A.2.1 User Interface

A Microsoft Windows<sup>TM</sup> interface enables the user to specify the disinfection and DBP regulatory criteria, as well as numerous other assumptions for a SWAT run (e.g., use of disinfection benchmarking, use of ultraviolet light [UV]). It also allows the user to run the WTP Model, which predicts DBP occurrence, and the Decision Tree Program, which selects treatment technologies to meet specified compliance options. The SWAT Version 1.1 program description document (USEPA 2000a) shows all input screens for the SWAT user interface. Section A.4 describes the user inputs and SWAT assumptions for the Stage 2 DBPR model runs.

# A.2.2 Auxiliary Database 8

AUX8 is a Microsoft Access<sup>TM</sup> database that holds inputs and outputs for SWAT analyses. The database contains only the data from AUX 1 (the primary ICR database) that was need to run the SWAT model. Only the last 12 months of the 18-month ICR collection period were used in SWAT in order to avoid seasonal bias.<sup>2</sup> Ground water plants generally did not have as much information as surface water plants and thus were not modeled in SWAT. The surface water plants with at least one month of all required SWAT input data in AUX1 were screened into the AUX8 database. SWAT inputs from AUX8 are grouped into five categories—source water quality, treatment plant characteristics, unit processes, chemical additions, and distribution system characteristics—and are summarized below.

<sup>&</sup>lt;sup>2</sup> All of the 12-month series (months 1 to 12, 2 to 13, etc.) were examined during the M-DBP FACA process and determined to be similar.

42

43

# (1) Source Water Quality

- pH
- Temperature (average and annual minimum)
- TOC
- UVA<sup>3</sup>
- Bromide
- Alkalinity
- Hardness (total and calcium)
- Ammonia
- Turbidity

# (2) Treatment Plant Characteristics

- Flow (average and design)
- Sequence of unit processes and parameters influencing their performance such as volumes, flow, detention times, baffling characteristics and other process specific parameters.

#### (3) Unit Processes

- Conventional processes such as rapid mix, flocculation, sedimentation, and rapid sand filtration
- Granular activated carbon
- Microfiltration
- Nanofiltration
- Ozonation

# (4) Chemical Additions

- Coagulation/Softening related chemicals: alum, carbon dioxide, sodium hydroxide, ferric chloride, lime, soda ash, and sulfuric acid.
- Oxidation/Disinfection related chemicals: chlorine (gas), sodium hypochlorite, chloramines, chlorine dioxide, ozone, ammonia, ammonium sulfate, potassium permanganate, and sulfur dioxide.

# (5) Distribution System Characteristics

• Average and maximum distribution system residence times

In some cases, plants reported changes in their unit processes or chemical addition inputs during the ICR period. For example, some plants installed ozone during the ICR collection period. Also, many plants change disinfectant type from chlorine to chloramines during the year. The initial treatment technology level determination and disinfectant type for a plant was always based on the treatment technology or disinfectant that was reported most often.

Unlike user inputs described in Section A.2.1, ICR data in AUX8 is not intended to be modified by the user or varied from run to run. Each run creates a series of additional records in the AUX8 database. Each run is saved in a separate version of the AUX8 database. The databases are then compiled by a summary program.

 $<sup>^3</sup>$  UV-254 absorbance measures the extent of absorbance of UV light (having a wavelength of 254 nanometers) by the natural organic matter (NOM) present/remaining in untreated/treated waters. It is sometimes referred to as UV<sub>254</sub>, and it's units are cm<sup>-1</sup>. In conjunction with TOC, it yields important insights into the characteristics of the NOM.

To increase the number of plant-months that could be processed by SWAT, some missing raw water quality data were estimated. For example, missing monthly values for influent pH, hardness, alkalinity, and ammonia were estimated based on the average of values that were reported in AUX1 for the other months. Missing monthly raw water temperature data were estimated based on reported temperature data from other points in the plant or distribution system for the same month. TOC and UVA were determined to be too critical to the calculations to be estimated if neither value was provided for a given month. If either TOC or UVA data existed for a plant month, the missing value was estimated using the ratio of UVA to TOC for the rest of the plant-months.

Of the 350 surface water plants in the ICR, 273, or approximately 78 percent, had at least one month with all required data for SWAT analyses. There is a potential bias resulting from the exclusion of ICR plants from the analysis. The M-DBP Technical Expert Working Group (TWG) determined, however, that the 273 plants evaluated in SWAT adequately capture treatment configuration and water quality conditions of all ICR surface water plants.

Plants only needed to report one valid month of data (i.e., one month with all required parameters) to be used in SWAT, so many of the 273 plants used do not have complete records for all months. Exhibit A. shows the extent to which there are complete plant-month records in SWAT. Note that over 70 percent of plants have at least 10 months of data, and more than 90 percent have at least eight months of data.

**Exhibit A.3 Extent of Plant-Month Data in SWAT** 

|        | No. of ICR Plants  | Percent of Plants with |
|--------|--------------------|------------------------|
|        | With Corresponding | at Least That Many     |
| No. of | Months of Data in  | Months of Data in      |
| Months | AUX8               | Aux8                   |
| 1      | 3                  | 100%                   |
| 2      | 3                  | 99%                    |
| 3      | 1                  | 98%                    |
| 4      | 3                  | 97%                    |
| 5      | 5                  | 96%                    |
| 6      | 2                  | 95%                    |
| 7      | 8                  | 94%                    |
| 8      | 15                 | 91%                    |
| 9      | 38                 | 85%                    |
| 10     | 35                 | 71%                    |
| 11     | 65                 | 59%                    |
| 12     | 95                 | 35%                    |
| TOTAL  | 273                |                        |

Source: SWAT Run Summaries (USEPA 2001b).

| 1 2         | Outputs from the computational components in SWAT (the WTP model and Decision Tree Program) are also stored in AUX8 and consist of the following for each plant:                   |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3<br>4      | Treatment technology level at compliance                                                                                                                                           |
| 5<br>6      | Modified process train at compliance (e.g., modified chemical doses)                                                                                                               |
| 7<br>8<br>9 | • Water quality at compliance for finished water, average distribution system residence time, maximum distribution system residence time locations (see Section A.3 for a complete |
| 10<br>11    | description of these locations in SWAT):                                                                                                                                           |
| 12<br>13    | <u>Disinfection Byproduct:</u> - Chloroform (CHCl <sub>3</sub> )                                                                                                                   |
| 14<br>15    | <ul><li>Bromodichloromethane (BDCM)</li><li>Dibromochloromethane (DBCM)</li></ul>                                                                                                  |
| 16          | - Bromoform (CHBr <sub>3</sub> )                                                                                                                                                   |
| 17<br>18    | <ul> <li>Total trihalomethanes (TTHM)</li> <li>Monochloracetic acid (MCAA)</li> </ul>                                                                                              |
| 19<br>20    | <ul><li>Dichloroacetic acid (DCAA)</li><li>Trichloroacetic acid (TCAA)</li></ul>                                                                                                   |
| 21<br>22    | <ul><li>Monobromoacetic acid (MBAA)</li><li>Dibromoacetic acid (DBAA)</li></ul>                                                                                                    |
| 23<br>24    | <ul> <li>Bromochloroacetic acid (BCAA)</li> <li>Haloacetic Acid (HAA5) (sum of MCAA, DCAA, TCAA, MBAA, and DBAA)</li> </ul>                                                        |
| 25<br>26    | <ul> <li>HAA6 (sum of HAA5 and BCAA)</li> <li>HAA9 (sum of HAA6 and BDCAA, CDBAA, and TBAA)</li> </ul>                                                                             |
| 27          | where: BDCAA = Bromodichloroacetic acid                                                                                                                                            |
| 28<br>29    | CDBAA = Chlorodibromoacetic acid TBAA = Tribromoacetic acid                                                                                                                        |
| 30<br>31    | Other Water Quality Parameters                                                                                                                                                     |
| 32<br>33    | <ul><li>Bromate</li><li>Chlorite</li></ul>                                                                                                                                         |
| 34<br>35    | - Temperature<br>- pH                                                                                                                                                              |
| 36          | - Alkalinity                                                                                                                                                                       |
| 37<br>38    | - TOC<br>- UV254                                                                                                                                                                   |
| 39<br>40    | <ul><li>Bromide</li><li>Calcium</li></ul>                                                                                                                                          |
| 41<br>42    | <ul><li>Magnesium</li><li>Ammonia</li></ul>                                                                                                                                        |
| 43          | - Disinfectant Residuals                                                                                                                                                           |
| 44<br>45    | - Pathogen Inactivation                                                                                                                                                            |

SWAT outputs are discussed further in the next two sections.

46

47

# 11 12 13 14 15

17 18 19

20

21

16

22 23 24

31

38 39 40

41

37

47

48

# A.2.3 Water Treatment Plant Model

The WTP Model predicts the formation of DBPs given source water quality conditions and water treatment plant configuration. It consists of several empirical equations that predict DBP precursor and disinfection behavior, the impact of water treatment plant processes on water quality, and concentrations of DBPs in the distribution system. The original version of the WTP Model was developed in 1992 (Water Treatment Plant Simulation Program Version 1.21 User's Manual, Malcolm Pirnie Inc., June 1992). In 2000, the WTP Model was thoroughly revised to incorporate new research in the areas of DBP precursor removal and DBP formation during chlorination, ozonation, and chlorine dioxide addition. The extensions and modifications to the original model have been documented in Solarik et al. (2000).

The purpose of this section is to describe how DBP precursors and other related parameters were modeled through a treatment plant and to present the final equations used by the WTP Model to predict DBP concentrations. DBP precursors need to be model as accurately as possible as the impact the amount of DBP formation. Since chlorination DBP's are formed by the interaction of chlorine with organic and inorganic matter, TOC, a measure of the organic content of water, is a key factor in predicting chlorination DBPs.

The last subsection includes a description of how the final DBP equations are used for different treatment plant scenarios. Section A.5 builds on this section by explaining how the DBP equations were calibrated using ICR data.

# A.2.3.1 Predicting Changes in pH

The WTP Model predicts pH changes as a result of chemical addition during coagulation and softening using thermodynamic equilibrium assumptions in a closed system (with respect to carbon dioxide equilibrium). This may not be an entirely accurate assumption since a water treatment plant is neither a perfectly closed system because it is open to the atmosphere, nor a perfectly open system because of the depths of the basins. The WTP Model equations that predict pH changes due to softening do not account for the kinetics of processes such as calcium carbonate precipitation or carbon dioxide dissolution. Consequently, predictions are not always completely accurate. In general, the WTP Model is believed to slightly over-predict the depression of pH due to coagulant addition (Solarik et al. 2000).

Coagulation pH is an input parameter for the algorithms that calculate settled water TOC and UVA. The over-prediction of the depression in pH could result in the propagation of error in the settled water quality. However, based on observed data from several water treatment plants, these errors are not large (see section A.5, Model Calibration).

# A.2.3.2 Predicting TOC Removal

In the earlier (1992) version of the Model, TOC removal by coagulation was predicted using an empirically-derived equation based on the raw water TOC, coagulant dose, and the coagulation pH. In the current version of the Model, TOC removal is predicted using a semi-empirical sorption model published by Edwards (1997). Though the semi-empirical sorption model is applicable specifically for dissolved organic carbon (DOC) removal, it has been shown to predict TOC removal nearly as well (Edwards 1997). The major differences in the 1992 model equations and the current semi-empirical sorption model are:

- The current model divides the TOC into fractions that are sorbable and non-sorbable by the coagulant, and attributes TOC removal to the sorbable fraction alone.
- In addition to TOC, coagulant dose, and the coagulation pH, the current model uses certain calculated model coefficients and the Specific UVA (SUVA the ratio of UVA to the DOC concentration) of the raw water as inputs.

# A.2.3.3 Predicting UVA Reduction

In the 1992 version of the WTP Model, the precision of the equations used to predict UVA removal was limited by the small data sets used in their derivation. The new equations are based on data analysis performed on the more extensive American Water Works Association (AWWA)/Water Industry Technical Action Fund (WITAF) database (Tseng et al. 1996), thereby improving their precision.

An analysis of predictive errors for the UVA removal equations was performed using raw water data from the AWWA/WITAF database as inputs to the equations and comparing the WTP Model results to those from the database. The analysis concluded that the equations tend to over-predict UVA removal. Further, the errors in settled water UVA predictions are greater for softening than for coagulation. However, it must be noted that the data set used for verification of UVA removal by softening (i.e., from the AWWA/WITAF database) is very limited.

# A.2.3.4 Predicting Chlorine Decay

In the current version of the WTP model, chlorine decay is predicted using a single equation based on bench scale data and work published by Koechling et al. (1998). The general form of the equation is:

$$C_t = [\alpha_1 \times ln(C_0/C_t)] - [k_2 \times SUVA_0 \times t] + C_0$$

where:

 $C_t$  = chlorine residual concentration at any reaction time t

 $C_0$  = initial chlorine dose

 $\alpha_1$  = a kinetic rate parameter related to the initial dissolved organic carbon (i.e., DOC<sub>0</sub>) and the initial UVA (i.e., UVA<sub>0</sub>), for a given chlorine-to-TOC ratio.

 $k_2 = -[a \times (UVA_0^b)]$ , where a and b are fitted parameters that depend on the treatment and the chlorine dose

 $SUVA_0 = Initial Specific UVA = (UVA_0/TOC_0)$ , where  $TOC_0 = initial TOC$ 

t = reaction time

The derivation of  $\alpha_1$  was originally performed at a chlorine-to-TOC ratio of 2:

 $\alpha_{1@2} = 4.98*UVA_0 - 1.91*DOC$ 

A correction factor was developed for  $\alpha_1$ , making it applicable for other chlorine-to-TOC ratios (Solarik et al. 2000):

 $\alpha_{\scriptscriptstyle 1}/\;\alpha_{\scriptscriptstyle 1@2}=0.503\;(CL_{\scriptscriptstyle 2}/TOC)$ 

20

24

28

34

45 46 47

# A.2.3.5 WTP Model Equations for DBP Formation

During the development of the WTP simulation model in 1992, only a limited number of research reports were available to derive predictive equations for THM formation during chlorination. As a result, the 1992 version used an empirical THM formation equation that was based on chlorination experiments of raw (i.e., no coagulation or filtration) waters only. The equation was originally used in the model irrespective of chlorine application locations throughout the water treatment plant. Chlorination conditions on which this original THM predictive equation was based included conditions that are experienced in water plants as well as some more severe chlorination conditions that are beyond normal practice at water plants.

At the time of developing the revised WTP simulation model in 2000, predictive equations for THM were available from the literature that represented more realistic chlorination conditions at various stages of treatment. Consequently, different predictive equations were used for predicting THM formation in raw water and in waters after various levels of treatment. This section discusses the different sets of equations used by the WTP Model to predict DBP formation. It includes two sets of equations used to model DBP formation as a result of (1) raw water chlorination (i.e., water not subjected to any treatment other than chlorination), and (2) chlorination of treated water (i.e., water subjected to full-scale treatment process(es) besides chlorination).

DBP Formation as a Result of Chlorination of Raw Water

"Raw water" model equations were empirically derived from studies documenting the chlorination of untreated/raw waters under laboratory conditions.

```
TTHM_{raw} = 0.0412 (TOC_{raw})^{1.098} (Cl_2)^{0.152} (Br_{raw})^{0.068} (T)^{0.609} (pH_{raw})^{1.601} (t)^{0.263}
HAA5_{raw} = 30.0(TOC_{raw})^{0.997}(Cl_s)^{0.278}(Br_{raw})^{-0.138}(T)^{0.341}(pH_{raw})^{-0.799}(t)^{0.1.69}
where:
TTHM_{raw} = raw water TTHM (micrograms per liter (µg/L))
HAA5_{raw} = raw water HAA5 (\mu g/L)
TOC_{raw} = raw \text{ water TOC (milligrams per liter (mg/L)): } 1.2 \le TOC_{raw} \le 10.6)
Cl_2 = applied chlorine dose (mg/L): 1.51 \le Cl_2 \le 33.55
Br_{raw} = raw water bromide concentration (\mu g/L): 7 \le Br_{raw} \le 600
T = temperature (degrees centigrade): 15 \le T \le 25
pH_{raw} = raw \text{ water } pH: 6.5 \le pH \le 8.5
t = reaction time (hour): 2 \le t \le 168
```

DBP Formation as a Result of Chlorination of Treated Water

"Treated water" equations were based on work performed by Amy et al. (1998) using coagulated waters. The major difference between these equations and those applicable to chlorinated raw waters is that the TOC×UVA term (and not TOC) accounts for the impact of treatment on NOM removal and NOM reactivity.

```
TTHM = 23.9 (TOC \times UVA)^{0.403} (Cl_2)^{0.225} (Br)^{0.141} (1.027)^{(T-20)} (1.156)^{(pH-7.5)} (t)^{0.264}
 1
 2
                    HAA5 = 41.6 (TOC \times UVA)^{0.328} (Cl_{2})^{0.585} (Br)^{-0.12} (1.021)^{(T-20)} (0.932)^{(pH-7.5)} (t)^{0.150}
 3
 4
                    where:
 5
 6
                    TTHM = treated water TTHM (\mug/L): 13 \leq TTHM \leq 690
 7
                    HAA5 = treated water HAA5 (µg/L): 12 \le HAA6 \le 643
 8
                    TOC = treated water TOC (mg/L): 1.00 \le TOC \le 7.77
 9
                    UVA = treated water UVA (cm<sup>-1</sup>): 0.016 \le UVA \le 0.215
10
                    Cl_2 = applied chlorine dose (mg/L): 1.11 \le Cl_2 \le 24.75
11
                    Br = treated water bromide concentration (\mu g/L): 23 \leq Br \leq 308
12
                    T = temperature (degrees centigrade): 15 \le T \le 25^4
                    pH = treated water pH: 6.5 \le pH \le 8.5^3
13
14
                    t = reaction time (hour): 2 \le t \le 168
15
16
                    The treated water TTHM and HAA5 equations were verified by plotting modeled results against
17
18
19
```

The treated water TTHM and HAA5 equations were verified by plotting modeled results against observed values from 47 coagulated waters and 4 softened waters and analyzing the residuals (i.e., the predicted value minus the observed value) and average errors. In general, results indicated that the WTP Model slightly under-predicted the formation of TTHMs and slightly over-predicted the formation of HAA5s for coagulated waters. For TTHMs, ninety percent of the residuals were within  $\pm 24 \,\mu\text{g/L}$  of the measured values. For HAA5s, ninety percent of the residuals were within  $\pm 18 \,\mu\text{g/L}$  of the measured values. Due to the limited number of data points, the results from the analysis of the softened waters were not as conclusive as those from the coagulated waters.

# A.2.3.6 Using the DBP Formation Equations for Different Chlorinating Scenarios

DBP formation is modeled as the cumulative formation through the treatment plant. This section describes how the two sets of equations presented above can be applied to different treatment plant chlorination scenarios. The following scenarios are discussed:

- Pre-chlorination only (i.e., chlorine added just prior to coagulation)
- Post-chlorination only (i.e., a single point of chlorination just prior to filtration, after the combined treatment of coagulation, flocculation, and sedimentation)
- Pre- and Post-chlorination (i.e., two points of chlorination just prior to coagulation and just prior to filtration)

Exhibit A.4 (presented at the end of this subsection) shows where the chlorine is assumed to be applied within the treatment plant for the pre- and post-chlorination scenarios and summarizes how DBP formation is modeled. Note that separate equations for DBP formation in distribution systems were not developed—the distribution system is considered as an extension of the treatment plant, and formation is assumed to follow the same kinetics and rates.

<sup>&</sup>lt;sup>4</sup>Sufficient pH and temperature-dependent data were not available to model their effect on DBP formation for treated waters. Therefore, pH and temperature factors from the raw water equations were applied to treated water conditions. These factors are valid in the temperature range of 15-25°C and a pH range of 6.5-8.5.

The raw water model equations were originally used to predict DBP formation for plants that prechlorinated only. However, research by Summers et al. (1998) indicates that pre-chlorination just before or after rapid mixing results in less DBP formation than chlorination of raw water as shown in the original studies. To better predict DBP formation post-coagulation/flocculation, an empirical *pre-chlorination factor* was developed to account for the decrease in DBP formation that occurs as a result of adding chlorine just prior to the rapid mixers relative to the DBP formation that occurs as a result of adding chlorine to the raw water:

Decrease in TTHM Formation = 85.3 % of raw water model results

Decrease in HAA5 Formation = 79.4 % of raw water model results

As shown by Exhibit A.4, the raw water equations, adjusted using the pre-chlorination factors, are used to model DBP formation through the sedimentation process (prior to the filters). The treated water model is used to predict DBP formation through the filtration process and into the distribution system, using settled water quality (including settled water chlorine residual) as input parameters.

Post-Chlorination Only

For post-chlorination (prior to filtration), the treated water model was applied, with the settled water quality and chlorine residual after sedimentation being the inputs to the model equations.

Pre- and Post-Chlorination

As shown in Exhibit A.4, the raw water equations, adjusted using the pre-chlorination factors, are used to model DBP formation from the raw water through the sedimentation process (prior to the filters). The treated water model is used to predict DBP formation starting after sedimentation. The treated water model is adjusted because pre-chlorination will result in lowering the UVA of the settled water due to the oxidation of the UVA by the chlorine. The settled UVA after prechlorination (i.e.,  $UVA_{Pre-Cl2}$ ) was estimated from the settled UVA without prechlorination (i.e.,  $UVA_{No~Cl2}$ ) using the following equation:

 $UVA_{Pre-Cl2} = 0.7437 \ (UVA_{No~Cl2}) + 0.0042$ 

where the UVA concentrations are expressed in cm<sup>-1</sup>.

# 1) PRE-CHLORINATION ONLY



Time (or Location in Plant)

# 2) POST-CHLORINATION ONLY



Time (or Location in Plant)

# 3) PRE- AND POST-CHLORINATION



Time (or Location in Plant)

# **A.2.4** Decision Tree Program

 This part of SWAT determines how a treatment plant is modified to comply with defined regulatory alternatives. First, the program determines if an individual plant can be modified using the least expensive (and typically least effective) treatment technology to comply with the regulatory alternative. If not, the program moves to the next least-cost treatment technology. This process continues until the plant achieves compliance. The treatment technology selection algorithm can therefore be described as a "least cost" based approach. The program receives inputs from the database (AUX8), uses the WTP Model to estimate treated water quality before and after predicted treatment technology changes, and sends the results back to the database.

The steps involved with using the Decision Tree Program are presented in Exhibits A.5 and A.6 in flow chart and table format. The starting point is at the top of the tree, and the process improvement order is from the top row to the bottom row and from left to right in any row.

For each treatment technology starting with Enhanced Coagulation/Enhanced Softening (EC/ES) there is an additional option of chloramine secondary disinfection with that treatment technology. For example, if the tree starts at EC/ES treatment technology and that treatment technology does not yield compliance, then the next option is EC/ES with chloramines. One important aspect of the decision tree is how it accounts for existing disinfection credit. To implement an advanced disinfectant in a process train, SWAT credits the train with the levels of inactivation specified by the user (see section A.3 for user inputs) and adjusts the existing primary disinfectant to achieve the necessary CT credit. Any other chlorine additions contributing to CT are decreased, if necessary.

# Exhibit A.5 SWAT Decision Tree (Compliance Selection Sequence)



<sup>1</sup>Optional steps that the user determines whether to include in the tree. For Stage 1 and Stage 2 runs, turbo coagulation was an available treatment technology. UV was "turned off" for Stage 1 but "turned on" for Stage 2 runs. See Section A.3, User Inputs for Stage 2 DBPR Model Runs, for more information.

<sup>2</sup>With EC/ES.

<sup>3</sup>Not applicable for plants that initially soften via precipitation.

Notes: Order is top to bottom, and left to right. The granular activated carbon (GAC)10/20 +  $O_3$ (raw/sed) treatment technology can be implemented with or without pH adjustment. Chloramines can be used at any point in the decision tree (including initial plant).

20

21

22

27

| Abbreviation           | Description                                 | Abbreviation                  | Description                                       |
|------------------------|---------------------------------------------|-------------------------------|---------------------------------------------------|
| Initial Plant          | Unmodified Plant                            | GAC10 + CIO <sub>2</sub>      | GAC10 with Chlorine Dioxide                       |
| Adjust<br>Disinfection | Adjust Disinfection                         | GAC10 + UV                    | GAC10 with UV Disinfection                        |
| EC/ES                  | Enhanced Coagulation/<br>Enhanced Softening | GAC10 + O <sub>3</sub> (raw)  | GAC10 with Ozonation of raw water                 |
| TC                     | Turbo Coagulation                           | GAC10 + O <sub>3</sub> (sed.) | GAC10 with Ozonation of settled water             |
| Move Cl <sub>2</sub>   | Move Chlorination Point                     | GAC20 + CIO <sub>2</sub>      | GAC20 with Chlorine Dioxide                       |
| CIO <sub>2</sub>       | Chlorine Dioxide                            | GAC20 + UV                    | GAC20 with UV Disinfection                        |
| UV                     | UV Disinfection                             | GAC20 + O <sub>3</sub> (raw)  | GAC20 with Ozonation of raw water                 |
| Ozone (raw)            | Ozonation (raw water)                       | GAC20 + O <sub>3</sub> (sed.) | GAC20 with Ozonation of settled water             |
| Ozone (sed.)           | Ozonation (settled water)                   | MF + NF50                     | MF/UF with 50% of flow treated by Nanofiltration  |
| MF/UF                  | Microfiltration/Ultrafiltration             | MF + NF75                     | MF/UF with 75% of flow treated by Nanofiltration  |
| GAC10                  | GAC (10-min. EBCT)                          | MF + NF100                    | MF/UF with 100% of flow treated by Nanofiltration |
| GAC20                  | GAC (20-min. EBCT)                          |                               |                                                   |

The least cost decision approach, as used in SWAT, has two inherent limitations that contribute to uncertainty in national cost and benefit estimates:

- The decision tree does not include operational or design modifications of the distribution system that could reduce DBPs and allow the plant to achieve compliance without a treatment technology change.
- The model cannot take into account site specific factors (e.g., taste and odor) that could cause a system to choose a more expensive treatment technology than the SWAT least cost algorithms say is necessary.

Uncertainties are discussed further in Section A.6.

#### Improvement in Decision Tree for Stage 2 versus Stage 1 A.2.5

In the Stage 1 DBPR Regulatory Impact Analysis (RIA) (USEPA 1998a), EPA estimated treatment technologies in place at treatment plants prior to the Stage 1 DBPR, as well as treatment technology changes that systems would make to comply with the Stage 1 DBPR. This estimate of treatment technologies in place for the pre-Stage 1 baseline is not the same as the pre-Stage 1 baseline derived in this EA. The two estimates differ because new information and treatment technologies, such as UV disinfection, have become available since the promulgation of the Stage 1 DBPR. For the Stage 2 DBPR analyses, new tools and processes were used to forecast the costs of complying with the Stage 1 DBPR. These tools and processes, summarized in Chapter 7, included:

- SWAT
- ICR Ground Water Delphi process
- Expert opinion process for small systems (both surface and ground water)

These tools and processes provided a larger and more detailed set of treatment technology choices than those used in the Stage 1 DBPR RIA. Consequently, the estimate of treatment technologies in place for both the pre-Stage 1 and post-Stage 1 baselines, while different from those in the Stage 1 DBPR RIA, are based on a more complete set of compliance options and a more rigorous analysis. Exhibit A.7 compares the treatment technology choices used in the Stage 1 DBPR RIA to those used in the Stage 2 DBPR EA.

The detailed treatment technology choices evaluated for the Stage 2 DBPR EA were aggregated into more general categories for the purposes of estimating national costs. The final 12 major treatment technology categories evaluated in this EA are summarized in Exhibit A.8. They are generally ordered according to cost, with the most expensive at the bottom of the exhibit. With each treatment technology, systems are expected to use either free chlorine or combined chlorine (chloramines) as the residual disinfectant. Conversion from free chlorine to chloramine residual disinfection is a relatively inexpensive way for systems to reduce DBP levels.

The first four treatment technologies (in italic font in Exhibit A.8) represent operational changes to existing treatment configurations. Although these changes may result in small increases in chemical usage or minor capital improvements, EPA assumes their costs to be negligible when compared to the costs of the advanced treatment technologies (e.g., UV, ozone, granulated activated carbon, microfiltration/ultra-filtration) shown in Exhibit A.8 (refer to *Technologies and Costs for Control of Microbial Contaminants and Disinfection Byproducts* [USEPA 2003o] for comparison). Also, most systems that are able to use these treatment technologies are predicted to do so to meet the Stage 1 DBPR. For these reasons, the predicted costs for the Stage 2 DBPR do not include costs for operational changes. (Section A.6 and Chapter 7 further explain that this uncertainty may lead to an underestimate in national costs.)

Because UV is an emerging treatment technology, it was not considered an option for most systems for the Stage 1 DBPR. For the Stage 2 DBPR, UV is an advanced disinfection option for all surface water systems and small ground water systems. Adjustments to the compliance forecast to account for use of UV are discussed in Chapter 5 and Appendices A and B.

As indicated in Exhibit A.8, fewer treatment technologies are listed for ground water plants than for surface water plants. As summarized in Appendix B, section B.2.2, the ICR Ground Water Delphi Group concluded that large ground water systems would choose primarily from four treatment technologies: conversion to chloramines, ozone, granular activated carbon - 20-minute contact time (GAC20), or nanofiltration; small ground water systems would also consider UV. The selection of treatment technologies as a function of source water types and small systems' constraints are summarized in Chapter 5 and discussed in detail in the compliance forecasts for surface and ground water plants, as described in Appendices A and B, respectively.

# Exhibit A.7 Treatment Technologies Considered for the Stage 1 DBPR in the Stage 1 DBPR RIA and their Stage 2 DBPR EA Equivalent

| Stage 1 DBPR RIA Treatment<br>Technologies | Stage 2 DBPR EA Treatment Technologies                                    |  |  |  |
|--------------------------------------------|---------------------------------------------------------------------------|--|--|--|
| Chlorine/Chloramine                        | Adjust Primary Disinfection  Move Points of Disinfection with Chloramines |  |  |  |
| Enhanced Coagulation                       | Enhanced Coagulation with Chlorine Turbo Coagulation with Chlorine        |  |  |  |
| Enhanced Coagulation with Chloramines      | Enhanced Coagulation with Chloramines Turbo Coagulation with Chloramines  |  |  |  |
| Chlorine Dioxide                           | Chlorine Dioxide with Chlorine Chlorine Dioxide with Chloramines          |  |  |  |
| Ozone with Chloramines                     | Ozone with Chlorine Ozone with Chloramines                                |  |  |  |
| GAC10                                      | GAC10 with Chlorine                                                       |  |  |  |
|                                            | GAC10 with Chloramines                                                    |  |  |  |
|                                            | GAC10 + Chlorine Dioxide with Chlorine                                    |  |  |  |
|                                            | GAC10 + Chlorine Dioxide with Chloramines                                 |  |  |  |
|                                            | GAC10 + UV (Small Systems)                                                |  |  |  |
| GAC20                                      | GAC20 with Chlorine                                                       |  |  |  |
|                                            | GAC20 with Chloramines                                                    |  |  |  |
|                                            | GAC20 + Chlorine Dioxide with Chlorine (Large and Medium Systems)         |  |  |  |
|                                            | GAC20 + Chlorine Dioxide with Chloramines (Large and Medium Systems)      |  |  |  |
|                                            | GAC20 + Ozone with Chlorine (Small Systems)                               |  |  |  |
|                                            | GAC20 + Ozone with Chloramines (Small Systems)                            |  |  |  |
|                                            | GAC20 + UV (Small Systems)                                                |  |  |  |
| Membranes                                  | Microfiltration/Ultrafiltration with Chlorine                             |  |  |  |
|                                            | Microfiltration/Ultrafiltration with Chloramines                          |  |  |  |
|                                            | Integrated Membranes with Chlorine (Surface Water Systems)                |  |  |  |
|                                            | Integrated Membranes with Chloramines (Surface Water Systems)             |  |  |  |
|                                            | Nanofiltration with Chlorine (Ground Water Systems)                       |  |  |  |
|                                            | Nanofiltration with Chloramines (Ground Water Systems)                    |  |  |  |

Source: Stage 1 DBPR RIA (USEPA 1998a) for Stage 1 treatment technologies; Federal Advisory Committees Act (FACA) deliberations for Stage 2 treatment technologies (USEPA 2000n).

# Exhibit A.8 Aggregated Treatment Technology Categories for Stage 1 DBPR Used for the Stage 2 DBPR EA

| Treatment Technology<br>Category              | Explanation of Technology for<br>Surface Water Plants                                                             | Explanation of Technology for<br>Ground Water Plants                                |  |  |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|
| Adjust Primary<br>Disinfectant Dose           | Reduce primary disinfectant dose (usually chlorine)                                                               | NA                                                                                  |  |  |
| Enhanced<br>Coagulation/Enhanced<br>Softening | Increased TOC removal through increased coagulant addition to meet Stage 1 DBPR requirements                      | NA                                                                                  |  |  |
| Turbo Coagulation                             | Increased TOC removal through increased coagulant addition, but higher than that required by enhanced coagulation | NA                                                                                  |  |  |
| Moving Point of<br>Disinfection               | Move point of disinfection downstream to minimize formation of DBPs                                               | NA                                                                                  |  |  |
| Chlorine Dioxide                              | Chlorine dioxide instead of chlorine for primary disinfection                                                     | NA                                                                                  |  |  |
| Ozone                                         | Ozone instead of chlorine for primary disinfection, applied to raw or settled water                               | Ozone instead of chlorine for primary disinfection, applied to raw or settled water |  |  |
| MF/UF                                         | Microfiltration or ultrafiltration as the particle removal process                                                | NA                                                                                  |  |  |
| GAC10                                         | Granular activated carbon with a 10-minute Empty Bed Contact Time (EBCT)                                          | NA                                                                                  |  |  |
| GAC10 + Advanced<br>Disinfectants             | GAC10 + chlorine dioxide (large and medium systems) GAC10 + UV (small systems)                                    | NA                                                                                  |  |  |
| GAC20                                         | Granular activated carbon with a 20-<br>minute EBCT                                                               | Granular activated carbon with a 20-minute EBCT                                     |  |  |
| GAC20 + Advanced<br>Disinfectants             | GAC20 + UV or ozone                                                                                               | NA                                                                                  |  |  |
| Membranes                                     | Integrated membranes as the particle removal process (MF/UF and nanofiltration)                                   | Nanofiltration alone as the particle removal process                                |  |  |

Notes: NA = Not applicable plant type. Italic font indicates that treatment technology was not considered in estimating costs of rule alternatives.

Source: Technology and Cost Document (USEPA 2003o); applicability to ground water systems discussed in Chapter 5 and Appendix B of this EA.

# **A.3** User Inputs for SWAT Model Runs

This section summarizes the inputs and settings (as entered into the SWAT user interface) used for the Stage 2 DBPR regulatory alternatives. SWAT was also used to support the development of the Long Term 2 Enhanced Surface Water Treatment Rule (LT2ESWTR). The inputs presented here, however, are specific the Stage 2 DBPR development process. Those specific to the LT2ESWTR are described in the *Economic Analysis for the LT2ESWTR* (USEPA 2003c). A complete listing of the user inputs for each SWAT Run used in the Stage 2 DBPR can be found in the Access databases that contain the results for each run. The compliance scheme, and compliance aggregation method, are also inputs to the SWAT Model and are described in Section A.4.

Average and Maximum Residence Times

SWAT computes DBP concentrations at theoretical locations representing average and maximum residence times in the distribution system. The inputs for the average residence time location (DS Average) and the maximum residence time location (DS Maximum) are based on ICR data from four distribution system residence times reported by the system as follows.

• Distribution System Equivalent (DSE)—a sample point in the distribution system that has a residence time equivalent to a laboratory sample.

• Average 1 and Average 2 (AVG1 and AVG2)—two locations having average residence times in the distribution system, as designated by the system.

• Distribution System Maximum (MAX)—the location having the longest residence time in the distribution system, as designated by the system.

The input for the DS Average is the average of those four residence times. The input for DS Maximum is the highest residence time reported for those four locations.

Flowrate Conditions Used

Three flowrate conditions are available for SWAT execution: 1) flow at time of ICR sampling; 2) average monthly flow for a given ICR period; and 3) plant design flow. All calculations of DBP concentrations were completed using the average monthly flow. All new unit processes "built" by SWAT were sized using the design flow condition.

Inclusion of Biofiltration

All Stage 2 DBPR regulatory evaluations included biofiltration processes for ozone treatment technologies. This assumed that the filters downstream of ozonation would achieve enhanced DBP precursor removal.

Surface Water Treatment Rule Disinfection Requirements

For all regulatory alternatives, the plants must meet, at a minimum, the Surface Water Treatment Rule (SWTR) *Giardia* and virus log removal requirements of 3 and 4 logs, respectively. The "Initial Plant Run" did not have this requirement since it represents pre-Stage 1 or existing conditions. Therefore,

all systems are not assumed to be compliant with the SWTR. In other words, if SWAT predicted a plant to achieve lower *Giardia* or virus log removals, the plant was not modified for this run.

# Log Removal Credits for Pathogens

Log removal credits for pathogens were based on (1) the recommended credits contained in the *Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems Using Surface Water Sources* (USEPA 1990), and (2) as recommended by the Microbial Treatment subcommittee of the TWG (Exhibit A.9). *Cryptosporidium* inactivation/removal requirements were not included (they are considered under the LT2ESWTR). If the removal credits used in SWAT are overstated (i.e., the credits are greater than the treatment provides), then the estimates provided would under-specify treatment selection and consequently under-predict national compliance costs and benefits. Likewise, if the removal credits used in SWAT are understated, then the treatment technology selection could be over-specified and both the national compliance costs and benefits over-predicted.

Exhibit A.9 Log Removal Credits Used as Default Values in SWAT

| Unit Dragge                     | Log Removal Credits (logs) |       |  |  |
|---------------------------------|----------------------------|-------|--|--|
| Unit Process                    | Giardia                    | Virus |  |  |
| Microfiltration/Ultrafiltration | 3.0                        | 2.0   |  |  |
| Nanofiltration                  | 3.0                        | 2.0   |  |  |
| Sedimentation                   | 0.5                        | 1.0   |  |  |
| Filtration                      | 2.0                        | 1.0   |  |  |

Source: Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems Using Surface Water Sources (USEPA 1990)

#### Use of Disinfection Benchmarking

Disinfection benchmarking is the lowest monthly average of microbial inactivation during the disinfection profile period. Benchmarking is used to ensure a plant does not compromise microbial protection when changing treatment technologies. If "Benchmarking OFF" is selected, then SWAT selects disinfectant doses to meet the most stringent of the log removal and/or inactivation requirements set for the regulatory option. If "Benchmarking ON" is selected, SWAT determines the minimum monthly level of log removal plus inactivation for each plant under existing conditions and sets these as the log removal plus inactivation requirements for that plant for all process modifications. If the benchmark is less stringent than the disinfection requirements set for that SWAT run, SWAT will default to the most stringent requirements.

All Stage 2 DBPR regulatory evaluations, as well as the Stage 1 baseline evaluation, were conducted with "Benchmarking ON." Maximum benchmark levels for *Giardia* and viruses were set at 8.0 and 9.0 logs, respectively. *Cryptosporidium* disinfection was not benchmarked because most systems currently don't achieve any *Cryptosporidium* inactivation. Using the "Benchmarking ON" option most likely causes an overall higher treatment technology selection estimate. Some systems may use a high dose of oxidant for other reasons (e.g., taste and odor control); the high level of disinfection is a secondary benefit. In the SWAT model, if a plant currently has a high oxidant dose and its DBP estimates are above the user-defined MCLs, then the next treatment technology in the decision tree is

selected and the same high level of inactivation corresponding to the annual high oxidant dose must be maintained. (However, in implementation of the DBPR the State may allow lower disinfection for improved DBP control, as long as the level of disinfection is higher than the existing standards.)

# Chloramine Conversion Rate

SWAT can evaluate three settings to represent whether treatment plants that initially use free chlorine for secondary or residual disinfection will convert to chloramines.

- All free chlorine plants can convert
- No free chlorine plants can convert
- A specified percentage of free chlorine plants can convert, and are assigned randomly through a Monte Carlo probability function

For regulatory evaluation, 77 percent of free chlorine plants were randomly allowed to convert to chloramines. This was set as the maximum possible conversion rate expected for all free chlorine plants in the United States. This percentage rate was recommended by the TWG during the M-DBP FACA. This maximum national chloramine usage level is intended to incorporate site-specific circumstances and other local factors that would preclude chloramine usage at some plants for reasons other than technical suitability. The maximum chloramine conversion rate was approached only when more stringent regulatory alternatives (i.e., 40/30 Running Annual Average (RAA)) were evaluated.

# Use of UV

Adding UV disinfection to a treatment process is an optional step in the SWAT decision tree. Because UV is an emerging treatment technology for drinking water treatment it was not considered a viable option for Stage 1 compliance. However, EPA believes the treatment technology and necessary regulations will be available for systems to use UV to achieve compliance with the Stage 2 DBPR. Therefore, the UV option was "turned off" for the Stage 1 DBPR run and "turned on" for the Stage 2 DBPR runs. (Part III of this Appendix for further discussion on the inclusion of UV for the Stage 2 runs.)

#### Clearwell Baffling Improvement Rate

For regulatory evaluation, 90 percent of plants were assumed able to make improvements to clearwell baffling. The TWG assumed that a 0.70 value for the clearwell baffling factor (the ratio of the time required for 10 percent of a system's flow to pass through the clearwell to the theoretical detention time in the clearwell) was a reasonable upper limit for improvements to hydraulic retention through such basins. An analysis of the ICR data on clearwell baffling factors showed that 10 percent of ICR plants had baffling factors at or above 0.70. Therefore, the remaining 90 percent of the plants could improve their clearwell hydraulic regime to attain such a baffling factor. While SWAT allowed 90 percent of the plants to increase the hydraulic retention time performance of clearwells, it did not require plants to do so in evaluating regulatory alternatives. The clearwell baffling factor was considered only when increased disinfection performance was necessary and could be achieved by such measures.

# Nanofiltration Performance for Precursors

Nanofiltration performance for precursors was assigned based on ICR Treatment Studies data, representing the median performance of nanofilters for precursor control. The performance and operating parameters were assigned as follows.

- TOC removal = 92 percent
- UVA removal = 87 percent
- Bromide removal = 78 percent
- Molecular weight cutoff = 200 daltons
- Water recovery = 85 percent

#### *GAC10 and GAC20 Regeneration Frequency*

When the decision tree program chooses GAC10 or GAC20 as the next feasible treatment technology to achieve compliance, it adopts the following sequence of reactivation frequencies to check for compliance: An initial evaluation with a reactivation frequency of 360 days, followed by reactivation frequencies of 300, 240, 180, 120, and 90 days in that order, until the plant is in compliance. The TWG verified that the cost hierarchy of the compliance decision tree was maintained under this sequence.

# Turbo Coagulation

Turbo coagulation achieves increased TOC removal using coagulant doses higher than those required by enhanced coagulation. A (4x3) matrix of raw water TOC and alkalinity defines the percent TOC removal in SWAT. The default turbo coagulation setting used in SWAT represents the 75<sup>th</sup> percentile ICR values for a given raw water TOC-alkalinity category (i.e., 25 percent of ICR water treatment plants in a given raw water TOC-alkalinity category achieved TOC removal greater than or equal to the specified level). Exhibit A.10 shows the additional TOC removal achieved with turbo coagulation at these settings.

To determine if turbo coagulation was a viable treatment alternative, the ICR data were analyzed to see if additional TOC removal was possible. For surface water plants with conventional treatment (non-softening plants), the TOC removal was found for each month where available data existed. Each plant was characterized within the Stage 1 DBPR enhanced coagulation matrix for TOC removal, based on the annual average source water alkalinity and TOC. The distribution of annual average TOC removal for ICR plants was determined for each alkalinity and TOC category in the matrix. The median performance of the plants within each of the categories was found to be very close to the TOC removal requirements in the Stage 1 DBPR. Therefore, the ability of such plants to achieve even more TOC reduction by further enhancing their treatment performance was considered a viable treatment alternative.

SWAT did not require any plants to meet the TOC removal performance criteria contained in the turbo coagulation step, but allowed conventional plants to further optimize TOC removal as a means of meeting DBP requirements. The inclusion of the turbo coagulation treatment step contributes to more

realistic national compliance costs by reducing the number of plants requiring more advanced, but possibly unnecessary, treatment technologies to meet DBP standards.

Exhibit A.10 Additional Increase in TOC Removal for the Turbo Coagulation

Treatment Step



# **A.4** Model Operation

This section explains how compliance is determined, and lists several uncertainties associated with SWAT's compliance determination methodology.

# **A.4.1** Compliance Determination

Each plant's compliance was determined in one of three ways:

- RAA is the calculated average of all distribution system samples. For SWAT, the RAA was calculated by averaging the SWAT-predicted monthly concentrations at the DS Average location, as described in Section A.3, over the 1-year period.
- Locational Running Annual Average (LRAA) is the average of four quarters of data from each distribution system location. For SWAT, the LRAA was calculated by averaging the

SWAT-predicted monthly concentration at the DS Maximum location, as described in Section A.3, over the 1-year period.

• Single high is the highest concentration of the four distribution system samples collected. For SWAT, the single high value was determined by selecting the maximum of the SWAT-predicted monthly concentrations at the distribution system maximum location.

In addition, SWAT determines compliance for bromate and chlorite. The bromate MCL was determined using an annual average of predicted bromate at the finished water sample point. The chlorite MCL was determined as a single high concentration of chlorite predicted in the finished water.

The M-DBP TWG recommended that a mean 20 percent operational safety margin be used for DBP MCLs (TTHM, HAA5, bromate, and chlorite) when evaluating all regulatory alternatives. This safety margin is consistent with practices in prior DBP regulatory development efforts and is intended to represent the level at which systems typically take some action to ensure consistent compliance with a new drinking water standard. In addition to representing industry practices, the safety margin also is intended to account for year-to-year fluctuations in DBP data (ICR data are limited to one year and might not represent the highest DBP concentrations that occur in a system). There is uncertainty, however, in the concentration below the MCL value at which systems are confident operating (in other words, the safety margin may be more or less in some specific cases). A 25 percent operation safety margin run was also conducted for the Preferred Regulatory Alternative to estimate the impacts of the IDSE. See Chapter 5 for more information.

# A.5 Description of WTP Model Calibration Process and Results

The WTP Model was calibrated using observed data to improve its ability to predict the central tendency of the ICR data and to better general national level predictions. The methodology and results of the calibration process can be found in Chapter 8 of the report, *Information Collection Request Data Analysis* (McGuire et al. 2002). It is important to summarize results of the calibration in this economic analysis, however, to help characterize the uncertainties in SWAT (see Section A.6). The remainder of this section summarizes the WTP Model calibration process and presents the results.

# A.5.1 Calibration Methodology

*Water Quality Parameters that were calibrated*: The calibration process focused on the following parameters:

- pH adjustment (in softening and non-softening plants)
- TOC removal (in softening and non-softening plants)
- Free chlorine decay
- Chloramine decay
- THM and HAA formation with free chlorine (in treatment plant and distribution systems)

• THM and HAA formation with chloramines

The Model algorithms were calibrated starting with pH and ending with DBPs since the algorithms in some of the processes in the above list use the results of algorithms for processes preceding them.

Note that calibration was not performed for DBP formation for plants using chlorine dioxide or ozone due to the lack of sufficient data sets. This introduces uncertainty in compliance forecasts for systems using these treatment technologies (see Section A.6 for a summary of uncertainties associated with the SWAT).

Data Set Used for Calibration: Although the ICR database contains data from 350 large surface water treatment plants across the US, only a subset of those records were used for calibrating the WTP Model. The following rules were applied to this subset of ICR plants, which further reduced the number of plants/plant-month records used for the calibration analysis:

- 1) To avoid seasonal bias, the calibration analysis used the last 12 months of ICR data (i.e., from January to December 1998), instead of all 18 months.
- 2) Plants using unit processes such as air stripping or process configurations such as mid-stream blending were excluded, since the WTP Model was unable to handle those.
- 3) Plant-month records with missing water quality or treatment train parameters were excluded from the analysis.
- 4) Plant-months with predicted finished water alkalinities less than zero were excluded from further consideration (see step 1 of the calibration approach discussed below). A finished water alkalinity of less than zero indicated erroneous chemical dosages (most likely errors with the units). Hence, these plant-months were excluded.

Calibration Approach: The calibration approach is summarized by the following steps:

- Generate uncalibrated model predictions, which are stored in AUX8 along with the observed data. Plant-months with predicted finished water alkalinity less than zero were eliminated from further consideration.
- 2) Calculate absolute residuals, i.e., the absolute value of the difference between observed and predicted data for a particular parameter.
- 3) Exclude observed and predicted data pairs having the highest 10 percent of absolute residuals for the parameter being calibrated from further consideration. This was done to ensure that the extreme outliers in the ICR data didn't skew the calibration of the WTP Model.
- 4) Generate scatter plots of predicted versus observed data for a given parameter to identify if calibration adjustments were required. To determine whether a calibration factor was required, a line of best fit forced through the origin was applied to the scatter plot. If the slope of that line was within 5 percent of unity, no calibration factor was applied. If the above was not true, one of the following two calibration adjustments was applied:

- (a) Slope-based adjustment: This was applied when the best-fit line not forced through the origin had an intercept close to zero. Calibration was then performed using the best-fit line forced through the origin. If the slope of this line was beyond 5 percent of unity, a multiplicative calibration factor equal to the inverse of this slope was applied to the appropriate WTP algorithm.
- (b) Slope and intercept-based adjustment: This was applied when a clear linear relationship existed between the observed and predicted values and the best-fit line not forced through the origin did not have an intercept close to zero. In such cases, there was a clear trend of under-prediction at one end and over-prediction at the other end. The slope and intercept of the best-fit line were then used to calibrate the appropriate WTP algorithm.

*Model Performance Evaluation*: After the Model was calibrated, its performance was evaluated as follows:

- 1) The WTP Model was re-run to generate a set of calibrated predictions.
- 2) Observed and predicted (new) data were queried from AUX8 for the same plant subsets, and scatter plots were constructed. The square of the correlation coefficient (i.e., r²) was calculated for the scatter plots to assess the predictive performance of the Model. An r² value of close to unity indicates a strong correlation between the observed and predicted data, and thus a better predictive performance of the Model.
- 3) Cumulative distributions of all data observed (without the exclusion of any data pairs as described in step 5 above) were compared to cumulative distributions of predicted data to assess the ability of the Model to predict full-scale treatment performance on a national level.
- 4) Paired data were analyzed to investigate the Model's correlation with site-specific ICR observations. This was achieved by calculating residuals (i.e., SWAT predicted minus ICR observed value) for paired data for each water quality parameter.

# A.5.2 Calibration Results

A summary of the calibration results for all the parameters is presented in Exhibit A.11. The exhibit summarizes:

- The calibration adjustment factor for each parameter (refer to step 5 of "Calibration Approach")
- The r<sup>2</sup> value of the scatter plots after calibration (refer to step 2 of "Model Performance Evaluation")
- The 5<sup>th</sup>, 50<sup>th</sup>, and 95<sup>th</sup> percentile of the actual residuals for each parameter after calibration (refer to step 4 of "Model Performance Evaluation").

Box plots showing distributions of observed and predicted data after calibration (refer to step 3 of "Model Performance Evaluation") are not presented here but are included in chapter 8 of the ICR data analysis book (McGuire et al. 2002).

# A.5.3 Discussion of the Calibration Results for each Parameter

pH

Softening plants: An adjustment in the slope and the intercept was required in this case (i.e.,  $pH_{cal} = (pH_{orig} - 1.86) \div 0.71$ ). After calibration, the  $r^2$  of the scatter plot increased from 0.33 to 0.37. The slope of the best-fit line, forced through the origin, was within 5 percent of unity. This indicated that the observed and predicted data pairs were more symmetrically distributed around the line with a slope of unity, after calibration.

Non-softening plants: No calibration was required since the slope of the best-fit line, forced through the origin, was very close to unity (i.e., 0.98). The  $r^2$  of the scatter plot was substantially higher than that of the softening plants (i.e., 0.69), indicating a strong correlation between the data pairs.

TOC

Softening plants: A slope adjustment was required in this case (i.e.,  $TOC_{cal} = TOC_{orig} \div 0.87$ ). After the calibration, the  $r^2$  of the scatter plot was 0.58, thus indicating a fairly strong correlation between the data pairs.

Non-softening plants: No calibration was required since the slope of the best-fit line, forced through the origin, for the uncorrected predicted data, was very close to unity. The  $r^2$  of the scatter plot was the highest among all the parameters investigated (i.e., 0.84), indicating a very strong correlation between the data pairs.

A comparison of the distributions of the observed and predicted (after calibration) data (including data from both softening and non-softening plants) indicated that:

- Predicted values at the 75<sup>th</sup> percentile or below exceeded observed values by only 0.1-0.2 mg/L.
- The Model predictions were generally slightly higher than the observed values.

Free Chlorine

No calibration was required since the slope of the best-fit line, forced through the origin, for the uncorrected predicted data, was within 5 percent of unity. The  $r^2$  of the scatter plot was 0.49, indicating a reasonable correlation between the data pairs.

| Parameter         | Sampling Locations<br>Included in Analysis                         | Treatment<br>Conditions                             | Calibration<br>Adjustment                                   | Result with<br>Calibration          | Cumulative Distribution of<br>Residuals (Calibrated<br>Results) |                       |                       |
|-------------------|--------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------|-----------------------|-----------------------|
|                   |                                                                    |                                                     |                                                             |                                     | 5 <sup>th</sup> %ile                                            | 50 <sup>th</sup> %ile | 95 <sup>th</sup> %ile |
| рН                | Any in-plant site but mainly settled, filtered, and finished water | Softening                                           | $pH_{cal} = (pH_{orig} - 1.86) \div 0.71$                   | Slope = $0.97$ , $r^2 = 0.37$       | -1.8                                                            | -0.2                  | 1.6                   |
|                   |                                                                    | Non softening                                       | None                                                        | Slope = $0.98$ , $r^2 = 0.69$       | Not report                                                      | ed                    |                       |
| TOC               | Any in-plant site but mainly settled, filtered, and finished water | Softening                                           | $TOC_{cal} = TOC_{orig}$<br>$\div 0.87$                     | Slope = $0.95$ , $r^2 = 0.58$       | -1.0                                                            | 0.2                   | 1.2                   |
|                   |                                                                    | Non softening                                       | None                                                        | Slope = $1.05$ , $r^2 = 0.84$       | Not report                                                      | ed                    |                       |
| Free Chlorine     | Any in-plant site but mainly settled, filtered, and finished water | Plants using free chlorine as primary disinfectant  | None                                                        | Slope = 0.95, r <sup>2</sup> = 0.49 | -1.4                                                            | 0.0                   | 1.8                   |
| Chloramine        | Any in-plant site but mainly settled, filtered, and finished water | Plants using chloramines within the plant           | None                                                        | Slope = $0.87$ , $r^2 = 0.21$       | -2.9                                                            | 0.1                   | 3.0                   |
| TTHM:<br>Finished | Finished water                                                     | Free chlorine only in plant and distribution system | $TTHM_{cal} = $ $TTHM_{orig} \div 0.77$                     | Slope = $0.96$ , $r^2 = 0.50$       | Not reported                                                    |                       |                       |
| TTHM:<br>DS_AVG   | Location in distribution system corresponding to average res. time | Free chlorine only in plant and distribution system | $TTHM_{cal} = $ $TTHM_{orig} \div 0.77$                     | Slope = 1.04, $r^2$ = 0.52          | -43                                                             | 1.7                   | 69                    |
| TTHM:<br>DS_AVG   | Location in distribution system corresponding to average res. time | Chloramine in distribution system                   | TTHM <sub>Cim</sub> = 0.3<br>× TTHM <sub>cal, free Cl</sub> | Slope = 0.99, r <sup>2</sup> = 0.27 | Not reported                                                    |                       |                       |
| HAA5:<br>Finished | Finished water                                                     | Free chlorine only in plant and distribution system | None                                                        | Slope = $0.98$ , $r^2 = 0.47$       | Not reported                                                    |                       |                       |
| HAA5:<br>DS_AVG   | Location in distribution system corresponding to average res. time | Free chlorine only in plant and distribution system | None                                                        | Slope = 1.00, $r^2$ = 0.37          | -30                                                             | 1.7                   | 55                    |

| 2 |
|---|
| 3 |
| 4 |
| 5 |
| 6 |

| Parameter       | Sampling Locations<br>Included in Analysis                         | Treatment<br>Conditions           | Calibration<br>Adjustment                                    | Result with<br>Calibration | Cumulative Distribution o<br>Residuals (Calibrated<br>Results) |                       |                       |
|-----------------|--------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------|----------------------------|----------------------------------------------------------------|-----------------------|-----------------------|
|                 |                                                                    |                                   |                                                              |                            | 5 <sup>th</sup> %ile                                           | 50 <sup>th</sup> %ile | 95 <sup>th</sup> %ile |
| HAA5:<br>DS_AVG | Location in distribution system corresponding to average res. time | Chloramine in distribution system | HAA5 <sub>Clm</sub> = 0.35<br>× HAA5 <sub>cal, free Cl</sub> | Slope = 1.02, $r^2$ = 0.27 | Not reported                                                   |                       |                       |

Notes: "cal" = calibrated predicted value of a parameter; "orig" = uncalibrated predicted value of a parameter; TTHM<sub>Cim</sub> = calibrated value of predicted TTHM concentration with chloramines; HAA5<sub>Cim</sub> = calibrated value of predicted HAA5 concentration with chloramines; TTHM<sub>cal, free Ci</sub> = calibrated value of predicted TTHM with free chlorine;  $HAA5_{cal, free Cl}$  = calibrated value of predicted HAA5 with free chlorine

Source: McGuire et al. 2002, Chapter 8

#### Chloramine

No calibration adjustment was made in this case even though the slope of the best-fit line forced through the origin (for the uncorrected predicted data) was not within 5 percent of unity. The reasons for this are:

- The predicted and observed data were weakly correlated to start with (since  $r^2 = 0.21$ ). Consequently, multiple attempts at calibration failed to produce a desirable improvement.
- The combined effects of the errors in reported dosages of chlorine and ammonia (required for chloramine formation) compounded the errors in the predicted chloramine residual.
- Chloramine residual is not a critical parameter and is rarely used to achieve disinfection credit.

Paired data analysis indicated that a substantial spread in the distribution of the residuals (see Exhibit A.11), although an evaluation of the observed and predicted distributions indicated that the median values matched reasonably.

#### TTHM

For plants using chlorine in the distribution system, modeled TTHM formation was calibrated using observed ICR data from the finished water location and calculated distribution system average (or RAA). For plants using chloramines, the DBP formation is estimated as a percent of the predicted TTHM in plants using free chlorine. Results from the calibration of TTHM formation under different disinfection scenarios is summarized below:

- TTHM formation at the finished water location when disinfecting with chlorine in the treatment plant and the distribution system: A slope adjustment was required in this case (i.e., TTHM<sub>cal</sub> = TTHM<sub>orig</sub> ÷ 0.77). After the calibration, the r² of the scatter plot was 0.50, indicating a reasonable correlation between the data pairs.
- TTHM formation at the DS Average location when disinfecting with chlorine in the treatment plant and the distribution system: The slope adjustment factor of 0.77 (from the TTHM in finished water case described above) was applied to the data set for the DS\_AVG location (i.e.,TTHM<sub>cal</sub> = TTHM<sub>orig</sub> ÷ 0.77). After the calibration adjustment, the r² and the slope of the scatter plot were found to be 0.52 and 1.04 respectively, indicating a reasonable correlation between the data pairs.
- TTHM formation at the DS Average location when disinfecting with chloramine in the distribution system: The calibration analysis for the chloramine condition indicated that TTHM formation with chloramine = 0.30 × TTHM formation with free chlorine.

11 12

17

18

22

23

24

30 31 32

36

37

33

41

42

43 44

45 46

47 48

Like TTHM, HAA5 was calibrated based on finished water and RAA results for chlorine plants, and RAA results for chloramine plants. Results from the calibration of HAA5 formation under the following disinfection scenarios is summarized below:

- Chlorine in treatment plant and distribution system (finished water location): The r<sup>2</sup> of the scatter plot for the uncorrected predicted data was marginally lower than that in the case of TTHMs (i.e., 0.47). However, no calibration was required since the slope of the best-fit line forced through the origin (for the uncorrected predicted data), was within 2 percent of unity.
- Chlorine in treatment plant and distribution system (DS\_AVG location): The r<sup>2</sup> of the scatter plot for the uncorrected predicted data was marginally lower than that in the case of TTHMs (i.e., 0.37). However, no calibration was required since the slope of the best-fit line, forced through the origin, for the uncorrected predicted data was nearly unity.
- Chloramine in distribution system (DS AVG location): The calibration analysis for the chloramine condition indicated that HAA5 formation with chloramine =  $0.35 \times \text{HAA5}$ formation with free chlorine.

The middle 50 percent of the observed and predicted distributions of both TTHM and HAA5 show a very good match. However, the predicted values beyond the 90<sup>th</sup> percentile are significantly higher than those of the observed values (approximately 25-30 µg/L higher). There is a progressive increase in disparity at the tails of the two distributions as one moves from pH, to TOC, to chlorine residual, and finally to TTHM or HAA5. Since the parameters at the beginning of this list serve as inputs to the algorithms for TTHM and HAA5 formation, the predictive errors propagate from the pH algorithm to the DBP algorithms. Thus the probability of generating outlier predictions increases accordingly. This coupled with the fact that there are large uncertainties in the distribution system residence time estimates, results in the DBP predictions exhibiting the greatest spread in residuals of all the parameters.

# Part II: Evaluation of SWAT Predictions

#### **A.6 Uncertainties in SWAT Compliance Forecasts**

EPA has identified 12 areas of uncertainty in SWAT compliance prediction, as listed in Exhibit A.12, that can be grouped into four main categories:

- Uncertainty in ICR observed data, upon which the SWAT model is based
- Uncertainty in predictive equations for DBP formation
- Uncertainty in the SWAT compliance determination
- Uncertainty in SWAT treatment technology selection

There may be others, but EPA believes this list captures the ones that have the largest impact on costs and benefits.

6 7 Exhibit A.12 includes information on the potential effect of each source of uncertainty on the cost and benefit estimates. Note that the direction of the potential bias resulting from each uncertainty source (i.e., whether it results in an over- or under-estimate) is the same for both costs and benefits in every case. The direction of the impact of the uncertainty is unknown for a majority of the cases.

Exhibit A.12 Summary of Uncertainties and Their Impact On Costs and Benefits

|      |                                                                                                                                                                      |                    | ct on Be<br>Estimate |                   |                    | ect on C<br>Estimate |                   |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|-------------------|--------------------|----------------------|-------------------|
|      | Uncertainty                                                                                                                                                          | Under-<br>estimate | Over-<br>estimate    | Unknown<br>Impact | Under-<br>estimate | Over-<br>estimate    | Unknown<br>Impact |
| Unce | rtainty in ICR Observed Data as SWAT Inputs                                                                                                                          |                    | •                    |                   |                    |                      | •                 |
| 1    | There are possible reporting errors during the ICR and the ICR data may not be representative.                                                                       |                    |                      | Х                 |                    |                      | х                 |
| 2    | The residence times reported for the four ICR distribution system locations may not represent the actual residence times.                                            |                    |                      | Х                 |                    |                      | Х                 |
| 3    | A single quarterly DBP sample may not represent average water quality conditions in that quarter. Distribution system samples were not required to be evenly spaced. |                    |                      | Х                 |                    |                      | Х                 |
| 4    | Water quality records were not available for all months in the ICR database. These were "filled in" in Aux 8.                                                        |                    |                      | х                 |                    |                      | х                 |
| Unce | ertainty in Predictive Equations for DBP Formation                                                                                                                   |                    |                      |                   |                    |                      |                   |
| 5    | Generic treatment process configurations were used to represent real ICR plants.                                                                                     |                    |                      | Х                 |                    |                      | Х                 |
| 6    | Empirical model equations are based on bench-<br>scale tests and may not represent site-specific plant<br>conditions.                                                |                    |                      | Х                 |                    |                      | Х                 |
| 7    | WTP algorithms for predicting DBP occurrence for CIO₂ and Ozone plants were not calibrated using ICR observed data.                                                  |                    |                      | X                 |                    |                      | х                 |
| Unce | rtainty in the SWAT Compliance Determination                                                                                                                         |                    |                      |                   |                    |                      |                   |
| 8    | The IDSE may impact the maximum residence times and predicted DBP values.                                                                                            | Х                  |                      |                   | Х                  |                      |                   |
| 9    | Compliance determinations are based on plant-level rather than system-level analyses for RAA compliance determinations.                                              | Х                  |                      |                   | х                  |                      |                   |
| 10   | Some plants that switch from surface water to ground water during certain times of the year can affect RAA and LRAA calculations.                                    |                    | х                    |                   |                    | х                    |                   |

A discussion of each of the 15 areas of uncertainty is given in Section A.6.1. Validation of SWAT treatment technology selections as performed during the M-DBP FACA is described in Section A.6.2

6 7 8

9

10

5

EPA has developed an approach to account explicitly for two key areas of uncertainty in the surface water compliance forecast: the potential impacts of the IDSE (# 8), and uncertainty in predictive equations for DBP formation (#'s 5 through 7). Chapter 5 provides details on how these uncertainties are addressed quantitatively in the final compliance forecast estimates.

11 12 13

#### A.6.1 Discussion of Individual Areas of Uncertainty

14 15 16

#### Uncertainty in ICR Observed Data as SWAT Inputs

17 18

### 1. Possible reporting errors during the ICR

19 20

21

22

23

24

The are several sources of uncertainty in the DBP data collected under the ICR. The American Water Works Association Research Foundation (AWWARF) has compiled a description of the ICR data collection challenges and ultimate quality of the data in a publication, *Information Collection Rule Data Analysis* (the AWWARF ICR Report) (McGuire et al. 2002). Data quality controls were developed by a group of industry experts and strictly enforced; thus, EPA believes that the data quality in the ICR database is very high.

252627

28

29

30

One key area of uncertainty that is addressed in the AWWARF ICR Report relates to the representativeness of all data collected during the ICR. Weather and rainfall during the ICR sampling period were compared to historical data to make this assessment (see Chapter 3, section 3.8 for additional data on weather and rainfall patterns). On a nationwide basis, 1998 was hotter and wetter than normal, although several mid-Atlantic states experienced severe droughts during the summer.

31 32 33

34

35

It is unknown how year-to-year variability in source water quality will affect estimated DBP occurrence. The year of data collection (1998) could represent a worst-case, best-case, or typical year depending on water-quality trends for a given plant. It is likely that some plants may experience higher DBP occurrence in future years than what is represented in the ICR database.

363738

### 2. Uncertainty in the residence time reported at the four ICR distribution system locations

39 40

41

42

The accuracy of residence time estimates for ICR distribution system sample locations depends on operator experience with the system and the extent to which distribution system modeling or tracer studies have been conducted. Moreover, residence time fluctuates at any given location in the distribution

Χ

Χ

system, and the ICR sample may not represent the typical or average residence time at that location. Because modeled DBP formation (particularly TTHM formation) is highly dependent on the residence time, uncertainty in residence time inputs would result in inaccurate estimates of DBP concentration by the WTP Model.

There is also reason to suspect that the uncertainty in the maximum residence time input in SWAT is greater than the uncertainty in the average residence time input in SWAT. As explained in Section A.3, the average residence time in the SWAT model is based on the mean of the four distribution system residence times reported in the ICR (for the DSE, AVE1, AVE2, and MAX locations). The maximum residence time is the largest residence time reported (usually at the MAX location). The MAX residence times reported in the ICR have already been shown in the Occurrence Document (USEPA 2003h) not to be predictive of the highest DBP levels. Therefore, they may not, in fact, represent the maximum residence time in the distribution system. Exhibit A.13 shows that only 53 percent of ICR plants have the highest TTHM LRAA concentration occurring at the maximum residence time monitoring site. The highest HAA5 LRAA occurred at the maximum residence time monitoring site in only 41 percent of the plants.

Exhibit A.13 Percentage of Highest TTHM or HAA5 Value Occurring at a Given Location



Source: ICR data analysis. Detailed source information provided with Exhibit 4.7 in the Stage 2 DBPR Occurrence Document (USEPA 2003h).

3. Uncertainty that a single quarterly sample represents average water quality conditions in that quarter

ICR quarterly samples were not necessarily collected at evenly spaced intervals. (A minimum of two months was required between quarterly samples; however, samples were not required to be taken approximately 90 days apart, as required in the Stage 2 DBPR.) Thus, a single sample may not be representative of that quarter, especially if the seasonal influence is strong.

4. Water quality records were "filled in" in Aux 1 for missing months

Missing records in the ICR resulted in fewer plant-months being estimated by SWAT. In order to increase the number of data points available as input to SWAT, missing values were estimated based on the average of values for the other months. Influent pH, hardness, alkalinity, and ammonia levels were among the parameters that were "filled in" (see Section A.2.2 for more information on how plants were screened and how some missing data were "filled in" in AUX8).

#### Uncertainty in Predictive Equations for DBP Formation

5. Generic treatment process configurations were used to represent real ICR plants

The WTP Model uses generic treatment process configurations to represent real ICR plants. For example, it represents a conventional treatment process train using a specific configuration of the pertinent unit processes. However, ICR plants employing conventional treatment could have a slightly different configuration from the generic conventional treatment plant used by the WTP Model.

6. Empirical model equations may not represent site specific plant conditions

The WTP Model uses empirical equations (based mainly on bench-scale tests) to predict DBP concentrations. However, it does not take into account site-specific factors such as non-uniform flow within a plant, actions of microbes, etc. As a result, the predicted finished water DBP concentration is likely to be different from the ICR observed data.

7. WTP algorithms for predicting DBP occurrence for ClO<sub>2</sub> and Ozone plants were not calibrated using ICR observed data.

There were not enough data on plants using chlorine dioxide or ozone disinfection in the ICR to conduct an appropriate calibration of the SWAT model for these parameters. The model may be inaccurately predicting the formation of DBPs in plants using these treatment technologies. If the model over-predicts the DBP reduction in these types of plants, the treatment technology selection may be biased in favor of selecting these plants. If the model under-predicts the DBP reduction in these plants, the treatment technology selection would be biased in favor of higher-performing treatment technologies, such as UV for chlorine dioxide plants, or GAC and membrane treatment technologies for both chorine dioxide and ozone plants. However, the direction of this bias is not known.

Note that EPA explicitly accounts for uncertainty in SWAT predictive equations (uncertainties 5 through 7) by using an alternative approach to estimate the percent of plants changing treatment technology. The alternative approach is presented in Chapter 5. The ways in which the results from the

alternative approach are incorporated into the Stage 2 benefit and cost models are discussed in Chapters 6 and 7 respectively.

#### Uncertainty in the SWAT Compliance Determination

8. Effects of the Initial Distribution System Evaluation on the compliance forecast

The purpose of the IDSE is to identify compliance monitoring sites that are representative of high TTHM and HAA5 concentrations in the distribution system. The IDSE may result in systems finding sites with higher residence times and, thus, higher TTHM and HAA5 concentrations than predicted by SWAT. The IDSE could ultimately result in more systems making treatment technology changes than estimated by SWAT. A discussion of how EPA accounts for the uncertainty in the impacts of the IDSE is provided in Chapter 5.

The likelihood of finding a site with higher TTHM and HAA5 concentrations depends on many system-specific factors. First, the overall variability of DBP levels affects whether systems will find higher DBP levels at a new site. This variability is influenced by the source water type (surface water versus ground water) and the type of disinfectant used in the distribution system. Analysis of the ICR data has shown that systems employing chloramines as the distribution system disinfectant have more stable DBPs that chloramine systems.

Second, the configuration of the distribution system will affect the likelihood of find a new site with higher DBP levels. Distribution systems that are non-linear, which including looping and circuitous routes to establish new connections instead of extension of the nearest line, make finding the highest site difficult. In addition, systems with multiple storage facilities and booster disinfection pumping stations may find site with higher residence times during the IDSE. This is more likely to be an issue with large system than with small systems.

Finally, the technical resources employed during the ICR and Stage 1 selection of monitoring sites may help to eliminate the likelihood of finding a higher site. Any system that has extensive information of residual data, DBP data, employs hydraulic models, or has employed tracer studies should have a better idea of their maximum residence time sites.

9. Compliance determinations are based on plant-level rather than system-level analysis (Stage 1 only).

Stage 1 requires utilities to sample from a certain number of distribution system monitoring locations for each plant in their distribution system. The required number of monitoring locations varies by source water type and system size (e.g., 4 monitoring locations are required for large surface water systems). Although monitoring requirements are specified on a per-plant basis, compliance with Stage 1 MCLs is based on system-wide TTHM and HAA5 monitoring results. Because not all plants in a given system were available for SWAT modeling, SWAT-predicted DBP results for each plant are evaluated separately to determine regulatory compliance.

In systems having multiple plants, high DBP results from one plant could be averaged with low DBP results from other plants to produce a system-level RAA that is below the MCL, even if the one plant would exceed the MCL if evaluated alone. For example, say that plant A is a surface water plant with a TTHM RAA of  $85 \mu g/L$ . Plants B and C are ground water plants with much lower TTHM

 RAA's of 40 and 45  $\mu$ g/L respectively. Assuming that each plant had an equal number of DBP monitoring sites and samples, the system-wide RAA would be (85+40+45) /3 = 56.6  $\mu$ g/L. Since SWAT evaluates compliance for each plant separately, SWAT could potentially predict that a plant needed to change treatment technology when in fact, it is part of a system that is in compliance.

A potential overestimate of the percentage of plants changing treatment technology affects the compliance predictions for the Stage 1 Baseline and Alternative 3 (40/30 RAA). The Unadjusted Preferred Alternative, Alternative 1 (80/60 LRAA with Bromate of 10 ug/L), and Alternative 2 (80/60 single highest) are not affected because compliance with the MCLs is based on sample results from each location individually. If this phenomenon causes the Stage 1 predictions to be overestimated but not the Stage 2 predictions, there could be an underestimation of the incremental costs and benefits of Stage 2.

# 10. The Effect of Switching From Surface Water to Ground Water on Compliance Determination

Some ICR plants reportedly switch from surface to ground water sources during different times of the year. DBP results for the ground water use periods were not included in SWAT. Switching from a surface to a ground water source would most likely decrease TTHM and HAA5 formation and would impact RAA and LRAA compliance calculations. Not accounting for ground water use periods could result in an over-prediction in the compliance forecast predicted by SWAT.

#### <u>Uncertainty in SWAT Treatment Technology Selection</u>

### 11. Setting the Maximum Chloramine Conversion Rate at 77 Percent

The rate of 77 percent was assumed to be the maximum percentage of systems in the United States that would be able to convert to chloramines. This rate was set by the TWG in order to accommodate plants that may not be able to use chloramines due to site-specific circumstances or local factors other than technical suitability. This rate may be too high or too low, and represents an unknown impact on the SWAT estimates.

#### 12. Benchmarking was used for all Stage 1 and Stage 2 Runs

Plants were assumed to maintain their initial level of pathogen inactivation when switching disinfectants. The disinfectant level may be set high for reasons other than disinfection, such as taste and odor control. Forcing plants to maintain their disinfectant levels could lead to selection of higher-performing treatment technologies in order to avoid DBP non-compliance. It is possible that the State would allow a system to lower its disinfectant levels to avoid higher DBPs, provided that the disinfectant level still meets existing standards.

#### A.6.2 Validation of SWAT Treatment Technology Selection Results

To validate the reasonableness of the SWAT treatment technology selection methodology, including the decision tree, the TWG compared two independent analyses of treatment technology forecasts to SWAT's pre-Stage 2 (post-Stage 1) DBPR predictions.<sup>5</sup> The two independent analyses are referred to as the "Delphi Poll" and the "Utility Poll" and are described below. A discussion of results follows.

ICR Surface Water Expert Poll (Delphi Poll)

The TWG conducted an expert, or "Delphi," poll to obtain Stage 1 DBPR impact estimates, based on technical expertise. Experts were provided with detailed water quality and treatment process characteristics from the AUX1 database for all ICR plants that appeared not to meet the MCLs for the Stage 1 DBPR (based on the ICR data, assuming a 20 percent safety margin for compliance). The experts then reviewed each plant to determine the most likely treatment technology choice to meet the Stage 1 DBPR. They were also asked to choose the least-cost treatment technology option. If an expert had knowledge about a specific plant that would lead him or her to choose a treatment technology other than the least-cost, the expert was asked to identify that treatment technology and the reasons for the choice. The results were collected from the experts, summarized, and presented to the M-DBP FACA (USEPA 2000n, TWG Presentation to FACA Committee, March 29, 2000).

ICR Surface Water Industry Poll (Utility Poll)

The industry poll was developed by the AWWA and served a similar role as the expert poll. It compared SWAT results to the Stage 1 DBPR impacts anticipated by industry representatives. In this process, AWWA asked ICR systems to identify the treatment technology they were planning to implement in response to the Stage 1 DBPR. The summarized results were presented to the M-DBP FACA and compared with the other predictions (USEPA 2000n).

Results

Exhibit A.14 compares the treatment technology selection forecasts predicted by SWAT, the Delphi poll (both expected and least-cost results), and the utility poll. In general, the distributions of Post-Stage 1 treatment technologies-in-place predicted by the polls and by SWAT are in good agreement with each other. Relative to the two polls, SWAT does not significantly over-predict or under-predict the expected prevalence of any treatment technology following the implementation of the Stage 1 rule. Based on these comparisons, the M-DBP FACA determined that SWAT was sufficiently reliable to serve as the basis for Stage 2 treatment technology selection forecasts and relied upon SWAT outputs to compare and evaluate regulatory options during its deliberations.

<sup>&</sup>lt;sup>5</sup>Although validation of Post-Stage 2 results would have been preferable, the validation was done for post-Stage 1 because, at this time of this analysis, there were many potential Stage 2 DBPR regulatory alternatives still being evaluated. Performing the independent analyses for several compliance alternatives was considered by the TWG to be too time intensive.



#### **Part III: Compliance Forecasts**

To estimate total benefits and costs of the rule, accurate forecasting of the compliance of surface water systems with the Stage 2 DBPR is critical. The compliance forecasts for large surface water systems were derived from ICR data using SWAT. Comprehensive data on operational parameters and water quality, similar to those gathered for large systems under the ICR, were not available for medium and small systems. Because the quality of the source water and the operational capabilities of medium and small systems were anticipated to differ from those of large systems, a detailed evaluation was performed to accurately estimate impacts of the Stage 2 DBPR on medium and small systems. A Non-ICR Subgroup of the TWG for the Microbial-Disinfection Byproducts Advisory Committee (the Subgroup) was charged with understanding the nature of medium and small systems and developing methodologies for further analysis. Detailed descriptions of the methodologies used in developing compliance forecasts for each system size category are provided in the latter sections of this appendix.

### A.7 SWAT-based Compliance Forecasts for Large Surface Water Systems

Converting SWAT Results to the "Screening" Database

The compliance forecasts for large surface water systems were derived primarily using SWAT. Plant-level results from SWAT were converted to a "screening" database using a SAS program developed during the M-DBP FACA deliberations. The SAS screening program compiled individual plant results and makes adjustments based on knowledge of specific system practices. It also removed plants making minor treatment technology changes (enhanced coagulation, enhanced softening, moving point of chlorination, adjusting chlorine dose) because these are all implemented during Stage 1, so there is no change from Stage 1 to Stage 2.

The SWAT screening database provides three primary outputs: DBP Exposures, Treatment Technology Selection Forecasts, and Ending Treatment Technologies. DBP Exposures provides the predicted values of TTHM, HAA5, chlorite, and bromate for each rule option being examined. Treatment Technology Selection describes the distribution of treatment technologies only for those plants predicted to change to chloramine or an advanced treatment technology. Ending Treatment Technologies predicts the percentages of all plants using each type of treatment technology after the rule option is implemented. (The Treatment Technology Selection cannot be used for this purpose as some plants not making treatment technology changes already use advanced treatment technologies.) Only the Treatment Technology Selection results are presented below. Ending Treatment Technology results are presented in Appendix C and DBP Exposures are presented in Chapter 5.

Adjustments for the Stage 1 Baseline

SWAT cannot take compliance with the Stage 1 DBPR into account when predicting compliance forecasts for Stage 2. Hence, treatment technology shifts from Stage 1 to Stage 2 are estimated by subtracting the treatment technology shift between pre-Stage 1 and Stage 1 from the treatment technology shift between pre-Stage 1 and Stage 2. Different treatment technologies, however, were assumed to be available to meet the regulatory requirements of the Stage 1 and Stage 2 DBPRs. UV was not a proven disinfectant for *Cryptosporidium*, *Giardia*, or viruses at the time of the ICR or when plants were expected to make treatment decisions to meet Stage 1 DBPR requirements. EPA now considers UV a viable alternative disinfectant to chlorine to meet Stage 2 DBPR regulatory alternatives.

Because UV is considered an available treatment technology for the Stage 2 DBPR, some plants are predicted to use UV instead of more expensive treatment technologies such as ozone, microfiltration/ultrafiltration (MF/UF), or GAC. If the compliance forecasts for the Stage 1 and Stage 2 DBPRs were used independently, more expensive treatment technologies installed to meet Stage 1 would effectively be removed from the plant to install less expensive treatment technologies under Stage 2. This is not realistic. In reality, systems that added treatment technology for Stage 1 may not need to add another treatment technology for Stage 2.

To account for the effect of UV, a less expensive treatment technology, becoming available after Stage 1 came into effect, EPA used the following approach to adjust the Stage 2 compliance forecast:

• Model Stage 1 without UV. Model the Stage 2 regulatory alternatives with and without UV as an available treatment technology.

- Use the Stage 1 DBPR estimates of ozone, MF/UF, and GAC10 usage if they are higher than the Stage 2 results with UV, since systems are predicted to use these treatment technologies for Stage 1 and will not remove them to install UV.
- Decrease the percentage of plants using UV accordingly.
- To obtain the percentage of plants adding chloramine, use the percentage from the Stage 2 run without UV as an available treatment technology. This percentage decreases when UV is an available treatment technology. Since the percentage of plants changing to UV to comply with Stage 2 has been reduce, the estimate from the Stage 2 DBPR without the UV option is taken for the adjusted option.

These steps are displayed in Exhibit A.15a, and an example calculation for the Unadjusted Preferred Alternative is presented in Exhibit A.15b. Final adjusted compliance forecasts for large surface water systems are presented in Exhibit A.16.

# Exhibit A.15a Adjustments to Stage 2 Treatment Technology Selection Forecasts for the Stage 1 Baseline



Note: A = Adjustment to Stage 2/UV percentage for GAC10.

B = Adjustment to Stage 2/UV percentage for MF/UF.

C = Adjustment to Stage 2/UV percentage for Ozone.

# Step 1: GAC10 Adjustment

|                 |               | Switch to | Chlorine |                 |         |         |               | GAC10 + Advanced |         | GAC20 + Advanced |           |
|-----------------|---------------|-----------|----------|-----------------|---------|---------|---------------|------------------|---------|------------------|-----------|
|                 | Switch to CLM | CLM Only  | Dioxide  | UV              | Ozone   | MF/UF   | GAC10         | Disinfectant     | GAC20   | Disinfectant     | Membranes |
| Stage 1 DBPR    | A1            | B1        | C1       | D1              | E1      | F1      | G1            | H1               | I1      | J1               | K1        |
| Option w/o UV   | A2            | B2        | C2       | D2              | E2      | F2      | G2            | H2               | 12      | J2               | K2        |
| Option w/ UV    | A3            | B3        | C3       | D3              | E3      | F3      | G3            | H3               | 13      | J3               | K3        |
| Step 1 Subtotal | A4 = A3       | B4 = B3   | C4 = C3  | D4 = If G1>G3   | E4 = E3 | F4 = F3 | G4 = If G1>G3 | H4 = H3          | I4 = I3 | J4 = J3          | K4 = K3   |
| •               |               |           |          | Then D3-(G1-G3) |         |         | Then G1 Else  |                  |         |                  |           |
|                 |               |           |          | Else D3         |         |         | G3            |                  |         |                  |           |

4 5

# **Step 2: MF/UF Adjustment**

|                 |               | Switch to | Chlorine |                 |       |               |       | GAC10 + Advanced |       | GAC20 + Advanced |           |
|-----------------|---------------|-----------|----------|-----------------|-------|---------------|-------|------------------|-------|------------------|-----------|
|                 | Switch to CLM | CLM Only  | Dioxide  | UV              | Ozone | MF/UF         | GAC10 | Disinfectant     | GAC20 | Disinfectant     | Membranes |
| Stage 1 DBPR    | A1            | B1        | C1       | D1              | E1    | F1            | G1    | H1               | l1    | J1               | K1        |
| Option w/o UV   | A2            | B2        | C2       | D2              | E2    | F2            | G2    | H2               | 12    | J2               | K2        |
| Option w/ UV    | A3            | B3        | C3       | D3              | E3    | F3            | G3    | H3               | 13    | J3               | K3        |
| Step 2 Subtotal | A4            | B4        | C4       | D5 = If F1>F3   | E4    | F5 = If F1>F3 | G4    | H4               | 14    | J4               | K4        |
|                 |               |           |          | Then D4-(F1-F3) |       | Then F1 Else  |       |                  |       |                  |           |
|                 |               |           |          | Else D4         |       | F4            |       |                  |       |                  |           |

6 7

# **Step 3: Ozone Adjustment**

|                 |               | Switch to | Chlorine |                 |               |       |       | GAC10 + Advanced |       | GAC20 + Advanced |           |
|-----------------|---------------|-----------|----------|-----------------|---------------|-------|-------|------------------|-------|------------------|-----------|
|                 | Switch to CLM | CLM Only  | Dioxide  | UV              | Ozone         | MF/UF | GAC10 | Disinfectant     | GAC20 | Disinfectant     | Membranes |
| Stage 1 DBPR    | A1            | B1        | C1       | D1              | E1            | F1    | G1    | H1               | I1    | J1               | K1        |
| Option w/o UV   | A2            | B2        | C2       | D2              | E2            | F2    | G2    | H2               | 12    | J2               | K2        |
| Option w/ UV    | A3            | B3        | C3       | D3              | E3            | F3    | G3    | H3               | 13    | J3               | K3        |
| Step 3 Subtotal | A4            | B4        | C4       | D6 = If E1>E3   | E5 = If E1>E3 | F5    | G4    | H4               | 14    | J4               | K4        |
|                 |               |           |          | Then D5-(E1-E3) | Then E1 Else  |       |       |                  |       |                  |           |
|                 |               |           |          | Else D5         | E4            |       |       |                  |       |                  |           |

# Step 4: CLM Adjustment

|                 |               | Switch to | Chlorine |    |       |       |       | GAC10 + Advanced |       | GAC20 + Advanced |           |
|-----------------|---------------|-----------|----------|----|-------|-------|-------|------------------|-------|------------------|-----------|
|                 | Switch to CLM | CLM Only  | Dioxide  | UV | Ozone | MF/UF | GAC10 | Disinfectant     | GAC20 | Disinfectant     | Membranes |
| Stage 1 DBPR    | A1            | B1        | C1       | D1 | E1    | F1    | G1    | H1               | 11    | J1               | K1        |
| Option w/o UV   | A2            | B2        | C2       | D2 | E2    | F2    | G2    | H2               | 12    | J2               | K2        |
| Option w/ UV    | A3            | B3        | C3       | D3 | E3    | F3    | G3    | H3               | 13    | J3               | K3        |
| Step 3 Subtotal | A5 = If A2>A3 | B4        | C4       | D6 | E5    | F5    | G4    | H4               | 14    | J4               | K4        |
|                 | Then A2 Else  |           |          |    |       |       |       |                  |       |                  |           |
|                 | A3            |           |          |    |       |       |       |                  |       |                  |           |

9

8

9

# Exhibit A.16 Final Adjusted Compliance Forecasts for Surface Water Systems Serving > 10,000 (Percent of Systems Changing Treatment Technologies from the Pre-Stage 1 Baseline to Stage 2)

# Stage 2 Preferred Alternative, 20 Percent Safety Margin: 80 $\mu$ g/L TTHM as LRAA, 60 $\mu$ g/L HAA5 as LRAA, Bromate 10 $\mu$ g/L

|             | Switch to | Switch to | Chlorine |       |        |       |       | GAC10 + Advanced |       | GAC20 + Advanced |           |
|-------------|-----------|-----------|----------|-------|--------|-------|-------|------------------|-------|------------------|-----------|
|             | CLM       | CLM only  | Dioxide  | UV    | Ozone  | MF/UF | GAC10 | Disinfectant     | GAC20 | Disinfectant     | Membranes |
| Stage 1     |           |           |          |       |        |       |       |                  |       |                  |           |
| DBPR        | 13.92%    | 78.39%    | 5.13%    | 0.00% | 10.99% | 1.83% | 1.83% | 1.10%            | 0.37% | 0.00%            | 0.37%     |
| Stage 2     |           |           |          |       |        |       |       |                  |       |                  |           |
| Option w/o  |           |           |          |       |        |       |       |                  |       |                  |           |
| UV          | 19.05%    | 76.19%    | 5.49%    | 0.00% | 11.72% | 1.83% | 1.83% | 1.83%            | 0.73% | 0.00%            | 0.37%     |
|             |           |           |          |       |        |       |       |                  |       |                  |           |
| Stage 2     |           |           |          |       |        |       |       |                  |       |                  |           |
| Option w/UV | 18.68%    | 76.19%    | 5.49%    | 7.33% | 6.23%  | 0.37% | 1.47% | 1.83%            | 0.73% | 0.00%            | 0.37%     |
| Stage 2     |           |           |          |       |        |       |       |                  |       |                  |           |
| Option      |           |           |          |       |        |       |       |                  |       |                  |           |
| adjusted    | 19.05%    | 76.19%    | 5.49%    | 0.75% | 10.99% | 1.83% | 1.83% | 1.83%            | 0.73% | 0.00%            | 0.37%     |

# Stage 2 Preferred Alternative, 25 Percent Safety Margin: 80 $\mu$ g/L TTHM as LRAA, 60 $\mu$ g/L HAA5 as LRAA, Bromate 10 $\mu$ g/L

|             | Switch to | Switch to | Chlorine |        |        |       |       | GAC10 + Advanced |       | GAC20 + Advanced |           |
|-------------|-----------|-----------|----------|--------|--------|-------|-------|------------------|-------|------------------|-----------|
|             | CLM       | CLM only  | Dioxide  | UV     | Ozone  | MF/UF | GAC10 | Disinfectant     | GAC20 | Disinfectant     | Membranes |
| Stage 1     |           |           |          |        |        |       |       |                  |       |                  |           |
| DBPR        | 13.92%    | 78.39%    | 5.13%    | 0.00%  | 10.99% | 1.83% | 1.83% | 1.10%            | 0.37% | 0.00%            | 0.37%     |
| Stage 2     |           |           |          |        |        |       |       |                  |       |                  |           |
| Option w/o  |           |           |          |        |        |       |       |                  |       |                  |           |
| UV          | 22.34%    | 72.53%    | 4.76%    | 15.02% | 2.56%  | 1.83% | 2.56% | 0.37%            | 0.37% | 0.00%            | 0.00%     |
|             |           |           |          |        |        |       |       |                  |       |                  |           |
| Stage 2     |           |           |          |        |        |       |       |                  |       |                  |           |
| Option w/UV | 21.25%    | 72.53%    | 4.76%    | 8.79%  | 8.06%  | 0.73% | 1.83% | 2.56%            | 0.37% | 0.00%            | 0.37%     |
| Stage 2     |           |           |          |        |        |       |       |                  |       |                  |           |
| Option      |           |           |          |        |        |       |       |                  |       |                  |           |
| adjusted    | 22.34%    | 72.53%    | 5.13%    | 4.40%  | 10.99% | 1.83% | 1.83% | 2.56%            | 0.37% | 0.00%            | 0.37%     |

3

|             | Switch to | Switch to | Chlorine |       |        |       |       | GAC10 + Advanced |       | GAC20 + Advanced |           |
|-------------|-----------|-----------|----------|-------|--------|-------|-------|------------------|-------|------------------|-----------|
|             | CLM       | CLM only  | Dioxide  | UV    | Ozone  | MF/UF | GAC10 | Disinfectant     | GAC20 | Disinfectant     | Membranes |
| Stage 1     |           |           |          |       |        |       |       |                  |       |                  |           |
| DBPR        | 13.92%    | 78.39%    | 5.13%    | 0.00% | 10.99% | 1.83% | 1.83% | 1.10%            | 0.37% | 0.00%            | 0.37%     |
| Stage 2     |           |           |          |       |        |       |       |                  |       |                  |           |
| Option w/o  |           |           |          |       |        |       |       |                  |       |                  |           |
| UV          | 19.05%    | 75.82%    | 5.49%    | 0.00% | 10.99% | 2.20% | 1.83% | 1.47%            | 0.73% | 0.00%            | 1.47%     |
|             |           |           |          |       |        |       |       |                  |       |                  |           |
| Stage 2     |           |           |          |       |        |       |       |                  |       |                  |           |
| Option w/UV | 18.68%    | 75.82%    | 5.49%    | 6.96% | 6.23%  | 0.37% | 1.47% | 1.47%            | 0.73% | 0.00%            | 1.47%     |
| Stage 2     |           |           |          |       |        |       |       |                  |       |                  |           |
| Option      |           |           |          |       |        |       |       |                  |       |                  |           |
| adjusted    | 19.05%    | 75.82%    | 5.49%    | 0.37% | 10.99% | 1.83% | 1.83% | 1.47%            | 0.73% | 0.00%            | 1.47%     |

# Stage 2 Rule Alternative 2: 80 $\mu$ g/L TTHM as Single Highest, 60 $\mu$ g/L HAA5 as Single Highest, Bromate 10 $\mu$ g/L

|             | Switch to | Switch to | Chlorine |       |        |       |        | GAC10 + Advanced |       | GAC20 + Advanced |           |
|-------------|-----------|-----------|----------|-------|--------|-------|--------|------------------|-------|------------------|-----------|
|             | CLM       | CLM only  | Dioxide  | UV    | Ozone  | MF/UF | GAC10  | Disinfectant     | GAC20 | Disinfectant     | Membranes |
| Stage 1     |           |           |          |       |        |       |        |                  |       |                  |           |
| DBPR        | 13.92%    | 78.39%    | 5.13%    | 0.00% | 10.99% | 1.83% | 1.83%  | 1.10%            | 0.37% | 0.00%            | 0.37%     |
| Stage 2     |           |           |          |       |        |       |        |                  |       |                  |           |
| Option w/o  |           |           |          |       |        |       |        |                  |       |                  |           |
| UV          | 28.94%    | 54.58%    | 10.62%   | 0.00% | 12.45% | 2.56% | 10.62% | 6.59%            | 1.10% | 0.37%            | 1.10%     |
|             |           |           |          |       |        |       |        |                  |       |                  |           |
| Stage 2     |           |           |          |       |        |       |        |                  |       |                  |           |
| Option w/UV | 29.30%    | 54.58%    | 10.62%   | 5.49% | 8.79%  | 1.47% | 10.26% | 6.23%            | 1.10% | 0.37%            | 1.10%     |
| Stage 2     |           |           |          |       |        |       |        |                  |       |                  |           |
| Option      |           |           |          |       |        |       |        |                  |       |                  |           |
| adjusted    | 28.94%    | 54.58%    | 10.62%   | 2.93% | 10.99% | 1.83% | 10.26% | 6.23%            | 1.10% | 0.37%            | 1.10%     |

# Stage 2 Rule Alternative 3: 40 $\mu$ g/L TTHM as RAA, 30 $\mu$ g/L HAA5 as RAA, Bromate 10 $\mu$ g/L

|             | Switch to | Switch to | Chlorine |       |        |       |        | GAC10 + Advanced |       | GAC20 + Advanced |           |
|-------------|-----------|-----------|----------|-------|--------|-------|--------|------------------|-------|------------------|-----------|
|             | CLM       | CLM only  | Dioxide  | UV    | Ozone  | MF/UF | GAC10  | Disinfectant     | GAC20 | Disinfectant     | Membranes |
| Stage 1     |           |           |          |       |        |       |        |                  |       |                  |           |
| DBPR        | 13.92%    | 78.39%    | 5.13%    | 0.00% | 10.99% | 1.83% | 1.83%  | 1.10%            | 0.37% | 0.00%            | 0.37%     |
| Stage 2     |           |           |          |       |        |       |        |                  |       |                  |           |
| Option w/o  |           |           |          |       |        |       |        |                  |       |                  |           |
| UV          | 29.67%    | 42.12%    | 13.19%   | 0.00% | 12.45% | 4.03% | 17.58% | 7.69%            | 1.47% | 0.37%            | 1.10%     |
|             |           |           |          |       |        |       |        |                  |       |                  |           |
| Stage 2     |           |           |          |       |        |       |        |                  |       |                  |           |
| Option w/UV | 30.77%    | 42.12%    | 13.19%   | 7.33% | 6.96%  | 2.93% | 17.22% | 7.33%            | 1.47% | 0.37%            | 1.10%     |
| Stage 2     |           |           |          |       |        |       |        |                  |       |                  |           |
| Option      |           |           |          |       |        |       |        |                  |       |                  |           |
| adjusted    | 29.67%    | 42.12%    | 13.19%   | 3.30% | 10.99% | 2.93% | 17.22% | 7.33%            | 1.47% | 0.37%            | 1.10%     |

#### A.8 SWAT based Compliance Forecasts for Medium Surface Water Systems

After a detailed review of available data, the TWG Small/Medium Systems Subgroup concluded that the influent water quality, treatment characterization, and DBP occurrence for medium surface water plants are similar to large surface water plants. This section describes and examines the data that support this conclusion.

The Water Utility Database (WATER:\STATS [AWWA 2000]), developed by AWWA, was used in this analysis. Its data were collected during a 1996 survey of approximately 900 primarily medium and large systems. This database includes information on influent water quality, treatment, and the occurrence of DBPs in finished water for all system sizes.

Exhibit A.17 compares source water types for medium and large surface water systems. Further information is provided in the Stage 2 DBPR Occurrence Document (USEPA 2003h). Given the similarities in the distribution of large and medium systems using each type of surface water, the Subgroup expected to find only minor differences in source water quality. Exhibits A.18 through A.20, which compare source water TOC, turbidity, and alkalinity, respectively, confirm this hypothesis.

Exhibit A.21 shows that the disinfectant usage of medium and large systems is similar. Exhibits A.22 and A.23 show that the distribution of TTHM values was similar between large and medium systems for measurements at finished water and distribution system sampling points.

5

6 7



Source: WATER:\STATS (AWWA 2000).

Exhibit A.18 Comparison of Source Water TOC for Medium and Large Surface Water Systems



8 Source: WATER:\STATS (AWWA 2000).

5

6

7



Source: WATER:\STATS (AWWA 2000).

Exhibit A.20 Comparison of Source Water Alkalinity for Medium and Large Surface Water Systems



Source: WATER:\STATS (AWWA 2000).

# Exhibit A.21 Comparison of Disinfectant Type for Medium and Large Surface Water Systems Using Conventional Filtration



Source: WATER:\STATS (AWWA 2000).

1 2

3

4



Source: WATER:\STATS (AWWA 2000).

4 5 6

7

3

Exhibit A.23 Comparison of Distribution System Annual Average TTHM for Medium and Large Surface Water Systems



Source: WATER:\STATS (AWWA 2000).

Because of the similarities between large and medium surface water systems, the Subgroup assumed that ICR data on DBP occurrence and the results of the SWAT analysis were also applicable to medium surface water systems. Thus, the Subgroup assumed that medium surface water systems treatment technology selection was identical to the large surface water system treatment technology selection for pre-Stage 1, Stage 1, and the Stage 2 alternatives.

For this proportional allocation to be valid, some similarity must exist between the nationwide geographical distribution of ICR surface water systems and that of medium surface water systems. The Subgroup compared the distribution of ICR surface water systems by State to the distribution of medium surface water systems by State, using the Baseline Handbook (USEPA 2001c). This effort established that there is no significant difference in overall geographic distribution (as shown in Exhibit A.24), although there is some variation in the distribution of systems in different size categories.

To ensure that the distribution assumptions did not mask differences that may affect DBP formation, additional analyses were performed. In particular, the distribution of systems with high levels of DBP precursors (TOC in Florida, bromide in Texas; based on State data and ICR data analysis) within certain States was examined. No significant difference was found between the percentages of medium and large systems having high precursor levels. The Subgroup concluded that SWAT predictions of occurrence for large systems could be directly applied to the universe of medium surface water plants.

Exhibit A.24 Distribution of Large and Medium Surface Water Plants by EPA Region

| EPA Region | Percent of Large Systems | Percent of Medium<br>Systems |
|------------|--------------------------|------------------------------|
| 1          | 5.83%                    | 9.00%                        |
| 2          | 12.55                    | 6.35                         |
| 3          | 11.22                    | 12.60                        |
| 4          | 16.60                    | 25.20                        |
| 5          | 13.46                    | 14.22                        |
| 6          | 11.67                    | 12.51                        |
| 7          | 5.38                     | 4.14                         |
| 8          | 4.93                     | 6.06                         |
| 9          | 14.80                    | 7.48                         |
| 10         | 3.60                     | 3.22                         |
| Total      | 100%                     | 100%                         |

Note: Detail may not add due to independent rounding.

Source: Baseline Handbook (USEPA 2001c).

11

23

24

25

17

30

31

36

37

38

39

40

43

44

### 45 46 47

#### **A.9 SWAT based Compliance Forecasts for Small Surface Water Systems**

Small surface water systems differ in many ways from medium and large surface water systems. Small systems are exempt from the 1979 Total Trihalomethane Rule, which set the TTHM MCL at 100 μg/L. Source water quality is somewhat better in small systems than in larger systems, as demonstrated by the ICR Supplemental and National Rural Water Association (NRWA) Survey data, discussed below, and the Stage 2 DBPR Occurrence and Exposure Assessment (USEPA 2003h). Unit cost estimates for new treatment technologies are higher in small systems than larger systems, which may drive small systems to take different treatment approaches. In addition, some treatment technologies predicted for use in large and medium systems may not be feasible in small systems.

Due to these considerations, the Technical Workgroup used an expert review process to extract the predicted compliance forecast for large systems to small system subgroups. The method, or the Delphi Poll process, consisted of a group of experts who provided their best professional judgement to identify likely treatment technologies for affected plants. The expert opinions were consolidated for a best estimate of the treatment technology selection response of compliance affected systems. This provided a compliance forecast for a given regulatory option.

The participating experts included members of the NRWA (a federation of 45 State rural water associations, representing over 19,000 water and wastewater utilities), EPA staff, and consulting engineers with many years of experience in small surface water systems. The review process for small surface water systems integrated technical analyses of source water characteristics and experts' predictions of anticipated treatment technologies changes and DBP formation. The experts' responses were then aggregated for further analysis.

#### A.9.1 Data Sources and Uncertainties

Because the small surface water system compliance forecast is extracted from SWAT model runs, many of the uncertainties in the SWAT model as discussed in Section A.6 apply to the small surface water system compliance forecast. One of the key areas of uncertainty, uncertainty in SWAT predictive equations, is quantified for small surface water systems as it is for large surface water systems. The derivation of alternative compliance forecasts to quantify uncertainty in SWAT predictive equations are presented in Chapter 5.

The ICR Supplemental Survey is a survey meant to compliment the ICR data set. It is a survey of raw source water quality and DBP concentrations from 40 random plants each from the small, medium, and large size categories. This is a small data set when compared to the nearly 4,000 small surface water system. The same is true of the NRWA data set, which consists of 117 randomly surveyed small plants nationwide to determined treatment process, source water quality, and DBP concentrations. Thus, adjustments to the large compliance forecast based on these data sets are uncertain.

The compliance forecasts of small systems are not adjusted to account for the IDSE. Small systems typically have distribution systems that are less complex than those of large surface water systems. As a result, they are more likely to already know the maximum residence time location in their distribution system.

#### A.9.2 Decisions from the Delphi Poll Process

For the expert review process, small surface water systems were subdivided into three size categories: systems serving fewer than 100 people, systems serving 100 to 999 people, and systems serving between 1,000 and 9,999 people. The Subgroup expected systems in each category to make different treatment choices.

The following sections detail the results of the Subgroup's deliberation of specific treatment technologies. The flowchart describing the analytical process is shown in Exhibit A.25.

Systems Serving 1,000 to 9,999 People

A review of ICR Supplemental Survey and NRWA Survey data indicated that source water quality at small systems was better than that at large systems. NRWA Survey results showed slightly higher TOC concentrations; however, NRWA results may be biased, as discussed in Section A.9.1. Based on Supplemental Survey data shown in Exhibit A.25, the Subgroup predicted that a smaller proportion of small systems would change to advanced treatment technologies as a result of the Stage 1 and Stage 2 DBPRs than the proportion of large systems predicted by SWAT.

The Subgroup adjusted the percentage of small systems using conventional or nonconventional treatment (i.e., not switching to advanced treatment) in the following manner:

- If the percentage of large systems employing conventional and nonconventional treatment technologies, as predicted by SWAT, exceeded or equaled 65 percent, then the corresponding percentage for small systems were to be adjusted upward to 75 percent.
- If the percentage of systems employing conventional and nonconventional treatment technologies was predicted to be less than 65 percent, then the corresponding percentage for small systems were to be adjusted by adding 10 percent to the SWAT output.

**Exhibit A.25 Average TOC Levels in Surface Water Systems** 



Source: 12 months from the ICR Supplemental Survey Data (USEPA 2000b).

SWAT predicted that the percentage of large systems using conventional or nonconventional treatment would exceed 65 percent, so the percentage for small systems was increased to 75. The Subgroup correspondingly removed systems from other treatment categories, including chlorine dioxide, UV, and ozone. The Subgroup assumed that the conventional treatment category included some systems modifying treatment by increasing coagulant dose, installing a pre-sedimentation basin, or moving the point of chlorination. While these activities pose a smaller cost impact to large systems than implementing an advanced treatment technology does, some of these modifications (e.g., installing a pre-sedimentation basin) could constitute a substantial burden for a few small systems. However, the Subgroup was of the opinion that on a national scale the effects would not be significant, and hence did not account for it.

The Subgroup then imposed additional constraints that further affected the Stage 1 and 2 DBPR analyses and increased the number of systems predicted to change to advanced treatment technologies.

Because SWAT predictions are based on large systems, they do not account for small systems that were known to be using microfiltration or ultrafiltration before the Stage 1 DBPR was implemented (no large systems were using these treatment technologies during the ICR period). According to the NRWA Survey, microfiltration and ultrafiltration were used by 3.6 percent of small systems before the Stage 1 DBPR went into effect. As a result, the experts added 3.6 percent to the percentage of small systems predicted to be using microfiltration and ultrafiltration after the Stage 1 and Stage 2 DBPRs. These extra systems were subtracted from the systems predicted to use chlorine dioxide, ozone, and UV, as predicted by SWAT.

The SWAT model includes four options for systems using GAC:

- GAC10 (10-minute empty bed contact time)
- GAC10 plus advanced disinfectants
- GAC20 (20-minute empty bed contact time)
- GAC20 plus advanced disinfectants

Costs for GAC systems include frequent replacement or regeneration of the carbon media. The Subgroup believed that surface water systems serving more than 1,000 people would choose to replace rather than regenerate their GAC media. Because unit costs for GAC20 with replacement are lower than unit costs for GAC10 with regeneration of the media (for small systems), the Subgroup assumed that the systems using GAC10 or GAC10 plus advanced oxidants, based on the large system prediction, would instead use GAC20 or GAC20 plus advanced disinfectants, respectively.

Systems Serving 100 to 999 People

For systems serving 100 to 999 people, the starting point for treatment technology selection was the treatment technology distribution predicted for systems serving 1,000 to 9,999 people. These predictions were further modified to account for the difficulties systems of this size might have with disinfectants such as ozone, chlorine dioxide, and chloramines. Predictions for systems using GAC20 were adjusted as well.

In general, the Subgroup established that many small systems would probably not use chlorine dioxide, because it is difficult to handle and must be generated on site. The application of chlorine dioxide also requires daily testing for chlorite, a regulated DBP. The effort or expertise required for this testing may be beyond the capability of many small systems. Therefore, the Subgroup constrained chlorine dioxide use in the 100-999 size category to half that of the 1,000 to 9,999 category, allocating the rest to UV, ozone, and MF/UF in proportion to the existing numbers for these treatment technologies.

The preceding constraints on the treatment technologies available to small systems necessitated predicting the treatment technology to which each small system will switch. The only difference between the SWAT Decision Tree and the one used for small surface water systems is that GAC10 is not an option for the small surface water systems. The Subgroup also assumed that systems predicted to modify their primary treatment would continue to use the same residual disinfectant.

The Subgroup next adjusted the compliance forecast to account for a small portion of smaller systems that may not be able to apply GAC20 treatment technologies. The Subgroup subtracted 10 percent from the percentage of systems predicted to use GAC20. The systems removed from GAC20 were then added to NF (microfiltration followed by nanofiltration), the next available treatment technology on the decision tree.

Chloramine use may be difficult for some small systems, especially if an operator is not always present. Chloramine use was adjusted in a two-step process. First, the percentage of systems predicted to use chloramine as a residual disinfectant was reduced to 90 percent of the value predicted for systems serving 1,000 to 9,999 people. These systems instead were predicted to use chlorine as a residual disinfectant. Second, the Subgroup predicted that systems using chlorine would switch to different primary treatment technologies. This reallocation was necessary because chlorine contributes more to DBP formation than chloramine does, thereby forcing systems to use a higher cost treatment technology in order to meet the DBP standards of the Stage 2 DBPR.

Systems Serving Fewer than 100 People

For systems serving 100 or fewer people, the starting point for treatment technology selection was the treatment technology distribution predicted for systems serving 100 to 999 people. These predictions were modified to account for the additional difficulties systems of this size might have with disinfectants such as ozone, chlorine dioxide, and chloramine. Predictions for systems using GAC20 were adjusted as well.

The Subgroup assumed that no systems in this size category would use chlorine dioxide or ozone. Consequently, the Subgroup allocated to conventional treatment two-thirds of the systems that were predicted to use chlorine dioxide and ozone. The remaining one-third of chlorine dioxide systems were allocated to UV, MF/UF, GAC20, GAC20 with UV, and NF, and the remaining one-third of ozone systems were allocated to MF/UF, GAC20, GAC20 with UV, and NF, all in proportion to existing numbers for these treatment technologies.

As with systems serving 100 to 999 people, the percentage of systems predicted to use GAC20 was decreased by 10. The systems removed from GAC20 were then added to NF, the next available treatment technology on the decision tree.

The Subgroup adjusted chloramine usage using the same process as it did for systems serving 100 to 999 people, except that the percentage of systems predicted to use chloramine as a residual disinfectant was reduced to 75 percent, rather than 90 percent.

The most significant effect of the chloramine constraint was that systems using less expensive treatment technologies were predicted to move toward more expensive treatment technologies. This effectively neutralizes the cost savings small systems might have achieved through better source water quality. A review of the compliance forecasts shows that when the Stage 1 DBPR predictions for both large and small surface water systems are compared, there is no significant difference in the percentage of systems using advanced treatment technologies to comply with the Stage 1 DBPR. Small systems have better source water quality than large systems do, but this is outweighed by the fact that they must install more expensive treatment technologies to comply with DBP regulations and by the fact that large systems are already complying with the 1979 TTHM Rule.

#### Adjustments for the Stage 1 DBPR

To account for the effect of less expensive treatment technologies becoming available to meet the Stage 2 DBPR requirements for small surface water systems, the following adjustments were made to the Stage 2 ending treatment technology predictions made by the Delphi subgroup:

- Start with SWAT/Delphi subgroup treatment technology selection predictions for the Stage 1 DBPR and Stage 2 DBPR options (with and without UV) for the small surface water systems.
- Check the Stage 2 small surface water predictions for NF (i.e., the most expensive treatment technology). Use the Stage 1 DBPR estimates for NF usage if they are higher than the Stage 2 NF usage estimates. This is because systems predicted to use NF for Stage 1 will not remove it to shift to a lower-performing treatment technology, even if the actual Stage 2 predictions specify the latter.
- Repeat the above step with the next most expensive treatment technology (i.e., GAC20 & UV or advanced oxidants (AO)). Continue this procedure for each succeeding treatment technology, moving all the way down to chlorine dioxide.

These steps are outlined in Exhibit A.26 (see "Adjusting for Stage 1 Baseline"), and an example of the adjustments made for each size category is presented in Exhibit A.27.

In addition to the treatment technology abbreviations commonly used in this EA, the following acronyms are used in Exhibit A.26:

- C/S Conventional filtration with softening
- NC Nonconventional filtration

# A.9.3 Results

2 3 4

1

Exhibits A.28a, A.28b, and A.28c summarize the treatment technology selection results for small surface water systems, for all Stage 2 DBPR regulatory alternatives and sensitivity options.

**Exhibit A.26 Small Surface Water Forecast Flowchart** 





# **Exhibit A.27 Small Surface Water Adjustments Example**

## **Initial Adjustments**

|                        | SWAT for ICR Systems |     |  |  |  |  |  |  |  |  |
|------------------------|----------------------|-----|--|--|--|--|--|--|--|--|
|                        | CL2                  | CLM |  |  |  |  |  |  |  |  |
| Nonconventional        | A1                   | B1  |  |  |  |  |  |  |  |  |
| Conventional/Softening | A2                   | B2  |  |  |  |  |  |  |  |  |
| CIO <sub>2</sub>       | A3                   | В3  |  |  |  |  |  |  |  |  |
| UV                     | A4                   | B4  |  |  |  |  |  |  |  |  |
| Ozone                  | A5                   | B5  |  |  |  |  |  |  |  |  |
| MF/UF                  | A6                   | B6  |  |  |  |  |  |  |  |  |
| GAC10                  | A7                   | B7  |  |  |  |  |  |  |  |  |
| GAC10 & UV             | A8                   | B8  |  |  |  |  |  |  |  |  |
| GAC20                  | A9                   | B9  |  |  |  |  |  |  |  |  |
| GAC20 & UV             | A10                  | B10 |  |  |  |  |  |  |  |  |
| Membranes (NF)         | A11                  | B11 |  |  |  |  |  |  |  |  |

| Serving 1,000 - 9,999                      |                                            |  |
|--------------------------------------------|--------------------------------------------|--|
| CL2                                        | CLM                                        |  |
| C1 = A1                                    | D1 = B1                                    |  |
| C2 = If A1+A2+B1+B2=0 Then A2 Else         | D2 = If A1+A2+B1+B2=0 Then B2 Else         |  |
| If A1+A2+B1+B2 AND A1+A2+B1+B2<0.65 Then   | If A1+A2+B1+B2 AND A1+A2+B1+B2<0.65 Then   |  |
| A2+(A2/(A2+B2))*0.1 Else                   | B2+(B2/(A2+B2))*0.1Else                    |  |
| If A1+A2+B1+B2>0.65 AND A1+A2+B1+B2<0.75   | If A1+A2+B1+B2>0.65 AND A1+A2+B1+B2<0.75   |  |
| Then A2+(0.75-(A1+A2+B1+B2))*(A2/(A2+B2))) | Then B2+(0.75-(A1+A2+B1+B2))*(B2/(A2+B2))) |  |
| Else A2                                    | Else B2                                    |  |
| C3 = (A3-((C2-A3)*(A3/(A3+A4+A5)))-        | D3 = (B3-((D2-B3)*(B3/(B3+B4+B5)))-        |  |
| (0.036*(A6/(A6+B6))*(A3/(A3+A4+A5))))      | (0.036*(B6/(A6+B6))*(B3/(B3+B4+B5))))      |  |
| C4 = (A4-((C2-A4)*(A4/(A3+A4+A5)))-        | D4 = (B4-((D2-B4)*(B4/(B3+B4+B5)))-        |  |
| (0.036*(A6/(A6+B6))*(A4/(A3+A4+A5))))      | (0.036*(B6/(A6+B6))*(B4/(B3+B4+B5))))      |  |
| C5 = (A5-((C2-A5)*(A5/(A3+A4+A5)))-        | D5 = (B5-((D2-B5)*(B5/(B3+B4+B5)))-        |  |
| (0.036*(A6/(A6+B6))*(A5/(A3+A4+A5))))      | (0.036*(B6/(A6+B6))*(B5/(B3+B4+B5))))      |  |
| C6 = A6+0.036*(A6/(A6+B6))                 | D6 = B6+0.036*(B6/(A6+B6))                 |  |
| C7 = 0                                     | D7 = 0                                     |  |
| C8 = 0                                     | D8 = 0                                     |  |
| C9 = A9+A7                                 | D9 = B8+B7                                 |  |
| C10 = A10+A8                               | D10 = B10+B8                               |  |
| C11 = A11                                  | D11 = B11                                  |  |

|                        | Serving 100 - 999                 |                   |  |
|------------------------|-----------------------------------|-------------------|--|
|                        | CL2                               | CLM               |  |
| Nonconventional        | E1 = C1                           | F1 = D1           |  |
| Conventional/Softening | E2 = C2                           | F2 = D2           |  |
| CIO <sub>2</sub>       | E3 = 50%*C3                       | F3 = 50%*D3       |  |
| UV                     | E4 = C4+(0.5*C3)* (C4/(C4+C5+C6)) | F4 = D4+(0.5*D3)* |  |
| OV                     | E4 = C4+(0.5 C5) (C4/(C4+C5+C6))  | (D4/(D4+D5+D6))   |  |
| Ozone                  | E5 = C5+(0.5*C3)* (C5/(C4+C5+C6)) | F5 = D5+(0.5*D3)* |  |
| Ozone                  | E5 = C5+(0.5 C3) (C5/(C4+C5+C6))  | (D5/(D4+D5+D6))   |  |
| MF/UF                  | E6 = C6+(0.5*C3)* (C6/(C4+C5+C6)) | F6 = D6+(0.5*D3)* |  |
| WIF 7 OF               | L0 = C0+(0.3 C3) (C0/(C4+C3+C0))  | (D6/(D4+D5+D6))   |  |
| GAC10                  | E7 = C7                           | F7 = D7           |  |
| GAC10 & UV             | E8 = C8                           | F8 = D8           |  |
| GAC20                  | E9 = C9                           | F9 = D9           |  |
| GAC20 & UV             | E10 = C10                         | F10 = D10         |  |
| Membranes (NF)         | E11 = C11                         | F11 = D11         |  |

| Serving <100                             |                                          |  |
|------------------------------------------|------------------------------------------|--|
| CL2 CLM                                  |                                          |  |
| G1 = E1                                  | H1 = F1                                  |  |
| G2 = E2+0.67*(E3+E5)                     | H2 = F2+0.67*(F3+F5)                     |  |
| G3 = 0                                   | H3 = 0                                   |  |
| G4 = E4+0.33*E3*(E4/(E4+E6+E9+E10+E11))  | H4 = F4+0.33*F3*(F4/(F4+F6+F9+F10+F11))  |  |
| G5 = 0                                   | H5 = 0                                   |  |
| G6 = E6+0.33*E5*(E6/(E6+E9+E10+E11))+    | H6 = F6+0.33*F5*(F6/(F6+F9+F10+F11))+    |  |
| 0.33*E3*(E6/(E4+E6+E9+E10+E11))          | 0.33*F3*(F6/(F4+F6+F9+F10+F11)) "        |  |
| G7 = 0                                   | H7 = 0                                   |  |
| G8 = 0                                   | H8 = 0                                   |  |
| G9 = E9+0.33*E5*(E9/(E6+E9+E10+E11))+    | H9 = F9+0.33*F5*(F9/(F6+F9+F10+F11))+    |  |
| 0.33*E3*(E9/(E4+E6+E9+E10+E11))          | 0.33*F3*(F9/(F4+F6+F9+F10+F11))          |  |
| G10 = E10+0.33*E5*(E10/(E6+E9+E10+E11))+ | H10 = F10+0.33*F5*(F10/(F6+F9+F10+F11))+ |  |
| 0.33*E3*(E10/(E4+E6+E9+E10+E11))         | 0.33*F3*(F10/(F4+F6+F9+F10+F11))         |  |
| G11 = E11+0.33*E5*(E11/(E6+E9+E10+E11))+ | H11 = F11+0.33*F5*(F11/(F6+F9+F10+F11))+ |  |
| 0.33*E3*(E11/(E4+E6+E9+E10+E11))         | 0.33*F3*(F11/(F4+F6+F9+F10+F11))         |  |

# **Exhibit A.27 Small Surface Water Adjustments Example (Continued)**

## **GAC20 Adjustments**

|                        | Serving 100 - 999      |                          |
|------------------------|------------------------|--------------------------|
|                        | CL2                    | CLM                      |
| Nonconventional        | E1                     | F1                       |
| Conventional/Softening | E2                     | F2                       |
| CIO <sub>2</sub>       | E3                     | F3                       |
| UV                     | E4                     | F4                       |
| Ozone                  | E5                     | F5                       |
| MF/UF                  | E6                     | F6                       |
| GAC10                  | E7                     | F7                       |
| GAC10 & UV             | E8                     | F8                       |
| GAC20                  | I9 = 90%*E9            | J9 = 90%*F9              |
| GAC20 & UV             | I10 = 90%*E10          | J10 = 90%*F10            |
| Membranes (NF)         | I11 = E11+10%*(E9+E10) | J11 = F11 + 10%*(F9+F10) |

| Serving < 100          |                        |  |
|------------------------|------------------------|--|
| CL2                    | CLM                    |  |
| G1                     | H1                     |  |
| G2                     | H2                     |  |
| G3                     | H3                     |  |
| G4                     | H4                     |  |
| G5                     | H5                     |  |
| G6                     | H6                     |  |
| G7                     | H7                     |  |
| G8                     | H8                     |  |
| K9 = 90%*G9            | L9 = 90%*H9            |  |
| K10 = 90%*G10          | L10 = 90%*H10          |  |
| K11 = G11+10%*(G9+G10) | L11 = H11+10%*(H9+H10) |  |

## **CLM Adjustments**

|                        | Serving 100 - 999                              |                 |  |
|------------------------|------------------------------------------------|-----------------|--|
|                        | CL2 CLM                                        |                 |  |
| Nonconventional        | E1                                             | N1 = 90%*F1     |  |
| Conventional/Softening | E2                                             | N2 = 90%*F2     |  |
| CIO <sub>2</sub>       | E3                                             | N3 = 90%*F3     |  |
|                        | M4 = E4+10%*(F1+F2)*                           |                 |  |
| UV                     | (E4/(E4+E5+E6))+                               | N4 = 90%*F4     |  |
|                        | 10%*F3*(E4/(E4+E5+E6))                         |                 |  |
|                        | M5 = E5+10%*(F1+F2)*                           |                 |  |
| Ozone                  | (E5/(E4+E5+E6))+                               | N5 = 90%*F5     |  |
| Ozone                  | 10%*F3*(E5/(E4+E5+E6))+                        | NS = 90% FS     |  |
|                        | 10%*F4*(E5/(E5+E6))                            |                 |  |
| M6 = E6+10%*(F1+F2)*   |                                                |                 |  |
| MF/UF                  | (E6/SUM(E4+E5+E6))+                            | N6 = 90%*F6     |  |
| IMI 701                | 10%*F3*(E6/(E4+E5+E6))+                        | 140 = 90 /6 1 0 |  |
|                        | 10%*F4*(E6/(E5+E6))+ 10%*F5                    |                 |  |
| GAC10                  | E7 F7                                          |                 |  |
| GAC10 & UV             | E8 F8                                          |                 |  |
| GAC20                  | M9 = If I9=0 Then 0 Else I9+10%*F6 N9 = 90%*J9 |                 |  |
| GAC20 & UV             | M10 = IF I9=0 Then I10+10%*J9+                 | N10 = 90%*J10   |  |
| GACZU & UV             | 10%*F6 Else I10+10%*J9                         | NIO = 90% JIO   |  |
| Membranes (NF)         | M11 = I11+10%*(J10+J11)                        | N11 = 90%*J11   |  |

| Serving <100                                            |               |  |
|---------------------------------------------------------|---------------|--|
| CL2                                                     | CLM           |  |
| G1                                                      | P1 = 75%*H1   |  |
| G2                                                      | P2 = 75%*H2   |  |
| G3                                                      | H3            |  |
| O4 = G4+25%*(H1+H2)*(G4/(G4+G6))                        | P4 = 75%*H4   |  |
| G5                                                      | H5            |  |
| O6 = G6+25%*(H1+H2)*(G6/(G4+G6))+25%*H4                 | P6 = 75%*H6   |  |
| G7                                                      | H7            |  |
| G8                                                      | H8            |  |
| O9 = If K9=0 Then 0 Else K9+25%*H6                      | P9 = 75%*H9   |  |
| O10 = If K9=0 Then K10+25%*H6+25%*L9 Else<br>K10+25%*L9 | P10 = 75%*H10 |  |
| O11 = K11+25%*(L10+L11)                                 | P11 = 75%*H11 |  |

## Adjusting for "Negatives"

Check if NF is below Stage 1

|                        | Stage 1 Baseline |     | Stage 2 Alte |  |
|------------------------|------------------|-----|--------------|--|
|                        | CL2              | CLM | CL2          |  |
| Nonconventional        | A1               | B1  | C1           |  |
| Conventional/Softening | A2               | B2  | C2           |  |
| CIO <sub>2</sub>       | А3               | В3  | C3           |  |
| UV                     | A4               | B4  | C4           |  |
| Ozone                  | A5               | B5  | C5           |  |
| MF/UF                  | A6               | B6  | C6           |  |
| GAC10                  | A7               | B7  | C7           |  |
| GAC10 & UV             | A8               | B8  | C8           |  |
| GAC20                  | A9               | B9  | C9           |  |
| GAC20 & UV             | A10              | B10 | C10          |  |
| Membranes (NF)         | A11              | B11 | C11          |  |
|                        |                  |     |              |  |

| Stage 2 Alternative CL2 CLM |     |  |
|-----------------------------|-----|--|
| C1                          | D1  |  |
| C2                          | D2  |  |
| C3                          | D3  |  |
| C4                          | D4  |  |
| C5                          | D5  |  |
| C6                          | D6  |  |
| C7                          | D7  |  |
| C8                          | D8  |  |
| C9                          | D9  |  |
| C10                         | D10 |  |
| C11                         | D11 |  |

| Stage 2 Alternative, after Adjustment                                                                                                                        |                                                                            |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|
| CL2                                                                                                                                                          | CLM                                                                        |  |
| C1                                                                                                                                                           | D1                                                                         |  |
| C2                                                                                                                                                           | D2                                                                         |  |
| C3                                                                                                                                                           | D3                                                                         |  |
| C4                                                                                                                                                           | D4                                                                         |  |
| C5                                                                                                                                                           | D5                                                                         |  |
| C6                                                                                                                                                           | D6                                                                         |  |
| C7                                                                                                                                                           | D7                                                                         |  |
| C8                                                                                                                                                           | D8                                                                         |  |
| C9                                                                                                                                                           | D9                                                                         |  |
| E10 = If C11 <a11 c10-abs(a11-c11)="" c10<="" else="" td="" then=""><td>F10 = If D11<b11 d10-abs(b11-d11)="" d10<="" else="" td="" then=""></b11></td></a11> | F10 = If D11 <b11 d10-abs(b11-d11)="" d10<="" else="" td="" then=""></b11> |  |
| E11 = If C11 <a11 a11="" c11<="" else="" td="" then=""><td>F11 = If D11<b11 b11="" d11<="" else="" td="" then=""></b11></td></a11>                           | F11 = If D11 <b11 b11="" d11<="" else="" td="" then=""></b11>              |  |

Check if GAC20 & UV is below Stage 1

|                        | Stage 1 Baseline |     |
|------------------------|------------------|-----|
|                        | CL2              | CLM |
| Nonconventional        | A1               | B1  |
| Conventional/Softening | A2               | B2  |
| CIO <sub>2</sub>       | А3               | В3  |
| UV                     | A4               | B4  |
| Ozone                  | A5               | B5  |
| MF/UF                  | A6               | В6  |
| GAC10                  | A7               | В7  |
| GAC10 & UV             | A8               | B8  |
| GAC20                  | A9               | B9  |
| GAC20 & UV             | A10              | B10 |
| Membranes (NF)         | A11              | B11 |

| Stage 2 Alternative<br>CL2 CLM |     |  |
|--------------------------------|-----|--|
| C1                             | D1  |  |
| C2                             | D2  |  |
| C3                             | D3  |  |
| C4                             | D4  |  |
| C5                             | D5  |  |
| C6                             | D6  |  |
| C7                             | D7  |  |
| C8                             | D8  |  |
| C9                             | D9  |  |
| E10                            | F10 |  |
| E11                            | F11 |  |

| Stage 2 Alternative, after Adjustment                                                                                                                              |                                                                         |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|
| CL2                                                                                                                                                                | CLM                                                                     |  |  |
| C1                                                                                                                                                                 | D1                                                                      |  |  |
| C2                                                                                                                                                                 | D2                                                                      |  |  |
| C3                                                                                                                                                                 | D3                                                                      |  |  |
| C4                                                                                                                                                                 | D4                                                                      |  |  |
| C5                                                                                                                                                                 | D5                                                                      |  |  |
| C6                                                                                                                                                                 | D6                                                                      |  |  |
| C7                                                                                                                                                                 | D7                                                                      |  |  |
| C8                                                                                                                                                                 | D8                                                                      |  |  |
| G9 = If E10 <a10 c9-abs(a10-e10)="" c9<="" else="" td="" then=""><td colspan="2">H9 = If F10<b10 d9-abs(b10-f10)="" d9<="" else="" td="" then=""></b10></td></a10> | H9 = If F10 <b10 d9-abs(b10-f10)="" d9<="" else="" td="" then=""></b10> |  |  |
| G10 = If E10 <a10 a10="" e10<="" else="" td="" then=""><td colspan="2">H10 = If F10<b10 b10="" else="" f10<="" td="" then=""></b10></td></a10>                     | H10 = If F10 <b10 b10="" else="" f10<="" td="" then=""></b10>           |  |  |
| E11                                                                                                                                                                | F11                                                                     |  |  |

Check if GAC20 is below Stage 1

|                        | Stage 1 Baseline |     |
|------------------------|------------------|-----|
|                        | CL2              | CLM |
| Nonconventional        | A1               | B1  |
| Conventional/Softening | A2               | B2  |
| CIO <sub>2</sub>       | А3               | B3  |
| UV                     | A4               | B4  |
| Ozone                  | A5               | B5  |
| MF/UF                  | A6               | B6  |
| GAC10                  | A7               | B7  |
| GAC10 & UV             | A8               | B8  |
| GAC20                  | A9               | B9  |
| GAC20 & UV             | A10              | B10 |
| Membranes (NF)         | A11              | B11 |
|                        |                  |     |

| Stage 2 A | Stage 2 Alternative<br>CL2 CLM |  |  |
|-----------|--------------------------------|--|--|
| C1        | D1                             |  |  |
| C2        | D2                             |  |  |
| C3        | D3                             |  |  |
| C4        | D4                             |  |  |
| C5        | D5                             |  |  |
| C6        | D6                             |  |  |
| C7        | D7                             |  |  |
| C8        | D8                             |  |  |
| C9        | D9                             |  |  |
| E10       | F10                            |  |  |
| E11       | F11                            |  |  |
|           |                                |  |  |

| Stage 2 Alternative, after Adjustment                                                                                                        |                                                                    |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|
| CL2 CLM                                                                                                                                      |                                                                    |  |  |
| C1                                                                                                                                           | D1                                                                 |  |  |
| C2                                                                                                                                           | D2                                                                 |  |  |
| C3                                                                                                                                           | D3                                                                 |  |  |
| C4                                                                                                                                           | D4                                                                 |  |  |
| C5                                                                                                                                           | D5                                                                 |  |  |
| I6 = If G9 <a9 c6-abs(a9-g9)="" c6<="" else="" td="" then=""><td>J6 = If H9<b9 d6-abs(b9-h9)="" d6<="" else="" td="" then=""></b9></td></a9> | J6 = If H9 <b9 d6-abs(b9-h9)="" d6<="" else="" td="" then=""></b9> |  |  |
| C7                                                                                                                                           | D7                                                                 |  |  |
| C8                                                                                                                                           | D8                                                                 |  |  |
| I9 = If G9 <a9 a9="" else="" g9<="" td="" then=""><td colspan="2">J9 = If H9<b9 b9="" else="" h9<="" td="" then=""></b9></td></a9>           | J9 = If H9 <b9 b9="" else="" h9<="" td="" then=""></b9>            |  |  |
| G10                                                                                                                                          | H10                                                                |  |  |
| E11                                                                                                                                          | F11                                                                |  |  |

#### Check if MF/UF is below Stage 1

|                        | Stage 1 Baseline |     |
|------------------------|------------------|-----|
|                        | CL2              | CLM |
| Nonconventional        | A1               | B1  |
| Conventional/Softening | A2               | B2  |
| CIO <sub>2</sub>       | А3               | В3  |
| UV                     | A4               | B4  |
| Ozone                  | A5               | B5  |
| MF/UF                  | A6               | B6  |
| GAC10                  | A7               | В7  |
| GAC10 & UV             | A8               | B8  |
| GAC20                  | A9               | B9  |
| GAC20 & UV             | A10              | B10 |
| Membranes (NF)         | A11              | B11 |

| Stage 2 Alternative |     |  |
|---------------------|-----|--|
| CL2 CLM             |     |  |
| C1                  | D1  |  |
| C2                  | D2  |  |
| C3                  | D3  |  |
| C4                  | D4  |  |
| C5                  | D5  |  |
| C6                  | D6  |  |
| C7                  | D7  |  |
| C8                  | D8  |  |
| C9                  | D9  |  |
| E10                 | F10 |  |
| E11                 | F11 |  |

# Stage 2 Alternative, after Adjustment

| CL2                                                                                                                                          | CLM                                                                |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|
| C1                                                                                                                                           | D1                                                                 |  |
| C2                                                                                                                                           | D2                                                                 |  |
| C3                                                                                                                                           | D3                                                                 |  |
| C4                                                                                                                                           | D4                                                                 |  |
| K5 = If I6 <a6 c5-abs(a6-i6)="" c5<="" else="" td="" then=""><td>L5 = If J6<b6 d5-abs(b6-j6)="" d5<="" else="" td="" then=""></b6></td></a6> | L5 = If J6 <b6 d5-abs(b6-j6)="" d5<="" else="" td="" then=""></b6> |  |
| K6 = If I6 <a6 a6="" else="" i6<="" td="" then=""><td>L6 = If J6<b6 b6="" else="" j6<="" td="" then=""></b6></td></a6>                       | L6 = If J6 <b6 b6="" else="" j6<="" td="" then=""></b6>            |  |
| C7                                                                                                                                           | D7                                                                 |  |
| C8                                                                                                                                           | D8                                                                 |  |
| 19                                                                                                                                           | J9                                                                 |  |
| G10                                                                                                                                          | H10                                                                |  |
| E11                                                                                                                                          | F11                                                                |  |

#### Check if Ozone is below Stage 1

|                        | Stage 1 Baseline |     |
|------------------------|------------------|-----|
|                        | CL2              | CLM |
| Nonconventional        | A1               | B1  |
| Conventional/Softening | A2               | B2  |
| CIO <sub>2</sub>       | А3               | B3  |
| UV                     | A4               | B4  |
| Ozone                  | A5               | B5  |
| MF/UF                  | A6               | B6  |
| GAC10                  | A7               | B7  |
| GAC10 & UV             | A8               | B8  |
| GAC20                  | A9               | B9  |
| GAC20 & UV             | A10              | B10 |
| Membranes (NF)         | A11              | B11 |
|                        |                  |     |

| Stage 2 Alternat |     |
|------------------|-----|
| CL2              | CLM |
| C1               | D1  |

| Stage 2 Alternative<br>CL2 CLM |     |  |
|--------------------------------|-----|--|
| C1                             | D1  |  |
| C2                             | D2  |  |
| C3                             | D3  |  |
| C4                             | D4  |  |
| C5                             | D5  |  |
| C6                             | D6  |  |
| C7                             | D7  |  |
| C8                             | D8  |  |
| C9                             | D9  |  |
| C10                            | D10 |  |
| C11                            | D11 |  |

#### Stage 2 Alternative, after Adjustment

| CL2                                                                                                                                                      | CLM                                                                |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|
| C1                                                                                                                                                       | D1                                                                 |  |
| C2                                                                                                                                                       | D2                                                                 |  |
| C3                                                                                                                                                       | D3                                                                 |  |
| M4 = If K5 <a5 c4-abs(a5-k5)="" c4<="" else="" td="" then=""><td colspan="2">N4 = If L5<b5 b4-abs(b5-l5)="" d4<="" else="" td="" then=""></b5></td></a5> | N4 = If L5 <b5 b4-abs(b5-l5)="" d4<="" else="" td="" then=""></b5> |  |
| M5 = If K5 <a5 a5="" else="" k5<="" td="" then=""><td colspan="2">N5 = If L5<b5 b5="" else="" l5<="" td="" then=""></b5></td></a5>                       | N5 = If L5 <b5 b5="" else="" l5<="" td="" then=""></b5>            |  |
| K6                                                                                                                                                       | L6                                                                 |  |
| C7                                                                                                                                                       | D7                                                                 |  |
| C8                                                                                                                                                       | D8                                                                 |  |
| 19                                                                                                                                                       | J9                                                                 |  |
| G10                                                                                                                                                      | H10                                                                |  |
| E11                                                                                                                                                      | F11                                                                |  |

#### Check if UV is below Stage 1

|                        | Stage 1 Baseline |     |
|------------------------|------------------|-----|
|                        | CL2              | CLM |
| Nonconventional        | A1               | B1  |
| Conventional/Softening | A2               | B2  |
| CIO <sub>2</sub>       | А3               | В3  |
| UV                     | A4               | B4  |
| Ozone                  | A5               | B5  |
| MF/UF                  | A6               | B6  |
| GAC10                  | A7               | B7  |
| GAC10 & UV             | A8               | B8  |
| GAC20                  | A9               | B9  |
| GAC20 & UV             | A10              | B10 |
| Membranes (NF)         | A11              | B11 |
|                        |                  |     |

| Stage 2 | Alternative |
|---------|-------------|
| CL2     | CLM         |
| C1      | D1          |
| C2      | D2          |
| C3      | D3          |
| C4      | D4          |
| C5      | D5          |
| C6      | D6          |
| C7      | D7          |
| C8      | D8          |
| C9      | D9          |
| C10     | D10         |
| C11     | D11         |

#### Stage 2 Alternative, after Adjustment

| CL2                                                                                                                                          | CLM                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| C1                                                                                                                                           | D1                                                                 |
| C2                                                                                                                                           | D2                                                                 |
| O3 = If M4 <a4 c3-abs(a4-m4)="" c3<="" else="" td="" then=""><td>P3 = If N4<b4 d3-abs(b4-n4)="" d4<="" else="" td="" then=""></b4></td></a4> | P3 = If N4 <b4 d3-abs(b4-n4)="" d4<="" else="" td="" then=""></b4> |
| O4 = If M4 <a4 a4="" else="" m4<="" td="" then=""><td>P4 = If N4<b4 b4="" else="" n4<="" td="" then=""></b4></td></a4>                       | P4 = If N4 <b4 b4="" else="" n4<="" td="" then=""></b4>            |
| M5                                                                                                                                           | N5                                                                 |
| K6                                                                                                                                           | L6                                                                 |
| C7                                                                                                                                           | D7                                                                 |
| C8                                                                                                                                           | D8                                                                 |
| 19                                                                                                                                           | J9                                                                 |
| G10                                                                                                                                          | H10                                                                |
| E11                                                                                                                                          | F11                                                                |

# **Exhibit A.27 Small Surface Water Adjustments Example (Continued)**

Check if CIO2 is below Stage 1

|                        | Stage 1 l | Baseline<br>CLM | <br>Stage 2 A | Alternative<br>CLM |
|------------------------|-----------|-----------------|---------------|--------------------|
| Nonconventional        | A1        | В1              | C1            | D1                 |
| Conventional/Softening | A2        | B2              | C2            | D2                 |
| CIO <sub>2</sub>       | А3        | В3              | C3            | D3                 |
| UV                     | A4        | В4              | C4            | D4                 |
| Ozone                  | A5        | B5              | C5            | D5                 |
| MF/UF                  | A6        | B6              | C6            | D6                 |
| GAC10                  | A7        | B7              | C7            | D7                 |
| GAC10 & UV             | A8        | B8              | C8            | D8                 |
| GAC20                  | A9        | B9              | C9            | D9                 |
| GAC20 & UV             | A10       | B10             | C10           | D10                |
| Membranes (NF)         | A11       | B11             | C11           | D11                |

| Stage 2 Alternative                                                                                                                              | , after Adjustment                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| CL2                                                                                                                                              | CLM                                                                  |
| Q1 = If O3 <a3 (c1+c2))<="" c1-abs(a3-o3)*(c1="" th="" then=""><th>R1 = If P3<b3 (d1+d2))<="" d1-abs(b3-p3)*(d1="" th="" then=""></b3></th></a3> | R1 = If P3 <b3 (d1+d2))<="" d1-abs(b3-p3)*(d1="" th="" then=""></b3> |
| Else C1                                                                                                                                          | Else D1                                                              |
| Q2 = If O3 <a3 (c1+c2))<="" c2-abs(a3-o3)*(c2="" th="" then=""><th>R2 = If P3<b3 (d1+d2))<="" d2-abs(b3-p3)*(d2="" th="" then=""></b3></th></a3> | R2 = If P3 <b3 (d1+d2))<="" d2-abs(b3-p3)*(d2="" th="" then=""></b3> |
| Else C2                                                                                                                                          | Else D2                                                              |
| Q3 = If O3 <a3 a3="" else="" o3<="" th="" then=""><th>R3 = If P3<b3 b3="" else="" p3<="" th="" then=""></b3></th></a3>                           | R3 = If P3 <b3 b3="" else="" p3<="" th="" then=""></b3>              |
| O4                                                                                                                                               | P4                                                                   |
| M5                                                                                                                                               | N5                                                                   |
| K6                                                                                                                                               | L6                                                                   |
| C7                                                                                                                                               | D7                                                                   |
| C8                                                                                                                                               | D8                                                                   |
| 19                                                                                                                                               | J9                                                                   |
| G10                                                                                                                                              | H10                                                                  |
| □11                                                                                                                                              | F11                                                                  |

## Exhibit A.28a Small Surface Water Treatment Technology Selection Results (Serving Populations <100)

|                              | Description of Rule Option |         |             | Cl <sub>2</sub> |              |               |                  |       |       |        |       |       |        |       |           |
|------------------------------|----------------------------|---------|-------------|-----------------|--------------|---------------|------------------|-------|-------|--------|-------|-------|--------|-------|-----------|
|                              | Compliance                 | Bromate | UV          | Converting      | Non          | Conventional/ |                  |       |       |        |       | GAC10 |        | GAC20 |           |
| Rule Option                  | Calculation                | MCL     | Considered? | to CLM          | Conventional | Softening     | CIO <sub>2</sub> | UV    | Ozone | MF_UF  | GAC10 | & UV  | GAC20  | & UV  | Membranes |
| Stage 1 Baseline             | 80/60 RAA                  | 10      | No          | 39.56%          | 9.98%        | 65.21%        | 0.00%            | 0.00% | 0.00% | 18.03% | 0.00% | 0.00% | 3.25%  | 0.00% | 3.52%     |
| Stage 2 Preferred,<br>20% SM | 80/60 LRAA                 | 10      | Yes         | 42.58%          | 9.80%        | 60.76%        | 0.00%            | 3.98% | 0.00% | 18.03% | 0.00% | 0.00% | 3.25%  | 0.66% | 3.52%     |
| Alternative 1                | 80/60 LRAA                 | 5       | Yes         | 42.58%          | 9.80%        | 60.50%        | 0.00%            | 3.32% | 0.00% | 18.03% | 0.00% | 0.00% | 3.25%  | 1.41% | 3.69%     |
| Alternative 2                | 80/60 SH                   | 10      | Yes         | 50.55%          | 6.48%        | 47.68%        | 0.00%            | 2.44% | 0.00% | 21.25% | 0.00% | 0.00% | 11.39% | 6.38% | 4.37%     |
| Alternative 3                | 40/30 RAA                  | 10      | Yes         | 51.10%          | 4.17%        | 39.39%        | 0.00%            | 3.49% | 0.00% | 21.93% | 0.00% | 0.00% | 17.87% | 7.77% | 5.38%     |

# Exhibit A.28b Small Surface Water Treatment Technology Selection Results (Serving Populations 100-999)

|                              | Description of Rule Option |         |             | Cl <sub>2</sub> |              |               |                  |       |       |        |       |       |        |       |           |
|------------------------------|----------------------------|---------|-------------|-----------------|--------------|---------------|------------------|-------|-------|--------|-------|-------|--------|-------|-----------|
|                              | Compliance                 | Bromate | UV          | Converting      | Non          | Conventional/ |                  |       |       |        |       | GAC10 |        | GAC20 |           |
| Rule Option                  | Calculation                | MCL     | Considered? | to CLM          | Conventional | Softening     | CIO <sub>2</sub> | UV    | Ozone | MF_UF  | GAC10 | & UV  | GAC20  | & UV  | Membranes |
| Stage 1 Baseline             | 80/60 RAA                  | 10      | No          | 47.47%          | 10.59%       | 64.03%        | 1.83%            | 0.00% | 9.65% | 10.11% | 0.00% | 0.00% | 2.01%  | 0.92% | 0.86%     |
| Stage 2 Preferred,<br>20% SM | 80/60 LRAA                 | 10      | Yes         | 51.10%          | 10.51%       | 61.71%        | 2.10%            | 1.40% | 9.65% | 10.11% | 0.00% | 0.00% | 2.01%  | 1.62% | 0.89%     |
| Alternative 1                | 80/60 LRAA                 | 5       | Yes         | 51.10%          | 10.50%       | 61.33%        | 2.10%            | 1.05% | 9.65% | 10.11% | 0.00% | 0.00% | 2.01%  | 1.35% | 1.90%     |
| Alternative 2                | 80/60 SH                   | 10      | Yes         | 60.66%          | 7.24%        | 47.23%        | 1.83%            | 0.00% | 9.65% | 14.40% | 0.00% | 0.00% | 10.43% | 6.00% | 3.22%     |
| Alternative 3                | 40/30 RAA                  | 10      | Yes         | 61.32%          | 4.73%        | 39.75%        | 2.35%            | 0.00% | 9.65% | 15.33% | 0.00% | 0.00% | 16.93% | 7.02% | 4.23%     |

# Exhibit A.28c Small Surface Water Treatment Technology Selection Results (Serving Populations 1,000-9,999)

|                              | Description of Rule Option |         |             | Cl <sub>2</sub> |              |               |                  |       |       |        |       |       |        |       |           |
|------------------------------|----------------------------|---------|-------------|-----------------|--------------|---------------|------------------|-------|-------|--------|-------|-------|--------|-------|-----------|
|                              | Compliance                 | Bromate | UV          | Converting      | Non          | Conventional/ |                  |       |       |        |       | GAC10 |        | GAC20 |           |
| Rule Option                  | Calculation                | MCL     | Considered? | to CLM          | Conventional | Softening     | CIO <sub>2</sub> | UV    | Ozone | MF_UF  | GAC10 | & UV  | GAC20  | & UV  | Membranes |
| Stage 1 Baseline             | 80/60 RAA                  | 10      | No          | 52.75%          | 10.99%       | 67.40%        | 4.03%            | 0.00% | 8.49% | 5.43%  | 0.00% | 0.00% | 2.20%  | 1.10% | 0.37%     |
| Stage 2 Preferred,<br>20% SM | 80/60 LRAA                 | 10      | Yes         | 56.78%          | 10.93%       | 64.90%        | 4.63%            | 1.23% | 8.49% | 5.43%  | 0.00% | 0.00% | 2.20%  | 1.83% | 0.37%     |
| Alternative 1                | 80/60 LRAA                 | 5       | Yes         | 56.78%          | 10.93%       | 64.53%        | 4.63%            | 0.87% | 8.49% | 5.43%  | 0.00% | 0.00% | 2.20%  | 1.47% | 1.47%     |
| Alternative 2                | 80/60 SH                   | 10      | Yes         | 67.40%          | 7.98%        | 50.96%        | 4.12%            | 0.00% | 8.49% | 9.41%  | 0.00% | 0.00% | 11.36% | 6.59% | 1.10%     |
| Alternative 3                | 40/30 RAA                  | 10      | Yes         | 68.13%          | 5.14%        | 43.05%        | 5.79%            | 0.00% | 8.49% | 10.06% | 0.00% | 0.00% | 18.68% | 7.69% | 1.10%     |

1

2 3

4 5

6 7

# Appendix B Ground Water Plant Compliance Forecasts

## **Appendix B Ground Water Plant Compliance Forecasts**

#### **B.1** Introduction

This appendix documents the derivation of the compliance forecasts for ground water plants. These forecasts are used in the Economic Analysis (EA) for the Stage 2 Disinfectants and Disinfection Byproducts Rule (DBPR). The forecast for large ground water plants was generated using the Information Collection Rule (ICR) Ground Water Delphi process, which convened a group of ground water system experts. Medium plants were evaluated in a similar manner as large plants. Forecasts for small plants were developed under the small ground water system expert review process. The following sections provide the methodology for developing compliance forecasts for all ground water plants.

#### **B.2** Compliance Forecast for Large and Medium Ground Water Plants

Unlike the compliance forecast for surface water plants generated by the Surface Water Analytical Tool (SWAT), the forecast for ground water plants in large and medium systems (those serving over 10,000 people) was developed in two steps described below (and summarized in Exhibit B.1).

- Estimate the percentage of plants not in compliance: First, the ICR Ground Water Delphi Group used ICR data to evaluate each plant for compliance under various regulatory alternatives.
   However, most of the large plants predicted to be out of compliance were located in Florida.
   Florida systems make up a significantly larger proportion of ICR data than actual ground water system. Therefore, the Environmental Protection Agency (EPA) applied a "Florida/Non-Florida" stratification when extrapolating the results of the Delphi Group to the universe of ground water systems.
- Apply treatment technology selection forecasts to the plants not in compliance: The Delphi Group
  predicted treatment technology selection for each non-compliant large ground water plant. These
  plant-level analyses were aggregated into national-level compliance treatment technology
  forecasts, which were then applied to the percent of medium and large systems not in
  compliance.

Section B.2.1 explains the rationale for using ICR Delphi results for medium ground water systems.

At the time of the Delphi process, EPA was still evaluating a large number of regulatory alternatives and had not been advised by the Federal Advisory Committees Act (FACA) on the Preferred Regulatory Alternative. Therefore, the Delphi group analyzed four "bounding" alternatives to address the variety in the MCL levels (80 micrograms per liter ( $\mu$ g/L) for total trihalomethanes (TTHM), 60  $\mu$ g/L for haloacetic acids (HAA5), and 40  $\mu$ g/L for TTHM, 30  $\mu$ g/L for HAA5), and measurement methods (running annual average (RAA), single highest (SH) values, and locational running annual average (LRAA)) being considered. The original bounding alternatives considered by the Delphi group were:

B-1

- $80/60 \mu g/LRAA$  (The Stage 1 DBPR)
- $80/60 \mu g/L SH (Alternative 2)$
- $40/30 \mu g/L RAA (Alternative 3)$
- $40/30 \mu g/L$  SH (Bounding Alternative 4, not considered in this EA)

Two additional regulatory alternatives were identified after the original Delphi group analysis was completed:

- $80/60 \mu g/L LRAA$  (The Preferred Alternative)
- 80/60  $\mu$ g/L LRAA with reduced Bromate maximum contaminant level (MCL) of 5  $\mu$ g/L (Alternative 1)

Unlike the large surface water systems, no sensitivity analysis was performed to quantify the potential effects of the Initial Distribution System Evaluation (IDSE) on the Preferred Alternative. Ground water sources have more stable water quality than surface water systems. As a result, ground water systems will more likely operate their treatment with a much lower safety margin than 20 percent. Therefore, the ground water system compliance forecasts are conservative enough to estimate the potential effects of the IDSE.

Sections B.2.2 and B.2.3 provide the detailed process for estimating the percent of plants not in compliance for each of the 4 alternatives described above and predicting the treatment technologies they may select to meet compliance.

#### 1 Exhibit B.1 Compliance Forecast for Medium and Large Ground Water Plants



B-3

19

20

Rationale for Using ICR Delphi Results for Medium Ground Water Systems

To determine if results from the ICR Ground Water Delphi Group could be used for medium ground water systems, EPA compared data on disinfection byproducts (DBPs) and DBP precursors from large ground water systems to data from medium ground water systems. The most relevant information for assessing precursor and byproduct occurrence and treatment technology distribution in medium ground water systems is that provided in the WATER:\STATS database (AWWA 2000). Exhibits B.2 to B.4 provide comparisons of average influent total organic carbon (TOC) levels, treatment technology used, and average TTHM levels for medium and large ground water systems in the WATER:\STATS data set. Based on this data, the treatment technology configurations and well fields of large and medium ground water systems are believed to be similar. Therefore, the percent of plants not in compliance (stratified by Florida/Non-Florida) and compliance treatment technology selections projected for the large ground water plants were used for the medium ground water plants.

For more details on medium ground water systems, refer to Chapter 3 of Stage 2 Occurrence Assessment for Disinfectants and Disinfection Byproducts (USEPA 20031).

Exhibit B.2 Annual Average Raw Water TOC for Medium and Large Ground Water **Systems** 



Source: WATER:\STATS (AWWA 2000).



4

5

6



Source: WATER:\STATS (AWWA 2000).

Exhibit B.4 Annual Average Finished Water TTHM for Medium and Large Ground **Water Systems** 



Source: WATER:\STATS (AWWA 2000).

#### **B.2.2** Uncertainties in Compliance Forecasts for Medium and Large Ground Water Systems

There are uncertainties in the ground water compliance forecast. Only 130 ICR ground water plants were used for the Ground Water Delphi process. This only 2 percent of the roughly 8,400 medium and large disinfection ground water systems to which these estimates directly apply. In addition, the Ground Water Delphi is based on expert opinion, and is not as reproducible as the SWAT predictions used for the surface water compliance forecast. It is unknown as to whether expert opinion is more or less accurate than a model, although independent Delphi Polls for the surface water systems found agreement between the two methods.

#### **B.2.3** Estimating the Percentage of Systems Not in Compliance

Total Percent Plants not in Compliance from ICR Data

ICR data (USEPA 2000h) were evaluated to estimate the number of plants that would currently exceed MCL requirements of the Stage 1 DBPR and each of the Stage 2 DBPR regulatory alternatives. Plants were initially classified as not in compliance if ICR data showed that they exceeded the MCLs, taking into account a 20 percent safety margin for all alternatives. For example, the Preferred Alternative for the Stage 2 DBPR is 80  $\mu$ g/L measured as an LRAA for TTHM and 60  $\mu$ g/L measured as an LRAA for HAA5. Compliance, therefore, is evaluated at 64  $\mu$ g/L for TTHM and 48  $\mu$ g/L for HAA5, both measured as LRAAs.

Next, EPA checked to see if water from ground water plants was being blended with water from surface water plants in the distribution system. This may have resulted in higher TTHM and HAA5 concentrations than would normally be associated with an individual ground water plant. If plants with blended water were included in the compliance forecast assessment, the percent of ground water plants not in compliance may be overstated. Therefore, ground water plants that had a surface water plant with the same public water system ID number were considered in compliance for all regulatory alternatives (i.e., compliance would most likely be achieved by modifying the surface water plant rather than the ground water plant).

For regulatory alternatives based on LRAA and RAA calculations, EPA further reviewed ICR data to evaluate the variance in individual distribution system measurements. Influent water quality does not typically fluctuate in ground water systems as much as it does in surface water systems. Distribution system TTHM and HAA5 concentrations may not vary much, and, thus, some ground water systems may not need a safety margin as large a 20 percent. EPA evaluated the SH value of each system predicted to be out of compliance. If the SH value was below the true regulatory limit (without the safety margin), EPA assumed that it was unlikely that the ground water plant would add a treatment technology to comply with the rule. These plants were considered in compliance for all regulatory alternatives. Exhibit

<sup>&</sup>lt;sup>1</sup> A total of 130 large ground water plants were evaluated using the last 12 months of ICR data. Based on data in the ICR applicability database, there is a higher total number of ground water plants in large systems than contained in the ICR (see Chapter 4 for the baseline number of large plants used in this analysis). These plants were not included in the ICR as they were medium or small plants (serving fewer than 100,000 people). The EA accounted for this discrepancy by using the total plant estimate from the ICR applicability database to adjust the flow per plant for large ground water systems.

B.5 shows an example of two plants (ICR plants 281 and 287) that were initially considered not in compliance (based on 20 percent safety margin), but were changed to in compliance based on their SH values.

Exhibit B.5 Evaluation of RAA, LRAA and SH (µg/L)

| ICR   | RAA  |      | LR   | AA   | SH   |      |  |
|-------|------|------|------|------|------|------|--|
| WTPID | TTHM | HAA5 | TTHM | HAA5 | TTHM | HAA5 |  |
| 281   | 58.0 | 10.6 | 64.6 | 11.7 | 75.4 | 16.0 |  |
| 287   | 59.8 | 39.2 | 66.3 | 42.9 | 75.7 | 46.5 |  |

Source: ICR Aux 1 (USEPA 2000h), 12 months of data.

#### Florida/Non-Florida Stratification

EPA evaluated the regional characteristics of those plants exceeding MCLs for each alternative. Large ground water plants in Florida comprise the majority of large ground water plants predicted to be out of compliance with all regulatory scenarios. However, the national proportion of ground water systems in Florida is lower than in the ICR data. This is because Florida requires their ground water systems to disinfect their water due to the high influent TOC concentrations (see Chapter 3 for a discussion of regional impacts). To avoid inappropriately extrapolating national estimates of non-compliance from the heavily Florida-weighted ICR results, EPA evaluated Florida and Non-Florida plants separately and then aggregated the results together to produce national estimates. Below is a step-by-step explanation of how the percent of plants not in compliance was calculated using the Florida/Non-Florida stratification.

Step 1: Determine the baseline number of Florida and Non-Florida ground water plants

Exhibit B.6 shows the number of plants by size category, presented separately for Florida and Non-Florida plants. The total number of Florida ground water systems was derived from SDWIS (USEPA 2003t). EPA assumes that all Florida ground water systems disinfect (USEPA 1996a). Also, surface water systems in Florida that derive the majority of their flow from ground water were moved to the Florida primarily ground water source category (see Chapter 3 for an explanation of how EPA altered system inventories so that they are classified by primary water source). Numbers of systems were converted to numbers of plants using plant per system ratios presented in Chapter 3, with the exception of the systems serving 100,000 to 1 million people. The ICR Applicability database was used to determine the relative plants per system ratio for Florida/Non-Florida systems. The analysis showed that Florida systems had a lower plant per system ratio than Non-Florida systems. The national plant per system number was weighted to incorporate this difference.

Step 2: Estimate the percent of plants not in compliance in Florida

The percent of plants not in compliance in Florida was based on an evaluation of ICR ground water plant data for non-surface water influenced plants (as previously noted, ground water distribution systems were determined to be potentially under the influence of surface water if systems included a

B-7

8

12

18

19 20 21

22

23

24 25 26 surface water plant). The percent not in compliance is applied to the baseline of both large and medium plants.

Step 3: Estimate the percent of plants not in compliance outside of Florida

The percent of non-Florida plants not in compliance was based on an evaluation of ICR ground water plant data for non-surface water influenced plants. The same methodology was used, as described in Step 2, to obtain the percent plants not in compliance for Non-Florida plants. This percentage was applied to both medium and large plants.

Step 4: Estimate the total national percent of plants not in compliance

For each medium and large size category, the total number of plants not in compliance was estimated by multiplying the percentages in Steps 2 and 3 by the baseline numbers from Exhibit B.6 of Florida and non-Florida plants, respectively. The Florida and non-Florida plants not in compliance were then summed and divided by the total number of plants (Florida plus non-Florida). By using this method, EPA was able to estimate a more accurate national percentage of plants out of compliance with the Stage 2 DBPR.

Exhibits B.7 through B.11 present a summary of the Florida/non-Florida stratification described above for the Stage 1 DBPR, Stage 2 DBPR Preferred Alternative for 20 percent safety margin, Alternatives 2 and 3, and the Bounding Alternative 4, respectively. Results are presented for both large and medium ground water systems. Regulatory Alternative 1 (80/60 µg/L LRAA with reduced Bromate MCL of 5 µg/L) is not presented separately; the results for that case are equivalent to the Preferred Alternative (Exhibit B.8), because the Delphi Group assumed that no ground water plants would use ozone with an MCL of 5 ppb.

B-8

#### Exhibit B.6b Baseline Number of Florida and Non-Florida Plants, NTNCWSs

|                                    |                            |   | Florida                                         |           |                  |                                                       | Non-                 | Non-Florida            |         |  |  |
|------------------------------------|----------------------------|---|-------------------------------------------------|-----------|------------------|-------------------------------------------------------|----------------------|------------------------|---------|--|--|
| System Size<br>(Population Served) | em Size Disinfecting SW/GV |   | isinfecting SW/GWUDI are Primarily Systems, Per |           | Number of Plants | Number of<br>Disinfecting<br>Systems, Primarily<br>GW | Plants Per<br>System | Number<br>of<br>Plants |         |  |  |
|                                    | Α                          | В | С                                               | D = A+B*C | E                | F = D*E                                               | G                    | Н                      | I = G*H |  |  |
| <100                               | 626                        | 0 | 0.00%                                           | 626       | 1.0              | 626                                                   | 1,867                | 1.0                    | 1,867   |  |  |
| 100-499                            | 298                        | 0 | 0.00%                                           | 298       | 1.0              | 298                                                   | 1,831                | 1.0                    | 1,831   |  |  |
| 500-999                            | 81                         | 1 | 0.00%                                           | 81        | 1.0              | 81                                                    | 508                  | 1.0                    | 508     |  |  |
| 1,000-3,299                        | 32                         | 0 | 0.00%                                           | 32        | 1.0              | 32                                                    | 215                  | 1.0                    | 215     |  |  |
| 3,300-9,999                        | 5                          | 0 | 0.00%                                           | 5         | 1.0              | 5                                                     | 16                   | 1.0                    | 16      |  |  |
| 10,000-49,999                      | 2                          | 0 | 0.00%                                           | 2         | 1.0              | 2                                                     | 1                    | 1.0                    | 1       |  |  |
| 50,000-99,999                      | 0                          | 0 | 0.00%                                           | 0         | 1.0              | 0                                                     | 0                    | 1.0                    | 0       |  |  |
| 100,000-999,999                    | 0                          | 0 | 0.00%                                           | 0         | 1.0              | 0                                                     | 0                    | 1.0                    | 0       |  |  |
| <u>&gt;</u> 1,000,000              | 0                          | 0 | 0.00%                                           | 0         | 1.0              | 0                                                     | 0                    | 1.0                    | 0       |  |  |
| Total                              | 1,044                      | 1 |                                                 | 1,044     | 1.0              | 1,044                                                 | 4,439                | 1.0                    | 4,439   |  |  |

Note: Detail may not add due to independent rounding.

Sources:

<sup>(</sup>A & B) SDWIS 4th quarter freeze (2003).

<sup>(</sup>C) Florida surface water systems are moved to the Florida GW system category if > 50% of their flow comes from GW. The percentages from Exhibit 3.4, Column F were used to approximate percentages for Florida.

<sup>(</sup>E & H) Plants per system for Florida were assumed to be equal to plants per system found in Exhibit 3.4, Column L, except for systems serving ≥100,000. For large systems, ICR data was evaluated to determine if the number of GW plants/system was lower in Florida because they have so many large ground water plants. The relationship of plants/system from ICR data was maintained for the national analysis (in other words, the ratio of plants per system of Florida systems to non-Florida systems was used to adjust the entry point estimates.

<sup>(</sup>G) The number of disinfecting, primarily GW systems is from the Exhibit 3.4, minus the number of disinfecting ground water systems in Florida from Column A.

### Exhibit B.7 Percentage of Plants Not In Compliance with the Stage 1 DBPR (80/60 RAA)

|                                                                  |                          | Stag<br>80 µg/L TTHM RAA,<br>10 µg/L Bro              | 60 μg/L HAA5 RAA,                                              |                                   |
|------------------------------------------------------------------|--------------------------|-------------------------------------------------------|----------------------------------------------------------------|-----------------------------------|
| Florida                                                          |                          |                                                       |                                                                |                                   |
| System Size (Population Served)                                  | Number of Plants         | Number of ICR Plants<br>Not Complying with<br>Stage 1 | Percent of Florida Plants Not Complying with Stage 1           |                                   |
|                                                                  | Α                        | В                                                     | C = B/33                                                       |                                   |
| 10,000-49,999<br>50,000-99,999<br>100,000-999,999<br>>=1,000,000 | 591<br>192<br>101<br>9   | 8 8 8 8                                               | 24%<br>24%<br>24%<br>24%<br>24%                                |                                   |
| Non-Florida                                                      |                          |                                                       | = :,;                                                          |                                   |
| System Size<br>(Population Served)                               | Number of Plants         | Number of ICR Plants<br>Not Complying with<br>Stage 1 | Percent of Non-Florida<br>Plants Not Complying<br>with Stage 1 |                                   |
| (i opulation derveu)                                             | D                        | E E                                                   | F = E/97                                                       |                                   |
| 10,000-49,999<br>50,000-99,999<br>100,000-999,999<br>>=1,000,000 | 4904<br>578<br>832<br>18 | 0<br>0<br>0<br>0                                      | 0%<br>0%<br>0%<br>0%                                           |                                   |
| National                                                         |                          |                                                       |                                                                |                                   |
| System Size<br>(Population Served)                               | Number of<br>All Plants  | Number of ICR Plants<br>Not Complying with<br>Stage 1 | Percent of All Plants<br>Not Complying with<br>Stage 1         | Total Percentage Not<br>Complying |
|                                                                  | G=A+D                    | H = B+E                                               | I=((A*C)+(D*F))/G                                              | J =SumProduct(G*I)/Sum(G)         |
| 10,000-49,999<br>50,000-99,999                                   | 5,495<br>770             | 8<br>8                                                | 3%<br>6%                                                       | 3.0%                              |
| 100,000-999,999<br>>=1,000,000                                   | 933<br>27                | 8                                                     | 3%<br>8%                                                       | 2.8%                              |

Note: Totals may not add due to independent rounding.

Sources: A & D from Exhibit B.6.

### Exhibit B.8 Percentage of Plants Not In Compliance with the Preferred Alternative, 20 Percent Safety Margin (80/60 LRAA)

|                     | Stage 2, Preferred Option<br>80 μg/L TTHM LRAA, 60 μg/L HAA5 LRAA,<br>10 μg/L Bromate RAA |                      |                           |                           |  |  |  |  |  |  |
|---------------------|-------------------------------------------------------------------------------------------|----------------------|---------------------------|---------------------------|--|--|--|--|--|--|
| Florida             |                                                                                           |                      |                           |                           |  |  |  |  |  |  |
|                     |                                                                                           | Number of ICR Plants | Percent of Florida Plants |                           |  |  |  |  |  |  |
| System Size         | Number of                                                                                 | Not Complying with   | Not Complying with        |                           |  |  |  |  |  |  |
| (Population Served) | Plants                                                                                    | Stage 2              | Stage 2                   |                           |  |  |  |  |  |  |
|                     | Α                                                                                         | В                    | C = B/33                  |                           |  |  |  |  |  |  |
| 10,000-49,999       | 591                                                                                       | 11                   | 33%                       |                           |  |  |  |  |  |  |
| 50,000-99,999       | 192                                                                                       | 11                   | 33%                       |                           |  |  |  |  |  |  |
| 100,000-999,999     | 101                                                                                       | 11                   | 33%                       |                           |  |  |  |  |  |  |
| >=1,000,000         | 9                                                                                         | 11                   | 33%                       |                           |  |  |  |  |  |  |
| Non-Florida         |                                                                                           |                      |                           |                           |  |  |  |  |  |  |
|                     |                                                                                           | Number of ICR Plants | Percent of Non-Florida    |                           |  |  |  |  |  |  |
| System Size         | Number of                                                                                 | Not Complying with   | Plants Not Complying      |                           |  |  |  |  |  |  |
| (Population Served) | Plants                                                                                    | Stage 2              | with Stage 2              |                           |  |  |  |  |  |  |
|                     | D                                                                                         | Е                    | F = E/97                  |                           |  |  |  |  |  |  |
| 10,000-49,999       | 4904                                                                                      | 1                    | 1%                        |                           |  |  |  |  |  |  |
| 50,000-99,999       | 578                                                                                       | 1                    | 1%                        |                           |  |  |  |  |  |  |
| 100,000-999,999     | 832                                                                                       | 1                    | 1%                        |                           |  |  |  |  |  |  |
| >=1,000,000         | 18                                                                                        | 1                    | 1%                        |                           |  |  |  |  |  |  |
| National            |                                                                                           |                      |                           |                           |  |  |  |  |  |  |
|                     |                                                                                           | Number of ICR Plants |                           |                           |  |  |  |  |  |  |
| System Size         | Number of                                                                                 | Not Complying with   | Percent of All Plants Not | Total Percentage Not      |  |  |  |  |  |  |
| (Population Served) | All Plants                                                                                | Stage 2              | Complying with Stage 2    | Complying                 |  |  |  |  |  |  |
|                     | G=A+D                                                                                     | H = B+E              | I=((A*C)+(D*F))/G         | J =SumProduct(G*I)/Sum(G) |  |  |  |  |  |  |
| 10,000-49,999       | 5,495                                                                                     | 12                   | 5%                        | 5.1%                      |  |  |  |  |  |  |
| 50,000-99,999       | 770                                                                                       | 12                   | 9%                        | J.1 /0                    |  |  |  |  |  |  |
| 100,000-999,999     | 933                                                                                       | 12                   | 5%                        | 4.7%                      |  |  |  |  |  |  |
| >=1,000,000         | 27                                                                                        | 12                   | 12%                       | 7.1 /0                    |  |  |  |  |  |  |

Note: Totals may not add due to independent rounding.

Sources: A & D from Exhibit B.6.

### Exhibit B.9 Percentage of Plants Not In Compliance with Regulatory Alternative 2 (80/60 SH)

|                     | Stage 2, Alternative 2<br>80 μg/L TTHM SH, 60 μg/L HAA5 SH,<br>10 μg/L Bromate RAA |                      |                        |                           |  |  |  |  |  |  |
|---------------------|------------------------------------------------------------------------------------|----------------------|------------------------|---------------------------|--|--|--|--|--|--|
| Florida             |                                                                                    |                      |                        |                           |  |  |  |  |  |  |
|                     |                                                                                    | Number of ICR Plants | Percent of Florida     |                           |  |  |  |  |  |  |
| System Size         | Number of                                                                          | Not Complying with   | Plants Not Complying   |                           |  |  |  |  |  |  |
| (Population Served) | Plants                                                                             | Stage 2              | with Stage 2           |                           |  |  |  |  |  |  |
|                     | Α                                                                                  | В                    | C = B/33               |                           |  |  |  |  |  |  |
| 10,000-49,999       | 591                                                                                | 19                   | 58%                    |                           |  |  |  |  |  |  |
| 50,000-99,999       | 192                                                                                | 19                   | 58%                    |                           |  |  |  |  |  |  |
| 100,000-999,999     | 101                                                                                | 19                   | 58%                    |                           |  |  |  |  |  |  |
| >=1,000,000         | 9                                                                                  | 19                   | 58%                    |                           |  |  |  |  |  |  |
| Non-Florida         |                                                                                    |                      |                        |                           |  |  |  |  |  |  |
|                     |                                                                                    | Number of ICR Plants | Percent of Non-Florida |                           |  |  |  |  |  |  |
| System Size         | Number of                                                                          | Not Complying with   | Plants Not Complying   |                           |  |  |  |  |  |  |
| (Population Served) | Plants                                                                             | Stage 2              | with Stage 2           |                           |  |  |  |  |  |  |
|                     | D                                                                                  | E                    | F = E/97               |                           |  |  |  |  |  |  |
| 10,000-49,999       | 4904                                                                               | 3                    | 3%                     |                           |  |  |  |  |  |  |
| 50,000-99,999       | 578                                                                                | 3                    | 3%                     |                           |  |  |  |  |  |  |
| 100,000-999,999     | 832                                                                                | 3                    | 3%                     |                           |  |  |  |  |  |  |
| >=1,000,000         | 18                                                                                 | 3                    | 3%                     |                           |  |  |  |  |  |  |
| National            |                                                                                    |                      |                        |                           |  |  |  |  |  |  |
|                     |                                                                                    | Number of ICR Plants | Percent of All Plants  |                           |  |  |  |  |  |  |
| System Size         | Number of                                                                          | Not Complying with   | Not Complying with     | Total Percentage Not      |  |  |  |  |  |  |
| (Population Served) | All Plants                                                                         | Stage 2              | Stage 2                | Complying                 |  |  |  |  |  |  |
|                     | G=A+D                                                                              | H = B+E              | I=((A*C)+(D*F))/G      | J =SumProduct(G*I)/Sum(G) |  |  |  |  |  |  |
| 10,000-49,999       | 5,495                                                                              | 22                   | 9%                     | 9.9%                      |  |  |  |  |  |  |
| 50,000-99,999       | 770                                                                                | 22                   | 17%                    | 3.3 /0                    |  |  |  |  |  |  |
| 100,000-999,999     | 933                                                                                | 22                   | 9%                     | 9.3%                      |  |  |  |  |  |  |
| >=1,000,000         | 27                                                                                 | 22                   | 21%                    | 3.3 /0                    |  |  |  |  |  |  |

Note: Totals may not add due to independent rounding.

Sources: A & D from Exhibit B.6.

### Exhibit B.10 Percentage of Plants Not In Compliance with Regulatory Alternative 3 (40/30 RAA)

|                                                   |                         | 40 μg/L TTHM RAA,                                     | lternative 3<br>30 μg/L HAA5 RAA,<br>omate RAA       |                                   |
|---------------------------------------------------|-------------------------|-------------------------------------------------------|------------------------------------------------------|-----------------------------------|
| Florida                                           |                         |                                                       |                                                      |                                   |
| System Size (Population Served)                   | Number of Plants        | Number of ICR Plants<br>Not Complying with<br>Stage 2 | Percent of Florida Plants Not Complying with Stage 2 |                                   |
|                                                   | Α                       | В                                                     | C = B/33                                             |                                   |
| 10,000-49,999<br>50,000-99,999<br>100,000-999,999 | 591<br>192<br>101       | 18<br>18<br>18                                        | 55%                                                  |                                   |
| >=1,000,000                                       | 9                       | 18                                                    |                                                      |                                   |
| Non-Florida                                       |                         |                                                       |                                                      |                                   |
|                                                   |                         | Number of ICR Plants                                  | Percent of Non-Florida                               |                                   |
| System Size                                       | Number of               | Not Complying with                                    | Plants Not Complying                                 |                                   |
| (Population Served)                               | Plants                  | Stage 2                                               | with Stage 2                                         |                                   |
|                                                   | D                       | Е                                                     | F = E/97                                             |                                   |
| 10,000-49,999                                     | 4904                    | 1                                                     | 1%                                                   |                                   |
| 50,000-99,999                                     | 578                     | 1                                                     | 1%                                                   |                                   |
| 100,000-999,999                                   | 832                     | 1                                                     | 1%                                                   |                                   |
| >=1,000,000                                       | 18                      | 1                                                     | 1%                                                   |                                   |
| National                                          |                         |                                                       |                                                      |                                   |
|                                                   |                         | Number of ICR Plants                                  | Percent of All Plants                                |                                   |
| System Size (Population Served)                   | Number of<br>All Plants | Not Complying with<br>Stage 2                         | Not Complying with<br>Stage 2                        | Total Percentage Not<br>Complying |
|                                                   | G=A+D                   | H = B+E                                               | I=((A*C)+(D*F))/G                                    | J =SumProduct(G*I)/Sum(G)         |
| 10,000-49,999                                     | 5,495                   | 19                                                    | 7%                                                   |                                   |
| 50,000-99,999                                     | 770                     | 19                                                    | 14%                                                  | 7.7%                              |
| 100,000-999,999                                   | 933                     | 19                                                    | 7%                                                   | 7.2%                              |
| >=1.000.000                                       | 27                      | 19                                                    | 19%                                                  | 1.270                             |

Note: Totals may not add due to independent rounding.

Sources: A & D from Exhibit B.6.

### Exhibit B.11 Percentage of Plants Not In Compliance with Bounding Alternative 4 (40/30 SH)

|                     |            | 40 μg/L TTHM SH      | lternative 4<br>, 30 μg/L HAA5 SH,<br>omate RAA |                           |
|---------------------|------------|----------------------|-------------------------------------------------|---------------------------|
| Florida             |            |                      |                                                 |                           |
|                     |            | Number of ICR Plants | Percent of Florida Plants                       |                           |
| System Size         | Number of  | Not Complying with   | Not Complying with                              |                           |
| (Population Served) | Plants     | Stage 2              | Stage 2                                         |                           |
|                     | Α          | В                    | C = B/33                                        |                           |
| 10,000-49,999       | 591        | 27                   | 82%                                             |                           |
| 50,000-99,999       | 192        | 27                   | 82%                                             |                           |
| 100,000-999,999     | 101        | 27                   | 82%                                             |                           |
| >=1,000,000         | 9          | 27                   | 82%                                             |                           |
| Non-Florida         |            |                      |                                                 |                           |
|                     |            | Number of ICR Plants | Percent of Non-Florida                          |                           |
| System Size         | Number of  | Not Complying with   | Plants Not Complying                            |                           |
| (Population Served) | Plants     | Stage 2              | with Stage 2                                    |                           |
|                     | D          | Ē                    | F = E/97                                        |                           |
| 10,000-49,999       | 4904       | 8                    | 8%                                              |                           |
| 50,000-99,999       | 578        | 8                    | 8%                                              |                           |
| 100,000-999,999     | 832        | 8                    | 8%                                              |                           |
| >=1,000,000         | 18         | 8                    | 8%                                              |                           |
| National            |            |                      |                                                 |                           |
|                     |            | Number of ICR Plants |                                                 |                           |
| System Size         | Number of  | Not Complying with   | Percent of All Plants Not                       | Total Percentage Not      |
| (Population Served) | All Plants | Stage 2              | Complying with Stage 2                          | Complying                 |
|                     | G=A+D      | H = B+E              | I=((A*C)+(D*F))/G                               | J =SumProduct(G*I)/Sum(G) |
| 10,000-49,999       | 5,495      | 35                   | 16%                                             | 17.4%                     |
| 50,000-99,999       | 770        | 35                   |                                                 | 17.470                    |
| 100,000-999,999     | 933        | 35                   | 16%                                             | 16.7%                     |
| >=1,000,000         | 27         | 35                   | 33%                                             | 10.7 /0                   |

Note: Totals may not add due to independent rounding.

Sources: A & D from Exhibit B.6.

#### **B.2.4** Treatment Technology Selection

Original "Bounding" Alternatives

The Delphi Group used a multi-step process to develop the compliance forecasts for those large ground water plants out of compliance with the four original regulatory alternatives.

First, the Delphi participants were given ICR data (such as plant type, residual disinfectant, and water quality) for ground water plants unable to meet the MCLs of each alternative. Second, Delphi participants selected a treatment technology from a list of 16 treatment technologies and a residual disinfectant (chlorine or chloramines) for each plant and rated their confidence in their treatment technology selections. Judging by the response provided, it appears that each participant focused on different information to select the treatment technology required by each plant. Some participants gave greater importance to water quality aspects, while others emphasized design issues. There were four general approaches that appear to have guided the participants selections:

- Assess the use of chloramines—If the use of chloramines is not feasible, then look for another
  treatment technology that better addresses ground water-specific needs, such as multiple
  small entry points. Evaluate whether these entry points would be best served by treatment
  technologies such as nanofiltration (NF) and Granular Activated Carbon (GAC) rather than
  an advanced oxidant (ozone).
- Always maintain a consistent residual in the distribution system—If other plants in the system
  use chlorine as a residual, the plant cannot select chloramines as its treatment technology. In
  addition, chloramines cannot be selected when TOC is above a certain level.
- Microfiltration/ultrafiltration (MF/UF) cannot be selected as a treatment technology because ground water plants are not subject to the high removal or inactivation requirements of surface water plants. Other treatment technologies are selected as needed.
- Assess how far the plant is from compliance with the MCLs. Determine whether the plant
  already uses chloramines. If chloramines are not used, and up to a 20 to 30 percent reduction
  of DBPs results in compliance, select chloramines as the final treatment technology. If
  chloramines cannot be used based on specific water quality conditions, eliminate treatment
  technologies that are not feasible and select the least expensive treatment technology that
  meets the compliance criteria.

Third, the completed treatment technology selection results from each participant were aggregated. Quality control and quality assurance steps were performed to ensure a consistent and usable data entry format. For example, notes provided by each participant were checked against the treatment technologies they selected to ensure they were consistent. In many cases, multiple treatment technologies were selected by a participant for one plant. In these circumstances, most expensive treatment technology was chosen as a conservative estimate. A Microsoft Access<sup>TM</sup> database was used to consolidate the participants' responses. Finally, the results were weighted, with higher confidence responses receiving an additional weighting of 25 percent.

The Delphi process concluded that ground water systems that could not comply with the levels specified in the Regulatory Alternative would choose primarily from four advanced treatment technologies:

- Conventional treatment (with chloramines)
- Advanced disinfectants (ozone)
- GAC with an empty bed contact time of 20 minutes (GAC20)
- NF

The use of chloramines with each treatment technology also was calculated for these four advanced treatment technologies. Exhibit B.12 presents the proportion of treatment technologies predicted by the Delphi Group to be selected for the four bounding alternatives. The Delphi results from the bounding alternatives were also used to develop treatment technology selections for the additional regulatory alternatives (discussed later in this appendix).

#### Additional Regulatory Alternatives

Following the initial Delphi process, the Microbial-Disinfectants and Disinfection Byproducts Advisory Committee (M-DBP Advisory Committee) asked the Delphi group to consider regulatory alternatives in addition to the original "bounding" alternatives. These new alternatives considered a bromate MCL, as well as TTHM and HAA5 MCLs. Two of these new alternatives were considered in this EA (the Preferred Regulatory Alternative and Alternative 1).

Because these alternatives were identified late in the process, the Delphi group decided not to repeat the full evaluation to develop new treatment technology selections (a time-consuming process), but instead evaluated the new alternatives using the treatment technology selections for the original four alternatives. A straight interpolation between the 80/60 RAA (the Stage 1 DBPR) and the 40/30 RAA (Regulatory Alternative 3) was originally used to estimate the treatment technology selection for the 80/60 LRAA alternative. However, EPA later estimated that because water quality in ground water plants does not generally fluctuate as much as it does in surface water plants and they monitor at only one point for Stage 1, treatment technologies identified for the 80/60 RAA would most likely be appropriate for maintaining an 80/60 LRAA. Therefore, the treatment technology selection for the subset of plants not in compliance with the 80/60 RAA was maintained for the 80/60 LRAA alternative. A straight interpolation between the 80/60 RAA and the 40/30 RAA regulatory alternatives was used to estimate the treatment technology selection for all other alternatives (i.e., those complying with 80/60 RAA but not 80/60 LRAA).

#### Final Results

The percentage of plants not in compliance (Exhibits B.7 through B.11) is multiplied by the proportion of plants predicted to select various treatment technologies. This gives the final treatment technology selection results for each regulatory alternative and sensitivity analyses (Bounding Alternative

| 1 | 4 is not included). Exhibit B.13a presents results for large ground water plants, and B.13b presents results |
|---|--------------------------------------------------------------------------------------------------------------|
| 2 | for medium ground water plants.                                                                              |
| 3 |                                                                                                              |
| 4 | For Regulatory Alternative 1, the compliance forecast was adjusted so that the compliance                    |
| 5 | forecast delta from Stage 1 to Stage 2 did not show any systems removing treatment technologies              |

(negative forecasts). This is consistent with the methodology used for surface water system compliance

6

7

forecasts.

### Exhibit B.12 Proportion of Treatment Technologies Selected by Non-compliant Large Ground Water Plants as Predicted by the Delphi Group

| Scenario                                                                                     | Converting to CLM only | Advanced<br>Disinfectants<br>B | Advanced Disinfectants + CLM C | GAC20<br>D | GAC20 + CLM<br>E | NF<br>F | NF + CLM<br>G | Total<br>H = SUM(A:G) |
|----------------------------------------------------------------------------------------------|------------------------|--------------------------------|--------------------------------|------------|------------------|---------|---------------|-----------------------|
| Bounding Alternative 1:<br>RAA 80/60 (Stage 1)                                               | 59.3%                  | 2.5%                           | 24.8%                          | 0.0%       | 1.3%             | 4.0%    | 8.2%          | 100.00%               |
| Bounding Alternative 2:<br>RAA 40/30 (Regulatory<br>Alternative 3)                           | 69.5%                  | 2.6%                           | 7.9%                           | 0.0%       | 8.5%             | 0.9%    | 10.6%         | 100.00%               |
| Bounding Alternative 3:<br>SH 80/60 (Regulatory<br>Alternative 2)                            | 77.5%                  | 2.1%                           | 7.4%                           | 0.0%       | 4.5%             | 0.7%    | 7.8%          | 100.00%               |
| Bounding Alternative 4: SH 40/30                                                             | 63.5%                  | 4.1%                           | 9.5%                           | 1.0%       | 8.5%             | 1.9%    | 11.6%         | 100.00%               |
| 2. Extrapolation for Prefere                                                                 | ed Alternative an      | d Regulatory Alte              | rnative 1                      |            |                  |         |               | -                     |
| Alternative 5: LRAA 80/60<br>(Preferred Regulatory<br>Alternative)                           | 62.7%                  | 2.5%                           | 19.2%                          | 0.0%       | 3.7%             | 3.0%    | 9.0%          | 100.0%                |
| Alternative 6: LRAA 80/60,<br>reduced Bromate MCL of 5<br>ug/L (Regulatory<br>Alternative 1) |                        | 0.0%                           | 0.0%                           | 1.0%       | 11.5%            | 4.5%    | 20.3%         | 100.0%                |

Notes: Totals may not add due to rounding.

The original Delphi Group Results were adjusted slightly form the original numbers reported during the Technical Working Group (TWG), to make

the total equal to 100 percent.

Sources: ICR Ground Water Delphi Group Results

### Exhibit B.13a Final Treatment Technology Selection Results for Large Ground Water Plants **Stage 2 Regulatory Alternatives**

| Regulatory Alternative                    | Converting to CLM Only | Advanced<br>Disinfectants | Advanced<br>Disinfectants +<br>CLM | GAC20 | GAC20 + CLM | NF    | NF + CLM | Total Percent<br>Non-Complying |
|-------------------------------------------|------------------------|---------------------------|------------------------------------|-------|-------------|-------|----------|--------------------------------|
| Stage 1 DBPR                              |                        |                           |                                    |       |             |       |          |                                |
| 80 μg/L TTHM RAA                          |                        |                           |                                    |       |             |       |          |                                |
| 60 μg/L HAA5 RAA                          | 1.68%                  | 0.07%                     | 0.70%                              | 0.00% | 0.04%       | 0.11% | 0.23%    | 2.83%                          |
| Unadjusted Stage 2 Preferred Alternative, |                        |                           |                                    |       |             |       |          |                                |
| 20% Safety Margin                         |                        |                           |                                    |       |             |       |          |                                |
| 80 μg/L TTHM LRAA                         |                        |                           |                                    |       |             |       |          |                                |
| 60 μg/L HAA5 LRAA                         | 3.01%                  | 0.12%                     | 0.92%                              | 0.00% | 0.18%       | 0.14% | 0.43%    | 4.80%                          |
| Alternative 1                             |                        |                           |                                    |       |             |       |          |                                |
| 80 μg/L TTHM LRAA                         |                        |                           |                                    |       |             |       |          |                                |
| 60 μg/L HAA5 LRAA                         |                        |                           |                                    |       |             |       |          |                                |
| 5 μg/L Bromate MCL                        | 2.24%                  | 0.07%                     | 0.70%                              | 0.05% | 0.55%       | 0.22% | 0.97%    | 4.80%                          |
| Alternative 2                             |                        |                           |                                    |       |             |       |          |                                |
| 80 μg/L TTHM SH                           |                        |                           |                                    |       |             |       |          |                                |
| 60 μg/L HAA5 SH                           | 7.27%                  | 0.20%                     | 0.70%                              | 0.00% | 0.43%       | 0.11% | 0.74%    | 9.45%                          |
| Alternative 3                             |                        |                           |                                    |       |             |       |          |                                |
| 40 μg/L TTHM RAA                          |                        |                           |                                    |       |             |       |          |                                |
| 30 μg/L HAA5 RAA                          | 4.88%                  | 0.19%                     | 0.70%                              | 0.00% | 0.62%       | 0.11% | 0.77%    | 7.28%                          |

Sources: Percentage of plant not in compliance derived from Exhibits B.7 through B.12. Percentage of plants adding each treatment technology was calculated by multiplying the percentage of plants not in compliance by the proportion selecting each treatment technology (Exhibit B.13).

Notes: [1] Totals may not add due to rounding.

- [2] The treatment technology selection for Regulatory Alternative 1 was adjusted to ensure that the compliance forecast delta (compliance forecast for Alternative 1 minus the compliance forecast for the Stage 1 DBPR) did not have any negative predictions.
- [3] The Preferred Alternative row in Exhibit B.13 is used for both Preferred Alternative safety margin rows in this exhibit.

#### Exhibit B.13b Final Treatment Technology Selection Results for Medium Ground Water Plants **Stage 2 Regulatory Alternatives**

| Regulatory Alternative                    | Converting to CLM Only | Advanced<br>Disinfectants | Advanced Disinfectants + CLM | GAC20 | GAC20 + CLM | NF    | NF + CLM | Total Percent<br>Non-Complying |
|-------------------------------------------|------------------------|---------------------------|------------------------------|-------|-------------|-------|----------|--------------------------------|
| Stage 1 DBPR                              |                        |                           |                              |       |             |       |          |                                |
| 80 μg/L TTHM RAA                          |                        |                           |                              |       |             |       |          |                                |
| 60 μg/L HAA5 RAA                          | 1.84%                  | 0.08%                     | 0.77%                        | 0.00% | 0.04%       | 0.13% | 0.26%    | 3.11%                          |
| Unadjusted Stage 2 Preferred Alternative, |                        |                           |                              |       |             |       |          |                                |
| 20% Safety Margin                         |                        |                           |                              |       |             |       |          |                                |
| 80 μg/L TTHM LRAA                         |                        |                           |                              |       |             |       |          |                                |
| 60 μg/L HAA5 LRAA                         | 3.24%                  | 0.13%                     | 0.99%                        | 0.00% | 0.19%       | 0.16% | 0.47%    | 5.18%                          |
| Alternative 1                             |                        |                           |                              |       |             |       |          |                                |
| 80 μg/L TTHM LRAA                         |                        |                           |                              |       |             |       |          |                                |
| 60 μg/L HAA5 LRAA                         |                        |                           |                              |       |             |       |          |                                |
| 5 μg/L Bromate MCL                        | 2.40%                  | 0.08%                     | 0.77%                        | 0.05% | 0.60%       | 0.23% | 1.05%    | 5.18%                          |
| Alternative 2                             |                        |                           |                              |       |             |       |          |                                |
| 80 μg/L TTHM SH                           |                        |                           |                              |       |             |       |          |                                |
| 60 μg/L HAA5 SH                           | 7.73%                  | 0.21%                     | 0.77%                        | 0.00% | 0.45%       | 0.13% | 0.79%    | 10.09%                         |
| Alternative 3                             |                        |                           |                              |       |             |       |          |                                |
| 40 μg/L TTHM RAA                          |                        |                           |                              |       |             |       |          |                                |
| 30 μg/L HAA5 RAA                          | 5.29%                  | 0.21%                     | 0.77%                        | 0.00% | 0.67%       | 0.13% | 0.84%    | 7.90%                          |

Sources: Percentage of plant not in compliance derived from Exhibits B.7 through B.12. Percentage of plants adding each treatment technology was calculated by multiplying the percentage of plants not in compliance by the proportion selecting each treatment technology (Exhibit B.13).

Notes: [1] Totals may not add due to rounding.

- [2] The treatment technology selection for Regulatory Alternative 1 was adjusted to ensure that the compliance forecast delta (compliance forecast for Alternative 1 minus the compliance forecast for the Stage 1 DBPR) did not have any negative predictions.
- [3] The Preferred Alternative row in Exhibit B.13 is used for both Preferred Alternative safety margin rows in this exhibit.

#### **B.3** Compliance Forecast for Small Ground Water Plants

Because of differences in water quality, location, and economies of scale, the compliance treatment technologies predicted for large and medium plants do not represent those that small plants would select (see *Stage 2 Occurrence Assessment for Disinfectants and Disinfection Byproducts* (USEPA 2003l) for a comparison of large and small systems). Instead, EPA and experts on small water systems estimated compliance forecasts by beginning with the compliance forecasts for large plants and making adjustments based on expert knowledge and data evaluation. A discussion of the adjustments made to the large ground water system forecasts to produce the forecasts for small systems is presented in this section.

To further recognize differences in treatment technology use, treatment technology capability, and water quality among the small systems, the small ground water system group prepared compliance forecasts separately for the following size categories:

- Systems serving between 1,000 and 9,999 people
- Systems serving between 100 and 999 people
- Systems serving fewer than 100 people

Exhibit B.14 summarizes the derivation of the small ground water compliance forecast via a flowchart, consisting of two steps:

- Estimation of percent of plants not in compliance
- Treatment technology forecasts for plants not in compliance

#### **B.3.1** Estimation of Percent of Plants Not In Compliance

Exhibits B.7 through B.11 show the percent of large ground water systems that were judged to be not in compliance for each rule alternative, based on the evaluation of ICR data. Several adjustments were made to these estimates to make them applicable to small ground water plants.

Florida and Non-Florida stratification: One of the most significant influences on the regulatory alternatives considered was plant location. Florida systems (which have higher TOC levels than those of other States) account for a substantial fraction of all large ground water systems, whereas the proportion of all small ground water systems located in Florida is much smaller. Without adjusting for this, the national forecast of small ground water system non-compliance would be overstated. The large and small ground water systems were analyzed separately to the mitigate potential biases of the large system compliance and treatment technology forecasts.

#### **Exhibit B.14 Compliance Forecast for Small Ground Water Plants**



**Forecast** 

The 1979 TTHM Rule Adjustment: The percentage of small ground water plants not in compliance is expected to be greater than the percentage of large plants not in compliance because small plants have not had to meet the 1979 TTHM standards. As a proxy for estimating the additional number of small plants that would currently exceed regulatory targets, EPA assumed that large plants using chloramines and meeting regulatory targets probably would not have met the targets without chloramines. The percentage of these large plants (based on ICR data) not meeting the targets (adjusted to remove those plants with surface water influence) was used to obtain a more accurate estimate of the number of small systems not meeting the targets.

*TOC/Softening Adjustment*: The compliance forecast was further adjusted by taking into the account the differences in source water TOC levels and softening use in small plants compared to large plants.

Exhibit B.15 illustrates the procedure for obtaining the percent of plants not in compliance in small ground water universe using the ICR data for large ground water systems as a starting point. The descriptions of steps 1 through 3 in Exhibit B.15 are presented below.

#### Step 1

- Obtain the number of ICR not in compliance with Stages 1 and 2 from Exhibits B.7 through B.11.
- Determine the number of ICR plants that are in compliance with Stage 1 and 2, but that use chloramines (conducted separately for Florida and Non-Florida systems).

#### Step 2

- Classify all ICR GW plants in one of the four TOC/Softening categories conducted separately for Florida and Non-Florida systems).
- Classify all ICR GW Stage 1 and Stage 2 not in compliance in one of the four TOC/Softening categories (conducted separately for Florida and Non-Florida systems).
- Calculate the percentage of ICR GW plants in each category that are not in compliance with Stage 1 and Stage 2.

#### Step 3

- For each of the three population size categories, obtain the total number of ground water plants from Exhibit 3.2, Column AB.
- Stratify the plants in the four TOC/Softening categories using data from the Ground Water Supply Survey (GWSS) (USEPA 1983), with a Florida/Non-Florida stratification.
- Apply the ICR percent of plants not in compliance from Step 2 to the Exhibit 3.2/GWSS numbers above to estimate the number of plants not in compliance in the small ground water universe.
- For all three population size categories, aggregate the total number of plants not in compliance (i.e., Florida + Non-Florida) for each of the four TOC/Softening categories, from above.
- Calculate the percent national of plants not in compliance.

Exhibit B.15 also shows the breakout of plants not in compliance for all three population categories combined. The difference between the national percentage of plants not in compliance with Stage 2 and plants not in compliance with Stage 1 (i.e., "delta") is approximately 2.88 percent (i.e., 7.36 percent for Stage 2 minus 4.47 percent for Stage 1).

### Exhibit B.15 Steps for Estimating National Percentage of Plants Not in Compliance for Small Ground Water Systems

Step 1: Obtain the number of large GW Plants Not in Compliance and chloramine compliers

|                                | Comp<br>(Number | ants Not in<br>liance<br>of Plants) | Unadjusted Stage 2 Preferred Option Plants Not in Compliance (Number of Plants) |             |  |  |
|--------------------------------|-----------------|-------------------------------------|---------------------------------------------------------------------------------|-------------|--|--|
|                                | Florida         | Non-Florida                         | Florida                                                                         | Non-Florida |  |  |
| ICR Plants Not in Compliance   | 8               | 0                                   | 11                                                                              | 1           |  |  |
| ICR Chloramine compliers       | 9               | 2                                   | 9                                                                               | 2           |  |  |
| Total Plants Not in Compliance | 17              | 2                                   | 20                                                                              | 3           |  |  |

Source: ICR Plants Not in Compliance from Exhibits B.7 and B.8; ICR chloramine compliers derived from the ICR database.

Step 2: Stratify large plants by TOC level and softening/non-softening. Obtain % non-complying for large ICR GW systems, for each plant category.

|                               |              |              |            |                  |                | , ,                 |                       |             |                         |             |  |  |
|-------------------------------|--------------|--------------|------------|------------------|----------------|---------------------|-----------------------|-------------|-------------------------|-------------|--|--|
|                               | Number of IC | CR GW Plants | Num        | nber of Plants N | Not in Complia | ance                | Percent Non-complying |             |                         |             |  |  |
|                               |              |              |            |                  | Unadjust       | ed Stage 2          |                       |             | Unadjusted Stage 2      |             |  |  |
|                               |              |              | Stage 1 PI | ants Not in      | Preferred O    | ption Plants        | Stage 1 Pl            | ants Not in | Preferred Option Plants |             |  |  |
|                               |              |              | Comp       | liance           | Not in Co      | mpliance            | Comp                  | liance      | Not in Compliance       |             |  |  |
| Plant Characteristics         | Florida      | Non-Florida  | Florida    | Non-Florida      | Florida        | Florida Non-Florida |                       | Non-Florida | Florida                 | Non-Florida |  |  |
|                               | Α            | В            | С          | D                | E              | F                   | G = C/A               | H = D/B     | I = E/A                 | J = F/B     |  |  |
| Soft w/ TOC = 1 mg/L          | 1            | 0            | 0          | 0                | 0              | 0                   | 0.0%                  | 0.0%        | 0.0%                    | 0.0%        |  |  |
| Soft w/ TOC > 1 mg/L          | 13           | 4            | 12         | 1                | 12             | 1                   | 92.3%                 | 25.0%       | 92.3%                   | 25.0%       |  |  |
| Non-Soft w/ TOC = 1 mg/L      | 4            | 78           | 0          | 0                | 0              | 0                   | 0.0%                  |             | 0.0%                    |             |  |  |
| Non-Soft w/ TOC > 1 mg/L      | 15           | 15           | 5          | 1                | 8              | 2                   | 33.3%                 | 6.7%        | 53.3%                   | 13.3%       |  |  |
| Total                         | 33           | 97           | 17         | 2                | 20             | 3                   | 51.5%                 | 2.1%        | 60.6%                   | 3.1%        |  |  |
| Total (Florida + Non-Florida) | 1            | 30           | 1          | 19               | 2              | 23                  | 14.                   | 6%          | 17.7%                   |             |  |  |
|                               |              |              |            |                  |                |                     |                       |             |                         |             |  |  |

Source: Stratification into Plant Characteristic categories was based on ICR data. For TOC, the average influent TOC concentration for the last 12 months of ICR data was used.

Step 3: Calculate the number and percent of Plants Not in Compliance for the three small system size categories.

|                                     | · ·       | Non-complier Analysis with Florida/Non-Florida Breakout |              |             |                   |              |  |  |  |  |  |
|-------------------------------------|-----------|---------------------------------------------------------|--------------|-------------|-------------------|--------------|--|--|--|--|--|
|                                     |           |                                                         |              |             | Unadjuste         | ed Stage 2   |  |  |  |  |  |
|                                     |           |                                                         | Stage 1 Pla  | ants Not in | Preferred O       | ption Plants |  |  |  |  |  |
|                                     | Number of | GW Plants                                               | Comp         | liance      | Not in Compliance |              |  |  |  |  |  |
| Plant Characteristics               | Florida   | Non-Florida                                             | Florida      | Non-Florida | Florida Non-Flor  |              |  |  |  |  |  |
|                                     | K         | L                                                       | M = G*K      | N = H*L     | 0 = I*K           | P = J*L      |  |  |  |  |  |
|                                     | Syste     | ms Serving <1                                           | 00 People    |             |                   |              |  |  |  |  |  |
| Soft w/ TOC = 1 mg/L                | 0         | 0                                                       | 0            | 0           | 0                 | 0            |  |  |  |  |  |
| Soft w/ TOC > 1 mg/L                | 18        | 231                                                     | 17           | 58          | 17                | 58           |  |  |  |  |  |
| Non-Soft w/ TOC = 1 mg/L            | 166       | 4,065                                                   | 0            | 0           | 0                 | 0            |  |  |  |  |  |
| Non-Soft w/ TOC > 1 mg/L            | 232       | 1,585                                                   | 77           | 106         | 124               | 211          |  |  |  |  |  |
| Total                               | 416       | 5,881                                                   | 94           | 163         | 140               | 269          |  |  |  |  |  |
| Total (Florida + Non-Florida)       | 6,2       | 297                                                     | 257 (4       | .08%)       | 409 (6.5%)        |              |  |  |  |  |  |
|                                     | Systems   | Serving 100                                             | - 999 People |             |                   |              |  |  |  |  |  |
| Soft w/ TOC = 1 mg/L                | 0         | 0                                                       | 0            | 0           | 0                 | 0            |  |  |  |  |  |
| Soft w/ TOC > 1 mg/L                | 33        | 594                                                     | 31           | 149         | 31                | 149          |  |  |  |  |  |
| Non-Soft w/ TOC = 1 mg/L            | 321       | 8,202                                                   | 0            | 0           | 0                 | 0            |  |  |  |  |  |
| Non-Soft w/ TOC > 1 mg/L            | 480       | 5,979                                                   | 160          | 399         | 256               | 797          |  |  |  |  |  |
| Total                               | 834       | 14,775                                                  | 191          | 547         | 287               | 946          |  |  |  |  |  |
| Total (Florida + Non-Florida)       | 15,       | 609                                                     | 738 (4       | .73%)       | 1,232             | (7.9%)       |  |  |  |  |  |
|                                     | Systems S | Serving 1,000 ·                                         | 9,999 People |             |                   |              |  |  |  |  |  |
| Soft w/ TOC = 1 mg/L                | 0         | 0                                                       | 0            | 0           | 0                 | 0            |  |  |  |  |  |
| Soft w/ TOC > 1 mg/L                | 16        | 278                                                     | 15           | 70          | 15                | 70           |  |  |  |  |  |
| Non-Soft w/ TOC = 1 mg/L            | 163       | 4,262                                                   | 0            | 0           | 0                 | 0            |  |  |  |  |  |
| Non-Soft w/ TOC > 1 mg/L            | 215       | 2,249                                                   | 72           | 150         | 115               | 300          |  |  |  |  |  |
| Total                               | 394       | 6,790                                                   | 87           | 220         | 129               | 369          |  |  |  |  |  |
| Total (Florida + Non-Florida)       | 7,1       | 84                                                      | 306 (4       | .26%)       | 499 (6.95%)       |              |  |  |  |  |  |
| Grand Total (Florida + Non-Florida) | 29,       | 090                                                     | 1,301 (      | 4.47%)      | 2,141 (7.36%)     |              |  |  |  |  |  |

Source: Total number of ground water plants from Exhibit 3.4, column Q. The breakout of those into the four TOC/softening categories is based on the breakout of the GWSS 1983 data.

Exhibit B.16 illustrates the individual effect of the three adjustments on the estimate of the number of small ground water plants not in compliance. The first column, "FL," displays the change from Stage 1 to Stage 2 if no adjustments were made from large to small ground water systems. This results in a difference of 2.13 percent. The second column, "FL + CLM," displays the results of adding the large ICR GW systems that are in compliance but use chloramine (CLM). This is a surrogate for the fact that large GW systems were subject to the 1979 TTHM rule but small ground waters are not subject to the 1979 TTHM Rule. Note the change from Stage 1 to Stage 2 is the same, only the total number of plants affected has changed.

The third column, "FL + CLM + Soft," displays the results if systems are stratified based on whether they use softening at their plants. The change from Stage 1 to Stage 2 for this step is 2.58 percent as opposed to 2.13 percent. The fourth column, "FL + CLM + TOC," displays the results if systems are stratified based on whether their TOC is greater than 1 milligrams per liter (mg/L). The difference is now 3.41 percent, almost a full percentage point higher than the softening. Finally, the fifth column, "FL + CLM + TOC/Soft," shows the results if one combines the stratification of softening with TOC. The difference increases again to 4.21 percent. The stratification of small ground water plants results in more plants changing treatment technology, representing the unique situation with regard to EPA regulations and the differences in Florida systems between small and large ground water systems.

Exhibit B.16 Effect of the Adjustment Steps on the Change from Stage 1 to Stage 2



#### **B.3.2** Uncertainties in Compliance Forecasts for Small Ground Water Systems

The biggest source of uncertainty for the compliance forecasts for small ground water systems exists in the extrapolation from the large ground water compliance forecasts. As mentioned previously, the compliance forecasts for medium and large systems is based on a relatively small subset of total plants. The extrapolation does attempt to factor in difference in geography by adjusting for the percentage of systems in Florida.

#### **B.3.3** Treatment Technology Forecasts for Systems Not in Compliance

The treatment technology forecasts for small ground water systems were generated by adjusting the large ground water compliance forecast. As with small surface water systems, chloramine and ozone were assumed to be less feasible treatment technologies for small ground water systems than for large systems. The assumed use of these disinfectants was adjusted for each small system size category. The steps for generating the Stage 1 and Stage 2 forecasts are summarized below.

#### Adjustments for the Stage 1 treatment technology forecasts:

Step 1: Start with the Stage 1 (i.e., 80/60 RAA, Bromate 10) compliance forecast for large ground water systems from Exhibit B.12.

Step 2: For the two smaller population size categories, adjust the percentage of ozone selected as follows:

100-999: 50 percent reduction in ozone use; the remaining 50 percent is allocated to GAC.

<100: 100 percent reduction in ozone use; the 100 percent is allocated to GAC.

Step 3: Multiply the results from Step 2 by the percent of plants not in compliance for each population category of small ground water systems.

Step 4: Obtain the treatment technology selection showing the CLM use breakout for each treatment technology, for each population category, as follows:

1.000-9.999:

- 1. Start with results from Step 3. 2. Converting to chloramine: No change from Step 3.
- 3. Ozone: 75 percent of the original ozone shifts to ozone+CLM, 25 percent remains in

4. GAC: All original GAC shifts to GAC+CLM.

41 42 5. Membranes: 90 percent of the original membranes shifts to membranes+CLM, 10 percent remains in membranes.

43

100-999:

44 45 1. Start with results from Step 3. 2. Converting to chloramine: No change from Step 3.

46 47

3. Ozone: 75 percent of the original ozone shifts to ozone+CLM, 25 percent remains in ozone.

11

12

13

14 15

16 17

18

19 20

21 22

23 24

25

26 27

28 29

30

31

32

33

34

35

36

37

38

39 40

41

42 43

44

45 46

47

4. GAC: All original GAC shifts to GAC+CLM.

- 5. Membranes: 90 percent of the original membranes shifts to membranes+CLM, 10 percent remains in membranes.
- 6. Final chloramine adjustment: 25 percent of GAC+CLM shifts to membranes.

#### Adjustments for the Stage 2 treatment technology forecasts:

Step 1: Start with the Stage 2 (i.e., 80/60 LRAA, Bromate 10) compliance forecast for large ground water systems from Exhibit B.12.

Step 2: For the two smaller population size categories, adjust the percentage of ozone selected as follows:

- 100-999: 50 percent reduction in ozone use; the remaining 50 percent is allocated to GAC.
- <100: 100 percent reduction in ozone use; the 100 percent is allocated to GAC.

Step 3: Adjust the numbers from Step 2 for "negatives": This ensures that the overall percentages of systems using advanced treatment technologies do not fall below those forecasted for the Stage 1 DBPR.

Step 4: Adjust the numbers from Step 3 for Ultraviolet disinfection (UV): UV is available as a treatment technology option for all Stage 2 DBPR alternatives. Small systems are assumed to be able to achieve 4logs of virus inactivation by installing 2, 2-log UV reactors in series. Even with the 2 reactor series, UV is less expensive than other advanced treatment technologies. For the Stage 2 DBPR alternatives, EPA assumed that 60 percent of the advanced treatment technology selections of ozone, GAC, and membranes would instead be UV. UV was not included as a viable treatment technology for the Stage 1 DBPR, so EPA assumed that all of the systems adding advanced treatment technology for the Stage 1 DBPR would stay with that treatment technology for the Stage 2 DBPR, while additional systems adding treatment technology for the Stage 2 DBPR can use UV. As a result, EPA apportioned a fraction (i.e., 60 percent) of the systems moving to advanced treatment technologies, to UV.

Step 5: Re-adjust the numbers from Step 4 for "negatives": This ensures that the overall percentages of systems using advanced treatment technologies do not fall below those forecasted for the Stage 1 DBPR.

Step 6: Multiply the results from Step 2 by the percent of plants not in compliance for each population category of small ground water systems.

Step 7: Chloramine adjustments: Obtain the treatment technology selection showing the chloramine use breakout for each treatment technology, for each population category, as follows:

#### 1 1.001-10.000: 2 3

4

5

6

7

8

9

11

12

13

14

15 16

17

18

19

20

21 22

23

24

25

26

27

28

29

30

- 1. Start with the results from Step 6.
- 2. Converting to chloramine: No change from Step 6.
- 3. UV: All shift to UV+CLM.
- 4. Ozone: 75 percent of the original ozone shifts to ozone+CLM, 25 percent remains in ozone.
- 5. GAC: All original GAC shifts to GAC+CLM.
- 6. Membranes: 90 percent of the original membranes shifts to membranes+CLM, 10 percent remains in membranes.

10 101-1.000:

- 1. Start with the results from Step 6.
- 2. Converting to chloramine: No change from Step 6.
- 3. UV: 90 percent of the original UV shifts to UV+CLM, 0% remains in UV.
- 4. Ozone: 75 percent of the original ozone shifts to ozone+CLM, 25 percent remains in ozone.
- 5. GAC: All original GAC shifts to GAC+CLM, 10% of original UV shifts to GAC.
- 6. Membranes: 90 percent of the original membranes shifts to membranes+CLM, 10 percent remains in membranes.
- 7. Final chloramine adjustment: 10 percent of GAC+CLM shifts to membranes.

≤ 100:

- 1. Start with the results from Step 6.
- 2. Converting to chloramine: No change from Step 6.
- 3. UV: 75 percent of the original UV shifts to UV+CLM, 0% remains in UV.
- 4. Ozone: Not selected.
- 5. GAC: All original GAC shifts to GAC+CLM, 25% of original UV shifts to GAC.
- 6. Membranes: 90 percent of the original membranes shifts to membranes+CLM, 10 percent remains in membranes.
- 7. Final chloramine adjustment: 25 percent of GAC+CLM shifts to membranes.

31 32

#### **B.3.3** Results

33 34 35

36

37

38

39

40

41

Exhibits B.17 and B.18 illustrate the adjustments discussed in section B.3.2. for the Stage 1 (i.e., 80/60 RAA, Bromate 10) and the Unadjusted Stage 2 DBPR Preferred Alternative (i.e., 80/60 LRAA, Bromate 10) respectively. In addition to conducting the above analysis for the Stage 2 DBPR Preferred Alternative, similar analyses were performed for all regulatory alternatives considered during the development of the Stage 2 DBPR. Results are summarized in Chapter 5 and Appendix C for all regulatory alternatives. Exhibit B.19 summarizes the treatment technology selection results for small ground water systems, for all Stage 2 DBPR regulatory alternatives and sensitivity options.

### Exhibit B.17 Stage 1 (80/60 RAA, Bromate 10) Treatment Technology Selection Forecasts

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | % Disinfecting | Converting  |                 |          | Ozone+ |         | GAC+  |          | MEM+  |                                                                          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|-----------------|----------|--------|---------|-------|----------|-------|--------------------------------------------------------------------------|--|
| Adjustments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | non-compliers  | to CLM only | CONV            | Ozone    | CLM    | GAC     | CLM   | MEM      | CLM   | Comments                                                                 |  |
| 1,001-10,000 category                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |             |                 |          |        |         |       |          |       |                                                                          |  |
| Large GW treatment selection for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |             |                 |          |        |         |       |          |       |                                                                          |  |
| noncompliers (Delphi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.26%          |             | 59.30%          | 27.30%   |        | 1.30%   |       | 12.30%   |       | From large GW delphi.                                                    |  |
| Treatment selection for noncompliers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |             |                 |          |        |         |       |          |       |                                                                          |  |
| after applying ozone adjustments to 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.26%          |             | 59.30%          | 27.30%   |        | 1.30%   |       | 12.30%   |       | No adjustments to ozone usage in this category.                          |  |
| I series and a series are a series and a ser | 112070         |             | 0010070         | 21.0070  |        | 110070  |       | 12.0070  |       |                                                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |                 |          |        |         |       |          |       | All plants predicted to be CONV have to switch to                        |  |
| 3. Treatment selection from 2 applied to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |             |                 |          |        |         |       |          |       | CLM to be compliant. Example calculation                                 |  |
| the percent noncompliers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.26%          | 2.53%       |                 | 1.16%    |        | 0.06%   |       | 0.52%    |       | (Ozone): 27.30% of 4.26% = 1.16%.                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |                 |          |        |         |       |          |       | (1) Start with results from 3. (2) Convert to CLM:                       |  |
| 4. Final treatment selection showing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |             |                 |          |        |         |       |          |       | No change. (3) Ozone: 75% to Ozone+CLM, 25%                              |  |
| chloramine use breakout within each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |             |                 |          |        |         |       |          |       | to Ozone. (4) GAC: All go to GAC+CLM. (5) MEM:                           |  |
| technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.26%          | 2.53%       |                 | 0.29%    |        |         | 0.06% | 0.05%    | 0.47% | 90% to MEM+CLM, 10% remains in MEM.                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |                 | 101-1,00 | 0 cate | gory    |       |          |       |                                                                          |  |
| Large GW treatment selection for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.700/         |             | <b>50.000</b> / | 07.000/  |        | 4.000/  |       | 40.000/  |       | Francisco OM deleti                                                      |  |
| noncompliers (Delphi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.73%          |             | 59.30%          | 27.30%   |        | 1.30%   |       | 12.30%   |       | From large GW delphi.                                                    |  |
| Treatment selection for noncompliers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |             |                 |          |        |         |       |          |       |                                                                          |  |
| after applying ozone adjustments to 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.73%          |             | 59.30%          | 13.65%   |        | 14.95%  |       | 12.30%   |       | 50% reduction in ozone, balance goes to GAC.                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |                 |          |        |         |       |          |       | All plants predicted to be CONV have to switch to                        |  |
| 3. Treatment selection from 2 applied to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.700/         | 0.000/      |                 | 0.050/   |        | 0.740/  |       | 0.500/   |       | CLM to be compliant. Example calculation                                 |  |
| the percent noncompliers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.73%          | 2.80%       |                 | 0.65%    |        | 0.71%   |       | 0.58%    |       | (Ozone): 13.65% of 4.73% = 0.65%.                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |                 |          |        |         |       |          |       | (1) Start with results from 3. (2) Convert to CLM:                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |                 |          |        |         |       |          |       | No change. (2) Ozone: 75% to Ozone+CLM, 25%                              |  |
| Final treatment selection showing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |             |                 |          |        |         |       |          |       | to Ozone. (3) GAC: All go to GAC+CLM. (4) MEM:                           |  |
| chloramine use breakout within each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.700/         | 0.000/      |                 | 0.400/   | 0.400/ | 0.000/  |       | 0.400/   |       | 90% to MEM+CLM, 10% remain in MEM. (5) Final                             |  |
| technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.73%          | 2.80%       |                 | 0.16%    |        |         | 0.64% | 0.13%    | 0.52% | CLM adjustment: 10% of GAC+CLM to MEM.                                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |                 | <= 100   | catego | ory     |       | 1        |       |                                                                          |  |
| Large GW treatment selection for noncompliers (Delphi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.08%          |             | 59.30%          | 27.30%   |        | 1.30%   |       | 12.30%   |       | From large GW delphi.                                                    |  |
| noncompilers (Delprii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.0070         |             | 33.30 /6        | 21.5070  |        | 1.50 /6 |       | 12.30 /6 |       | Trom large Ovv delprii.                                                  |  |
| 2. Treatment selection for noncompliers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |             |                 |          |        |         |       |          |       |                                                                          |  |
| after applying ozone adjustments to 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.08%          |             | 59.30%          | 0.00%    |        | 28.60%  |       | 12.30%   |       | 100% reduction in ozone, balance goes to GAC.                            |  |
| O Transfer and a planting form O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |             |                 |          |        |         |       |          |       | All plants predicted to be CONV have to switch to                        |  |
| 3. Treatment selection from 2 applied to the percent noncompliers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.08%          | 2.42%       |                 | 0.00%    |        | 1.17%   |       | 0.50%    |       | CLM to be compliant. Example calculation (GAC): 28.60% of 4.08% = 1.17%. |  |
| the percent noncompliers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.08%          | 2.42%       |                 | 0.00%    |        | 1.17%   |       | 0.50%    |       | (1) Start with results from 3. (2) Convert to CLM:                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |                 |          |        |         |       |          |       | No change. (3) Ozone: 0%. (4) GAC: All go to                             |  |
| 4. Final treatment selection showing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |             |                 |          |        |         |       |          |       | GAC+CLM. (5) MEM: 90% to MEM+CLM, 10%                                    |  |
| chloramine use breakout within each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |             |                 |          |        |         |       |          |       | remain in MEM. (6) Final CLM adjustment: 25% of                          |  |
| technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.08%          | 2.42%       |                 | 0.00%    | 0.00%  | 0.00%   | 0.88% | 0.34%    | 0.45% | GAC+CLM to MEM.                                                          |  |

### Exhibit B.18 Unadjusted Stage 2 Preferred Option (80/60 LRAA, Bromate 10) Treatment Technology Selection Forecast

| Adjustments                                                                                | % Disinfecting<br>non-compliers | Converting to<br>CLM only | CONV   | UV     | UV+<br>CLM | Ozone | Ozone+C<br>LM | GAC    | GAC+C<br>LM | MEM    | MEM+C<br>LM | Comments                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------|---------------------------------|---------------------------|--------|--------|------------|-------|---------------|--------|-------------|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <= 100 category                                                                            |                                 |                           |        |        |            |       |               |        |             |        |             |                                                                                                                                                                                                                                                                                                     |
| Large GW treatment selection for noncompliers (Delphi)                                     | 6.50%                           |                           | 62.70% |        |            | 0.00% |               | 25.40% |             | 12.00% |             | From large GW delphi.                                                                                                                                                                                                                                                                               |
| Treatment selection for<br>noncompliers after applying ozone<br>adjustments to 1           | 6.50%                           |                           | 62.70% |        |            | 0.00% |               | 25.40% |             | 12.00% |             | 100% reduction in ozone, balance goes to GAC.                                                                                                                                                                                                                                                       |
| Treatment selection after adjusting 2 for "negatives"                                      | 6.50%                           |                           | 62.70% |        |            | 0.00% |               | 25.40% |             | 12.00% |             | To ensure that treatment selection for a technology is not below the Stage 1 selection.                                                                                                                                                                                                             |
| Treatment selection after UV adjustments to 3                                              | 6.50%                           |                           | 62.70% | 22.44% |            | 0.00% |               | 10.16% |             | 4.80%  |             | Assumes that 60% of (Ozone+GAC+MEM) switch to UV, the balance 40% is distrbuted among Ozone, GAC, and MEM in their existing proportions.                                                                                                                                                            |
| Treatment selection after adjusting 4 for "negatives"                                      | 6.50%                           |                           | 51.96% | 22.44% |            | 0.00% |               | 17.97% |             | 7.73%  |             | To ensure that treatment selection for a technology is not below the Stage 1 selection.                                                                                                                                                                                                             |
| Treatment selection from 5     applied to noncompliers                                     | 6.50%                           | 3.38%                     |        | 1.46%  |            | 0.00% |               | 1.17%  |             | 0.50%  |             | All plants predicted to be CONV have to switch to CLM to be compliant. Example calculation (GAC): 17.97% of 6.50% = 1.17%.                                                                                                                                                                          |
| 7. <b>Final</b> treatment selection showing chloramine use breakout within each technology | 6.50%                           | 3.02%                     |        | 0.00%  | 1.25%      | 0.00% | 0.00%         | 0.42%  | 0.88%       | 0.36%  | 0.58%       | (1) Start with results from 6. (2) Convert to CLM: No change. (3) UV: 75% of original UV to UV+CLM, 0% to UV. (4) Ozone: 0%. (5) GAC: All original GAC to GAC+CLM, balance 25% of original UV to GAC. (6) MEM: 90% to MEM+CLM, 10% remains in MEM. (7) Final CLM adjustment: 25% of GAC+CLM to MEM. |

## Exhibit B.18 Unadjusted Stage 2 Preferred Option (80/60 LRAA, Bromate 10) Treatment Technology Selection Forecast (Continued)

| A. P                                                                                       | % Disinfecting<br>non-compliers | Converting to<br>CLM only | CONV   | uv     | UV+<br>CLM | Ozone   | Ozone+<br>CLM | GAC      | GAC+<br>CLM | МЕМ     | MEM+   | Comments                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------|---------------------------------|---------------------------|--------|--------|------------|---------|---------------|----------|-------------|---------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Adjustments                                                                                | non-compilers                   | CLINI OTHY                | CONV   | UV     | _          |         | ),000 ca      |          | CLIVI       | IVIEIVI | CLIVI  | Comments                                                                                                                                                                                                                                                                                                                                      |
| Large GW treatment selection                                                               |                                 |                           |        |        |            | ,001-10 | ,000 Ca       | itegoi y |             |         |        | From large GW delphi.                                                                                                                                                                                                                                                                                                                         |
| for noncompliers (Delphi)                                                                  | 6.95%                           |                           | 62.70% |        |            | 21.70%  |               | 3.70%    |             | 12.00%  |        | Tom large SW dolphi.                                                                                                                                                                                                                                                                                                                          |
| Treatment selection for noncompliers after applying ozone adjustments to 1                 | 6.95%                           |                           | 62.70% |        |            | 21.70%  |               | 3.70%    |             | 12.00%  |        | No adjustments to ozone usage in this category.                                                                                                                                                                                                                                                                                               |
| Treatment selection after adjusting 2 for "negatives"                                      | 6.95%                           |                           | 62.70% |        |            | 21.70%  |               | 3.70%    |             | 12.00%  |        | To ensure that treatment selection for a technology is not below the Stage 1 selection.                                                                                                                                                                                                                                                       |
| Treatment selection after UV adjustments to 3                                              | 6.95%                           |                           | 62.70% | 22.44% |            | 8.68%   |               | 1.48%    |             | 4.80%   |        | Assumes that 60% of (Ozone+GAC+MEM) switch to UV, the balance 40% is distrbuted among Ozone, GAC, and MEM in their existing proportions.                                                                                                                                                                                                      |
| Treatment selection after adjusting 4 for "negatives"                                      | 6.95%                           |                           | 51.89% | 22.44% |            | 16.75%  |               | 1.48%    |             | 7.54%   |        | To ensure that treatment selection for a technology is not below the Stage 1 selection.                                                                                                                                                                                                                                                       |
| Treatment selection from 5     applied to noncompliers                                     | 6.95%                           | 3.60%                     |        | 1.56%  |            | 1.16%   |               | 0.10%    |             | 0.52%   |        | All plants predicted to be CONV have to switch to CLM to be compliant. Example calculation (UV): 22.44% of 6.95% = 1.56%.                                                                                                                                                                                                                     |
| 7. Final treatment selection showing chloramine use breakout within each technology        | 6.95%                           | 2.49%                     |        | 0.00%  | 2.26%      | 0.29%   | 0.87%         | 0.00%    | 0.35%       | 0.07%   | 0.000/ | (1) Start with results from 6. (2) Convert to CLM: No change. (3) UV: All go to UV+CLM. (4) Ozone: 75% of original to Ozone+CLM, 25% to Ozone. (5) GAC: All go to GAC+CLM. (6) MEM: 90% to MEM+CLM, 10% remains in MEM.                                                                                                                       |
|                                                                                            |                                 |                           |        |        |            | 101-1,0 | 000 cate      | egory    |             |         |        |                                                                                                                                                                                                                                                                                                                                               |
| Large GW treatment selection for noncompliers (Delphi)                                     | 7.90%                           |                           | 62.70% |        |            | 10.85%  |               | 14.55%   |             | 12.00%  |        | From large GW delphi.                                                                                                                                                                                                                                                                                                                         |
| Treatment selection for noncompliers after applying ozone adjustments to 1                 | 7.90%                           |                           | 62.70% |        |            | 5.43%   |               | 19.98%   |             | 12.00%  |        | 50% reduction in ozone, balance goes to GAC.                                                                                                                                                                                                                                                                                                  |
| Treatment selection after adjusting 2 for "negatives"                                      | 7.90%                           |                           | 62.70% |        |            | 5.43%   |               | 19.98%   |             | 12.00%  |        | To ensure that treatment selection for a technology is not below the Stage 1 selection.                                                                                                                                                                                                                                                       |
| Treatment selection after UV adjustments to 3                                              | 7.90%                           |                           | 62.70% | 22.44% |            | 2.17%   |               | 7.99%    |             | 4.80%   |        | Assumes that 60% of (Ozone+GAC+MEM) switch to UV, the balance 40% is distributed among Ozone, GAC, and MEM in their existing proportions.                                                                                                                                                                                                     |
| Treatment selection after adjusting 4 for "negatives"                                      | 7.90%                           |                           | 53.17% | 22.44% |            | 8.17%   |               | 8.95%    |             | 7.36%   |        | To ensure that treatment selection for a technology is not below the Stage 1 selection.                                                                                                                                                                                                                                                       |
| Treatment selection from 5     applied to noncompliers                                     | 7.90%                           | 4.20%                     |        | 1.77%  |            | 0.65%   |               | 0.71%    |             | 0.58%   |        | All plants predicted to be CONV have to switch to CLM to be compliant. Example calculation (Ozone): 8.17% of 7.90% = 0.65%.                                                                                                                                                                                                                   |
| 7. <b>Final</b> treatment selection showing chloramine use breakout within each technology | 7.90%                           | 3.61%                     |        | 0.00%  | 1.94%      | 0.16%   | 0.48%         | 0.22%    | 0.64%       | 0.15%   | 0.70%  | (1) Start with results from 6. (2) Convert to CLM: No change. (3) UV: 90% of original UV to UV+CLM, 0% to UV. (4) Ozone: 75% of original to Ozone+CLM, 25% to Ozone. (5) GAC: All original GAC go to GAC+CLM, balance 10% of original UV to GAC. (6) MEM: 90% to MEM+CLM, 10% remains in MEM. (7) Final CLM adjustment:10% of GAC+CLM to MEM. |

| Regulatory Option                                          | Converting to CLM only | UV    | UV + CLM    | Ozone | Ozone +<br>CLM | GAC20 | GAC20 +<br>CLM | NF    | NF + CLM | Total %<br>Changing<br>Tech. |  |  |
|------------------------------------------------------------|------------------------|-------|-------------|-------|----------------|-------|----------------|-------|----------|------------------------------|--|--|
| 1,001-10,000 category                                      |                        |       |             |       |                |       |                |       |          |                              |  |  |
| Stage 1 Baseline, 80/60 RAA, BRO3 = 10, UV = OFF           | 2.53%                  | 0.00% | 0.00%       | 0.29% | 0.87%          | 0.00% | 0.06%          | 0.05% | 0.47%    | 4.27%                        |  |  |
| Unadjusted Preferred Alternative, 20% Safety Margin, 80/60 |                        |       |             |       |                |       |                |       |          |                              |  |  |
| LRAA, BRO3 = 10, UV = ON                                   | 3.60%                  | 0.00% | 1.56%       | 0.29% | 0.87%          | 0.00% | 0.10%          | 0.05% | 0.47%    | 6.95%                        |  |  |
| Stage 2 Alternative 1, 80/60 LRAA, BRO3 = 5, UV = ON       | 2.49%                  | 0.00% | 2.26%       | 0.29% | 0.87%          | 0.00% | 0.35%          | 0.07% | 0.62%    | 6.95%                        |  |  |
| Stage 2 Alternative 2, 80/60 SH, BRO3 = 10, UV = ON        | 5.99%                  | 0.00% | 1.42%       | 0.29% | 0.87%          | 0.00% | 0.17%          | 0.05% | 0.47%    | 9.26%                        |  |  |
| Stage 2 Alternative 3, 40/30 RAA, BRO3 = 10, UV = ON       | 4.00%                  | 0.00% | 1.60%       | 0.29% | 0.87%          | 0.00% | 0.26%          | 0.05% | 0.47%    | 7.54%                        |  |  |
|                                                            |                        | 101-1 | ,000 catego | ory   |                |       |                |       |          |                              |  |  |
| Stage 1 Baseline, 80/60 RAA, BRO3 = 10, UV = OFF           | 2.80%                  | 0.00% | 0.00%       | 0.16% | 0.48%          | 0.00% | 0.64%          | 0.13% | 0.52%    | 4.74%                        |  |  |
| Unadjusted Preferred Alternative, 20% Safety Margin, 80/60 |                        |       |             |       |                |       |                |       |          |                              |  |  |
| LRAA, BRO3 = 10, UV = ON                                   | 4.20%                  | 0.00% | 1.59%       | 0.16% | 0.48%          | 0.18% | 0.64%          | 0.13% | 0.52%    | 7.90%                        |  |  |
| Stage 2 Alternative 1, 80/60 LRAA, BRO3 = 5, UV = ON       | 3.61%                  | 0.00% | 1.94%       | 0.16% | 0.48%          | 0.22% | 0.64%          | 0.15% | 0.70%    | 7.90%                        |  |  |
| Stage 2 Alternative 2, 80/60 SH, BRO3 = 10, UV = ON        | 6.67%                  | 0.00% | 1.31%       | 0.16% | 0.48%          | 0.15% | 0.64%          | 0.13% | 0.52%    | 10.06%                       |  |  |
| Stage 2 Alternative 3, 40/30 RAA, BRO3 = 10, UV = ON       | 4.90%                  | 0.00% | 1.51%       | 0.16% | 0.48%          | 0.17% | 0.64%          | 0.13% | 0.52%    | 8.51%                        |  |  |
|                                                            |                        | <= 1  | 00 categor  | у     |                |       |                |       |          |                              |  |  |
| Stage 1 Baseline, 80/60 RAA, BRO3 = 10, UV = OFF           | 2.42%                  | 0.00% | 0.00%       | 0.00% | 0.00%          | 0.00% | 0.88%          | 0.34% | 0.45%    | 4.09%                        |  |  |
| Unadjusted Preferred Alternative, 20% Safety Margin, 80/60 |                        |       |             |       |                |       |                |       |          |                              |  |  |
| LRAA, BRO3 = 10, UV = ON                                   | 3.38%                  | 0.00% | 1.09%       | 0.00% | 0.00%          | 0.36% | 0.88%          | 0.34% | 0.45%    | 6.50%                        |  |  |
| Stage 2 Alternative 1, 80/60 LRAA, BRO3 = 5, UV = ON       | 3.02%                  | 0.00% | 1.25%       | 0.00% | 0.00%          | 0.42% | 0.88%          | 0.36% | 0.58%    | 6.50%                        |  |  |
| Stage 2 Alternative 2, 80/60 SH, BRO3 = 10, UV = ON        | 6.23%                  | 0.00% | 0.92%       | 0.00% | 0.00%          | 0.31% | 0.88%          | 0.34% | 0.45%    | 9.13%                        |  |  |
| Stage 2 Alternative 3, 40/30 RAA, BRO3 = 10, UV = ON       | 4.24%                  | 0.00% | 0.99%       | 0.00% | 0.00%          | 0.33% | 0.88%          | 0.34% | 0.45%    | 7.23%                        |  |  |

### Appendix C Supplemental Compliance Forecasts

# **Appendix C**

## **Supplemental Compliance Forecasts**

This appendix presents the Stage 1 and Stage 2 Disinfectants and Disinfection Byproducts Rule (DBPR) compliance forecast results for both surface water and ground water systems. There are three basic types of compliance forecasts presented:

**Treatment Technology Selection**—The treatment technology selection tables represent the number and percent of systems that have to add a treatment technology to comply with the rule. These results include only the number of systems that exceed rule maximum contaminant levels (MCLs) and must add treatment technology to comply with the rule. Those plants that are already using a treatment technology prior to the rule and do not have to add an additional treatment technology to comply are not included in this table. The treatment technology selection numbers are based on the pre-Stage 1 treatment technology baseline.

**Treatment Technology Selection Deltas**—The treatment technology selection delta tables represent the incremental number of plants that must add a treatment technology to meet Stage 2 DBPR regulatory alternatives after predicted changes to meet the Stage 1 DBPR. These tables are calculated by subtracting the Stage 1 DBPR treatment technology selection tables from the Stage 2 DBPR treatment technology selection tables. These tables are used for costing.

**Treatment Technologies in Place**—The treatment technologies in place tables show the number and percent of systems that are using a treatment technology, once systems are in compliance with the rule. This includes the systems predicted to add a treatment technology to comply with the rule, and those systems that were already using the treatment technology before rule promulgation.

This Appendix presents the treatment technology selection tables for the Stage 1 DBPR and the Stage 2 DBPR, and the treatment technology selection, treatment technology selection deltas, and treatment technologies in place tables for the other regulatory alternatives and the sensitivity analyses. Compliance forecasts are organized as follows (see next page).

34 35

36

Note: Some compliance forecasts are presented in the main body of the Economic Analysis (i.e., Exhibits 3.13a through 3.14b, 7.14a through 7.19b), and are thus not repeated in this Appendix.

| Rule Option     | Compliance             | Source         | System | Exhibit Number                   | Page Number  |
|-----------------|------------------------|----------------|--------|----------------------------------|--------------|
| Rule Option     | Forecast Type          | Source         | Туре   |                                  | rage Number  |
|                 | Tractment              | Surface Water  | CWS    | Chapter 3, Exhibit 3.13a         |              |
| Pre-Stage 1     | Treatment              |                | NTNCWS | Chapter 3, Exhibit 3.13b         |              |
| _               | Technologies in Place  | Ground Water   | CWS    | Chapter 3, Exhibit 3.14a         |              |
|                 |                        |                | NTNCWS | Chapter 3, Exhibit 3.14b         |              |
|                 |                        | Surface Water  | CWS    | Exhibit C.1a                     | C-3          |
|                 | Selection              |                | NTNCWS | Exhibit C.1b                     | C-4          |
|                 |                        | Ground Water   | CWS    | Exhibit C.2a                     | C-5          |
| Pre-Stage 2     |                        |                | NTNCWS | Exhibit C.2b                     | C-6          |
| (Post-Stage 1)  |                        | Surface Water  | cws    | Chapter 7, Exhibit 7.14a         | 7-41         |
|                 | Treatment              | ouridee rrater | NTNCWS | Chapter 7, Exhibit 7.14b         | 7-41         |
|                 | Technologies in Place  | Ground Water   | cws    | Chapter 7, Exhibit 7.17a         | 7-46         |
|                 |                        | oroana mator   | NTNCWS | Chapter 7, Exhibit 7.17b         | 7-46         |
|                 |                        | Surface Water  | cws    | Chapter 7, Exhibit 7.15a & 7.15b | 7-42         |
|                 | Delta                  | Ouriace Water  | NTNCWS | Chapter 7, Exhibit 7.15c & 7.15d | 7-43         |
| Stage 2         | Dena                   | Ground Water   | cws    | Chapter 7, Exhibit 7.18a & 7.18b | 7-47         |
| Preferred       |                        | Ground Water   | NTNCWS | Chapter 7, Exhibit 7.18c & 7.18d | 7-48         |
|                 |                        | Curfoos Wotor  | CWS    | Chapter 7, Exhibit 7.16a & 7.16b | 7-44         |
| Alternative     | Treatment              | Surface Water  | NTNCWS | Chapter 7, Exhibit 7.16c & 7.16d | 7-45         |
|                 | Technologies in Place  | Cround Mate    | cws    | Chapter 7, Exhibit 7.19a & 7.19b | 7-49         |
|                 |                        | Ground Water   | NTNCWS | Chapter 7, Exhibit 7.19c & 7.19d | 7-50         |
|                 |                        | 0 /            | CWS    | Exhibits C.3a & C.3b             | C-7          |
|                 |                        | Surface Water  | NTNCWS | Exhibits C.3c & C.3d             | C-8          |
|                 | Delta                  |                | cws    | Exhibits C.4a & C.4b             | C-9          |
| Stage 2         |                        | Ground Water   | NTNCWS | Exhibits C.4c & C.4d             | C-10         |
| Alternative 1   |                        |                | CWS    | Exhibits C.5a & C.5b             | C-11         |
|                 | Treatment              | Surface Water  | NTNCWS | Exhibits C.5c & C.5d             | C-12         |
|                 | Technologies in Place  |                | cws    | Exhibits C.6a & C.6b             | C-13         |
|                 |                        | Ground Water   | NTNCWS | Exhibits C.6c & C.6d             | C-14         |
|                 |                        |                | cws    | Exhibits C.7a & C.7b             | C-15         |
|                 |                        | Surface Water  | NTNCWS | Exhibits C.7c & C.7d             | C-16         |
|                 | Delta                  |                | cws    | Exhibits C.8a & C.8b             | C-17         |
| Stage 2         |                        | Ground Water   | NTNCWS | Exhibits C.8c & C.8d             | C-18         |
| Alternative 2   |                        |                | CWS    | Exhibits C.9a & C.9b             | C-19         |
| / IIIO Mativo 2 | Treatment              | Surface Water  | NTNCWS | Exhibits C.9c & C.9d             | C-20         |
|                 | Technologies in Place  |                | CWS    | Exhibits C.10a & C.10b           | C-20<br>C-21 |
|                 | reciliologics in ridec | Ground Water   | NTNCWS | Exhibits C.10c & C.10d           | C-22         |
|                 |                        |                | CWS    | Exhibits C.11a & C.11b           | C-22         |
|                 |                        | Surface Water  | NTNCWS |                                  | C-24         |
|                 | Delta                  |                |        | Exhibits C.11c & C.11d           |              |
| Store 2         |                        | Ground Water   | CWS    | Exhibits C.12a & C.12b           | C-25         |
| Stage 2         |                        |                | NTNCWS | Exhibits C.12c & C.12d           | C-26         |
| Alternative 3   | Transmans              | Surface Water  | CWS    | Exhibits C.13a & C.13b           | C-27         |
|                 | Treatment              |                | NTNCWS | Exhibits C.13c & C.13d           | C-28         |
|                 | Technologies in Place  | Ground Water   | CWS    | Exhibits C.14a & C.14b           | C-29         |
|                 |                        |                | NTNCWS | Exhibits C.14c & C.14d           | C-30         |
|                 |                        | Surface Water  | CWS    | Exhibits C.15a & C.15b           | C-31         |
| Stage 2         | Delta                  |                | NTNCWS | Exhibits C.15c & C.15d           | C-32         |
| Preferred       |                        | Ground Water   | CWS    | Exhibits C.16a & C.16b           | C-33         |
| Alternative,    |                        |                | NTNCWS | Exhibits C.16c & C.16d           | C-34         |
| 20% Safety      |                        | Surface Water  | CWS    | Exhibits C.17a & C.17b           | C-35         |
| Margin          | Treatment              |                | NTNCWS | Exhibits C.17c & C.17d           | C-36         |
| 3               | Technologies in Place  | Ground Water   | CWS    | Exhibits C.18a & C.18b           | C-37         |
|                 |                        |                | NTNCWS | Exhibits C.18c & C.18d           | C-38         |
|                 |                        | Surface Water  | CWS    | Exhibits C.19a & C.19b           | C-39         |
| Stage 2         | Delta                  |                | NTNCWS | Exhibits C.19c & C.19d           | C-40         |
| Preferred       | Dona                   | Ground Water   | CWS    | Exhibits C.20a & C.20b           | C-41         |
| Alternative,    |                        | Ciodila vvalei | NTNCWS | Exhibits C.20c & C.20d           | C-42         |
| 25% Safety      |                        | Surface Water  | CWS    | Exhibits C.21a & C.21b           | C-43         |
| •               | Treatment              | Surface Water  | NTNCWS | Exhibits C.21c & C.21d           | C-44         |
| Margin          | Technologies in Place  | Cround Mater   | cws    | Exhibits C.22a & C.22b           | C-45         |
|                 | İ                      | Ground Water   | NTNCWS | Exhibits C.22c & C.22d           | C-46         |

Exhibit C.1a Stage 1 DBPR Treatment Technology Selection for CWS Surface Water Plants (Percent and Number of Plants by Residual Disinfection Type)

|                 |               |       |         |           |     |     |          |          | Adding | Advanced Tr | eatment Trea | tment Techn | ologies |         |         |         |        |        |              |        |         |         |            |         |        |
|-----------------|---------------|-------|---------|-----------|-----|-----|----------|----------|--------|-------------|--------------|-------------|---------|---------|---------|---------|--------|--------|--------------|--------|---------|---------|------------|---------|--------|
| System Size     | Convention    | nal   |         |           |     |     |          |          |        |             |              |             |         |         | dvanced |         | _      |        | ) + Advanced |        |         |         |            | Total A | dding  |
| (Population     | Plants Adding | CLM   | Chlorin | e Dioxide | U   | V   | Oz       | one      |        | MF/UF       | (            | SAC10       | Dis     | sinfect | tants   | GA      | C20    | Dis    | infectants   | Mer    | nbranes | Total ( | Converting | Treatr  | ment   |
| Served)         | only          |       | CL2     | CLM       | CL2 | CLM | CL2      | CLM      | CL2    | 2 CLM       | CL2          | CLM         | CL2     |         | CLM     | CL2     | CLM    | CL2    | CLM          | CL2    | CLM     | to      | CLM        | Techn   | ology  |
|                 | Α             |       |         | В         | (   | )   |          | )        |        | E           |              | F           |         | G       |         | H       | +      |        | I            |        | J       |         | K          | L = SUI | M(A:J) |
| <100            | 29.7%         | 107   |         |           |     |     |          |          | 10.9%  | 39 7.1%     | 26           |             |         |         |         | 2.0% 7  | 1.3%   | 5 0.0% | 0 0.0% (     | 2.1%   | 8 1.4%  | 5 39.6  | % 142      | 54.6%   | 196    |
| 100-499         | 35.4%         | 272   | 1.0%    | 7 0.9% 7  |     |     | 5.1% 39  | 4.6% 35  | 5.3%   | 41 4.8%     | 37           |             |         |         |         | 1.1% 8  | 1.0%   | 7 0.5% | 4 0.4% 3     | 0.5%   | 3 0.4%  | 3 47.5  | % 364      | 60.8%   | 466    |
| 500-999         |               | 171   |         | 5 4       |     |     | 24       | 22       |        | 26          | 23           |             |         |         |         | 5       |        | 5      | 2 2          | 2      | 2       | 2       | 229        | 9       | 294    |
| 1,000-3,299     | 41.3%         | 467   | 1.9% 2  | 2 2.1% 24 |     |     | 4.0% 45  | 4.5% 51  | 2.6%   | 29 2.9%     | 32           |             |         |         |         | 1.0% 12 | 1.2% 1 | 3 0.5% | 6 0.6% 7     | 7 0.2% | 2 0.2%  | 2 52.7  | % 596      | 63.0%   | 711    |
| 3,300-9,999     |               | 520   | 2       | 1 27      |     |     | 50       | 56       |        | 32          | 36           |             |         |         |         | 13      | 1      | 5      | 7            | 7      | 2       | 2       | 664        | ı       | 792    |
| 10,000-49,999   | 10.9%         | 141   | 4.4% 5  | 7 0.7% 9  |     |     | 9.5% 122 | 1.5% 20  | 1.6%   | 20 0.3%     | 3 1.6%       | 20 0.3%     | 0.9%    | 12      | 0.2% 2  | 0.3% 4  | 0.1%   | 1 0.0% | 0 0.0% (     | 0.3%   | 4 0.1%  | 1 13.9  | % 180      | 32.5%   | 420    |
| 50,000-99,999   |               | 63    | 2       | 6 4       |     |     | 55       | 9        |        | 9           | 1            | 9           | ı       | 5       | 1       | 2       |        | 0      | 0 (          | 0      | 2       | 0       | 81         |         | 188    |
| 100,000-999,999 | 10.9%         | 67    | 4.4% 2  | 7 0.7% 4  |     |     | 9.5% 58  | 1.5% 9   | 1.6%   | 10 0.3%     | 2 1.6%       | 10 0.3%     | 0.9%    | 6       | 0.2% 1  | 0.3% 2  | 0.1%   | 0.0%   | 0 0.0% (     | 0.3%   | 2 0.1%  | 0 13.9  | % 85       | 32.5%   | 199    |
| >=1,000,000     |               | 8     |         | 3 1       |     |     | 7        | 1        |        | 1           | 0            | 1           | )       | 1       | 0       | 0       |        | 0      | 0 (          | 0      | 0       | 0       | 10         | )       | 24     |
| Total Plants    | 27.7%         | 1,816 | 2.6% 17 | 1.2% 80   |     |     | 6.1% 401 | 3.1% 203 | 3.2%   | 207 2.5%    | 161 0.6%     | 40 0.1%     | 0.4%    | 24      | 0.1% 4  | 0.8% 53 | 0.7% 4 | 6 0.3% | 18 0.3% 19   | 0.4% 2 | 5 0.2%  | 16 35.9 | % 2,350    | 50.2%   | 3,290  |

Note: Detail may not add to totals due to independent rounding

Source: Percent of plants from Appendix A, A.19a for systems serving <a href="100">100</a> people, A.19b for systems serving 1,000 to 9,999 people, and Exhibit A.7c for systems serving 10,000 or more people.

Exhibit C.1b Stage 1 DBPR Treatment Technology Selection for NTNCWS Surface Water Plants (Percent and Number of Plants by Residual Disinfection Type)

|                            |                                 |     |          |         |     |     |        |        |    | Adding A | Advanced | Treatr | nent Treatm | ent Techno | logies |                  |         |        |      |                            |        |        |          |          |                    |        |
|----------------------------|---------------------------------|-----|----------|---------|-----|-----|--------|--------|----|----------|----------|--------|-------------|------------|--------|------------------|---------|--------|------|----------------------------|--------|--------|----------|----------|--------------------|--------|
| System Size<br>(Population | Conventional<br>Plants Adding C |     | Chlorine | Dioxide | U   | V   | 0      | zone   |    |          | MF/UF    |        | GA          | C10        |        | Advanced ectants | GA      | C20    |      | ) + Advanced<br>infectants | Men    | branes | Total Co | nverting | Total Ad<br>Treatn |        |
| Served)                    | only                            |     | CL2      | CLM     | CL2 | CLM | CL2    | CLM    |    | CL2      | CI       | _M     | CL2         | CLM        | CL2    | CLM              | CL2     | CLM    | CL2  | CLM                        | CL2    | CLM    | to 0     | CLM      | Techno             | ology  |
|                            | Α                               |     | Е        | 3       | C   | ;   |        | D      |    |          | E        |        | F           | =          |        | G                |         | Н      |      | 1                          |        | J      |          | <        | L = SUN            | Л(A:J) |
| <100                       | 29.7%                           | 67  |          |         |     |     |        |        |    | 10.9%    | 25 7.19  | % 16   |             |            |        |                  | 2.0% 4  | 1.3% 3 | 0.0% | 0 0.0% (                   | 2.1%   | 5 1.4% | 3 39.6%  | 89       | 54.6%              | 123    |
| 100-499                    | 35.4% 1                         | 111 | 1.0% 3   | 0.9% 3  |     |     | 5.1% 1 | 4.6%   | 14 | 5.3%     | 17 4.89  | % 15   |             |            |        |                  | 1.1% 3  | 1.0% 3 | 0.5% | 2 0.4% 1                   | 0.5%   | 0.4%   | 1 47.5%  | 148      | 60.8%              | 190    |
| 500-999                    |                                 | 38  | 1        | 1       |     |     |        | 5      | 5  |          | 6        | 5      |             |            |        |                  | 1       | 1      |      | 1 (                        | )      | )      | 0        | 50       |                    | 64     |
| 1,000-3,299                | 41.3%                           | 38  | 1.9% 2   | 2.1% 2  |     |     | 4.0%   | 4 4.5% | 4  | 2.6%     | 2 2.99   | % 3    |             |            |        |                  | 1.0% 1  | 1.2% 1 | 0.5% | 0 0.6% 1                   | 1 0.2% | 0.2%   | 0 52.7%  | 49       | 63.0%              | 58     |
| 3,300-9,999                |                                 | 10  | 0        | 1       |     |     |        | 1      | 1  |          | 1        | 1      |             |            |        |                  | C       | (      | )    | 0 (                        | )      | )      | 0        | 13       |                    | 16     |
| 10,000-49,999              | 10.9%                           | 1   | 4.4% 0   | 0.7% 0  |     |     | 9.5%   | 1.5%   | 0  | 1.6%     | 0 0.39   | % 0    | 1.6%        | 0.3% 0     | 0.9%   | 0.2%             | 0.3%    | 0.1%   | 0.0% | 0 0.0% (                   | 0.3%   | 0.1%   | 0 13.9%  | . 1      | 32.5%              | 2      |
| 50,000-99,999              |                                 | 0   | 0        | 0       |     |     |        | )      | 0  |          | 0        | 0      | C           | 0          | C      | )                | 0       | (      | )    | 0 (                        | )      | )      | 0        | 0        |                    | 0      |
| 100,000-999,999            | 10.9%                           | 0   | 4.4% 0   | 0.7% 0  |     |     | 9.5%   | 1.5%   | 0  | 1.6%     | 0 0.39   | % 0    | 1.6%        | 0.3% 0     | 0.9%   | 0.2%             | 0.3%    | 0.1%   | 0.0% | 0 0.0% (                   | 0.3%   | 0.1%   | 0 13.9%  | 0        | 32.5%              | 0      |
| >=1,000,000                |                                 | 0   | 0        | 0       |     |     |        | 0      | 0  |          | 0        | 0      | C           | 0          | C      | )                | 0       | ) (    |      | 0 (                        | 0      | 0      | 0        | 0        |                    | 0      |
| Total Plants               | 34.5% 2                         | 264 | 0.8% 7   | 0.8% 6  |     |     | 3.4% 2 | 3.2%   | 24 | 6.5%     | 50 5.29  | 6 40   | 0.0%        | 0.0% 0     | 0.0%   | 0.0%             | 1.3% 10 | 1.1% 8 | 0.3% | 3 0.3% 3                   | 3 0.9% | 7 0.7% | 5 45.7%  | 350      | 59.1%              | 453    |

Note: Detail may not add to totals due to independent rounding

Source: Percent of plants from Appendix A, A.19a for systems serving <a href="100">100</a> people, A.19b for systems serving 1,000 to 9,999 people, and Exhibit A.7c for systems serving 10,000 or more people.

Exhibit C.2a 'R Treatment Technology Selection for CWS Groundwater Plants (Percent and Number of Plants, by Residual Disinfectant Type)

| System Size<br>(Population Served) | CLM  | Only  | UV CL | 2 | UV CLM | Ozone | e CL2           | Ozone | CLM | GAC20<br>CL2 |   | GAC20 | CLM | Membra<br>CL2 |    | Membra<br>CLN |     | Total Conve | J     | Total Adding<br>Treatment<br>Technology |
|------------------------------------|------|-------|-------|---|--------|-------|-----------------|-------|-----|--------------|---|-------|-----|---------------|----|---------------|-----|-------------|-------|-----------------------------------------|
|                                    | А    | ı     | В     |   | С      |       | )               | Е     |     | F            |   | G     |     | Н             |    | - 1           |     | J = A+C+E   | E+G+I | K = SUM(A:I)                            |
| <100                               | 2.4% | 156   | 0.0%  | 0 | 0.0% 0 | 0.0%  | 6 O             | 0.0%  | 0   | 0.0%         | Э | 0.9%  | 56  | 0.3%          | 22 | 0.5%          | 29  | 3.7%        | 241   | 4.1%                                    |
| 100-499                            | 2.8% | 427   | 0.0%  | 0 | 0.0% 0 | 0.2%  | <sub>6</sub> 25 | 0.5%  | 74  | 0.0%         | О | 0.6%  | 97  | 0.1%          | 20 | 0.5%          | 80  | 4.4%        | 678   | 4.7%                                    |
| 500-999                            |      | 171   |       | 0 | 0      | )     | 10              |       | 29  | (            | О |       | 39  |               | 8  |               | 32  |             | 271   |                                         |
| 1,000-3,299                        | 2.5% | 192   | 0.0%  | 0 | 0.0% 0 | 0.3%  | <sub>5</sub> 22 | 0.9%  | 66  | 0.0%         | Э | 0.1%  | 4   | 0.1%          | 4  | 0.5%          | 36  | 3.9%        | 298   | 4.3%                                    |
| 3,300-9,999                        |      | 127   |       | 0 | 0      | )     | 15              |       | 44  | (            | О |       | 3   |               | 3  |               | 24  |             | 197   |                                         |
| 10,000-49,999                      | 1.8% | 99    |       |   |        | 0.19  | <sub>6</sub> 4  | 0.8%  | 42  | 0.0%         | О | 0.0%  | 2   | 0.1%          | 7  | 0.3%          | 14  | 2.9%        | 157   | 3.1%                                    |
| 50,000-99,999                      |      | 13    |       |   |        |       | 1               |       | 6   | (            | О |       | 0   |               | 1  |               | 2   |             | 21    |                                         |
| 100,000-999,999                    | 1.7% | 15    |       |   |        | 0.19  | <sub>6</sub> 1  | 0.7%  | 6   | 0.0%         | О | 0.0%  | 0   | 0.1%          | 1  | 0.2%          | 2   | 2.6%        | 24    | 2.8%                                    |
| >=1,000,000                        |      | 0     |       |   |        |       | 0               |       | 0   | (            | О |       | 0   |               | 0  |               | 0   |             | 1     |                                         |
| Total Plants                       | 2.5% | 1,201 | 0.0%  | 0 | 0.0% 0 | 0.2%  | <sub>5</sub> 76 | 0.6%  | 267 | 0.0%         | Э | 0.4%  | 202 | 0.1%          | 65 | 0.5%          | 218 | 4.0%        | 1,887 | 4.3%                                    |

Source: Percent of plants from Appendix B, Exhibit B.34a for systems serving <a href="100">100</a> people, B.34b for systems serving 100 to 999 people, B.34c for systems serving 1,000 to 9,999 people, Exhibit B.11b for systems serving 10,000 to 99,999 people, and B.11a for systems serving 100,000 or more people.

Exhibit C.2b

Treatment Technology Selection for NTNCWS Groundwater Plants (Percent and Number of Plants, by Residual Disinfectant Type

| System Size<br>(Population Served) | CLM C | nly | UV CL2 | UV CLM | Ozone C | L2 | Ozone ( | CLM | GAC20<br>CL2 | G   | AC20 C | LM | Membrane<br>CL2 | S  | Membra<br>CLM |    | Total Conver | ting to | Total Adding<br>Treatment<br>Technology |
|------------------------------------|-------|-----|--------|--------|---------|----|---------|-----|--------------|-----|--------|----|-----------------|----|---------------|----|--------------|---------|-----------------------------------------|
|                                    | Α     |     | В      | С      | D       |    | Е       |     | F            |     | G      |    | Н               |    | I             |    | J = A+C+E-   | +G+I    | K = SUM(A:I)                            |
| <100                               | 2.4%  | 60  | 0.0%   | 0.0% 0 | 0.0%    | 0  | 0.0%    | 0   | 0.0% 0       | ) ( | 0.9%   | 22 | 0.3%            | 9  | 0.5%          | 11 | 3.7%         | 93      | 4.1%                                    |
| 100-499                            | 2.8%  | 60  | 0.0%   | 0.0% 0 | 0.2%    | 3  | 0.5%    | 10  | 0.0% 0       | ) ( | 0.6%   | 14 | 0.1%            | 3  | 0.5%          | 11 | 4.4%         | 95      | 4.7%                                    |
| 500-999                            |       | 17  | (      | 0      |         | 1  |         | 3   | 0            | )   |        | 4  |                 | 1  |               | 3  |              | 26      |                                         |
| 1,000-3,299                        | 2.5%  | 6   | 0.0%   | 0.0% 0 | 0.3%    | 1  | 0.9%    | 2   | 0.0% 0       | ) ( | 0.1%   | 0  | 0.1%            | 0  | 0.5%          | 1  | 3.9%         | 10      | 4.3%                                    |
| 3,300-9,999                        |       | 1   | (      | 0      |         | 0  |         | 0   | 0            | )   |        | 0  |                 | 0  |               | 0  |              | 1       |                                         |
| 10,000-49,999                      | 1.8%  | 0   |        |        | 0.1%    | 0  | 0.8%    | 0   | 0.0% 0       | ) ( | 0.0%   | 0  | 0.1%            | 0  | 0.3%          | 0  | 2.9%         | 0       | 3.1%                                    |
| 50,000-99,999                      |       | 0   |        |        |         | 0  |         | 0   | 0            | )   |        | 0  |                 | 0  |               | 0  |              | 0       |                                         |
| 100,000-999,999                    | 1.7%  | 0   |        |        | 0.1%    | 0  | 0.7%    | 0   | 0.0% 0       | ) ( | 0.0%   | 0  | 0.1%            | 0  | 0.2%          | 0  | 2.6%         | 0       | 2.8%                                    |
| >=1,000,000                        |       | 0   |        |        |         | 0  |         | 0   | 0            | )   |        | 0  |                 | 0  |               | 0  |              | 0       |                                         |
| Total Plants                       | 2.6%  | 143 | 0.0%   | 0.0% 0 | 0.1%    | 5  | 0.3%    | 16  | 0.0% 0       | ) ( | 0.7%   | 39 | 0.2%            | 12 | 0.5%          | 27 | 4.1%         | 225     | 4.4%                                    |

Source: Percent of plants from Appendix B, Exhibit B.34a for systems serving <a href="100">100</a> people, B.34b for systems serving 100 to 999 people, B.34c for systems serving 1,000 to 9,999 people, Exhibit B.11b for systems serving 10,000 to 99,999 people, and B.11a for systems serving 100,000 or more people.

Exhibit C.3a
Stage 2 DBPR Treatment Technology Selection Deltas for CWS Surface Water Plants (Percent of Plants by Residual Disinfection Type)

|                 |       |           |         |          |      |          |           |      |      |      |      |      |      |        | AI    | ternativ | 9 1  |      |      |      |      |      |      |      |           |          |        |       |           |         |         |         |       |
|-----------------|-------|-----------|---------|----------|------|----------|-----------|------|------|------|------|------|------|--------|-------|----------|------|------|------|------|------|------|------|------|-----------|----------|--------|-------|-----------|---------|---------|---------|-------|
| System Size     | Conve | erting to | CLM     |          | (    | Chlorine | e Dioxide | 9    |      |      |      | Į    | JV   |        |       |          |      | Ozo  | one  |      |      |      |      | M    | IF/UF     |          |        |       |           | GAC     | 10      |         |       |
| (Population     |       | Only      |         |          | CL2  |          |           | CLM  |      |      | CL2  |      |      | CLM    |       |          | CL2  |      |      | CLM  |      |      | CL2  |      |           | CLM      |        |       | CL2       |         |         | CLM     |       |
| Served)         | Mean  | 5th       | 95th    | Mean     | 5th  | 95th     | Mean      | 5th  | 95th | Mean | 5th  | 95th | Mean | 5th    | 95th  | Mean     | 5th  | 95th | Mean | 5th  | 95th | Mean | 5th  | 95th | Mean      | 5th      | 95th   | Mean  | 5th       | 95th    | Mean    | 5th     | 95th  |
|                 |       | Α         |         |          | В    |          |           | С    |      |      | D    |      |      | Е      |       |          | F    |      |      | G    |      |      | Н    |      |           | 1        |        |       | J         |         |         | K       |       |
| <100            | 1.6%  | 0.8%      | 2.4%    |          |      |          |           |      |      | 3.6% | 1.9% | 5.3% | 2.7% | 1.4%   | 3.9%  |          |      |      |      |      |      | 0.0% | 0.0% | 0.0% | 0.0%      | 0.0%     | 0.0%   |       |           |         |         |         |       |
| 100-499         | 3.9%  | 2.1%      | 5.7%    | 0.1%     | 0.1% | 0.2%     | 0.4%      | 0.2% | 0.6% | 1.0% | 0.5% | 1.4% | 1.0% | 0.5%   | 1.5%  | 0.0%     | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%      | 0.0%     | 0.0%   |       |           |         |         |         |       |
| 500-999         | 3.9%  | 2.1%      | 5.7%    | 0.1%     | 0.1% | 0.2%     | 0.4%      | 0.2% | 0.6% | 1.0% | 0.5% | 1.4% | 1.0% | 0.5%   | 1.5%  | 0.0%     | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%      | 0.0%     | 0.0%   |       |           |         |         |         |       |
| 1,000-3,299     | 4.0%  | 2.2%      | 5.9%    | 0.2%     | 0.1% | 0.3%     | 0.9%      | 0.5% | 1.4% | 0.7% | 0.4% | 1.0% | 0.9% | 0.5%   | 1.4%  | 0.0%     | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%      | 0.0%     | 0.0%   |       |           |         |         |         |       |
| 3,300-9,999     | 4.0%  | 2.2%      | 5.9%    | 0.2%     | 0.1% | 0.3%     | 0.9%      | 0.5% | 1.4% | 0.7% | 0.4% | 1.0% | 0.9% | 0.5%   | 1.4%  | 0.0%     | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%      | 0.0%     | 0.0%   |       |           |         |         |         |       |
| 10,000-49,999   | 8.1%  | 4.3%      | 11.9%   | 0.1%     | 0.0% | 0.1%     | 0.6%      | 0.3% | 0.9% | 0.6% | 0.3% | 0.8% | 0.1% | 0.1%   | 0.2%  | 0.0%     | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%      | 0.0%     | 0.0%   | 0.0%  | 0.0%      | 0.0%    | 0.0%    | 0.0%    | 0.0%  |
| 50,000-99,999   | 8.1%  | 4.3%      | 11.9%   | 0.1%     | 0.0% | 0.1%     | 0.6%      | 0.3% | 0.9% | 0.6% | 0.3% | 0.8% | 0.1% | 0.1%   | 0.2%  | 0.0%     | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%      | 0.0%     | 0.0%   | 0.0%  | 0.0%      | 0.0%    | 0.0%    | 0.0%    | 0.0%  |
| 100,000-999,999 | 8.1%  | 4.3%      | 11.9%   | 0.1%     | 0.0% | 0.1%     | 0.6%      | 0.3% | 0.9% | 0.6% | 0.3% | 0.8% | 0.1% | 0.1%   | 0.2%  | 0.0%     | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%      | 0.0%     | 0.0%   | 0.0%  | 0.0%      | 0.0%    | 0.0%    | 0.0%    | 0.0%  |
| >=1,000,000     | 8.1%  |           | 11.9%   | 0.1%     | 0.0% | 0.1%     | 0.6%      | 0.3% | 0.9% | 0.6% |      |      |      | 0.1%   | 0.2%  | 0.0%     |      | 0.0% | 0.0% | 0.0% |      | 0.0% | 0.0% |      | 0.0%      | 0.0%     | 0.0%   | 0.0%  | 0.0%      | 0.0%    | 0.0%    | 0.0%    | 0.0%  |
| Total %         | 5.5%  | 2.9%      | 8.0%    | 0.1%     | 0.1% | 0.2%     | 0.7%      | 0.4% | 1.0% | 0.9% | 0.5% | 1.3% | 0.7% | 0.4%   | 1.1%  | 0.0%     | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%      | 0.0%     | 0.0%   | 0.0%  | 0.0%      | 0.0%    | 0.0%    | 0.0%    | 0.0%  |
| System Size     | G/    | 4C10 +    | Advance | ed Disin |      | 3        |           |      | GAC  | 20   |      |      | G    | AC20 + | Advan | ced Disi |      | S    |      |      | Memb |      |      |      |           |          |        |       |           |         |         |         |       |
| (Population     |       | CL2       |         |          | CLM  |          |           | CL2  |      |      | CLM  |      |      | CL2    |       |          | CLM  |      |      | CL2  |      |      | CLM  |      | Total Cor | nverting | to CLM | To    | tal Addir | g Treat | ment Te | chnolog | y     |
| Served)         | Mean  | 5th       | 95th    | Mean     | 5th  | 95th     | Mean      | 5th  | 95th | Mean | 5th  | 95th | Mean | 5th    | 95th  | Mean     | 5th  | 95th | Mean | 5th  | 95th | Mean | 5th  | 95th | Mean      | 5th      | 95th   | Mean  | 5th       | 95th    | Mean    | 5th     | 95th  |
|                 |       |           |         |          |      |          |           |      |      |      |      |      |      |        |       |          |      |      |      |      |      |      |      |      | T=A+C+I   |          | K+M+O  |       |           |         |         |         |       |
|                 |       | L         |         |          | М    |          |           | N    |      |      | 0    |      |      | Р      |       |          | Q    |      |      | R    |      |      | S    |      |           | +Q+S     |        |       |           | L = SUN | Λ(A:S)  |         |       |
| <100            |       |           |         |          |      |          | 0.0%      | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 1.5% | 0.8%   | 2.2%  | 1.1%     | 0.6% | 1.7% | 0.0% | 0.0% | 0.0% | 0.3% | 0.2% | 0.5% | 5.7%      | 3.0%     | 8.4%   | 10.8% | 5.7%      | 16.0%   |         |         |       |
| 100-499         |       |           |         |          |      |          | 0.0%      | 0.0% | 0.0% |      | 0.0% |      | 0.3% |        | 0.5%  | 0.0,0    | 0.3% | ,.   | 0.9% | 0.5% |      | 1.1% | 0.6% |      | 6.8%      |          | 10.1%  | 9.2%  |           | 13.5%   |         |         |       |
| 500-999         |       |           |         |          |      |          | 0.0%      | 0.0% | 0.0% |      | 0.0% |      | 0.3% | 0.2%   |       | 0.5%     | 0.3% |      | 0.9% | 0.5% |      |      | 0.6% |      | 6.8%      |          |        | 9.2%  | 4.9%      |         | 9.5%    | 5.1%    | 14.0% |
| 1,000-3,299     |       |           |         |          |      |          | 0.0%      | 0.0% | 0.0% | 0.0% |      | 0.0% | 0.2% | 0.1%   |       | 0.5%     |      | 0.7% | 0.9% |      |      | 1.2% | 0.6% |      | 7.6%      |          |        | 9.6%  | 5.1%      |         |         |         |       |
| 3,300-9,999     |       |           |         |          |      |          | 0.0%      | 0.0% | 0.0% |      | 0.0% |      | 0.2% |        | 0.3%  | 0.5%     | 0.3% |      | 0.9% | 0.5% |      |      | 0.6% |      | 7.6%      | 4.1%     |        | 9.6%  | 5.1%      |         |         |         |       |
| 10,000-49,999   | 0.5%  | 0.2%      | 0.7%    | 0.2%     | ,.   |          | 0.5%      | 0.3% | 0.8% | 0.2% |      | 0.2% | 0.0% | 0.0%   |       | 0.0%     |      | 0.0% | 1.6% |      | 2.4% | 0.4% | 0.2% |      | 9.7%      |          | 14.2%  | 12.9% | 6.9%      |         |         |         |       |
| 50,000-99,999   | 0.5%  | 0.2%      | 0.7%    | 0.2%     |      |          | 0.5%      | 0.3% | 0.8% |      |      | 0.2% | 0.0% | 0.0%   |       | 0.0%     | 0.0% |      | 1.6% | 0.9% |      |      | 0.2% |      | 9.7%      |          | 14.2%  | 12.9% | 6.9%      |         | 12.9%   | 6.9%    | 19.0% |
| 100,000-999,999 | 0.5%  | 0.2%      | 0.7%    | 0.2%     | 0.1% | 0.3%     | 0.5%      | 0.3% | 0.8% |      |      | 0.2% | 0.0% |        |       | 0.0%     |      | 0.0% | 1.6% |      | 2.4% | 0.4% | 0.2% |      | 9.7%      |          | 14.2%  | 12.9% | 6.9%      |         | 0 /0    | 2.370   | ,     |
| >=1,000,000     | 0.5%  | 0.2%      | 0.7%    | 0.2%     |      | 0.3%     |           | 0.3% | 0.8% |      | 0.1% |      | 0.0% | 0.0%   |       |          | 0.0% |      | 1.6% | 0.9% |      |      | 0.2% |      | 9.7%      |          |        | 12.9% | 6.9%      |         |         |         |       |
| Total %         | 0.2%  | 0.1%      | 0.3%    | 0.1%     | 0.0% | 0.1%     | 0.2%      | 0.1% | 0.3% | 0.1% | 0.0% | 0.1% | 0.2% | 0.1%   | 0.3%  | 0.3%     | 0.2% | 0.5% | 1.1% | 0.6% | 1.7% | 0.8% | 0.4% | 1.2% | 8.2%      | 4.4%     | 12.0%  | 10.9% | 5.8%      | 16.0%   | 10.9%   | 5.8%    | 16.0% |

Source: Technology Selection for the Alternative 1 minus the Stage 1 Technology Selection from Appendix C, Exhibit C.1a.

Exhibit C.3b

Stage 2 DBPR Treatment Technology Selection Deltas for CWS Surface Water Plants (Number of Plants by Residual Disinfection Type)

Alternative 1

|                 |       |           |        |          |     |         |           |     |      |      |     |      |      |     | AI    | ternative | # I |      |      |     |      |        |     |      |           |         |       |      |     |         |         |     |       |
|-----------------|-------|-----------|--------|----------|-----|---------|-----------|-----|------|------|-----|------|------|-----|-------|-----------|-----|------|------|-----|------|--------|-----|------|-----------|---------|-------|------|-----|---------|---------|-----|-------|
| System Size     | Conve | erting to | CLM    |          |     | Chlorin | e Dioxide | 9   |      |      |     | L    | JV   |     |       |           |     | Oz   | one  |     |      |        |     | N    | IF/UF     |         |       |      |     | GAC     | C10     |     |       |
| (Population     |       | Only      |        |          | CL2 |         |           | CLM |      |      | CL2 |      |      | CLM |       |           | CL2 |      |      | CLM |      |        | CL2 |      |           | CLM     |       |      | CL2 |         |         | CLM |       |
| Served)         | Mean  | 5th       | 95th   | Mean     | 5th | 95th    | Mean      | 5th | 95th | Mean | 5th | 95th | Mean | 5th | 95th  | Mean      | 5th | 95th | Mean | 5th | 95th | Mean   | 5th | 95th | Mean      | 5th     | 95th  | Mean | 5th | 95th    | Mean    | 5th | 95th  |
|                 |       | Α         |        |          |     |         | В         |     |      |      |     |      | С    |     |       |           |     |      | D    |     |      |        |     |      | E         |         |       |      |     | F       |         |     |       |
| <100            | 6     | 3         | 9      |          |     |         |           |     |      | 13   | 7   | 19   | 10   | 5   | 14    |           |     |      |      |     |      | 0      | 0   | 0    | 0         | 0       | 0     |      |     |         |         |     |       |
| 100-499         | 30    | 16        | 44     | 1        |     | 1 1     | 3         | 2   | 4    | 7    | 4   | 11   | 8    | 4   | 11    | 0         | 0   | 0    | 0    | 0   | 0    | 0      | 0   | 0    | 0         | 0       | 0     |      |     |         |         |     |       |
| 500-999         | 19    | 10        | 28     | 1        | (   | ) 1     | 2         | 1   | 3    | 5    | 2   | 7    | 5    | 3   | 7     | 0         | 0   | 0    | 0    | 0   | 0    | 0      | 0   | 0    | 0         | 0       | 0     |      |     |         |         |     |       |
| 1,000-3,299     | 46    | 24        | 67     | 2        |     | 1 3     | 11        | 6   | 16   | 8    | 4   | 12   | 10   | 6   | 15    | 0         | 0   | 0    | 0    | 0   | 0    | 0      | 0   | 0    | 0         | 0       | 0     |      |     |         |         |     |       |
| 3,300-9,999     | 51    | 27        | 75     | 2        | •   | 1 3     | 12        | 6   | 18   | 9    | 5   | 13   | 12   | 6   | 17    | 0         | 0   | 0    | 0    | 0   | 0    | 0      | 0   | 0    | 0         | 0       | 0     |      |     |         |         |     |       |
| 10,000-49,999   | 104   | 56        | 153    | 1        | (   | ) 1     | 8         | 4   | 12   | 7    | 4   | 11   | 2    | 1   | 2     | 0         | 0   | 0    | 0    | 0   | 0    | 0      | 0   | 0    | 0         | 0       | 0     | 0    | 0   | 0       | 0       | 0   | 0     |
| 50,000-99,999   | 47    | 25        | 69     | 0        | (   | ) 1     | 4         | 2   | 5    | 3    | 2   | 5    | 1    | 0   | 1     | 0         | 0   | 0    | 0    | 0   | 0    | 0      | 0   | 0    | 0         | 0       | 0     | 0    | 0   | 0       | 0       | 0   | 0     |
| 100,000-999,999 | 49    | 26        | 72     | 0        | (   | ) 1     | 4         | 2   | 6    | 3    | 2   | 5    | 1    | 0   | 1     | 0         | 0   | 0    | 0    | 0   | 0    | 0      | 0   | 0    | 0         | 0       | 0     | 0    | 0   | 0       | 0       | 0   | 0     |
| >=1,000,000     | 6     | 3         | 9      | 0        | (   | 0 0     | 0         | 0   | 1    | 0    | 0   | 1    | 0    | 0   | 0     | 0         | 0   | 0    | 0    | 0   | 0    | 0      | 0   | 0    | 0         | 0       | 0     | 0    | 0   | 0       | 0       | 0   | 0     |
| Total Plants    | 358   | 191       | 526    | 8        | 4   | 1 11    | 44        | 23  | 64   | 56   | 30  | 83   | 48   | 26  | 70    | 0         | 0   | 0    | 0    | 0   | 0    | 0      | 0   | 0    | 0         | 0       | 0     | 0    | 0   | 0       | 0       | 0   | 0     |
| System Size     | G.    |           | Advanc | ed Disir |     | ts      |           |     | GAC  | -    |     |      | G    |     | Advan | ced Disi  |     | nts  |      |     | Memb | oranes |     |      |           |         |       |      |     |         |         |     |       |
| (Population     |       | CL2       |        |          | CLM |         |           | CL2 |      |      | CLM |      |      | CL2 |       |           | CLM |      |      | CL2 |      |        | CLM |      | Total Con | verting |       |      |     | 3       | ment Te |     | ,     |
| Served)         | Mean  | 5th       | 95th   | Mean     | 5th | 95th    | Mean      | 5th | 95th | Mean | 5th | 95th | Mean | 5th | 95th  | Mean      | 5th | 95th | Mean | 5th | 95th | Mean   | 5th | 95th | Mean      | 5th     | 95th  | Mean | 5th | 95th    | Mean    | 5th | 95th  |
|                 |       |           |        |          |     |         |           |     |      |      |     |      |      |     |       |           |     |      |      |     |      |        |     |      | T=A+C+E   |         | K+M+O |      |     |         |         |     |       |
|                 |       |           | G      |          |     |         |           |     | Н    |      |     |      |      |     |       | I         |     |      |      |     | ,    | J      |     |      |           | +Q+S    |       |      |     | L = SUI | И(A:S)  |     |       |
| <100            |       |           |        |          |     |         | 0         | 0   | 0    | 0    | 0   | 0    | 5    | 3   | 8     | 4         | 2   |      | 0    | 0   | 0    | 1      | 1   | 2    | 20        | 11      | 30    | 39   | 21  | 57      |         |     |       |
| 100-499         |       |           |        |          |     |         | 0         | 0   | 0    | 0    | 0   | 0    | 3    | 1   | 4     | 4         | 2   | 5    | 7    | 4   | 10   | 8      | 4   | 12   | 52        | 28      | 77    | 70   | 38  | 103     |         |     |       |
| 500-999         |       |           |        |          |     |         | 0         | 0   | 0    | 0    | 0   | 0    | 2    | 1   | 2     | 2         | 1   | 3    | 4    | 2   |      | 5      | 3   | 8    | 33        | 18      |       | 44   | 24  | 65      | 382     | 204 | 561   |
| 1,000-3,299     |       |           |        |          |     |         | 0         | 0   | 0    | 0    | 0   | 0    | 2    | 1   | 4     | 5         | 3   | 8    | 10   | 5   | 14   | 14     | 7   | 20   | 86        | 46      | 126   | 108  | 58  | 159     |         |     |       |
| 3,300-9,999     |       |           |        |          |     |         | 0         | 0   | 0    | 0    | 0   | 0    | 3    | 1   | 4     | 6         | 3   | 9    | 11   | 6   |      | 15     | 8   |      | 96        | 51      | 141   | 121  | 64  | 177     |         |     |       |
| 10,000-49,999   | 6     | 3         | 9      | 3        | 2   | 2 5     | 7         | 4   | 10   | 2    | 1   | 3    | 0    | 0   | 0     | 0         | 0   | 0    | 21   | 11  |      | 6      | 3   | 8    | 125       | 67      | 184   | 167  | 89  | 245     |         |     |       |
| 50,000-99,999   | 3     | 1         | 4      | 1        |     | 1 2     | 3         | 2   | 4    | 1    | 1   | 1    | 0    | 0   | 0     | 0         | 0   | 0    | 10   | 5   |      | 2      | 1   | 4    | 56        | 30      | 82    | 75   | 40  | 110     | 330     | 176 | 485   |
| 100,000-999,999 | 3     | 1         | 4      | 1        | •   | 1 2     | 3         | 2   | 5    | 1    | 1   | 1    | 0    | 0   | 0     | 0         | 0   | 0    | 10   | 5   | 15   | 3      | 1   | 4    | 59        | 32      | 87    | 79   | 42  | 116     | 550     | 175 | 400   |
| >=1,000,000     | 0     | 0         | 0      | 0        | (   | 0 0     | 0         | 0   | 1    | 0    | 0   | 0    | 0    | 0   | 0     | 0         | 0   | 0    | 1    | 1   | 2    | 0      | 0   | 0    | 7         | 4       | 10    | 10   | 5   | 14      |         |     |       |
| Total Plants    | 12    | 6         | 17     | 6        |     | 3 9     | 13        | 7   | 20   | 4    | 2   | 6    | 15   | 8   | 22    | 21        | 11  | 31   | 74   | 40  | 109  | 54     | 29  | 79   | 535       | 286     | 786   | 712  | 380 | 1,046   | 712     | 380 | 1.046 |

Note: Detail may not add to totals due to independent rounding

Source: Above table with technologies switching from an advanced technology with Cl2 to the same advanced technology with CLM being moved into the CLM only column

Exhibit C.3c
Stage 2 DBPR Treatment Technology Selection Deltas for NTNCWS Surface Water Plants (Percent of Plants by Residual Disinfection Type)

|                 |       |           |         |          |      |          |           |      |      |      |      |      |      |        | Al    | ternativ | eı   |      |      |      |      |      |      |      |           |          |        |       |           |          |          |         |          |
|-----------------|-------|-----------|---------|----------|------|----------|-----------|------|------|------|------|------|------|--------|-------|----------|------|------|------|------|------|------|------|------|-----------|----------|--------|-------|-----------|----------|----------|---------|----------|
| System Size     | Conve | erting to | CLM     |          | (    | Chlorine | e Dioxide | Э    |      |      |      | l    | JV   |        |       |          |      | Ozo  |      |      |      |      |      | М    | IF/UF     |          |        |       |           | GAC      | 10       |         |          |
| (Population     |       | Only      |         |          | CL2  |          |           | CLM  |      |      | CL2  |      |      | CLM    |       |          | CL2  |      |      | CLM  |      |      | CL2  |      |           | CLM      |        |       | CL2       |          |          | CLM     |          |
| Served)         | Mean  | 5th       | 95th    | Mean     | 5th  | 95th     | Mean      | 5th  | 95th | Mean | 5th  | 95th | Mean | 5th    | 95th  | Mean     | 5th  | 95th | Mean | 5th  | 95th | Mean | 5th  | 95th | Mean      | 5th      | 95th   | Mean  | 5th       | 95th     | Mean     | 5th     | 95th     |
|                 |       | Α         |         |          | В    |          |           | С    |      |      | D    |      |      | Е      |       |          | F    |      |      | G    |      |      | Н    |      |           | ı        |        |       | J         |          |          | K       |          |
| <100            | 1.6%  | 0.8%      | 2.4%    |          |      |          |           |      |      | 3.6% | 1.9% | 5.3% | 2.7% | 1.4%   | 3.9%  |          |      |      |      |      |      | 0.0% | 0.0% | 0.0% | 0.0%      | 0.0%     | 0.0%   |       |           |          |          |         |          |
| 100-499         | 3.9%  | 2.1%      | 5.7%    | 0.1%     | 0.1% | 0.2%     | 0.4%      | 0.2% | 0.6% | 1.0% | 0.5% | 1.4% | 1.0% | 0.5%   | 1.5%  | 0.0%     | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%      | 0.0%     | 0.0%   |       |           |          |          |         |          |
| 500-999         | 3.9%  | 2.1%      | 5.7%    | 0.1%     | 0.1% | 0.2%     | 0.4%      | 0.2% | 0.6% | 1.0% | 0.5% | 1.4% | 1.0% | 0.5%   | 1.5%  | 0.0%     | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%      | 0.0%     | 0.0%   |       |           |          |          |         |          |
| 1,000-3,299     | 4.0%  | 2.2%      | 5.9%    | 0.2%     | 0.1% | 0.3%     | 0.9%      | 0.5% | 1.4% | 0.7% | 0.4% | 1.0% | 0.9% | 0.5%   | 1.4%  | 0.0%     | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%      | 0.0%     | 0.0%   |       |           |          |          |         |          |
| 3,300-9,999     | 4.0%  | 2.2%      | 5.9%    | 0.2%     | 0.1% | 0.3%     | 0.9%      | 0.5% | 1.4% | 0.7% | 0.4% | 1.0% | 0.9% | 0.5%   | 1.4%  | 0.0%     | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%      | 0.0%     | 0.0%   |       |           |          |          |         |          |
| 10,000-49,999   | 8.1%  | 4.3%      | 11.9%   | 0.1%     | 0.0% | 0.1%     | 0.6%      | 0.3% | 0.9% | 0.6% | 0.3% | 0.8% | 0.1% | 0.1%   | 0.2%  | 0.0%     | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%      | 0.0%     | 0.0%   | 0.0%  | 0.0%      | 0.0%     | 0.0%     | 0.0%    | 0.0%     |
| 50,000-99,999   | 0.0%  | 0.0%      | 0.0%    | 0.0%     | 0.0% | 0.0%     | 0.0%      | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%   | 0.0%  | 0.0%     | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%      | 0.0%     | 0.0%   | 0.0%  | 0.0%      | 0.0%     | 0.0%     | 0.0%    | 0.0%     |
| 100,000-999,999 | 8.1%  | 4.3%      | 11.9%   | 0.1%     | 0.0% | 0.1%     | 0.6%      | 0.3% | 0.9% | 0.6% | 0.3% | 0.8% | 0.1% | 0.1%   | 0.2%  | 0.0%     | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%      | 0.0%     | 0.0%   | 0.0%  | 0.0%      | 0.0%     | 0.0%     | 0.0%    | 0.0%     |
| >=1,000,000     | 0.0%  | 0.0%      | 0.0%    | 0.0%     | 0.0% | 0.0%     | 0.0%      | 0.0% | 0.0% | 0.0% |      | 0.0% |      |        | 0.0%  | 0.0%     |      | 0.0% | 0.0% | 0.0% |      | 0.0% | 0.0% |      | 0.0%      | 0.0%     | 0.0%   | 0.0%  | 0.0%      | 0.0%     | 0.0%     | 0.0%    | 0.0%     |
| Total %         | 3.3%  | 1.7%      | 4.8%    | 0.1%     | 0.1% | 0.1%     | 0.4%      | 0.2% | 0.5% | 1.7% | 0.9% | 2.5% | 1.5% | 0.8%   | 2.2%  | 0.0%     | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%      | 0.0%     | 0.0%   | 0.0%  | 0.0%      | 0.0%     | 0.0%     | 0.0%    | 0.0%     |
| System Size     | G     | 4C10 +    | Advance | ed Disin |      | 3        |           |      | GAC  | 20   |      |      | G/   | 4C20 + | Advan | ced Disi |      | S    |      |      | Memb |      |      |      |           |          |        |       |           |          |          |         |          |
| (Population     |       | CL2       |         |          | CLM  |          |           | CL2  |      |      | CLM  |      |      | CL2    |       |          | CLM  |      |      | CL2  |      |      | CLM  |      | Total Cor | nverting | to CLM | To    | tal Addir | ng Treat | ment Te  | chnolog | y        |
| Served)         | Mean  | 5th       | 95th    | Mean     | 5th  | 95th     | Mean      | 5th  | 95th | Mean | 5th  | 95th | Mean | 5th    | 95th  | Mean     | 5th  | 95th | Mean | 5th  | 95th | Mean | 5th  | 95th | Mean      | 5th      | 95th   | Mean  | 5th       | 95th     | Mean     | 5th     | 95th     |
|                 |       |           |         |          |      |          |           |      |      |      |      |      |      |        |       |          |      |      |      |      |      |      |      |      | T=A+C+I   |          | K+M+O  |       |           |          |          |         |          |
|                 |       | L         |         |          | М    |          |           | N    |      |      | 0    |      |      | Р      |       |          | Q    |      |      | R    |      |      | S    |      |           | +Q+S     |        |       |           | L = SUI  | И(A:S)   |         |          |
| <100            |       |           |         |          |      |          | 0.0%      | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 1.5% | 0.8%   | 2.2%  | 1.1%     | 0.6% | 1.7% | 0.0% | 0.0% | 0.0% | 0.3% | 0.2% | 0.5% | 5.7%      | 3.0%     | 8.4%   | 10.8% | 5.7%      | 16.0%    |          |         |          |
| 100-499         |       |           |         |          |      |          | 0.0%      | 0.0% | 0.0% |      |      | ,    | 0.3% | 0.2%   |       |          | 0.3% | ,.   | 0.9% | 0.5% |      | 1.1% | 0.6% |      | 6.8%      |          | , .    | 9.2%  |           | 13.5%    |          |         |          |
| 500-999         |       |           |         |          |      |          | 0.0%      | 0.0% | 0.0% |      | 0.0% |      | 0.3% | 0.2%   |       | 0.5%     | 0.3% |      | 0.9% | 0.5% |      |      | 0.6% |      | 6.8%      |          |        | 9.2%  |           | 13.5%    | 9.9%     | 5.3%    | 14.6%    |
| 1,000-3,299     |       |           |         |          |      |          | 0.0%      | 0.0% | 0.0% | 0.0% |      | 0.0% | 0.2% | 0.1%   |       | 0.5%     |      | 0.7% | 0.9% |      |      | 1.2% | 0.6% |      | 7.6%      |          |        | 9.6%  |           | 14.1%    |          |         |          |
| 3,300-9,999     |       |           |         |          |      |          | 0.0%      | 0.0% | 0.0% |      | 0.0% |      | 0.2% | 0.1%   |       | 0.5%     | 0.3% |      | 0.9% | 0.5% |      | 1.2% | 0.6% |      | 7.6%      | 4.1%     |        | 9.6%  |           | 14.1%    |          |         |          |
| 10,000-49,999   | 0.5%  | 0.2%      | 0.7%    | 0.2%     | ,.   |          | 0.5%      | 0.3% | 0.8% | 0.2% |      | 0.2% | 0.0% |        | 0.0%  | 0.0%     |      | 0.0% | 1.6% |      | 2.4% | 0.4% | 0.2% |      | 9.7%      |          | 14.2%  | 12.9% |           | 19.0%    |          |         |          |
| 50,000-99,999   | 0.0%  | 0.0%      | 0.0%    | 0.0%     |      |          | 0.0%      | 0.0% | 0.0% |      |      | 0.0% | 0.0% | 0.0%   |       | 0.0%     | 0.0% |      | 0.0% | 0.0% |      |      | 0.0% |      | 0.0%      | 0.0%     | 0.0%   | 0.0%  | 0.0%      |          | 12 9%    | 6.9%    | 19.0%    |
| 100,000-999,999 | 0.5%  | 0.2%      | 0.7%    | 0.2%     | 0.1% |          | 0.0,0     | 0.3% | 0.8% |      |      | 0.2% | 0.0% |        | 0.0%  | 0.0%     |      | 0.0% | 1.6% |      | 2.4% | 0.4% | 0.2% |      | 9.7%      |          | 14.2%  | 12.9% |           | 19.0%    | . 2.0 /0 | 3.073   | . 5.5 ,0 |
| >=1,000,000     | 0.0%  | 0.0%      | 0.0%    | 0.0%     |      |          |           | 0.0% | 0.0% |      |      | 0.0% | 0.0% | 0.0%   |       |          | 0.0% |      | 0.0% | 0.0% |      |      | 0.0% |      | 0.0%      | 0.0%     | 0.0%   | 0.0%  | 0.0%      |          |          |         |          |
| Total %         | 0.0%  | 0.0%      | 0.0%    | 0.0%     | 0.0% | 0.0%     | 0.0%      | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.7% | 0.4%   | 1.0%  | 0.7%     | 0.4% | 1.0% | 0.6% | 0.3% | 0.9% | 0.9% | 0.5% | 1.3% | 6.6%      | 3.5%     | 9.8%   | 9.7%  | 5.2%      | 14.3%    | 9.7%     | 5.2%    | 14.3%    |

Source: Technology Selection for the Alternative 1 minus the Stage 1 Technology Selection from Appendix C, Exhibit C.1b.

Exhibit C.3d
Stage 2 DBPR Treatment Technology Selection Deltas for NTNCWS Surface Water Plants (Number of Plants by Residual Disinfection Type)
Alternative 1

|                 |      |           |                            |          |         |         |           |     |      |      |     |      |      |        | AI    | ternativ | e i     |      |      |     |      |        |     |      |           |         |        |      |            |         |         |          |      |
|-----------------|------|-----------|----------------------------|----------|---------|---------|-----------|-----|------|------|-----|------|------|--------|-------|----------|---------|------|------|-----|------|--------|-----|------|-----------|---------|--------|------|------------|---------|---------|----------|------|
| System Size     | Conv | erting to | CLM                        |          |         | Chlorin | e Dioxide | Э   |      |      |     | U    | V    |        |       |          |         | Oz   | zone |     |      |        |     | M    | F/UF      |         |        |      |            | GAC     | 210     |          |      |
| (Population     |      | Only      |                            |          | CL2     |         |           | CLM |      |      | CL2 |      |      | CLM    |       |          | CL2     |      |      | CLM |      |        | CL2 |      |           | CLM     |        |      | CL2        |         |         | CLM      |      |
| Served)         | Mean | 5th       | 95th                       | Mean     | 5th     | 95th    | Mean      | 5th | 95th | Mean | 5th | 95th | Mean | 5th    | 95th  | Mean     | 5th     | 95th | Mean | 5th | 95th | Mean   | 5th | 95th | Mean      | 5th     | 95th   | Mean | 5th        | 95th    | Mean    | 5th      | 95th |
|                 |      | Α         |                            |          |         |         | В         |     |      |      |     | C    | ;    |        |       |          |         |      | D    |     |      |        |     |      | Е         |         |        |      |            | F       |         |          |      |
| <100            | 4    | 2         | 5                          |          |         |         |           |     |      | 8    | 4   | 12   | 6    | 3      | 9     |          |         |      |      |     |      | 0      | 0   | 0    | 0         | 0       | 0      |      |            |         |         |          |      |
| 100-499         | 12   | 7         | 18                         | 0        | 0       | 1       | 1         | 1   | 2    | 3    | 2   | 4    | 3    | 2      | 5     | 0        | (       | ) (  | 0 0  | 0   | 0    | 0      | 0   | 0    | 0         | 0       | 0      |      |            |         |         |          |      |
| 500-999         | 4    | 2         | 6                          | 0        | 0       | 0       | 0         | 0   | 1    | 1    | 1   | 2    | 1    | 1      | 2     | 0        | (       | ) (  | 0 0  | 0   | 0    | 0      | 0   | 0    | 0         | 0       | 0      |      |            |         |         |          |      |
| 1,000-3,299     | 4    | 2         | 5                          | 0        | 0       | 0       | 1         | 0   | 1    | 1    | 0   | 1    | 1    | 0      | 1     | 0        | (       | ) (  | 0 0  | 0   | 0    | 0      | 0   | 0    | 0         | 0       | 0      |      |            |         |         |          |      |
| 3,300-9,999     | 1    | 1         | 1                          | 0        | 0       | 0       | 0         | 0   | 0    | 0    | 0   | 0    | 0    | 0      | 0     | 0        | (       | ) (  | 0 0  | 0   | 0    | 0      | 0   | 0    | 0         | 0       | 0      |      |            |         |         |          |      |
| 10,000-49,999   | 0    | 0         | 1                          | 0        | 0       | 0       | 0         | 0   | 0    | 0    | 0   | 0    | 0    | 0      | 0     | 0        | (       | ) (  | 0 0  | 0   | 0    | 0      | 0   | 0    | 0         | 0       | 0      | 0    | 0          | 0       | 0       | 0        | 0    |
| 50,000-99,999   | 0    | 0         | 0                          | 0        | 0       | 0       | 0         | 0   | 0    | 0    | 0   | 0    | 0    | 0      | 0     | 0        | (       | ) (  | 0 0  | 0   | 0    | 0      | 0   | 0    | 0         | 0       | 0      | 0    | 0          | 0       | 0       | 0        | 0    |
| 100,000-999,999 | 0    | 0         | 0                          | 0        | 0       | 0       | 0         | 0   | 0    | 0    | 0   | 0    | 0    | 0      | 0     | 0        | (       | ) (  | 0 0  | 0   | 0    | 0      | 0   | 0    | 0         | 0       | 0      | 0    | 0          | 0       | 0       | 0        | 0    |
| >=1,000,000     | 0    | 0         | 0                          | 0        | 0       | 0       | 0         | 0   | 0    | 0    | 0   | 0    | 0    | 0      | 0     | 0        | (       | ) (  | 0 0  | 0   | 0    | 0      | 0   | 0    | 0         | 0       | 0      | 0    | 0          | 0       | 0       | 0        | 0    |
| Total Plants    | 25   | 13        | 37                         | 1        | 0       | 1       | 3         | 1   | 4    | 13   | 7   | 19   | 11   | 6      | 17    | 0        | (       | ) (  | 0 0  | 0   | 0    | 0      | 0   | 0    | 0         | 0       | 0      | 0    | 0          | 0       | 0       | 0        | 0    |
| System Size     | G    | AC10 +    | <ul> <li>Advanc</li> </ul> | ed Disin | fectant | S       |           |     | GAC  | 20   |     |      | G/   | AC20 + | Advan | ced Disi | nfectar | nts  |      |     | Memb | oranes |     |      |           |         |        |      |            |         |         |          |      |
| (Population     |      | CL2       |                            |          | CLM     |         |           | CL2 |      |      | CLM |      |      | CL2    |       |          | CLM     |      |      | CL2 |      |        | CLM |      | Total Con | verting | to CLM | To   | tal Adding | g Treat | ment Te | chnology | y    |
| Served)         | Mean | 5th       | 95th                       | Mean     | 5th     | 95th    | Mean      | 5th | 95th | Mean | 5th | 95th | Mean | 5th    | 95th  | Mean     | 5th     | 95th | Mean | 5th | 95th | Mean   | 5th | 95th | Mean      | 5th     | 95th   | Mean | 5th        | 95th    | Mean    | 5th      | 95th |
|                 |      |           |                            |          |         |         |           |     |      |      |     |      |      |        |       |          |         |      |      |     |      |        |     |      | T=A+C+E   | +G+l+   | K+M+O  |      |            |         |         |          |      |
|                 |      |           | G                          | i        |         |         |           |     | Н    |      |     |      |      |        |       | I        |         |      |      |     |      | J      |     |      |           | +Q+S    |        |      | L          | _ = SUI | M(A:S)  |          |      |
| <100            |      |           |                            |          |         |         | 0         | 0   | 0    | 0    | 0   | 0    | 3    | 2      | 5     | 3        | 1       | 4    | 4 0  | 0   | 0    | 1      | 0   | 1    | 13        | 7       | 19     | 24   | 13         | 36      |         |          |      |
| 100-499         |      |           |                            |          |         |         | 0         | 0   | 0    | 0    | 0   | 0    | 1    | 1      | 2     | 1        | 1       | 1 2  | 2 3  | 1   | 4    | 3      | 2   | 5    | 21        | 11      | 31     | 29   | 15         | 42      |         |          |      |
| 500-999         |      |           |                            |          |         |         | 0         | 0   | 0    | 0    | 0   | 0    | 0    | 0      | 1     | 1        | (       | ) 1  | 1 1  | 1   | 1    | 1      | 1   | 2    | 7         | 4       | 11     | 10   | 5          | 14      | 74      | 39       | 109  |
| 1,000-3,299     |      |           |                            |          |         |         | 0         | 0   | 0    | 0    | 0   | 0    | 0    | 0      | 0     | 0        | (       | ) 1  | 1 1  | 0   | 1    | 1      | 1   | 2    | 7         | 4       | 10     | 9    | 5          | 13      |         |          |      |
| 3,300-9,999     |      |           |                            |          |         |         | 0         | 0   | 0    | 0    | 0   | 0    | 0    | 0      | 0     | 0        | (       | ) (  | 0    | 0   | 0    | 0      | 0   | 0    | 2         | 1       | 3      | 2    | 1          | 4       |         |          |      |
| 10,000-49,999   | 0    | 0         | 0                          | 0        | 0       | 0       | 0         | 0   | 0    | 0    | 0   | 0    | 0    | 0      | 0     | 0        | (       | ) (  | 0 0  | 0   | 0    | 0      | 0   | 0    | 0         | 0       | 1      | 1    | 0          | 1       |         |          |      |
| 50,000-99,999   | 0    | 0         | 0                          | 0        | 0       | 0       | 0         | 0   | 0    | 0    | 0   | 0    | 0    | 0      | 0     | 0        | (       | ) (  | 0    | 0   | 0    | 0      | 0   | 0    | 0         | 0       | 0      | 0    | 0          | 0       | 1       | 0        | 1    |
| 100,000-999,999 | 0    | 0         | 0                          | 0        | 0       | 0       | 0         | 0   | 0    | 0    | 0   | 0    | 0    | 0      | 0     | 0        | (       | ) (  | 0    | 0   | 0    | 0      | 0   | 0    | 0         | 0       | 0      | 0    | 0          | 0       | '       | U        | '    |
| >=1,000,000     | 0    | 0         | 0                          | 0        | 0       | 0       | 0         | 0   | 0    | 0    | 0   | 0    | 0    | 0      | 0     | 0        | (       | ) (  | ol o | 0   | 0    | 0      | 0   | 0    | 0         | 0       | 0      | 0    | 0          | 0       |         |          |      |
| >=1,000,000     | v    |           |                            |          |         |         |           |     | v    | 0    |     | v    |      |        |       | 0        |         | , ,  | ,    | 0   | 0    | 0      | 0   | U    | •         |         |        | ,    |            | •       |         |          |      |

Note: Detail may not add to totals due to independent rounding

Source: Above table with technologies switching from an advanced technology with Cl2 to the same advanced technology with CLM being moved into the CLM only column

Exhibit C.4a
Stage 2 DBPR Treatment Technology Selection Deltas for CWS Ground Water Plants (Percent of Plants, by Residual Disinfectant Type)
Alternative 1

|                     |          |        |        |       |       |       |       |           |           |                  | Total | Adding  |
|---------------------|----------|--------|--------|-------|-------|-------|-------|-----------|-----------|------------------|-------|---------|
| System Size         |          |        |        | Ozone | Ozone | GAC20 | GAC20 | Membranes | Membranes | Total Converting | Trea  | atment  |
| (Population Served) | CLM Only | UV CL2 | UV CLM | CL2   | CLM   | CL2   | CLM   | CL2       | CLM       | to CLM           | Tech  | nology  |
|                     | Α        | В      | С      | D     | Е     | F     | G     | Н         | I         | J = A+C+E+G+I    | K = S | UM(A:I) |
| <100                | 0.6%     | 0.0%   | 1.3%   | 0.0%  | 0.0%  | 0.4%  | 0.0%  | 0.0%      | 0.1%      | 2.0%             | 2.4%  |         |
| 100-499             | 0.8%     | 0.0%   | 1.9%   | 0.0%  | 0.0%  | 0.2%  | 0.0%  | 0.0%      | 0.2%      | 2.9%             | 3.2%  |         |
| 500-999             | 0.8%     | 0.0%   | 1.9%   | 0.0%  | 0.0%  | 0.2%  | 0.0%  | 0.0%      | 0.2%      | 2.9%             | 3.2%  | 2.9%    |
| 1,000-3,299         | 0.0%     | 0.0%   | 2.3%   | 0.0%  | 0.0%  | 0.0%  | 0.3%  | 0.0%      | 0.1%      | 2.7%             | 2.7%  |         |
| 3,300-9,999         | 0.0%     | 0.0%   | 2.3%   | 0.0%  | 0.0%  | 0.0%  | 0.3%  | 0.0%      | 0.1%      | 2.7%             | 2.7%  |         |
| 10,000-49,999       | 0.6%     |        |        | 0.0%  | 0.0%  | 0.1%  | 0.6%  | 0.1%      | 0.8%      | 1.9%             | 2.1%  |         |
| 50,000-99,999       | 0.6%     |        |        | 0.0%  | 0.0%  | 0.1%  | 0.6%  | 0.1%      | 0.8%      | 1.9%             | 2.1%  | 2.1%    |
| 100,000-999,999     | 0.6%     |        |        | 0.0%  | 0.0%  | 0.0%  | 0.5%  | 0.1%      | 0.7%      | 1.8%             | 2.0%  | 2.170   |
| >=1,000,000         | 0.6%     |        |        | 0.0%  | 0.0%  | 0.0%  | 0.5%  | 0.1%      | 0.7%      | 1.8%             | 2.0%  | l       |
| Total %             | 0.5%     | 0.0%   | 1.6%   | 0.0%  | 0.0%  | 0.2%  | 0.2%  | 0.0%      | 0.3%      | 2.6%             | 2.8%  | 2.8%    |

Exhibit C.4b

Stage 2 DBPR Treatment Technology Selection Deltas for CWS Ground Water Plants (Number of Plants, by Residual Disinfectant Type)

Alternative 1

|                     |          |        |        |       |       |       |       |           |           |                  | Total  | Adding  |
|---------------------|----------|--------|--------|-------|-------|-------|-------|-----------|-----------|------------------|--------|---------|
| System Size         |          |        |        | Ozone | Ozone | GAC20 | GAC20 | Membranes | Membranes | Total Converting | Trea   | tment   |
| (Population Served) | CLM Only | UV CL2 | UV CLM | CL2   | CLM   | CL2   | CLM   | CL2       | CLM       | to CLM           | Tech   | nology  |
|                     | Α        | В      | С      | D     | Е     | F     | G     | Н         |           | J = A+C+E+G+I    | K = SI | JM(A:I) |
| <100                | 39       | 0      | 80     | 0     | 0     | 27    | 0     | 1         | 8         | 127              | 155    |         |
| 100-499             | 123      | 0      | 296    | 0     | 0     | 33    | 0     | 3         | 28        | 447              | 483    |         |
| 500-999             | 49       | 0      | 118    | 0     | 0     | 13    | 0     | 1         | 11        | 179              | 193    | 1,173   |
| 1,000-3,299         | 0        | 0      | 171    | 0     | 0     | 0     | 22    | 1         | 11        | 205              | 206    |         |
| 3,300-9,999         | 0        | 0      | 114    | 0     | 0     | 0     | 15    | 1         | 7         | 136              | 137    |         |
| 10,000-49,999       | 30       |        |        | 0     | 0     | 3     | 30    | 6         | 43        | 103              | 111    |         |
| 50,000-99,999       | 4        |        |        | 0     | 0     | 0     | 4     | 1         | 6         | 14               | 15     | 145     |
| 100,000-999,999     | 5        |        |        | 0     | 0     | 0     | 5     | 1         | 7         | 17               | 18     | 143     |
| >=1,000,000         | 0        |        |        | 0     | 0     | 0     | 0     | 0         | 0         | 0                | 1      |         |
| Total Plants        | 250      | 0      | 780    | 0     | 0     | 77    | 76    | 15        | 121       | 1,227            | 1,318  | 1,318   |

Exhibit C.4c
Stage 2 DBPR Treatment Technology Selection Deltas for NTNCWS Ground Water Plants (Percent of Plants, by Residual Disinfectant Type)
Alternative 1

|                     |          |        |        |       |       |       |       |           |           |                  | Total | Adding  |
|---------------------|----------|--------|--------|-------|-------|-------|-------|-----------|-----------|------------------|-------|---------|
| System Size         |          |        |        | Ozone | Ozone | GAC20 | GAC20 | Membranes | Membranes | Total Converting | Trea  | itment  |
| (Population Served) | CLM Only | UV CL2 | UV CLM | CL2   | CLM   | CL2   | CLM   | CL2       | CLM       | to CLM           | Tech  | nology  |
|                     | Α        | В      | С      | D     | Е     | F     | G     | Н         | I         | J = A+C+E+G+I    | K = S | UM(A:I) |
| <100                | 0.6%     | 0.0%   | 1.3%   | 0.0%  | 0.0%  | 0.4%  | 0.0%  | 0.0%      | 0.1%      | 2.0%             | 2.4%  |         |
| 100-499             | 0.8%     | 0.0%   | 1.9%   | 0.0%  | 0.0%  | 0.2%  | 0.0%  | 0.0%      | 0.2%      | 2.9%             | 3.2%  |         |
| 500-999             | 0.8%     | 0.0%   | 1.9%   | 0.0%  | 0.0%  | 0.2%  | 0.0%  | 0.0%      | 0.2%      | 2.9%             | 3.2%  | 2.8%    |
| 1,000-3,299         | 0.0%     | 0.0%   | 2.3%   | 0.0%  | 0.0%  | 0.0%  | 0.3%  | 0.0%      | 0.1%      | 2.7%             | 2.7%  |         |
| 3,300-9,999         | 0.0%     | 0.0%   | 2.3%   | 0.0%  | 0.0%  | 0.0%  | 0.3%  | 0.0%      | 0.1%      | 2.7%             | 2.7%  |         |
| 10,000-49,999       | 0.6%     |        |        | 0.0%  | 0.0%  | 0.1%  | 0.6%  | 0.1%      | 0.8%      | 1.9%             | 2.1%  |         |
| 50,000-99,999       | 0.6%     |        |        | 0.0%  | 0.0%  | 0.1%  | 0.6%  | 0.1%      | 0.8%      | 1.9%             | 2.1%  | 2.1%    |
| 100,000-999,999     | 0.6%     |        |        | 0.0%  | 0.0%  | 0.0%  | 0.5%  | 0.1%      | 0.7%      | 1.8%             | 2.0%  | 2.170   |
| >=1,000,000         | 0.0%     |        |        | 0.0%  | 0.0%  | 0.0%  | 0.0%  | 0.0%      | 0.0%      | 0.0%             | 0.0%  |         |
| Total %             | 0.7%     | 0.0%   | 1.6%   | 0.0%  | 0.0%  | 0.3%  | 0.0%  | 0.0%      | 0.2%      | 2.5%             | 2.8%  | 2.8%    |

Exhibit C.4d
Stage 2 DBPR Treatment Technology Selection Deltas for NTNCWS Ground Water Plants (Number of Plants, by Residual Disinfectant Type)
Alternative 1

|                     |          |        |        |       |       |       |       |           |           |                  | Total | Adding  |
|---------------------|----------|--------|--------|-------|-------|-------|-------|-----------|-----------|------------------|-------|---------|
| System Size         |          |        |        | Ozone | Ozone | GAC20 | GAC20 | Membranes | Membranes | Total Converting | Trea  | tment   |
| (Population Served) | CLM Only | UV CL2 | UV CLM | CL2   | CLM   | CL2   | CLM   | CL2       | CLM       | to CLM           | Tech  | nology  |
|                     | Α        | В      | С      | D     | Е     | F     | G     | Н         |           | J = A+C+E+G+I    | K = S | UM(A:I) |
| <100                | 15       | 0      | 31     | 0     | 0     | 10    | 0     | 0         | 3         | 49               | 60    |         |
| 100-499             | 17       | 0      | 41     | 0     | 0     | 5     | 0     | 0         | 4         | 62               | 67    |         |
| 500-999             | 5        | 0      | 11     | 0     | 0     | 1     | 0     | 0         | 1         | 17               | 19    | 154     |
| 1,000-3,299         | 0        | 0      | 6      | 0     | 0     | 0     | 1     | 0         | 0         | 7                | 7     |         |
| 3,300-9,999         | 0        | 0      | 0      | 0     | 0     | 0     | 0     | 0         | 0         | 1                | 1     |         |
| 10,000-49,999       | 0        |        |        | 0     | 0     | 0     | 0     | 0         | 0         | 0                | 0     |         |
| 50,000-99,999       | 0        |        |        | 0     | 0     | 0     | 0     | 0         | 0         | 0                | 0     | 0       |
| 100,000-999,999     | 0        |        |        | 0     | 0     | 0     | 0     | 0         | 0         | 0                | 0     | U       |
| >=1,000,000         | 0        |        |        | 0     | 0     | 0     | 0     | 0         | 0         | 0                | 0     |         |
| Total Plants        | 37       | 0      | 90     | 0     | 0     | 16    | 1     | 1         | 9         | 136              | 154   | 154     |

#### Exhibit C.5a

#### Post-Stage 2 DBPR Treatment Technologies-in-Place for CWS Surface Water Plants (Percent of Plants by Residual Disinfection Type)

|                     |       |            |       |                  |          |       |          |             |        |           |      |      |         |      | Aiteri | native 1 |      |      |        |      |      |            |        |          |        |       |          |        |      |         |        |                 |          |       |
|---------------------|-------|------------|-------|------------------|----------|-------|----------|-------------|--------|-----------|------|------|---------|------|--------|----------|------|------|--------|------|------|------------|--------|----------|--------|-------|----------|--------|------|---------|--------|-----------------|----------|-------|
| System Size         |       | anced Trea |       |                  | nced Tre |       | Chlorine | e Dioxide C |        | orine Dic | xide | ι    | JV CL2  |      | ι      | JV CLM   |      | Oz   | one CL | 2    | Ozo  | one CLM    | м      | IF/UF CL | 2      | MF    | F/UF CLN | И      | GAC  | C 10 CL | 2      | GA <sup>r</sup> | C 10 CLN | И     |
| (Population Served) | Mean  | 5th        | 95th  | Mean             | 5th      | 95th  | Mean     | 5th 95      | h Mean | 5th       | 95th | Mean | 5th     | 95th | Mean   | 5th      | 95th | Mean | 5th    | 95th | Mean | 5th 95th   | Mean   | 5th      | 95th   | Mean  | 5th      | 95th M | lean | 5th     | 95th   | Mean            | 5th      | 95th  |
|                     |       | Α          |       |                  | В        |       |          | С           |        | D         |      |      | Е       |      |        | F        |      |      | G      |      |      | Н          |        | ı        |        |       | J        |        |      | K       |        |                 | L        |       |
| <100                | 31.0% | 25.9%      | 36.1% | 31.3%            | 30.5%    | 32.2% |          |             |        |           |      | 3.6% | 1.9%    | 5.3% | 2.7%   | 1.4%     | 3.9% |      |        |      |      |            | 14.5%  | 14.5%    | 14.5%  | 7.1%  | 7.1%     | 7.1%   |      |         |        |                 |          |       |
| 100-499             | 26.4% | 22.1%      | 30.7% | 39.3%            | 37.5%    | 41.2% | 1.1%     | 1.0% 1.1    | % 1.3% | 1.1%      | 1.4% | 1.0% | 0.5%    | 1.4% | 1.0%   | 0.5%     | 1.5% | 5.1% | 5.1%   | 5.1% | 4.6% | 4.6% 4.6%  | 6 8.9% | 8.9%     | 8.9%   | 4.8%  | 4.8%     | 4.8%   |      |         |        |                 |          |       |
| 500-999             | 26.4% | 22.1%      | 30.7% | 39.3%            | 37.5%    | 41.2% | 1.1%     | 1.0% 1.1    | % 1.3% | 1.1%      | 1.4% | 1.0% | 0.5%    | 1.4% | 1.0%   | 0.5%     | 1.5% | 5.1% | 5.1%   | 5.1% | 4.6% | 4.6% 4.6%  | 8.9%   | 8.9%     | 8.9%   | 4.8%  | 4.8%     | 4.8%   |      |         |        |                 |          |       |
| 1,000-3,299         | 23.9% | 19.4%      | 28.3% | 45.4%            | 43.5%    | 47.3% | 2.1%     | 2.0% 2.2    | % 3.1% | 2.6%      | 3.5% | 0.7% | 0.4%    | 1.0% | 0.9%   | 0.5%     | 1.4% | 4.0% | 4.0%   | 4.0% | 4.5% | 4.5% 4.5%  | 6.2%   | 6.2%     | 6.2%   | 2.9%  | 2.9%     | 2.9%   |      |         |        |                 |          |       |
| 3,300-9,999         | 23.9% | 19.4%      | 28.3% | 45.4%            | 43.5%    | 47.3% | 2.1%     | 2.0% 2.2    | % 3.1% | 2.6%      | 3.5% | 0.7% | 0.4%    | 1.0% | 0.9%   | 0.5%     | 1.4% | 4.0% | 4.0%   | 4.0% | 4.5% | 4.5% 4.5%  | 6.2%   | 6.2%     | 6.2%   | 2.9%  | 2.9%     | 2.9%   |      |         |        |                 |          |       |
| 10,000-49,999       | 31.2% | 31.2%      | 31.2% | 41.0%            | 41.0%    | 41.0% | 3.0%     | 3.0% 3.0    | % 4.0% | 4.0%      | 4.0% | 0.0% | 0.0%    | 0.0% | 0.0%   | 0.0%     | 0.0% | 5.5% | 5.5%   | 5.5% | 7.3% | 7.3% 7.3%  | 6 0.8% | 0.8%     | 0.8%   | 1.0%  | 1.0%     | 1.0%   | ).9% | 0.9%    | 0.9%   | 1.2%            | 1.2%     | 1.2%  |
| 50,000-99,999       | 31.2% | 31.2%      | 31.2% | 41.0%            | 41.0%    | 41.0% | 3.0%     | 3.0% 3.0    | % 4.0% | 4.0%      | 4.0% | 0.0% | 0.0%    | 0.0% | 0.0%   | 0.0%     | 0.0% | 5.5% | 5.5%   | 5.5% | 7.3% | 7.3% 7.3%  | 6 0.8% | 0.8%     | 0.8%   | 1.0%  | 1.0%     | 1.0%   | 1.9% | 0.9%    | 0.9%   | 1.2%            | 1.2%     | 1.2%  |
| 100,000-999,999     | 31.2% | 31.2%      | 31.2% | 41.0%            | 41.0%    | 41.0% | 3.0%     | 3.0% 3.0    | % 4.0% | 4.0%      | 4.0% | 0.0% | 0.0%    | 0.0% | 0.0%   | 0.0%     | 0.0% | 5.5% | 5.5%   | 5.5% | 7.3% | 7.3% 7.3%  | 6 0.8% | 0.8%     | 0.8%   | 1.0%  | 1.0%     | 1.0%   | 0.9% | 0.9%    | 0.9%   | 1.2%            | 1.2%     | 1.2%  |
| >=1,000,000         | 31.2% | 31.2%      | 31.2% | 41.0%            | 41.0%    | 41.0% | 3.0%     | 3.0% 3.0    | % 4.0% | 4.0%      | 4.0% | 0.0% | 0.0%    | 0.0% | 0.0%   | 0.0%     | 0.0% | 5.5% | 5.5%   | 5.5% | 7.3% | 7.3% 7.3%  | 6 0.8% | 0.8%     | 0.8%   | 1.0%  | 1.0%     | 1.0%   | 1.9% | 0.9%    | 0.9%   | 1.2%            | 1.2%     | 1.2%  |
| Total %             | 27.6% | 24.9%      | 30.3% | 41.7%            | 40.7%    | 42.8% | 2.1%     | 2.1% 2.2    | % 2.9% | 2.7%      | 3.1% | 0.6% | 0.3%    | 0.9% | 0.7%   | 0.4%     | 1.0% | 4.6% | 4.6%   | 4.6% | 5.3% | 5.3% 5.3%  | 5.1%   | 5.1%     | 5.1%   | 2.8%  | 2.8%     | 2.8%   | 1.4% | 0.4%    | 0.4%   | 0.5%            | 0.5%     | 0.5%  |
| System Size         | GAC   | 10 + AD C  | L2    | GAC <sup>2</sup> | 10 + AD  | CLM   | GA       | C20 CL2     | G/     | AC20 CL   | .M   | GAC2 | 20 + AD | CL2  | GAC2   | 0 + AD   | CLM  | Mem  | branes | CL2  | Memb | oranes CLM |        |          | TOTAL  | CL2   |          |        |      |         | TOTA   | L CLM           |          |       |
| (Population Served) | Mean  | 5th        | 95th  | Mean             | 5th      | 95th  | Mean     | 5th 95th    | h Mean | 5th       | 95th | Mean | 5th     | 95th | Mean   | 5th      | 95th | Mean | 5th    | 95th | Mean | 5th 95th   | Me     | an       | 5t     | h     | 95th     | 1      | Mea  | n       | 5th    | n               | 95th     | 1     |
|                     |       | М          |       |                  | N        |       |          | 0           |        | Р         |      |      | Q       |      |        | R        |      |      | S      |      |      | T          | l      | J = A+C+ | E+G+I+ | K+M+C | )+Q+S    |        |      | / = B+D | )+F+H+ | +J+L+N+         | P+R+T    |       |
| <100                |       |            |       |                  |          |       | 2.0%     | 2.0% 2.0    | % 1.3% | 1.3%      | 1.3% | 1.5% | 0.8%    | 2.2% | 1.1%   | 0.6%     | 1.7% | 2.1% | 2.1%   | 2.1% | 1.7% | 1.6% 1.8%  | 6      | 54.7%    |        | 47.2% | 6        | 2.2%   | 4    | 15.3%   |        | 42.5%           |          | 48.0% |
| 100-499             |       |            |       |                  |          |       | 1.1%     | 1.1% 1.1    | % 1.0% | 1.0%      | 1.0% | 0.8% | 0.7%    | 1.0% |        | 0.7%     | 1.1% | 1.4% | 0.9%   | 1.8% | 1.5% | 1.0% 2.0%  | ó      | 45.7%    |        | 40.3% | 5        | 1.0%   | 5    | 54.3%   |        | 51.1%           |          | 57.5% |
| 500-999             |       |            |       |                  |          |       | 1.1%     | 1.1% 1.1    | % 1.0% | 1.0%      | 1.0% | 0.8% | 0.7%    | 1.0% | 0.9%   | 0.7%     | 1.1% | 1.4% | 0.9%   | 1.8% | 1.5% | 1.0% 2.0%  | 6      | 45.7%    |        | 40.3% | 5        | 1.0%   | 5    | 54.3%   | 1      | 51.1%           |          | 57.5% |
| 1,000-3,299         |       |            |       |                  |          |       | 1.0%     | 1.0% 1.0    | % 1.2% | 1.2%      | 1.2% | 0.7% | 0.6%    | 0.8% | 1.1%   | 0.8%     | 1.3% | 1.0% | 0.6%   | 1.4% | 1.4% | 0.8% 2.0%  | 6      | 39.6%    |        | 34.2% | 4        | 5.0%   | 6    | 60.4%   | - /    | 56.8%           |          | 63.9% |
| 3,300-9,999         |       |            |       |                  |          |       | 1.0%     | 1.0% 1.0    | % 1.2% | 1.2%      | 1.2% | 0.7% | 0.6%    | 0.8% | 1.1%   | 0.8%     | 1.3% | 1.0% | 0.6%   | 1.4% | 1.4% | 0.8% 2.0%  | 6      | 39.6%    |        | 34.2% | 4        | 5.0%   | 6    | 60.4%   | - /    | 56.8%           |          | 63.9% |
| 10,000-49,999       | 0.6%  | 0.6%       | 0.6%  | 0.8%             | 0.8%     | 0.8%  | 0.3%     | 0.3% 0.3    | % 0.4% | 0.4%      | 0.4% | 0.0% | 0.0%    | 0.0% | 0.0%   | 0.0%     | 0.0% | 0.8% | 0.8%   | 0.8% | 1.0% | 1.0% 1.0%  | 6      | 43.2%    |        | 43.2% | 4        | 3.2%   | 5    | 6.8%    | - /    | 56.8%           |          | 56.8% |
| 50,000-99,999       | 0.6%  | 0.6%       | 0.6%  | 0.8%             | 0.8%     | 0.8%  | 0.3%     | 0.3% 0.3    | % 0.4% | 0.4%      | 0.4% | 0.0% | 0.0%    | 0.0% | 0.0%   | 0.0%     | 0.0% | 0.8% | 0.8%   | 0.8% | 1.0% | 1.0% 1.0%  | 6      | 43.2%    |        | 43.2% | 4        | 3.2%   | 5    | 6.8%    |        | 56.8%           |          | 56.8% |
| 100,000-999,999     | 0.6%  | 0.6%       | 0.6%  | 0.8%             | 0.8%     | 0.8%  | 0.3%     | 0.3% 0.3    | % 0.4% | 0.4%      | 0.4% | 0.0% | 0.0%    | 0.0% | 0.0%   | 0.0%     | 0.0% | 0.8% | 0.8%   | 0.8% | 1.0% | 1.0% 1.0%  | 6      | 43.2%    |        | 43.2% | 4        | 3.2%   | 5    | 6.8%    | - /    | 56.8%           |          | 56.8% |
| >=1,000,000         | 0.6%  | 0.6%       | 0.6%  | 0.8%             | 0.8%     | 0.8%  | 0.3%     | 0.3% 0.3    | % 0.4% | 0.4%      | 0.4% | 0.0% | 0.0%    | 0.0% | 0.0%   | 0.0%     | 0.0% | 0.8% | 0.8%   | 0.8% | 1.0% | 1.0% 1.0%  | 6      | 43.2%    |        | 43.2% | 4        | 3.2%   | 5    | 6.8%    |        | 56.8%           |          | 56.8% |
| Total %             | 0.2%  | 0.2%       | 0.2%  | 0.3%             | 0.3%     | 0.3%  | 0.8%     | 0.8% 0.8    | % 0.8% | 0.8%      | 0.8% | 0.5% | 0.4%    | 0.6% | 0.6%   | 0.5%     | 0.8% | 1.1% | 0.8%   | 1.3% | 1.3% | 1.0% 1.6%  | 6      | 43.0%    |        | 39.6% | 4        | 6.4%   | 5    | 57.0%   | 7      | 54.9%           |          | 59.0% |

Note: Detail may not add to totals due to independent rounding

Source: Surface water systems serving <10,000 people: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Alternative 1. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 1.

Exhibit C.5b

Post-Stage 2 DBPR Treatment Technologies-in-Place for CWS Surface Water Plants (Number of Plants by Residual Disinfection Type)

Alternative 1

|                         |          |          |       |       |           |       |          |          |        |      |           |       |       |        |      | ,u     |         |      |      |          |      |      |           |      |         |         |        |        |       |      |        |        |         |         |
|-------------------------|----------|----------|-------|-------|-----------|-------|----------|----------|--------|------|-----------|-------|-------|--------|------|--------|---------|------|------|----------|------|------|-----------|------|---------|---------|--------|--------|-------|------|--------|--------|---------|---------|
| System Size             | No Advar | nced Tre |       |       | nced Tre  |       | Chlorine | e Dioxio | de CL2 |      | ne Dioxid | e     | U\    | CL2    |      | UV     | CLM     |      | Oz   | one CL2  | 2    | Ozo  | ne CLM    | MF   | UF CL2  | 2       | MF/    | UF CLM | М     | GAC  | 10 CL2 |        | GAC 1   | I0 CLM  |
| (Population Served)     | Mean     | 5th      | 95th  | Mean  | 5th       | 95th  | Mean     | 5th      | 95th   | Mean | 5th 95    | ith I | Mean  | 5th 9  | 95th | Mean   | 5th 9   | 95th | Mean | 5th      | 95th | Mean | 5th 95th  | Mean | 5th     | 95th    | Mean   | 5th    | 95th  | Mean | 5th 95 | oth Me | ean 5t  | th 95th |
|                         |          | Α        |       |       | В         |       |          | С        |        |      | D         |       |       | E      |      |        | F       |      |      | G        |      |      | Н         |      | ı       |         |        | J      |       |      | K      |        |         | L       |
| <100                    | 111      | 93       | 130   | 113   | 110       | 115   |          |          |        |      |           |       | 13    | 7      | 19   | 10     | 5       | 14   |      |          |      |      |           | 52   | 52      | 52      | 26     | 26     | 26    |      |        |        |         |         |
| 100-499                 | 203      | 170      | 235   | 302   | 288       | 316   | 8        | 8        | 9      | 10   | 8         | 11    | 7     | 4      | 11   | 8      | 4       | 11   | 39   | 39       | 39   | 35   | 35 35     | 68   | 68      | 68      | 37     | 37     | 37    |      |        |        |         |         |
| 500-999                 | 128      | 107      | 148   | 190   | 181       | 199   | 5        | 5        | 6      | 6    | 5         | 7     | 5     | 2      | 7    | 5      | 3       | 7    | 24   | 24       | 24   | 22   | 22 22     | 43   | 43      | 43      | 23     | 23     | 23    |      |        |        |         |         |
| 1,000-3,299             | 269      | 219      | 320   | 513   | 491       | 534   | 24       | 23       | 25     | 35   | 30        | 40    | 8     | 4      | 12   | 10     | 6       | 15   | 45   | 45       | 45   | 51   | 51 51     | 70   | 70      | 70      | 32     | 32     | 32    |      |        |        |         |         |
| 3,300-9,999             | 300      | 244      | 356   | 571   | 548       | 595   | 26       | 25       | 27     | 39   | 33        | 44    | 9     | 5      | 13   | 12     | 6       | 17   | 50   | 50       | 50   | 56   | 56 56     | 78   | 78      | 78      | 36     | 36     | 36    |      |        |        |         |         |
| 10,000-49,999           | 403      | 403      | 403   | 529   | 529       | 529   | 39       | 39       | 39     | 51   | 51        | 51    | 0     | 0      | 0    | 0      | 0       | 0    | 72   | 72       | 72   | 94   | 94 94     | 10   | 10      | 10      | 13     | 13     | 13    | 12   | 12     | 12     | 16      | 16 16   |
| 50,000-99,999           | 181      | 181      | 181   | 237   | 237       | 237   | 17       | 17       | 17     | 23   | 23        | 23    | 0     | 0      | 0    | 0      | 0       | 0    | 32   | 32       | 32   | 42   | 42 42     | 5    | 5       | 5       | 6      | 6      | 6     | 6    | 6      | 6      | 7       | 7 7     |
| 100,000-999,999         | 190      | 190      | 190   | 250   | 250       | 250   | 18       | 18       | 18     | 24   | 24        | 24    | 0     | 0      | 0    | 0      | 0       | 0    | 34   | 34       | 34   | 44   | 44 44     | 5    | 5       | 5       | 6      | 6      | 6     | 6    | 6      | 6      | 8       | 8 8     |
| >=1,000,000             | 23       | 23       | 23    | 30    | 30        | 30    | 2        | 2        | 2      | 3    | 3         | 3     | 0     | 0      | 0    | 0      | 0       | 0    | 4    | 4        | 4    | 5    | 5 5       | 1    | 1       | 1       | 1      | 1      | 1     | 1    | 1      | 1      | 1       | 1 1     |
| Total Plants            | 1,808    | 1,629    | 1,986 | 2,735 | 2,664     | 2,806 | 140      | 137      | 143    | 190  | 177       | 203   | 42    | 22     | 62   | 44     | 24      | 65   | 301  | 301      | 301  | 350  | 350 350   | 331  | 331     | 331     | 181    | 181    | 181   | 24   | 24     | 24     | 32      | 32 32   |
| System Size             | GAC1     | 0 + AD ( | CL2   | GAC1  | 10 + AD ( | CLM   | GA       | C20 CI   | _2     | GAC  | C20 CLM   |       | GAC20 | + AD C | L2   | GAC20  | + AD CI | LM   | Memb | oranes C | CL2  | Memb | ranes CLM |      | 1       | TOTAL C | CL2    |        |       |      | Т      | OTAL ( | CLM     |         |
| (Population Served)     | Mean     | 5th      | 95th  | Mean  | 5th       | 95th  | Mean     | 5th      | 95th   | Mean | 5th 95    | ith I | Mean  | 5th 9  | 95th | Mean : | 5th 9   | 95th | Mean | 5th      | 95th | Mean | 5th 95th  | Mea  | ın      | 5th     | ì      | 95tl   | h     | Mear | 1      | 5th    |         | 95th    |
|                         |          | М        |       |       | N         |       |          | 0        |        |      | Р         |       |       | Q      |      |        | R       |      |      | S        |      |      | T         | U    | = A+C+E | E+G+l+k | K+M+O+ | +Q+S   |       | ٧    | = B+D+ | F+H+J+ | -L+N+P+ | -R+T    |
| <100                    |          |          |       |       |           |       | 7        | 7        | 7      | 5    | 5         | 5     | 5     | 3      | 8    | 4      | 2       | 6    | 8    | 8        | 8    | 6    | 6 7       |      | 197     |         | 170    |        | 224   |      | 163    |        | 153     | 172     |
| 100-499                 |          |          |       |       |           |       | 8        | 8        | 8      | 7    | 7         | 7     | 6     | 5      | 7    | 7      | 5       | 9    | 10   | 7        | 14   | 11   | 7 15      |      | 350     |         | 309    |        | 391   |      | 416    |        | 392     | 441     |
| 500-999                 |          |          |       |       |           |       | 5        | 5        | 5      | 5    | 5         | 5     | 4     | 3      | 5    | 4      | 3       | 5    | 7    | 5        | 9    | 7    | 5 9       |      | 221     |         | 195    |        | 246   |      | 262    |        | 247     | 278     |
| 1,000-3,299             |          |          |       |       |           |       | 12       | 12       | 12     | 13   | 13        | 13    | 8     | 7      | 9    | 12     | 9       | 14   | 12   | 7        | 16   | 16   | 9 22      |      | 448     |         | 387    |        | 509   |      | 682    |        | 642     | 722     |
| 3,300-9,999             |          |          |       |       |           |       | 13       | 13       | 13     | 15   | 15        | 15    | 9     | 8      | 11   | 13     | 10      | 16   | 13   | 8        | 18   | 18   | 11 25     |      | 499     |         | 431    |        | 567   |      | 759    |        | 715     | 804     |
| 10,000-49,999           | 8        | 8        | 8     | 11    | 11        | 11    | 4        | 4        | 4      | 5    | 5         | 5     | 0     | 0      | 0    | 0      | 0       | 0    | 10   | 10       | 10   | 13   | 13 13     |      | 558     |         | 558    |        | 558   |      | 733    |        | 733     | 733     |
| 50,000-99,999           | 4        | 4        | 4     | 5     | 5         | 5     | 2        | 2        | 2      | 2    | 2         | 2     | 0     | 0      | 0    | 0      | 0       | 0    | 5    | 5        | 5    | 6    | 6 6       |      | 250     |         | 250    |        | 250   |      | 329    |        | 329     | 329     |
| 100,000-999,999         | 4        | 4        | 4     | 5     | 5         | 5     | 2        | 2        | 2      | 3    | 3         | 3     | 0     | 0      | 0    | 0      | 0       | 0    | 5    | 5        | 5    | 6    | 6 6       |      | 264     |         | 264    |        | 264   |      | 347    |        | 347     | 347     |
| >=1,000,000             | 0        | 0        | 0     | 1     | 1         | 1     | 0        | 0        | 0      | 0    | 0         | 0     | 0     | 0      | 0    | 0      | 0       | 0    | 1    | 1        | 1    | 1    | 1 1       |      | 32      |         | 32     |        | 32    |      | 42     |        | 42      | 42      |
| Total Plants            | 16       | 16       | 16    | 21    | 21        | 21    | 53       | 53       | 53     | 55   | 55        | 55    | 33    | 26     | 40   | 41     | 31      | 51   | 70   | 55       | 85   | 84   | 64 105    |      | 2,818   |         | 2,595  |        | 3,041 | 3    | 3,733  | 3,     | 599     | 3,868   |
| Note: Detail may not ad |          |          |       |       |           |       |          |          |        |      |           |       |       |        |      |        |         |      |      |          |      |      |           |      |         |         |        |        |       |      |        |        |         |         |

Note: Detail may not add to totals due to independent rounding

Source: Surface water systems serving <10,000 people: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Alternative 1. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 1.

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

## Exhibit C.5c Post-Stage 2 DBPR Treatment Technologies-in-Place for NTNCWS Surface Water Plants (Percent of Plants by Residual Disinfection Type)

|                     |                  |           |       |       |           |       |         |          |        |      |          |      |      |         |      | Alte | rnative 1 | 1    |      |         |      |      |          |       |         |        |         |       |         |       |      |         |       |         |          |       |
|---------------------|------------------|-----------|-------|-------|-----------|-------|---------|----------|--------|------|----------|------|------|---------|------|------|-----------|------|------|---------|------|------|----------|-------|---------|--------|---------|-------|---------|-------|------|---------|-------|---------|----------|-------|
| System Size         |                  | nced Trea |       |       | nced Tre  |       | Chlorin | e Dioxid | le CL2 |      | ine Diox | ide  | ı    | JV CL2  |      | ı    | JV CLM    | I    | O:   | zone CL | 2    | Ozo  | one CLM  |       | MF/L    | JF CL2 | 2       | MF.   | /UF CLI | M     | GA   | C 10 CL | .2    | GA      | C 10 CLI | М     |
| (Population Served) | Mean             | 5th       | 95th  | Mean  | 5th       | 95th  | Mean    | 5th      | 95th   | Mean | 5th      | 95th | Mean | 5th     | 95th | Mean | 5th       | 95th | Mean | 5th     | 95th | Mean | 5th 9    | 5th I | Mean 5  | 5th    | 95th    | Mean  | 5th     | 95th  | Mean | 5th     | 95th  | Mean    | 5th      | 95th  |
| (: срашин сентен)   |                  | Α         |       |       | В         |       |         | С        |        |      | D        |      |      | Е       |      |      | F         |      |      | G       |      |      | Н        |       |         | ı      |         |       | J       |       |      | K       |       |         | L        |       |
| <100                | 31.0%            | 25.9%     | 36.1% | 31.3% | 30.5%     | 32.2% |         |          |        |      |          |      | 3.6% | 1.9%    | 5.3% | 2.7% | 1.4%      | 3.9% |      |         |      |      |          |       | 14.5% 1 | 4.5%   | 14.5%   | 7.1%  | 7.1%    | 7.1%  |      |         |       |         |          |       |
| 100-499             | 26.4%            | 22.1%     | 30.7% | 39.3% | 37.5%     | 41.2% | 1.1%    | 1.0%     | 1.1%   | 1.3% | 1.1%     | 1.4% | 1.0% | 0.5%    | 1.4% | 1.0% | 0.5%      | 1.5% | 5.1% | 5.1%    | 5.1% | 4.6% | 4.6% 4   | .6%   | 8.9%    | 8.9%   | 8.9%    | 4.8%  | 4.8%    | 4.8%  |      |         |       |         |          |       |
| 500-999             | 26.4%            | 22.1%     | 30.7% | 39.3% | 37.5%     | 41.2% | 1.1%    | 1.0%     | 1.1%   | 1.3% | 1.1%     | 1.4% | 1.0% | 0.5%    | 1.4% | 1.0% | 0.5%      | 1.5% | 5.1% | 5.1%    | 5.1% | 4.6% | 4.6% 4   | .6%   | 8.9%    | 8.9%   | 8.9%    | 4.8%  | 4.8%    | 4.8%  |      |         |       |         |          |       |
| 1,000-3,299         | 23.9%            | 19.4%     | 28.3% | 45.4% | 43.5%     | 47.3% | 2.1%    | 2.0%     | 2.2%   | 3.1% | 2.6%     | 3.5% | 0.7% | 0.4%    | 1.0% | 0.9% | 0.5%      | 1.4% | 4.0% | 4.0%    | 4.0% | 4.5% | 4.5% 4   | .5%   | 6.2%    | 6.2%   | 6.2%    | 2.9%  | 2.9%    | 2.9%  |      |         |       |         |          |       |
| 3,300-9,999         | 23.9%            | 19.4%     | 28.3% | 45.4% | 43.5%     | 47.3% | 2.1%    | 2.0%     | 2.2%   | 3.1% | 2.6%     | 3.5% | 0.7% | 0.4%    | 1.0% | 0.9% | 0.5%      | 1.4% | 4.0% | 4.0%    | 4.0% | 4.5% | 4.5% 4   | .5%   | 6.2%    | 6.2%   | 6.2%    | 2.9%  | 2.9%    | 2.9%  |      |         |       |         |          |       |
| 10,000-49,999       | 31.2%            | 31.2%     | 31.2% | 41.0% | 41.0%     | 41.0% | 3.0%    | 3.0%     | 3.0%   | 4.0% | 4.0%     | 4.0% | 0.0% | 0.0%    | 0.0% | 0.0% | 0.0%      | 0.0% | 5.5% | 5.5%    | 5.5% | 7.3% | 7.3% 7   | '.3%  | 0.8%    | 0.8%   | 0.8%    | 1.0%  | 1.0%    | 1.0%  | 0.9% | 0.9%    | 0.9%  | 1.2%    | 1.2%     | 1.2%  |
| 50,000-99,999       | 0.0%             | 0.0%      | 0.0%  | 0.0%  | 0.0%      | 0.0%  | 0.0%    | 0.0%     | 0.0%   | 0.0% | 0.0%     | 0.0% | 0.0% | 0.0%    | 0.0% | 0.0% | 0.0%      | 0.0% | 0.0% | 0.0%    | 0.0% | 0.0% | 0.0% 0   | 0.0%  | 0.0%    | 0.0%   | 0.0%    | 0.0%  | 0.0%    | 0.0%  | 0.0% | 0.0%    | 0.0%  | 0.0%    | 0.0%     | 0.0%  |
| 100,000-999,999     | 31.2%            | 31.2%     | 31.2% | 41.0% | 41.0%     | 41.0% | 3.0%    | 3.0%     | 3.0%   | 4.0% | 4.0%     | 4.0% | 0.0% | 0.0%    | 0.0% | 0.0% | 0.0%      | 0.0% | 5.5% | 5.5%    | 5.5% | 7.3% | 7.3% 7   | '.3%  | 0.8%    | 0.8%   | 0.8%    | 1.0%  | 1.0%    | 1.0%  | 0.9% | 0.9%    | 0.9%  | 1.2%    | 1.2%     | 1.2%  |
| >=1,000,000         | 0.0%             | 0.0%      | 0.0%  | 0.0%  | 0.0%      | 0.0%  | 0.0%    | 0.0%     | 0.0%   | 0.0% | 0.0%     | 0.0% | 0.0% | 0.0%    | 0.0% | 0.0% | 0.0%      | 0.0% | 0.0% | 0.0%    | 0.0% | 0.0% | 0.0% 0   | 0.0%  | 0.0%    | 0.0%   | 0.0%    | 0.0%  | 0.0%    | 0.0%  | 0.0% | 0.0%    | 0.0%  | 0.0%    | 0.0%     | 0.0%  |
| Total %             | 27.4%            | 22.9%     | 31.9% | 37.9% | 36.4%     | 39.4% | 0.9%    | 0.9%     | 1.0%   | 1.2% | 1.0%     | 1.3% | 1.7% | 0.9%    | 2.5% | 1.5% | 0.8%      | 2.2% | 3.4% | 3.4%    | 3.4% | 3.2% | 3.2% 3   | 3.2%  | 10.1% 1 | 0.1%   | 10.1%   | 5.2%  | 5.2%    | 5.2%  | 0.0% | 0.0%    | 0.0%  | 0.0%    | 0.0%     | 0.0%  |
| System Size         | GAC <sup>2</sup> | 10 + AD C | CL2   | GAC1  | 10 + AD ( | CLM   | GA      | C20 CL   | .2     | GA   | C20 CLI  | М    | GAC2 | 20 + AD | CL2  | GAC2 | 20 + AD   | CLM  | Mem  | branes  | CL2  | Memb | ranes CL | M     |         | -      | TOTAL ( | CL2   |         |       |      |         | TOTA  | AL CLM  |          |       |
| (Population Served) | Mean             | 5th       | 95th  | Mean  | 5th       | 95th  | Mean    | 5th      | 95th   | Mean | 5th      | 95th | Mean | 5th     | 95th | Mean | 5th       | 95th | Mean | 5th     | 95th | Mean | 5th 9    | 5th   | Mean    |        | 5th     | 1     | 95t     | .h    | Mea  | an      | 5     | th      | 95t      | :h    |
|                     |                  | М         |       |       | N         |       |         | 0        |        |      | Р        |      |      | Q       |      |      | R         |      |      | S       |      |      | T        |       | U =     | A+C+   | E+G+I+  | K+M+O | +Q+S    |       |      | V = B+  | D+F+H | +J+L+N+ | P+R+T    |       |
| <100                |                  |           |       |       |           |       | 2.0%    | 2.0%     | 2.0%   | 1.3% | 1.3%     | 1.3% | 1.5% | 0.8%    | 2.2% | 1.1% | 0.6%      | 1.7% | 2.1% | 2.1%    | 2.1% | 1.7% | 1.6% 1   | .8%   | 5-      | 4.7%   |         | 47.2% | 6       | 62.2% |      | 45.3%   |       | 42.5%   |          | 48.0% |
| 100-499             |                  |           |       |       |           |       | 1.1%    | 1.1%     | 1.1%   | 1.0% | 1.0%     | 1.0% | 0.8% | 0.7%    | 1.0% | 0.9% | 0.7%      | 1.1% | 1.4% | 0.9%    | 1.8% | 1.5% | 1.0% 2   | 2.0%  | 4:      | 5.7%   |         | 40.3% |         | 51.0% | - 1  | 54.3%   |       | 51.1%   |          | 57.5% |
| 500-999             |                  |           |       |       |           |       | 1.1%    | 1.1%     | 1.1%   | 1.0% | 1.0%     | 1.0% | 0.8% | 0.7%    | 1.0% | 0.9% | 0.7%      | 1.1% | 1.4% | 0.9%    | 1.8% | 1.5% | 1.0% 2   | 2.0%  | 4       | 5.7%   |         | 40.3% |         | 51.0% | !    | 54.3%   |       | 51.1%   |          | 57.5% |
| 1,000-3,299         |                  |           |       |       |           |       | 1.0%    | 1.0%     | 1.0%   | 1.2% | 1.2%     | 1.2% | 0.7% | 0.6%    | 0.8% | 1.1% | 0.8%      | 1.3% | 1.0% | 0.6%    | 1.4% | 1.4% | 0.8% 2   | 2.0%  | 3       | 9.6%   |         | 34.2% | 4       | 45.0% | f    | 60.4%   |       | 56.8%   |          | 63.9% |
| 3,300-9,999         |                  |           |       |       |           |       | 1.0%    | 1.0%     | 1.0%   | 1.2% | 1.2%     | 1.2% | 0.7% | 0.6%    | 0.8% | 1.1% | 0.8%      | 1.3% | 1.0% | 0.6%    | 1.4% | 1.4% | 0.8% 2   | 2.0%  | 3       | 9.6%   |         | 34.2% | 4       | 45.0% |      | 60.4%   |       | 56.8%   |          | 63.9% |
| 10,000-49,999       | 0.6%             | 0.6%      | 0.6%  | 0.8%  | 0.8%      | 0.8%  | 0.3%    | 0.3%     | 0.3%   | 0.4% | 0.4%     | 0.4% | 0.0% | 0.0%    | 0.0% | 0.0% | 0.0%      | 0.0% | 0.8% | 0.8%    | 0.8% | 1.0% | 1.0% 1   | .0%   | 4:      | 3.2%   |         | 43.2% | 4       | 43.2% | - 1  | 56.8%   |       | 56.8%   |          | 56.8% |
| 50,000-99,999       | 0.0%             | 0.0%      | 0.0%  | 0.0%  | 0.0%      | 0.0%  | 0.0%    | 0.0%     | 0.0%   | 0.0% | 0.0%     | 0.0% | 0.0% | 0.0%    | 0.0% | 0.0% | 0.0%      | 0.0% | 0.0% | 0.0%    | 0.0% | 0.0% | 0.0% 0   | 0.0%  | (       | 0.0%   |         | 0.0%  |         | 0.0%  |      | 0.0%    |       | 0.0%    |          | 0.0%  |
| 100,000-999,999     | 0.6%             | 0.6%      | 0.6%  | 0.8%  | 0.8%      | 0.8%  | 0.3%    | 0.3%     | 0.3%   | 0.4% | 0.4%     | 0.4% | 0.0% | 0.0%    | 0.0% | 0.0% | 0.0%      | 0.0% | 0.8% | 0.8%    | 0.8% | 1.0% | 1.0% 1   | .0%   | 4:      | 3.2%   |         | 43.2% | 4       | 43.2% | - 1  | 56.8%   |       | 56.8%   |          | 56.8% |
| >=1,000,000         | 0.0%             | 0.0%      | 0.0%  | 0.0%  | 0.0%      | 0.0%  | 0.0%    | 0.0%     | 0.0%   | 0.0% | 0.0%     | 0.0% | 0.0% | 0.0%    | 0.0% | 0.0% | 0.0%      | 0.0% | 0.0% | 0.0%    | 0.0% | 0.0% | 0.0% 0   | 0.0%  | - 1     | 0.0%   |         | 0.0%  |         | 0.0%  |      | 0.0%    |       | 0.0%    |          | 0.0%  |
| Total %             | 0.0%             | 0.0%      | 0.0%  | 0.0%  | 0.0%      | 0.0%  | 1.3%    | 1.3%     | 1.3%   | 1.1% | 1.1%     | 1.1% | 1.0% | 0.7%    | 1.3% | 1.0% | 0.7%      | 1.3% | 1.5% | 1.2%    | 1.8% | 1.5% | 1.1% 1   | .9%   | 4       | 7.4%   |         | 41.4% |         | 53.4% | - 7  | 52.6%   |       | 49.5%   |          | 55.7% |

Note: Detail may not add to totals due to independent rounding

Source: Surface water systems serving <10,000 people: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Alternative 1. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 1.

Exhibit C.5d

Post-Stage 2 DBPR Treatment Technologies-in-Place for NTNCWS Surface Water Plants (Number of Plants by Residual Disinfection Type)

Alternative 1

|                         |                 |          |      |      |          |      |         |          |         |      |                   |      |        |        |      |       | u     |      |      |         |      |      |           |      |               |        |        |        |      |        |          |        |         |          |
|-------------------------|-----------------|----------|------|------|----------|------|---------|----------|---------|------|-------------------|------|--------|--------|------|-------|-------|------|------|---------|------|------|-----------|------|---------------|--------|--------|--------|------|--------|----------|--------|---------|----------|
| System Size             | No Adva<br>Tech | nced Tre |      |      | nced Tre |      | Chlorir | ie Dioxi | ide CL2 |      | ne Dioxide<br>CLM | •    | UV     | CL2    |      | U۱    | / CLM |      |      | zone CL | 2    | Oz   | one CLM   | М    | F/UF CL2      | :      | MF/    | UF CLN | и    | GAC    | 10 CL2   |        | GAC     | 10 CLM   |
| (Population Served)     | Mean            | 5th      | 95th | Mean | 5th      | 95th | Mean    | 5th      | 95th    | Mean | 5th 95            | th I | Mean : | 5th    | 95th | Mean  | 5th   | 95th | Mean | 5th     | 95th | Mean | 5th 95th  | Mean | 5th           | 95th   | Mean   | 5th    | 95th | Mean 5 | 5th 95   | 5th N  | /lean ! | 5th 95th |
|                         |                 | Α        |      |      | В        |      |         | С        |         |      | D                 | T    |        | E      |      |       | F     |      |      | G       |      |      | Н         |      | I             |        |        | J      |      |        | K        |        |         | L        |
| <100                    | 70              | 59       | 82   | 71   | 69       | 73   |         |          |         |      |                   |      | 8      | 4      | 12   | 6     | 3     | 9    |      |         |      |      |           | 33   | 33            | 33     | 16     | 16     | 16   |        |          |        |         |          |
| 100-499                 | 82              | 69       | 96   | 123  | 117      | 128  | 3       | 3        | 4       | 4    | 3                 | 4    | 3      | 2      | 4    | 3     | 2     | 5    | 16   | 16      | 16   | 14   | 14 14     | 28   | 28            | 28     | 15     | 15     | 15   |        |          |        |         |          |
| 500-999                 | 28              | 23       | 33   | 42   | 40       | 44   | 1       | 1        | 1       | 1    | 1                 | 2    | 1      | 1      | 2    | 1     | 1     | 2    | 5    | 5       | 5    | 5    | 5 5       | 9    | 9             | 9      | 5      | 5      | 5    |        |          |        |         |          |
| 1,000-3,299             | 22              | 18       | 26   | 42   | 40       | 44   | 2       | 2        | 2       | 3    | 2                 | 3    | 1      | 0      | 1    | 1     | 0     | 1    | 4    | 4       | 4    | 4    | 4 4       | 6    | 6             | 6      | 3      | 3      | 3    |        |          |        |         |          |
| 3,300-9,999             | 6               | 5        | 7    | 11   | 11       | 12   | 1       | 1        | 1       | 1    | 1                 | 1    | 0      | 0      | 0    | 0     | 0     | 0    | 1    | 1       | 1    | 1    | 1 1       | 2    | 2             | 2      | 1      | 1      | 1    |        |          |        |         |          |
| 10,000-49,999           | 2               | 2        | 2    | 2    | 2        | 2    | 0       | 0        | 0       | 0    | 0                 | 0    | 0      | 0      | 0    | 0     | 0     | 0    | 0    | 0       | 0    | 0    | 0 (       | 0    | 0             | 0      | 0      | 0      | 0    | 0      | 0        | 0      | 0       | 0 0      |
| 50,000-99,999           | 0               | 0        | 0    | 0    | 0        | 0    | 0       | 0        | 0       | 0    | 0                 | 0    | 0      | 0      | 0    | 0     | 0     | 0    | 0    | 0       | 0    | 0    | 0 (       | 0    | 0             | 0      | 0      | 0      | 0    | 0      | 0        | 0      | 0       | 0 0      |
| 100,000-999,999         | 0               | 0        | 0    | 0    | 0        | 0    | 0       | 0        | 0       | 0    | 0                 | 0    | 0      | 0      | 0    | 0     | 0     | 0    | 0    | 0       | 0    | 0    | 0 (       | 0    | 0             | 0      | 0      | 0      | 0    | 0      | 0        | 0      | 0       | 0 0      |
| >=1,000,000             | 0               | 0        | 0    | 0    | 0        | 0    | 0       | 0        | 0       | 0    | 0                 | 0    | 0      | 0      | 0    | 0     | 0     | 0    | 0    | 0       | 0    | 0    | 0 (       | 0    | 0             | 0      | 0      | 0      | 0    | 0      | 0        | 0      | 0       | 0 0      |
| Total Plants            | 210             | 176      | 245  | 291  | 279      | 303  | 7       | 7        | 7       | 9    | 8                 | 10   | 13     | 7      | 19   | 11    | 6     | 17   | 26   | 26      | 26   | 25   | 25 25     | 77   | 77            | 77     | 40     | 40     | 40   | 0      | 0        | 0      | 0       | 0 0      |
| System Size             | GAC'            | 10 + AD  | CL2  | GAC1 | 0 + AD ( | CLM  | G       | AC20 C   | L2      | GAG  | 20 CLM            |      | GAC20  | + AD ( | CL2  | GAC20 | + AD  | CLM  | Mem  | branes  | CL2  | Memb | ranes CLM |      | Т             | TOTAL  | CL2    |        |      |        |          | TOTAL  | CLM     |          |
| (Population Served)     | Mean            | 5th      | 95th | Mean | 5th      | 95th | Mean    | 5th      | 95th    | Mean | 5th 95            | th I | Mean ! | ōth    | 95th | Mean  | 5th   | 95th | Mean | 5th     | 95th | Mean | 5th 95th  | Me   | an            | 5tl    | h      | 95th   | 1    | Mean   | 1        | 5th    |         | 95th     |
|                         |                 | М        |      |      | N        |      |         | 0        |         |      | Р                 |      |        | Q      |      |       | R     |      |      | S       |      |      | T         | U    | J = A + C + E | E+G+l+ | K+M+O+ | -Q+S   |      | V      | ′ = B+D+ | ·F+H+、 | J+L+N+P | +R+T     |
| <100                    |                 |          |      |      |          |      | 4       | 4        | 4       | 3    | 3                 | 3    | 3      | 2      | 5    | 3     | 1     | 4    | 5    | 5       | 5    | 4    | 4 4       | 1    | 124           |        | 107    |        | 141  |        | 102      |        | 96      | 108      |
| 100-499                 |                 |          |      |      |          |      | 3       | 3        | 3       | 3    | 3                 | 3    | 3      | 2      | 3    | 3     | 2     | 4    | 4    | 3       | 6    | 5    | 3 6       | 6    | 143           |        | 126    |        | 159  |        | 169      |        | 160     | 179      |
| 500-999                 |                 |          |      |      |          |      | 1       | 1        | 1       | 1    | 1                 | 1    | 1      | 1      | 1    | 1     | 1     | 1    | 1    | 1       | 2    | 2    | 1 2       | 2    | 48            |        | 43     |        | 54   |        | 58       |        | 54      | 61       |
| 1,000-3,299             |                 |          |      |      |          |      | 1       | 1        | 1       | 1    | 1                 | 1    | 1      | 1      | 1    | 1     | 1     | 1    | 1    | 1       | 1    | 1    | 1 2       | 2    | 36            |        | 32     |        | 41   |        | 56       |        | 52      | 59       |
| 3,300-9,999             |                 |          |      |      |          |      | 0       | 0        | 0       | 0    | 0                 | 0    | 0      | 0      | 0    | 0     | 0     | 0    | 0    | 0       | 0    | 0    | 0 (       | )    | 10            |        | 9      |        | 11   |        | 15       |        | 14      | 16       |
| 10,000-49,999           | 0               | 0        | 0    | 0    | 0        | 0    | 0       | 0        | 0       | 0    | 0                 | 0    | 0      | 0      | 0    | 0     | 0     | 0    | 0    | 0       | 0    | 0    | 0 (       | )    | 2             |        | 2      |        | 2    |        | 3        |        | 3       | 3        |
| 50,000-99,999           | 0               | 0        | 0    | 0    | 0        | 0    | 0       | 0        | 0       | 0    | 0                 | 0    | 0      | 0      | 0    | 0     | 0     | 0    | 0    | 0       | 0    | 0    | 0 (       | )    | 0             |        | 0      |        | 0    |        | 0        |        | 0       | 0        |
| 100,000-999,999         | 0               | 0        | 0    | 0    | 0        | 0    | 0       | 0        | 0       | 0    | 0                 | 0    | 0      | 0      | 0    | 0     | 0     | 0    | 0    | 0       | 0    | 0    | 0 (       | )    | 0             |        | 0      |        | 0    | -      | 1        |        | 1       | 1        |
| >=1,000,000             | 0               | 0        | 0    | 0    | 0        | 0    | 0       | 0        | 0       | 0    | 0                 | 0    | 0      | 0      | 0    | 0     | 0     | 0    | 0    | 0       | 0    | 0    | 0 (       | )    | 0             |        | 0      |        | 0    |        | 0        |        | 0       | 0        |
| Total Plants            | 0               | 0        | 0    | 0    | 0        | 0    | 10      | 10       | 10      | 8    | 8                 | 8    | 8      | 5      | 10   | 8     | 5     | 10   | 12   | 10      | 14   | 12   | 9 15      | 5    | 364           |        | 318    |        | 409  |        | 403      |        | 380     | 427      |
| Note: Detail may not ad |                 |          |      |      |          |      |         |          |         |      |                   |      |        |        |      |       |       |      |      |         |      |      |           |      |               |        |        |        |      |        |          |        |         |          |

Note: Detail may not add to totals due to independent rounding

Source: Surface water systems serving <10,000 people: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Alternative 1. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 1.

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

Exhibit C.6a

Post-Stage 2 DBPR Treatment Technologies-in-Place for CWS Ground Water Plants (Percent of Plants, by Residual Disinfectant Type)

Alternative 1

|                     | No Advanced<br>Treatment | No Advanced<br>Treatment |        |        |       |       |       |       |           |           |                 |                 |
|---------------------|--------------------------|--------------------------|--------|--------|-------|-------|-------|-------|-----------|-----------|-----------------|-----------------|
| System Size         | Technology               | Technology               |        |        | Ozone | Ozone | GAC20 | GAC20 | Membranes | Membranes |                 |                 |
| (Population Served) | CL21                     | CLM1                     | UV CL2 | UV CLM | CL2   | CLM   | CL2   | CLM   | CL2       | CLM       | Total Using CL2 | Total Using CLM |
|                     | Α                        | В                        | С      | D      | Е     | F     | G     | Н     | I         | J         | K = A+C+E+G+I   | L = B+D+F+H+J   |
| <100                | 93.5%                    | 3.0%                     | 0.0%   | 1.3%   | 0.0%  | 0.0%  | 0.4%  | 0.9%  | 0.4%      | 0.6%      | 94.3%           | 5.7%            |
| 100-499             | 92.1%                    | 3.6%                     | 0.0%   | 1.9%   | 0.2%  | 0.5%  | 0.2%  | 0.6%  | 0.1%      | 0.7%      | 92.6%           | 7.4%            |
| 500-999             | 92.1%                    | 3.6%                     | 0.0%   | 1.9%   | 0.2%  | 0.5%  | 0.2%  | 0.6%  | 0.1%      | 0.7%      | 92.6%           | 7.4%            |
| 1,000-3,299         | 93.0%                    | 2.5%                     | 0.0%   | 2.3%   | 0.3%  | 0.9%  | 0.0%  | 0.4%  | 0.1%      | 0.6%      | 93.4%           | 6.6%            |
| 3,300-9,999         | 93.0%                    | 2.5%                     | 0.0%   | 2.3%   | 0.3%  | 0.9%  | 0.0%  | 0.4%  | 0.1%      | 0.6%      | 93.4%           | 6.6%            |
| 10,000-49,999       | 87.1%                    | 7.8%                     |        |        | 0.8%  | 0.8%  | 0.1%  | 0.6%  | 1.8%      | 1.1%      | 89.8%           | 10.2%           |
| 50,000-99,999       | 87.1%                    | 7.8%                     |        |        | 0.8%  | 0.8%  | 0.1%  | 0.6%  | 1.8%      | 1.1%      | 89.8%           | 10.2%           |
| 100,000-999,999     | 87.5%                    | 7.6%                     |        |        | 0.8%  | 0.7%  | 0.0%  | 0.6%  | 1.8%      | 1.0%      | 90.1%           | 9.9%            |
| >=1,000,000         | 87.5%                    | 7.6%                     |        |        | 0.8%  | 0.7%  | 0.0%  | 0.6%  | 1.8%      | 1.0%      | 90.1%           | 9.9%            |
| Total %             | 91.8%                    | 3.9%                     | 0.0%   | 1.6%   | 0.3%  | 0.6%  | 0.2%  | 0.6%  | 0.4%      | 0.7%      | 92.6%           | 7.4%            |

Source: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.17) to the Technology Selection Delta for the Alternative 1.

Exhibit C.6b

Post-Stage 2 DBPR Treatment Technologies-in-Place for CWS Ground Water Plants (Number of Plants, by Residual Disinfectant Type)

Alternative 1

| System Size<br>(Population Served) | No Advanced<br>Treatment<br>Technology<br>CL21 | No Advanced<br>Treatment<br>Technology<br>CLM1 | UV CL2 | UV CLM | Ozone<br>CL2 | Ozone<br>CLM | GAC20<br>CL2 | GAC20<br>CLM | Membranes<br>CL2 | Membranes<br>CLM | Total Using CL2 | Total Using CLM |
|------------------------------------|------------------------------------------------|------------------------------------------------|--------|--------|--------------|--------------|--------------|--------------|------------------|------------------|-----------------|-----------------|
| (i opaiation dervea)               | OLZI                                           |                                                |        |        | _            |              | -            |              | OLZ              | OLIVI            |                 |                 |
|                                    | А                                              | В                                              | С      | D      | Е            | F            | G            | Н            | I                | J                | K = A+C+E+G+I   | L = B+D+F+H+J   |
| <100                               | 6,005                                          | 194                                            | 0      | 80     | 0            | 0            | 27           | 56           | 23               | 37               | 6,055           | 368             |
| 100-499                            | 14,038                                         | 550                                            | 0      | 296    | 25           | 74           | 33           | 97           | 23               | 107              | 14,118          | 1,124           |
| 500-999                            | 5,612                                          | 220                                            | 0      | 118    | 10           | 29           | 13           | 39           | 9                | 43               | 5,644           | 450             |
| 1,000-3,299                        | 7,057                                          | 192                                            | 0      | 171    | 22           | 66           | 0            | 27           | 5                | 47               | 7,084           | 503             |
| 3,300-9,999                        | 4,679                                          | 127                                            | 0      | 114    | 15           | 44           | 0            | 18           | 3                | 31               | 4,697           | 333             |
| 10,000-49,999                      | 4,690                                          | 419                                            |        |        | 46           | 42           | 3            | 32           | 95               | 57               | 4,833           | 549             |
| 50,000-99,999                      | 624                                            | 56                                             |        |        | 6            | 6            | 0            | 4            | 13               | 8                | 643             | 73              |
| 100,000-999,999                    | 803                                            | 70                                             |        |        | 8            | 6            | 0            | 5            | 16               | 9                | 828             | 90              |
| >=1,000,000                        | 24                                             | 2                                              |        |        | 0            | 0            | 0            | 0            | 0                | 0                | 25              | 3               |
| Total Plants                       | 43,531                                         | 1,830                                          | 0      | 780    | 131          | 267          | 77           | 278          | 188              | 339              | 43,926          | 3,493           |

Note: Detail may not add to totals due to independent rounding

Source: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.17) to the Technology Selection Delta for the Alternative 1.

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

Exhibit C.6c
Post-Stage 2 DBPR Treatment Technologies-in-Place for NTNCWS Ground Water Plants (Percent of Plants, by Residual Disinfectant Type)
Alternative 1

| System Size         | No Advanced<br>Treatment<br>Technology | No Advanced<br>Treatment<br>Technology |        |        | Ozone | Ozone | GAC20 | GAC20 | Membranes | Membranes |                 |                 |
|---------------------|----------------------------------------|----------------------------------------|--------|--------|-------|-------|-------|-------|-----------|-----------|-----------------|-----------------|
| (Population Served) | CL21                                   | CLM1                                   | UV CL2 | UV CLM | CL2   | CLM   | CL2   | CLM   | CL2       | CLM       | Total Using CL2 | Total Using CLM |
|                     | А                                      | В                                      | С      | D      | Е     | F     | G     | Н     | I         | J         | K = A+C+E+G+I   | L = B+D+F+H+J   |
| <100                | 93.5%                                  | 3.0%                                   | 0.0%   | 1.3%   | 0.0%  | 0.0%  | 0.4%  | 0.9%  | 0.4%      | 0.6%      | 94.3%           | 5.7%            |
| 100-499             | 92.1%                                  | 3.6%                                   | 0.0%   | 1.9%   | 0.2%  | 0.5%  | 0.2%  | 0.6%  | 0.1%      | 0.7%      | 92.6%           | 7.4%            |
| 500-999             | 92.1%                                  | 3.6%                                   | 0.0%   | 1.9%   | 0.2%  | 0.5%  | 0.2%  | 0.6%  | 0.1%      | 0.7%      | 92.6%           | 7.4%            |
| 1,000-3,299         | 93.0%                                  | 2.5%                                   | 0.0%   | 2.3%   | 0.3%  | 0.9%  | 0.0%  | 0.4%  | 0.1%      | 0.6%      | 93.4%           | 6.6%            |
| 3,300-9,999         | 93.0%                                  | 2.5%                                   | 0.0%   | 2.3%   | 0.3%  | 0.9%  | 0.0%  | 0.4%  | 0.1%      | 0.6%      | 93.4%           | 6.6%            |
| 10,000-49,999       | 87.1%                                  | 7.8%                                   |        |        | 0.8%  | 0.8%  | 0.1%  | 0.6%  | 1.8%      | 1.1%      | 89.8%           | 10.2%           |
| 50,000-99,999       | 87.1%                                  | 7.8%                                   |        |        | 0.8%  | 0.8%  | 0.1%  | 0.6%  | 1.8%      | 1.1%      | 89.8%           | 10.2%           |
| 100,000-999,999     | 87.5%                                  | 7.6%                                   |        |        | 0.8%  | 0.7%  | 0.0%  | 0.6%  | 1.8%      | 1.0%      | 90.1%           | 9.9%            |
| >=1,000,000         | 0.0%                                   | 0.0%                                   |        |        | 0.0%  | 0.0%  | 0.0%  | 0.0%  | 0.0%      | 0.0%      | 0.0%            | 0.0%            |
| Total %             | 92.8%                                  | 3.3%                                   | 0.0%   | 1.6%   | 0.1%  | 0.3%  | 0.3%  | 0.7%  | 0.2%      | 0.6%      | 93.4%           | 6.6%            |

Source: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.17) to the Technology Selection Delta for the Alternative 1.

Exhibit C.6d

Post-Stage 2 DBPR Treatment Technologies-in-Place for NTNCWS Ground Water Plants (Number of Plants, by Residual Disinfectant Type)

Alternative 1

| System Size<br>(Population Served) | No Advanced<br>Treatment<br>Technology<br>CL21 | No Advanced<br>Treatment<br>Technology<br>CLM1 | UV CL2 | UV CLM | Ozone<br>CL2 | Ozone<br>CLM | GAC20<br>CL2 | GAC20<br>CLM | Membranes<br>CL2 | Membranes<br>CLM | Total Using CL2 | Total Using CLM |
|------------------------------------|------------------------------------------------|------------------------------------------------|--------|--------|--------------|--------------|--------------|--------------|------------------|------------------|-----------------|-----------------|
| ,                                  | А                                              | В                                              | С      | D      | Е            | F            | G            | Н            | I                | J                | K = A+C+E+G+I   | L = B+D+F+H+J   |
| <100                               | 2,331                                          | 75                                             | 0      | 31     | 0            | 0            | 10           | 22           | 9                | 14               | 2,350           | 143             |
| 100-499                            | 1,961                                          | 77                                             | 0      | 41     | 3            | 10           | 5            | 14           | 3                | 15               | 1,972           | 157             |
| 500-999                            | 543                                            | 21                                             | 0      | 11     | 1            | 3            | 1            | 4            | 1                | 4                | 546             | 43              |
| 1,000-3,299                        | 230                                            | 6                                              | 0      | 6      | 1            | 2            | 0            | 1            | 0                | 2                | 231             | 16              |
| 3,300-9,999                        | 20                                             | 1                                              | 0      | 0      | 0            | 0            | 0            | 0            | 0                | 0                | 20              | 1               |
| 10,000-49,999                      | 3                                              | 0                                              |        |        | 0            | 0            | 0            | 0            | 0                | 0                | 3               | 0               |
| 50,000-99,999                      | 0                                              | 0                                              |        |        | 0            | 0            | 0            | 0            | 0                | 0                | 0               | 0               |
| 100,000-999,999                    | 0                                              | 0                                              |        |        | 0            | 0            | 0            | 0            | 0                | 0                | 0               | 0               |
| >=1,000,000                        | 0                                              | 0                                              |        |        | 0            | 0            | 0            | 0            | 0                | 0                | 0               | 0               |
| Total Plants                       | 5,087                                          | 181                                            | 0      | 90     | 5            | 16           | 16           | 40           | 13               | 35               | 5,122           | 362             |

Note: Detail may not add to totals due to independent rounding

Source: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.17) to the Technology Selection Delta for the Alternative 1.

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

Exhibit C.7a
Stage 2 DBPR Treatment Technology Selection Deltas for CWS Surface Water Plants (Percent of Plants by Residual Disinfection Type)

| Converting to CLM   Converting to CLM   Converting to CLM   Coll   CLM   CL2   | Ozone                                                   |            |                |                  |                |                  |                   |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------|----------------|------------------|----------------|------------------|-------------------|-----------------|
| Served   Mean   5th   95th   Mean   5th   95   |                                                         |            | JV             | UV               | Dioxide        | Chlorine E       | Converting to CLM | System Size     |
| Substitution   Subs   | CL2 CLM                                                 |            | CLM            | CL2              | CLM            | CL2              | Only              | (Population     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n 5th 95th Mean 5th 95th Mean                           | Mean       | Mean 5th 95th  | Mean 5th 95th Me | Mean 5th 95th  | Mean 5th 95th M  | Mean 5th 95th     | Served)         |
| 100-499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F G                                                     |            | E              | D                | С              | В                | A                 |                 |
| 500-999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0%                                                    | %          | 1.5% 1.2% 1.7% | 1.4% 1.2% 1.6% 1 |                |                  | -2.3% -2.8% -1.8% | <100            |
| 1,000-3,299   0.2% -0.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | % 0.0% 0.0% 0.0% 0.0% 0.0% 0.4%                         | % 0.0%     | 0.0% 0.0% 0.0% | 0.0% 0.0% 0.0% 0 | 0.0% 0.0% 0.0% | 0.0% 0.0% 0.0% 0 | -1.0% -1.7% -0.3% | 100-499         |
| 3,000-9,999   0.2%    0.4%    0.8%    0.0%    0.0%    0.0%    0.0%    0.1%    0.1%    0.1%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%    0.0%     | % 0.0% 0.0% 0.0% 0.0% 0.0% 0.4%                         | % 0.0%     | 0.0% 0.0% 0.0% | 0.0% 0.0% 0.0% 0 | 0.0% 0.0% 0.0% | 0.0% 0.0% 0.0% 0 | -1.0% -1.7% -0.3% | 500-999         |
| 10,000-49,999   8.0%   6.8%   9.3%   3.7%   3.1%   4.3%   2.8%   2.4%   3.2%   2.5%   2.1%   2.8%   1.0%   0.8%   1.2%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%    | % 0.0% 0.0% 0.0% 0.0% 0.0% 0.6%                         | % 0.0%     | 0.0% 0.0% 0.0% | 0.0% 0.0% 0.0% 0 | 0.1% 0.1% 0.1% | 0.0% 0.0% 0.0% 0 | 0.2% -0.4% 0.8%   | 1,000-3,299     |
| Solution   Served     | % 0.0% 0.0% 0.0% 0.0% 0.0% 0.6%                         | % 0.0%     | 0.0% 0.0% 0.0% | 0.0% 0.0% 0.0% 0 | 0.1% 0.1% 0.1% | 0.0% 0.0% 0.0% 0 | 0.2% -0.4% 0.8%   | 3,300-9,999     |
| 10,000-999,999   8.0%   6.8%   9.3%   3.7%   3.1%   4.3%   2.8%   2.4%   3.2%   2.5%   2.1%   2.8%   1.0%   0.8%   1.2%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   | % 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%                         | % 0.0%     | 1.0% 0.8% 1.2% | 2.5% 2.1% 2.8% 1 | 2.8% 2.4% 3.2% | 3.7% 3.1% 4.3% 2 | 8.0% 6.8% 9.3%    | 10,000-49,999   |
| Served   S   | % 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%                         | % 0.0%     | 1.0% 0.8% 1.2% | 2.5% 2.1% 2.8% 1 | 2.8% 2.4% 3.2% | 3.7% 3.1% 4.3% 2 | 8.0% 6.8% 9.3%    | 50,000-99,999   |
| Total % 2.9% 2.0% 3.8% 1.4% 1.2% 1.7% 1.1% 1.0% 1.3% 1.0% 0.9% 1.2% 0.5% 0.4% 0.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | % 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%                         | % 0.0%     | 1.0% 0.8% 1.2% | 2.5% 2.1% 2.8% 1 | 2.8% 2.4% 3.2% | 3.7% 3.1% 4.3% 2 | 8.0% 6.8% 9.3%    | 100,000-999,999 |
| System Size (Population Served)    Mean   5th   95th   Mean   5th  | % 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%                         | % 0.0%     | 1.0% 0.8% 1.2% | 2.5% 2.1% 2.8% 1 | 2.8% 2.4% 3.2% | 3.7% 3.1% 4.3% 2 | 8.0% 6.8% 9.3%    | >=1,000,000     |
| Clouding    | % 0.0% 0.0% 0.0% 0.0% 0.0% 0.3%                         | % 0.0%     | 0.5% 0.4% 0.5% | 1.0% 0.9% 1.2% 0 | 1.1% 1.0% 1.3% | 1.4% 1.2% 1.7% 1 | 2.9% 2.0% 3.8%    | Total %         |
| Served) Mean 5th 95th Mean 5th | visinfectants Membranes                                 | nced Disir | GAC20 + Advan  | 20               | GAC            | ed Disinfectants | GAC10 + Advance   | System Size     |
| L M N O P Q R S S +Q+S L = SUM(A:S)  <100 4.3% 3.7% 5.0% 5.3% 4.5% 6.1% 3.7% 2.6% 3.8% 3.2% 4.4% 0.0% 0.0% 0.0% 1.0% 0.8% 1.1% 13.0% 10.2% 15.8% 22.5% 18.2% 26.8% 100-499 3.6% 3.1% 4.2% 6.3% 5.4% 7.3% 2.2% 1.9% 2.6% 3.8% 3.2% 4.4% 1.0% 0.8% 1.1% 1.8% 1.5% 2.1% 15.6% 12.4% 18.8% 22.8% 18.5% 27.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CLM CL2                                                 |            | CL2            | CLM              | CL2            | CLM              | CL2               | (Population     |
| L M N S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ın 5th 95th Mean 5th 95th Mean                          | Mean       | Mean 5th 95th  | Mean 5th 95th Me | Mean 5th 95th  | Mean 5th 95th M  | Mean 5th 95th     | Served)         |
| <100 4.3% 3.7% 5.0% 5.3% 4.5% 6.1% 3.7% 3.2% 4.3% 3.8% 3.2% 4.4% 0.0% 0.0% 0.0% 0.0% 1.0% 0.8% 1.1% 13.0% 10.2% 15.8% 22.5% 18.2% 26.8% 100-499 1.9% 2.6% 3.8% 3.2% 4.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.1% 1.8% 1.5% 2.1% 15.6% 12.4% 18.8% 22.8% 18.5% 27.1% 27.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         |            |                |                  |                |                  |                   |                 |
| 100-499 3.6% 3.1% 4.2% 6.3% 5.4% 7.3% 2.2% 1.9% 2.6% 3.8% 3.2% 4.4% 1.0% 0.8% 1.1% 1.8% 1.5% 2.1% 15.6% 12.4% 18.8% 22.8% 18.5% 27.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         |            |                | 0                | N              | M                | L                 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | % 3.2% 4.4% 0.0% 0.0% 0.0% 1.0%                         | % 3.8%     | 3.7% 3.2% 4.3% | 5.3% 4.5% 6.1% 3 | 4.3% 3.7% 5.0% | 4                |                   | <100            |
| 500-999 3.6% 3.1% 4.2% 6.3% 5.4% 7.3% 2.2% 1.9% 2.6% 3.8% 3.2% 4.4% 1.0% 0.8% 1.1% 1.8% 1.5% 2.1% 15.6% 12.4% 18.8% 22.8% 18.5% 27.1% 22.9% 18.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | % 3.2% 4.4% 1.0% 0.8% 1.1% 1.8%                         | % 3.8%     | 2.2% 1.9% 2.6% | 6.3% 5.4% 7.3% 2 | 3.6% 3.1% 4.2% | 3                |                   | 100-499         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %     3.2%     4.4%     1.0%     0.8%     1.1%     1.8% | % 3.8%     | 2.2% 1.9% 2.6% | 6.3% 5.4% 7.3% 2 | 3.6% 3.1% 4.2% | 3                |                   | 500-999         |
| 1,000-3,299 3.1% 2.7% 3.6% 7.7% 6.5% 8.8% 1.9% 1.6% 2.2% 4.6% 3.9% 5.3% 0.2% 0.2% 0.3% 0.6% 0.5% 0.7% 17.3% 14.1% 20.5% 23.2% 19.1% 27.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | % 3.9% 5.3% 0.2% 0.2% 0.3% 0.6%                         | % 4.6%     | 1.9% 1.6% 2.2% | 7.7% 6.5% 8.8% 1 | 3.1% 2.7% 3.6% | 3                |                   | 1,000-3,299     |
| 3,300-9,999 3.1% 2.7% 3.6% 7.7% 6.5% 8.8% 1.9% 1.6% 2.2% 4.6% 3.9% 5.3% 0.2% 0.2% 0.2% 0.3% 0.6% 0.5% 0.7% 17.3% 14.1% 20.5% 23.2% 19.1% 27.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | % 3.9% 5.3% 0.2% 0.2% 0.3% 0.6%                         | 4.6%       | 1.9% 1.6% 2.2% | 7.7% 6.5% 8.8% 1 | 3.1% 2.7% 3.6% | 3                |                   | 3,300-9,999     |
| 10,000-49,999   4.1% 3.5% 4.7%   1.9% 1.7% 2.2%   0.6% 0.5% 0.6%   0.5% 0.6%   0.3% 0.3% 0.4%   0.3% 0.3% 0.4%   0.1% 0.1% 0.1% 0.1% 0.6% 0.5% 0.6%   0.5% 0.6%   0.3% 0.4%   17.7% 15.1% 20.5%   36.2% 30.7% 41.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | % 0.1% 0.1% 0.6% 0.5% 0.6% 0.3%                         | % 0.1%     | 0.3% 0.3% 0.4% | 0.3% 0.3% 0.4% 0 | 0.6% 0.5% 0.6% | 1.9% 1.7% 2.2% ( | 4.1% 3.5% 4.7%    | 10,000-49,999   |
| 50,000-99,999 4.1% 3.5% 4.7% 1.9% 1.7% 2.2% 0.6% 0.5% 0.6% 0.5% 0.6% 0.3% 0.3% 0.4% 0.3% 0.3% 0.4% 0.1% 0.1% 0.1% 0.6% 0.5% 0.6% 0.5% 0.6% 0.3% 0.3% 0.4% 17.7% 15.1% 20.5% 36.2% 30.7% 41.7% 36.2% 30.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | % 0.1% 0.1% 0.6% 0.5% 0.6% 0.3%                         | % 0.1%     | 0.3% 0.3% 0.4% | 0.3% 0.3% 0.4% 0 | 0.6% 0.5% 0.6% | 1.9% 1.7% 2.2%   | 4.1% 3.5% 4.7%    | 50,000-99,999   |
| 100,000-999,999   4.1% 3.5% 4.7%   1.9% 1.7% 2.2%   0.6% 0.5% 0.6%   0.5% 0.6%   0.3% 0.3% 0.4%   0.3% 0.3% 0.4%   0.1% 0.1% 0.1% 0.1% 0.6%   0.5% 0.6%   0.5% 0.6%   0.3% 0.4%   17.7% 15.1% 20.5%   36.2% 30.7% 41.7%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0.2.2%   0 | % 0.1% 0.1% 0.6% 0.5% 0.6% 0.3%                         | % 0.1%     | 0.3% 0.3% 0.4% | 0.3% 0.3% 0.4% 0 | 0.6% 0.5% 0.6% | 1.9% 1.7% 2.2% ( | 4.1% 3.5% 4.7%    | 100,000-999,999 |
| >=1,000,000   4.1% 3.5% 4.7%   1.9% 1.7% 2.2%   0.6% 0.5% 0.6%   0.5% 0.6%   0.3% 0.3% 0.4%   0.3% 0.3% 0.4%   0.1% 0.1% 0.1% 0.1% 0.6%   0.5% 0.6%   0.5% 0.6%   0.3% 0.4%   17.7% 15.1% 20.5%   36.2% 30.7% 41.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                         | 0.40/      | 0.3% 0.3% 0.4% | 0.3% 0.3% 0.4% 0 | 0.6% 0.5% 0.6% | 1.9% 1.7% 2.2% ( | 4.1% 3.5% 4.7%    |                 |
| Total % 1.6% 1.4% 1.8% 0.8% 0.6% 0.9% 2.3% 1.9% 2.6% 4.4% 3.7% 5.1% 1.4% 1.2% 1.7% 2.6% 2.2% 3.0% 0.5% 0.4% 0.6% 0.8% 0.6% 0.9% 16.9% 13.9% 19.9% 28.1% 23.4% 32.9% 28.1% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4% 23.4 |                                                         | % 0.1%     |                |                  |                |                  |                   |                 |

Source: Technology Selection for the Alternative 2 minus the Stage 1 Technology Selection from Appendix C, Exhibit C.1a.

Exhibit C.7b
Stage 2 DBPR Treatment Technology Selection Deltas for CWS Surface Water Plants (Number of Plants by Residual Disinfection Type)
Alternative 2

|                 |       |           |         |           |         |         |         |     |      |      |     |        |       |         | 711    | ternativ | 5 <u>Z</u> |      |      |        |      |       |     |      |           |           |        |      |          |          |          |          |       |
|-----------------|-------|-----------|---------|-----------|---------|---------|---------|-----|------|------|-----|--------|-------|---------|--------|----------|------------|------|------|--------|------|-------|-----|------|-----------|-----------|--------|------|----------|----------|----------|----------|-------|
| System Size     | Conve | erting to | CLM     |           | С       | hlorine | Dioxide |     |      |      |     | UV     |       |         |        |          |            | Ozo  | one  |        |      |       |     | M    | F/UF      |           |        |      |          | GAC      | C10      |          |       |
| (Population     |       | Only      |         |           | CL2     |         |         | CLM |      |      | CL2 |        | (     | CLM     |        |          | CL2        |      |      | CLM    |      |       | CL2 |      |           | CLM       |        |      | CL2      |          |          | CLM      |       |
| Served)         | Mean  | 5th       | 95th    | Mean      | 5th     | 95th    | Mean    | 5th | 95th | Mean | 5th | 95th M | /lean | 5th     | 95th   | Mean     | 5th        | 95th | Mean | 5th 95 | 5th  | Mean  | 5th | 95th | Mean      | 5th       | 95th   | Mean | 5th      | 95th     | Mean     | 5th      | 95th  |
|                 |       | Α         |         |           |         | E       | 3       |     |      |      |     | С      |       |         |        |          |            | D    | )    |        |      |       |     |      | E         |           |        |      |          | F        |          |          |       |
| <100            | -8    | -10       | -7      |           |         |         |         |     |      | 5    | 4   | 6      | 5     | 4       | 6      |          |            |      |      |        |      | 0     | 0   | 0    | 14        | 12        | 16     |      |          |          |          |          |       |
| 100-499         | -8    | -13       | -2      | 0         | 0       | 0       | 0       | 0   | 0    | 0    | 0   | 0      | 0     | 0       | 0      | 0        | 0          | 0    | 0    | 0      | 0    | 3     | 3   | 4    | 36        | 30        | 41     |      |          |          |          |          |       |
| 500-999         | -5    | -8        | -2      | 0         | 0       | 0       | 0       | 0   | 0    | 0    | 0   | 0      | 0     | 0       | 0      | 0        | 0          | 0    | 0    | 0      | 0    | 2     | 2   | 2    | 22        | 19        | 26     |      |          |          |          |          |       |
| 1,000-3,299     | 2     | -5        | 9       | 0         | 0       | 0       | 1       | 1   | 1    | 0    | 0   | 0      | 0     | 0       | 0      | 0        | 0          | 0    | 0    | 0      | 0    | 7     | 6   | 8    | 46        | 39        | 53     |      |          |          |          |          |       |
| 3,300-9,999     | 3     | -5        | 10      | 0         | 0       | 0       | 1       | 1   | 1    | 0    | 0   | 0      | 0     | 0       | 0      | 0        | 0          | 0    | 0    | 0      | 0    | 7     | 6   | 9    | 52        | 44        | 60     |      |          |          |          |          |       |
| 10,000-49,999   | 104   | 88        | 120     | 48        | 41      | 55      | 36      | 31  | 42   | 32   | 27  | 37     | 13    | 11      | 15     | 0        | 0          | 0    | 0    | 0      | 0    | 0     | 0   | 0    | 0         | 0         | 0      | 87   | 74       | 100      | 41       | 35       | 48    |
| 50,000-99,999   | 47    | 40        | 54      | 21        | 18      | 25      | 16      | 14  | 19   | 14   | 12  | 16     | 6     | 5       | 7      | 0        | 0          | 0    | 0    | 0      | 0    | 0     | 0   | 0    | 0         | 0         | 0      | 39   | 33       | 45       | 19       | 16       | 21    |
| 100,000-999,999 | 49    | 42        | 57      | 23        | 19      | 26      | 17      | 14  | 20   | 15   | 13  | 17     | 6     | 5       | 7      | 0        | 0          | 0    | 0    | 0      | 0    | 0     | 0   | 0    | 0         | 0         | 0      | 41   | 35       | 47       | 20       | 17       | 23    |
| >=1,000,000     | 6     | 5         | 7       | 3         | 2       | 3       | 2       | 2   | 2    | 2    | 2   | 2      | 1     | 1       | 1      | 0        | 0          | 0    | 0    | 0      | 0    | 0     | 0   | 0    | 0         | 0         | 0      | 5    | 4        | 6        | 2        | 2        | 3     |
| Total Plants    | 189   | 133       | 246     | 95        | 80      | 109     | 74      | 63  | 85   | 68   | 58  | 78     | 31    | 26      | 36     | 0        | 0          | 0    | 0    | 0      | 0    | 19    | 16  | 22   | 170       | 144       | 196    | 172  | 146      | 199      | 82       | 69       | 94    |
| System Size     | G/    | 4C10 + /  | Advance | ed Disinf | ectants |         |         |     | GAC2 | 20   |     |        | GA    | C20 + A | Advanc | ed Disir | fectant    | 3    |      | Me     | embı | ranes |     |      |           |           |        |      |          |          |          |          |       |
| (Population     |       | CL2       |         |           | CLM     |         |         | CL2 |      |      | CLM |        |       | CL2     |        |          | CLM        |      |      | CL2    |      |       | CLM |      | Total Con | verting t | to CLM | To   | tal Addi | ng Treat | tment Te | chnology | /     |
| Served)         | Mean  | 5th       | 95th    | Mean      | 5th     | 95th    | Mean    | 5th | 95th | Mean | 5th | 95th M | /lean | 5th     | 95th   | Mean     | 5th        | 95th | Mean | 5th 95 | 5th  | Mean  | 5th | 95th | Mean      | 5th       | 95th   | Mean | 5th      | 95th     | Mean     | 5th      | 95th  |
|                 |       |           |         |           |         |         |         |     |      |      |     |        |       |         |        |          |            |      |      |        |      |       |     |      | T=A+C+E   |           | C+M+C  |      |          |          |          |          |       |
|                 |       |           | G       |           |         |         |         |     | Н    |      |     |        |       |         | - 1    |          |            |      |      |        | J    | l     |     |      | -         | -Q+S      |        |      |          | L = SUI  | M(A:S)   |          |       |
| <100            |       |           |         |           |         |         | 16      | 13  | 18   | 19   | 16  | 22     | 13    | 11      | 15     | 14       | 12         | 16   | 0    | 0      | 0    | 3     | 3   | 4    | 47        | 36        | 57     | 81   | 66       | 96       |          |          |       |
| 100-499         |       |           |         |           |         |         | 28      | 23  | 32   | 49   | 41  | 56     | 17    | 14      | 20     | 29       | 25         | 33   | 7    | 6      | 9    | 14    | 12  | 16   | 119       | 95        | 144    | 175  | 142      | 208      |          |          |       |
| 500-999         |       |           |         |           |         |         | 17      | 15  | 20   | 31   | 26  | 35     | 11    | 9       | 12     | 18       | 15         | 21   | 5    | 4      | 5    | 9     | 7   | 10   | 75        | 60        | 91     | 110  | 89       | 131      | 919      | 752      | 1,087 |
| 1,000-3,299     |       |           |         |           |         |         | 36      | 30  | 41   | 87   | 73  | 100    | 22    | 18      | 25     | 52       | 44         | 59   | 2    | 2      | 3    | 7     | 6   | 8    | 196       | 159       | 232    | 262  | 216      | 309      |          |          |       |
| 3,300-9,999     |       |           |         |           |         |         | 40      | 34  | 46   | 97   | 82  | 111    | 24    | 21      | 28     | 57       | 49         | 66   | 3    | 2      | 3    | 8     | 7   | 9    | 218       | 177       | 258    | 292  | 240      | 344      |          |          |       |
| 10,000-49,999   | 53    | 45        | 61      | 25        | 21      | 29      | 7       | 6   | 8    | 4    | 3   | 5      | 4     | 3       | 5      | 2        | 1          | 2    | 7    | 6      | 8    | 4     | 3   | 5    | 229       | 194       | 264    | 467  | 396      | 539      |          |          |       |
| 50,000-99,999   | 24    | 20        | 27      | 11        | 10      | 13      | 3       | 3   | 4    | 2    | 2   | 2      | 2     | 2       | 2      | 1        | 1          | 1    | 3    | 3      | 4    | 2     | 2   | 2    | 103       | 87        | 119    | 210  | 178      | 242      | 924      | 784      | 1,065 |
| 100,000-999,999 | 25    | 21        | 29      | 12        | 10      | 14      | 3       | 3   | 4    | 2    | 2   | 2      | 2     | 2       | 2      | 1        | 1          | 1    | 3    | 3      | 4    | 2     | 2   | 2    | 108       | 92        | 125    | 221  | 187      | 255      | 324      | 704      | 1,003 |
| >=1,000,000     | 3     | 3         | 3       | 1         | 1       | 2       | 0       | 0   | 0    | 0    | 0   | 0      | 0     | 0       | 0      | 0        | 0          | 0    | Ω    | Λ      | Ω    | 0     | Λ   | 0    | 13        | 11        | 15     | 27   | 23       | 31       |          |          |       |
|                 |       |           |         |           |         |         |         |     |      | -    |     | -      |       |         | v      | 0        | 0          | U    | U    | 0      | U    |       | 0   | v    | .0        |           |        |      |          | ٠.       |          |          |       |

Note: Detail may not add to totals due to independent rounding

Source: Above table with technologies switching from an advanced technology with CI2 to the same advanced technology with CLM being moved into the CLM only column

Exhibit C.7c
Stage 2 DBPR Treatment Technology Selection Deltas for NTNCWS Surface Water Plants (Percent of Plants by Residual Disinfection Type)

| Solvey So | _               |       |           |         |          |          |          |           |      |      |      |      |      |      |        | Α     | Iternativ | /e 2    |      |      |      |      |       |      |      |          |          |        |       |           |         |          |          |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|-----------|---------|----------|----------|----------|-----------|------|------|------|------|------|------|--------|-------|-----------|---------|------|------|------|------|-------|------|------|----------|----------|--------|-------|-----------|---------|----------|----------|--------|
| Servicid   Mean   5th   95th   Mean   5th      | System Size     | Conve | erting to | CLM     |          | (        | Chlorine | e Dioxide | Э    |      |      |      | Ų    | JV   |        |       |           |         | Ozo  | one  |      |      |       |      | М    | F/UF     |          |        |       |           | GA      | C10      |          |        |
| - 100 - 2.3% - 2.8% - 1.8%   B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (Population     |       | Only      |         |          | CL2      |          |           | CLM  |      |      | CL2  |      |      | CLM    |       |           | CL2     |      |      | CLM  |      |       | CL2  |      |          | CLM      |        |       | CL2       |         |          | CLM      |        |
| Cloud   -2.3%   -2.8%   -1.8%   -1.8%   -1.2%   -1.8%   -1.2%   -1.6%   -1.2%   -1.6%   -1.2%   -1.6%   -1.2%   -1.6%   -1.2%   -1.6%   -1.2%   -1.6%   -1.2%   -1.6%   -1.2%   -1.6%   -1.2%   -1.6%   -1.2%   -1.6%   -1.2%   -1.6%   -1.2%   -1.6%   -1.2%   -1.6%   -1.2%   -1.6%   -1.2%   -1.6%   -1.2%   -1.6%   -1.2%   -1.6%   -1.2%   -1.6%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2%   -1.2   | Served)         | Mean  | 5th       | 95th    | Mean     | 5th      | 95th     | Mean      | 5th  | 95th | Mean | 5th  | 95th | Mean | 5th    | 95th  | Mean      | 5th     | 95th | Mean | 5th  | 95th | Mean  | 5th  | 95th | Mean     | 5th      | 95th   | Mean  | 5th       | 95th    | Mean     | 5th      | 95th   |
| Figure   F   |                 |       | Α         |         |          | В        |          |           | С    |      |      | D    |      |      | Е      |       |           | F       |      |      | G    |      |       | Н    |      |          | ı        |        |       | J         |         |          | K        |        |
| 500-999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <100            | -2.3% | -2.8%     | -1.8%   |          |          |          |           |      |      | 1.4% | 1.2% | 1.6% | 1.5% | 1.2%   | 1.7%  |           |         |      |      |      |      | 0.0%  | 0.0% | 0.0% | 3.8%     | 3.2%     | 4.4%   |       |           |         |          |          |        |
| 1,000-3,299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100-499         | -1.0% | -1.7%     | -0.3%   | 0.0%     | 0.0%     | 0.0%     | 0.0%      | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%   | 0.0%  | 0.0%      | 0.0%    | 0.0% | 0.0% | 0.0% | 0.0% | 0.4%  | 0.4% | 0.5% | 4.6%     | 3.9%     | 5.4%   |       |           |         |          |          |        |
| 3,000-9,999   0.2%   0.4%   0.8%   0.0%   0.0%   0.0%   0.0%   0.1%   0.1%   0.1%   0.1%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%      | 500-999         | -1.0% | -1.7%     | -0.3%   | 0.0%     | 0.0%     | 0.0%     | 0.0%      | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%   | 0.0%  | 0.0%      | 0.0%    | 0.0% | 0.0% | 0.0% | 0.0% | 0.4%  | 0.4% | 0.5% | 4.6%     | 3.9%     | 5.4%   |       |           |         |          |          |        |
| 10,000-49,999   8.0%   6.8%   9.3%   3.7%   3.1%   4.3%   2.8%   2.4%   3.2%   2.5%   2.1%   2.8%   1.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%    | 1,000-3,299     | 0.2%  | -0.4%     | 0.8%    | 0.0%     | 0.0%     | 0.0%     | 0.1%      | 0.1% | 0.1% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%   | 0.0%  | 0.0%      | 0.0%    | 0.0% | 0.0% | 0.0% | 0.0% | 0.6%  | 0.5% | 0.7% | 4.1%     | 3.5%     | 4.7%   |       |           |         |          |          |        |
| School-99,999   School-99,99   | 3,300-9,999     | 0.2%  | -0.4%     | 0.8%    | 0.0%     | 0.0%     | 0.0%     | 0.1%      | 0.1% | 0.1% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%   | 0.0%  | 0.0%      | 0.0%    | 0.0% | 0.0% | 0.0% | 0.0% | 0.6%  | 0.5% | 0.7% | 4.1%     | 3.5%     | 4.7%   |       |           |         |          |          |        |
| 10,000-999,999   8.0%   6.8%   9.3%   3.7%   3.1%   4.3%   2.8%   2.4%   3.2%   2.5%   2.1%   2.8%   1.2%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   | 10,000-49,999   | 8.0%  | 6.8%      | 9.3%    | 3.7%     | 3.1%     | 4.3%     | 2.8%      | 2.4% | 3.2% | 2.5% | 2.1% | 2.8% | 1.0% | 0.8%   | 1.2%  | 0.0%      | 0.0%    | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%  | 0.0% | 0.0% | 0.0%     | 0.0%     | 0.0%   | 6.7%  | 5.7%      | 7.8%    | 3.2%     | 2.7%     | 3.7%   |
| Served   Class   Cla   | 50,000-99,999   | 0.0%  | 0.0%      | 0.0%    | 0.0%     | 0.0%     | 0.0%     | 0.0%      | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%   | 0.0%  | 0.0%      | 0.0%    | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%  | 0.0% | 0.0% | 0.0%     | 0.0%     | 0.0%   | 0.0%  | 0.0%      | 0.0%    | 0.0%     | 0.0%     | 0.0%   |
| Total %   -1.2%   -1.8%   -0.5%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.4%   0.4%   0.4%   0.5%   0.4%   0.5%   0.4%   0.5%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.3%   0.3%   0.4%   4.3%   3.6%   4.9%   0.1%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0   | 100,000-999,999 | 8.0%  | 6.8%      | 9.3%    | 3.7%     | 3.1%     | 4.3%     | 2.8%      | 2.4% | 3.2% | 2.5% | 2.1% | 2.8% | 1.0% | 0.8%   | 1.2%  | 0.0%      | 0.0%    | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%  | 0.0% | 0.0% | 0.0%     | 0.0%     | 0.0%   | 6.7%  | 5.7%      | 7.8%    | 3.2%     | 2.7%     | 3.7%   |
| System Size (Population Served)   Fig.   GAC10 + Advanced Disinfectants   GAC20 + Advanced Disinf   | >=1,000,000     | 0.0%  | 0.0%      | 0.0%    | 0.0%     | 0.0%     | 0.0%     | 0.0%      | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%   | 0.0%  | 0.0%      | 0.0%    | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%  | 0.0% | 0.0% | 0.0%     | 0.0%     | 0.0%   | 0.0%  | 0.0%      | 0.0%    | 0.0%     | 0.0%     | 0.0%   |
| Cl2   CLM   Cl2    | Total %         | -1.2% | -1.8%     | -0.5%   | 0.0%     | 0.0%     | 0.0%     | 0.0%      | 0.0% | 0.0% | 0.4% | 0.4% | 0.5% | 0.4% | 0.4%   | 0.5%  | 0.0%      | 0.0%    | 0.0% | 0.0% | 0.0% | 0.0% | 0.3%  | 0.3% | 0.4% | 4.3%     | 3.6%     | 4.9%   | 0.1%  | 0.0%      | 0.1%    | 0.0%     | 0.0%     | 0.0%   |
| Served) Mean 5th 95th Mean 5th | System Size     | G.    | AC10 +    | Advance | ed Disin | fectants | 3        |           |      | GAC  | 20   |      |      | G/   | AC20 + | Advan | ced Disi  | nfectan | ts   |      |      | Memb | ranes |      |      |          |          |        |       |           |         |          |          |        |
| L M N N O S S TEA+C+E+G+I+K+M+O L S S TEA+C+E+G+I+K+M+ | (Population     |       | CL2       |         |          | CLM      |          |           | CL2  |      |      | CLM  |      |      | CL2    |       |           | CLM     |      |      | CL2  |      |       | CLM  |      | Total Co | nverting | to CLM | To    | otal Addi | ng Trea | tment Te | chnology | /      |
| L SUM(A:S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Served)         | Mean  | 5th       | 95th    | Mean     | 5th      | 95th     | Mean      | 5th  | 95th | Mean | 5th  | 95th | Mean | 5th    | 95th  | Mean      | 5th     | 95th | Mean | 5th  | 95th | Mean  | 5th  | 95th | Mean     | 5th      | 95th   | Mean  | 5th       | 95th    | Mean     | 5th      | 95th   |
| 4.3%         3.7%         5.0%         5.3%         4.5%         6.1%         3.7%         3.2%         4.3%         3.2%         4.4%         0.0%         0.0%         0.0%         0.0%         1.0%         0.8%         1.1%         13.0%         10.2%         15.8%         22.5%         18.2%         26.8%           100-499         3.6%         3.1%         4.2%         6.3%         5.4%         7.3%         2.2%         1.9%         2.6%         3.8%         3.2%         4.4%         1.0%         0.8%         1.1%         1.8%         1.5%         2.1%         15.6%         12.4%         18.8%         22.5%         18.2%         26.8%           500-999         3.6%         3.1%         4.2%         6.3%         5.4%         7.3%         2.2%         1.9%         2.6%         3.8%         3.2%         4.4%         1.0%         0.8%         1.1%         1.8%         1.5%         2.1%         15.6%         12.4%         18.8%         22.8%         18.5%         27.1%         18.4%         27.0         1.0%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0% </td <td></td> <td>T=A+C+</td> <td>E+G+I+l</td> <td>K+M+O</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |       |           |         |          |          |          |           |      |      |      |      |      |      |        |       |           |         |      |      |      |      |       |      |      | T=A+C+   | E+G+I+l  | K+M+O  |       |           |         |          |          |        |
| 100-499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |       | L         |         |          | М        |          |           | N    |      |      | 0    |      |      | _ '    |       |           |         |      |      |      |      |       | S    |      |          | +Q+S     |        |       |           | L = SU  | M(A:S)   |          |        |
| 500-999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |       |           |         |          |          |          | 4.3%      | 3.7% | 5.0% | 5.3% | 4.5% | 6.1% | 3.7% | 3.2%   | 4.3%  | 3.8%      |         |      | 0.0% | 0.0% | 0.0% | 1.0%  | 0.8% | 1.1% | 13.0%    | 10.2%    | 15.8%  | 22.5% | 18.2%     | 26.8%   |          |          |        |
| 1,000-3,299 3,1% 2,7% 3,6% 7,7% 6,5% 8,8% 1,9% 1,6% 2,2% 4,6% 3,9% 5,3% 0,2% 0,2% 0,3% 0,6% 0,5% 0,7% 17.3% 14.1% 20.5% 23.2% 19.1% 27.3% 10,000-49,999 4,1% 3,5% 4,7% 1,9% 1,7% 2,2% 0,6% 0,5% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100-499         |       |           |         |          |          |          | 3.6%      | 3.1% | 4.2% | 6.3% | 5.4% | 7.3% | 2.2% | 1.9%   | 2.6%  | 3.8%      | 3.2%    | 4.4% | 1.0% | 0.8% | 1.1% | 1.8%  | 1.5% | 2.1% | 15.6%    | 12.4%    | 18.8%  | 22.8% | 18.5%     | 27.1%   |          |          |        |
| 3,000-9999 4.1% 3.5% 4.7% 1.9% 1.7% 2.2% 0.6% 0.5% 0.7% 0.6% 0.5% 0.7% 0.6% 0.5% 0.7% 17.3% 14.1% 20.5% 23.2% 19.1% 27.3% 11.1% 20.5% 23.2% 19.1% 27.3% 11.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5% 15.1% 20.5 | 500-999         |       |           |         |          |          |          | 3.6%      | 3.1% | 4.2% | 6.3% | 5.4% | 7.3% | 2.2% | 1.9%   | 2.6%  | 3.8%      | 3.2%    | 4.4% | 1.0% | 0.8% | 1.1% | 1.8%  | 1.5% | 2.1% | 15.6%    | 12.4%    | 18.8%  | 22.8% | 18.5%     | 27.1%   | 22.7%    | 18.4%    | 27.0%  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,000-3,299     |       |           |         |          |          |          | 3.1%      | 2.7% | 3.6% | 7.7% | 6.5% | 8.8% | 1.9% | 1.6%   | 2.2%  | 4.6%      | 3.9%    | 5.3% | 0.2% | 0.2% | 0.3% | 0.6%  | 0.5% | 0.7% | 17.3%    | 14.1%    | 20.5%  | 23.2% | 19.1%     | 27.3%   |          |          |        |
| 50,000-99,999 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -,              |       |           |         |          |          |          |           |      | 3.6% |      |      |      | 1.9% |        |       |           |         |      | 0.2% |      |      |       | 0.5% | 0.7% | 17.3%    | 14.1%    | 20.5%  |       |           |         |          |          |        |
| 100,000-999,999 4.1% 3.5% 4.7% 1.9% 1.7% 2.2% 0.6% 0.5% 0.6% 0.5% 0.6% 0.3% 0.3% 0.4% 0.3% 0.3% 0.4% 0.1% 0.1% 0.1% 0.6% 0.5% 0.6% 0.3% 0.3% 0.3% 0.4% 17.7% 15.1% 20.5% 36.2% 30.7% 41.7% 15.1% 20.5% 36.2% 30.7% 41.7% 15.1% 20.5% 36.2% 30.7% 41.7% 15.1% 20.5% 36.2% 30.7% 41.7% 15.1% 20.5% 36.2% 30.7% 41.7% 15.1% 20.5% 36.2% 30.7% 41.7% 15.1% 20.5% 36.2% 30.7% 41.7% 15.1% 20.5% 36.2% 30.7% 41.7% 15.1% 20.5% 36.2% 30.7% 41.7% 15.1% 20.5% 36.2% 30.7% 41.7% 15.1% 20.5% 36.2% 30.7% 41.7% 15.1% 20.5% 36.2% 30.7% 41.7% 15.1% 20.5% 36.2% 30.7% 41.7% 15.1% 20.5% 36.2% 30.7% 41.7% 15.1% 20.5% 36.2% 30.7% 41.7% 15.1% 20.5% 36.2% 30.7% 41.7% 15.1% 20.5% 36.2% 30.7% 41.7% 15.1% 20.5% 36.2% 30.7% 41.7% 15.1% 20.5% 36.2% 30.7% 41.7% 15.1% 20.5% 36.2% 30.7% 41.7% 15.1% 20.5% 36.2% 30.7% 41.7% 15.1% 20.5% 36.2% 30.7% 41.7% 15.1% 20.5% 36.2% 30.7% 41.7% 15.1% 20.5% 36.2% 30.7% 41.7% 15.1% 20.5% 36.2% 30.7% 41.7% 15.1% 20.5% 36.2% 30.7% 41.7% 15.1% 20.5% 36.2% 30.7% 41.7% 15.1% 20.5% 36.2% 30.7% 41.7% 15.1% 20.5% 36.2% 30.7% 41.7% 36.2% 30.7% 41.7% 36.2% 30.7% 41.7% 36.2% 30.7% 41.7% 36.2% 30.7% 41.7% 36.2% 30.7% 41.7% 36.2% 30.7% 41.7% 36.2% 30.7% 41.7% 36.2% 30.7% 41.7% 36.2% 30.7% 41.7% 36.2% 30.7% 41.7% 36.2% 30.7% 41.7% 36.2% 30.7% 41.7% 36.2% 30.7% 41.7% 36.2% 30.7% 41.7% 36.2% 30.7% 41.7% 36.2% 30.7% 41.7% 36.2% 30.7% 41.7% 36.2% 30.7% 41.7% 36.2% 30.7% 41.7% 36.2% 30.7% 41.7% 36.2% 30.7% 41.7% 36.2% 30.7% 41.7% 36.2% 30.7% 41.7% 36.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% 30.2% | 10,000-49,999   | 4.1%  | 3.5%      | 4.7%    | 1.9%     | 1.7%     | 2.2%     | 0.6%      | 0.5% | 0.6% | 0.3% | 0.3% | 0.4% | 0.3% | 0.3%   | 0.4%  | 0.1%      | 0.1%    | 0.1% | 0.6% | 0.5% | 0.6% | 0.3%  | 0.3% | 0.4% | 17.7%    | 15.1%    | 20.5%  | 36.2% | 30.7%     | 41.7%   |          |          |        |
| 100,000-999,999   4.1% 3.5% 4.7%   1.9% 1.7% 2.2%   0.6% 0.5% 0.6%   0.3% 0.3% 0.4%   0.3% 0.3% 0.4%   0.1% 0.1%   0.6% 0.5% 0.6%   0.3% 0.3% 0.4%   17.7% 15.1% 20.5%   36.2% 30.7% 41.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , ,             | 0.0%  |           | 0.0%    | 0.0%     |          |          | 0.0%      | 0.0% | 0.0% |      |      |      | 0.0% |        |       |           |         |      |      |      |      |       | 0.0% | 0.0% | 0.0%     | 0.0%     | 0.0%   | 0.0%  |           |         | 36.2%    | 30.7%    | 41 7%  |
| >=1,000,000   0.0% 0.0% 0.0% 0.0%   0.0% 0.0% 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,               | 4.1%  |           | ,       |          | ,        | ,        | ,.        |      |      |      |      |      |      |        |       |           |         |      |      |      |      |       |      |      |          |          |        |       |           |         | JU.2 /0  | 55.7 76  | 71.770 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >=1,000,000     | 0.0%  | 0.0%      | 0.0%    | 0.0%     | 0.0%     | 0.0%     | 0.0%      | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%   | 0.0%  | 0.0%      |         |      |      | 0.0% | 0.0% | 0.0%  | 0.0% | 0.0% | 0.0%     | 0.0%     | 0.0%   | 0.0%  | 0.0%      | 0.0%    |          |          |        |
| Total % 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 | 0.0%  | 0.0%      | 0.0%    | 0.0%     | 0.0%     | 0.0%     | 3.7%      | 3.2% | 4.3% | 6.2% | 5.2% | 7.1% | 2.6% | 2.2%   | 3.0%  | 3.9%      | 3.3%    | 4.5% | 0.6% | 0.5% | 0.7% | 1.4%  | 1.2% | 1.6% | 15.1%    | 12.0%    | 18.2%  | 22.9% | 18.6%     | 27.2%   | 22.9%    | 18.6%    | 27.2%  |

Source: Technology Selection for the Alternative 2 minus the Stage 1 Technology Selection from Appendix C, Exhibit C.1b.

Exhibit C.7d

Stage 2 DBPR Treatment Technology Selection Deltas for NTNCWS Surface Water Plants (Number of Plants by Residual Disinfection Type)

Alternative 2

|                                                                                 |       |           |        |             |       |             |                                   |                                               |                            |                       |                                             |                                 |       | 7.                                         | ternativ                    | <u> </u>              |                                  |                                 |             |                                 |                  |                  |                            |           |      |       |                              |                         |        |          |       |      |
|---------------------------------------------------------------------------------|-------|-----------|--------|-------------|-------|-------------|-----------------------------------|-----------------------------------------------|----------------------------|-----------------------|---------------------------------------------|---------------------------------|-------|--------------------------------------------|-----------------------------|-----------------------|----------------------------------|---------------------------------|-------------|---------------------------------|------------------|------------------|----------------------------|-----------|------|-------|------------------------------|-------------------------|--------|----------|-------|------|
| System Size                                                                     | Conv  | erting to | CLM    |             |       | lorine Diox |                                   |                                               |                            |                       | ι                                           | JV                              |       |                                            |                             |                       | Ozo                              |                                 |             |                                 |                  |                  | M                          | IF/UF     |      |       |                              |                         | GA     | C10      |       |      |
| (Population                                                                     |       | Only      |        |             | CL2   |             | CLM                               |                                               |                            | CL2                   |                                             |                                 | CLM   |                                            |                             | CL2                   |                                  |                                 | CLM         |                                 |                  | CL2              |                            |           | CLM  |       |                              | CL2                     |        |          | CLM   |      |
| Served)                                                                         | Mean  | 5th       | 95th   | Mean        | 5th 9 | 5th Mea     | n 5th                             | 95th                                          | Mean                       | 5th                   | 95th                                        | Mean                            | 5th   | 95th                                       | Mean                        | 5th                   | 95th                             | Mean                            | 5th         | 95th                            | Mean             | 5th              | 95th                       | Mean      | 5th  | 95th  | Mean                         | 5th                     | 95th   | Mean     | 5th   | 95th |
|                                                                                 |       | Α         |        |             |       | В           |                                   |                                               |                            |                       |                                             | С                               |       |                                            |                             |                       | [                                | )                               |             |                                 |                  |                  |                            | E         |      |       |                              |                         |        | F        |       |      |
| <100                                                                            | -5    | -6        | -4     |             |       |             |                                   |                                               | 3                          | 3                     | 4                                           | 3                               | 3     | 4                                          |                             |                       |                                  |                                 |             |                                 | 0                | 0                | 0                          | 9         | 7    | 10    |                              |                         |        |          |       |      |
| 100-499                                                                         | -3    | -5        | -1     | 0           | 0     | 0           | 0 (                               | 0 0                                           | 0                          | 0                     | 0                                           | 0                               | 0     | 0                                          | 0                           | 0                     | 0                                | 0                               | 0           | 0                               | 1                | 1                | 1                          | 14        | 12   | 17    |                              |                         |        |          |       |      |
| 500-999                                                                         | -1    | -2        | 0      | 0           | 0     | 0           | 0 (                               | 0 0                                           | 0                          | 0                     | 0                                           | 0                               | 0     | 0                                          | 0                           | 0                     | 0                                | 0                               | 0           | 0                               | 0                | 0                | 1                          | 5         | 4    | 6     |                              |                         |        |          |       |      |
| 1,000-3,299                                                                     | 0     | 0         | 1      | 0           | 0     | 0           | 0 (                               | 0 0                                           | 0                          | 0                     | 0                                           | 0                               | 0     | 0                                          | 0                           | 0                     | 0                                | 0                               | 0           | 0                               | 1                | 0                | 1                          | 4         | 3    | 4     |                              |                         |        |          |       |      |
| 3,300-9,999                                                                     | 0     | 0         | 0      | 0           | 0     | 0           | 0 (                               | 0 0                                           | 0                          | 0                     | 0                                           | 0                               | 0     | 0                                          | 0                           | 0                     | 0                                | 0                               | 0           | 0                               | 0                | 0                | 0                          | 1         | 1    | 1     |                              |                         |        |          |       |      |
| 10,000-49,999                                                                   | 0     | 0         | 0      | 0           | 0     | 0           | 0 (                               | 0 0                                           | 0                          | 0                     | 0                                           | 0                               | 0     | 0                                          | 0                           | 0                     | 0                                | 0                               | 0           | 0                               | 0                | 0                | 0                          | 0         | 0    | 0     | 0                            | 0                       | 0      | 0        | 0     | C    |
| 50,000-99,999                                                                   | 0     | 0         | 0      | 0           | 0     | 0           | 0 (                               | 0 0                                           | 0                          | 0                     | 0                                           | 0                               | 0     | 0                                          | 0                           | 0                     | 0                                | 0                               | 0           | 0                               | 0                | 0                | 0                          | 0         | 0    | 0     | 0                            | 0                       | 0      | 0        | 0     | 0    |
| 100,000-999,999                                                                 | 0     | 0         | 0      | 0           | 0     | 0           | 0 (                               | 0 0                                           | 0                          | 0                     | 0                                           | 0                               | 0     | 0                                          | 0                           | 0                     | 0                                | 0                               | 0           | 0                               | 0                | 0                | 0                          | 0         | 0    | 0     | 0                            | 0                       | 0      | 0        | 0     | 0    |
| >=1,000,000                                                                     | 0     | 0         | 0      | 0           | 0     | 0           | 0 (                               | 0 0                                           | 0                          | 0                     | 0                                           | 0                               | 0     | 0                                          | 0                           | 0                     | 0                                | 0                               | 0           | 0                               | 0                | 0                | 0                          | 0         | 0    | 0     | 0                            | 0                       | 0      | 0        | 0     | 0    |
| Total Plants                                                                    | -9    |           |        | 0           | 0     | 0           | 0 (                               | 0 0                                           | 3                          | 3                     | 4                                           | 3                               | 3     | 4                                          | 0                           | 0                     | 0                                | 0                               | 0           | 0                               | 2                | 2                | 3                          | 33        | 28   | 38    | 0                            | 0                       | 0      | 0        | 0     | О    |
| System Size                                                                     | G     |           | Advanc | ed Disin    |       |             |                                   | GAG                                           | C20                        |                       |                                             | G/                              |       | Advan                                      | ced Disi                    | nfectants             |                                  |                                 |             | Memb                            | ranes            |                  |                            |           |      |       |                              |                         |        |          |       |      |
| (Population                                                                     |       | CL2       |        |             | CLM   |             | CL2                               |                                               |                            | CLM                   |                                             |                                 | CL2   |                                            |                             | CLM                   |                                  |                                 | CL2         |                                 |                  | CLM              |                            | Total Con |      |       |                              |                         |        | tment Te |       |      |
| Served)                                                                         | Mean  | 5th       | 95th   | Mean        | 5th 9 | 5th Mea     | n 5th                             | 95th                                          | Mean                       | 5th                   | 95th                                        | Mean                            | 5th   | 95th                                       | Mean                        | 5th                   | 95th                             | Mean                            | 5th         | 95th                            | Mean             | 5th              | 95th                       | Mean      | 5th  |       | Mean                         | 5th                     | 95th   | Mean     | 5th   | 95th |
|                                                                                 |       |           |        |             |       |             |                                   |                                               |                            |                       |                                             |                                 |       |                                            |                             |                       |                                  |                                 |             |                                 |                  |                  |                            | T=A+C+E   |      | C+M+O |                              |                         |        |          |       |      |
|                                                                                 |       |           | G      |             |       |             |                                   | H                                             |                            |                       |                                             |                                 |       |                                            | l                           |                       |                                  |                                 |             |                                 | J                |                  |                            |           | +Q+S |       |                              |                         | L = SU | M(A:S)   |       |      |
| <100                                                                            |       |           |        |             |       | 1           |                                   | 8 11                                          | 12                         | 10                    | 14                                          | 8                               | 7     | 10                                         | 9                           | 7                     | 10                               | 0                               | 0           | 0                               | 2                | 2                | 3                          | 29        | 23   | 36    |                              | 41                      | 61     |          |       |      |
| 100-499                                                                         |       |           |        |             |       |             |                                   |                                               |                            |                       |                                             |                                 |       |                                            |                             |                       |                                  |                                 |             |                                 |                  |                  |                            |           |      |       |                              |                         |        |          |       |      |
|                                                                                 |       |           |        |             |       | 1           |                                   |                                               | 20                         | 17                    | 23                                          | 7                               | 6     | 8                                          | 12                          | 10                    | 14                               | 3                               | 3           | 3                               | 6                | 5                |                            | 49        | 39   | 59    |                              | 58                      | 85     |          |       |      |
| 500-999                                                                         |       |           |        |             |       |             | 4 :                               | 3 4                                           | 20<br>7                    | 6                     | 23<br>8                                     | 7<br>2                          | 2     | 8<br>3                                     | 12<br>4                     | 10<br>3               | 14<br>5                          | 3<br>1                          | 1           | 3<br>1                          | 6<br>2           | 5<br>2           |                            | 17        | 13   | 20    | 24                           | 20                      | 29     | 173      | 141   | 206  |
| 1,000-3,299                                                                     |       |           |        |             |       |             | 4 :                               |                                               | 20<br>7                    | 6                     | 23<br>8<br>8                                | 7<br>2<br>2                     | •     | 8<br>3<br>2                                | 12<br>4<br>4                | 10<br>3<br>4          | 14<br>5<br>5                     | 3<br>1<br>0                     | 1 0         | 3<br>1<br>0                     | 6<br>2<br>1      | 1                | 1                          |           |      |       |                              |                         |        | 173      | 141   | 206  |
| 1,000-3,299<br>3,300-9,999                                                      |       |           |        |             |       |             | 4 :<br>3 :<br>1                   | 3 4<br>2 3<br>1 1                             | 7 7 2                      | 6<br>6<br>2           | 23<br>8<br>8<br>2                           | 7<br>2<br>2<br>0                | 2 2 0 | 8<br>3<br>2<br>1                           | 12<br>4<br>4<br>1           | 3<br>4<br>1           | 14<br>5<br>5<br>1                | 3<br>1<br>0<br>0                | 0 0         | 3<br>1<br>0<br>0                | 6<br>2<br>1<br>0 | 2<br>1<br>0      | 1<br>0                     | 17        | 13   | 20    | 24<br>21<br>6                | 20<br>18<br>5           | 29     | 173      | 141   | 206  |
| 1,000-3,299<br>3,300-9,999<br>10,000-49,999                                     | 0     | 0         | 0      | 0           | 0     |             | 4 :<br>3 :<br>1 :                 | 3 4<br>2 3<br>1 1<br>0 0                      | 7<br>7<br>2<br>0           | 6<br>6<br>2<br>0      | 23<br>8<br>8<br>2<br>0                      | 7<br>2<br>2<br>0                | 2     | 8<br>3<br>2<br>1                           | 12<br>4<br>4<br>1           | 3<br>4<br>1<br>0      | 14<br>5<br>5<br>1                | 3<br>1<br>0<br>0                | 1<br>0<br>0 | 3<br>1<br>0<br>0                | 6<br>2<br>1<br>0 | 1<br>0<br>0      | 1<br>0<br>0                | 17        | 13   | 20    | 24                           | 20<br>18                | 29     | 173      | 141   | 206  |
| 1,000-3,299<br>3,300-9,999<br>10,000-49,999<br>50,000-99,999                    | 0 0   | 0         | 0      | 0           | 0     | 0 0         | 4 :<br>3 :<br>1 :<br>0 (          | 3 4<br>2 3<br>1 1<br>0 0<br>0 0               | 7<br>7<br>2<br>0<br>0      | 6<br>6<br>2<br>0<br>0 | 23<br>8<br>8<br>2<br>0<br>0                 | 7<br>2<br>2<br>0<br>0           | 2 2 0 | 8<br>3<br>2<br>1<br>0<br>0                 | 12<br>4<br>4<br>1<br>0<br>0 | 3<br>4<br>1<br>0<br>0 | 14<br>5<br>5<br>1<br>0           | 3<br>1<br>0<br>0<br>0           | 0 0         | 3<br>1<br>0<br>0<br>0           | Ŭ                | 2<br>1<br>0<br>0 | 2<br>1<br>0<br>0           | 17        | 13   | 20    | 24<br>21<br>6                | 20<br>18<br>5<br>2<br>0 | 29     | 173      | 141   | 206  |
| 1,000-3,299<br>3,300-9,999<br>10,000-49,999<br>50,000-99,999<br>100,000-999,999 | 0 0   | 0 0       | 0 0    | 0<br>0<br>0 | -     | 0 0         | 4 :<br>3 :<br>1 :<br>0 (          | 3 4<br>2 3<br>1 1<br>0 0                      | 7<br>7<br>2<br>0           | 6<br>6<br>2<br>0<br>0 | 23<br>8<br>8<br>2<br>0<br>0                 | 7<br>2<br>2<br>0<br>0<br>0<br>0 | 2 2 0 | 8<br>3<br>2<br>1<br>0<br>0                 | 12<br>4<br>4<br>1<br>0<br>0 | 3<br>4<br>1<br>0      | 14<br>5<br>5<br>1<br>0<br>0      | 3<br>1<br>0<br>0<br>0<br>0      | 1<br>0<br>0 | 3<br>1<br>0<br>0<br>0<br>0      | Ŭ                | 1<br>0<br>0<br>0 | 2<br>1<br>0<br>0           | 17        | 13   | 20    | 24<br>21<br>6                | 20<br>18<br>5           | 29     |          | 141   | 206  |
| 1,000-3,299<br>3,300-9,999<br>10,000-49,999<br>50,000-99,999                    | 0 0 0 | 0         | 0      | 0 0         | 0     | 0 0         | 4 3<br>3 2<br>1 0 0<br>0 0<br>0 0 | 3 4<br>2 3<br>1 1<br>0 0<br>0 0<br>0 0<br>0 0 | 7<br>7<br>2<br>0<br>0<br>0 | 6<br>6<br>2<br>0<br>0 | 23<br>8<br>8<br>2<br>0<br>0<br>0<br>0<br>55 | 0<br>0<br>0<br>0                | 2 2 0 | 8<br>3<br>2<br>1<br>0<br>0<br>0<br>0<br>23 | 4<br>1<br>0<br>0<br>0       | 3<br>4<br>1<br>0<br>0 | 14<br>5<br>5<br>1<br>0<br>0<br>0 | 3<br>1<br>0<br>0<br>0<br>0<br>0 | 1<br>0<br>0 | 3<br>1<br>0<br>0<br>0<br>0<br>0 | Ŭ                | 2<br>1<br>0<br>0 | 2<br>1<br>0<br>0<br>0<br>0 | 17        | 13   | 20    | 24<br>21<br>6<br>2<br>0<br>0 | 20<br>18<br>5<br>2<br>0 | 29     |          | 2 143 | 206  |

Note: Detail may not add to totals due to independent rounding

Source: Above table with technologies switching from an advanced technology with Cl2 to the same advanced technology with CLM being moved into the CLM only column

Exhibit C.8a

Stage 2 DBPR Treatment Technology Selection Deltas for CWS Ground Water Plants (Percent of Plants, by Residual Disinfectant Type)

Alternative 2

|                     |          |        |        |       |       |       |       |           |           |                  | Total | Adding  |
|---------------------|----------|--------|--------|-------|-------|-------|-------|-----------|-----------|------------------|-------|---------|
| System Size         |          |        |        | Ozone | Ozone | GAC20 | GAC20 | Membranes | Membranes | Total Converting | Trea  | tment   |
| (Population Served) | CLM Only | UV CL2 | UV CLM | CL2   | CLM   | CL2   | CLM   | CL2       | CLM       | to CLM           | Tech  | nology  |
|                     | Α        | В      | С      | D     | Е     | F     | G     | Н         | I         | J = A+C+E+G+I    | K = S | UM(A:I) |
| <100                | 3.8%     | 0.0%   | 0.9%   | 0.0%  | 0.0%  | 0.3%  | 0.0%  | 0.0%      | 0.0%      | 4.7%             | 5.0%  |         |
| 100-499             | 3.9%     | 0.0%   | 1.3%   | 0.0%  | 0.0%  | 0.1%  | 0.0%  | 0.0%      | 0.0%      | 5.2%             | 5.3%  |         |
| 500-999             | 3.9%     | 0.0%   | 1.3%   | 0.0%  | 0.0%  | 0.1%  | 0.0%  | 0.0%      | 0.0%      | 5.2%             | 5.3%  | 5.2%    |
| 1,000-3,299         | 3.5%     | 0.0%   | 1.4%   | 0.0%  | 0.0%  | 0.0%  | 0.1%  | 0.0%      | 0.0%      | 5.0%             | 5.0%  |         |
| 3,300-9,999         | 3.5%     | 0.0%   | 1.4%   | 0.0%  | 0.0%  | 0.0%  | 0.1%  | 0.0%      | 0.0%      | 5.0%             | 5.0%  |         |
| 10,000-49,999       | 5.9%     |        |        | 0.1%  | 0.0%  | 0.0%  | 0.4%  | 0.0%      | 0.5%      | 6.8%             | 7.0%  |         |
| 50,000-99,999       | 5.9%     |        |        | 0.1%  | 0.0%  | 0.0%  | 0.4%  | 0.0%      | 0.5%      | 6.8%             | 7.0%  | 6.9%    |
| 100,000-999,999     | 5.6%     |        |        | 0.1%  | 0.0%  | 0.0%  | 0.4%  | 0.0%      | 0.5%      | 6.5%             | 6.6%  | 0.9%    |
| >=1,000,000         | 5.6%     |        |        | 0.1%  | 0.0%  | 0.0%  | 0.4%  | 0.0%      | 0.5%      | 6.5%             | 6.6%  |         |
| Total %             | 4.0%     | 0.0%   | 1.1%   | 0.0%  | 0.0%  | 0.1%  | 0.1%  | 0.0%      | 0.1%      | 5.3%             | 5.4%  | 5.4%    |

Exhibit C.8b

Stage 2 DBPR Treatment Technology Selection Deltas for CWS Ground Water Plants (Number of Plants, by Residual Disinfectant Type)

Alternative 2

|                     |          |        |        |       |       |       |       |           |           |                  | Total  | Adding  |
|---------------------|----------|--------|--------|-------|-------|-------|-------|-----------|-----------|------------------|--------|---------|
| System Size         |          |        |        | Ozone | Ozone | GAC20 | GAC20 | Membranes | Membranes | Total Converting | Trea   | tment   |
| (Population Served) | CLM Only | UV CL2 | UV CLM | CL2   | CLM   | CL2   | CLM   | CL2       | CLM       | to CLM           | Tech   | nology  |
|                     | Α        | В      | С      | D     | Е     | F     | G     | Н         | I         | J = A+C+E+G+I    | K = SI | UM(A:I) |
| <100                | 245      | 0      | 59     | 0     | 0     | 20    | 0     | 0         | 0         | 304              | 324    |         |
| 100-499             | 589      | 0      | 200    | 0     | 0     | 22    | 0     | 0         | 0         | 790              | 812    |         |
| 500-999             | 236      | 0      | 80     | 0     | 0     | 9     | 0     | 0         | 0         | 316              | 325    | 2,090   |
| 1,000-3,299         | 263      | 0      | 108    | 0     | 0     | 0     | 8     | 0         | 0         | 379              | 379    |         |
| 3,300-9,999         | 174      | 0      | 71     | 0     | 0     | 0     | 6     | 0         | 0         | 251              | 251    |         |
| 10,000-49,999       | 317      |        |        | 7     | 0     | 0     | 22    | 0         | 29        | 368              | 375    |         |
| 50,000-99,999       | 42       |        |        | 1     | 0     | 0     | 3     | 0         | 4         | 49               | 50     | 488     |
| 100,000-999,999     | 51       |        |        | 1     | 0     | 0     | 4     | 0         | 5         | 60               | 61     | 400     |
| >=1,000,000         | 2        |        |        | 0     | 0     | 0     | 0     | 0         | 0         | 2                | 2      |         |
| Total Plants        | 1,919    | 0      | 519    | 9     | 0     | 51    | 43    | 0         | 37        | 2,518            | 2,578  | 2,578   |

Exhibit C.8c
Stage 2 DBPR Treatment Technology Selection Deltas for NTNCWS Ground Water Plants (Percent of Plants, by Residual Disinfectant Type)
Alternative 2

|                     |          |        |        |       |       |       |       |           |           |                  | Total | Adding  |
|---------------------|----------|--------|--------|-------|-------|-------|-------|-----------|-----------|------------------|-------|---------|
| System Size         |          |        |        | Ozone | Ozone | GAC20 | GAC20 | Membranes | Membranes | Total Converting | Trea  | tment   |
| (Population Served) | CLM Only | UV CL2 | UV CLM | CL2   | CLM   | CL2   | CLM   | CL2       | CLM       | to CLM           | Tech  | nology  |
|                     | Α        | В      | С      | D     | Е     | F     | G     | Н         | I         | J = A+C+E+G+I    | K = S | UM(A:I) |
| <100                | 3.8%     | 0.0%   | 0.9%   | 0.0%  | 0.0%  | 0.3%  | 0.0%  | 0.0%      | 0.0%      | 4.7%             | 5.0%  |         |
| 100-499             | 3.9%     | 0.0%   | 1.3%   | 0.0%  | 0.0%  | 0.1%  | 0.0%  | 0.0%      | 0.0%      | 5.2%             | 5.3%  |         |
| 500-999             | 3.9%     | 0.0%   | 1.3%   | 0.0%  | 0.0%  | 0.1%  | 0.0%  | 0.0%      | 0.0%      | 5.2%             | 5.3%  | 5.2%    |
| 1,000-3,299         | 3.5%     | 0.0%   | 1.4%   | 0.0%  | 0.0%  | 0.0%  | 0.1%  | 0.0%      | 0.0%      | 5.0%             | 5.0%  |         |
| 3,300-9,999         | 3.5%     | 0.0%   | 1.4%   | 0.0%  | 0.0%  | 0.0%  | 0.1%  | 0.0%      | 0.0%      | 5.0%             | 5.0%  |         |
| 10,000-49,999       | 5.9%     |        |        | 0.1%  | 0.0%  | 0.0%  | 0.4%  | 0.0%      | 0.5%      | 6.8%             | 7.0%  |         |
| 50,000-99,999       | 5.9%     |        |        | 0.1%  | 0.0%  | 0.0%  | 0.4%  | 0.0%      | 0.5%      | 6.8%             | 7.0%  | 6.9%    |
| 100,000-999,999     | 5.6%     |        |        | 0.1%  | 0.0%  | 0.0%  | 0.4%  | 0.0%      | 0.5%      | 6.5%             | 6.6%  | 6.9%    |
| >=1,000,000         | 0.0%     |        |        | 0.0%  | 0.0%  | 0.0%  | 0.0%  | 0.0%      | 0.0%      | 0.0%             | 0.0%  |         |
| Total %             | 3.8%     | 0.0%   | 1.1%   | 0.0%  | 0.0%  | 0.2%  | 0.0%  | 0.0%      | 0.0%      | 5.0%             | 5.2%  | 5.2%    |

Exhibit C.8d

Stage 2 DBPR Treatment Technology Selection Deltas for NTNCWS Ground Water Plants (Number of Plants, by Residual Disinfectant Type)

Alternative 2

|                     |          |        |        |       |       |       |       |           |           |                  | Total  | Adding  |
|---------------------|----------|--------|--------|-------|-------|-------|-------|-----------|-----------|------------------|--------|---------|
| System Size         |          |        |        | Ozone | Ozone | GAC20 | GAC20 | Membranes | Membranes | Total Converting | Trea   | tment   |
| (Population Served) | CLM Only | UV CL2 | UV CLM | CL2   | CLM   | CL2   | CLM   | CL2       | CLM       | to CLM           | Tech   | nology  |
|                     | Α        | В      | С      | D     | E     | F     | G     | Н         | I         | J = A+C+E+G+I    | K = SI | UM(A:I) |
| <100                | 95       | 0      | 23     | 0     | 0     | 8     | 0     | 0         | 0         | 118              | 126    |         |
| 100-499             | 82       | 0      | 28     | 0     | 0     | 3     | 0     | 0         | 0         | 110              | 113    |         |
| 500-999             | 23       | 0      | 8      | 0     | 0     | 1     | 0     | 0         | 0         | 31               | 31     | 284     |
| 1,000-3,299         | 9        | 0      | 4      | 0     | 0     | 0     | 0     | 0         | 0         | 12               | 12     |         |
| 3,300-9,999         | 1        | 0      | 0      | 0     | 0     | 0     | 0     | 0         | 0         | 1                | 1      |         |
| 10,000-49,999       | 0        |        |        | 0     | 0     | 0     | 0     | 0         | 0         | 0                | 0      |         |
| 50,000-99,999       | 0        |        |        | 0     | 0     | 0     | 0     | 0         | 0         | 0                | 0      | 0       |
| 100,000-999,999     | 0        |        |        | 0     | 0     | 0     | 0     | 0         | 0         | 0                | 0      | U       |
| >=1,000,000         | 0        |        |        | 0     | 0     | 0     | 0     | 0         | 0         | 0                | 0      |         |
| Total Plants        | 210      | 0      | 63     | 0     | 0     | 12    | 0     | 0         | 0         | 272              | 284    | 284     |

#### Exhibit C.9a

### Post-Stage 2 DBPR Treatment Technologies-in-Place for CWS Surface Water Plants (Percent of Plants by Residual Disinfection Type)

|                     |       |           |       |       |                        |       |         |        |      |      |                |      |      |         |      | Alter | native 2 | 2    |      |         |      |      |          |      |       |           |         |        |          |       |       |         |         |       |           |
|---------------------|-------|-----------|-------|-------|------------------------|-------|---------|--------|------|------|----------------|------|------|---------|------|-------|----------|------|------|---------|------|------|----------|------|-------|-----------|---------|--------|----------|-------|-------|---------|---------|-------|-----------|
| System Size         | Tech  | nced Trea |       |       | anced Tre<br>Inology C |       | Chlorin |        |      |      | ne Diox<br>CLM |      |      | UV CL2  |      |       | JV CLM   |      | -    | zone CL |      |      | one CLM  |      |       | -/UF CL2  |         | MF     | -/UF CLI |       | -     | C 10 CL |         |       | 10 CLM    |
| (Population Served) | Mean  | 5th       | 95th  | Mean  | 5th                    | 95th  | Mean    | 5th    | 95th | Mean | 5th            | 95th | Mean | 5th     | 95th | Mean  | 5th      | 95th | Mean | 5th     | 95th | Mean | 5th 9    | 95th | Mean  | 5th       | 95th    | Mean   | 5th      | 95th  | Mean  | 5th     | 95th M  | lean  | 5th 95th  |
|                     |       | Α         |       |       | В                      |       |         | С      |      |      | D              |      |      | E       |      |       | F        |      |      | G       |      |      | Н        |      |       | 1         |         |        | J        |       |       | K       |         |       | L         |
| <100                | 19.3% | 15.0%     | 23.6% | 27.4% | 26.9%                  | 27.9% |         |        |      |      |                |      | 1.4% | 1.2%    | 1.6% | 1.5%  | 1.2%     | 1.7% |      |         |      |      |          |      | 14.5% | 14.5%     | 14.5%   | 10.9%  | 10.4%    | 11.5% |       |         |         |       |           |
| 100-499             | 12.8% | 8.5%      | 17.1% | 34.4% | 33.7%                  | 35.1% | 1.0%    | 1.0%   | 1.0% | 0.9% | 0.9%           | 0.9% | 0.0% | 0.0%    | 0.0% | 0.0%  | 0.0%     | 0.0% | 5.1% | 5.1%    | 5.1% | 4.6% | 4.6% 4   | 4.6% | 9.3%  | 9.3%      | 9.4%    | 9.4%   | 8.7%     | 10.2% |       |         |         |       |           |
| 500-999             | 12.8% | 8.5%      | 17.1% | 34.4% | 33.7%                  | 35.1% | 1.0%    | 1.0%   | 1.0% | 0.9% | 0.9%           | 0.9% | 0.0% | 0.0%    | 0.0% | 0.0%  | 0.0%     | 0.0% | 5.1% | 5.1%    | 5.1% | 4.6% | 4.6% 4   | 4.6% | 9.3%  | 9.3%      | 9.4%    | 9.4%   | 8.7%     | 10.2% |       |         |         |       |           |
| 1,000-3,299         | 10.2% | 6.1%      | 14.4% | 41.6% | 40.9%                  | 42.2% | 1.9%    | 1.9%   | 1.9% | 2.2% | 2.2%           | 2.2% | 0.0% | 0.0%    | 0.0% | 0.0%  | 0.0%     | 0.0% | 4.0% | 4.0%    | 4.0% | 4.5% | 4.5% 4   | 4.5% | 6.8%  | 6.7%      | 6.8%    | 7.0%   | 6.3%     | 7.6%  |       |         |         |       |           |
| 3,300-9,999         | 10.2% | 6.1%      | 14.4% | 41.6% | 40.9%                  | 42.2% | 1.9%    | 1.9%   | 1.9% | 2.2% | 2.2%           | 2.2% | 0.0% | 0.0%    | 0.0% |       | 0.0%     |      | 4.0% | 4.0%    | 4.0% | 4.5% | 4.5% 4   | 4.5% | 6.8%  | 6.7%      | 6.8%    | 7.0%   | 6.3%     | 7.6%  |       |         |         |       |           |
| 10,000-49,999       | 16.7% | 16.7%     | 16.7% | ,.    |                        | ,     |         | 3.9%   | 3.9% | 8.1% | 8.1%           | 8.1% | 0.8% | 0.8%    | 0.8% | 1.7%  | 1.7%     | 1.7% | 4.2% | 4.2%    | 4.2% |      | 8.6% 8   |      | 0.6%  | 0.6%      | 0.6%    | 1.2%   | 1.2%     | 1.2%  |       | 3.3%    |         | 6.9%  | 6.9% 6.9% |
| 50,000-99,999       | 16.7% | 16.7%     | 16.7% | 34.6% | 34.6%                  | 34.6% | 3.9%    | 3.9%   | 3.9% | 8.1% | 8.1%           | 8.1% | 0.8% | 0.8%    | 0.8% | 1.7%  | 1.7%     | 1.7% | 4.2% | 4.2%    | 4.2% | 8.6% | 8.6% 8   | 3.6% | 0.6%  | 0.6%      | 0.6%    | 1.2%   | 1.2%     | 1.2%  | 3.3%  | 3.3%    | 3.3%    | 6.9%  | 6.9% 6.9% |
| 100,000-999,999     | 16.7% | 16.7%     | 16.7% | 34.6% | 34.6%                  | 34.6% | 3.9%    | 3.9%   | 3.9% | 8.1% | 8.1%           | 8.1% | 0.8% | 0.8%    | 0.8% | 1.7%  | 1.7%     | 1.7% | 4.2% | 4.2%    | 4.2% |      | 8.6% 8   | ,    | 0.6%  | 0.6%      | 0.6%    | 1.2%   | 1.2%     | 1.2%  | 0.0,0 | 3.3%    |         | 6.9%  | 6.9% 6.9% |
| >=1,000,000         | 16.7% | 16.7%     | 16.7% | 34.6% | 34.6%                  | 34.6% | 3.9%    | 3.9%   | 3.9% | 8.1% | 8.1%           | 8.1% | 0.8% | 0.8%    | 0.8% | 1.7%  | 1.7%     | 1.7% | 4.2% | 4.2%    | 4.2% | 8.6% | 8.6% 8   | 3.6% | 0.6%  | 0.6%      | 0.6%    | 1.2%   | 1.2%     | 1.2%  | 3.3%  | 3.3%    | 3.3%    | 6.9%  | 6.9% 6.9% |
| Total %             | 13.8% | 11.2%     | 16.3% | 36.7% | 36.3%                  | 37.1% | 2.4%    | 2.4%   | 2.4% | 4.2% | 4.1%           | 4.2% | 0.4% | 0.4%    | 0.4% | 0.8%  | 0.7%     | 0.8% | 4.1% | 4.1%    | 4.1% | 5.9% | 5.9% 5   | 5.9% | 5.3%  | 5.2%      | 5.3%    | 5.4%   | 5.0%     | 5.8%  | 1.3%  | 1.3%    | 1.3% 2  | 2.7%  | 2.7% 2.7% |
| System Size         | GAC   | 10 + AD ( | CL2   | GAC   | 10 + AD                | CLM   | GA      | C20 CL | _2   | GAG  | C20 CLN        | VI   | GAC2 | 20 + AD | CL2  | GAC2  | 0 + AD   | CLM  | Mem  | branes  | CL2  | Memb | ranes CL | LM   |       |           | TOTAL   | .CL2   |          |       |       | T       | TOTAL C | CLM   |           |
| (Population Served) | Mean  | 5th       | 95th  | Mean  | 5th                    | 95th  | Mean    | 5th    | 95th | Mean | 5th            | 95th | Mean | 5th     | 95th | Mean  | 5th      | 95th | Mean | 5th     | 95th | Mean | 5th 9    | 95th | Mea   | an        | 5th     | ı      | 95       | th    | Mea   | n       | 5th     |       | 95th      |
|                     |       | М         |       |       | N                      |       |         | 0      |      |      | Р              |      |      | Q       |      |       | R        |      |      | S       |      |      | Т        |      |       | U = A + C | C+E+G+I | +K+M+C | )+Q+S    |       | V     | = B+D+  | F+H+J+  | L+N+P | +R+T      |
| <100                |       |           |       |       |                        |       | 6.3%    | 5.6%   | 7.0% | 6.6% | 5.8%           | 7.4% | 3.7% | 3.2%    | 4.3% | 3.8%  | 3.2%     | 4.4% | 2.2% | 2.2%    | 2.2% | 2.4% | 2.2% 2   | 2.5% |       | 47.5%     |         | 41.7%  |          | 53.2% |       | 2.5%    | 49      | 9.7%  | 55.4%     |
| 100-499             |       |           |       |       |                        |       | 4.7%    | 4.1%   | 5.2% | 7.3% | 6.3%           | 8.3% | 2.7% | 2.4%    | 3.0% | 4.2%  | 3.6%     | 4.8% | 1.4% | 1.3%    | 1.6% | 2.2% | 2.0% 2   | 2.5% |       | 36.9%     |         | 31.5%  |          | 42.4% | 6     | 3.1%    | 59      | 9.8%  | 66.3%     |
| 500-999             |       |           |       |       |                        |       | 4.7%    | 4.1%   | 5.2% | 7.3% | 6.3%           | 8.3% | 2.7% | 2.4%    | 3.0% | 4.2%  | 3.6%     | 4.8% | 1.4% | 1.3%    | 1.6% | 2.2% | 2.0% 2   | 2.5% |       | 36.9%     |         | 31.5%  |          | 42.4% | (     | 3.1%    | 59      | 9.8%  | 66.3%     |
| 1,000-3,299         |       |           |       |       |                        |       | 4.2%    | 3.7%   | 4.7% | 8.8% | 7.7% 1         | 0.0% | 2.4% | 2.2%    | 2.7% | 5.1%  | 4.5%     | 5.8% | 0.4% | 0.4%    | 0.4% | 0.8% | 0.7%     | 0.9% |       | 29.9%     |         | 24.9%  |          | 34.9% | 1     | 0.1%    | 66      | 6.8%  | 73.3%     |
| 3,300-9,999         |       |           |       |       |                        |       | 4.2%    | 3.7%   | 4.7% | 8.8% | 7.7% 1         | 0.0% | 2.4% | 2.2%    | 2.7% | 5.1%  | 4.5%     | 5.8% | 0.4% | 0.4%    | 0.4% | 0.8% | 0.7%     | 0.9% |       | 29.9%     |         | 24.9%  |          | 34.9% | 7     | 0.1%    | 66      | 6.8%  | 73.3%     |
| 10,000-49,999       | 2.0%  | 2.0%      | 2.0%  | 4.2%  | 4.2%                   | 4.2%  | 0.4%    | 0.4%   | 0.4% | 0.7% | 0.7%           | 0.7% | 0.1% | 0.1%    | 0.1% | 0.2%  | 0.2%     | 0.2% | 0.5% | 0.5%    | 0.5% | 1.0% | 1.0% 1   | 1.0% |       | 32.6%     |         | 32.6%  |          | 32.6% | 6     | 7.4%    | 67      | 7.4%  | 67.4%     |
| 50,000-99,999       | 2.0%  | 2.0%      | 2.0%  | 4.2%  | 4.2%                   | 4.2%  | 0.4%    | 0.4%   | 0.4% | 0.7% | 0.7%           | 0.7% | 0.1% | 0.1%    | 0.1% | 0.2%  | 0.2%     | 0.2% | 0.5% | 0.5%    | 0.5% | 1.0% | 1.0% 1   | 1.0% |       | 32.6%     |         | 32.6%  |          | 32.6% | (     | 7.4%    | 67      | 7.4%  | 67.4%     |
| 100,000-999,999     | 2.0%  | 2.0%      | 2.0%  | 4.2%  | 4.2%                   | 4.2%  | 0.4%    | 0.4%   | 0.4% | 0.7% | 0.7%           | 0.7% | 0.1% | 0.1%    | 0.1% | 0.2%  | 0.2%     | 0.2% | 0.5% | 0.5%    | 0.5% | 1.0% | 1.0% 1   | 1.0% |       | 32.6%     |         | 32.6%  |          | 32.6% | - 6   | 7.4%    | 67      | 7.4%  | 67.4%     |
| >=1,000,000         | 2.0%  | 2.0%      | 2.0%  | 4.2%  | 4.2%                   | 4.2%  | 0.4%    | 0.4%   | 0.4% | 0.7% | 0.7%           | 0.7% | 0.1% | 0.1%    | 0.1% | 0.2%  | 0.2%     | 0.2% | 0.5% | 0.5%    | 0.5% | 1.0% | 1.0% 1   | 1.0% |       | 32.6%     |         | 32.6%  |          | 32.6% | •     | 7.4%    | 67      | 7.4%  | 67.4%     |
| Total %             | 0.8%  | 0.8%      | 0.8%  | 1.6%  | 1.6%                   | 1.6%  | 2.9%    | 2.6%   | 3.2% | 5.3% | 4.6%           | 5.9% | 1.7% | 1.5%    | 1.9% | 3.0%  | 2.6%     | 3.4% | 0.7% | 0.7%    | 0.8% | 1.2% | 1.2% 1   | 1.3% |       | 33.3%     |         | 30.1%  |          | 36.4% | (     | 6.7%    | 64      | 4.8%  | 68.7%     |

Note: Detail may not add to totals due to independent rounding

Source: Surface water systems serving <10,000 people: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 2. Surface water systems serving 10,000 or m

Exhibit C.9b
Post-Stage 2 DBPR Treatment Technologies-in-Place for CWS Surface Water Plants (Number of Plants by Residual Disinfection Type)
Alternative 2

|                                                                                    | No Advar | and Tra  | atmont   | No Adva  | nood Tra | atmont   |                                |                                      |                | Chlori                 | ne Dioxid                  |                 |                      |                            |                |                                      |                                      |                |                                       |          |                                       |                          |                                                     |      |                                               |         |                                               |        |                                        |      |                                               |               |                                               |                                               |
|------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|--------------------------------|--------------------------------------|----------------|------------------------|----------------------------|-----------------|----------------------|----------------------------|----------------|--------------------------------------|--------------------------------------|----------------|---------------------------------------|----------|---------------------------------------|--------------------------|-----------------------------------------------------|------|-----------------------------------------------|---------|-----------------------------------------------|--------|----------------------------------------|------|-----------------------------------------------|---------------|-----------------------------------------------|-----------------------------------------------|
| System Size                                                                        |          | ology Cl |          |          | nology C |          | Chlorine                       | e Dioxide                            | e CL2          |                        | CLM                        | е               | UV                   | CL2                        |                | UV                                   | CLM                                  |                | Ozo                                   | ne CL2   |                                       | Ozo                      | ne CLM                                              | М    | F/UF CL2                                      |         | MF/                                           | UF CLM | 1                                      | GAC  | 10 CL2                                        |               | GAC 1                                         | 0 CLM                                         |
| (Population Served)                                                                | Mean     | 5th      | 95th     | Mean     | 5th      | 95th     | Mean                           | 5th                                  | 95th           | Mean                   | 5th 95                     | 5th I           | Mean 5               | 5th 9                      | 5th N          | /lean                                | 5th 95                               | ith N          | /lean                                 | 5th 9    | 5th N                                 | Mean                     | 5th 95th                                            | Mean | 5th 9                                         | 95th    | Mean                                          | 5th    | 95th                                   | Mean | 5th 9                                         | 5th Me        | ean 5                                         | th 95th                                       |
|                                                                                    |          | Α        |          |          | В        |          |                                | С                                    |                |                        | D                          |                 |                      | E                          |                |                                      | F                                    |                |                                       | G        |                                       |                          | Н                                                   |      | ı                                             |         |                                               | J      |                                        |      | K                                             |               | L                                             | L                                             |
| <100                                                                               | 69       | 54       | 85       | 98       | 97       | 100      |                                |                                      |                |                        |                            |                 | 5                    | 4                          | 6              | 5                                    | 4                                    | 6              |                                       |          |                                       |                          |                                                     | 52   | 52                                            | 52      | 39                                            | 37     | 41                                     |      |                                               |               |                                               |                                               |
| 100-499                                                                            | 98       | 65       | 131      | 264      | 258      | 269      | 7                              | 7                                    | 7              | 7                      | 7                          | 7               | 0                    | 0                          | 0              | 0                                    | 0                                    | 0              | 39                                    | 39       | 39                                    | 35                       | 35 35                                               | 72   | 71                                            | 72      | 72                                            | 67     | 78                                     |      |                                               |               |                                               |                                               |
| 500-999                                                                            | 62       | 41       | 83       | 166      | 163      | 169      | 5                              | 5                                    | 5              | 4                      | 4                          | 4               | 0                    | 0                          | 0              | 0                                    | 0                                    | 0              | 24                                    | 24       | 24                                    | 22                       | 22 22                                               | 45   | 45                                            | 45      | 46                                            | 42     | 49                                     |      |                                               |               |                                               |                                               |
| 1,000-3,299                                                                        | 116      | 69       | 162      | 469      | 462      | 476      | 22                             | 22                                   | 22             | 25                     | 25                         | 25              | 0                    | 0                          | 0              | 0                                    | 0                                    | 0              | 45                                    | 45       | 45                                    | 51                       | 51 51                                               | 76   | 75                                            | 77      | 79                                            | 72     | 86                                     |      |                                               |               |                                               |                                               |
| 3,300-9,999                                                                        | 129      | 77       | 181      | 523      | 515      | 531      | 24                             | 24                                   | 24             | 28                     | 28                         | 28              | 0                    | 0                          | 0              | 0                                    | 0                                    | 0              | 50                                    | 50       | 50                                    | 56                       | 56 56                                               | 85   | 84                                            | 86      | 88                                            | 80     | 96                                     |      |                                               |               |                                               |                                               |
| 10,000-49,999                                                                      | 216      | 216      | 216      | 446      | 446      | 446      | 51                             | 51                                   | 51             | 105                    | 105                        | 105             | 11                   | 11                         | 11             | 22                                   | 22                                   | 22             | 54                                    | 54       | 54                                    | 112                      | 112 112                                             | 8    | 8                                             | 8       | 16                                            | 16     | 16                                     | 43   | 43                                            | 43            | 89                                            | 89 89                                         |
| 50,000-99,999                                                                      | 97       | 97       | 97       | 200      | 200      | 200      | 23                             | 23                                   | 23             | 47                     | 47                         | 47              | 5                    | 5                          | 5              | 10                                   | 10                                   | 10             | 24                                    | 24       | 24                                    | 50                       | 50 50                                               | 3    | 3                                             | 3       | 7                                             | 7      | 7                                      | 19   | 19                                            | 19            | 40                                            | 40 40                                         |
| 100,000-999,999                                                                    | 102      | 102      | 102      | 211      | 211      | 211      | 24                             | 24                                   | 24             | 50                     | 50                         | 50              | 5                    | 5                          | 5              | 11                                   | 11                                   | 11             | 26                                    | 26       | 26                                    | 53                       | 53 53                                               | 3 4  | 4                                             | 4       | 8                                             | 8      | 8                                      | 20   | 20                                            | 20            | 42                                            | 42 42                                         |
| >=1,000,000                                                                        | 12       | 12       | 12       | 25       | 25       | 25       | 3                              | 3                                    | 3              | 6                      | 6                          | 6               | 1                    | 1                          | 1              | 1                                    | 1                                    | 1              | 3                                     | 3        | 3                                     | 6                        | 6 6                                                 | 6 0  | 0                                             | 0       | 1                                             | 1      | 1                                      | 2    | 2                                             | 2             | 5                                             | 5 5                                           |
| Total Plants                                                                       | 901      | 733      | 1,069    | 2,404    | 2,379    | 2,429    | 158                            | 158                                  | 158            | 272                    | 272                        | 273             | 26                   | 26                         | 27             | 49                                   | 49                                   | 50             | 266                                   | 266      | 266                                   | 385                      | 385 385                                             | 345  | 342                                           | 348     | 355                                           | 330    | 381                                    | 85   | 85                                            | 85            | 177 1                                         | 177 177                                       |
| System Size                                                                        | GAC1     | 0 + AD ( | CL2      | GAC1     | 0 + AD ( | CLM      | GA                             | C20 CL:                              | 2              | GAC                    | 20 CLM                     |                 | GAC20                | + AD CI                    | _2             | GAC20                                | + AD CL                              | M              | Memb                                  | ranes CL | 2                                     | Membr                    | anes CLM                                            |      |                                               | TOTAL   | . CL2                                         |        |                                        |      | T(                                            | OTAL CI       | _M                                            |                                               |
| (Population Served)                                                                | Mean     | 5th      | 95th     | Mean     | 5th      | 95th     | Mean                           | 5th                                  | 95th           | Mean                   | 5th 95                     | 5th I           | Mean 5               | 5th 9                      | 5th N          | /lean                                | 5th 95                               | ith N          | Лean                                  | 5th 9    | 5th N                                 | Mean                     | 5th 95th                                            | Mea  | an                                            | 5th     | 1                                             | 95th   | ı                                      | Mea  | n                                             | 5th           |                                               | 95th                                          |
|                                                                                    |          |          |          |          |          |          |                                |                                      |                |                        |                            |                 |                      |                            |                |                                      |                                      |                |                                       |          |                                       |                          |                                                     |      |                                               |         |                                               |        |                                        |      |                                               | . 1 1 . 1 . 1 | · Ni · Di                                     | R+T                                           |
|                                                                                    |          | М        |          |          | N        |          |                                | 0                                    |                |                        | Р                          |                 |                      | Q                          |                |                                      | R                                    |                |                                       | S        |                                       |                          | T                                                   |      | U = A+C+                                      | -E+G+I- | +K+M+O+                                       | -Q+S   |                                        | V    | = B+D+F                                       | +H+J+L        | . + 1 + 1 + 1 + 1                             |                                               |
| <100                                                                               |          | М        |          |          | N        |          | 23                             | O<br>20                              | 25             | 24                     | P<br>21                    | 26              | 13                   | Q<br>11                    | 15             | 14                                   | R<br>12                              | 16             | 8                                     | S<br>8   | 8                                     | 8                        | T 8 9                                               | 9    | U = A+C+<br>170                               | E+G+I   | +K+M+O+<br>150                                | -Q+S   | 191                                    | V    | = B+D+F<br>189                                |               | 179                                           | 199                                           |
| <100<br>100-499                                                                    |          | M        |          |          | N        |          | 23<br>36                       |                                      | 25<br>40       | 24<br>56               |                            | 26<br>63        |                      | -                          | 15<br>23       |                                      |                                      | 16<br>37       | 8                                     | 8<br>10  | 8                                     | 8<br>17                  | 8 9<br>15 19                                        | 9    |                                               | E+G+I-  |                                               | -Q+S   | 191<br>325                             | V    |                                               |               |                                               |                                               |
|                                                                                    |          | M        |          |          | N        |          |                                | 20                                   | 25<br>40<br>25 |                        | 21                         | 26<br>63<br>40  | 13                   | 11                         | 15<br>23<br>15 | 14                                   | 12                                   | 16<br>37<br>23 | 8<br>11<br>7                          | 8        | 8<br>12<br>8                          | 8<br>17<br>11            | 0 0                                                 | 9    | 170                                           | E+G+I-  | 150                                           | -Q+S   |                                        | V    | 189                                           |               | 179                                           | 199                                           |
| 100-499                                                                            |          | M        |          |          | N        |          | 36                             | 20<br>32                             | 40             | 56                     | 21<br>49<br>31             | 63              | 13<br>21             | 11<br>18                   | -              | 14<br>32                             | 12<br>28                             |                | 8<br>11<br>7<br>4                     | 8        | 8<br>12<br>8<br>5                     | 8<br>17<br>11<br>9       | 15 19                                               | 2    | 170<br>283                                    | ·E+G+l- | 150<br>242                                    | -Q+S   | 325                                    | V    | 189<br>483                                    |               | 179<br>459                                    | 199<br>508                                    |
| 100-499<br>500-999                                                                 |          | M        |          |          | N        |          | 36<br>22                       | 20<br>32<br>20                       | 40<br>25       | 56<br>35               | 21<br>49<br>31<br>87       | 63<br>40        | 13<br>21<br>13       | 11<br>18<br>11             | 15             | 14<br>32<br>20                       | 12<br>28<br>18                       | 23             | 8<br>11<br>7<br>4<br>5                | 8        | 8<br>12<br>8<br>5<br>5                | 8<br>17<br>11<br>9       | 15 19<br>9 12                                       | 2    | 170<br>283<br>178                             | +E+G+I- | 150<br>242<br>152                             | -Q+S   | 325<br>205                             | V    | 189<br>483<br>304                             |               | 179<br>459<br>289                             | 199<br>508<br>320                             |
| 100-499<br>500-999<br>1,000-3,299                                                  | 26       | M 26     | 26       | 54       | N 54     | 54       | 36<br>22<br>47<br>53           | 20<br>32<br>20                       | 40<br>25<br>53 | 56<br>35<br>100        | 21<br>49<br>31<br>87       | 63<br>40<br>113 | 13<br>21<br>13<br>28 | 11<br>18<br>11<br>24       | 15<br>31       | 14<br>32<br>20<br>58                 | 12<br>28<br>18<br>50                 | 23             | 8<br>11<br>7<br>4<br>5                | 8        | 8<br>12<br>8<br>5<br>5                | 8<br>17<br>11<br>9<br>11 | 15 19<br>9 12<br>8 1                                | 2    | 170<br>283<br>178<br>338                      | +E+G+I- | 150<br>242<br>152<br>281                      | -Q+S   | 325<br>205<br>395                      | V    | 189<br>483<br>304<br>791                      | :             | 179<br>459<br>289<br>755                      | 199<br>508<br>320<br>828                      |
| 100-499<br>500-999<br>1,000-3,299<br>3,300-9,999                                   | 26<br>12 |          | 26<br>12 | 54<br>24 |          | 54<br>24 | 36<br>22<br>47<br>53           | 20<br>32<br>20                       | 40<br>25<br>53 | 56<br>35<br>100<br>111 | 21<br>49<br>31<br>87<br>96 | 63<br>40<br>113 | 13<br>21<br>13<br>28 | 11<br>18<br>11<br>24<br>27 | 15<br>31       | 14<br>32<br>20<br>58                 | 12<br>28<br>18<br>50                 | 23             | 8<br>11<br>7<br>4<br>5<br>6<br>3      | 8        | 8<br>12<br>8<br>5<br>5<br>6<br>3      | 17<br>11<br>9<br>11      | 15 19<br>9 12<br>8 1 <sup>-</sup><br>9 12           | 22   | 170<br>283<br>178<br>338<br>377               | +E+G+I  | 150<br>242<br>152<br>281<br>314               | -Q+S   | 325<br>205<br>395<br>440               | V    | 189<br>483<br>304<br>791<br>882               | :             | 179<br>459<br>289<br>755<br>841               | 199<br>508<br>320<br>828<br>922               |
| 100-499<br>500-999<br>1,000-3,299<br>3,300-9,999<br>10,000-49,999                  |          | 26       | -        |          | 54       |          | 36<br>22<br>47<br>53<br>5<br>2 | 20<br>32<br>20<br>42<br>47<br>5      | 40<br>25<br>53 | 56<br>35<br>100<br>111 | 21<br>49<br>31<br>87<br>96 | 63<br>40<br>113 | 13<br>21<br>13<br>28 | 11<br>18<br>11<br>24<br>27 | 15<br>31       | 14<br>32<br>20<br>58                 | 12<br>28<br>18<br>50                 | 23             | 8<br>11<br>7<br>4<br>5<br>6<br>3      | 8        | 8<br>12<br>8<br>5<br>5<br>6<br>3      | 17<br>11<br>9<br>11      | 15 19<br>9 12<br>8 1 <sup>-</sup><br>9 12           | 2    | 170<br>283<br>178<br>338<br>377<br>421        | ·E+G+l- | 150<br>242<br>152<br>281<br>314<br>421        | -Q+S   | 325<br>205<br>395<br>440<br>421        | V    | 189<br>483<br>304<br>791<br>882<br>871        | :             | 179<br>459<br>289<br>755<br>841<br>871        | 199<br>508<br>320<br>828<br>922<br>871        |
| 100-499<br>500-999<br>1,000-3,299<br>3,300-9,999<br>10,000-49,999<br>50,000-99,999 | 12       | 26<br>12 | 12       | 24       | 54<br>24 | 24       | 36<br>22<br>47<br>53<br>5<br>2 | 20<br>32<br>20<br>42<br>47<br>5<br>2 | 40<br>25<br>53 | 56<br>35<br>100<br>111 | 21<br>49<br>31<br>87<br>96 | 63<br>40<br>113 | 13<br>21<br>13<br>28 | 11<br>18<br>11<br>24<br>27 | 15<br>31       | 14<br>32<br>20<br>58<br>65<br>3<br>1 | 12<br>28<br>18<br>50<br>56<br>3<br>1 | 23             | 8<br>11<br>7<br>4<br>5<br>6<br>3<br>3 | 8        | 8<br>12<br>8<br>5<br>5<br>6<br>3<br>3 | 17<br>11<br>9<br>11      | 15 19<br>9 12<br>8 1 <sup>-2</sup><br>9 12<br>13 13 |      | 170<br>283<br>178<br>338<br>377<br>421<br>189 | ·E+G+I  | 150<br>242<br>152<br>281<br>314<br>421<br>189 | -Q+S   | 325<br>205<br>395<br>440<br>421<br>189 | V    | 189<br>483<br>304<br>791<br>882<br>871<br>391 | :             | 179<br>459<br>289<br>755<br>841<br>871<br>391 | 199<br>508<br>320<br>828<br>922<br>871<br>391 |

Note: Detail may not add to totals due to independent rounding

Source: Surface water systems serving <10,000 people: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 2. Surface water systems serving 10,000 or m

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

## Exhibit C.9c Post-Stage 2 DBPR Treatment Technologies-in-Place for NTNCWS Surface Water Plants (Percent of Plants by Residual Disinfection Type)

|                     |       |           |       |         |           |       |         |           |       |                 |        |      |         |      | Altern | ative 2 |      |      |         |      |      |            |       |          |         |         |        |       |           |         |         |           |
|---------------------|-------|-----------|-------|---------|-----------|-------|---------|-----------|-------|-----------------|--------|------|---------|------|--------|---------|------|------|---------|------|------|------------|-------|----------|---------|---------|--------|-------|-----------|---------|---------|-----------|
| System Size         |       | nced Trea |       | No Adva | anced Tre |       | Chlorin | e Dioxide | e CL2 | Chlorine Dioxid | de CLM |      | UV CL2  | 2    | ι      | IV CLM  | ı    | 0    | zone CL | 2    | Oz   | one CLM    | М     | F/UF CL2 | 2       | MF      | UF CLM | 1     | GAC 10 (  | CL2     | GAC     | C 10 CLM  |
| (Population Served) | Mean  | 5th       | 95th  | Mean    | 5th       | 95th  | Mean    | 5th       | 95th  | Mean 5th        | 95th   | Mean | 5th     | 95th | Mean   | 5th     | 95th | Mean | 5th     | 95th | Mean | 5th 95th   | Mean  | 5th      | 95th    | Mean    | 5th    | 95th  | Mean 5th  | 95th    | Mean    | 5th 95th  |
|                     |       | Α         |       |         | В         |       |         | С         |       | D               |        |      | Е       |      |        | F       |      |      | G       |      |      | Н          |       | Ţ        |         |         | J      |       | K         |         |         | ٦         |
| <100                | 19.3% | 15.0%     | 23.6% | 27.4%   | 26.9%     | 27.9% |         |           |       |                 |        | 1.4% | 1.2%    | 1.6% | 1.5%   | 1.2%    | 1.7% |      |         |      |      |            | 14.5% | 14.5%    | 14.5%   | 10.9%   | 10.4%  | 11.5% |           |         |         |           |
| 100-499             | 12.8% | 8.5%      | 17.1% | 34.4%   | 33.7%     | 35.1% | 1.0%    | 1.0%      | 1.0%  | 0.9% 0.9%       | 0.9%   | 0.0% | 0.0%    | 0.0% | 0.0%   | 0.0%    | 0.0% | 5.1% | 5.1%    | 5.1% | 4.6% | 4.6% 4.6%  | 9.3%  | 9.3%     | 9.4%    | 9.4%    | 8.7%   | 10.2% |           |         |         |           |
| 500-999             | 12.8% | 8.5%      | 17.1% | 34.4%   | 33.7%     | 35.1% | 1.0%    | 1.0%      | 1.0%  | 0.9% 0.9%       | 0.9%   | 0.0% | 0.0%    | 0.0% | 0.0%   | 0.0%    | 0.0% | 5.1% | 5.1%    | 5.1% | 4.6% | 4.6% 4.6%  | 9.3%  | 9.3%     | 9.4%    | 9.4%    | 8.7%   | 10.2% |           |         |         |           |
| 1,000-3,299         | 10.2% | 6.1%      | 14.4% | 41.6%   | 40.9%     | 42.2% | 1.9%    | 1.9%      | 1.9%  | 2.2% 2.2%       | 2.2%   | 0.0% | 0.0%    | 0.0% | 0.0%   | 0.0%    | 0.0% | 4.0% | 4.0%    | 4.0% | 4.5% | 4.5% 4.5%  | 6.8%  | 6.7%     | 6.8%    | 7.0%    | 6.3%   | 7.6%  |           |         |         |           |
| 3,300-9,999         | 10.2% | 6.1%      | 14.4% | 41.6%   | 40.9%     | 42.2% | 1.9%    | 1.9%      | 1.9%  | 2.2% 2.2%       | 2.2%   | 0.0% | 0.0%    | 0.0% | 0.0%   | 0.0%    | 0.0% | 4.0% | 4.0%    | 4.0% | 4.5% | 4.5% 4.5%  | 6.8%  | 6.7%     | 6.8%    | 7.0%    | 6.3%   | 7.6%  |           |         |         |           |
| 10,000-49,999       | 16.7% | 16.7%     | 16.7% | 34.6%   | 34.6%     | 34.6% | 3.9%    | 3.9%      | 3.9%  | 8.1% 8.1%       | 8.1%   | 0.8% | 0.8%    | 0.8% | 1.7%   | 1.7%    | 1.7% | 4.2% | 4.2%    | 4.2% | 8.6% | 8.6% 8.6%  | 0.6%  | 0.6%     | 0.6%    | 1.2%    | 1.2%   | 1.2%  | 3.3% 3.3% | 3.3%    | 6.9%    | 6.9% 6.9% |
| 50,000-99,999       | 0.0%  | 0.0%      | 0.0%  | 0.0%    | 0.0%      | 0.0%  | 0.0%    | 0.0%      | 0.0%  | 0.0% 0.0%       | 0.0%   | 0.0% | 0.0%    | 0.0% | 0.0%   | 0.0%    | 0.0% | 0.0% | 0.0%    | 0.0% | 0.0% | 0.0% 0.0%  | 0.0%  | 0.0%     | 0.0%    | 0.0%    | 0.0%   | 0.0%  | 0.0% 0.0% | 0.0%    | 0.0%    | 0.0% 0.0% |
| 100,000-999,999     | 16.7% | 16.7%     | 16.7% | 34.6%   | 34.6%     | 34.6% | 3.9%    | 3.9%      | 3.9%  | 8.1% 8.1%       | 8.1%   | 0.8% | 0.8%    | 0.8% | 1.7%   | 1.7%    | 1.7% | 4.2% | 4.2%    | 4.2% | 8.6% | 8.6% 8.6%  | 0.6%  | 0.6%     | 0.6%    | 1.2%    | 1.2%   | 1.2%  | 3.3% 3.3% | 3.3%    | 6.9%    | 6.9% 6.9% |
| >=1,000,000         | 0.0%  | 0.0%      | 0.0%  | 0.0%    | 0.0%      | 0.0%  | 0.0%    | 0.0%      | 0.0%  | 0.0% 0.0%       | 0.0%   | 0.0% | 0.0%    | 0.0% | 0.0%   | 0.0%    | 0.0% | 0.0% | 0.0%    | 0.0% | 0.0% | 0.0% 0.0%  | 0.0%  | 0.0%     | 0.0%    | 0.0%    | 0.0%   | 0.0%  | 0.0% 0.0% | 0.0%    | 0.0%    | 0.0% 0.0% |
| Total %             | 14.4% | 10.1%     | 18.6% | 33.4%   | 32.8%     | 34.1% | 0.8%    | 0.8%      | 0.8%  | 0.9% 0.9%       | 0.9%   | 0.4% | 0.4%    | 0.5% | 0.4%   | 0.4%    | 0.5% | 3.4% | 3.4%    | 3.4% | 3.2% | 3.2% 3.2%  | 10.4% | 10.3%    | 10.4%   | 9.4%    | 8.8%   | 10.1% | 0.0% 0.0% | 0.0%    | 0.1%    | 0.1% 0.1% |
| System Size         | GAC   | 10 + AD C | CL2   | GAC'    | 10 + AD ( | CLM   | G/      | C20 CL    | 2     | GAC20 C         | _M     | GAC  | 20 + AE | CL2  | GAC2   | 0 + AD  | CLM  | Men  | nbranes | CL2  | Memi | branes CLM |       |          | TOTAL   | _CL2    |        |       |           | TOTAL   | CLM     |           |
| (Population Served) | Mean  | 5th       | 95th  | Mean    | 5th       | 95th  | Mean    | 5th       | 95th  | Mean 5th        | 95th   | Mean | 5th     | 95th | Mean   | 5th     | 95th | Mean | 5th     | 95th | Mean | 5th 95th   | Mea   | an       | 5tl     | h       | 95t    | h     | Mean      | 5t      | .h      | 95th      |
|                     |       | М         |       |         | N         |       |         | 0         |       | Р               |        |      | Q       |      |        | R       |      |      | S       |      |      | T          |       | U = A+0  | C+E+G+I | I+K+M+O | +Q+S   |       | V = B+l   | D+F+H+、 | J+L+N+F | P+R+T     |
| <100                |       |           |       |         |           |       | 6.3%    | 5.6%      | 7.0%  | 6.6% 5.8%       | 7.4%   | 3.7% | 3.2%    | 4.3% | 3.8%   | 3.2%    | 4.4% | 2.2% | 2.2%    | 2.2% | 2.4% | 2.2% 2.5%  | ,     | 47.5%    |         | 41.7%   |        | 53.2% | 52.5%     | ,       | 49.7%   | 55.4%     |
| 100-499             |       |           |       |         |           |       | 4.7%    | 4.1%      | 5.2%  | 7.3% 6.3%       | 8.3%   | 2.7% | 2.4%    | 3.0% | 4.2%   | 3.6%    | 4.8% | 1.4% | 1.3%    | 1.6% | 2.2% | 2.0% 2.5%  |       | 36.9%    |         | 31.5%   |        | 42.4% | 63.1%     | )       | 59.8%   | 66.3%     |
| 500-999             |       |           |       |         |           |       | 4.7%    | 4.1%      | 5.2%  | 7.3% 6.3%       | 8.3%   | 2.7% | 2.4%    | 3.0% | 4.2%   | 3.6%    | 4.8% | 1.4% | 1.3%    | 1.6% | 2.2% | 2.0% 2.5%  | ,     | 36.9%    |         | 31.5%   |        | 42.4% | 63.1%     | ,       | 59.8%   | 66.3%     |
| 1,000-3,299         |       |           |       |         |           |       | 4.2%    | 3.7%      | 4.7%  | 8.8% 7.7%       | 10.0%  | 2.4% | 2.2%    | 2.7% | 5.1%   | 4.5%    | 5.8% | 0.4% | 0.4%    | 0.4% | 0.8% | 0.7% 0.9%  | ,     | 29.9%    |         | 24.9%   |        | 34.9% | 70.1%     | ,       | 66.8%   | 73.3%     |
| 3,300-9,999         |       |           |       |         |           |       | 4.2%    | 3.7%      | 4.7%  | 8.8% 7.7%       | 10.0%  | 2.4% | 2.2%    | 2.7% | 5.1%   | 4.5%    | 5.8% | 0.4% | 0.4%    | 0.4% | 0.8% | 0.7% 0.9%  | ,     | 29.9%    |         | 24.9%   |        | 34.9% | 70.1%     | ,       | 66.8%   | 73.3%     |
| 10,000-49,999       | 2.0%  | 2.0%      | 2.0%  | 4.2%    | 4.2%      | 4.2%  | 0.4%    | 0.4%      | 0.4%  | 0.7% 0.7%       | 0.7%   | 0.1% | 0.1%    | 0.1% | 0.2%   | 0.2%    | 0.2% | 0.5% | 0.5%    | 0.5% | 1.0% | 1.0% 1.0%  |       | 32.6%    |         | 32.6%   |        | 32.6% | 67.4%     | ,       | 67.4%   | 67.4%     |
| 50,000-99,999       | 0.0%  | 0.0%      | 0.0%  | 0.0%    | 0.0%      | 0.0%  | 0.0%    | 0.0%      | 0.0%  | 0.0% 0.0%       | 0.0%   | 0.0% | 0.0%    | 0.0% | 0.0%   | 0.0%    | 0.0% | 0.0% | 0.0%    | 0.0% | 0.0% | 0.0% 0.0%  | ,     | 0.0%     |         | 0.0%    |        | 0.0%  | 0.0%      | ,       | 0.0%    | 0.0%      |
| 100,000-999,999     | 2.0%  | 2.0%      | 2.0%  | 4.2%    | 4.2%      | 4.2%  | 0.4%    | 0.4%      | 0.4%  | 0.7% 0.7%       | 0.7%   | 0.1% | 0.1%    | 0.1% | 0.2%   | 0.2%    | 0.2% | 0.5% | 0.5%    | 0.5% | 1.0% | 1.0% 1.0%  | ,     | 32.6%    |         | 32.6%   |        | 32.6% | 67.4%     | ,       | 67.4%   | 67.4%     |
| >=1,000,000         | 0.0%  | 0.0%      | 0.0%  | 0.0%    | 0.0%      | 0.0%  | 0.0%    | 0.0%      | 0.0%  | 0.0% 0.0%       | 0.0%   | 0.0% | 0.0%    | 0.0% | 0.0%   | 0.0%    | 0.0% | 0.0% | 0.0%    | 0.0% | 0.0% | 0.0% 0.0%  |       | 0.0%     |         | 0.0%    |        | 0.0%  | 0.0%      | ,       | 0.0%    | 0.0%      |
| Total %             | 0.0%  | 0.0%      | 0.0%  | 0.0%    | 0.0%      | 0.0%  | 5.0%    | 4.5%      | 5.6%  | 7.3% 6.3%       | 8.2%   | 2.9% | 2.6%    | 3.3% | 4.2%   | 3.6%    | 4.8% | 1.5% | 1.4%    | 1.6% | 2.0% | 1.8% 2.3%  |       | 38.9%    |         | 33.5%   |        | 44.3% | 61.1%     |         | 58.0%   | 64.2%     |

Note: Detail may not add to totals due to independent rounding

Source: Surface water systems serving <10,000 people: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 2.

Exhibit C.9d

Post-Stage 2 DBPR Treatment Technologies-in-Place for NTNCWS Surface Water Plants (Number of Plants by Residual Disinfection Type)

Alternative 2

|                     |      |           |      |          |           |      |          |           |        |          |             |      |         |      | ,     |       |      |      |           |      |         |         |      |            |        |       |          |      |          |           |          |
|---------------------|------|-----------|------|----------|-----------|------|----------|-----------|--------|----------|-------------|------|---------|------|-------|-------|------|------|-----------|------|---------|---------|------|------------|--------|-------|----------|------|----------|-----------|----------|
| System Size         |      | anced Tre |      | No Advar | nced Trea |      | Chlorine | e Dioxide | CL2    | Chlorine | Dioxide CLN | 1    | UV CL   | 2    | U     | V CLM |      | Ozo  | one CL2   |      | Ozone   | e CLM   | MF   | -/UF CL2   |        | MF/   | UF CLM   | GA   | C 10 CL2 | GA        | C 10 CLM |
| (Population Served) | Mean | 5th       | 95th | Mean     | 5th       | 95th | Mean     | 5th 9     | 95th I | Mean     | 5th 95th    | Mear | n 5th   | 95th | Mean  | 5th   | 95th | Mean | 5th 95    | h Me | lean 5  | th 95th | Mean | 5th 95th   | h M    | ean   | 5th 95th | Mean | 5th 95   | th Mean   | 5th 95th |
| (: opanian earres)  |      | A         |      |          | В         |      |          | С         |        |          | D           | 1    | E       |      |       | F     |      |      | G         |      |         |         |      | 1          |        |       | J        |      | K        |           | L        |
| <100                | 44   | 34        | 53   | 62       | 61        | 63   |          |           |        |          |             |      | 3       | 3 4  | 3     | 3     | 4    |      |           |      |         |         | 33   | 33         | 33     | 25    | 23 26    |      |          |           |          |
| 100-499             | 40   | 26        | 53   | 107      | 105       | 110  | 3        | 3         | 3      | 3        | 3           | 3    | 0       | 0 (  | 0     | 0     | 0    | 16   | 16        | 16   | 14      | 14 14   | 29   | 29         | 29     | 29    | 27 32    |      |          |           |          |
| 500-999             | 14   | 9         | 18   | 36       | 36        | 37   | 1        | 1         | 1      | 1        | 1           | 1    | 0       | 0 (  | 0     | 0     | 0    | 5    | 5         | 5    | 5       | 5 5     | 10   | 10         | 10     | 10    | 9 1      |      |          |           |          |
| 1,000-3,299         | 9    | 6         | 13   | 38       | 38        | 39   | 2        | 2         | 2      | 2        | 2           | 2    | 0       | 0 (  | 0     | 0     | 0    | 4    | 4         | 4    | 4       | 4 4     | 6    | 6          | 6      | 6     | 6        |      |          |           |          |
| 3,300-9,999         | 3    | 2         | 4    | 10       | 10        | 11   | 0        | 0         | 0      | 1        | 1           | 1    | 0       | 0 (  | 0     | 0     | 0    | 1    | 1         | 1    | 1       | 1 1     | 2    | 2          | 2      | 2     | 2 2      |      |          |           |          |
| 10,000-49,999       | 1    | 1         | 1    | 2        | 2         | 2    | 0        | 0         | 0      | 0        | 0           | 0    | 0       | 0 (  | 0     | 0     | 0    | 0    | 0         | 0    | 0       | 0 0     | 0    | 0          | 0      | 0     | 0 (      | 0    | 0        | 0 0       | 0 0      |
| 50,000-99,999       | 0    | 0         | 0    | 0        | 0         | 0    | 0        | 0         | 0      | 0        | 0           | 0    | 0       | 0 (  | 0     | 0     | 0    | 0    | 0         | 0    | 0       | 0 0     | 0    | 0          | 0      | 0     | 0 (      | 0    | 0        | 0 0       | 0 0      |
| 100,000-999,999     | 0    | 0         | 0    | 0        | 0         | 0    | 0        | 0         | 0      | 0        | 0           | 0    | 0       | 0 (  | 0     | 0     | 0    | 0    | 0         | 0    | 0       | 0 0     | 0    | 0          | 0      | 0     | 0 (      | 0    | 0        | 0 0       | 0 0      |
| >=1,000,000         | 0    | 0         | 0    | 0        | 0         | 0    | 0        | 0         | 0      | 0        | 0           | 0    | 0       | 0 (  | 0     | 0     | 0    | 0    | 0         | 0    | 0       | 0 0     | 0    | 0          | 0      | 0     | 0 (      | 0    | 0        | 0 0       | 0 0      |
| Total Plants        | 110  | 78        | 143  | 256      | 252       | 261  | 6        | 6         | 6      | 7        | 7           | 7 :  | 3       | 3 4  | 3     | 3     | 4    | 26   | 26        | 26   | 25      | 25 25   | 80   | 79         | 80     | 72    | 67 7     | 0    | 0        | 0 0       | 0 0      |
| System Size         |      | 10 + AD ( |      | GAC1     | 0 + AD C  |      | GA       | C20 CL2   |        | GAC      | 20 CLM      | GA   | C20 + A |      | GAC20 |       |      | Memb | ranes CL2 |      | Membrai | nes CLM |      |            | TAL C  | L2    |          |      | TO       | TAL CLM   |          |
| (Population Served) | Mean | 5th       | 95th | Mean     | 5th       | 95th | Mean     | 5th       | 95th I | Mean     | 5th 95th    | Mear | n 5th   | 95th | Mean  | 5th   | 95th | Mean | 5th 95    | h Me | 1ean 5  | th 95th | Mea  |            | 5th    |       | 95th     | Mea  |          | 5th       | 95th     |
|                     |      | М         |      |          | N         |      |          | 0         |        |          | Р           |      | Q       |      |       | R     |      |      | S         |      | 1       | Γ       |      | U = A+C+E+ | -G+I+K | +M+O+ | Q+S      | V    | = B+D+F+ | -H+J+L+N+ | P+R+T    |
| <100                |      |           |      |          |           |      | 14       | 13        | 16     | 15       | 13 1        | 7    | 8       | 7 10 | 9     | 7     | 10   | 5    | 5         | 5    | 5       | 5 6     |      | 107        |        | 94    | 120      | )    | 119      | 112       | 125      |
| 100-499             |      |           |      |          |           |      | 15       | 13        | 16     | 23       | 20 2        | 6    | 8       | 7 9  | 13    | 11    | 15   | 4    | 4         | 5    | 7       | 6 8     |      | 115        |        | 98    | 132      | !    | 197      | 187       | 207      |
| 500-999             |      |           |      |          |           |      | 5        | 4         | 6      | 8        | 7           | 9 :  | 3       | 3 3  | 4     | 4     | 5    | 2    | 1         | 2    | 2       | 2 3     |      | 39         |        | 33    | 4        | ;    | 67       | 63        | 70       |
| 1,000-3,299         |      |           |      |          |           |      | 4        | 3         | 4      | 8        | 7           | 9 :  | 2       | 2 :  | 5     | 4     | 5    | 0    | 0         | 0    | 1       | 1 1     |      | 28         |        | 23    | 32       | 2    | 64       | 61        | 67       |
| 3,300-9,999         |      |           |      |          |           |      | 1        | 1         | 1      | 2        | 2           | 3    | 1       | 1 1  | 1     | 1     | 1    | 0    | 0         | 0    | 0       | 0 0     |      | 7          |        | 6     | 9        | )    | 18       | 17        | 18       |
| 10,000-49,999       | 0    | 0         | 0    | 0        | 0         | 0    | 0        | 0         | 0      | 0        | 0           | 0    | 0       | 0 (  | 0     | 0     | 0    | 0    | 0         | 0    | 0       | 0 0     |      | 2          |        | 2     | :        | 2    | 3        | 3         | 3        |
| 50,000-99,999       | 0    | 0         | 0    | 0        | 0         | 0    | 0        | 0         | 0      | 0        | 0           | 0    | 0       | 0 (  | 0     | 0     | 0    | 0    | 0         | 0    | 0       | 0 0     |      | 0          |        | 0     | (        | )    | 0        | 0         | Ö        |
| 100,000-999,999     | 0    | 0         | 0    | 0        | 0         | 0    | 0        | 0         | 0      | 0        | 0           | 0    | 0       | 0 (  | 0     | 0     | 0    | 0    | 0         | 0    | 0       | 0 0     |      | 0          |        | 0     | (        | )    | 1        | 1         | 1        |
| 4 000 000           | 0    | 0         | 0    | 0        | 0         | 0    | 0        | 0         | 0      | 0        | 0           | 0    | 0       | 0 (  | 0     | 0     | 0    | 0    | 0         | 0    | 0       | 0 0     |      | 0          |        | 0     | (        | )    | 0        | 0         | 0        |
| >=1,000,000         | U    | U         | U    | 0        | •         | _    | 0        | •         |        |          |             |      |         |      |       |       |      |      |           |      |         |         |      |            |        |       |          |      |          |           |          |
| Total Plants        | 0    | 0         | 0    | 0        | 0         | 0    | 39       | 34        | 43     | 56       | 49 6        | 3 2  | 3 2     | 0 26 | 32    | 28    | 37   | 11   | 11        | 12   | 16      | 14 17   |      | 299        |        | 257   | 340      | )    | 468      | 445       | 492      |

Note: Detail may not add to totals due to independent rounding

Source: Surface water systems serving <10,000 people: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Alternative 2. Surface water systems serving 10,000 or more people: Use ending technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Pre-Stage 3 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Pre-Stage 3 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Pre-Stage 3 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Pre-Stage 3 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Pre-Stage 3 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Pre-Stage 3 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Pre-Stage 3 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Pre-Stage 3 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Pre-Stage 3 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Pre-Stage 3 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Pre-Stage 3 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Pre-Stage 3 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Pre-Stage

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

Exhibit C.10a

Post-Stage 2 DBPR Treatment Technologies-in-Place for CWS Ground Water Plants (Percent of Plants, by Residual Disinfectant Type)

Alternative 2

|                     | No Advanced<br>Treatment | No Advanced<br>Treatment |        |        |       |       |       |       |           |           |                 |                 |
|---------------------|--------------------------|--------------------------|--------|--------|-------|-------|-------|-------|-----------|-----------|-----------------|-----------------|
| System Size         | Technology               | Technology               |        |        | Ozone | Ozone | GAC20 | GAC20 | Membranes | Membranes |                 |                 |
| (Population Served) | CL21                     | CLM1                     | UV CL2 | UV CLM | CL2   | CLM   | CL2   | CLM   | CL2       | CLM       | Total Using CL2 | Total Using CLM |
|                     | А                        | В                        | С      | D      | Е     | F     | G     | Н     | I         | J         | K = A+C+E+G+I   | L = B+D+F+H+J   |
| <100                | 90.9%                    | 6.2%                     | 0.0%   | 0.9%   | 0.0%  | 0.0%  | 0.3%  | 0.9%  | 0.3%      | 0.5%      | 91.5%           | 8.5%            |
| 100-499             | 89.9%                    | 6.7%                     | 0.0%   | 1.3%   | 0.2%  | 0.5%  | 0.1%  | 0.6%  | 0.1%      | 0.5%      | 90.4%           | 9.6%            |
| 500-999             | 89.9%                    | 6.7%                     | 0.0%   | 1.3%   | 0.2%  | 0.5%  | 0.1%  | 0.6%  | 0.1%      | 0.5%      | 90.4%           | 9.6%            |
| 1,000-3,299         | 90.7%                    | 6.0%                     | 0.0%   | 1.4%   | 0.3%  | 0.9%  | 0.0%  | 0.2%  | 0.1%      | 0.5%      | 91.1%           | 8.9%            |
| 3,300-9,999         | 90.7%                    | 6.0%                     | 0.0%   | 1.4%   | 0.3%  | 0.9%  | 0.0%  | 0.2%  | 0.1%      | 0.5%      | 91.1%           | 8.9%            |
| 10,000-49,999       | 82.2%                    | 13.1%                    |        |        | 1.0%  | 0.8%  | 0.0%  | 0.5%  | 1.7%      | 0.8%      | 84.9%           | 15.1%           |
| 50,000-99,999       | 82.2%                    | 13.1%                    |        |        | 1.0%  | 0.8%  | 0.0%  | 0.5%  | 1.7%      | 0.8%      | 84.9%           | 15.1%           |
| 100,000-999,999     | 82.9%                    | 12.7%                    |        |        | 1.0%  | 0.7%  | 0.0%  | 0.4%  | 1.7%      | 0.7%      | 85.5%           | 14.5%           |
| >=1,000,000         | 82.9%                    | 12.7%                    |        |        | 1.0%  | 0.7%  | 0.0%  | 0.4%  | 1.7%      | 0.7%      | 85.5%           | 14.5%           |
| Total %             | 89.1%                    | 7.4%                     | 0.0%   | 1.1%   | 0.3%  | 0.6%  | 0.1%  | 0.5%  | 0.4%      | 0.5%      | 89.9%           | 10.1%           |

Source: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.17) to the Technology Selection Delta for the Alternative 2.

Exhibit C.10b

Post-Stage 2 DBPR Treatment Technologies-in-Place for CWS Ground Water Plants (Number of Plants, by Residual Disinfectant Type)

Alternative 2

| System Size         | No Advanced<br>Treatment<br>Technology | No Advanced<br>Treatment<br>Technology |        |        | Ozone | Ozone | GAC20 | GAC20 | Membranes | Membranes |                 |                 |
|---------------------|----------------------------------------|----------------------------------------|--------|--------|-------|-------|-------|-------|-----------|-----------|-----------------|-----------------|
| (Population Served) | CL21                                   | CLM1                                   | UV CL2 | UV CLM | CL2   | CLM   | CL2   | CLM   | CL2       | CLM       | Total Using CL2 | Total Using CLM |
|                     | Α                                      | В                                      | С      | D      | Е     | F     | G     | Н     | I         | J         | K = A+C+E+G+I   | L = B+D+F+H+J   |
| <100                | 5,836                                  | 400                                    | 0      | 59     | 0     | 0     | 20    | 56    | 22        | 29        | 5,878           | 545             |
| 100-499             | 13,709                                 | 1,017                                  | 0      | 200    | 25    | 74    | 22    | 97    | 20        | 80        | 13,775          | 1,467           |
| 500-999             | 5,480                                  | 406                                    | 0      | 80     | 10    | 29    | 9     | 39    | 8         | 32        | 5,507           | 587             |
| 1,000-3,299         | 6,884                                  | 454                                    | 0      | 108    | 22    | 66    | 0     | 13    | 4         | 36        | 6,910           | 677             |
| 3,300-9,999         | 4,564                                  | 301                                    | 0      | 71     | 15    | 44    | 0     | 8     | 3         | 24        | 4,581           | 449             |
| 10,000-49,999       | 4,426                                  | 706                                    |        |        | 53    | 42    | 0     | 24    | 90        | 42        | 4,568           | 815             |
| 50,000-99,999       | 589                                    | 94                                     |        |        | 7     | 6     | 0     | 3     | 12        | 6         | 608             | 108             |
| 100,000-999,999     | 761                                    | 116                                    |        |        | 9     | 6     | 0     | 4     | 15        | 7         | 785             | 133             |
| >=1,000,000         | 23                                     | 3                                      |        |        | 0     | 0     | 0     | 0     | 0         | 0         | 23              | 4               |
| Total Plants        | 42,271                                 | 3,499                                  | 0      | 519    | 140   | 267   | 51    | 245   | 173       | 255       | 42,635          | 4,784           |

Note: Detail may not add to totals due to independent rounding

Source: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.17) to the Technology Selection Delta for the Alternative 2.

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

Exhibit C.10c

Post-Stage 2 DBPR Treatment Technologies-in-Place for NTNCWS Ground Water Plants (Percent of Plants, by Residual Disinfectant Type)

Alternative 2

| System Size         | No Advanced<br>Treatment<br>Technology | No Advanced<br>Treatment<br>Technology |        |        | Ozone | Ozone | GAC20 | GAC20 | Membranes | Membranes |                 |                 |
|---------------------|----------------------------------------|----------------------------------------|--------|--------|-------|-------|-------|-------|-----------|-----------|-----------------|-----------------|
| (Population Served) | CL21                                   | CLM1                                   | UV CL2 | UV CLM | CL2   | CLM   | CL2   | CLM   | CL2       | CLM       | Total Using CL2 | Total Using CLM |
|                     | Α                                      | В                                      | С      | D      | Е     | F     | G     | Н     | I         | J         | K = A+C+E+G+I   | L = B+D+F+H+J   |
| <100                | 90.9%                                  | 6.2%                                   | 0.0%   | 0.9%   | 0.0%  | 0.0%  | 0.3%  | 0.9%  | 0.3%      | 0.5%      | 91.5%           | 8.5%            |
| 100-499             | 89.9%                                  | 6.7%                                   | 0.0%   | 1.3%   | 0.2%  | 0.5%  | 0.1%  | 0.6%  | 0.1%      | 0.5%      | 90.4%           | 9.6%            |
| 500-999             | 89.9%                                  | 6.7%                                   | 0.0%   | 1.3%   | 0.2%  | 0.5%  | 0.1%  | 0.6%  | 0.1%      | 0.5%      | 90.4%           | 9.6%            |
| 1,000-3,299         | 90.7%                                  | 6.0%                                   | 0.0%   | 1.4%   | 0.3%  | 0.9%  | 0.0%  | 0.2%  | 0.1%      | 0.5%      | 91.1%           | 8.9%            |
| 3,300-9,999         | 90.7%                                  | 6.0%                                   | 0.0%   | 1.4%   | 0.3%  | 0.9%  | 0.0%  | 0.2%  | 0.1%      | 0.5%      | 91.1%           | 8.9%            |
| 10,000-49,999       | 82.2%                                  | 13.1%                                  |        |        | 1.0%  | 0.8%  | 0.0%  | 0.5%  | 1.7%      | 0.8%      | 84.9%           | 15.1%           |
| 50,000-99,999       | 82.2%                                  | 13.1%                                  |        |        | 1.0%  | 0.8%  | 0.0%  | 0.5%  | 1.7%      | 0.8%      | 84.9%           | 15.1%           |
| 100,000-999,999     | 82.9%                                  | 12.7%                                  |        |        | 1.0%  | 0.7%  | 0.0%  | 0.4%  | 1.7%      | 0.7%      | 85.5%           | 14.5%           |
| >=1,000,000         | 0.0%                                   | 0.0%                                   |        |        | 0.0%  | 0.0%  | 0.0%  | 0.0%  | 0.0%      | 0.0%      | 0.0%            | 0.0%            |
| Total %             | 90.4%                                  | 6.4%                                   | 0.0%   | 1.1%   | 0.1%  | 0.3%  | 0.2%  | 0.7%  | 0.2%      | 0.5%      | 90.9%           | 9.1%            |

Source: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.17) to the Technology Selection Delta for the Alternative 2.

Exhibit C.10d

Post-Stage 2 DBPR Treatment Technologies-in-Place for NTNCWS Ground Water Plants (Number of Plants, by Residual Disinfectant Type)

Alternative 2

| System Size<br>(Population Served) | No Advanced<br>Treatment<br>Technology<br>CL21 | No Advanced<br>Treatment<br>Technology<br>CLM1 | UV CL2 | UV CLM | Ozone<br>CL2 | Ozone<br>CLM | GAC20<br>CL2 | GAC20<br>CLM | Membranes<br>CL2 | Membranes<br>CLM | Total Using CL2 | Total Using CLM |
|------------------------------------|------------------------------------------------|------------------------------------------------|--------|--------|--------------|--------------|--------------|--------------|------------------|------------------|-----------------|-----------------|
|                                    | Α                                              | В                                              | С      | D      | Е            | F            | G            | Н            | I                | J                | K = A+C+E+G+I   | L = B+D+F+H+J   |
| <100                               | 2,265                                          | 155                                            | 0      | 23     | 0            | 0            | 8            | 22           | 9                | 11               | 2,281           | 211             |
| 100-499                            | 1,915                                          | 142                                            | 0      | 28     | 3            | 10           | 3            | 14           | 3                | 11               | 1,924           | 205             |
| 500-999                            | 530                                            | 39                                             | 0      | 8      | 1            | 3            | 1            | 4            | 1                | 3                | 533             | 57              |
| 1,000-3,299                        | 224                                            | 15                                             | 0      | 4      | 1            | 2            | 0            | 0            | 0                | 1                | 225             | 22              |
| 3,300-9,999                        | 19                                             | 1                                              | 0      | 0      | 0            | 0            | 0            | 0            | 0                | 0                | 20              | 2               |
| 10,000-49,999                      | 3                                              | 0                                              |        |        | 0            | 0            | 0            | 0            | 0                | 0                | 3               | 0               |
| 50,000-99,999                      | 0                                              | 0                                              |        |        | 0            | 0            | 0            | 0            | 0                | 0                | 0               | 0               |
| 100,000-999,999                    | 0                                              | 0                                              |        |        | 0            | 0            | 0            | 0            | 0                | 0                | 0               | 0               |
| >=1,000,000                        | 0                                              | 0                                              |        |        | 0            | 0            | 0            | 0            | 0                | 0                | 0               | 0               |
| Total Plants                       | 4,957                                          | 353                                            | 0      | 63     | 5            | 16           | 12           | 40           | 12               | 27               | 4,986           | 498             |

Note: Detail may not add to totals due to independent rounding

Source: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.17) to the Technology Selection Delta for the Alternative 2.

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

Exhibit C.11a
Stage 2 DBPR Treatment Technology Selection Deltas for CWS Surface Water Plants (Percent of Plants by Residual Disinfection Type)

| hlorine Dioxide                            |                                                                                                                                                                                                                                                   | JV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            |                                                                                                                                                                                                                                                   | JV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ozone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MF/UF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GAC10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CLM                                        | CL2                                                                                                                                                                                                                                               | CLM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CL2 CLM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CL2 CLM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CL2 CLM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 95th Mean 5th 95th                         | n Mean 5th 95th                                                                                                                                                                                                                                   | Mean 5th 95th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mean 5th 95th Mean 5th 95th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mean 5th 95th Mean 5th 95th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mean 5th 95th Mean 5th 95th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| С                                          | D                                                                                                                                                                                                                                                 | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Н І                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | J K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                            | 2.1% 1.7% 2.4                                                                                                                                                                                                                                     | % 2.2% 1.8% 2.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0% 0.0% 0.0% 4.7% 3.9% 5.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.0% 0.6% 0.5% 0.79                        | % 0.0% 0.0% 0.0                                                                                                                                                                                                                                   | % 0.0% 0.0% 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.7% 0.6% 0.9% 5.6% 4.6% 6.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.0% 0.6% 0.5% 0.79                        | % 0.0% 0.0% 0.0                                                                                                                                                                                                                                   | % 0.0% 0.0% 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.7% 0.6% 0.9% 5.6% 4.6% 6.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.0% 2.1% 1.8% 2.59                        | % 0.0% 0.0% 0.0                                                                                                                                                                                                                                   | % 0.0% 0.0% 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8% 0.6% 0.9% 4.8% 4.0% 5.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.0% 2.1% 1.8% 2.59                        | % 0.0% 0.0% 0.0                                                                                                                                                                                                                                   | % 0.0% 0.0% 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8% 0.6% 0.9% 4.8% 4.0% 5.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6.9% 3.9% 3.2% 4.59                        | % 2.8% 2.3% 3.3                                                                                                                                                                                                                                   | % 1.2% 1.0% 1.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.6% 0.5% 0.7% 0.7% 0.6% 0.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.7% 10.6% 14.9% 5.9% 4.9% 6.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6.9% 3.9% 3.2% 4.59                        | % 2.8% 2.3% 3.3                                                                                                                                                                                                                                   | % 1.2% 1.0% 1.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.6% 0.5% 0.7% 0.7% 0.6% 0.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.7% 10.6% 14.9% 5.9% 4.9% 6.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6.9% 3.9% 3.2% 4.59                        | % 2.8% 2.3% 3.3                                                                                                                                                                                                                                   | % 1.2% 1.0% 1.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.6% 0.5% 0.7% 0.7% 0.6% 0.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.7% 10.6% 14.9% 5.9% 4.9% 6.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6.9% 3.9% 3.2% 4.59                        | % 2.8% 2.3% 3.3                                                                                                                                                                                                                                   | % 1.2% 1.0% 1.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.6% 0.5% 0.7% 0.7% 0.6% 0.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.7% 10.6% 14.9% 5.9% 4.9% 6.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.7% 2.4% 2.0% 2.89                        | % 1.2% 1.0% 1.4                                                                                                                                                                                                                                   | % 0.6% 0.5% 0.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.7% 0.5% 0.8% 3.4% 2.8% 3.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.0% 4.1% 5.8% 2.3% 1.9% 2.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (                                          | GAC20                                                                                                                                                                                                                                             | GAC20 + Adva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nced Disinfectants Memb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ranes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CL2                                        | CLM                                                                                                                                                                                                                                               | CL2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CLM CL2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CLM Total Converting to CLM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Total Adding Treatment Technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 95th Mean 5th 95th                         | n Mean 5th 95th                                                                                                                                                                                                                                   | Mean 5th 95th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mean 5th 95th Mean 5th 95th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mean 5th 95th Mean 5th 95th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mean 5th 95th Mean 5th 95th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                            |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T=A+C+E+G+I+K+M+O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| N                                          | 0                                                                                                                                                                                                                                                 | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Q R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S +Q+S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L = SUM(A:S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8.2% 6.8% 9.59                             | % 9.5% 7.9% 11.1                                                                                                                                                                                                                                  | % 4.6% 3.8% 5.4°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 4.8% 4.0% 5.6% 0.6% 0.5% 0.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.6% 1.4% 1.9% 13.9% 8.6% 19.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29.4% 21.5% 37.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6.6% 5.5% 7.79                             | % 11.4% 9.5% 13.3                                                                                                                                                                                                                                 | % 2.7% 2.3% 3.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 4.7% 3.9% 5.5% 1.4% 1.2% 1.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.6% 2.2% 3.1% 16.7% 10.7% 22.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6.6% 5.5% 7.79                             | % 11.4% 9.5% 13.3                                                                                                                                                                                                                                 | % 2.7% 2.3% 3.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 4.7% 3.9% 5.5% 1.4% 1.2% 1.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.6% 2.2% 3.1% 16.7% 10.7% 22.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28.3% 20.3% 36.3% 28.2% 20.2% 36.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5.9% 5.0% 6.99                             | % 14.0% 11.7% 16.3                                                                                                                                                                                                                                | % 2.3% 1.9% 2.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 5.6% 4.7% 6.6% 0.2% 0.2% 0.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.7% 0.6% 0.8% 18.6% 12.1% 25.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27.9% 19.8% 35.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5.9% 5.0% 6.99                             | % 14.0% 11.7% 16.3                                                                                                                                                                                                                                | % 2.3% 1.9% 2.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 5.6% 4.7% 6.6% 0.2% 0.2% 0.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.7% 0.6% 0.8% 18.6% 12.1% 25.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27.9% 19.8% 35.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                            | % 0.5% 0.4% 0.5                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6 0.1% 0.1% 0.2% 0.6% 0.5% 0.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.3% 0.3% 0.4% 19.0% 15.9% 22.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47.9% 39.9% 55.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2.9% 0.9% 0.7% 1.09                        | % 0.5% 0.4% 0.5                                                                                                                                                                                                                                   | % 0.3% 0.3% 0.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 0.1% 0.1% 0.2% 0.6% 0.5% 0.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.3% 0.3% 0.4% 19.0% 15.9% 22.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47.9% 39.9% 55.8% 47.9% 39.9% 55.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                            | % 0.5% 0.4% 0.5                                                                                                                                                                                                                                   | % 0.3% 0.3% 0.4°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 0.1% 0.1% 0.2% 0.6% 0.5% 0.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.3% 0.3% 0.4% 19.0% 15.9% 22.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47.9% 39.9% 55.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2.9% 0.9% 0.7% 1.09                        | % 0.5% 0.4% 0.5                                                                                                                                                                                                                                   | 0.070 0.070 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.170 0.170 0.270 0.070 0.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.070 0.070 0.470 10.070 10.070 22.270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.9% 0.9% 0.7% 1.0°<br>2.9% 0.9% 0.7% 1.0° |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                            | C  0.0% 0.6% 0.5% 0.7  0.0% 0.6% 0.5% 0.7  0.0% 2.1% 1.8% 2.5  6.9% 3.9% 3.2% 4.5  6.9% 3.9% 3.2% 4.5  6.9% 3.9% 3.2% 4.5  8.2% 2.4% 2.0% 2.8  CL2  95th Mean 5th 95th  8.2% 6.8% 9.5  6.6% 5.5% 7.7  6.6% 5.5% 7.7  5.9% 5.0% 6.9  5.9% 5.0% 6.9 | 95th         Mean         5th         95th         Mean         5th         95th           0.0%         0.6%         0.5%         0.7%         0.0%         0.0%         0.0%           0.0%         0.6%         0.5%         0.7%         0.0%         0.0%         0.0%           0.0%         0.6%         0.5%         0.7%         0.0%         0.0%         0.0%           0.0%         2.1%         1.8%         2.5%         0.0%         0.0%         0.0%           6.9%         3.9%         3.2%         4.5%         2.8%         2.3%         3.3%           6.9%         3.9%         3.2%         4.5%         2.8%         2.3%         3.3%           6.9%         3.9%         3.2%         4.5%         2.8%         2.3%         3.3%           6.9%         3.9%         3.2%         4.5%         2.8%         2.3%         3.3*           6.9%         3.9%         3.2%         4.5%         2.8%         2.3%         3.3*           7.7%         1.6%         2.8%         1.2%         1.0%         1.4*           3         5.5%         7.8%         1.2%         1.0%         1.4* | Sth   Mean   Sth   95th   Mean   Sth   95th   Mean   Sth   95th   Sth   D   E   E   Sth   Sth | Sth   Mean   Sth   95th   Mean   Sth   95th | 95th   Mean   5th   95th |

Source: Technology Selection for the Alternative 3 minus the Stage 1 Technology Selection from Appendix C, Exhibit C.1a.

Exhibit C.11b

Stage 2 DBPR Treatment Technology Selection Deltas for CWS Surface Water Plants (Number of Plants by Residual Disinfection Type)

Alternative 3

|                 |       |           |         |          |     |          |           |     |      |      |     |      |      |          | Aite   | rnative  | J   |      |      |     |      |      |     |      |           |      |       |       |       |       |          |       |       |
|-----------------|-------|-----------|---------|----------|-----|----------|-----------|-----|------|------|-----|------|------|----------|--------|----------|-----|------|------|-----|------|------|-----|------|-----------|------|-------|-------|-------|-------|----------|-------|-------|
| System Size     | Conve | erting to | CLM     |          |     | Chlorine | e Dioxide |     |      |      |     | U\   | /    | -        |        |          | -   | Oz   | one  | -   |      |      | -   | М    | F/UF      |      |       |       | -     | GA    | C10      |       |       |
| (Population     |       | Only      |         |          | CL2 |          |           | CLM |      |      | CL2 |      |      | CLM      |        |          | CL2 |      |      | CLM |      |      | CL2 |      |           | CLM  |       |       | CL2   |       |          | CLM   |       |
| Served)         | Mean  | 5th       | 95th    | Mean     | 5th | 95th     | Mean      | 5th | 95th | Mean | 5th | 95th | Mean | 5th      | 95th   | Mean     | 5th | 95th | Mean | 5th | 95th | Mean | 5th | 95th | Mean      | 5th  | 95th  | Mean  | 5th   | 95th  | Mean     | 5th   | 95th  |
|                 |       | Α         |         |          |     |          | В         |     |      |      |     | С    |      |          |        |          |     |      | D    |     |      |      |     |      | E         |      |       |       |       | F     | =        |       |       |
| <100            | -32   | -37       | -26     |          |     |          |           |     |      | 7    | 6   | 9    | 8    | 6        | 9      |          |     |      |      |     |      | 0    | 0   | 0    | 17        | 14   | 20    |       |       |       |          |       |       |
| 100-499         | -63   | -77       | -48     | 0        | 0   | 0        | 5         | 4   | 6    | 0    | 0   | 0    | 0    | 0        | 0      | 0        | 0   | 0    | 0    | 0   | 0    | 6    | 5   | 7    | 43        | 36   | 50    |       |       |       |          |       |       |
| 500-999         | -39   | -49       | -30     | 0        | 0   | 0        | 3         | 3   | 4    | 0    | 0   | 0    | 0    | 0        | 0      | 0        | 0   | 0    | 0    | 0   | 0    | 4    | 3   | 4    | 27        | 22   | 31    |       |       |       |          |       |       |
| 1,000-3,299     | -98   | -120      | -75     | 0        | 0   | 0        | 24        | 20  | 28   | 0    | 0   | 0    | 0    | 0        | 0      | 0        | 0   | 0    | 0    | 0   | 0    | 9    | 7   | 10   | 54        | 45   | 64    |       |       |       |          |       |       |
| 3,300-9,999     | -109  | -134      | -84     | 0        | 0   | 0        | 27        | 22  | 31   | 0    | 0   | 0    | 0    | 0        | 0      | 0        | 0   | 0    | 0    | 0   | 0    | 10   | 8   | 11   | 61        | 51   | 71    |       |       |       |          |       |       |
| 10,000-49,999   | 52    | 43        | 60      | 76       | 63  | 89       | 50        | 42  | 58   | 36   | 30  | 42   | 15   | 13       | 18     | 0        | 0   | 0    | 0    | 0   | 0    | 8    | 6   | 9    | 10        | 8    | 11    | 164   | 137   | 192   | 76       | 63    | 88    |
| 50,000-99,999   | 23    | 19        | 27      | 34       | 28  | 40       | 22        | 19  | 26   | 16   | 14  | 19   | 7    | 6        | 8      | 0        | 0   | 0    | 0    | 0   | 0    | 3    | 3   | 4    | 4         | 4    | 5     | 74    | 62    | 86    | 34       | 28    | 40    |
| 100,000-999,999 | 24    | 20        | 29      | 36       | 30  | 42       | 24        | 20  | 28   | 17   | 14  | 20   | 7    | 6        | 8      | 0        | 0   | 0    | 0    | 0   | 0    | 4    | 3   | 4    | 5         | 4    | 5     | 78    | 65    | 91    | 36       | 30    | 42    |
| >=1,000,000     | 3     | 2         | 3       | 4        | 4   | 5        | 3         | 2   | 3    | 2    | 2   | 2    | 1    | 1        | 1      | 0        | 0   | 0    | 0    | 0   | 0    | 0    | 0   | 1    | 1         | 0    | 1     | 9     | 8     | 11    | 4        | 4     | 5     |
| Total Plants    | -238  | -332      | -144    | 150      | 125 | 175      | 158       | 131 | 184  | 79   | 66  | 92   | 38   | 32       | 44     | 0        | 0   | 0    | 0    | 0   | 0    | 43   | 36  | 50   | 221       | 184  | 257   | 325   | 271   | 380   | 150      | 125   | 175   |
| System Size     | G/    |           | Advance | ed Disin |     |          |           |     | GA   | C20  |     |      | G.   | AC20 + . | Advano | ced Disi |     | 3    |      |     | Memb |      |     |      |           |      |       |       |       |       |          |       |       |
| (Population     |       | CL2       |         |          | CLM |          |           | CL2 |      |      | CLM |      |      | CL2      |        |          | CLM |      |      | CL2 |      |      | CLM |      | Total Con |      |       |       |       | 3     | tment Te |       |       |
| Served)         | Mean  | 5th       | 95th    | Mean     | 5th | 95th     | Mean      | 5th | 95th | Mean | 5th | 95th | Mean | 5th      | 95th   | Mean     | 5th | 95th | Mean | 5th | 95th | Mean | 5th | 95th | Mean      | 5th  | 95th  | Mean  | 5th   | 95th  | Mean     | 5th   | 95th  |
|                 |       |           |         |          |     |          |           |     |      |      |     |      |      |          |        |          |     |      |      |     |      |      |     |      | T=A+C+E   |      | C+M+O |       |       |       |          |       |       |
|                 |       |           | G       |          |     |          |           |     |      | Н    |     |      |      |          |        |          |     |      |      |     | J    |      |     |      |           | +Q+S |       |       |       |       | M(A:S)   |       |       |
| <100            |       |           |         |          |     |          | 29        | 25  | 34   |      | 28  | 40   | 17   | 14       | 19     | 17       | 14  | 20   | 2    | 2   | 3    | 6    | 5   | 7    | 50        | 31   | 69    |       | 77    | 134   |          |       |       |
| 100-499         |       |           |         |          |     |          | 51        | 42  | 59   |      | 73  | 102  | 21   | 17       | 24     | 36       | 30  | 42   |      | 9   | 13   | 20   | 17  | 24   | 128       | 82   | 175   | 217   | 156   | 278   |          |       |       |
| 500-999         |       |           |         |          |     |          | 32        | 27  | 37   | 55   | 46  | 64   |      | 11       | 15     | 23       | 19  | 26   | 7    | 6   | 8    | 13   | 11  | 15   | 81        | 52   | 110   | 136   | 98    | 175   | 1,124    | 804   | 1,445 |
| 1,000-3,299     |       |           |         |          |     |          | 67        | 56  | 78   | 158  | 132 | 184  | 26   | 22       | 31     | 64       | 53  | 74   | 2    | 2   | 3    | 8    | 6   | 9    | 210       | 137  | 284   | 315   | 224   | 406   |          |       |       |
| 3,300-9,999     |       |           |         |          |     |          | 75        | 62  | 87   | 176  | 147 | 205  | 29   | 25       | 34     | 71       | 59  | 83   | 3    | 2   | 3    | 8    | 7   | 10   | 234       | 152  | 316   | 351   | 249   | 452   |          |       |       |
| 10,000-49,999   | 66    | 55        | 77      | 32       | 26  | 37       | 11        | 9   | 13   | 6    | 5   | 7    | 4    | 3        | 5      | 2        | 1   | 2    | 7    | 6   | 8    | 4    | 4   | 5    | 246       | 205  | 287   | 618   | 516   | 721   |          |       |       |
| 50,000-99,999   | 29    | 25        | 34      | 14       | 12  | 17       | 5         | 4   | 6    | 3    | 2   | 3    | 2    | 2        | 2      | 1        | 1   | 1    | 3    | 3   | 4    | 2    | 2   | 2    | 110       | 92   | 129   | 277   | 231   | 324   | 1,223    | 1,020 | 1.427 |
| 100,000-999,999 | 31    | 26        | 36      | 15       | 12  | 17       | 5         | 4   | 6    | 3    | 2   | 3    | 2    | 2        | 2      | 1        | 1   | 1    | 3    | 3   | 4    | 2    | 2   | 2    | 116       | 97   | 136   | 292   | 244   | 341   | 1,220    | 1,020 | 1,721 |
| >=1,000,000     | 4     | 3         | 4       | 2        | 1   | 2        | 1         | 1   | 1    | 0    | 0   | 0    | 0    | 0        | 0      | 0        | 0   | 0    | 0    | 0   | 0    | 0    | 0   | 0    | 14        | 12   | 16    |       | 29    | 41    |          |       |       |
| Total Plants    | 130   | 108       | 152     | 62       | 52  | 73       | 276       | 231 | 322  | 522  | 436 | 609  | 114  | 95       | 133    | 214      | 178 | 249  | 39   | 33  | 46   | 63   | 53  | 74   | 1.190     | 859  | 1.522 | 2.347 | 1.824 | 2.872 | 2.347    | 1.824 | 2.872 |

Note: Detail may not add to totals due to independent rounding

Source: Above table with technologies switching from an advanced technology with Cl2 to the same advanced technology with CLM being moved into the CLM only column

Exhibit C.11c
Stage 2 DBPR Treatment Technology Selection Deltas for NTNCWS Surface Water Plants (Percent of Plants by Residual Disinfection Type)

|                 |         |            |         |           |         |          |         |      |      |       |       |       |      |        | Aite  | rnative  | <u> </u> |      |      |      |      |       |      |      |          |          |        |       |           |          |          |          |        |
|-----------------|---------|------------|---------|-----------|---------|----------|---------|------|------|-------|-------|-------|------|--------|-------|----------|----------|------|------|------|------|-------|------|------|----------|----------|--------|-------|-----------|----------|----------|----------|--------|
| System Size     | Conve   | rting to ( | CLM     |           |         | Chlorine | Dioxide |      |      |       |       | U\    | /    |        |       |          |          | Oz   | one  |      |      |       |      | M    | F/UF     |          |        |       |           | GA       | C10      |          |        |
| (Population     |         | Only       |         |           | CL2     |          |         | CLM  |      |       | CL2   |       |      | CLM    |       |          | CL2      |      |      | CLM  |      |       | CL2  |      |          | CLM      |        |       | CL2       |          |          | CLM      |        |
| Served)         | Mean    | 5th        | 95th    | Mean      | 5th     | 95th     | Mean    | 5th  | 95th | Mean  | 5th   | 95th  | Mean | 5th    | 95th  | Mean     | 5th      | 95th | Mean | 5th  | 95th | Mean  | 5th  | 95th | Mean     | 5th      | 95th   | Mean  | 5th       | 95th     | Mean     | 5th      | 95th   |
|                 |         | Α          |         |           | В       |          |         | С    |      |       | D     |       |      | Е      |       |          | F        |      |      | G    |      |       | Н    |      |          | - 1      |        |       | J         |          |          | K        |        |
| <100            | -8.8% - | 10.4%      | -7.3%   |           |         |          |         |      |      | 2.1%  | 1.7%  | 2.4%  | 2.2% | 1.8%   | 2.5%  |          |          |      |      |      |      | 0.0%  | 0.0% | 0.0% | 4.7%     | 3.9%     | 5.5%   |       |           |          |          |          |        |
| 100-499         | -8.2% - | 10.1%      | -6.3%   | 0.0%      | 0.0%    | 0.0%     | 0.6%    | 0.5% | 0.7% | 0.0%  | 0.0%  | 0.0%  | 0.0% | 0.0%   | 0.0%  | 0.0%     | 0.0%     | 0.0% | 0.0% | 0.0% | 0.0% | 0.7%  | 0.6% | 0.9% | 5.6%     | 4.6%     | 6.5%   |       |           |          |          |          |        |
| 500-999         | -8.2% - | 10.1%      | -6.3%   | 0.0%      | 0.0%    | 0.0%     | 0.6%    | 0.5% | 0.7% | 0.0%  | 0.0%  | 0.0%  | 0.0% | 0.0%   | 0.0%  | 0.0%     | 0.0%     | 0.0% | 0.0% | 0.0% | 0.0% | 0.7%  | 0.6% | 0.9% | 5.6%     | 4.6%     | 6.5%   |       |           |          |          |          |        |
| 1,000-3,299     | -8.6% - | 10.6%      | -6.7%   | 0.0%      | 0.0%    | 0.0%     | 2.1%    | 1.8% | 2.5% | 0.0%  | 0.0%  | 0.0%  | 0.0% | 0.0%   | 0.0%  | 0.0%     | 0.0%     | 0.0% | 0.0% | 0.0% | 0.0% | 0.8%  | 0.6% | 0.9% | 4.8%     | 4.0%     | 5.6%   |       |           |          |          |          |        |
| 3,300-9,999     | -8.6% - | 10.6%      | -6.7%   | 0.0%      | 0.0%    | 0.0%     | 2.1%    | 1.8% | 2.5% | 0.0%  | 0.0%  | 0.0%  | 0.0% | 0.0%   | 0.0%  | 0.0%     | 0.0%     | 0.0% | 0.0% | 0.0% | 0.0% | 0.8%  | 0.6% | 0.9% | 4.8%     | 4.0%     | 5.6%   |       |           |          |          |          |        |
| 10,000-49,999   | 4.0%    | 3.3%       | 4.7%    | 5.9%      | 4.9%    | 6.9%     | 3.9%    | 3.2% | 4.5% | 2.8%  | 2.3%  | 3.3%  | 1.2% | 1.0%   | 1.4%  | 0.0%     | 0.0%     | 0.0% | 0.0% | 0.0% | 0.0% | 0.6%  | 0.5% | 0.7% | 0.7%     | 0.6%     | 0.9%   | 12.7% | 10.6%     | 14.9%    | 5.9%     | 4.9%     | 6.8%   |
| 50,000-99,999   | 0.0%    | 0.0%       | 0.0%    | 0.0%      | 0.0%    | 0.0%     | 0.0%    | 0.0% | 0.0% | 0.0%  | 0.0%  | 0.0%  | 0.0% | 0.0%   | 0.0%  | 0.0%     | 0.0%     | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%  | 0.0% | 0.0% | 0.0%     | 0.0%     | 0.0%   | 0.0%  | 0.0%      | 0.0%     | 0.0%     | 0.0%     | 0.0%   |
| 100,000-999,999 | 4.0%    | 3.3%       | 4.7%    | 5.9%      | 4.9%    | 6.9%     | 3.9%    | 3.2% | 4.5% | 2.8%  | 2.3%  | 3.3%  | 1.2% | 1.0%   | 1.4%  | 0.0%     | 0.0%     | 0.0% | 0.0% | 0.0% | 0.0% | 0.6%  | 0.5% | 0.7% | 0.7%     | 0.6%     | 0.9%   | 12.7% | 10.6%     | 14.9%    | 5.9%     | 4.9%     | 6.8%   |
| >=1,000,000     | 0.0%    | 0.0%       | 0.0%    | 0.0%      | 0.0%    | 0.0%     | 0.0%    | 0.0% | 0.0% | 0.0%  | 0.0%  | 0.0%  | 0.0% | 0.0%   | 0.0%  | 0.0%     | 0.0%     | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%  | 0.0% | 0.0% | 0.0%     | 0.0%     | 0.0%   | 0.0%  | 0.0%      | 0.0%     | 0.0%     | 0.0%     | 0.0%   |
| Total %         | -8.3% - | 10.2%      | -6.5%   | 0.0%      | 0.0%    | 0.1%     | 0.7%    | 0.6% | 0.8% | 0.6%  | 0.5%  | 0.7%  | 0.6% | 0.5%   | 0.8%  | 0.0%     | 0.0%     | 0.0% | 0.0% | 0.0% | 0.0% | 0.5%  | 0.4% | 0.6% | 5.2%     | 4.3%     | 6.0%   | 0.1%  | 0.1%      | 0.1%     | 0.0%     | 0.0%     | 0.1%   |
| System Size     | G/      | AC10 + A   | Advance | ed Disinf | ectants | S        |         |      | GA   | C20   |       |       | G.   | AC20 + | Advan | ced Disi | nfectan  | ts   |      |      | Memb | ranes |      |      |          |          |        |       |           |          |          |          |        |
| (Population     |         | CL2        |         |           | CLM     |          |         | CL2  |      |       | CLM   |       |      | CL2    |       |          | CLM      |      |      | CL2  |      |       | CLM  |      | Total Co | nverting | to CLM | T     | otal Addi | ing Trea | tment Te | echnolog | y      |
| Served)         | Mean    | 5th        | 95th    | Mean      | 5th     | 95th     | Mean    | 5th  | 95th | Mean  | 5th   | 95th  | Mean | 5th    | 95th  | Mean     | 5th      | 95th | Mean | 5th  | 95th | Mean  | 5th  | 95th | Mean     | 5th      | 95th   | Mean  | 5th       | 95th     | Mean     | 5th      | 95th   |
|                 |         |            |         |           |         |          |         |      |      |       |       |       |      |        |       |          |          |      |      |      |      |       |      |      | T=A+C+   | E+G+I+I  | K+M+O  |       |           |          |          |          |        |
|                 |         | L          |         |           | M       |          |         | N    |      |       | 0     |       |      | Р      |       |          | Q        |      |      | R    |      |       | S    |      |          | +Q+S     |        |       |           | L = SU   | IM(A:S)  |          |        |
| <100            |         |            |         |           |         |          | 8.2%    | 6.8% | 9.5% | 9.5%  | 7.9%  | 11.1% | 4.6% | 3.8%   | 5.4%  | 4.8%     | 4.0%     | 5.6% | 0.6% | 0.5% | 0.7% | 1.6%  | 1.4% | 1.9% | 13.9%    | 8.6%     | 19.3%  | 29.4% | 21.5%     | 37.3%    |          |          |        |
| 100-499         |         |            |         |           |         |          | 6.6%    | 5.5% | 7.7% | 11.4% | 9.5%  | 13.3% | 2.7% | 2.3%   | 3.1%  | 4.7%     | 3.9%     | 5.5% | 1.4% | 1.2% | 1.7% | 2.6%  | 2.2% | 3.1% | 16.7%    | 10.7%    | 22.8%  | 28.3% | 20.3%     | 36.3%    |          |          |        |
| 500-999         |         |            |         |           |         |          | 6.6%    | 5.5% | 7.7% | 11.4% | 9.5%  | 13.3% | 2.7% | 2.3%   | 3.1%  | 4.7%     | 3.9%     | 5.5% | 1.4% | 1.2% | 1.7% | 2.6%  | 2.2% | 3.1% | 16.7%    | 10.7%    | 22.8%  | 28.3% | 20.3%     | 36.3%    | 28.8%    | 20.9%    | 36.7%  |
| 1,000-3,299     |         |            |         |           |         |          | 5.9%    | 5.0% | 6.9% | 14.0% | 11.7% | 16.3% | 2.3% | 1.9%   | 2.7%  | 5.6%     | 4.7%     | 6.6% | 0.2% | 0.2% | 0.2% | 0.7%  | 0.6% | 0.8% | 18.6%    | 12.1%    | 25.1%  | 27.9% | 19.8%     | 35.9%    |          |          |        |
| 3,300-9,999     |         |            |         |           |         |          | 5.9%    | 5.0% | 6.9% | 14.0% | 11.7% | 16.3% | 2.3% | 1.9%   | 2.7%  | 5.6%     | 4.7%     | 6.6% | 0.2% | 0.2% | 0.2% | 0.7%  | 0.6% | 0.8% | 18.6%    | 12.1%    | 25.1%  | 27.9% | 19.8%     | 35.9%    |          |          |        |
| 10,000-49,999   | 5.1%    | 4.2%       | 5.9%    | 2.4%      | 2.0%    | 2.9%     | 0.9%    | 0.7% | 1.0% | 0.5%  | 0.4%  | 0.5%  | 0.3% | 0.3%   | 0.4%  | 0.1%     | 0.1%     | 0.2% | 0.6% | 0.5% | 0.6% | 0.3%  | 0.3% | 0.4% | 19.0%    | 15.9%    | 22.2%  | 47.9% | 39.9%     | 55.8%    |          |          |        |
| 50,000-99,999   | 0.0%    | 0.0%       | 0.0%    | 0.0%      | 0.0%    | 0.0%     | 0.0%    | 0.0% | 0.0% | 0.0%  | 0.0%  | 0.0%  | 0.0% | 0.0%   | 0.0%  | 0.0%     | 0.0%     | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%  | 0.0% | 0.0% | 0.0%     | 0.0%     | 0.0%   | 0.0%  | 0.0%      | 0.0%     | 47.00/   | 39.9%    | EE 00/ |
| 100,000-999,999 | 5.1%    | 4.2%       | 5.9%    | 2.4%      | 2.0%    | 2.9%     | 0.9%    | 0.7% | 1.0% | 0.5%  | 0.4%  | 0.5%  | 0.3% | 0.3%   | 0.4%  | 0.1%     | 0.1%     | 0.2% | 0.6% | 0.5% | 0.6% | 0.3%  | 0.3% | 0.4% | 19.0%    | 15.9%    | 22.2%  | 47.9% | 39.9%     | 55.8%    | 41.9%    | 39.9%    | JJ.0%  |
| >=1,000,000     | 0.0%    | 0.0%       | 0.0%    | 0.0%      | 0.0%    | 0.0%     | 0.0%    | 0.0% | 0.0% | 0.0%  | 0.0%  | 0.0%  | 0.0% | 0.0%   | 0.0%  | 0.0%     | 0.0%     | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%  | 0.0% | 0.0% | 0.0%     | 0.0%     | 0.0%   | 0.0%  | 0.0%      | 0.0%     |          |          |        |
| Total %         | 0.0%    | 0.0%       | 0.0%    | 0.0%      | 0.0%    | 0.0%     | 6.9%    | 5.8% | 8.1% | 11.1% | 9.3%  | 13.0% | 3.2% | 2.7%   | 3.7%  | 4.8%     | 4.0%     | 5.6% | 1.0% | 0.8% | 1.2% | 2.0%  | 1.7% | 2.4% | 16.2%    | 10.3%    | 22.1%  | 28.7% | 20.7%     | 36.7%    | 28.7%    | 20.7%    | 36.7%  |
| N. C. D. C. T.  |         |            |         |           |         |          |         |      |      |       |       |       |      |        |       |          |          |      |      |      |      |       |      |      |          |          |        |       |           |          |          |          |        |

Source: Technology Selection for the Alternative 3 minus the Stage 1 Technology Selection from Appendix C, Exhibit C.1b.

Exhibit C.11d

Stage 2 DBPR Treatment Technology Selection Deltas for NTNCWS Surface Water Plants (Number of Plants by Residual Disinfection Type)

Alternative 3

|                                                                                                  |           |                        |                 |            |                       |               |           |     |        |                            |                             |                  |                          |                                     |                 | rnative    |                                               |            |                           |       |          |           |                                     |      |                                                |                                                              |                                           |                           |                                  |                                       |                                                |                 |           |
|--------------------------------------------------------------------------------------------------|-----------|------------------------|-----------------|------------|-----------------------|---------------|-----------|-----|--------|----------------------------|-----------------------------|------------------|--------------------------|-------------------------------------|-----------------|------------|-----------------------------------------------|------------|---------------------------|-------|----------|-----------|-------------------------------------|------|------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|---------------------------|----------------------------------|---------------------------------------|------------------------------------------------|-----------------|-----------|
| System Size                                                                                      | Conve     | erting to              | CLM             |            |                       | hlorine       | e Dioxide |     |        |                            |                             | U١               | /                        |                                     |                 |            |                                               | Ozo        |                           |       |          |           |                                     | M    | F/UF                                           |                                                              |                                           |                           |                                  | G/                                    | AC10                                           |                 |           |
| (Population                                                                                      |           | Only                   |                 |            | CL2                   |               |           | CLM |        |                            | CL2                         |                  |                          | CLM                                 |                 |            | CL2                                           |            |                           | CLM   |          |           | CL2                                 |      |                                                | CLM                                                          |                                           |                           | CL2                              |                                       |                                                | CLM             |           |
| Served)                                                                                          | Mean      | 5th                    | 95th            | Mean       | 5th                   | 95th          | Mean      | 5th | 95th   | Mean                       | 5th                         | 95th             | Mean                     | 5th                                 | 95th            | Mean       | 5th                                           | 95th       | Mean                      | 5th 9 | 5th      | Mean      | 5th                                 | 95th | Mean                                           | 5th                                                          | 95th                                      | Mean                      | 5th                              | 95th                                  | Mean                                           | 5th             | 95th      |
|                                                                                                  |           | Α                      |                 |            |                       | F             | В         |     |        |                            |                             | С                |                          |                                     |                 |            |                                               | [          | )                         |       |          |           |                                     |      | E                                              |                                                              |                                           |                           |                                  |                                       | F                                              |                 |           |
| <100                                                                                             | -20       | -23                    | -17             |            |                       |               |           |     |        | 5                          | 4                           | 5                | 5                        | 4                                   | 6               |            |                                               |            |                           |       |          | 0         | 0                                   | 0    | 11                                             | 9                                                            | 12                                        |                           |                                  |                                       |                                                |                 |           |
| 100-499                                                                                          | -26       | -32                    | -20             | 0          | 0                     | 0             | 2         | 2   | 2      | 0                          | 0                           | 0                | 0                        | 0                                   | 0               | 0          | 0                                             | 0          | 0                         | 0     | 0        | 2         | 2                                   | 3    | 17                                             | 14                                                           | 20                                        |                           |                                  |                                       |                                                |                 |           |
| 500-999                                                                                          | -9        | -11                    | -7              | 0          | 0                     | 0             | 1         | 1   | 1      | 0                          | 0                           | 0                | 0                        | 0                                   | 0               | 0          | 0                                             | 0          | 0                         | 0     | 0        | 1         | 1                                   | 1    | 6                                              | 5                                                            | 7                                         |                           |                                  |                                       |                                                |                 |           |
| 1,000-3,299                                                                                      | -8        | -10                    | -6              | 0          | 0                     | 0             | 2         | 2   | 2      | 0                          | 0                           | 0                | 0                        | 0                                   | 0               | 0          | 0                                             | 0          | 0                         | 0     | 0        | 1         | 1                                   | 1    | 4                                              | 4                                                            | 5                                         |                           |                                  |                                       |                                                |                 |           |
| 3,300-9,999                                                                                      | -2        | -3                     | -2              | 0          | 0                     | 0             | 1         | 0   | 1      | 0                          | 0                           | 0                | 0                        | 0                                   | 0               | 0          | 0                                             | 0          | 0                         | 0     | 0        | 0         | 0                                   | 0    | 1                                              | 1                                                            | 1                                         |                           |                                  |                                       |                                                |                 |           |
| 10,000-49,999                                                                                    | 0         | 0                      | 0               | 0          | 0                     | 0             | 0         | 0   | 0      | 0                          | 0                           | 0                | 0                        | 0                                   | 0               | 0          | 0                                             | 0          | 0                         | 0     | 0        | 0         | 0                                   | 0    | 0                                              | 0                                                            | 0                                         | 1                         | 1                                | 1                                     | 1 0                                            | 0               | 0         |
| 50,000-99,999                                                                                    | 0         | 0                      | 0               | 0          | 0                     | 0             | 0         | 0   | 0      | 0                          | 0                           | 0                | 0                        | 0                                   | 0               | 0          | 0                                             | 0          | 0                         | 0     | 0        | 0         | 0                                   | 0    | 0                                              | 0                                                            | 0                                         | 0                         | 0                                | (                                     | 0                                              | 0               | 0         |
| 100,000-999,999                                                                                  | 0         | 0                      | 0               | 0          | 0                     | 0             | 0         | 0   | 0      | 0                          | 0                           | 0                | 0                        | 0                                   | 0               | 0          | 0                                             | 0          | 0                         | 0     | 0        | 0         | 0                                   | 0    | 0                                              | 0                                                            | 0                                         | 0                         | 0                                |                                       | 0                                              | 0               | 0         |
| >=1,000,000                                                                                      | 0         | 0                      | 0               | 0          | 0                     | 0             | 0         | 0   | 0      | 0                          | 0                           | 0                | 0                        | 0                                   | 0               | 0          | 0                                             | 0          | 0                         | 0     | 0        | 0         | 0                                   | 0    | 0                                              | 0                                                            | 0                                         | 0                         | 0                                | (                                     | 0                                              | 0               | 0         |
| Total Plants                                                                                     | -64       | -78                    | -50             | 0          | Λ                     | 0             | 5         | 4   | 6      | 5                          | 4                           | 6                |                          | 4                                   | 6               | Λ.         | 0                                             | 0          | 0                         | Ω     | Λ        | 1         | 3                                   | 5    | 40                                             | 33                                                           | 46                                        | 1                         | 4                                | 4                                     | 1 0                                            | 0               | 0         |
|                                                                                                  |           |                        |                 |            | 0                     | U             | 5         | 4   | 0      | _                          | - 4                         | U                | _                        | - 4                                 | Ū               | U          |                                               | U          | U                         | U     | U        | -         | J                                   | J    | 40                                             | 00                                                           | +0                                        |                           |                                  |                                       | 1 0                                            | 0               | U         |
| System Size                                                                                      |           | AC10 +                 |                 | ed Disinfo | ectants               | - 0           | 5         | 4   | GA     | _                          | - 4                         |                  | _                        |                                     | Ū               |            | nfectants                                     | U          | Ü                         | N     | 1emb     | ranes     |                                     |      |                                                |                                                              |                                           | '                         | - '                              |                                       |                                                |                 | Ü         |
| (Population                                                                                      | G/        | AC10 + .               | Advance         | ed Disinfo | ectants               |               | ,         | CL2 |        | C20                        | CLM                         |                  | Ğ,                       | CL2                                 | Advand          |            | nfectants<br>CLM                              |            |                           | CL2   |          |           | CLM                                 |      | Total Cor                                      | nverting                                                     | to CLM                                    |                           |                                  |                                       | atment Te                                      | echnology       |           |
|                                                                                                  |           | AC10 +                 | Advance         | ed Disinfo | ectants               | 95th          | ,         |     |        | _                          | CLM<br>5th                  | 95th             | _                        |                                     | Advand          |            | nfectants<br>CLM                              |            | Mean                      | CL2   |          |           |                                     |      | Total Cor<br>Mean                              | nverting<br>5th                                              | to CLM<br>95th                            | To<br>Mean                | otal Add                         |                                       |                                                |                 | /<br>95th |
| (Population                                                                                      | G/        | AC10 + .               | Advance<br>95th | ed Disinfo | ectants               | 95th          | ,         |     | 95th   | C20<br>Mean                | _                           |                  | Ğ,                       | CL2                                 | Advand          |            | nfectants<br>CLM                              |            |                           | CL2   |          |           | CLM                                 |      | Total Cor<br>Mean<br>T=A+C+l                   | nverting<br>5th<br>E+G+I+                                    | to CLM<br>95th                            |                           |                                  | 95th                                  | atment Te                                      | echnology       |           |
| (Population<br>Served)                                                                           | G/        | AC10 + .               | Advance         | ed Disinfo | ectants               | 95th          | Mean      |     | 95th   | Mean                       | 5th                         | 95th             | G.<br>Mean               | CL2<br>5th                          | Advance<br>95th | Mean       | nfectants<br>CLM<br>5th                       | 95th       | Mean                      | CL2   | 5th<br>J |           | CLM<br>5th                          |      | Total Cor<br>Mean<br>T=A+C+l                   | 5th<br>E+G+I+<br>+Q+S                                        | to CLM<br>95th<br>K+M+O                   | Mean                      | 5th                              | 95th<br>L = SI                        | atment Te                                      | echnology       |           |
| (Population<br>Served)                                                                           | G/        | AC10 + .               | Advance<br>95th | ed Disinfo | ectants               | 95th          | Mean 18   | 5th | 95th H | Mean H 21                  | 5th                         | 95th             | Mean 10                  | CL2                                 | Advance<br>95th | Mean<br>11 | nfectants<br>CLM<br>5th                       | 95th<br>13 | Mean                      | CL2   |          | Mean<br>4 | CLM<br>5th                          |      | Total Cor<br>Mean<br>T=A+C+I                   | 5th<br>E+G+I+<br>+Q+S                                        | to CLM<br>95th<br>K+M+O                   | Mean<br>66                | 5th<br>49                        | 95th<br>L = SI                        | atment Te                                      | echnology       |           |
| (Population<br>Served)<br><100<br>100-499                                                        | G/        | AC10 + .               | Advance<br>95th | ed Disinfo | ectants               | 95th          | Mean      | 5th | 95th   | Mean H 21 36               | 5th<br>18<br>30             | 95th             | Mean  10 8               | CL2<br>5th<br>9<br>7                | Advance<br>95th | Mean       | nfectants<br>CLM<br>5th                       | 95th       | Mean                      | CL2   | 5th<br>J |           | CLM<br>5th                          |      | Total Cor<br>Mean<br>T=A+C+l                   | 5th<br>E+G+I+<br>+Q+S<br>19                                  | to CLM<br>95th<br>K+M+O<br>44<br>71       | Mean<br>66<br>88          | 5th<br>49<br>63                  | 95th<br>L = SI<br>84<br>113           | atment Te                                      | echnolog<br>5th | 95th      |
| (Population<br>Served)<br><100<br>100-499<br>500-999                                             | G/        | AC10 + .               | Advance<br>95th | ed Disinfo | ectants               | 95th          | Mean 18   | 5th | 95th H | Mean H 21 36 12            | 5th<br>18<br>30<br>10       | 95th<br>25<br>41 | Mean  10 8 3             | CL2<br>5th<br>9<br>7<br>2           | Advance<br>95th | Mean<br>11 | nfectants<br>CLM<br>5th                       | 95th<br>13 | Mean  1 4 2               | CL2   | 5th<br>J | Mean<br>4 | CLM<br>5th                          |      | Total Cor<br>Mean<br>T=A+C+l<br>32<br>52<br>18 | 5th<br>E+G+I+<br>+Q+S<br>19<br>33<br>11                      | to CLM<br>95th<br>K+M+O<br>44<br>71<br>24 | Mean<br>66<br>88<br>30    | 5th<br>49<br>63<br>22            | 95th  L = SI  84  113                 | atment Te Mean  UM(A:S)  1  3  217             | echnology       |           |
| (Population<br>Served)<br><100<br>100-499<br>500-999<br>1,000-3,299                              | G/        | AC10 + .               | Advance<br>95th | ed Disinfo | ectants               | 95th          | Mean 18   | 5th | 95th H | Mean  H  21  36  12  13    | 5th<br>18<br>30<br>10<br>11 | 95th<br>25<br>41 | Mean  10 8 3             | CL2<br>5th<br>9<br>7<br>2           | Advance<br>95th | Mean<br>11 | nfectants<br>CLM<br>5th                       | 95th<br>13 | Mean                      | CL2   | 5th<br>J | Mean<br>4 | CLM<br>5th                          |      | Total Cor<br>Mean<br>T=A+C+l                   | 5th<br>E+G+I+<br>+Q+S<br>19<br>33<br>11                      | to CLM<br>95th<br>K+M+O<br>44<br>71       | Mean<br>66<br>88          | 5th<br>49<br>63<br>22<br>18      | 95th  L = SI  84  113                 | atment Te Mean  UM(A:S)  1  3  217             | echnolog<br>5th | 95th      |
| (Population<br>Served)<br><100<br>100-499<br>500-999<br>1,000-3,299<br>3,300-9,999               | G/        | AC10 + 2<br>CL2<br>5th | Advance<br>95th | Mean       | ectants<br>CLM<br>5th | 95th          | Mean 18   | 5th | 95th H | Mean  H  21  36  12  13  3 | 5th  18 30 10 11 3          | 95th<br>25<br>41 | Mean  10 8 3 2 1         | CL2<br>5th<br>9<br>7<br>2<br>2<br>0 | Advance<br>95th | Mean<br>11 | onfectants<br>CLM<br>5th<br>9<br>12<br>4<br>4 | 95th<br>13 | Mean  1 4 2 0 0           | CL2   | 5th<br>J | Mean<br>4 | CLM<br>5th<br>3<br>7<br>2           |      | Total Cor<br>Mean<br>T=A+C+l<br>32<br>52<br>18 | 5th<br>E+G+I+<br>+Q+S<br>19<br>33<br>11                      | to CLM<br>95th<br>K+M+O<br>44<br>71<br>24 | 66<br>88<br>30<br>26<br>7 | 5th<br>49<br>63<br>22<br>18<br>5 | 95th  L = SI  84  113  38  33         | atment Te Mean  UM(A:S)  1  3  217             | echnolog<br>5th | 95th      |
| <100<br>100-499<br>500-999<br>1,000-3,299<br>3,300-9,999<br>10,000-49,999                        | G/        | AC10 + .               | Advance<br>95th | Mean 0     | octants<br>CLM<br>5th | 95th          | Mean 18   | 5th | 95th H | Mean  H  21  36  12  13    | 5th  18 30 10 11 3 0        | 95th<br>25<br>41 | Mean  10 8 3             | CL2<br>5th<br>9<br>7<br>2<br>2<br>0 | Advance<br>95th | Mean<br>11 | 9<br>12<br>4<br>1<br>0                        | 95th<br>13 | Mean  1 4 2 0 0 0 0       | CL2   | 5th<br>J | Mean<br>4 | CLM<br>5th                          |      | Total Cor<br>Mean<br>T=A+C+l<br>32<br>52<br>18 | 5th<br>E+G+I+<br>+Q+S<br>19<br>33<br>11<br>11<br>3           | to CLM<br>95th<br>K+M+O<br>44<br>71<br>24 | Mean<br>66<br>88<br>30    | 5th<br>49<br>63<br>22<br>18      | 95th  L = SI  84  113  38  33         | atment Te Mean  UM(A:S)  1  3  217             | echnolog<br>5th | 95th      |
| (Population<br>Served)  <100 100-499 500-999 1,000-3,299 3,300-9,999 10,000-49,999 50,000-99,999 | Mean  0 0 | O 0                    | Advance<br>95th | Mean  0 0  | ectants<br>CLM<br>5th | 95th          | Mean 18   | 5th | 95th H | Mean  1 21 36 12 13 3 0 0  | 5th  18 30 10 11 3 0 0      | 95th<br>25<br>41 | Mean  10 8 3 2 1 0 0     | 9<br>7<br>2<br>2<br>0<br>0          | Advance<br>95th | Mean<br>11 | 9<br>12<br>4<br>1<br>0<br>0                   | 95th<br>13 | Mean  1 4 2 0 0 0 0       | CL2   | 5th<br>J | Mean<br>4 | CLM<br>5th<br>3<br>7<br>2<br>1<br>0 |      | Total Cor<br>Mean<br>T=A+C+l<br>32<br>52<br>18 | 5th<br>E+G+I+<br>+Q+S<br>19<br>33<br>11<br>11<br>3<br>1<br>0 | to CLM<br>95th<br>K+M+O<br>44<br>71<br>24 | 66<br>88<br>30<br>26<br>7 | 5th  49 63 22 18 5 0             | 95th  L = SI  84  113  38  33  (      | atment Te Mean  UM(A:S)  1  3  217             | echnolog<br>5th | 95th      |
| (Population<br>Served)                                                                           | G/        | AC10 + 2<br>CL2<br>5th | Advance<br>95th | Mean 0     | octants<br>CLM<br>5th | 95th  0 0 0 0 | Mean 18   | 5th | 95th H | Mean  H  21  36  12  13  3 | 5th  18 30 10 11 3 0        | 95th<br>25<br>41 | Mean  10 8 3 2 1         | CL2<br>5th<br>9<br>7<br>2<br>2<br>0 | Advance<br>95th | Mean<br>11 | 9<br>12<br>4<br>1<br>0<br>0                   | 95th<br>13 | Mean  1 4 2 0 0 0 0 0     | CL2   | 5th<br>J | Mean<br>4 | CLM<br>5th<br>3<br>7<br>2           |      | Total Cor<br>Mean<br>T=A+C+l<br>32<br>52<br>18 | 10 nverting 5th E+G+I+ +Q+S 19 33 11 11 3 1 0 0              | to CLM<br>95th<br>K+M+O<br>44<br>71<br>24 | 66<br>88<br>30<br>26<br>7 | 5th<br>49<br>63<br>22<br>18<br>5 | 95th  L = SI  84  113  38  33  (      | atment Te Mean  UM(A:S)  1  3  217             | echnolog<br>5th | 95th      |
| (Population<br>Served)  <100 100-499 500-999 1,000-3,299 3,300-9,999 10,000-49,999 50,000-99,999 | Mean  0 0 | O 0                    | Advance<br>95th | Mean  0 0  | ectants<br>CLM<br>5th | 95th  0 0 0 0 | Mean 18   | 5th | 95th H | Mean  1 21 36 12 13 3 0 0  | 5th  18 30 10 11 3 0 0      | 95th<br>25<br>41 | Mean  10 8 3 2 1 0 0 0 0 | 9<br>7<br>2<br>2<br>0<br>0          | Advance<br>95th | Mean<br>11 | 9<br>12<br>4<br>1<br>0<br>0                   | 95th<br>13 | Mean  1 4 2 0 0 0 0 0 0 0 | CL2   | 5th<br>J | Mean<br>4 | CLM<br>5th<br>3<br>7<br>2<br>1<br>0 |      | Total Cor<br>Mean<br>T=A+C+l<br>32<br>52<br>18 | 5th<br>E+G+I+<br>+Q+S<br>19<br>33<br>11<br>11<br>3<br>1<br>0 | to CLM<br>95th<br>K+M+O<br>44<br>71<br>24 | 66<br>88<br>30<br>26<br>7 | 5th  49 63 22 18 5 0             | 95th  L = SI  84  113  38  33  ()  () | atment Te Mean  UM(A:S)  4  3  217  3  0  1  3 | echnolog<br>5th | 95th      |

Note: Detail may not add to totals due to independent rounding

Source: Above table with technologies switching from an advanced technology with CI2 to the same advanced technology with CLM being moved into the CLM only column

Exhibit C.12a
Stage 2 DBPR Treatment Technology Selection Deltas for CWS Ground Water Plants (Percent of Plants, by Residual Disinfectant Type)
Alternative 3

|                     |          |        |        |       |       |       |       |           |           |                  | Total | Adding  |
|---------------------|----------|--------|--------|-------|-------|-------|-------|-----------|-----------|------------------|-------|---------|
| System Size         |          |        |        | Ozone | Ozone | GAC20 | GAC20 | Membranes | Membranes | Total Converting | Trea  | tment   |
| (Population Served) | CLM Only | UV CL2 | UV CLM | CL2   | CLM   | CL2   | CLM   | CL2       | CLM       | to CLM           | Tech  | nology  |
|                     | Α        | В      | С      | D     | Е     | F     | G     | Н         | I         | J = A+C+E+G+I    | K = S | UM(A:I) |
| <100                | 1.8%     | 0.0%   | 1.0%   | 0.0%  | 0.0%  | 0.3%  | 0.0%  | 0.0%      | 0.0%      | 2.8%             | 3.1%  |         |
| 100-499             | 2.1%     | 0.0%   | 1.5%   | 0.0%  | 0.0%  | 0.2%  | 0.0%  | 0.0%      | 0.0%      | 3.6%             | 3.8%  |         |
| 500-999             | 2.1%     | 0.0%   | 1.5%   | 0.0%  | 0.0%  | 0.2%  | 0.0%  | 0.0%      | 0.0%      | 3.6%             | 3.8%  | 3.5%    |
| 1,000-3,299         | 1.5%     | 0.0%   | 1.6%   | 0.0%  | 0.0%  | 0.0%  | 0.2%  | 0.0%      | 0.0%      | 3.3%             | 3.3%  |         |
| 3,300-9,999         | 1.5%     | 0.0%   | 1.6%   | 0.0%  | 0.0%  | 0.0%  | 0.2%  | 0.0%      | 0.0%      | 3.3%             | 3.3%  |         |
| 10,000-49,999       | 3.4%     |        |        | 0.1%  | 0.0%  | 0.0%  | 0.6%  | 0.0%      | 0.6%      | 4.7%             | 4.8%  |         |
| 50,000-99,999       | 3.4%     |        |        | 0.1%  | 0.0%  | 0.0%  | 0.6%  | 0.0%      | 0.6%      | 4.7%             | 4.8%  | 4.7%    |
| 100,000-999,999     | 3.2%     |        |        | 0.1%  | 0.0%  | 0.0%  | 0.6%  | 0.0%      | 0.5%      | 4.3%             | 4.4%  | 4.7 %   |
| >=1,000,000         | 3.2%     |        |        | 0.1%  | 0.0%  | 0.0%  | 0.6%  | 0.0%      | 0.5%      | 4.3%             | 4.4%  |         |
| Total %             | 2.1%     | 0.0%   | 1.2%   | 0.0%  | 0.0%  | 0.1%  | 0.1%  | 0.0%      | 0.1%      | 3.6%             | 3.7%  | 3.7%    |

Exhibit C.12b

Stage 2 DBPR Treatment Technology Selection Deltas for CWS Ground Water Plants (Number of Plants, by Residual Disinfectant Type)

Alternative 3

|                     |          |        |        |       |       |       |       |           |           |                  | Total  | Adding  |
|---------------------|----------|--------|--------|-------|-------|-------|-------|-----------|-----------|------------------|--------|---------|
| System Size         |          |        |        | Ozone | Ozone | GAC20 | GAC20 | Membranes | Membranes | Total Converting | Trea   | tment   |
| (Population Served) | CLM Only | UV CL2 | UV CLM | CL2   | CLM   | CL2   | CLM   | CL2       | CLM       | to CLM           | Tech   | nology  |
|                     | Α        | В      | С      | D     | Е     | F     | G     | Н         |           | J = A+C+E+G+I    | K = SI | UM(A:I) |
| <100                | 117      | 0      | 64     | 0     | 0     | 21    | 0     | 0         | 0         | 181              | 202    |         |
| 100-499             | 320      | 0      | 230    | 0     | 0     | 26    | 0     | 0         | 0         | 550              | 575    |         |
| 500-999             | 128      | 0      | 92     | 0     | 0     | 10    | 0     | 0         | 0         | 220              | 230    | 1,420   |
| 1,000-3,299         | 112      | 0      | 122    | 0     | 0     | 0     | 15    | 0         | 0         | 248              | 248    |         |
| 3,300-9,999         | 74       | 0      | 81     | 0     | 0     | 0     | 10    | 0         | 0         | 165              | 165    |         |
| 10,000-49,999       | 185      |        |        | 7     | 0     | 0     | 34    | 0         | 31        | 251              | 258    |         |
| 50,000-99,999       | 25       |        |        | 1     | 0     | 0     | 5     | 0         | 4         | 33               | 34     | 334     |
| 100,000-999,999     | 29       |        |        | 1     | 0     | 0     | 5     | 0         | 5         | 40               | 41     | 334     |
| >=1,000,000         | 1        |        |        | 0     | 0     | 0     | 0     | 0         | 0         | 1                | 1      |         |
| Total Plants        | 990      | 0      | 588    | 9     | 0     | 57    | 69    | 0         | 40        | 1,688            | 1,754  | 1,754   |

Exhibit C.12c
Stage 2 DBPR Treatment Technology Selection Deltas for NTNCWS Ground Water Plants (Percent of Plants, by Residual Disinfectant Type)
Alternative 3

|                     |          |        |        |       |       |       |       |           |           |                  | Total | Adding  |
|---------------------|----------|--------|--------|-------|-------|-------|-------|-----------|-----------|------------------|-------|---------|
| System Size         |          |        |        | Ozone | Ozone | GAC20 | GAC20 | Membranes | Membranes | Total Converting | Trea  | tment   |
| (Population Served) | CLM Only | UV CL2 | UV CLM | CL2   | CLM   | CL2   | CLM   | CL2       | CLM       | to CLM           | Tech  | nology  |
|                     | Α        | В      | С      | D     | Е     | F     | G     | Н         | I         | J = A+C+E+G+I    | K = S | UM(A:I) |
| <100                | 1.8%     | 0.0%   | 1.0%   | 0.0%  | 0.0%  | 0.3%  | 0.0%  | 0.0%      | 0.0%      | 2.8%             | 3.1%  |         |
| 100-499             | 2.1%     | 0.0%   | 1.5%   | 0.0%  | 0.0%  | 0.2%  | 0.0%  | 0.0%      | 0.0%      | 3.6%             | 3.8%  |         |
| 500-999             | 2.1%     | 0.0%   | 1.5%   | 0.0%  | 0.0%  | 0.2%  | 0.0%  | 0.0%      | 0.0%      | 3.6%             | 3.8%  | 3.5%    |
| 1,000-3,299         | 1.5%     | 0.0%   | 1.6%   | 0.0%  | 0.0%  | 0.0%  | 0.2%  | 0.0%      | 0.0%      | 3.3%             | 3.3%  |         |
| 3,300-9,999         | 1.5%     | 0.0%   | 1.6%   | 0.0%  | 0.0%  | 0.0%  | 0.2%  | 0.0%      | 0.0%      | 3.3%             | 3.3%  |         |
| 10,000-49,999       | 3.4%     |        |        | 0.1%  | 0.0%  | 0.0%  | 0.6%  | 0.0%      | 0.6%      | 4.7%             | 4.8%  |         |
| 50,000-99,999       | 3.4%     |        |        | 0.1%  | 0.0%  | 0.0%  | 0.6%  | 0.0%      | 0.6%      | 4.7%             | 4.8%  | 4.8%    |
| 100,000-999,999     | 3.2%     |        |        | 0.1%  | 0.0%  | 0.0%  | 0.6%  | 0.0%      | 0.5%      | 4.3%             | 4.4%  | 4.0%    |
| >=1,000,000         | 0.0%     |        |        | 0.0%  | 0.0%  | 0.0%  | 0.0%  | 0.0%      | 0.0%      | 0.0%             | 0.0%  |         |
| Total %             | 1.9%     | 0.0%   | 1.3%   | 0.0%  | 0.0%  | 0.2%  | 0.0%  | 0.0%      | 0.0%      | 3.2%             | 3.5%  | 3.5%    |

Exhibit C.12d
Stage 2 DBPR Treatment Technology Selection Deltas for NTNCWS Ground Water Plants (Number of Plants, by Residual Disinfectant Type)
Alternative 3

|                     |          |        |        |       |       |       |       |           |           |                       | Total  | Adding  |
|---------------------|----------|--------|--------|-------|-------|-------|-------|-----------|-----------|-----------------------|--------|---------|
| System Size         |          |        |        | Ozone | Ozone | GAC20 | GAC20 | Membranes | Membranes | Total Converting      | Trea   | tment   |
| (Population Served) | CLM Only | UV CL2 | UV CLM | CL2   | CLM   | CL2   | CLM   | CL2       | CLM       | to CLM                | Tech   | nology  |
|                     | Α        | В      | С      | D     | Е     | F     | G     | Н         | I         | J = A + C + E + G + I | K = SI | UM(A:I) |
| <100                | 45       | 0      | 25     | 0     | 0     | 8     | 0     | 0         | 0         | 70                    | 78     |         |
| 100-499             | 45       | 0      | 32     | 0     | 0     | 4     | 0     | 0         | 0         | 77                    | 80     |         |
| 500-999             | 12       | 0      | 9      | 0     | 0     | 1     | 0     | 0         | 0         | 21                    | 22     | 190     |
| 1,000-3,299         | 4        | 0      | 4      | 0     | 0     | 0     | 0     | 0         | 0         | 8                     | 8      |         |
| 3,300-9,999         | 0        | 0      | 0      | 0     | 0     | 0     | 0     | 0         | 0         | 1                     | 1      |         |
| 10,000-49,999       | 0        |        |        | 0     | 0     | 0     | 0     | 0         | 0         | 0                     | 0      |         |
| 50,000-99,999       | 0        |        |        | 0     | 0     | 0     | 0     | 0         | 0         | 0                     | 0      | 0       |
| 100,000-999,999     | 0        |        |        | 0     | 0     | 0     | 0     | 0         | 0         | 0                     | 0      | U       |
| >=1,000,000         | 0        |        |        | 0     | 0     | 0     | 0     | 0         | 0         | 0                     | 0      |         |
| Total Plants        | 106      | 0      | 70     | 0     | 0     | 13    | 1     | 0         | 0         | 177                   | 190    | 190     |

## Exhibit C.13a Post-Stage 2 DBPR Treatment Technologies-in-Place for CWS Surface Water Plants (Percent of Plants by Residual Disinfection Type)

|                     |                  |           |       |        |           |       |         |        |        |          |         |       |      |        |       | Alterna | IIVE J |       |      |         |       |        |            |         |           |         |        |          |       |          |          |         |             |
|---------------------|------------------|-----------|-------|--------|-----------|-------|---------|--------|--------|----------|---------|-------|------|--------|-------|---------|--------|-------|------|---------|-------|--------|------------|---------|-----------|---------|--------|----------|-------|----------|----------|---------|-------------|
| 0 0:                | No Adva          | nced Trea |       |        | anced Tre |       | Chlorin | Diovid | o CI 2 | Chlorine | Diovido | CLM   |      | JV CL2 |       |         | V CLM  | ı     | 0    | zone CL | 2     | 07     | one CLM    |         | MF/UF CL: | 2       | ME     | -/UF CLN | 4     | CAC      | 10 CL2   | CA.     | .C 10 CLM   |
| System Size         | Mean             | 5th       | 95th  | Mean   | 5th       | 95th  | Mean    |        |        |          | 5th     | 95th  | Mean |        | OFth  | Mean    |        |       |      |         |       | Mean   |            |         | 5th       |         | Mean   | 5th      |       |          |          |         | 5th 95th    |
| (Population Served) | wean             | oun       | 95tn  | iviean | ouri      | 95th  | iviean  |        | 95(1)  | wean     |         | 95(1) | wean | oun    | 95(1) | wean    | ouri   | 95(1) | wean | _       | 95(1) | iviean |            | ın wean | oui       | 95(1)   | iviean | ouri     | 95(1) | iviean c | un 95un  | iviean  | ວແາ ອວແາ    |
|                     |                  | A         |       |        | В         |       |         | С      |        |          | D       |       |      | E      |       |         | F      |       |      | G       |       |        | Н          |         | l l       |         |        | J        |       |          | Κ        |         | L           |
| <100                | 12.4%            |           | 20.3% |        |           |       |         |        |        |          |         |       | 2.1% |        |       | 2.2%    |        |       |      |         |       |        |            | 14.5%   |           | 14.5%   |        |          | 12.6% |          |          | 4       |             |
| 100-499             | 7.3%             | -0.7%     | 15.3% | 27.2%  | 25.3%     | 29.2% | 1.0%    | 1.0%   | 1.0%   | 1.5%     | 1.4%    | 1.6%  | 0.0% | 0.0%   | 0.0%  | 0.0%    | 0.0%   | 0.0%  | 5.1% | 5.1%    | 5.1%  | 4.6%   | 4.6% 4.    | 9.7%    |           | 9.8%    | 10.4%  | 9.4%     | 11.3% |          |          |         |             |
| 500-999             | 7.3%             | -0.7%     | 15.3% | 27.2%  | 25.3%     | 29.2% | 1.0%    | 1.0%   | 1.0%   | 1.5%     | 1.4%    | 1.6%  | 0.0% | 0.0%   | 0.0%  | 0.0%    | 0.0%   | 0.0%  | 5.1% | 5.1%    | 5.1%  | 4.6%   | 4.6% 4.    | 9.7%    | 9.5%      | 9.8%    | 10.4%  | 9.4%     | 11.3% |          |          |         |             |
| 1,000-3,299         | 5.6%             | -2.5%     | 13.6% | 32.7%  | 30.7%     | 34.7% | 1.9%    | 1.9%   | 1.9%   | 4.3%     | 3.9%    | 4.6%  | 0.0% | 0.0%   | 0.0%  | 0.0%    | 0.0%   | 0.0%  | 4.0% | 4.0%    | 4.0%  | 4.5%   | 4.5% 4.    | 5% 6.9% | 6.8%      | 7.1%    | 7.7%   | 6.9%     | 8.5%  |          |          |         |             |
| 3,300-9,999         | 5.6%             | -2.5%     | 13.6% | 32.7%  | 30.7%     | 34.7% | 1.9%    | 1.9%   | 1.9%   | 4.3%     | 3.9%    | 4.6%  | 0.0% | 0.0%   | 0.0%  | 0.0%    | 0.0%   | 0.0%  | 4.0% | 4.0%    | 4.0%  | 4.5%   | 4.5% 4.    | 5% 6.9% | 6.8%      | 7.1%    | 7.7%   | 6.9%     | 8.5%  |          |          |         |             |
| 10,000-49,999       | 12.6%            | 12.6%     | 12.6% | 27.0%  | 27.0%     | 27.0% | 4.6%    | 4.6%   | 4.6%   | 9.7%     | 9.7%    | 9.7%  | 0.8% | 0.8%   | 0.8%  | 1.7%    | 1.7%   | 1.7%  | 4.1% | 4.1%    | 4.1%  | 8.7%   | 8.7% 8.    | 7% 0.9% | 0.9%      | 0.9%    | 2.0%   | 2.0%     | 2.0%  | 5.5% 5   | .5% 5.5% | 6 11.7% | 11.7% 11.7% |
| 50,000-99,999       | 12.6%            | 12.6%     | 12.6% | 27.0%  | 27.0%     | 27.0% | 4.6%    | 4.6%   | 4.6%   | 9.7%     | 9.7%    | 9.7%  | 0.8% | 0.8%   | 0.8%  | 1.7%    | 1.7%   | 1.7%  | 4.1% | 4.1%    | 4.1%  | 8.7%   | 8.7% 8.    | 7% 0.9% | 0.9%      | 0.9%    | 2.0%   | 2.0%     | 2.0%  | 5.5% 5   | .5% 5.5% | 6 11.7% | 11.7% 11.7% |
| 100,000-999,999     | 12.6%            | 12.6%     | 12.6% | 27.0%  | 27.0%     | 27.0% | 4.6%    | 4.6%   | 4.6%   | 9.7%     | 9.7%    | 9.7%  | 0.8% | 0.8%   | 0.8%  | 1.7%    | 1.7%   | 1.7%  | 4.1% | 4.1%    | 4.1%  | 8.7%   | 8.7% 8.    | 7% 0.9% | 0.9%      | 0.9%    | 2.0%   | 2.0%     | 2.0%  | 5.5% 5   | .5% 5.5% | 6 11.7% | 11.7% 11.7% |
| >=1,000,000         | 12.6%            | 12.6%     | 12.6% | 27.0%  | 27.0%     | 27.0% | 4.6%    | 4.6%   | 4.6%   | 9.7%     | 9.7%    | 9.7%  | 0.8% | 0.8%   | 0.8%  | 1.7%    | 1.7%   | 1.7%  | 4.1% | 4.1%    | 4.1%  | 8.7%   | 8.7% 8.    | 7% 0.9% | 0.9%      | 0.9%    | 2.0%   | 2.0%     | 2.0%  | 5.5% 5   | .5% 5.5% | 6 11.7% | 11.7% 11.7% |
| Total %             | 9.0%             | 4.1%      | 13.9% | 28.8%  | 27.6%     | 29.9% | 2.7%    | 2.7%   | 2.7%   | 5.6%     | 5.5%    | 5.8%  | 0.4% | 0.4%   | 0.5%  | 0.8%    | 0.8%   | 0.8%  | 4.0% | 4.0%    | 4.0%  | 5.9%   | 5.9% 5.    | 9% 5.5% | 5.5%      | 5.6%    | 6.2%   | 5.7%     | 6.7%  | 2.1% 2   | .1% 2.19 | 6 4.6%  | 4.6% 4.6%   |
| System Size         | GAC <sup>2</sup> | 10 + AD C | CL2   | GAC1   | 10 + AD   | CLM   | GA      | C20 CL | 2      | GA       | C20 CLN | Л     | GAC2 | 0 + AD | CL2   | GAC2    | 0 + AD | CLM   | Mem  | nbranes | CL2   | Memb   | branes CLI | И       |           | TOTAL   | CL2    |          |       |          | TOT      | AL CLM  |             |
| (Population Served) | Mean             | 5th       | 95th  | Mean   | 5th       | 95th  | Mean    | 5th    | 95th   | Mean     | 5th     | 95th  | Mean | 5th    | 95th  | Mean    | 5th    | 95th  | Mean | 5th     | 95th  | Mean   | 5th 95     | th M    | ean       | 5th     | h      | 95t      | h     | Mean     |          | 5th     | 95th        |
|                     |                  | M         |       |        | N         |       |         | 0      |        |          | Р       |       |      | Q      |       |         | R      |       |      | S       |       |        | T          |         | U = A+0   | C+E+G+I | +K+M+C | )+Q+S    |       | V =      | B+D+F+H  | +J+L+N  | +P+R+T      |
| <100                |                  |           |       |        |           |       | 10.2%   | 8.8% 1 | 11.5%  | 10.8%    | 9.2%    | 12.3% | 4.6% | 3.8%   | 5.4%  | 4.8%    | 4.0%   | 5.6%  | 2.7% | 2.6%    | 2.8%  | 3.0%   | 2.8% 3.    | 3%      | 46.5%     |         | 36.0%  |          | 57.0% | 53       | .5%      | 48.2%   | 58.8%       |
| 100-499             |                  |           |       |        |           |       | 7.7%    | 6.6%   | 8.8%   | 12.4%    | 10.5%   | 14.3% | 3.2% | 2.7%   | 3.6%  | 5.1%    | 4.3%   | 5.9%  | 1.9% | 1.6%    | 2.1%  | 3.1%   | 2.6% 3.    | 5%      | 35.8%     |         | 25.9%  |          | 45.7% | 64       | .2%      | 58.2%   | 70.3%       |
| 500-999             |                  |           |       |        |           |       | 7.7%    | 6.6%   | 8.8%   | 12.4%    | 10.5%   | 14.3% | 3.2% | 2.7%   | 3.6%  | 5.1%    | 4.3%   | 5.9%  | 1.9% | 1.6%    | 2.1%  | 3.1%   | 2.6% 3.    | 5%      | 35.8%     |         | 25.9%  |          | 45.7% | 64       | .2%      | 58.2%   | 70.3%       |
| 1,000-3,299         |                  |           |       |        |           |       | 7.0%    | 6.0%   | 8.0%   | 15.1%    | 12.8%   | 17.5% | 2.9% | 2.5%   | 3.2%  | 6.2%    | 5.3%   | 7.2%  | 0.4% | 0.4%    | 0.4%  | 0.9%   | 0.8% 1.    | 0%      | 28.7%     |         | 19.0%  |          | 38.2% | 71       | .3%      | 64.8%   | 77.9%       |
| 3,300-9,999         |                  |           |       |        |           |       | 7.0%    | 6.0%   | 8.0%   | 15.1%    | 12.8%   | 17.5% | 2.9% | 2.5%   | 3.2%  | 6.2%    | 5.3%   | 7.2%  | 0.4% | 0.4%    | 0.4%  | 0.9%   | 0.8% 1.    | 0%      | 28.7%     |         | 19.0%  |          | 38.2% | 71       | .3%      | 64.8%   | 77.9%       |
| 10,000-49,999       | 2.3%             | 2.3%      | 2.3%  | 5.0%   | 5.0%      | 5.0%  | 0.5%    | 0.5%   | 0.5%   | 1.0%     | 1.0%    | 1.0%  | 0.1% | 0.1%   | 0.1%  | 0.2%    | 0.2%   | 0.2%  | 0.5% | 0.5%    | 0.5%  | 1.0%   | 1.0% 1.    | 0%      | 31.9%     |         | 31.9%  |          | 31.9% | 68       | .1%      | 68.1%   | 68.1%       |
| 50,000-99,999       | 2.3%             | 2.3%      | 2.3%  | 5.0%   | 5.0%      | 5.0%  | 0.5%    | 0.5%   | 0.5%   | 1.0%     | 1.0%    | 1.0%  | 0.1% | 0.1%   | 0.1%  | 0.2%    | 0.2%   | 0.2%  | 0.5% | 0.5%    | 0.5%  | 1.0%   | 1.0% 1.    | 0%      | 31.9%     |         | 31.9%  |          | 31.9% | 68       | .1%      | 68.1%   | 68.1%       |
| 100,000-999,999     | 2.3%             | 2.3%      | 2.3%  | 5.0%   | 5.0%      | 5.0%  | 0.5%    | 0.5%   | 0.5%   | 1.0%     | 1.0%    | 1.0%  | 0.1% | 0.1%   | 0.1%  | 0.2%    | 0.2%   | 0.2%  | 0.5% | 0.5%    | 0.5%  | 1.0%   | 1.0% 1.    | 0%      | 31.9%     |         | 31.9%  |          | 31.9% | 68       | .1%      | 68.1%   | 68.1%       |
| >=1,000,000         | 2.3%             | 2.3%      | 2.3%  | 5.0%   | 5.0%      | 5.0%  | 0.5%    | 0.5%   | 0.5%   | 1.0%     | 1.0%    | 1.0%  | 0.1% | 0.1%   | 0.1%  | 0.2%    | 0.2%   | 0.2%  | 0.5% | 0.5%    | 0.5%  | 1.0%   | 1.0% 1.    | 0%      | 31.9%     |         | 31.9%  |          | 31.9% | 68       | .1%      | 68.1%   | 68.1%       |
| Total %             | 0.9%             | 0.9%      | 0.9%  | 1.9%   | 1.9%      | 1.9%  | 4.8%    | 4.1%   | 5.4%   | 8.9%     | 7.6%    | 10.2% | 1.9% | 1.7%   | 2.2%  | 3.6%    | 3.1%   | 4.1%  | 0.8% | 0.8%    | 0.9%  | 1.5%   | 1.3% 1.    | 6%      | 32.2%     |         | 26.3%  |          | 38.2% | 67       | .8%      | 63.9%   | 71.6%       |

Note: Detail may not add to totals due to independent rounding

Source: Surface water systems serving <10,000 people: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or m

Exhibit C.13b

Post-Stage 2 DBPR Treatment Technologies-in-Place for CWS Surface Water Plants (Number of Plants by Residual Disinfection Type)

Alternative 3

| System Size          | No Adva          | nced Tre  |         | No Adva | nced Tre |       | Chlorine | e Dioxid | le Cl 2 | Chlorine | Dioxide C | :I M   | U       | / CL2  |        | U       | / CLM    |        | Ozo    | one CL2 |        | Ozor    | ne CLM   | M       | F/UF CL2 |        | MF/     | UF CLN  | м     | GAG     | C 10 CL | 2       | GAC 1  | 0 CLM    |
|----------------------|------------------|-----------|---------|---------|----------|-------|----------|----------|---------|----------|-----------|--------|---------|--------|--------|---------|----------|--------|--------|---------|--------|---------|----------|---------|----------|--------|---------|---------|-------|---------|---------|---------|--------|----------|
| (Population Served)  | Mean             | 5th       | 95th    | Mean    | 5th      | 95th  | Mean     |          | 95th    | Mean     |           |        |         | _      | 95th   |         |          | 95th   |        |         |        |         | 5th 95th | Mean    |          |        |         | 5th     | 95th  | Mean    |         |         | lean 5 |          |
| (i opulation serveu) | Wican            | Δ.        | 3301    | IVICALI | В        | 33111 | IVICALI  | C        | 3301    | IVICALI  | D D       | Jui    | IVICALI | E      | 3301   | IVICALI | Jui -    | 3301   | Mean   | G       | 55111  | IVICALI | H 95111  | IVICALI | Jui      | 3301   | ivicari | Jui     | 33111 | IVICALI | K       | JJUI IV | ican J | 1 3341   |
| <100                 | 45               | A 16      | 73      | 75      | 70       | 81    |          |          |         |          | U         |        | 7       | - 6    | Q      | 8       | <u>г</u> | ۵      |        | G       |        |         | п        | 52      | 52       | 52     | 43      | J<br>40 | 45    |         |         |         |        | <u> </u> |
| 100-499              | 56               | -5        | 117     |         | 194      | 224   | 7        | 7        | 7       | 12       | 11        | 40     |         | 0      | 0      | 0       | 0        | 0      | 39     | 39      | 39     | 35      | 35 35    |         | 73       | 75     | 79      | 72      | 87    |         |         |         |        |          |
| 500-999              | 35               | -3        | 74      |         | 122      | 141   | ,        | ,        | ,       | 7        | 7         | 12     | 0       | 0      | 0      | 0       | 0        | 0      | 24     | 24      | 24     | 22      | 22 22    |         | 46       | 47     | 50      | 46      | 55    |         |         |         |        |          |
| 1.000-3.299          |                  |           |         |         |          |       | 5        | 5        | 22      | 10       | - /       | -0     | 0       | 0      | 0      | 0       | 0        | 0      |        |         | 24     |         |          |         |          | 80     |         |         | 96    |         |         |         |        |          |
| ,, .,                | 63               | -28       | 154     |         | 347      | 392   | 22       | 22       |         | 48       | 44        | 52     | 0       | 0      | 0      | 0       | 0        | 0      | 45     | 45      | 45     | 51      | 51 51    |         | 77       |        | 87      | 78      |       |         |         |         |        |          |
| 3,300-9,999          | 70               | -31       | 171     | 412     | 387      | 437   | 24       | 24       | 24      | 54       | 49        | 58     | 0       | 0      | 0      |         |          | 0      | 50     | 50      | 50     | 56      | 56 56    | 87      | 86       | 89     | 97      | 87      | 107   |         |         |         |        |          |
| 10,000-49,999        | 163              | 163       | 163     |         | 348      | 348   | 59       | 59       | 59      | 126      | 126       | 126    | 11      | 11     | 11     | 23      | 23       | 23     | 53     | 53      | 53     | 113     | 113 113  | 12      | 12       | 12     | 26      | 26      | 26    | 71      | 71      | 71      |        | 152 152  |
| 50,000-99,999        | 73               | 73        | 73      |         | 156      | 156   | 26       | 26       | 26      | 56       | 56        | 56     | 5       | 5      | 5      | 10      | 10       | 10     | 24     | 24      | 24     | 51      | 51 51    | 5       | 5        | 5      | 12      | 12      | 12    | 32      | 32      | 32      | 68     | 68 68    |
| 100,000-999,999      | 77               | 77        | 77      |         | 165      | 165   | 28       | 28       | 28      | 59       | 59        | 59     | 5       | 5      | 5      | 11      | 11       | 11     | 25     | 25      | 25     | 53      | 53 53    | 6       | 6        | 6      | 12      | 12      | 12    | 33      | 33      | 33      | 72     | 72 72    |
| >=1,000,000          | 9                | 9         | 9       | 20      | 20       | 20    | 3        | 3        | 3       | 7        | 7         | 7      | 1       | 1      | 1      | 1       | 1        | 1      | 3      | 3       | 3      | 6       | 6 6      | 1       | 1        | 1      | 1       | 1       | 1     | 4       | 4       | 4       | 9      | 9 9      |
| Total Plants         | 592              | 271       | 912     | 1,885   | 1,808    | 1,962 | 174      | 174      | 174     | 369      | 359       | 379    | 28      | 27     | 30     | 52      | 51       | 54     | 263    | 263     | 263    | 387     | 387 387  | 362     | 358      | 367    | 407     | 373     | 440   | 140     | 140     | 140     | 300 3  | 300 300  |
| System Size          | GAC <sup>2</sup> | 10 + AD ( | CL2     | GAC1    | 0 + AD ( | CLM   | GA       | C20 CL   | .2      | GA       | C20 CLM   |        | GAC20   | + AD C | CL2    | GAC20   | ) + AD ( | CLM    | Memb   | ranes C | L2     | Membra  | anes CLM |         |          | TOTAL  | CL2     |         |       |         |         | TOTAL C | CLM    |          |
| (Population Served)  | Mean             | 5th       | 95th    | Mean    | 5th      | 95th  | Mean     | 5th      | 95th    | Mean     | 5th 9     | 5th    | Mean    | 5th    | 95th   | Mean    | 5th      | 95th   | Mean   | 5th 9   | 95th   | Mean    | 5th 95th | Mea     | an       | 5th    | h       | 95t     | th    | Mea     | an      | 5th     |        | 95th     |
|                      |                  | M         |         |         | N        |       |          | 0        |         |          | Р         |        |         | Q      |        |         | R        |        |        | S       |        |         | T        |         | U = A+C- | +E+G+I | +K+M+O+ | +Q+S    |       | V       | = B+D+  | F+H+J+  | L+N+P+ | ·R+T     |
| <100                 |                  |           |         |         |          |       | 36       | 32       | 41      | 39       | 33        | 44     | 17      | 14     | 19     | 17      | 14       | 20     | 10     | 9       | 10     | 11      | 10 12    |         | 167      |        | 129     |         | 205   |         | 192     |         | 173    | 211      |
| 100-499              |                  |           |         |         |          |       | 59       | 51       | 68      | 95       | 80        | 109    | 24      | 21     | 28     | 39      | 33       | 45     | 14     | 13      | 16     | 23      | 20 27    | ·       | 274      |        | 198     |         | 350   |         | 492     |         | 446    | 539      |
| 500-999              |                  |           |         |         |          |       | 37       | 32       | 43      | 60       | 51        | 69     | 15      | 13     | 18     | 25      | 21       | 28     | 9      | 8       | 10     | 15      | 13 17    | ·       | 173      |        | 125     |         | 221   |         | 310     |         | 281    | 339      |
| 1,000-3,299          |                  |           |         |         |          |       | 79       | 68       | 90      | 171      | 145       | 197    | 32      | 28     | 37     | 70      | 60       | 81     | 4      | 4       | 5      | 10      | 9 11     |         | 324      |        | 215     |         | 432   |         | 806     |         | 732    | 879      |
| 3,300-9,999          |                  |           |         |         |          |       | 88       | 75       | 100     | 191      | 161       | 220    | 36      | 31     | 41     | 78      | 66       | 90     | 5      | 4       | 5      | 11      | 9 12     | 2       | 361      |        | 240     |         | 481   |         | 898     |         | 816    | 980      |
| 10,000-49,999        | 30               | 30        | 30      | 64      | 64       | 64    | 6        | 6        | 6       | 13       | 13        | 13     | 2       | 2      | 2      | 3       | 3        | 3      | 6      | 6       | 6      | 13      | 13 13    | 3       | 412      |        | 412     |         | 412   |         | 880     |         | 880    | 880      |
| 50,000-99,999        | 14               | 14        | 14      | 29      | 29       | 29    | 3        | 3        | 3       | 6        | 6         | 6      | 1       | 1      | 1      | 1       | 1        | 1      | 3      | 3       | 3      | 6       | 6 6      | 5       | 185      |        | 185     |         | 185   |         | 395     |         | 395    | 395      |
| 100,000-999,999      | 14               | 14        | 14      | 30      | 30       | 30    | 3        | 3        | 3       | 6        | 6         | 6      | 1       | 1      | 1      | 2       | 2        | 2      | 3      | 3       | 3      | 6       | 6 6      | 3       | 195      |        | 195     |         | 195   |         | 416     |         | 416    | 416      |
| >=1,000,000          | 2                | 2         | 2       | 4       | 4        | 4     | 0        | 0        | 0       | 1        | 1         | 1      | 0       | 0      | 0      | 0       | 0        | 0      | 0      | 0       | 0      | 1       | 1 1      |         | 23       |        | 23      |         | 23    |         | 50      |         | 50     | 50       |
|                      | 60               | 60        | 60      | 128     | 128      | 128   | 311      | 269      | 354     | 580      | 496       | 665    | 127     | 110    | 145    | 236     | 201      | 271    | 55     | 50      | 59     | 95      | 86 104   | 1       | 2.113    |        | 1.722   |         | 2,503 |         | 4.439   |         | ,189   | 4,690    |
| ,                    | 2                | 2         | 14<br>2 | 4       | 4        | 4     | 0        | 0        | 3<br>0  | 6<br>1   | 6<br>1    | 6<br>1 | 1<br>0  | 1<br>0 | 1<br>0 | 0       | 0        | 2<br>0 | 3<br>0 | 0       | 3<br>0 | 6<br>1  | 6 6      | 6       | 23       |        | 23      |         | 23    |         | 50      |         | 50     |          |

Note: Detail may not add to totals due to independent rounding

Source: Surface water systems serving <10,000 people: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 3. Surface water systems serving 10,000 or m

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

# Exhibit C.13c Post-Stage 2 DBPR Treatment Technologies-in-Place for NTNCWS Surface Water Plants (Percent of Plants by Residual Disinfection Type) Alternative 3

|                     |       |                        |       |       |           |       |          |          |        |          |           |       |      |         |      | Aitema | ative 3 |      |      |         |      |      |        |      |       |          |         |         |        |       |      |         |        |         |            |
|---------------------|-------|------------------------|-------|-------|-----------|-------|----------|----------|--------|----------|-----------|-------|------|---------|------|--------|---------|------|------|---------|------|------|--------|------|-------|----------|---------|---------|--------|-------|------|---------|--------|---------|------------|
| System Size         |       | inced Tre<br>nology Cl |       |       | anced Tre |       | Chlorine | e Dioxid | de CL2 | Chlorine | e Dioxide | CLM   | ı    | UV CL2  | !    | ι      | JV CLM  | 1    | O    | zone Cl | _2   | Oz   | one CL | .M   | MF    | F/UF CL: | 2       | MF      | UF CLI | М     | GAC  | 0 10 CL | 2      | GAC     | 10 CLM     |
| (Population Served) | Mean  | 5th                    | 95th  | Mean  | 5th       | 95th  | Mean     | 5th      | 95th   | Mean     | 5th       | 95th  | Mean | 5th     | 95th | Mean   | 5th     | 95th | Mean | 5th     | 95th | Mean | 5th    | 95th | Mean  | 5th      | 95th    | Mean    | 5th    | 95th  | Mean | 5th     | 95th   | Mean    | 5th 95th   |
|                     |       | Α                      |       |       | В         |       |          | С        |        |          | D         |       |      | Е       |      |        | F       |      |      | G       |      |      | Н      |      |       | 1        |         |         | J      |       |      | K       |        |         | L          |
| <100                | 12.4% | 4.5%                   | 20.3% | 20.9% | 19.4%     | 22.4% |          |          |        |          |           |       | 2.1% | 1.7%    | 2.4% | 2.2%   | 1.8%    | 2.5% |      |         |      |      |        |      | 14.5% | 14.5%    | 14.5%   | 11.8%   | 11.1%  | 12.6% |      |         |        |         |            |
| 100-499             | 7.3%  | -0.7%                  | 15.3% | 27.2% | 25.3%     | 29.2% | 1.0%     | 1.0%     | 1.0%   | 1.5%     | 1.4%      | 1.6%  | 0.0% | 0.0%    | 0.0% | 0.0%   | 0.0%    | 0.0% | 5.1% | 5.1%    | 5.1% | 4.6% | 4.6%   | 4.6% | 9.7%  | 9.5%     | 9.8%    | 10.4%   | 9.4%   | 11.3% |      |         |        |         |            |
| 500-999             | 7.3%  | -0.7%                  | 15.3% | 27.2% | 25.3%     | 29.2% | 1.0%     | 1.0%     | 1.0%   | 1.5%     | 1.4%      | 1.6%  | 0.0% | 0.0%    | 0.0% | 0.0%   | 0.0%    | 0.0% | 5.1% | 5.1%    | 5.1% | 4.6% | 4.6%   | 4.6% | 9.7%  | 9.5%     | 9.8%    | 10.4%   | 9.4%   | 11.3% |      |         |        |         |            |
| 1,000-3,299         | 5.6%  | -2.5%                  | 13.6% | 32.7% | 30.7%     | 34.7% | 1.9%     | 1.9%     | 1.9%   | 4.3%     | 3.9%      | 4.6%  | 0.0% | 0.0%    | 0.0% | 0.0%   | 0.0%    | 0.0% | 4.0% | 4.0%    | 4.0% | 4.5% | 4.5%   | 4.5% | 6.9%  | 6.8%     | 7.1%    | 7.7%    | 6.9%   | 8.5%  |      |         |        |         |            |
| 3,300-9,999         | 5.6%  | -2.5%                  | 13.6% | 32.7% | 30.7%     | 34.7% | 1.9%     | 1.9%     | 1.9%   | 4.3%     | 3.9%      | 4.6%  | 0.0% | 0.0%    | 0.0% | 0.0%   | 0.0%    | 0.0% | 4.0% | 4.0%    | 4.0% | 4.5% | 4.5%   | 4.5% | 6.9%  | 6.8%     | 7.1%    | 7.7%    | 6.9%   | 8.5%  |      |         |        |         |            |
| 10,000-49,999       | 12.6% | 12.6%                  | 12.6% | 27.0% | 27.0%     | 27.0% | 4.6%     | 4.6%     | 4.6%   | 9.7%     | 9.7%      | 9.7%  | 0.8% | 0.8%    | 0.8% | 1.7%   | 1.7%    | 1.7% | 4.1% | 4.1%    | 4.1% | 8.7% | 8.7%   | 8.7% | 0.9%  | 0.9%     | 0.9%    | 2.0%    | 2.0%   | 2.0%  | 5.5% | 5.5%    | 5.5%   | 11.7% 1 | 1.7% 11.7% |
| 50,000-99,999       | 0.0%  | 0.0%                   | 0.0%  | 0.0%  | 0.0%      | 0.0%  | 0.0%     | 0.0%     | 0.0%   | 0.0%     | 0.0%      | 0.0%  | 0.0% | 0.0%    | 0.0% | 0.0%   | 0.0%    | 0.0% | 0.0% | 0.0%    | 0.0% | 0.0% | 0.0%   | 0.0% | 0.0%  | 0.0%     | 0.0%    | 0.0%    | 0.0%   | 0.0%  | 0.0% | 0.0%    | 0.0%   | 0.0%    | 0.0% 0.0%  |
| 100,000-999,999     | 12.6% | 12.6%                  | 12.6% | 27.0% | 27.0%     | 27.0% | 4.6%     | 4.6%     | 4.6%   | 9.7%     | 9.7%      | 9.7%  | 0.8% | 0.8%    | 0.8% | 1.7%   | 1.7%    | 1.7% | 4.1% | 4.1%    | 4.1% | 8.7% | 8.7%   | 8.7% | 0.9%  | 0.9%     | 0.9%    | 2.0%    | 2.0%   | 2.0%  | 5.5% | 5.5%    | 5.5%   | 11.7% 1 | 1.7% 11.7% |
| >=1,000,000         | 0.0%  | 0.0%                   | 0.0%  | 0.0%  | 0.0%      | 0.0%  | 0.0%     | 0.0%     | 0.0%   | 0.0%     | 0.0%      | 0.0%  | 0.0% | 0.0%    | 0.0% | 0.0%   | 0.0%    | 0.0% | 0.0% | 0.0%    | 0.0% | 0.0% | 0.0%   | 0.0% | 0.0%  | 0.0%     | 0.0%    | 0.0%    | 0.0%   | 0.0%  | 0.0% | 0.0%    | 0.0%   | 0.0%    | 0.0% 0.0%  |
| Total %             | 8.6%  | 0.7%                   | 16.5% | 26.2% | 24.4%     | 28.0% | 0.8%     | 0.8%     | 0.8%   | 1.5%     | 1.4%      | 1.7%  | 0.6% | 0.5%    | 0.7% | 0.6%   | 0.5%    | 0.8% | 3.4% | 3.4%    | 3.4% | 3.2% | 3.2%   | 3.2% | 10.6% | 10.5%    | 10.7%   | 10.3%   | 9.5%   | 11.2% | 0.0% | 0.0%    | 0.0%   | 0.1%    | 0.1% 0.1%  |
| System Size         | GAC   | 10 + AD (              | CL2   | GAC   | 10 + AD   | CLM   | GA       | C20 CI   | L2     | GA       | C20 CL    | Л     | GAC  | 20 + AD | CL2  | GAC2   | 0 + AD  | CLM  | Mem  | branes  | CL2  | Mem  | branes | CLM  |       |          | TOTAL   | L CL2   |        |       |      |         | TOTAL  | . CLM   |            |
| (Population Served) | Mean  | 5th                    | 95th  | Mean  | 5th       | 95th  | Mean     | 5th      | 95th   | Mean     | 5th       | 95th  | Mean | 5th     | 95th | Mean   | 5th     | 95th | Mean | 5th     | 95th | Mean | 5th    | 95th | Mea   | an       | 5tl     | h       | 95     | th    | Mea  | n       | 5th    | n       | 95th       |
|                     |       | М                      |       |       | N         |       |          | 0        |        |          | Р         |       |      | Q       |      |        | R       |      |      | S       |      |      | Т      |      |       | U = A+0  | C+E+G+I | I+K+M+C | )+Q+S  |       | V    | = B+D-  | +F+H+J | J+L+N+F | '+R+T      |
| <100                |       |                        |       |       |           |       | 10.2%    | 8.8%     | 11.5%  | 10.8%    | 9.2%      | 12.3% | 4.6% | 3.8%    | 5.4% | 4.8%   | 4.0%    | 5.6% | 2.7% | 2.6%    | 2.8% | 3.0% | 2.8%   | 3.3% |       | 46.5%    |         | 36.0%   |        | 57.0% | 5    | 3.5%    |        | 48.2%   | 58.8%      |
| 100-499             |       |                        |       |       |           |       | 7.7%     | 6.6%     | 8.8%   | 12.4%    | 10.5%     | 14.3% | 3.2% | 2.7%    | 3.6% | 5.1%   | 4.3%    | 5.9% | 1.9% | 1.6%    | 2.1% | 3.1% | 2.6%   | 3.5% |       | 35.8%    |         | 25.9%   |        | 45.7% | 6    | 4.2%    |        | 58.2%   | 70.3%      |
| 500-999             |       |                        |       |       |           |       | 7.7%     | 6.6%     | 8.8%   | 12.4%    | 10.5%     | 14.3% | 3.2% | 2.7%    | 3.6% | 5.1%   | 4.3%    | 5.9% | 1.9% | 1.6%    | 2.1% | 3.1% | 2.6%   | 3.5% |       | 35.8%    |         | 25.9%   |        | 45.7% | 6    | 4.2%    | į      | 58.2%   | 70.3%      |
| 1,000-3,299         |       |                        |       |       |           |       | 7.0%     | 6.0%     | 8.0%   | 15.1%    | 12.8%     | 17.5% | 2.9% | 2.5%    | 3.2% | 6.2%   | 5.3%    | 7.2% | 0.4% | 0.4%    | 0.4% | 0.9% | 0.8%   | 1.0% |       | 28.7%    |         | 19.0%   |        | 38.2% | 7    | 1.3%    | f      | 64.8%   | 77.9%      |
| 3,300-9,999         |       |                        |       |       |           |       | 7.0%     | 6.0%     | 8.0%   | 15.1%    | 12.8%     | 17.5% | 2.9% | 2.5%    | 3.2% | 6.2%   | 5.3%    | 7.2% | 0.4% | 0.4%    | 0.4% | 0.9% | 0.8%   | 1.0% |       | 28.7%    |         | 19.0%   |        | 38.2% | 7    | 1.3%    |        | 64.8%   | 77.9%      |
| 10,000-49,999       | 2.3%  | 2.3%                   | 2.3%  | 5.0%  | 5.0%      | 5.0%  | 0.5%     | 0.5%     | 0.5%   | 1.0%     | 1.0%      | 1.0%  | 0.1% | 0.1%    | 0.1% | 0.2%   | 0.2%    | 0.2% | 0.5% | 0.5%    | 0.5% | 1.0% | 1.0%   | 1.0% |       | 31.9%    |         | 31.9%   |        | 31.9% | 6    | 8.1%    | - 1    | 68.1%   | 68.1%      |
| 50,000-99,999       | 0.0%  | 0.0%                   | 0.0%  | 0.0%  | 0.0%      | 0.0%  | 0.0%     | 0.0%     | 0.0%   | 0.0%     | 0.0%      | 0.0%  | 0.0% | 0.0%    | 0.0% | 0.0%   | 0.0%    | 0.0% | 0.0% | 0.0%    | 0.0% | 0.0% | 0.0%   | 0.0% |       | 0.0%     |         | 0.0%    |        | 0.0%  |      | 0.0%    |        | 0.0%    | 0.0%       |
| 100,000-999,999     | 2.3%  | 2.3%                   | 2.3%  | 5.0%  | 5.0%      | 5.0%  | 0.5%     | 0.5%     | 0.5%   | 1.0%     | 1.0%      | 1.0%  | 0.1% | 0.1%    | 0.1% | 0.2%   | 0.2%    | 0.2% | 0.5% | 0.5%    | 0.5% | 1.0% | 1.0%   | 1.0% |       | 31.9%    |         | 31.9%   |        | 31.9% | 6    | 8.1%    | - 1    | 68.1%   | 68.1%      |
| >=1,000,000         | 0.0%  | 0.0%                   | 0.0%  | 0.0%  | 0.0%      | 0.0%  | 0.0%     | 0.0%     | 0.0%   | 0.0%     | 0.0%      | 0.0%  | 0.0% | 0.0%    | 0.0% | 0.0%   | 0.0%    | 0.0% | 0.0% | 0.0%    | 0.0% | 0.0% | 0.0%   | 0.0% |       | 0.0%     |         | 0.0%    |        | 0.0%  |      | 0.0%    |        | 0.0%    | 0.0%       |
| Total %             | 0.0%  | 0.0%                   | 0.0%  | 0.0%  | 0.0%      | 0.0%  | 8.3%     | 7.1%     | 9.4%   | 12.2%    | 10.4%     | 14.1% | 3.5% | 3.0%    | 4.1% | 5.2%   | 4.4%    | 6.0% | 1.9% | 1.7%    | 2.1% | 2.7% | 2.4%   | 3.0% | •     | 37.8%    |         | 27.9%   | ď      | 47.8% | 6    | 2.2%    | - 1    | 56.3%   | 68.1%      |
|                     |       |                        |       |       |           |       |          |          |        |          |           |       |      |         |      |        |         |      |      |         |      |      |        |      |       |          |         |         |        |       |      |         |        |         |            |

Note: Detail may not add to totals due to independent rounding

Source: Surface water systems serving <10,000 people: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or m

Exhibit C.13d

Post-Stage 2 DBPR Treatment Technologies-in-Place for NTNCWS Surface Water Plants (Number of Plants by Residual Disinfection Type)

Alternative 3

| System Size                 |        | anced Tre |       | No Advar | nced Trea |      | Chlorine | e Dioxide | e CL2 | Chlorine | Dioxide ( | CLM   | U     | V CL2    |      | U     | / CLM    |       | Ozone  | e CL2   | Ozo  | one CLM   | M    | F/UF CL2 |        | MF/      | UF CLN | И    | GAC  | 10 CL2 | G.F       | C 10 CLM |
|-----------------------------|--------|-----------|-------|----------|-----------|------|----------|-----------|-------|----------|-----------|-------|-------|----------|------|-------|----------|-------|--------|---------|------|-----------|------|----------|--------|----------|--------|------|------|--------|-----------|----------|
| (Population Served)         | Mean   | 5th       | 95th  | Mean     | 0,        |      | Mean     | 5th       | 95th  | Mean     | 5th       | 95th  | Mean  | 5th      | 95th | Mean  | 5th 95   | h Mea | an 5t  | h 95th  | Mean | 5th 95th  | Mean | 5th      | 95th   | Mean     | 5th    | 95th | Mean | 5th 95 | th Mean   | 5th 95th |
| (i opulation corros)        | Modifi | A         | COLIT | Modifi   | В         | 00   | moun     | C         | oou.  | moun     | D         | 00111 | moun  | E        | 00   | moun  | F        |       | G      |         | moun | Н         | moun | I        | 00     | Widaii   | J      | 00   |      | K      |           | L        |
| <100                        | 28     | 10        | 46    | 47       | 44        | 51   |          |           |       |          |           |       | 5     | 4        | 5    | 5     | 4        | 6     |        |         |      |           | 33   | 33       | 33     | 27       | 25     | 29   |      |        |           |          |
| 100-499                     | 23     | -2        | 48    | 85       | 79        | 91   | 3        | 3         | 3     | 5        | 4         | 5     | 0     | 0        | 0    | 0     | 0        | 0     | 16     | 16 16   | 14   | 14 14     | 4 30 | 30       | 31     | 32       | 29     | 35   |      |        |           |          |
| 500-999                     | 8      | -1        | 16    | 29       | 27        | 31   | 1        | 1         | 1     | 2        | 1         | 2     | 0     | 0        | 0    | 0     | 0        | 0     | 5      | 5 5     | 5    | 5 5       | 10   | 10       | 10     | 11       | 10     | 12   |      |        |           |          |
| 1,000-3,299                 | 5      | -2        | 13    | 30       | 28        | 32   | 2        | 2         | 2     | 4        | 4         | 4     | 0     | 0        | 0    | 0     | 0        | 0     | 4      | 4 4     | 4    | 4 4       | 4 6  | 6        | 7      | 7        | 6      | 8    |      |        |           |          |
| 3,300-9,999                 | 1      | -1        | 3     | 8        | 8         | 9    | 0        | 0         | 0     | 1        | 1         | 1     | 0     | 0        | 0    | 0     | 0        | 0     | 1      | 1 1     | 1    | 1 1       | 1 2  | 2        | 2      | 2        | 2      | 2    |      |        |           |          |
| 10,000-49,999               | 1      | 1         | 1     | 1        | 1         | 1    | 0        | 0         | 0     | 0        | 0         | 0     | 0     | 0        | 0    | 0     | 0        | 0     | 0      | 0 0     | 0    | 0 (       | 0    | 0        | 0      | 0        | 0      | 0    | 0    | 0      | 0 1       | 1 1      |
| 50,000-99,999               | 0      | 0         | 0     | 0        | 0         | 0    | 0        | 0         | 0     | 0        | 0         | 0     | 0     | 0        | 0    | 0     | 0        | 0     | 0      | 0 0     | 0    | 0 (       | 0    | 0        | 0      | 0        | 0      | 0    | 0    | 0      | 0 0       | 0 0      |
| 100,000-999,999             | 0      | 0         | 0     | 0        | 0         | 0    | 0        | 0         | 0     | 0        | 0         | 0     | 0     | 0        | 0    | 0     | 0        | 0     | 0      | 0 0     | 0    | 0 (       | 0    | 0        | 0      | 0        | 0      | 0    | 0    | 0      | 0 0       | 0 (      |
| >=1,000,000                 | 0      | 0         | 0     | 0        | 0         | 0    | 0        | 0         | 0     | 0        | 0         | 0     | 0     | 0        | 0    | 0     | 0        | 0     | 0      | 0 0     | 0    | 0 (       | 0    | 0        | 0      | 0        | 0      | 0    | 0    | 0      | 0 0       | 0 0      |
| Total Plants                | 66     | 5         | 127   | 201      | 187       | 215  | 7        | 7         | 7     | 12       | 11        | 13    | 5     | 4        | 5    | 5     | 4        | 6     | 26     | 26 26   | 25   | 25 25     | 5 81 | 81       | 82     | 79       | 73     | 86   | 0    | 0      | 0 1       | 1 1      |
| System Size                 | GAC    | 10 + AD   | CL2   | GAC1     | 0 + AD CI | LM   | GA       | C20 CL:   | .2    | GA       | C20 CLM   |       | GAC20 | ) + AD ( | CL2  | GAC20 | + AD CLI | M N   | embrar | nes CL2 | Memb | ranes CLM |      |          | TOTAL  | L CL2    |        |      |      | TO     | TAL CLM   |          |
| (Population Served)         | Mean   | 5th       | 95th  | Mean     | 5th       | 95th | Mean     | 5th       | 95th  | Mean     | 5th       | 95th  | Mean  | 5th      | 95th | Mean  | 5th 95   | h Mea | an 5t  | h 95th  | Mean | 5th 95th  | Me   | an       | 5t     | :h       | 95t    | th   | Mear |        | 5th       | 95th     |
|                             |        | М         |       |          | N         |      |          | 0         |       |          | Р         |       |       | Q        |      |       | R        |       | S      | 3       |      | T         |      | U = A+C- | +E+G+l | I+K+M+O+ | +Q+S   |      | V =  | B+D+F+ | +H+J+L+N- | +P+R+T   |
| <100                        |        |           |       |          |           |      | 23       | 20        | 26    | 24       | 21        | 28    | 10    | 9        | 12   | 11    | 9        | 13    | 6      | 6 6     | 7    | 6         | 7    | 105      |        | 81       |        | 129  |      | 121    | 109       | 133      |
| 100-499                     |        |           |       |          |           |      | 24       | 21        | 27    | 39       | 33        | 44    | 10    | 9        | 11   | 16    | 14       | 18    | 6      | 5 7     | 10   | 8 1       | 1    | 112      |        | 81       |        | 142  |      | 200    | 181       | 219      |
| 500-999                     |        |           |       |          |           |      | 8        | 7         | 9     | 13       | 11        | 15    | 3     | 3        | 4    | 5     | 5        | 6     | 2      | 2 2     | 3    | 3 4       | 1    | 38       |        | 27       |        | 48   |      | 68     | 62        | 74       |
| 1,000-3,299                 |        |           |       |          |           |      | 6        | 6         | 7     | 14       | 12        | 16    | 3     | 2        | 3    | 6     | 5        | 7     | 0      | 0 0     | 1    | 1 '       | 1    | 26       |        | 18       |        | 35   |      | 66     | 60        | 72       |
| 3,300-9,999                 |        |           |       |          |           |      | 2        | 1         | 2     | 4        | 3         | 4     | 1     | 1        | 1    | 2     | 1        | 2     | 0      | 0 0     | 0    | 0 (       | D    | 7        |        | 5        |        | 10   |      | 18     | 16        | 19       |
| 10,000-49,999               | 0      | 0         | 0     | 0        | 0         | 0    | 0        | 0         | 0     | 0        | 0         | 0     | 0     | 0        | 0    | 0     | 0        | 0     | 0      | 0 0     | 0    | 0 (       | )    | 2        |        | 2        |        | 2    |      | 3      | 3         | 3        |
| 50,000-99,999               | 0      | 0         | 0     | 0        | 0         | 0    | 0        | 0         | 0     | 0        | 0         | 0     | 0     | 0        | 0    | 0     | 0        | 0     | 0      | 0 0     | 0    | 0 (       | D    | 0        |        | 0        |        | 0    |      | 0      | 0         | (        |
| 100,000-999,999             | 0      | 0         | 0     | 0        | 0         | 0    | 0        | 0         | 0     | 0        | 0         | 0     | 0     | 0        | 0    | 0     | 0        | 0     | 0      | 0 0     | 0    | 0 (       | D    | 0        |        | 0        |        | 0    |      | 1      | 1         | 1        |
| 1                           | 1 -    |           | _     | 0        | 0         | 0    | 0        | 0         | 0     | 0        | 0         | 0     | 0     | 0        | 0    | 0     | 0        | 0     | 0      | 0 0     | 0    | 0 (       | ol . | 0        |        | 0        |        | 0    |      | 0      | 0         | (        |
| >=1,000,000                 | 0      | 0         | U     | U        | U         | U    | U        | U         | U     | 0        |           | Ü     |       |          | -    | _     | -        | •     | •      | 0 0     | -    |           | -    |          |        |          |        |      |      |        |           |          |
| >=1,000,000<br>Total Plants | 0      | 0         | 0     | 0        | 0         | 0    | 63       | 54        | 72    | 94       | 80        | 108   | 27    | 23       | 31   | 40    | 33       | 46    | 15     | 13 16   | 21   | 18 23     | 3    | 290      |        | 214      |        | 366  |      | 477    | 432       | 522      |

Note: Detail may not add to totals due to independent rounding

Source: Surface water systems serving <10,000 people: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 3. Surface water systems serving 10,000 or more people: Use ending technology selection Delta for the Alternative 3. Surface water systems serving 10,000 or m

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

Exhibit C.14a

Post-Stage 2 DBPR Treatment Technologies-in-Place for CWS Ground Water Plants (Percent of Plants, by Residual Disinfectant Type)

Alternative 3

|                     |                                        |                                        |        |        |       | ternative |       |       |           |           |                 |                 |
|---------------------|----------------------------------------|----------------------------------------|--------|--------|-------|-----------|-------|-------|-----------|-----------|-----------------|-----------------|
| System Size         | No Advanced<br>Treatment<br>Technology | No Advanced<br>Treatment<br>Technology |        |        | Ozone | Ozone     | GAC20 | GAC20 | Membranes | Membranes |                 |                 |
| (Population Served) | CL21                                   | CLM1                                   | UV CL2 | UV CLM | CL2   | CLM       | CL2   | CLM   | CL2       | CLM       | Total Using CL2 | Total Using CLM |
|                     | Α                                      | В                                      | С      | D      | Е     | F         | G     | Н     | I         | J         | K = A+C+E+G+I   | L = B+D+F+H+J   |
| <100                | 92.8%                                  | 4.2%                                   | 0.0%   | 1.0%   | 0.0%  | 0.0%      | 0.3%  | 0.9%  | 0.3%      | 0.5%      | 93.4%           | 6.6%            |
| 100-499             | 91.5%                                  | 4.9%                                   | 0.0%   | 1.5%   | 0.2%  | 0.5%      | 0.2%  | 0.6%  | 0.1%      | 0.5%      | 91.9%           | 8.1%            |
| 500-999             | 91.5%                                  | 4.9%                                   | 0.0%   | 1.5%   | 0.2%  | 0.5%      | 0.2%  | 0.6%  | 0.1%      | 0.5%      | 91.9%           | 8.1%            |
| 1,000-3,299         | 92.5%                                  | 4.0%                                   | 0.0%   | 1.6%   | 0.3%  | 0.9%      | 0.0%  | 0.3%  | 0.1%      | 0.5%      | 92.8%           | 7.2%            |
| 3,300-9,999         | 92.5%                                  | 4.0%                                   | 0.0%   | 1.6%   | 0.3%  | 0.9%      | 0.0%  | 0.3%  | 0.1%      | 0.5%      | 92.8%           | 7.2%            |
| 10,000-49,999       | 84.4%                                  | 10.7%                                  |        |        | 1.0%  | 0.8%      | 0.0%  | 0.7%  | 1.7%      | 0.8%      | 87.0%           | 13.0%           |
| 50,000-99,999       | 84.4%                                  | 10.7%                                  |        |        | 1.0%  | 0.8%      | 0.0%  | 0.7%  | 1.7%      | 0.8%      | 87.0%           | 13.0%           |
| 100,000-999,999     | 85.0%                                  | 10.3%                                  |        |        | 1.0%  | 0.7%      | 0.0%  | 0.6%  | 1.7%      | 0.8%      | 87.6%           | 12.4%           |
| >=1,000,000         | 85.0%                                  | 10.3%                                  |        |        | 1.0%  | 0.7%      | 0.0%  | 0.6%  | 1.7%      | 0.8%      | 87.6%           | 12.4%           |
| Total %             | 90.9%                                  | 5.4%                                   | 0.0%   | 1.2%   | 0.3%  | 0.6%      | 0.1%  | 0.6%  | 0.4%      | 0.5%      | 91.7%           | 8.3%            |

Source: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.17) to the Technology Selection Delta for the Alternative 3.

Exhibit C.14b

Post-Stage 2 DBPR Treatment Technologies-in-Place for CWS Ground Water Plants (Number of Plants, by Residual Disinfectant Type)

Alternative 3

| System Size<br>(Population Served) | No Advanced<br>Treatment<br>Technology<br>CL21 | No Advanced<br>Treatment<br>Technology<br>CLM1 | UV CL2 | UV CLM | Ozone<br>CL2 | Ozone<br>CLM | GAC20<br>CL2 | GAC20<br>CLM | Membranes<br>CL2 | Membranes<br>CLM | Total Using CL2 | Total Using CLM |
|------------------------------------|------------------------------------------------|------------------------------------------------|--------|--------|--------------|--------------|--------------|--------------|------------------|------------------|-----------------|-----------------|
|                                    | Α                                              | В                                              | С      | D      | Е            | F            | G            | Н            | ļ                | J                | K = A+C+E+G+I   | L = B+D+F+H+J   |
| <100                               | 5,958                                          | 272                                            | 0      | 64     | 0            | 0            | 21           | 56           | 22               | 29               | 6,002           | 421             |
| 100-499                            | 13,945                                         | 747                                            | 0      | 230    | 25           | 74           | 26           | 97           | 20               | 80               | 14,015          | 1,227           |
| 500-999                            | 5,575                                          | 299                                            | 0      | 92     | 10           | 29           | 10           | 39           | 8                | 32               | 5,603           | 491             |
| 1,000-3,299                        | 7,015                                          | 303                                            | 0      | 122    | 22           | 66           | 0            | 19           | 4                | 36               | 7,041           | 546             |
| 3,300-9,999                        | 4,651                                          | 201                                            | 0      | 81     | 15           | 44           | 0            | 13           | 3                | 24               | 4,668           | 362             |
| 10,000-49,999                      | 4,543                                          | 574                                            |        |        | 53           | 42           | 0            | 36           | 90               | 45               | 4,685           | 697             |
| 50,000-99,999                      | 604                                            | 76                                             |        |        | 7            | 6            | 0            | 5            | 12               | 6                | 623             | 93              |
| 100,000-999,999                    | 781                                            | 94                                             |        |        | 9            | 6            | 0            | 6            | 15               | 7                | 805             | 113             |
| >=1,000,000                        | 23                                             | 3                                              |        |        | 0            | 0            | 0            | 0            | 0                | 0                | 24              | 3               |
| Total Plants                       | 43,095                                         | 2,570                                          | 0      | 588    | 140          | 267          | 57           | 271          | 173              | 258              | 43,465          | 3,954           |

Note: Detail may not add to totals due to independent rounding

Source: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.17) to the Technology Selection Delta for the Alternative 3.

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

Exhibit C.14c

Post-Stage 2 DBPR Treatment Technologies-in-Place for NTNCWS Ground Water Plants (Percent of Plants, by Residual Disinfectant Type)

Alternative 3

| System Size         | No Advanced<br>Treatment<br>Technology | No Advanced<br>Treatment<br>Technology |        |        | Ozone | Ozone | GAC20 | GAC20 | Membranes | Membranes |                 |                 |
|---------------------|----------------------------------------|----------------------------------------|--------|--------|-------|-------|-------|-------|-----------|-----------|-----------------|-----------------|
| (Population Served) | CL21                                   | CLM1                                   | UV CL2 | UV CLM | CL2   | CLM   | CL2   | CLM   | CL2       | CLM       | Total Using CL2 | Total Using CLM |
|                     | Α                                      | В                                      | С      | D      | Е     | F     | G     | Н     | I         | J         | K = A+C+E+G+I   | L = B+D+F+H+J   |
| <100                | 92.8%                                  | 4.2%                                   | 0.0%   | 1.0%   | 0.0%  | 0.0%  | 0.3%  | 0.9%  | 0.3%      | 0.5%      | 93.4%           | 6.6%            |
| 100-499             | 91.5%                                  | 4.9%                                   | 0.0%   | 1.5%   | 0.2%  | 0.5%  | 0.2%  | 0.6%  | 0.1%      | 0.5%      | 91.9%           | 8.1%            |
| 500-999             | 91.5%                                  | 4.9%                                   | 0.0%   | 1.5%   | 0.2%  | 0.5%  | 0.2%  | 0.6%  | 0.1%      | 0.5%      | 91.9%           | 8.1%            |
| 1,000-3,299         | 92.5%                                  | 4.0%                                   | 0.0%   | 1.6%   | 0.3%  | 0.9%  | 0.0%  | 0.3%  | 0.1%      | 0.5%      | 92.8%           | 7.2%            |
| 3,300-9,999         | 92.5%                                  | 4.0%                                   | 0.0%   | 1.6%   | 0.3%  | 0.9%  | 0.0%  | 0.3%  | 0.1%      | 0.5%      | 92.8%           | 7.2%            |
| 10,000-49,999       | 84.4%                                  | 10.7%                                  |        |        | 1.0%  | 0.8%  | 0.0%  | 0.7%  | 1.7%      | 0.8%      | 87.0%           | 13.0%           |
| 50,000-99,999       | 84.4%                                  | 10.7%                                  |        |        | 1.0%  | 0.8%  | 0.0%  | 0.7%  | 1.7%      | 0.8%      | 87.0%           | 13.0%           |
| 100,000-999,999     | 85.0%                                  | 10.3%                                  |        |        | 1.0%  | 0.7%  | 0.0%  | 0.6%  | 1.7%      | 0.8%      | 87.6%           | 12.4%           |
| >=1,000,000         | 0.0%                                   | 0.0%                                   |        |        | 0.0%  | 0.0%  | 0.0%  | 0.0%  | 0.0%      | 0.0%      | 0.0%            | 0.0%            |
| Total %             | 92.1%                                  | 4.6%                                   | 0.0%   | 1.3%   | 0.1%  | 0.3%  | 0.2%  | 0.7%  | 0.2%      | 0.5%      | 92.7%           | 7.3%            |

Source: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.17) to the Technology Selection Delta for the Alternative 3.

Exhibit C.14d

Post-Stage 2 DBPR Treatment Technologies-in-Place for NTNCWS Ground Water Plants (Number of Plants, by Residual Disinfectant Type)

Alternative 3

| System Size (Population Served) | No Advanced<br>Treatment<br>Technology<br>CL21 | No Advanced<br>Treatment<br>Technology<br>CLM1 | UV CL2 | UV CLM | Ozone<br>CL2 | Ozone<br>CLM | GAC20<br>CL2 | GAC20<br>CLM | Membranes<br>CL2 | Membranes<br>CLM | Total Using CL2 | Total Using CLM |
|---------------------------------|------------------------------------------------|------------------------------------------------|--------|--------|--------------|--------------|--------------|--------------|------------------|------------------|-----------------|-----------------|
| ,                               | А                                              | В                                              | С      | D      | Е            | F            | G            | Н            | I                | J                | K = A+C+E+G+I   | L = B+D+F+H+J   |
| <100                            | 2,313                                          | 106                                            | 0      | 25     | 0            | 0            | 8            | 22           | 9                | 11               | 2,329           | 164             |
| 100-499                         | 1,948                                          | 104                                            | 0      | 32     | 3            | 10           | 4            | 14           | 3                | 11               | 1,957           | 171             |
| 500-999                         | 539                                            | 29                                             | 0      | 9      | 1            | 3            | 1            | 4            | 1                | 3                | 542             | 47              |
| 1,000-3,299                     | 228                                            | 10                                             | 0      | 4      | 1            | 2            | 0            | 1            | 0                | 1                | 229             | 18              |
| 3,300-9,999                     | 20                                             | 1                                              | 0      | 0      | 0            | 0            | 0            | 0            | 0                | 0                | 20              | 2               |
| 10,000-49,999                   | 3                                              | 0                                              |        |        | 0            | 0            | 0            | 0            | 0                | 0                | 3               | 0               |
| 50,000-99,999                   | 0                                              | 0                                              |        |        | 0            | 0            | 0            | 0            | 0                | 0                | 0               | 0               |
| 100,000-999,999                 | 0                                              | 0                                              |        |        | 0            | 0            | 0            | 0            | 0                | 0                | 0               | 0               |
| >=1,000,000                     | 0                                              | 0                                              |        |        | 0            | 0            | 0            | 0            | 0                | 0                | 0               | 0               |
| Total Plants                    | 5,051                                          | 250                                            | 0      | 70     | 5            | 16           | 13           | 40           | 12               | 27               | 5,081           | 402             |

Note: Detail may not add to totals due to independent rounding

Source: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.17) to the Technology Selection Delta for the Alternative 3.

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

Exhibit C.15a

#### Stage 2 DBPR Treatment Technology Selection Deltas for CWS Surface Water Plants (Percent of Plants by Residual Disinfection Type)

|                                                                                                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |                                  |                      |                                                              |                                                                         |                                          |                                                      |                                                              | •                                            | itage z                                      | i icicii                                          | cu Aito                                      | mative,                              | 20% Sa                                                  | Hety IV                                        | iaigiii                                              |                                                                 |                                                      |                                                      |                                                                  |                                                      |                                                                                        |                                                                                |                                                                              |                                                |                                              |                                                                                 |                            |                  |               |
|--------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|----------------------------------|----------------------|--------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------------------------|----------------------------------------------|--------------------------------------|---------------------------------------------------------|------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------|----------------------------|------------------|---------------|
| System Size                                                                                      | Conve           | erting to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CLM                  |              | (                                | Chlorine             | e Dioxide                                                    | Э                                                                       |                                          |                                                      |                                                              | U۷                                           |                                              |                                                   |                                              |                                      |                                                         | Ozo                                            | ne                                                   |                                                                 |                                                      |                                                      |                                                                  | M                                                    | F/UF                                                                                   |                                                                                |                                                                              |                                                |                                              | GAG                                                                             | C10                        |                  |               |
| (Population                                                                                      |                 | Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |              | CL2                              |                      |                                                              | CLM                                                                     |                                          |                                                      | CL2                                                          |                                              |                                              | CLM                                               |                                              |                                      | CL2                                                     |                                                |                                                      | CLM                                                             |                                                      |                                                      | CL2                                                              |                                                      |                                                                                        | CLM                                                                            |                                                                              |                                                | CL2                                          |                                                                                 |                            | CLM              |               |
| Served)                                                                                          | Mean            | 5th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95th                 | Mean         | 5th                              | 95th                 | Mean                                                         | 5th                                                                     | 95th                                     | Mean                                                 | 5th                                                          | 95th                                         | Mean                                         | 5th                                               | 95th                                         | Mean                                 | 5th                                                     | 95th                                           | Mean                                                 | 5th                                                             | 95th                                                 | Mean                                                 | 5th                                                              | 95th                                                 | Mean                                                                                   | 5th                                                                            | 95th                                                                         | Mean                                           | 5th                                          | 95th                                                                            | Mean                       | 5th              | 95th          |
|                                                                                                  |                 | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |              | В                                |                      |                                                              | С                                                                       |                                          |                                                      | D                                                            |                                              |                                              | E                                                 |                                              |                                      | F                                                       |                                                |                                                      | G                                                               |                                                      |                                                      | Н                                                                |                                                      |                                                                                        | - 1                                                                            |                                                                              |                                                | J                                            |                                                                                 |                            | K                |               |
| <100                                                                                             | 2.1%            | 1.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.0%                 |              |                                  |                      |                                                              |                                                                         |                                          | 4.5%                                                 | 2.3%                                                         | 6.6%                                         | 3.3%                                         | 1.7%                                              | 4.9%                                         |                                      |                                                         |                                                |                                                      |                                                                 |                                                      | 0.0%                                                 | 0.0%                                                             | 0.0%                                                 | 0.0%                                                                                   | 0.0%                                                                           | 0.0%                                                                         |                                                |                                              |                                                                                 |                            |                  |               |
| 100-499                                                                                          | 4.5%            | 2.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.6%                 | 0.1%         | 0.1%                             | 0.2%                 | 0.4%                                                         | 0.2%                                                                    | 0.6%                                     | 1.3%                                                 | 0.7%                                                         | 2.0%                                         | 1.4%                                         | 0.7%                                              | 2.1%                                         | 0.0%                                 | 0.0%                                                    | 0.0%                                           | 0.0%                                                 | 0.0%                                                            | 0.0%                                                 | 0.0%                                                 | 0.0%                                                             | 0.0%                                                 | 0.0%                                                                                   | 0.0%                                                                           | 0.0%                                                                         |                                                |                                              |                                                                                 |                            |                  |               |
| 500-999                                                                                          | 4.5%            | 2.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.6%                 | 0.1%         | 0.1%                             | 0.2%                 | 0.4%                                                         | 0.2%                                                                    | 0.6%                                     | 1.3%                                                 | 0.7%                                                         | 2.0%                                         | 1.4%                                         | 0.7%                                              | 2.1%                                         | 0.0%                                 | 0.0%                                                    | 0.0%                                           | 0.0%                                                 | 0.0%                                                            | 0.0%                                                 | 0.0%                                                 | 0.0%                                                             | 0.0%                                                 | 0.0%                                                                                   | 0.0%                                                                           | 0.0%                                                                         |                                                |                                              |                                                                                 |                            |                  |               |
| 1,000-3,299                                                                                      | 4.6%            | 2.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.9%                 | 0.2%         | 0.1%                             | 0.3%                 | 1.0%                                                         | 0.5%                                                                    | 1.5%                                     | 1.0%                                                 | 0.5%                                                         | 1.5%                                         | 1.4%                                         | 0.7%                                              | 2.0%                                         | 0.0%                                 | 0.0%                                                    | 0.0%                                           | 0.0%                                                 | 0.0%                                                            | 0.0%                                                 | 0.0%                                                 | 0.0%                                                             | 0.0%                                                 | 0.0%                                                                                   | 0.0%                                                                           | 0.0%                                                                         |                                                |                                              |                                                                                 |                            |                  |               |
| 3,300-9,999                                                                                      | 4.6%            | 2.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.9%                 | 0.2%         | 0.1%                             | 0.3%                 | 1.0%                                                         | 0.5%                                                                    | 1.5%                                     | 1.0%                                                 | 0.5%                                                         | 1.5%                                         | 1.4%                                         | 0.7%                                              | 2.0%                                         | 0.0%                                 | 0.0%                                                    | 0.0%                                           | 0.0%                                                 | 0.0%                                                            | 0.0%                                                 | 0.0%                                                 | 0.0%                                                             | 0.0%                                                 | 0.0%                                                                                   | 0.0%                                                                           | 0.0%                                                                         |                                                |                                              |                                                                                 |                            |                  |               |
| 10,000-49,999                                                                                    | 8.6%            | 4.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.7%                | 0.1%         | 0.0%                             | 0.1%                 | 0.7%                                                         | 0.3%                                                                    | 1.0%                                     | 1.2%                                                 | 0.6%                                                         | 1.7%                                         | 0.3%                                         | 0.1%                                              | 0.4%                                         | 0.0%                                 | 0.0%                                                    | 0.0%                                           | 0.0%                                                 | 0.0%                                                            | 0.0%                                                 | 0.0%                                                 | 0.0%                                                             | 0.0%                                                 | 0.0%                                                                                   | 0.0%                                                                           | 0.0%                                                                         | 0.0%                                           | 0.0%                                         | 0.0%                                                                            | 0.0%                       | 0.0%             | 0.0%          |
| 50,000-99,999                                                                                    | 8.6%            | 4.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.7%                | 0.1%         | 0.0%                             | 0.1%                 | 0.7%                                                         | 0.3%                                                                    | 1.0%                                     | 1.2%                                                 | 0.6%                                                         | 1.7%                                         | 0.3%                                         | 0.1%                                              | 0.4%                                         | 0.0%                                 | 0.0%                                                    | 0.0%                                           | 0.0%                                                 | 0.0%                                                            | 0.0%                                                 | 0.0%                                                 | 0.0%                                                             | 0.0%                                                 | 0.0%                                                                                   | 0.0%                                                                           | 0.0%                                                                         | 0.0%                                           | 0.0%                                         | 0.0%                                                                            | 0.0%                       | 0.0%             | 0.0%          |
| 100,000-999,999                                                                                  | 8.6%            | 4.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.7%                | 0.1%         | 0.0%                             | 0.1%                 | 0.7%                                                         | 0.3%                                                                    | 1.0%                                     | 1.2%                                                 | 0.6%                                                         | 1.7%                                         | 0.3%                                         | 0.1%                                              | 0.4%                                         | 0.0%                                 | 0.0%                                                    | 0.0%                                           | 0.0%                                                 | 0.0%                                                            | 0.0%                                                 | 0.0%                                                 | 0.0%                                                             | 0.0%                                                 | 0.0%                                                                                   | 0.0%                                                                           | 0.0%                                                                         | 0.0%                                           | 0.0%                                         | 0.0%                                                                            | 0.0%                       | 0.0%             | 0.0%          |
| >=1,000,000                                                                                      | 8.6%            | 4.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.7%                | 0.1%         | 0.0%                             | 0.1%                 | 0.7%                                                         | 0.3%                                                                    | 1.0%                                     | 1.2%                                                 | 0.6%                                                         | 1.7%                                         | 0.3%                                         | 0.1%                                              | 0.4%                                         | 0.0%                                 | 0.0%                                                    | 0.0%                                           | 0.0%                                                 | 0.0%                                                            | 0.0%                                                 | 0.0%                                                 | 0.0%                                                             | 0.0%                                                 | 0.0%                                                                                   | 0.0%                                                                           | 0.0%                                                                         | 0.0%                                           | 0.0%                                         | 0.0%                                                                            | 0.0%                       | 0.0%             | 0.0%          |
| Total %                                                                                          | 6.0%            | 3.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.9%                 | 0.1%         | 0.1%                             | 0.2%                 | 0.7%                                                         | 0.4%                                                                    | 1.0%                                     | 1.3%                                                 | 0.7%                                                         | 2.0%                                         | 1.1%                                         | 0.6%                                              | 1.6%                                         | 0.0%                                 | 0.0%                                                    | 0.0%                                           | 0.0%                                                 | 0.0%                                                            | 0.0%                                                 | 0.0%                                                 | 0.0%                                                             | 0.0%                                                 | 0.0%                                                                                   | 0.0%                                                                           | 0.0%                                                                         | 0.0%                                           | 0.0%                                         | 0.0%                                                                            | 0.0%                       | 0.0%             | 0.0%          |
|                                                                                                  |                 | 0.170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.070                | ٠.           | 0.170                            | 0.270                | 0.1 /0                                                       | 0.470                                                                   | 1.070                                    | 1.070                                                | 0.1 70                                                       | 2.070                                        | 11170                                        | 0.070                                             | 1.070                                        | 0.070                                | 0.070                                                   | 0.076                                          | 0.070                                                | 0.070                                                           | 0.070                                                | 0.0,0                                                | 0.070                                                            | 0.070                                                | 0.070                                                                                  | 0.070                                                                          | 0.070                                                                        | 0.070                                          | 0.070                                        | 0.070                                                                           | 0.070                      | 0.070            | 0.070         |
| System Size                                                                                      | G/              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | ed Disinfo   |                                  |                      | 0.170                                                        | 0.470                                                                   |                                          | AC20                                                 | 0.1 70                                                       | 2.070                                        |                                              |                                                   |                                              | ced Disir                            |                                                         |                                                | 0.070                                                |                                                                 | Memb                                                 |                                                      | 0.070                                                            | 0.070                                                | 0.070                                                                                  | 0.070                                                                          | 0.070                                                                        | 0.076                                          | 0.070                                        | 0.070                                                                           | 0.070                      | 0.070            | 0.070         |
| System Size<br>(Population                                                                       | Gi              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | ed Disinfe   |                                  |                      | 0.770                                                        | CL2                                                                     |                                          |                                                      | CLM                                                          | 2.070                                        |                                              |                                                   |                                              | ced Disir                            |                                                         |                                                | 0.070                                                |                                                                 |                                                      | ranes                                                | CLM                                                              |                                                      | Total Con                                                                              |                                                                                |                                                                              |                                                |                                              |                                                                                 | tment Te                   |                  |               |
|                                                                                                  | G/<br>Mean      | AC10 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Advance              | ed Disinfo   | ectants                          | 3                    | Mean                                                         |                                                                         |                                          |                                                      |                                                              |                                              |                                              | AC20 +                                            | Advand                                       | ed Disir                             | nfectant:<br>CLM                                        | 6                                              | Mean                                                 | CL2                                                             |                                                      | ranes                                                | CLM                                                              |                                                      |                                                                                        |                                                                                |                                                                              |                                                |                                              | ng Trea                                                                         |                            |                  |               |
| (Population                                                                                      |                 | AC10 + A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Advance              | ed Disinfo   | ectants<br>CLM                   | 3                    |                                                              | CL2                                                                     | GA                                       | AC20                                                 | CLM                                                          |                                              | G.                                           | AC20 +<br>CL2                                     | Advand                                       | ed Disir                             | nfectant:<br>CLM                                        | 6                                              |                                                      | CL2                                                             | Memb                                                 | ranes                                                | CLM                                                              |                                                      | Total Con                                                                              | verting<br>5th                                                                 | to CLM<br>95th                                                               | To                                             | otal Addi                                    | ng Trea                                                                         | tment Te                   | chnology         | /             |
| (Population                                                                                      |                 | AC10 + A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Advance              | ed Disinfo   | ectants<br>CLM                   | 3                    |                                                              | CL2                                                                     | GA                                       | AC20                                                 | CLM                                                          |                                              | G.                                           | AC20 +<br>CL2                                     | Advand                                       | ed Disir                             | CLM<br>5th                                              | 95th                                           |                                                      | CL2                                                             | Memb                                                 | ranes                                                | CLM                                                              |                                                      | Total Con<br>Mean<br>T=A+C+E                                                           | verting<br>5th                                                                 | to CLM<br>95th                                                               | To                                             | otal Addi                                    | ng Trea                                                                         | tment Te<br>Mean           | chnology         | /             |
| (Population                                                                                      |                 | AC10 + A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Advance              | ed Disinfo   | ectants<br>CLM<br>5th            | 3                    |                                                              | CL2<br>5th                                                              | GA                                       | AC20                                                 | CLM<br>5th                                                   |                                              | G.                                           | AC20 +<br>CL2<br>5th<br>P                         | Advand                                       | ded Disir                            | ofectants<br>CLM<br>5th                                 | 95th                                           |                                                      | CL2                                                             | Membr<br>95th                                        | mean Mean                                            | CLM<br>5th                                                       | 95th                                                 | Total Con<br>Mean<br>T=A+C+E                                                           | overting<br>5th<br>+G+I+h                                                      | to CLM<br>95th                                                               | To<br>Mean                                     | otal Addi                                    | ng Trea<br>95th<br>L = SU                                                       | tment Te<br>Mean           | chnology         | /             |
| (Population<br>Served)                                                                           |                 | AC10 + A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Advance              | ed Disinfo   | ectants<br>CLM<br>5th            | 3                    | Mean                                                         | CL2<br>5th                                                              | GA<br>95th                               | Mean                                                 | CLM<br>5th<br>O<br>0.0%<br>0.0%                              | 95th                                         | G.<br>Mean                                   | AC20 +<br>CL2<br>5th<br>P<br>0.4%<br>0.3%         | 95th<br>1.1%<br>0.9%                         | Mean  0.5%                           | CLM<br>5th                                              | 95th<br>0.8%                                   | Mean                                                 | CL2<br>5th                                                      | 95th                                                 | Mean  0.0%                                           | CLM<br>5th                                                       | 95th<br>0.0%                                         | Total Con<br>Mean<br>T=A+C+E<br>5.9%                                                   | 5th<br>E+G+I+h<br>+Q+S<br>3.1%<br>3.7%                                         | to CLM<br>95th<br>K+M+O<br>8.8%<br>10.5%                                     | To<br>Mean                                     | otal Addi<br>5th                             | ng Trea<br>95th<br>L = SU<br>16.5%                                              | tment Te<br>Mean           | chnology         | /             |
| (Population<br>Served)                                                                           |                 | AC10 + A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Advance              | ed Disinfo   | ectants<br>CLM<br>5th            | 3                    | Mean                                                         | CL2<br>5th<br>N<br>0.0%                                                 | 95th                                     | Mean 0.0%                                            | CLM<br>5th<br>O                                              | 95th<br>0.0%                                 | Mean 0.7%                                    | AC20 +<br>CL2<br>5th<br>P<br>0.4%<br>0.3%         | 95th                                         | Mean  0.5%                           | onfectants<br>CLM<br>5th<br>Q<br>0.3%                   | 95th<br>0.8%<br>1.1%                           | Mean<br>0.0%                                         | CL2<br>5th<br>R<br>0.0%                                         | 95th 0.0% 0.0%                                       | Mean  0.0%                                           | CLM<br>5th<br>S<br>0.0%                                          | 95th<br>0.0%<br>0.1%                                 | Total Con<br>Mean<br>T=A+C+E<br>5.9%                                                   | 5th<br>E+G+I+h<br>+Q+S<br>3.1%<br>3.7%                                         | to CLM<br>95th<br>K+M+O<br>8.8%<br>10.5%                                     | Mean 11.1%                                     | otal Addi<br>5th<br>5.8%                     | ng Trea<br>95th<br>L = SU<br>16.5%<br>13.6%                                     | tment Te<br>Mean           | chnology         | /<br>95th     |
| (Population<br>Served)<br><100<br>100-499                                                        |                 | AC10 + A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Advance              | ed Disinfo   | ectants<br>CLM<br>5th            | 3                    | Mean                                                         | CL2<br>5th<br>N<br>0.0%<br>0.0%                                         | 95th<br>0.0%<br>0.0%                     | Mean 0.0% 0.0%                                       | CLM<br>5th<br>O<br>0.0%<br>0.0%                              | 95th<br>0.0%<br>0.0%                         | G. Mean 0.7% 0.6%                            | AC20 +<br>CL2<br>5th<br>P<br>0.4%<br>0.3%<br>0.3% | 95th<br>1.1%<br>0.9%                         | Mean  0.5%  0.8%                     | CLM<br>5th<br>Q<br>0.3%<br>0.4%                         | 95th<br>0.8%<br>1.1%<br>1.1%                   | Mean 0.0% 0.0%                                       | CL2<br>5th<br>R<br>0.0%<br>0.0%                                 | 95th  0.0%  0.0%  0.0%                               | 0.0%<br>0.1%<br>0.1%                                 | CLM<br>5th<br>S<br>0.0%<br>0.0%                                  | 95th<br>0.0%<br>0.1%<br>0.1%                         | Total Con<br>Mean<br>T=A+C+E<br>5.9%<br>7.1%                                           | 5th<br>E+G+I+h<br>+Q+S<br>3.1%<br>3.7%<br>3.7%                                 | to CLM<br>95th<br>K+M+O<br>8.8%<br>10.5%                                     | 11.1%<br>9.2%                                  | 5.8%<br>4.8%                                 | ng Trea<br>95th<br>L = SU<br>16.5%<br>13.6%<br>13.6%                            | tment Te<br>Mean<br>M(A:S) | echnology<br>5th | /<br>95th     |
| (Population<br>Served)<br><100<br>100-499<br>500-999                                             |                 | AC10 + A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Advance              | ed Disinfo   | ectants<br>CLM<br>5th            | 3                    | 0.0%<br>0.0%<br>0.0%                                         | CL2<br>5th<br>N<br>0.0%<br>0.0%<br>0.0%                                 | 95th  0.0%  0.0%  0.0%                   | Mean  0.0% 0.0% 0.0%                                 | CLM<br>5th<br>O<br>0.0%<br>0.0%<br>0.0%                      | 95th<br>0.0%<br>0.0%<br>0.0%                 | 0.7%<br>0.6%<br>0.6%                         | P 0.4% 0.3% 0.3% 0.3%                             | 95th<br>1.1%<br>0.9%<br>0.9%                 | Mean  0.5%  0.8%                     | CLM<br>5th<br>Q<br>0.3%<br>0.4%<br>0.4%<br>0.5%<br>0.5% | 95th<br>0.8%<br>1.1%<br>1.1%<br>1.3%<br>1.3%   | 0.0%<br>0.0%<br>0.0%                                 | CL2<br>5th<br>R<br>0.0%<br>0.0%<br>0.0%                         | 95th  0.0%  0.0%  0.0%  0.0%                         | 0.0%<br>0.1%<br>0.1%                                 | CLM<br>5th<br>S<br>0.0%<br>0.0%<br>0.0%                          | 95th<br>0.0%<br>0.1%<br>0.1%<br>0.0%                 | Total Con<br>Mean<br>T=A+C+E<br>5.9%<br>7.1%<br>7.1%                                   | 5th<br>E+G+I+h<br>+Q+S<br>3.1%<br>3.7%<br>3.7%<br>4.1%                         | to CLM<br>95th<br>K+M+O<br>8.8%<br>10.5%<br>11.7%                            | 11.1%<br>9.2%<br>9.2%                          | 5.8%<br>4.8%<br>4.8%                         | ng Trea<br>95th<br>L = SU<br>16.5%<br>13.6%<br>13.6%<br>14.3%                   | tment Te<br>Mean<br>M(A:S) | echnology<br>5th | /<br>95th     |
| (Population<br>Served)<br><100<br>100-499<br>500-999<br>1,000-3,299                              |                 | AC10 + A<br>CL2<br>5th<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 95th                 | Mean  0.4%   | ectants<br>CLM<br>5th<br>M       | 3                    | 0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                         | CL2<br>5th<br>N<br>0.0%<br>0.0%<br>0.0%<br>0.0%                         | 95th  0.0%  0.0%  0.0%  0.0%             | Mean  0.0% 0.0% 0.0% 0.0%                            | CLM<br>5th<br>O<br>0.0%<br>0.0%<br>0.0%                      | 95th<br>0.0%<br>0.0%<br>0.0%<br>0.0%         | 0.7%<br>0.6%<br>0.6%<br>0.5%                 | P 0.4% 0.3% 0.3% 0.3%                             | 95th<br>1.1%<br>0.9%<br>0.9%<br>0.8%         | 0.5%<br>0.8%<br>0.8%<br>0.9%<br>0.9% | CLM<br>5th<br>Q<br>0.3%<br>0.4%<br>0.4%<br>0.5%         | 95th<br>0.8%<br>1.1%<br>1.1%<br>1.3%<br>1.3%   | 0.0%<br>0.0%<br>0.0%<br>0.0%                         | CL2<br>5th<br>R<br>0.0%<br>0.0%<br>0.0%<br>0.0%                 | 95th  0.0%  0.0%  0.0%  0.0%  0.0%                   | 0.0%<br>0.1%<br>0.1%<br>0.0%                         | CLM<br>5th<br>S<br>0.0%<br>0.0%<br>0.0%                          | 95th<br>0.0%<br>0.1%<br>0.1%<br>0.0%<br>0.0%         | Total Con<br>Mean<br>T=A+C+E<br>5.9%<br>7.1%<br>7.1%<br>7.9%                           | 3.7%<br>3.7%<br>4.1%<br>4.1%                                                   | to CLM<br>95th<br>K+M+O<br>8.8%<br>10.5%<br>11.7%                            | 11.1%<br>9.2%<br>9.2%<br>9.7%                  | 5.8%<br>4.8%<br>4.8%<br>5.0%                 | ng Trea<br>95th L = SU<br>16.5%<br>13.6%<br>13.6%<br>14.3%<br>14.3%             | tment Te<br>Mean<br>M(A:S) | echnology<br>5th | /<br>95th     |
| (Population<br>Served)  <100 100-499 500-999 1,000-3,299 3,300-9,999                             | Mean            | AC10 + AC | 95th                 | Mean  0.4%   | CLM<br>5th<br>M                  | 95th<br>0.6%         | 0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                 | CL2<br>5th<br>N<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                 | 95th  0.0% 0.0% 0.0% 0.0% 0.0%           | Mean  0.0% 0.0% 0.0% 0.0% 0.0%                       | CLM<br>5th<br>O 0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%         | 95th<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0% | 0.7%<br>0.6%<br>0.6%<br>0.5%<br>0.5%         | P 0.4% 0.3% 0.3% 0.3% 0.0%                        | 95th<br>1.1%<br>0.9%<br>0.9%<br>0.8%<br>0.8% | 0.5%<br>0.8%<br>0.8%<br>0.9%<br>0.9% | CLM<br>5th<br>Q<br>0.3%<br>0.4%<br>0.4%<br>0.5%<br>0.5% | 95th  0.8% 1.1% 1.1% 1.3% 1.3% 0.0%            | 0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                 | CL2<br>5th<br>R<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%         | 95th  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%             | 0.0%<br>0.1%<br>0.1%<br>0.0%<br>0.0%                 | CLM<br>5th<br>S<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%          | 95th<br>0.0%<br>0.1%<br>0.1%<br>0.0%<br>0.0%         | Total Con<br>Mean<br>T=A+C+E<br>5.9%<br>7.1%<br>7.1%<br>7.9%<br>7.9%                   | 5th<br>E+G+I+H<br>+Q+S<br>3.1%<br>3.7%<br>4.1%<br>4.1%<br>5.2%                 | to CLM<br>95th<br>K+M+O<br>8.8%<br>10.5%<br>10.5%<br>11.7%<br>11.7%          | 11.1%<br>9.2%<br>9.2%<br>9.7%<br>9.7%          | 5.8%<br>4.8%<br>4.8%<br>5.0%<br>5.0%         | ng Trea<br>95th<br>L = SU<br>16.5%<br>13.6%<br>14.3%<br>14.3%<br>19.1%          | tment Te<br>Mean<br>M(A:S) | 5th              | 95th<br>14.2% |
| (Population<br>Served)  <100 100-499 500-999 1,000-3,299 3,300-9,999 10,000-49,999               | Mean            | AC10 + AC | 95th                 | Mean  0.4%   | CLM<br>5th<br>M                  | 95th<br>0.6%         | 0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.5%         | CL2<br>5th<br>N<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%         | 95th  0.0%  0.0%  0.0%  0.0%  0.0%  0.0% | Mean  0.0% 0.0% 0.0% 0.0% 0.0% 0.0%                  | CLM<br>5th<br>O 0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0% | 95th<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0% | 0.7%<br>0.6%<br>0.6%<br>0.5%<br>0.5%         | P 0.4% 0.3% 0.3% 0.3% 0.0% 0.0%                   | 95th 1.1% 0.9% 0.9% 0.8% 0.8% 0.0%           | 0.5% 0.8% 0.9% 0.9% 0.0%             | CLM 5th  Q 0.3% 0.4% 0.4% 0.5% 0.05% 0.0%               | 95th  0.8% 1.1% 1.1% 1.3% 1.3% 0.0% 0.0%       | 0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%         | CL2<br>5th<br>R<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0% | 95th  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%  0.0% | 0.0%<br>0.1%<br>0.1%<br>0.0%<br>0.0%<br>0.0%<br>0.0% | S 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%                                  | 95th  0.0%  0.1%  0.1%  0.0%  0.0%  0.0%  0.0%  0.0% | Total Con<br>Mean<br>T=A+C+E<br>5.9%<br>7.1%<br>7.1%<br>7.9%<br>7.9%<br>10.0%          | 5th<br>E+G+I+H<br>+Q+S<br>3.1%<br>3.7%<br>4.1%<br>4.1%<br>5.2%<br>5.2%         | to CLM<br>95th<br>K+M+O<br>8.8%<br>10.5%<br>10.5%<br>11.7%<br>11.7%          | 11.1%<br>9.2%<br>9.2%<br>9.7%<br>9.7%          | 5.8%<br>4.8%<br>4.8%<br>5.0%<br>5.0%         | ng Trea<br>95th<br>L = SU<br>16.5%<br>13.6%<br>14.3%<br>14.3%<br>19.1%<br>19.1% | tment Te<br>Mean<br>M(A:S) | 5th              | 95th<br>14.2% |
| (Population<br>Served)  <100 100-499 500-999 1,000-3,299 3,300-9,999 10,000-49,999 50,000-99,999 | Mean  1.1% 1.1% | AC10 + AC | 95th<br>1.6%<br>1.6% | 0.4%<br>0.4% | Ectants CLM 5th M 0.2% 0.2% 0.2% | 95th<br>0.6%<br>0.6% | 0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.5%<br>0.5% | CL2<br>5th<br>N<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.3%<br>0.3% | 95th  0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.8% | 0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0% | CLM<br>5th<br>O 0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.1% | 95th  0.0% 0.0% 0.0% 0.0% 0.0% 0.3%          | 0.7%<br>0.6%<br>0.6%<br>0.5%<br>0.5%<br>0.0% | P 0.4% 0.3% 0.3% 0.3% 0.0% 0.0%                   | 95th  1.1% 0.9% 0.9% 0.8% 0.8% 0.0% 0.0%     | 0.5% 0.8% 0.8% 0.9% 0.0% 0.0%        | CLM 5th Q 0.3% 0.4% 0.4% 0.5% 0.05% 0.0%                | 95th  0.8%  1.1%  1.3%  1.3%  0.0%  0.0%  0.0% | 0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0% | CL2<br>5th<br>R<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0% | 95th  0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.          | 0.0%<br>0.1%<br>0.1%<br>0.0%<br>0.0%<br>0.0%<br>0.0% | S<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0 | 95th  0.0%  0.1%  0.1%  0.0%  0.0%  0.0%  0.0%  0.0% | Total Con<br>Mean<br>T=A+C+E<br>5.9%<br>7.1%<br>7.1%<br>7.9%<br>7.9%<br>10.0%<br>10.0% | sverting<br>5th<br>E+G+I+H+Q+S<br>3.1%<br>3.7%<br>4.1%<br>4.1%<br>5.2%<br>5.2% | to CLM<br>95th<br>K+M+O<br>8.8%<br>10.5%<br>11.7%<br>11.7%<br>14.9%<br>14.9% | 11.1%<br>9.2%<br>9.2%<br>9.7%<br>9.7%<br>12.9% | 5.8%<br>4.8%<br>4.8%<br>5.0%<br>5.0%<br>6.7% | ng Trea<br>95th<br>L = SU<br>16.5%<br>13.6%<br>14.3%<br>14.3%<br>19.1%<br>19.1% | tment Te<br>Mean<br>M(A:S) | 5th              | 95th<br>14.2% |

Note: Detail may not add to totals due to independent rounding

Source: Technology Selection for the Stage 2 Preferred Alternative, 20% Safety Margin minus the Stage 1 Technology Selection from Appendix C, Exhibit C.1a.

Exhibit C.15b

### Stage 2 DBPR Treatment Technology Selection Deltas for CWS Surface Water Plants (Number of Plants by Residual Disinfection Type)

|                                                                                                           |       |            |                 |                     |            |          |                                      |                                               |                 |                  |                      |             |                     |                                                         |        |                  |                        |                     | Margin                                    |                                               |      |                |                                                |                                             |                                                                       |                                                                       |                                                            |                                    |                                        |                                        |                    |                 |             |
|-----------------------------------------------------------------------------------------------------------|-------|------------|-----------------|---------------------|------------|----------|--------------------------------------|-----------------------------------------------|-----------------|------------------|----------------------|-------------|---------------------|---------------------------------------------------------|--------|------------------|------------------------|---------------------|-------------------------------------------|-----------------------------------------------|------|----------------|------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------|------------------------------------|----------------------------------------|----------------------------------------|--------------------|-----------------|-------------|
| System Size                                                                                               | Conve | erting to  | CLM             |                     | (          | Chlorine | e Dioxide                            | Э                                             |                 |                  |                      | U٧          | ,                   |                                                         |        |                  |                        | Oz                  | one                                       |                                               |      |                |                                                | M                                           | F/UF                                                                  |                                                                       |                                                            |                                    |                                        | GA                                     | C10                |                 |             |
| (Population                                                                                               |       | Only       |                 |                     | CL2        |          |                                      | CLM                                           |                 |                  | CL2                  |             |                     | CLM                                                     |        |                  | CL2                    |                     |                                           | CLM                                           |      |                | CL2                                            |                                             |                                                                       | CLM                                                                   |                                                            |                                    | CL2                                    |                                        |                    | CLM             |             |
| Served)                                                                                                   | Mean  | 5th        | 95th            | Mean                | 5th        | 95th     | Mean                                 | 5th                                           | 95th            | Mean             | 5th                  | 95th        | Mean                | 5th                                                     | 95th   | Mean             | 5th                    | 95th                | Mean                                      | 5th                                           | 95th | Mean           | 5th                                            | 95th                                        | Mean                                                                  | 5th                                                                   | 95th                                                       | Mean                               | 5th                                    | 95th                                   | Mean               | 5th             | 95th        |
|                                                                                                           |       | Α          |                 |                     |            |          | В                                    |                                               |                 |                  |                      | С           |                     |                                                         |        |                  |                        |                     | D                                         |                                               |      |                |                                                |                                             | E                                                                     |                                                                       |                                                            |                                    |                                        |                                        | F                  |                 |             |
| <100                                                                                                      | 7     | 4          | 11              |                     |            |          |                                      |                                               |                 | 16               | 8                    | 24          | 12                  | 6                                                       | 18     |                  |                        |                     |                                           |                                               |      | 0              | 0                                              | 0                                           | 0                                                                     | 0                                                                     | 0                                                          |                                    |                                        |                                        |                    |                 |             |
| 100-499                                                                                                   | 34    | 18         | 51              | 1                   | 1          | 1        | 3                                    | 2                                             | 5               | 10               | 5                    | 15          | 11                  | 6                                                       | 16     | 0                | 0                      | 0                   | 0                                         | 0                                             | 0    | 0              | 0                                              | 0                                           | 0                                                                     | 0                                                                     | 0                                                          |                                    |                                        |                                        |                    |                 |             |
| 500-999                                                                                                   | 22    | 11         | 32              | 1                   | 0          | 1        | 2                                    | 1                                             | 3               | 6                | 3                    | 10          | 7                   | 4                                                       | 10     | 0                | 0                      | 0                   | 0                                         | 0                                             | 0    | 0              | 0                                              | 0                                           | 0                                                                     | 0                                                                     | 0                                                          |                                    |                                        |                                        |                    |                 |             |
| 1,000-3,299                                                                                               | 52    | 27         | 78              | 2                   | 1          | 3        | 11                                   | 6                                             | 16              | 12               | 6                    | 17          | 15                  | 8                                                       | 23     | 0                | 0                      | 0                   | 0                                         | 0                                             | 0    | 0              | 0                                              | 0                                           | 0                                                                     | 0                                                                     | 0                                                          |                                    |                                        |                                        |                    |                 |             |
| 3,300-9,999                                                                                               | 58    | 30         | 86              | 2                   | 1          | 4        | 12                                   | 6                                             | 18              | 13               | 7                    | 19          | 17                  | 9                                                       | 26     | 0                | 0                      | 0                   | 0                                         | 0                                             | 0    | 0              | 0                                              | 0                                           | 0                                                                     | 0                                                                     | 0                                                          |                                    |                                        |                                        |                    |                 |             |
| 10,000-49,999                                                                                             | 111   | 58         | 164             | 1                   | 0          | 1        | 8                                    | 4                                             | 12              | 15               | 8                    | 22          | 4                   | 2                                                       | 5      | 0                | 0                      | 0                   | 0                                         | 0                                             | 0    | 0              | 0                                              | 0                                           | 0                                                                     | 0                                                                     | 0                                                          | 0                                  | 0                                      | 0                                      | 0                  | 0               | 0           |
| 50,000-99,999                                                                                             | 50    | 26         | 73              | 0                   | 0          | 1        | 4                                    | 2                                             | 6               | 7                | 4                    | 10          | 2                   | 1                                                       | 2      | 0                | 0                      | 0                   | 0                                         | 0                                             | 0    | 0              | 0                                              | 0                                           | 0                                                                     | 0                                                                     | 0                                                          | 0                                  | 0                                      | 0                                      | 0                  | 0               | 0           |
| 100,000-999,999                                                                                           | 52    | 27         | 77              | 0                   | 0          | 1        | 4                                    | 2                                             | 6               | 7                | 4                    | 10          | 2                   | 1                                                       | 2      | 0                | 0                      | 0                   | 0                                         | 0                                             | 0    | 0              | 0                                              | 0                                           | 0                                                                     | 0                                                                     | 0                                                          | 0                                  | 0                                      | 0                                      | 0                  | 0               | 0           |
| >=1,000,000                                                                                               | 6     | 3          | 9               | 0                   | 0          | 0        | 0                                    | 0                                             | 1               | 1                | 0                    | 1           | 0                   | 0                                                       | 0      | 0                | 0                      | 0                   | 0                                         | 0                                             | 0    | 0              | 0                                              | 0                                           | 0                                                                     | 0                                                                     | 0                                                          | 0                                  | 0                                      | 0                                      | 0                  | 0               | 0           |
|                                                                                                           |       |            |                 |                     |            |          |                                      |                                               |                 |                  |                      |             |                     |                                                         |        | Ω                |                        |                     |                                           | Ω                                             | 0    |                |                                                |                                             | 0                                                                     |                                                                       |                                                            |                                    |                                        |                                        | _                  | ^               |             |
| Total Plants                                                                                              | 393   | 205        | 582             | 8                   | 4          | 12       | 45                                   | 24                                            | 67              | 87               | 46                   | 129         | 69                  | 36                                                      | 102    | 0                | 0                      | 0                   | 0                                         | Ü                                             | U    | 0              | 0                                              | 0                                           | U                                                                     | 0                                                                     | 0                                                          | 0                                  | 0                                      | 0                                      | 0                  | 0               | U           |
| Total Plants<br>System Size                                                                               |       | AC10 + /   |                 | d Disinfo           |            |          | 45                                   |                                               |                 | .C20             |                      | 129         |                     | AC20 +                                                  |        | ed Disir         | nfectant               | s<br>S              | 0                                         | - 1                                           | U    | oranes         |                                                | 0                                           | 0                                                                     | 0                                                                     | 0                                                          | 0                                  | 0                                      | 0                                      | 0                  | U               | U           |
|                                                                                                           | GA    | AC10 + /   | Advance         | ed Disinfo          | CLM        | <b>i</b> |                                      | CL2                                           | GA              | .C20             | CLM                  |             | G/                  | AC20 +<br>CL2                                           | Advanc | ed Disir         | nfectant<br>CLM        |                     |                                           | CL2                                           | Memb | oranes         | CLM                                            |                                             | Total Co                                                              | nverting                                                              |                                                            | To                                 | otal Addi                              | ing Trea                               | atment Te          | chnology        |             |
| System Size                                                                                               |       | AC10 + /   | Advance         | ed Disinfo          |            | <b>;</b> | 45<br>Mean                           |                                               | GA              |                  |                      | 129<br>95th |                     | AC20 +                                                  |        | ed Disir         | nfectant<br>CLM        |                     | Mean                                      | CL2                                           | Memb | Ū              |                                                | 95th                                        |                                                                       |                                                                       | to CLM<br>95th                                             |                                    |                                        | ing Trea                               |                    | chnology        | ,<br>95th   |
| System Size<br>(Population                                                                                | GA    | AC10 + /   | Advance<br>95th | ed Disinfo          | CLM        | <b>i</b> |                                      | CL2                                           | GA<br>95th      | C20<br>Mean      | CLM                  |             | G/                  | AC20 +<br>CL2                                           | Advanc | ed Disir         | nfectant<br>CLM        |                     |                                           | CL2                                           | Memb | oranes         | CLM                                            |                                             | Total Co<br>Mean<br>T=A+C+                                            | nverting<br>5th<br>E+G+l+                                             | 95th                                                       | To                                 | otal Addi                              | ing Trea<br>95th                       | atment Ted<br>Mean | chnology        |             |
| System Size<br>(Population<br>Served)                                                                     | GA    | AC10 + /   | Advance         | ed Disinfo          | CLM        | <b>i</b> |                                      | CL2                                           | GA<br>95th      | .C20             | CLM                  |             | G/                  | AC20 +<br>CL2                                           | Advanc | ed Disir         | nfectant<br>CLM        |                     |                                           | CL2                                           | Memb | oranes         | CLM                                            |                                             | Total Co<br>Mean<br>T=A+C+                                            | nverting<br>5th                                                       | 95th<br>K+M+O                                              | To                                 | otal Addi<br>5th                       | ing Trea<br>95th<br>L = SU             | Mean JM(A:S)       | chnology        |             |
| System Size<br>(Population<br>Served)                                                                     | GA    | AC10 + /   | Advance<br>95th | ed Disinfo          | CLM        | <b>i</b> |                                      | CL2                                           | GA<br>95th      | Mean H           | CLM<br>5th           |             | G/                  | AC20 +<br>CL2<br>5th                                    | Advanc | ed Disir         | nfectant<br>CLM<br>5th |                     | Mean 0                                    | CL2                                           | Memb | oranes         | CLM<br>5th                                     | 95th                                        | Total Co<br>Mean<br>T=A+C+                                            | nverting<br>5th<br>E+G+I+<br>+Q+S                                     | 95th<br>K+M+O<br>31                                        | To Mean                            | otal Addi<br>5th                       | 95th<br>L = SU                         | Mean JM(A:S)       | chnology        |             |
| System Size<br>(Population<br>Served)<br><100<br>100-499                                                  | GA    | AC10 + /   | Advance<br>95th | ed Disinfo          | CLM        | <b>i</b> | Mean                                 | CL2                                           | GA<br>95th      | Mean             | CLM<br>5th           |             | Mean                | AC20 +<br>CL2                                           | Advanc | ed Disir<br>Mean | nfectant<br>CLM        | 95th                | Mean                                      | CL2<br>5th                                    | Memb | oranes<br>Mean | CLM<br>5th                                     | 95th                                        | Total Co<br>Mean<br>T=A+C+                                            | nverting<br>5th<br>E+G+I+<br>+Q+S<br>11                               | 95th<br>K+M+O<br>31<br>81                                  | To<br>Mean                         | otal Addi<br>5th<br>21<br>37           | 95th<br>L = SU<br>59                   | Mean  JM(A:S)      | chnology<br>5th | 95th        |
| System Size<br>(Population<br>Served)<br><100<br>100-499<br>500-999                                       | GA    | AC10 + /   | Advance<br>95th | ed Disinfo          | CLM        | <b>i</b> | Mean                                 | CL2                                           | GA<br>95th      | Mean H 0 0       | CLM<br>5th<br>0<br>0 |             | Mean                | AC20 +<br>CL2<br>5th                                    | Advanc | Mean  2 6 4      | 5th                    | 95th<br>3<br>9<br>5 | Mean  0 0 0                               | 5th 0 0 0 0                                   | Memb | oranes<br>Mean | CLM<br>5th                                     | 95th<br>0 1                                 | Total Co<br>Mean<br>T=A+C+<br>21<br>54<br>34                          | nverting<br>5th<br>E+G+I+<br>+Q+S<br>11<br>28<br>18                   | 95th<br>K+M+O<br>31<br>81<br>51                            | Mean 40 70 44                      | 5th<br>21<br>37<br>23                  | 95th  L = SU  59  104  66              | Mean  JM(A:S)      | chnology        |             |
| System Size<br>(Population<br>Served)<br><100<br>100-499<br>500-999<br>1,000-3,299                        | GA    | AC10 + /   | Advance<br>95th | ed Disinfo          | CLM        | <b>i</b> | Mean                                 | CL2                                           | GA<br>95th      | Mean H           | CLM<br>5th           |             | Mean 3 5            | AC20 +<br>CL2<br>5th                                    | Advanc | ed Disir<br>Mean | nfectant<br>CLM<br>5th | 95th                | Mean  0 0 0                               | CL2<br>5th                                    | Memb | oranes<br>Mean | CLM<br>5th                                     | 95th<br>0 1                                 | Total Co<br>Mean<br>T=A+C+                                            | nverting<br>5th<br>E+G+I+I<br>+Q+S<br>11<br>28<br>18<br>47            | 95th<br>K+M+O<br>31<br>81<br>51<br>132                     | Mean  40  70  44  109              | 21<br>37<br>23<br>57                   | 95th<br>L = SU<br>59                   | Mean  JM(A:S)      | chnology<br>5th | 95th        |
| System Size<br>(Population<br>Served)<br><100<br>100-499<br>500-999<br>1,000-3,299<br>3,300-9,999         | GA    | CL2<br>5th | 95th<br>G       | ed Disinfo          | CLM<br>5th | <b>i</b> | Mean                                 | CL2                                           | 95th  0 0 0 0 0 | Mean H 0 0 0 0 0 | CLM<br>5th<br>0<br>0 |             | Mean 3 5            | AC20 +<br>CL2<br>5th                                    | Advanc | Mean  2 6 4      | 5th                    | 95th<br>3<br>9<br>5 | Mean  0 0 0 0 0                           | 5th 0 0 0 0                                   | Memb | oranes<br>Mean | CLM<br>5th                                     | 95th 0 1 0 0 0 0 0 0                        | Total Co<br>Mean<br>T=A+C+<br>21<br>54<br>34<br>89<br>99              | nverting<br>5th<br>E+G+I+<br>+Q+S<br>11<br>28<br>18<br>47<br>52       | 95th<br>K+M+O<br>31<br>81<br>51<br>132<br>147              | Mean  40 70 44 109 122             | 21<br>37<br>23<br>57<br>63             | 95th  L = SU 59 104 66 162 180         | Mean  JM(A:S)      | chnology<br>5th | 95th        |
| System Size (Population Served)  <100 100-499 500-999 1,000-3,299 3,300-9,999 10,000-49,999               | GA    | AC10 + /   | Advance<br>95th | ed Disinfo          | CLM        | <b>i</b> | Mean                                 | CL2                                           | GA<br>95th      | Mean H 0 0       | CLM<br>5th<br>0<br>0 |             | Mean 3 5            | AC20 +<br>CL2<br>5th                                    | Advanc | Mean  2 6 4 10   | 5th                    | 95th<br>3<br>9<br>5 | Mean  0 0 0 0 0                           | 5th 0 0 0 0                                   | Memb | oranes<br>Mean | CLM 5th 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | 95th 0 1 0 0 0 0 0 0                        | Total Co<br>Mean<br>T=A+C+<br>21<br>54<br>34<br>89                    | nverting<br>5th<br>E+G+I+I<br>+Q+S<br>11<br>28<br>18<br>47            | 95th<br>K+M+O<br>31<br>81<br>51<br>132                     | Mean  40  70  44  109              | 21<br>37<br>23<br>57                   | 95th  L = SU  59  104  66  162         | Mean  JM(A:S)      | chnology<br>5th | 95th        |
| System Size (Population Served)  <100 100-499 500-999 1,000-3,299 3,300-9,999 10,000-49,999 50,000-99,999 | Mean  | 7<br>3     | 95th<br>G       | ded Disinfe<br>Mean | CLM<br>5th | <b>i</b> | 0<br>0<br>0<br>0<br>0<br>0<br>7<br>3 | CL2<br>5th<br>0<br>0<br>0<br>0<br>0<br>4<br>2 | 95th  0 0 0 0 0 | Mean H 0 0 0 0 0 | CLM<br>5th<br>0<br>0 |             | Mean 3 5 3 6 7      | AC20 +<br>CL2<br>5th<br>1<br>2<br>2<br>3<br>4<br>0<br>0 | Advanc | Mean  2 6 4 10   | 1 3 2 5 6 0 0 0        | 95th<br>3<br>9<br>5 | Mean  0 0 0 0 0 0                         | 0<br>0<br>0<br>0<br>0                         | Memb | oranes<br>Mean | CLM 5th 00 00 00 00 00 00 00 00 00 00 00 00 00 | 95th 0 0 1 1 0 0 0 0                        | Total Co<br>Mean<br>T=A+C+<br>21<br>54<br>34<br>89<br>99              | 11 28 18 47 52 68 30                                                  | 95th<br>K+M+O<br>31<br>81<br>51<br>132<br>147<br>192<br>86 | To Mean  40 70 44 109 122 166 75   | 21<br>37<br>23<br>57<br>63<br>87<br>39 | 95th  L = SU 59 104 66 162 180 246 110 | Mean JM(A:S) 385   | 5th             | 95th<br>570 |
| System Size (Population Served)                                                                           | Mean  | CL2<br>5th | 95th<br>G       | Mean 5              | CLM<br>5th | <b>i</b> | Mean                                 | CL2                                           | 95th  0 0 0 0 0 | Mean H 0 0 0 0 0 | CLM<br>5th<br>0<br>0 |             | Mean 3 5 3 6 7      | AC20 +<br>CL2<br>5th<br>1<br>2<br>2<br>3<br>4           | Advanc | Mean  2 6 4 10   | 1 3 2 5 6 0            | 95th<br>3<br>9<br>5 | Mean                                      | 0<br>0<br>0<br>0<br>0                         | Memb | oranes<br>Mean | CLM<br>5th                                     | 95th 0 0 1 1 0 0 0 0                        | Total Co<br>Mean<br>T=A+C+<br>21<br>54<br>34<br>89<br>99              | nverting<br>5th<br>E+G+I+<br>+Q+S<br>11<br>28<br>18<br>47<br>52<br>68 | 95th<br>K+M+O<br>31<br>81<br>51<br>132<br>147<br>192       | To Mean  40  70  44  109  122  166 | 21<br>37<br>23<br>57<br>63<br>87       | 95th  L = SU 59 104 66 162 180 246     | Mean  JM(A:S)      | chnology<br>5th | 95th        |
| System Size (Population Served)  <100 100-499 500-999 1,000-3,299 3,300-9,999 10,000-49,999 50,000-99,999 | Mean  | 7<br>3     | 95th<br>G       | ded Disinfe<br>Mean | CLM<br>5th | <b>i</b> | 0<br>0<br>0<br>0<br>0<br>0<br>7<br>3 | CL2<br>5th<br>0<br>0<br>0<br>0<br>0<br>4<br>2 | 95th  0 0 0 0 0 | Mean H 0 0 0 0 0 | CLM<br>5th<br>0<br>0 |             | Mean  3 5 3 6 7 0 0 | AC20 +<br>CL2<br>5th<br>1<br>2<br>2<br>3<br>4<br>0<br>0 | Advanc | Mean             | 1 3 2 5 6 0 0 0        | 95th<br>3<br>9<br>5 | Mean  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | CL2 5th 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Memb | oranes<br>Mean | CLM 5th 00 00 00 00 00 00 00 00 00 00 00 00 00 | 95th  0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Total Co<br>Mean<br>T=A+C+<br>21<br>54<br>34<br>89<br>99<br>130<br>58 | 11 28 18 47 52 68 30                                                  | 95th<br>K+M+O<br>31<br>81<br>51<br>132<br>147<br>192<br>86 | To Mean  40 70 44 109 122 166 75   | 21<br>37<br>23<br>57<br>63<br>87<br>39 | 95th  L = SU 59 104 66 162 180 246 110 | Mean JM(A:S) 385   | 5th             | 95th<br>570 |

Note: Detail may not add to totals due to independent rounding

Source: Above table with technologies switching from an advanced technology with CI2 to the same advanced technology with CLM being moved into the CLM only column

Exhibit C.15c
Stage 2 DBPR Treatment Technology Selection Deltas for NTNCWS Surface Water Plants (Percent of Plants by Residual Disinfection Type)

|                 |       |           |         |           |      |          |           |      |      |      |      |      | Stage 2 | Preferr | ed Alte | rnative, | , 20% S | afety N | /largin |      |      |      |      |      |           |      |       |       |          |         |          |          |       |
|-----------------|-------|-----------|---------|-----------|------|----------|-----------|------|------|------|------|------|---------|---------|---------|----------|---------|---------|---------|------|------|------|------|------|-----------|------|-------|-------|----------|---------|----------|----------|-------|
| System Size     | Conve | erting to | CLM     |           | (    | Chlorine | e Dioxide | )    |      |      |      | U١   | /       |         |         |          |         | Ozo     | one     |      |      |      |      | М    | F/UF      |      |       |       |          | GAG     | C10      |          |       |
| (Population     |       | Only      |         |           | CL2  |          |           | CLM  |      |      | CL2  |      |         | CLM     |         |          | CL2     |         |         | CLM  |      |      | CL2  |      |           | CLM  |       |       | CL2      |         |          | CLM      |       |
| Served)         | Mean  | 5th       | 95th    | Mean      | 5th  | 95th     | Mean      | 5th  | 95th | Mean | 5th  | 95th | Mean    | 5th     | 95th    | Mean     | 5th     | 95th    | Mean    | 5th  | 95th | Mean | 5th  | 95th | Mean      | 5th  | 95th  | Mean  | 5th      | 95th    | Mean     | 5th      | 95th  |
|                 |       | Α         |         |           | В    |          |           | С    |      |      | D    |      |         | Е       |         |          | F       |         |         | G    |      |      | Н    |      |           | 1    |       |       | J        |         |          | K        |       |
| <100            | 2.1%  | 1.1%      | 3.0%    |           |      |          |           |      |      | 4.5% | 2.3% | 6.6% | 3.3%    | 1.7%    | 4.9%    |          |         |         |         |      |      | 0.0% | 0.0% | 0.0% | 0.0%      | 0.0% | 0.0%  |       |          |         |          |          |       |
| 100-499         | 4.5%  | 2.3%      | 6.6%    | 0.1%      | 0.1% | 0.2%     | 0.4%      | 0.2% | 0.6% | 1.3% | 0.7% | 2.0% | 1.4%    | 0.7%    | 2.1%    | 0.0%     | 0.0%    | 0.0%    | 0.0%    | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%      | 0.0% | 0.0%  |       |          |         |          |          |       |
| 500-999         | 4.5%  | 2.3%      | 6.6%    | 0.1%      | 0.1% | 0.2%     | 0.4%      | 0.2% | 0.6% | 1.3% | 0.7% | 2.0% | 1.4%    | 0.7%    | 2.1%    | 0.0%     | 0.0%    | 0.0%    | 0.0%    | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%      | 0.0% | 0.0%  |       |          |         |          |          |       |
| 1,000-3,299     | 4.6%  | 2.4%      | 6.9%    | 0.2%      | 0.1% | 0.3%     | 1.0%      | 0.5% | 1.5% | 1.0% | 0.5% | 1.5% | 1.4%    | 0.7%    | 2.0%    | 0.0%     | 0.0%    | 0.0%    | 0.0%    | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%      | 0.0% | 0.0%  |       |          |         |          |          |       |
| 3,300-9,999     | 4.6%  | 2.4%      | 6.9%    | 0.2%      |      | 0.3%     | 1.0%      | 0.5% | 1.5% | 1.0% | 0.5% | 1.5% | 1.4%    | 0.7%    | 2.0%    | 0.0%     | 0.0%    |         |         | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%      | 0.0% | 0.0%  |       |          |         |          |          |       |
| 10,000-49,999   | 8.6%  | 4.5%      | 12.7%   | 0.1%      | 0.0% | 0.1%     | 0.7%      | 0.3% | 1.0% | 1.2% | 0.6% | 1.7% | 0.3%    | 0.1%    | 0.4%    | 0.0%     | 0.0%    | 0.0%    | 0.0%    | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%      | 0.0% | 0.0%  | 0.0%  | 0.0%     | 0.0%    | 0.0%     | 0.0%     | 0.0%  |
| 50,000-99,999   | 0.0%  | 0.0%      | 0.0%    | 0.0%      | 0.0% | 0.0%     | 0.0%      | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%    | 0.0%    | 0.0%    | 0.0%     | 0.0%    |         |         | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%      | 0.0% | 0.0%  | 0.0%  | 0.0%     | 0.0%    | 0.0%     | 0.0%     | 0.0%  |
| 100,000-999,999 | 8.6%  | 4.5%      | 12.7%   | 0.1%      | 0.0% | 0.1%     | 0.7%      | 0.3% | 1.0% | 1.2% | 0.6% | 1.7% | 0.3%    | 0.1%    | 0.4%    | 0.0%     | 0.0%    | 0.0%    | 0.0%    | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%      | 0.0% | 0.0%  | 0.0%  | 0.0%     | 0.0%    | 0.0%     | 0.0%     | 0.0%  |
| >=1,000,000     | 0.0%  | 0.0%      | 0.0%    | 0.0%      |      | 0.0%     |           |      | 0.0% | 0.0% | 0.0% | 0.0% |         |         | 0.0%    |          | 0.0%    |         |         |      |      |      | 0.0% |      | 0.0%      | 0.0% | 0.0%  | 0.0%  | 0.0%     | 0.0%    | 0.0%     | 0.0%     | 0.0%  |
| Total %         | 3.8%  | 2.0%      | 5.7%    | 0.1%      | 0.1% | 0.1%     | 0.4%      | 0.2% | 0.6% | 2.2% | 1.2% | 3.3% | 2.0%    | 1.0%    | 2.9%    | 0.0%     | 0.0%    | 0.0%    | 0.0%    | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%      | 0.0% | 0.0%  | 0.0%  | 0.0%     | 0.0%    | 0.0%     | 0.0%     | 0.0%  |
| System Size     | G/    |           | Advance | ed Disinf |      | 3        |           |      | GA   | AC20 |      |      | G.      |         | Advan   | ced Disi |         | S       |         |      | Memb |      |      |      |           |      |       |       |          |         |          |          |       |
| (Population     |       | CL2       |         |           | CLM  |          |           | CL2  |      |      | CLM  |      |         | CL2     |         |          | CLM     |         |         | CL2  |      |      | CLM  |      | Total Con |      |       |       | tal Addi |         | tment Te | chnology |       |
| Served)         | Mean  | 5th       | 95th    | Mean      | 5th  | 95th     | Mean      | 5th  | 95th | Mean | 5th  | 95th | Mean    | 5th     | 95th    | Mean     | 5th     | 95th    | Mean    | 5th  | 95th | Mean | 5th  | 95th | Mean      | 5th  | 95th  | Mean  | 5th      | 95th    | Mean     | 5th      | 95th  |
|                 |       |           |         |           |      |          |           |      |      |      |      |      |         |         |         |          |         |         |         |      |      |      |      |      | T=A+C+E   |      | K+M+O |       |          |         |          |          |       |
|                 |       | L         |         |           | М    |          |           | N    |      |      | 0    |      |         | Р       |         |          | Q       |         |         | R    |      |      | S    |      |           | +Q+S |       |       |          | L = SUI | M(A:S)   |          |       |
| <100            |       |           |         |           |      |          | 0.0%      | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |         |         |         | 0.5%     | 0.3%    |         | 0.0%    | 0.0% |      | 0.0% | 0.0% |      | 5.9%      | 3.1% | 8.8%  | 11.1% | 5.8%     |         |          |          |       |
| 100-499         |       |           |         |           |      |          | 0.0%      | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |         |         |         | 0.8%     | 0.4%    |         | 0.0%    |      |      |      | 0.0% |      | 7.1%      |      | 10.5% | 9.2%  | 4.8%     |         |          |          |       |
| 500-999         |       |           |         |           |      |          | 0.0%      | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.6%    |         | 0.9%    |          | 0.4%    |         | 0.0%    |      | 0.0% |      | 0.0% |      | 7.1%      | 3.7% | 10.5% | 9.2%  |          | 13.6%   | 10.1%    | 5.3%     | 14.9% |
| 1,000-3,299     |       |           |         |           |      |          | 0.0%      | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.5%    |         | 0.8%    |          | 0.5%    |         | 0.0%    |      | 0.0% | 0.0% |      |      | 7.9%      |      | 11.7% | 9.7%  | 5.0%     |         |          |          |       |
| 3,300-9,999     |       |           |         |           |      |          | 0.0%      | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |         |         |         | 0.9%     | 0.5%    |         | 0.0%    |      | 0.0% | 0.0% | 0.0% |      | 7.9%      |      | 11.7% | 9.7%  | 5.0%     |         |          |          |       |
| 10,000-49,999   | 1.1%  | 0.5%      | 1.6%    |           |      | 0.6%     | 0.5%      | 0.3% | 0.8% | 0.2% | 0.1% | 0.3% | 0.0%    |         | 0.0%    |          | 0.0%    |         | 0.0%    |      | 0.0% | 0.0% |      |      | 10.0%     |      | 14.9% | 12.9% | 6.7%     | 19.1%   |          |          |       |
| 50,000-99,999   | 0.0%  | 0.0%      | 0.0%    |           |      | 0.0%     |           | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0%    |         |         | 0.0%     | 0.0%    |         | 0.0%    |      | 0.0% | 0.0% |      |      | 0.0%      | 0.0% | 0.0%  | 0.0%  |          | 0.0%    | 12.9%    | 6.7%     | 19 1% |
| 100,000-999,999 | 1.1%  | 0.5%      | 1.6%    |           |      | 0.6%     | 0.5%      | 0.3% | 0.8% | 0.2% | 0.1% | 0.3% | 0.0%    |         | 0.0%    |          | 0.0%    |         | 0.0%    |      | 0.0% | 0.0% |      |      | 10.0%     |      | 14.9% | 12.9% | 6.7%     |         | . 2.0 ,0 | J., 70   | , 0   |
| >=1,000,000     | 0.0%  | 0.0%      | 0.0%    |           |      | 0.0%     |           | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |         |         |         | 0.0%     | 0.0%    |         |         |      |      |      |      |      | 0.0%      | 0.0% | 0.0%  | 0.0%  |          | 0.0%    |          |          |       |
| Total %         | 0.0%  | 0.0%      | 0.0%    | 0.0%      | 0.0% | 0.0%     | 0.0%      | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.6%    | 0.3%    | 0.9%    | 0.7%     | 0.4%    | 1.1%    | 0.0%    | 0.0% | 0.0% | 0.0% | 0.0% | 0.1% | 6.9%      | 3.6% | 10.2% | 9.9%  | 5.1%     | 14.6%   | 9.9%     | 5.1%     | 14.6% |

Source: Technology Selection for the Stage 2 Preferred Alternative, 20% Safety Margin minus the Stage 1 Technology Selection from Appendix C, Exhibit C.1b.

Exhibit C.15d

Stage 2 DBPR Treatment Technology Selection Deltas for NTNCWS Surface Water Plants (Number of Plants by Residual Disinfection Type)

Stage 2 Preferred Alternative, 20% Safety Margin

|                 |       |           |        |         |         |         |           |     |      |      |     |      | Stage 2 | 1 101011 | cu Ait  | JIIIativo | , 20 /0 0 | uicty i | mai giii |     |      |       |          |       |        |          |       |      |           |         |          |          |      |
|-----------------|-------|-----------|--------|---------|---------|---------|-----------|-----|------|------|-----|------|---------|----------|---------|-----------|-----------|---------|----------|-----|------|-------|----------|-------|--------|----------|-------|------|-----------|---------|----------|----------|------|
| System Size     | Conve | erting to | CLM    |         |         | Chlorin | e Dioxide |     |      |      |     | U'   | V       |          |         |           |           | Oz      | one      |     |      |       |          | MF/UF |        |          |       |      |           | GA      | C10      |          |      |
| (Population     |       | Only      |        |         | CL2     |         |           | CLM |      |      | CL2 |      |         | CLM      |         |           | CL2       |         |          | CLM |      |       | CL2      |       | CL     | _M       |       |      | CL2       |         |          | CLM      |      |
| Served)         | Mean  | 5th       | 95th   | Mean    | 5th     | 95th    | Mean      | 5th | 95th | Mean | 5th | 95th | Mean    | 5th      | 95th    | Mean      | 5th       | 95th    | Mean     | 5th | 95th | Mean  | 5th 95tl | n Mea | ın 5   | th       | 95th  | Mean | 5th       | 95th    | Mean     | 5th      | 95th |
|                 |       | Α         |        |         |         |         | В         |     |      |      |     | C    | ;       |          |         |           |           |         | D        |     |      |       |          | Е     |        |          |       |      |           | F       |          |          |      |
| <100            | 5     | 2         | 7      |         |         |         |           |     |      | 10   | 5   | 15   | 7       | 4        | 11      |           |           |         |          |     |      | 0     | 0        | 0     | 0      | 0        | 0     |      |           |         |          |          |      |
| 100-499         | 14    | 7         | 21     | 0       | ) (     | ) 1     | 1         | 1   | 2    | 4    | 2   | 6    | 6 4     | 2        | 2 6     | 0         | 0         | 0       | 0        | 0   | 0    | 0     | 0        | 0     | 0      | 0        | 0     |      |           |         |          |          |      |
| 500-999         | 5     | 2         | 7      | 0       | ) (     | ) (     | 0         | 0   | 1    | 1    | 1   | 2    | 2 1     | 1        | 2       | 0         | 0         | 0       | 0        | 0   | 0    | 0     | 0        | 0     | 0      | 0        | 0     |      |           |         |          |          |      |
| 1,000-3,299     | 4     | 2         | 6      | 0       | ) (     | ) (     | ) 1       | 0   | 1    | 1    | 1   | 1    | 1       | 1        | 2       | 0         | 0         | 0       | 0        | 0   | 0    | 0     | 0        | 0     | 0      | 0        | 0     |      |           |         |          |          |      |
| 3,300-9,999     | 1     | 1         | 2      | . 0     | ) (     | ) (     | 0         | 0   | 0    | 0    | 0   | C    | 0       | 0        | ) 1     | 0         | 0         | 0       | 0        | 0   | 0    | 0     | 0        | 0     | 0      | 0        | 0     |      |           |         |          |          |      |
| 10,000-49,999   | 0     | 0         | 1      | 0       | ) (     | ) (     | 0         | 0   | 0    | 0    | 0   | (    | 0       | 0        | ) 0     | 0         | 0         | 0       | 0        | 0   | 0    | 0     | 0        | 0     | 0      | 0        | 0     | 0    | 0         | 0       | 0        | 0        | 0    |
| 50,000-99,999   | 0     | 0         | 0      | 0       | ) (     | ) (     | 0         | 0   | 0    | 0    | 0   | C    | 0       | 0        | 0       | 0         | 0         | 0       | 0        | 0   | 0    | 0     | 0        | 0     | 0      | 0        | 0     | 0    | 0         | 0       | 0        | 0        | 0    |
| 100,000-999,999 | 0     | 0         | 0      | 0       | ) (     | ) (     | 0         | 0   | 0    | 0    | 0   | (    | 0       | 0        | ) 0     | 0         | 0         | 0       | 0        | 0   | 0    | 0     | 0        | 0     | 0      | 0        | 0     | 0    | 0         | 0       | 0        | 0        | 0    |
| >=1,000,000     | 0     | 0         | 0      | 0       | ) (     | ) (     | 0         | 0   | 0    | 0    | 0   | C    | 0       | 0        | 0       | 0         | 0         | 0       | 0        | 0   | 0    | 0     | 0        | 0     | 0      | 0        | 0     | 0    | 0         | 0       | 0        | 0        | 0    |
| Total Plants    | 29    | 15        | 43     | 1       | l (     | ) 1     | 3         | 1   | 4    | 17   | 9   | 25   | 15      | 8        | 3 22    | 0         | 0         | 0       | 0        | 0   | 0    | 0     | 0        | 0     | 0      | 0        | 0     | 0    | 0         | 0       | 0        | 0        | 0    |
| System Size     | G/    | AC10 +    | Advanc | ed Disi | nfectan | ts      |           |     | GA   | AC20 |     |      | G       | AC20 +   | - Advan | ced Disi  | nfectant  | ts      |          | - 1 | Memb | ranes |          |       |        |          |       |      |           |         |          |          |      |
| (Population     |       | CL2       |        |         | CLM     |         |           | CL2 |      |      | CLM |      |         | CL2      |         |           | CLM       |         |          | CL2 |      |       | CLM      | Total | Conve  | rting to | o CLM | To   | tal Addir | ng Trea | tment Te | chnology | ,    |
| Served)         | Mean  | 5th       | 95th   | Mean    | 5th     | 95th    | Mean      | 5th | 95th | Mean | 5th | 95th | Mean    | 5th      | 95th    | Mean      | 5th       | 95th    | Mean     | 5th | 95th | Mean  | 5th 95tl | n Mea | ın 5   | th       | 95th  | Mean | 5th       | 95th    | Mean     | 5th      | 95th |
|                 |       |           |        |         |         |         |           |     |      |      |     |      |         |          |         |           |           |         |          |     |      |       |          | T=A-  | +C+E+0 | 3+I+K+   | +M+O  |      |           |         |          |          |      |
|                 |       |           | G      | i       |         |         |           |     |      | Н    |     |      |         |          |         | I         |           |         |          |     | J    |       |          |       | +Q     | )+S      |       |      |           | L = SU  | M(A:S)   |          |      |
| <100            |       |           |        |         |         |         | 0         | 0   | 0    | 0    | 0   | (    | ) 2     | 1        | 2       | 1         | 1         | 2       | 0        | 0   | 0    | 0     | 0        | 0     | 13     | 7        | 20    | 25   | 13        | 37      |          |          |      |
| 100-499         |       |           |        |         |         |         | 0         | 0   | 0    | 0    | 0   | (    | 2       | 1        | 3       | 2         | 1         | 4       | 0        | 0   | 0    | 0     | 0        | 0     | 22     | 12       | 33    | 29   | 15        | 42      |          |          |      |
| 500-999         |       |           |        |         |         |         | 0         | 0   | 0    | 0    | 0   | C    | 1       | 0        | ) 1     | 1         | 0         | 1       | 0        | 0   | 0    | 0     | 0        | 0     | 8      | 4        | 11    | 10   | 5         | 14      | 75       | 39       | 111  |
| 1,000-3,299     |       |           |        |         |         |         | 0         | 0   | 0    | 0    | 0   | (    | 0       | 0        | ) 1     | 1         | 0         | 1       | 0        | 0   | 0    | 0     | 0        | 0     | 7      | 4        | 11    | 9    | 5         | 13      |          |          |      |
| 3,300-9,999     |       |           |        |         |         |         | 0         | 0   | 0    | 0    | 0   | (    | 0       | 0        | 0       | 0         | 0         | 0       | 0        | 0   | 0    | 0     | 0        | 0     | 2      | 1        | 3     | 2    | 1         | 4       |          |          |      |
| 10,000-49,999   | 0     | 0         | 0      | 0       | ) (     | ) (     | 0         | 0   | 0    | 0    | 0   | C    | 0       | 0        | ) 0     | 0         | 0         | 0       | 0        | 0   | 0    | 0     | 0        | 0     | 1      | 0        | 1     | 1    | 0         | 1       |          |          |      |
| 50,000-99,999   | 0     | 0         | 0      | 0       | ) (     | ) (     | 0         | 0   | 0    | 0    | 0   | C    | 0       | 0        | 0       | 0         | 0         | 0       | 0        | 0   | 0    | 0     | 0        | 0     | 0      | 0        | 0     | 0    | 0         | 0       | 4        | 0        | 4    |
| 100,000-999,999 | 0     | 0         | 0      | 0       | ) (     | ) (     | 0         | 0   | 0    | 0    | 0   | C    | 0       | 0        | ) 0     | 0         | 0         | 0       | 0        | 0   | 0    | 0     | 0        | 0     | 0      | 0        | 0     | 0    | 0         | 0       | 1        | U        | 1    |
| >=1,000,000     | 0     | 0         | 0      | 0       | ) (     | ) (     | 0         | 0   | 0    | 0    | 0   | C    | 0       | 0        | 0       | 0         | 0         | 0       | 0        | 0   | 0    | 0     | 0        | 0     | 0      | 0        | 0     | 0    | 0         | 0       |          |          |      |
| Total Plants    | 0     | 0         | 0      |         | ) (     | ) (     |           | Λ   | 0    | 0    | 0   |      |         | 3        | 7       | -         | 3         | 0       | 0        | 0   | 0    | Λ     | Λ.       | Λ     | 53     | 28       | 78    | 76   | 39        | 112     | 76       | 39       | 112  |

Note: Detail may not add to totals due to independent rounding

Source: Above table with technologies switching from an advanced technology with Cl2 to the same advanced technology with CLM being moved into the CLM only column

Exhibit C.16a

Stage 2 DBPR Treatment Technology Selection Deltas for CWS Ground Water Plants (Percent of Plants, by Residual Disinfectant Type)

Stage 2 Preferred Alternative, 20% Safety Margin

|                     |          |        |        |       |       |       | ,     | ,         |           |                  |       |         |
|---------------------|----------|--------|--------|-------|-------|-------|-------|-----------|-----------|------------------|-------|---------|
|                     |          |        |        |       |       |       |       |           |           |                  | Total | Adding  |
| System Size         |          |        |        | Ozone | Ozone | GAC20 | GAC20 | Membranes | Membranes | Total Converting | Trea  | tment   |
| (Population Served) | CLM Only | UV CL2 | UV CLM | CL2   | CLM   | CL2   | CLM   | CL2       | CLM       | to CLM           | Tech  | nology  |
|                     | Α        | В      | С      | D     | Е     | F     | G     | Н         | I         | J = A+C+E+G+I    | K = S | UM(A:I) |
| <100                | 1.0%     | 0.0%   | 1.1%   | 0.0%  | 0.0%  | 0.4%  | 0.0%  | 0.0%      | 0.0%      | 2.0%             | 2.4%  |         |
| 100-499             | 1.4%     | 0.0%   | 1.6%   | 0.0%  | 0.0%  | 0.2%  | 0.0%  | 0.0%      | 0.0%      | 3.0%             | 3.2%  |         |
| 500-999             | 1.4%     | 0.0%   | 1.6%   | 0.0%  | 0.0%  | 0.2%  | 0.0%  | 0.0%      | 0.0%      | 3.0%             | 3.2%  | 2.9%    |
| 1,000-3,299         | 1.1%     | 0.0%   | 1.6%   | 0.0%  | 0.0%  | 0.0%  | 0.0%  | 0.0%      | 0.0%      | 2.7%             | 2.7%  |         |
| 3,300-9,999         | 1.1%     | 0.0%   | 1.6%   | 0.0%  | 0.0%  | 0.0%  | 0.0%  | 0.0%      | 0.0%      | 2.7%             | 2.7%  |         |
| 10,000-49,999       | 1.4%     |        |        | 0.1%  | 0.2%  | 0.0%  | 0.2%  | 0.0%      | 0.2%      | 2.0%             | 2.1%  |         |
| 50,000-99,999       | 1.4%     |        |        | 0.1%  | 0.2%  | 0.0%  | 0.2%  | 0.0%      | 0.2%      | 2.0%             | 2.1%  | 2.1%    |
| 100,000-999,999     | 1.3%     |        |        | 0.1%  | 0.2%  | 0.0%  | 0.1%  | 0.0%      | 0.2%      | 1.9%             | 2.0%  | 2.170   |
| >=1,000,000         | 1.4%     |        |        | 0.1%  | 0.2%  | 0.0%  | 0.1%  | 0.0%      | 0.2%      | 2.0%             | 2.1%  |         |
| Total %             | 1.3%     | 0.0%   | 1.3%   | 0.0%  | 0.0%  | 0.1%  | 0.0%  | 0.0%      | 0.0%      | 2.6%             | 2.8%  | 2.8%    |

Exhibit C.16b
Stage 2 DBPR Treatment Technology Selection Deltas for CWS Ground Water Plants (Number of Plants, by Residual Disinfectant Type)
Stage 2 Preferred Alternative, 20% Safety Margin

|                     |          |        |        |       |       |       |       |           |           |                  | Total  | Adding  |
|---------------------|----------|--------|--------|-------|-------|-------|-------|-----------|-----------|------------------|--------|---------|
| System Size         |          |        |        | Ozone | Ozone | GAC20 | GAC20 | Membranes | Membranes | Total Converting | Trea   | tment   |
| (Population Served) | CLM Only | UV CL2 | UV CLM | CL2   | CLM   | CL2   | CLM   | CL2       | CLM       | to CLM           | Tech   | nology  |
|                     | Α        | В      | С      | D     | Е     | F     | G     | Н         | I         | J = A+C+E+G+I    | K = SI | UM(A:I) |
| <100                | 61       | 0      | 70     | 0     | 0     | 23    | 0     | 0         | 0         | 132              | 155    |         |
| 100-499             | 213      | 0      | 243    | 0     | 0     | 27    | 0     | 0         | 0         | 456              | 483    |         |
| 500-999             | 85       | 0      | 97     | 0     | 0     | 11    | 0     | 0         | 0         | 182              | 193    | 1,169   |
| 1,000-3,299         | 82       | 0      | 118    | 0     | 0     | 0     | 4     | 0         | 0         | 204              | 204    |         |
| 3,300-9,999         | 54       | 0      | 78     | 0     | 0     | 0     | 2     | 0         | 0         | 135              | 135    |         |
| 10,000-49,999       | 75       |        |        | 3     | 12    | 0     | 8     | 2         | 11        | 107              | 111    |         |
| 50,000-99,999       | 10       |        |        | 0     | 2     | 0     | 1     | 0         | 2         | 14               | 15     | 145     |
| 100,000-999,999     | 12       |        |        | 0     | 2     | 0     | 1     | 0         | 2         | 17               | 18     | 143     |
| >=1,000,000         | 0        |        |        | 0     | 0     | 0     | 0     | 0         | 0         | 1                | 1      |         |
| Total Plants        | 593      | 0      | 607    | 4     | 15    | 61    | 17    | 2         | 15        | 1,247            | 1,314  | 1,314   |

Exhibit C.16c
Stage 2 DBPR Treatment Technology Selection Deltas for NTNCWS Ground Water Plants (Percent of Plants, by Residual Disinfectant Type)
Stage 2 Preferred Alternative, 20% Safety Margin

|                     |          |        |        |       |       | Aiternative | , =0 /0 0 0.0 | .,a. g    |           |                  |       |         |
|---------------------|----------|--------|--------|-------|-------|-------------|---------------|-----------|-----------|------------------|-------|---------|
|                     |          |        |        |       |       |             |               |           |           |                  | Total | Adding  |
| System Size         |          |        |        | Ozone | Ozone | GAC20       | GAC20         | Membranes | Membranes | Total Converting | Trea  | atment  |
| (Population Served) | CLM Only | UV CL2 | UV CLM | CL2   | CLM   | CL2         | CLM           | CL2       | CLM       | to CLM           | Tech  | inology |
|                     | Α        | В      | С      | D     | Е     | F           | G             | Н         | I         | J = A+C+E+G+I    | K = S | UM(A:I) |
| <100                | 1.0%     | 0.0%   | 1.1%   | 0.0%  | 0.0%  | 0.4%        | 0.0%          | 0.0%      | 0.0%      | 2.0%             | 2.4%  |         |
| 100-499             | 1.4%     | 0.0%   | 1.6%   | 0.0%  | 0.0%  | 0.2%        | 0.0%          | 0.0%      | 0.0%      | 3.0%             | 3.2%  |         |
| 500-999             | 1.4%     | 0.0%   | 1.6%   | 0.0%  | 0.0%  | 0.2%        | 0.0%          | 0.0%      | 0.0%      | 3.0%             | 3.2%  | 2.8%    |
| 1,000-3,299         | 1.1%     | 0.0%   | 1.6%   | 0.0%  | 0.0%  | 0.0%        | 0.0%          | 0.0%      | 0.0%      | 2.7%             | 2.7%  |         |
| 3,300-9,999         | 1.1%     | 0.0%   | 1.6%   | 0.0%  | 0.0%  | 0.0%        | 0.0%          | 0.0%      | 0.0%      | 2.7%             | 2.7%  |         |
| 10,000-49,999       | 1.4%     |        |        | 0.1%  | 0.2%  | 0.0%        | 0.2%          | 0.0%      | 0.2%      | 2.0%             | 2.1%  |         |
| 50,000-99,999       | 1.4%     |        |        | 0.1%  | 0.2%  | 0.0%        | 0.2%          | 0.0%      | 0.2%      | 2.0%             | 2.1%  | 2.1%    |
| 100,000-999,999     | 1.3%     |        |        | 0.1%  | 0.2%  | 0.0%        | 0.1%          | 0.0%      | 0.2%      | 1.9%             | 2.0%  | 2.1%    |
| >=1,000,000         | 0.0%     |        |        | 0.0%  | 0.0%  | 0.0%        | 0.0%          | 0.0%      | 0.0%      | 0.0%             | 0.0%  |         |
| Total %             | 1.2%     | 0.0%   | 1.4%   | 0.0%  | 0.0%  | 0.3%        | 0.0%          | 0.0%      | 0.0%      | 2.5%             | 2.8%  | 2.8%    |

Exhibit C.16d
Stage 2 DBPR Treatment Technology Selection Deltas for NTNCWS Ground Water Plants (Number of Plants, by Residual Disinfectant Type)
Stage 2 Preferred Alternative, 20% Safety Margin

|                     |          |        |        |       |       |       |       |           |           |                  | Total | Adding  |
|---------------------|----------|--------|--------|-------|-------|-------|-------|-----------|-----------|------------------|-------|---------|
| System Size         |          |        |        | Ozone | Ozone | GAC20 | GAC20 | Membranes | Membranes | Total Converting | Trea  | tment   |
| (Population Served) | CLM Only | UV CL2 | UV CLM | CL2   | CLM   | CL2   | CLM   | CL2       | CLM       | to CLM           | Tech  | nology  |
|                     | Α        | В      | С      | D     | Е     | F     | G     | Н         | I         | J = A+C+E+G+I    | K = S | UM(A:I) |
| <100                | 24       | 0      | 27     | 0     | 0     | 9     | 0     | 0         | 0         | 51               | 60    |         |
| 100-499             | 30       | 0      | 34     | 0     | 0     | 4     | 0     | 0         | 0         | 64               | 67    |         |
| 500-999             | 8        | 0      | 9      | 0     | 0     | 1     | 0     | 0         | 0         | 18               | 19    | 153     |
| 1,000-3,299         | 3        | 0      | 4      | 0     | 0     | 0     | 0     | 0         | 0         | 7                | 7     |         |
| 3,300-9,999         | 0        | 0      | 0      | 0     | 0     | 0     | 0     | 0         | 0         | 1                | 1     |         |
| 10,000-49,999       | 0        |        |        | 0     | 0     | 0     | 0     | 0         | 0         | 0                | 0     |         |
| 50,000-99,999       | 0        |        |        | 0     | 0     | 0     | 0     | 0         | 0         | 0                | 0     | 0       |
| 100,000-999,999     | 0        |        |        | 0     | 0     | 0     | 0     | 0         | 0         | 0                | 0     | U       |
| >=1,000,000         | 0        |        |        | 0     | 0     | 0     | 0     | 0         | 0         | 0                | 0     |         |
| Total Plants        | 65       | 0      | 75     | 0     | 0     | 14    | 0     | 0         | 0         | 140              | 154   | 154     |

## Exhibit C.17a Post-Stage 2 DBPR Treatment Technologies-in-Place for CWS Surface Water Plants (Percent of Plants by Residual Disinfection Type)

Stage 2 Preferred Alternative, 20% Safety Margin

|                     |       |                                                                       |       |       |         |       |          |          |        |          |         |      | Jia  | ge z i it | ererreu | Aiterna | iive, zu | /o Jai | ety iviai | yııı    |      |      |          |      |       |         |         |        |        |       |        |         |         |           |
|---------------------|-------|-----------------------------------------------------------------------|-------|-------|---------|-------|----------|----------|--------|----------|---------|------|------|-----------|---------|---------|----------|--------|-----------|---------|------|------|----------|------|-------|---------|---------|--------|--------|-------|--------|---------|---------|-----------|
| System Size         |       | Ivanced Treatment chnology CL21 Technology CLM1  5th 95th Mean 5th 95 |       |       |         |       | Chlorine | e Dioxid | le CL2 | Chlorine | Dioxide | CLM  | ι    | JV CL2    |         | U       | V CLM    |        | Oz        | zone CL | 2    | Oz   | one CLI  | М    | MF    | /UF CL2 | 2       | MF     | UF CLN | 4     | GAC    | 10 CL2  | G/      | AC 10 CLM |
| (Population Served) | Mean  | 5th                                                                   | 95th  | Mean  | 5th     | 95th  | Mean     | 5th      | 95th   | Mean     | 5th     | 95th | Mean | 5th       | 95th    | Mean    | 5th      | 95th   | Mean      | 5th     | 95th | Mean | 5th      | 95th | Mean  | 5th     | 95th    | Mean   | 5th    | 95th  | Mean   | 5th 95t | h Mean  | 5th 95th  |
| ( )                 |       | Α                                                                     |       |       | В       |       |          | С        |        |          | D       |      |      | Е         |         |         | F        |        |           | G       |      |      | Н        |      |       | ı       |         |        | J      |       |        | K       |         | L         |
| <100                | 30.7% | 25.4%                                                                 | 36.0% | 31.8% | 30.8%   | 32.8% |          |          |        |          |         |      | 4.5% | 2.3%      | 6.6%    | 3.3%    | 1.7%     | 4.9%   |           |         |      |      |          |      | 14.5% | 14.5%   | 14.5%   | 7.1%   | 7.1%   | 7.1%  |        |         |         |           |
| 100-499             | 26.4% | 22.0%                                                                 | 30.8% | 39.9% | 37.8%   | 42.0% | 1.1%     | 1.0%     | 1.1%   | 1.3%     | 1.1%    | 1.5% | 1.3% | 0.7%      | 2.0%    | 1.4%    | 0.7%     | 2.1%   | 5.1%      | 5.1%    | 5.1% | 4.6% | 4.6%     | 4.6% | 8.9%  | 8.9%    | 8.9%    | 4.8%   | 4.8%   | 4.8%  |        |         |         |           |
| 500-999             | 26.4% | 22.0%                                                                 | 30.8% | 39.9% | 37.8%   | 42.0% | 1.1%     | 1.0%     | 1.1%   | 1.3%     | 1.1%    | 1.5% | 1.3% | 0.7%      | 2.0%    | 1.4%    | 0.7%     | 2.1%   | 5.1%      | 5.1%    | 5.1% | 4.6% | 4.6%     | 4.6% | 8.9%  | 8.9%    | 8.9%    | 4.8%   | 4.8%   | 4.8%  |        |         |         |           |
| 1,000-3,299         | 23.8% | 19.1%                                                                 | 28.4% | 46.0% | 43.8%   | 48.2% | 2.1%     | 2.0%     | 2.2%   | 3.1%     | 2.6%    | 3.6% | 1.0% | 0.5%      | 1.5%    | 1.4%    | 0.7%     | 2.0%   | 4.0%      | 4.0%    | 4.0% | 4.5% | 4.5%     | 4.5% | 6.2%  | 6.2%    | 6.2%    | 2.9%   | 2.9%   | 2.9%  |        |         |         |           |
| 3,300-9,999         | 23.8% | 19.1%                                                                 | 28.4% | 46.0% | 43.8%   | 48.2% | 2.1%     | 2.0%     | 2.2%   | 3.1%     | 2.6%    | 3.6% | 1.0% | 0.5%      | 1.5%    | 1.4%    | 0.7%     | 2.0%   | 4.0%      | 4.0%    | 4.0% | 4.5% | 4.5%     | 4.5% | 6.2%  | 6.2%    | 6.2%    | 2.9%   | 2.9%   | 2.9%  |        |         |         |           |
| 10,000-49,999       | 31.2% | 31.2%                                                                 | 31.2% | 41.0% | 41.0%   | 41.0% | 3.0%     | 3.0%     | 3.0%   | 4.0%     | 4.0%    | 4.0% | 0.3% | 0.3%      | 0.3%    | 0.4%    | 0.4%     | 0.4%   | 5.5%      | 5.5%    | 5.5% | 7.3% | 7.3%     | 7.3% | 0.8%  | 0.8%    | 0.8%    | 1.0%   | 1.0%   | 1.0%  | 0.9% ( | .9% 0.9 | % 1.2%  | 1.2% 1.29 |
| 50,000-99,999       | 31.2% |                                                                       |       | 41.0% |         |       |          |          |        | 4.0%     | 4.0%    | 4.0% |      | 0.3%      | 0.3%    | 0.4%    | 0.4%     | 0.4%   | 5.5%      | 5.5%    | 5.5% |      |          |      |       |         | 0.8%    | 1.0%   | 1.0%   | 1.0%  | 0.9% ( | .9% 0.9 | % 1.2%  | 1.2% 1.29 |
| 100,000-999,999     | 31.2% | 31.2%                                                                 | 31.2% | 41.0% | 41.0%   | 41.0% | 3.0%     | 3.0%     | 3.0%   | 4.0%     | 4.0%    | 4.0% | 0.3% | 0.3%      | 0.3%    | 0.4%    | 0.4%     | 0.4%   | 5.5%      | 5.5%    | 5.5% | 7.3% | 7.3%     | 7.3% | 0.8%  | 0.8%    | 0.8%    | 1.0%   | 1.0%   | 1.0%  | 0.9% ( | .9% 0.9 | % 1.2%  | 1.2% 1.29 |
| >=1,000,000         | 31.2% | 31.2%                                                                 | 31.2% | 41.0% | 41.0%   | 41.0% | 3.0%     | 3.0%     | 3.0%   | 4.0%     | 4.0%    | 4.0% | 0.3% | 0.3%      | 0.3%    | 0.4%    | 0.4%     | 0.4%   | 5.5%      | 5.5%    | 5.5% | 7.3% | 7.3%     | 7.3% | 0.8%  | 0.8%    | 0.8%    | 1.0%   | 1.0%   | 1.0%  | 0.9% ( | .9% 0.9 | % 1.2%  | 1.2% 1.29 |
| Total %             | 27.6% | 24.7%                                                                 | 30.4% | 42.1% | 40.8%   | 43.4% | 2.1%     | 2.1%     | 2.2%   | 2.9%     | 2.7%    | 3.1% | 1.0% | 0.6%      | 1.4%    | 1.1%    | 0.7%     | 1.6%   | 4.6%      | 4.6%    | 4.6% | 5.3% | 5.3%     | 5.3% | 5.1%  | 5.1%    | 5.1%    | 2.8%   | 2.8%   | 2.8%  | 0.4% ( | .4% 0.4 | % 0.5%  | 0.5% 0.5% |
| System Size         | GAC   | 10 + AD (                                                             | CL2   | GAC1  | 10 + AD | CLM   | GA       | AC20 CL  | 2      | GA       | C20 CLN | Л    | GAC2 | 20 + AD   | CL2     | GAC20   | ) + AD ( | CLM    | Mem       | branes  | CL2  | Memb | oranes C | CLM  |       |         | TOTAL   | CL2    |        |       |        | TO      | TAL CLM |           |
| (Population Served) | Mean  | 5th                                                                   | 95th  | Mean  | 5th     | 95th  | Mean     | 5th      | 95th   | Mean     | 5th     | 95th | Mean | 5th       | 95th    | Mean    | 5th      | 95th   | Mean      | 5th     | 95th | Mean | 5th      | 95th | Mea   | n       | 5tl     | h      | 95t    | h     | Mear   |         | 5th     | 95th      |
|                     |       | М                                                                     |       |       | N       |       |          | 0        |        |          | Р       |      |      | Q         |         |         | R        |        |           | S       |      |      | Т        |      |       | U = A+C | C+E+G+I | +K+M+O | +Q+S   |       | V =    | B+D+F+  | H+J+L+N | I+P+R+T   |
| <100                |       |                                                                       |       |       |         |       | 2.0%     | 2.0%     | 2.0%   | 1.3%     | 1.3%    | 1.3% | 0.7% | 0.4%      | 1.1%    | 0.5%    | 0.3%     | 0.8%   | 2.1%      | 2.1%    | 2.1% | 1.4% | 1.4%     | 1.4% |       | 54.5%   |         | 46.7%  |        | 62.3% | 45     | .5%     | 42.6%   | 48.39     |
| 100-499             |       |                                                                       |       |       |         |       | 1.1%     | 1.1%     | 1.1%   | 1.0%     | 1.0%    | 1.0% | 1.1% | 0.8%      | 1.4%    | 1.2%    | 0.8%     | 1.6%   | 0.5%      | 0.5%    | 0.5% | 0.5% | 0.4%     | 0.5% |       | 45.4%   |         | 40.0%  |        | 50.8% | 54     | .6%     | 51.2%   | 58.09     |
| 500-999             |       |                                                                       |       |       |         |       | 1.1%     | 1.1%     | 1.1%   | 1.0%     | 1.0%    | 1.0% | 1.1% | 0.8%      | 1.4%    | 1.2%    | 0.8%     | 1.6%   | 0.5%      | 0.5%    | 0.5% | 0.5% | 0.4%     | 0.5% |       | 45.4%   |         | 40.0%  |        | 50.8% | 54     | .6%     | 51.2%   | 58.09     |
| 1,000-3,299         |       |                                                                       |       |       |         |       | 1.0%     | 1.0%     | 1.0%   | 1.2%     | 1.2%    | 1.2% | 1.1% | 0.8%      | 1.3%    | 1.5%    | 1.1%     | 1.9%   | 0.2%      | 0.2%    | 0.2% | 0.2% | 0.2%     | 0.2% |       | 39.4%   |         | 33.9%  |        | 44.8% | 60     | .6%     | 56.9%   | 64.49     |
| 3,300-9,999         |       |                                                                       |       |       |         |       | 1.0%     | 1.0%     | 1.0%   | 1.2%     | 1.2%    | 1.2% | 1.1% | 0.8%      | 1.3%    | 1.5%    | 1.1%     | 1.9%   | 0.2%      | 0.2%    | 0.2% | 0.2% | 0.2%     | 0.2% |       | 39.4%   |         | 33.9%  |        | 44.8% | 60     | .6%     | 56.9%   | 64.49     |
| 10,000-49,999       | 0.8%  | 0.8%                                                                  | 0.8%  | 1.0%  | 1.0%    | 1.0%  | 0.3%     | 0.3%     | 0.3%   | 0.4%     | 0.4%    | 0.4% | 0.0% | 0.0%      | 0.0%    | 0.0%    | 0.0%     | 0.0%   | 0.3%      | 0.3%    | 0.3% | 0.4% | 0.4%     | 0.4% |       | 43.2%   |         | 43.2%  |        | 43.2% |        | .8%     | 56.8%   |           |
| 50,000-99,999       | 0.8%  | 0.8%                                                                  | 0.8%  | 1.0%  | 1.0%    | 1.0%  | 0.3%     | 0.3%     | 0.3%   | 0.4%     | 0.4%    | 0.4% | 0.0% | 0.0%      | 0.0%    | 0.0%    | 0.0%     | 0.0%   | 0.3%      | 0.3%    | 0.3% | 0.4% | 0.4%     | 0.4% |       | 43.2%   |         | 43.2%  |        | 43.2% | 56     | .8%     | 56.8%   |           |
| 100,000-999,999     | 0.8%  | 0.8%                                                                  | 0.8%  | 1.0%  | 1.0%    | 1.0%  |          | 0.3%     |        | 0.4%     | 0.4%    | 0.4% |      | 0.0%      |         | 0.0%    |          |        |           | 0.3%    |      |      | 0.4%     |      |       | 43.2%   |         | 43.2%  |        | 43.2% |        | .8%     | 56.8%   |           |
| >=1,000,000         | 0.8%  | 0.8%                                                                  | 0.8%  | 1.0%  | 1.0%    | 1.0%  | 0.3%     | 0.3%     | 0.3%   | 0.4%     | 0.4%    | 0.4% | 0.0% | 0.0%      | 0.0%    | 0.0%    | 0.0%     | 0.0%   | 0.3%      | 0.3%    | 0.3% | 0.4% | 0.4%     | 0.4% |       | 43.2%   |         | 43.2%  |        | 43.2% | 56     | .8%     | 56.8%   | 56.89     |
| 1,000,000           |       |                                                                       |       |       |         |       |          |          |        |          |         |      |      |           |         |         |          |        |           |         |      |      |          |      |       |         |         |        |        |       |        |         |         |           |

Note: Detail may not add to totals due to independent rounding

Source: Surface water systems serving <10,000 people: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Stage 2 Preferred Alternative, 20% Safety Margin. Surface water systems serving 10,000 o

Exhibit C.17b

Post-Stage 2 DBPR Treatment Technologies-in-Place for CWS Surface Water Plants (Number of Plants by Residual Disinfection Type)

Stage 2 Preferred Alternative, 20% Safety Margin

| System Size                                                                        | No Adva | nced Trea |              |         | nced Tre |              | Chlorine                | e Dioxid                          | e CL2                                  | Chlorine                | Dioxide C                         | LM                                     | U\                      | / CL2                 |                          | UV                           | CLM                                         |                  | Ozone                                     | CL2                                    | Oz                    | one CLM    |                                                     | /IF/UF CL2                                                |       | MF/                                                       | UF CLM | 1                                             | GAC     | 0 10 CL2                                                 | 2       | GAC 1                                         | 0 CLM                                                |
|------------------------------------------------------------------------------------|---------|-----------|--------------|---------|----------|--------------|-------------------------|-----------------------------------|----------------------------------------|-------------------------|-----------------------------------|----------------------------------------|-------------------------|-----------------------|--------------------------|------------------------------|---------------------------------------------|------------------|-------------------------------------------|----------------------------------------|-----------------------|------------|-----------------------------------------------------|-----------------------------------------------------------|-------|-----------------------------------------------------------|--------|-----------------------------------------------|---------|----------------------------------------------------------|---------|-----------------------------------------------|------------------------------------------------------|
| (Population Served)                                                                | Mean    | 5th       | 95th         | Mean    | 5th      | 95th         |                         |                                   | 95th                                   | Mean                    |                                   |                                        |                         | _                     | 95th                     |                              | 5th 95t                                     |                  |                                           |                                        | Mean                  | 5th 95th   |                                                     |                                                           | 95th  |                                                           |        | 95th                                          |         |                                                          |         | lean 5                                        | -                                                    |
| (i opulation serveu)                                                               | IVICALI | Δ.        | 3301         | IVICALI | В        | 3301         | IVICALI                 | С                                 | 3301                                   | Wicaii                  | D .                               | Juli                                   | IVICALI                 | E                     | 55011                    | IVICALI                      | JIII 331                                    | i ivicai         | G                                         | 33111                                  | IVICALI               | H 950      | i ivican                                            | Jui                                                       | 3301  | IVICALI                                                   | Jui    | 33111                                         | IVICALI | K                                                        | 3301 10 | ican J                                        | ui 35ui                                              |
| <100                                                                               | 110     | 91        | 129          | 114     | 111      | 118          |                         |                                   |                                        |                         | U                                 |                                        | 16                      | - 8                   | 24                       | 12                           | <u>г</u>                                    | 8                | G                                         |                                        |                       | п          | 52                                                  | 52                                                        | 52    | 26                                                        | 26     | 26                                            |         |                                                          |         | L                                             | _                                                    |
| 100-499                                                                            | 203     | 169       | 236          |         | 289      | 322          | 8                       | 8                                 | 0                                      | 10                      | 8                                 | 11                                     | 10                      |                       | 15                       | 11                           | 6 ,                                         | 6 3              | 0 3                                       | 9 39                                   | 35                    | 35 3       | 5 68                                                |                                                           | 68    | 37                                                        | 37     | 37                                            |         |                                                          |         |                                               |                                                      |
| 500-999                                                                            |         |           |              |         | 182      | 203          | 0                       | 0                                 | 9                                      | 10                      |                                   | 7                                      | 10                      | 3                     | 10                       | 7                            | 4 /                                         | 0 2              |                                           | 9 39<br>4 24                           | 22                    |            | -                                                   |                                                           | 43    | 23                                                        | 23     |                                               |         |                                                          |         |                                               |                                                      |
|                                                                                    | 128     | 106       | 149          |         |          |              | 5                       | 5                                 | 0                                      | 0                       | 5                                 | - /                                    | - 10                    | <u> </u>              | 10                       |                              | 4                                           | -                |                                           |                                        |                       |            |                                                     |                                                           |       |                                                           |        | 23                                            |         |                                                          |         |                                               |                                                      |
| 1,000-3,299                                                                        | 269     | 216       | 321          | 519     | 494      | 544          | 24                      | 23                                | 25                                     | 35                      | 30                                | 40                                     | 12                      | 6                     | 17                       | 15                           |                                             | 3 4              | -                                         | 5 45                                   | 51                    |            | 1 70                                                |                                                           | 70    | 32                                                        | 32     | 32                                            |         |                                                          |         |                                               |                                                      |
| 3,300-9,999                                                                        | 299     | 241       | 357          | 579     | 551      | 607          | 26                      | 25                                | 27                                     | 39                      | 33                                | 45                                     | 13                      | 7                     | 19                       | 17                           | 9 2                                         | 6 5              |                                           | 0 50                                   | 56                    | 56 5       |                                                     |                                                           | 78    | 36                                                        | 36     | 36                                            |         |                                                          |         |                                               |                                                      |
| 10,000-49,999                                                                      | 403     | 403       | 403          |         | 529      | 529          | 39                      | 39                                | 39                                     | 51                      | 51                                | 51                                     | 4                       | 4                     | 4                        | 5                            | 5                                           | 5 7              |                                           | 2 72                                   | 94                    |            | 4 10                                                | 10                                                        | 10    | 13                                                        | 13     | 13                                            | 12      | 12                                                       | 12      | 16                                            | 16 16                                                |
| 50,000-99,999                                                                      | 181     | 181       | 181          | 237     | 237      | 237          | 17                      | 17                                | 17                                     | 23                      | 23                                | 23                                     | 2                       | 2                     | 2                        | 2                            | 2                                           | 2 3              | 2 3                                       | 2 32                                   | 42                    | 42 4       | 2 5                                                 | 5                                                         | 5     | 6                                                         | 6      | 6                                             | 6       | 6                                                        | 6       | 7                                             | 7 7                                                  |
| 100,000-999,999                                                                    | 190     | 190       | 190          | 250     | 250      | 250          | 18                      | 18                                | 18                                     | 24                      | 24                                | 24                                     | 2                       | 2                     | 2                        | 3                            | 3                                           | 3 3              | 4 3                                       | 4 34                                   | 44                    | 44 4       | 4 5                                                 | 5                                                         | 5     | 6                                                         | 6      | 6                                             | 6       | 6                                                        | 6       | 8                                             | 8 8                                                  |
| >=1,000,000                                                                        | 23      | 23        | 23           | 30      | 30       | 30           | 2                       | 2                                 | 2                                      | 3                       | 3                                 | 3                                      | 0                       | 0                     | 0                        | 0                            | 0                                           | 0                | 4                                         | 4 4                                    | 5                     | 5          | 5 1                                                 | 1                                                         | 1     | 1                                                         | 1      | 1                                             | 1       | 1                                                        | 1       | 1                                             | 1 1                                                  |
| Total Plants                                                                       | 1,805   | 1,620     | 1,989        | 2,758   | 2,674    | 2,841        | 140                     | 138                               | 143                                    | 191                     | 177                               | 205                                    | 66                      | 38                    | 94                       | 73                           | 43 10                                       | 3 30             | 1 30                                      | 1 301                                  | 350                   | 350 35     | 0 331                                               | 331                                                       | 331   | 181                                                       | 181    | 181                                           | 24      | 24                                                       | 24      | 32                                            | 32 32                                                |
| System Size                                                                        | GAC1    | 10 + AD 0 | L2           | GAC1    | 0 + AD ( | CLM          | GA                      | C20 CL                            | 2                                      | GAG                     | C20 CLM                           |                                        | GAC20                   | + AD C                | L2                       | GAC20                        | + AD CLM                                    | Me               | mbrane                                    | es CL2                                 | Memb                  | oranes CLM |                                                     |                                                           | TOTAL | L CL2                                                     |        |                                               |         | Т                                                        | TOTAL C | CLM                                           |                                                      |
| (Population Served)                                                                | Mean    | 5th       | 95th         | Mean    | 5th      | 95th         | Mean                    | 5th                               | 95th                                   | Mean                    | 5th 9                             | 95th                                   | Mean                    | 5th 9                 | 95th                     | Mean                         | 5th 95tl                                    | Mea              | n 5th                                     | 95th                                   | Mean                  | 5th 95th   | Me Me                                               | ean                                                       | 5th   | L.                                                        |        |                                               |         |                                                          | 5th     |                                               | 95th                                                 |
|                                                                                    |         |           |              |         |          |              |                         |                                   |                                        |                         |                                   |                                        |                         |                       |                          |                              |                                             | ivieai           |                                           |                                        |                       |            |                                                     |                                                           | อแ    | n                                                         | 95th   | h                                             | Mea     | n                                                        |         |                                               |                                                      |
|                                                                                    |         | M         |              |         | N        |              |                         | 0                                 |                                        |                         | Р                                 |                                        |                         | Q                     |                          |                              | R                                           | i ivieai         | S                                         |                                        |                       | T          |                                                     |                                                           |       | n<br>I+K+M+O+                                             |        | n                                             |         |                                                          |         | L+N+P+                                        |                                                      |
| <100                                                                               |         | М         |              |         | N        |              | 7                       | 7                                 | 7                                      | 5                       | P 5                               | 5                                      | 3                       | Q<br>1                | 4                        | 2                            |                                             | 3                | S                                         | 8 8                                    | 5                     | T<br>5     | 5                                                   |                                                           |       |                                                           |        | n<br>224                                      | V :     |                                                          | F+H+J+  | L+N+P+<br>153                                 |                                                      |
| <100<br>100-499                                                                    |         | M         |              |         | N        |              | 7 8                     | 7<br>8                            | 7                                      | 5<br>7                  | P 5 7                             | 5                                      | 3                       | Q<br>1<br>6           | 4                        |                              |                                             | 3                | S<br>8                                    | 8 8                                    | 5 4                   | T 5 3      | 5                                                   | U = A+C                                                   |       | I+K+M+O+                                                  |        |                                               | V :     | = B+D+f                                                  | F+H+J+  |                                               | R+T                                                  |
|                                                                                    |         | M         |              |         | N        |              | 7<br>8<br>5             | 7                                 | 7<br>8<br>5                            | 5<br>7<br>5             | P 5 7 5                           | 5<br>7<br>5                            | 3<br>8<br>5             | Q<br>1<br>6<br>4      | 4<br>11<br>7             | 2                            |                                             | 3                | 8<br>3                                    | 0 0                                    | 5<br>4<br>2           | T 5 3 2    | 5<br>4<br>2                                         | U = A+C-                                                  |       | 168                                                       |        | 224                                           | V       | = B+D+F<br>163                                           | F+H+J+  | 153                                           | R+T<br>174                                           |
| 100-499                                                                            |         | M         |              |         | N        |              | 7<br>8<br>5             | 7<br>8<br>5                       | 7<br>8<br>5                            | 5<br>7<br>5<br>13       | 5                                 | 5<br>7<br>5                            | 3<br>8<br>5             | Q<br>1<br>6<br>4<br>9 | 4<br>11<br>7<br>15       | 2                            | 1<br>6<br>4                                 | 3<br>2<br>8      | 8<br>3<br>2                               | 3 3                                    | 5<br>4<br>2<br>2      | 3          | 5<br>4<br>2<br>2                                    | U = A+C-<br>196<br>348                                    |       | 1+K+M+O+<br>168<br>307                                    |        | 224<br>390                                    | V       | = B+D+F<br>163<br>418                                    | F+H+J+  | 153<br>392                                    | R+T<br>174<br>445                                    |
| 100-499<br>500-999                                                                 |         | M         |              |         | N        |              | 5                       | 7<br>8<br>5                       | 7<br>8<br>5<br>12<br>13                | 5<br>7<br>5<br>13<br>15 | 5<br>7<br>5                       | 5<br>7<br>5<br>13                      | 3<br>8<br>5<br>12<br>13 | 1<br>6<br>4           | 4<br>11<br>7<br>15<br>16 | 9<br>6                       | R 1 6 4 12 2                                | 3<br>2<br>8<br>2 | 8<br>3<br>2<br>2                          | 3 3                                    | 5<br>4<br>2<br>2<br>2 | 3 2        | 5<br>4<br>2<br>2<br>2                               | U = A+C-<br>196<br>348<br>219                             |       | 168<br>307<br>193                                         |        | 224<br>390<br>245                             | V :     | = B+D+F<br>163<br>418<br>264                             | F+H+J+  | 153<br>392<br>247                             | R+T<br>174<br>445<br>280                             |
| 100-499<br>500-999<br>1,000-3,299                                                  | 10      | M 10      | 10           | 13      | N 13     | 13           | 5                       | 7<br>8<br>5                       | 7<br>8<br>5<br>12<br>13                |                         | 5<br>7<br>5                       | 5<br>7<br>5<br>13<br>15                |                         | 1<br>6<br>4<br>9      |                          | 9<br>6<br>17                 | R 1 6 4 12 2                                | 3<br>2<br>8<br>2 | 8<br>3<br>2<br>2                          | 3 3<br>2 2<br>2 2                      |                       | 3 2        | 5<br>4<br>2<br>2<br>2<br>2<br>5                     | U = A+C-<br>196<br>348<br>219<br>445                      |       | 168<br>307<br>193<br>383                                  |        | 224<br>390<br>245<br>506                      | V :     | = B+D+f<br>163<br>418<br>264<br>685                      | F+H+J+  | 153<br>392<br>247<br>642                      | R+T<br>174<br>445<br>280<br>728                      |
| 100-499<br>500-999<br>1,000-3,299<br>3,300-9,999                                   | 10 5    |           | 10<br>5      | 13 6    |          | 13           | 5                       | 7<br>8<br>5                       | 7<br>8<br>5<br>12<br>13<br>4<br>2      |                         | 5<br>7<br>5                       | 5<br>7<br>5<br>13<br>15<br>5           |                         | 1<br>6<br>4<br>9      |                          | 9<br>6<br>17                 | R 1 6 4 12 2                                | 3<br>2<br>8<br>2 | 8<br>3<br>2<br>2                          | 3 3<br>2 2<br>2 2                      |                       | 3 2        | 5<br>4<br>2<br>2<br>2<br>2<br>5<br>2                | U = A+C-<br>196<br>348<br>219<br>445<br>495               |       | 168<br>307<br>193<br>383<br>426                           |        | 224<br>390<br>245<br>506<br>564               | V       | = B+D+F<br>163<br>418<br>264<br>685<br>763               | F+H+J+  | 153<br>392<br>247<br>642<br>716               | R+T<br>174<br>445<br>280<br>728<br>811               |
| 100-499<br>500-999<br>1,000-3,299<br>3,300-9,999<br>10,000-49,999                  |         |           | 10<br>5<br>5 | -       |          | 13<br>6<br>6 | 5<br>12<br>13<br>4      | 7<br>8<br>5<br>12<br>13           | 7<br>8<br>5<br>12<br>13<br>4<br>2      |                         | 5<br>7<br>5<br>13<br>15<br>5      | 5<br>7<br>5<br>13<br>15<br>5<br>2      |                         | 1<br>6<br>4<br>9      |                          | 2<br>9<br>6<br>17<br>19<br>0 | R 1 6 4 12 2                                | 3<br>2<br>8<br>2 | S<br>8<br>3<br>2<br>2<br>2<br>2<br>4<br>2 | 3 3<br>2 2<br>2 2                      |                       | 3 2        | 5<br>4<br>2<br>2<br>2<br>2<br>5<br>5<br>2           | U = A+C-<br>196<br>348<br>219<br>445<br>495<br>558        |       | 168<br>307<br>193<br>383<br>426<br>558                    |        | 224<br>390<br>245<br>506<br>564<br>558        | V       | = B+D+f<br>163<br>418<br>264<br>685<br>763<br>733        | F+H+J+  | 153<br>392<br>247<br>642<br>716<br>733        | R+T<br>174<br>445<br>280<br>728<br>811<br>733        |
| 100-499<br>500-999<br>1,000-3,299<br>3,300-9,999<br>10,000-49,999<br>50,000-99,999 |         |           | 10<br>5<br>1 | -       |          | 13<br>6<br>6 | 5<br>12<br>13<br>4<br>2 | 7<br>8<br>5<br>12<br>13<br>4<br>2 | 7<br>8<br>5<br>12<br>13<br>4<br>2<br>2 |                         | 5<br>7<br>5<br>13<br>15<br>5<br>2 | 5<br>7<br>5<br>13<br>15<br>5<br>2<br>3 |                         | 1<br>6<br>4<br>9      |                          | 2<br>9<br>6<br>17<br>19<br>0 | R<br>1<br>6<br>4<br>12<br>2<br>13<br>2<br>0 | 3<br>2<br>8<br>2 | S<br>8<br>3<br>2<br>2<br>2<br>2<br>4<br>2 | 3 3<br>2 2<br>2 2<br>2 2<br>4 4<br>2 2 |                       | 3 2        | 5<br>4<br>2<br>2<br>2<br>2<br>5<br>5<br>2<br>3<br>0 | U = A+C-<br>196<br>348<br>219<br>445<br>495<br>558<br>250 |       | 1+K+M+O+<br>168<br>307<br>193<br>383<br>426<br>558<br>250 |        | 224<br>390<br>245<br>506<br>564<br>558<br>250 | V       | = B+D+f<br>163<br>418<br>264<br>685<br>763<br>733<br>329 | F+H+J+  | 153<br>392<br>247<br>642<br>716<br>733<br>329 | R+T<br>174<br>445<br>280<br>728<br>811<br>733<br>329 |

Note: Detail may not add to totals due to independent rounding

Source: Surface water systems serving <10,000 people: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Stage 2 Preferred Alternative, 20% Safety Margin. Surface water systems serving 10,000 o

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

#### Exhibit C.17c

## Post-Stage 2 DBPR Treatment Technologies-in-Place for NTNCWS Surface Water Plants (Percent of Plants by Residual Disinfection Type) Stage 2 Preferred Alternative, 20% Safety Margin

|                      |        |           |       |       |         |        |      |           |       |          |         |       | Otaş | JC 2 1 1C | ieneu | Aiterna | tive, z | 0 /0 Oui | CLY IVIC | argiii   |       |        |            |         |           |         |       |          |       |        |           |        |           |
|----------------------|--------|-----------|-------|-------|---------|--------|------|-----------|-------|----------|---------|-------|------|-----------|-------|---------|---------|----------|----------|----------|-------|--------|------------|---------|-----------|---------|-------|----------|-------|--------|-----------|--------|-----------|
| System Size          |        | anced Tre |       |       |         |        |      | e Dioxide | e CL2 | Chlorine | Dioxide | CLM   | ι    | JV CL2    |       | U       | IV CLM  | 1        |          | Ozone CL | 2     | Oz     | one CLM    |         | MF/UF CL: | 2       | MF    | -/UF CLN | Л     | GAC    | 10 CL2    | GA     | C 10 CLM  |
| (Population Served)  | Mean   | 5th       | 95th  | Mean  | 5th     | 95th   | Mean |           |       |          |         | _     |      | 5th       | 95th  | Mean    |         |          |          |          |       | Mean   |            |         |           |         | Mean  | 5th      |       |        |           | Mean   |           |
| (i opalation ocivea) | moun   | Δ         | 5501  | moun  | D.      | 55011  | moun | C         | 00    | moun     | D       | 00111 | moun | E .       | 00    | moun    | Г.      | 0041     | moan     | G        | 001.1 | moun   | H          | ur moun | 1         | 0001    | moun  | 1        | 00111 | moun , | V 000     | moun   | 1         |
| 400                  | 00.70/ | OF 40/    | 36.0% | 31.8% | 30.8%   | 00.00/ |      |           |       |          | D       |       | 4.5% | 2.3%      | 0.007 | 3.3%    | 4 70/   | 4.00/    |          |          |       |        | п          | 14.5%   | 14.5%     | 14.5%   | 7.1%  | 7.40/    | 7.1%  |        | I.        |        |           |
| <100                 | 30.7%  |           |       |       |         |        |      |           |       |          |         |       |      |           |       |         |         |          |          |          |       |        |            |         |           |         |       | 7.1%     |       |        |           |        |           |
| 100-499              | 26.4%  | ,,,,      | 30.8% |       |         |        |      | 1.0%      |       | 1.3%     | 1.1%    | 1.5%  | 1.3% |           |       |         |         |          |          | 5.1%     |       |        | 4.6% 4.    |         |           | 8.9%    | 4.8%  | 4.8%     | 4.8%  |        |           |        |           |
| 500-999              | 26.4%  | 22.0%     |       |       |         |        |      | 1.0%      |       | 1.3%     | 1.1%    | 1.5%  | 1.3% | 0.7%      |       |         |         |          |          | 5.1%     |       |        | 4.6% 4.    |         |           | 8.9%    | 4.8%  | 4.8%     | 4.8%  |        |           |        |           |
| 1,000-3,299          | 23.8%  | 19.1%     | 28.4% | 46.0% | 43.8%   | 48.2%  | 2.1% | 2.0%      | 2.2%  | 3.1%     | 2.6%    | 3.6%  | 1.0% | 0.5%      | 1.5%  | 1.4%    | 0.7%    | 2.0%     | 4.0%     | 4.0%     | 4.0%  | 4.5%   | 4.5% 4.    | 5% 6.2% | 6.2%      | 6.2%    | 2.9%  | 2.9%     | 2.9%  |        |           |        |           |
| 3,300-9,999          | 23.8%  | 19.1%     | 28.4% | 46.0% | 43.8%   | 48.2%  | 2.1% | 2.0%      | 2.2%  | 3.1%     | 2.6%    | 3.6%  | 1.0% | 0.5%      | 1.5%  | 1.4%    | 0.7%    | 2.0%     | 4.0%     | 4.0%     | 4.0%  | 4.5%   | 4.5% 4.    | 5% 6.2% | 6.2%      | 6.2%    | 2.9%  | 2.9%     | 2.9%  |        |           |        |           |
| 10,000-49,999        | 31.2%  | 31.2%     | 31.2% | 41.0% | 41.0%   | 41.0%  | 3.0% | 3.0%      | 3.0%  | 4.0%     | 4.0%    | 4.0%  | 0.3% | 0.3%      | 0.3%  | 0.4%    | 0.4%    | 0.4%     | 5.5%     | 5.5%     | 5.5%  | 7.3%   | 7.3% 7.    | 3% 0.8% | 0.8%      | 0.8%    | 1.0%  | 1.0%     | 1.0%  | 0.9% ( | 0.9% 0.99 | 1.2%   | 1.2% 1.2% |
| 50,000-99,999        | 0.0%   | 0.0%      | 0.0%  | 0.0%  | 0.0%    | 0.0%   | 0.0% | 0.0%      | 0.0%  | 0.0%     | 0.0%    | 0.0%  | 0.0% | 0.0%      | 0.0%  | 0.0%    | 0.0%    | 0.0%     | 0.0%     | 6 0.0%   | 0.0%  | 0.0%   | 0.0% 0.    | 0.0%    | 0.0%      | 0.0%    | 0.0%  | 0.0%     | 0.0%  | 0.0%   | 0.0% 0.09 | 0.0%   | 0.0% 0.0% |
| 100,000-999,999      | 31.2%  | 31.2%     | 31.2% | 41.0% | 41.0%   | 41.0%  | 3.0% | 3.0%      | 3.0%  | 4.0%     | 4.0%    | 4.0%  | 0.3% | 0.3%      | 0.3%  | 0.4%    | 0.4%    | 0.4%     | 5.5%     | 5.5%     | 5.5%  | 7.3%   | 7.3% 7.    | 3% 0.8% | 0.8%      | 0.8%    | 1.0%  | 1.0%     | 1.0%  | 0.9%   | 0.9% 0.9% | 1.2%   | 1.2% 1.2% |
| >=1,000,000          | 0.0%   | 0.0%      | 0.0%  | 0.0%  | 0.0%    | 0.0%   | 0.0% | 0.0%      | 0.0%  | 0.0%     | 0.0%    | 0.0%  | 0.0% |           |       |         |         |          |          |          |       |        | 0.0% 0.    |         | 0.0%      | 0.0%    | 0.0%  | 0.0%     | 0.0%  | 0.0%   | 0.0% 0.0% | 0.0%   | 0.0% 0.0% |
| Total %              | 27.3%  | 22.6%     | 32.0% |       |         |        |      | 0.9%      | _     |          | 1.0%    | 1.4%  |      |           |       |         |         |          |          |          |       |        | 3.2% 3.    |         | 10.1%     |         |       | 5.2%     | 5.2%  |        |           | +      | 0.0% 0.0% |
| System Size          | GAC    | 10 + AD ( | CI 2  | GAC   | 10 + AD | CLM    |      | C20 CL    |       | GΔ       | C20 CLN | 1     |      | 0 + AD    |       | GAC2    |         |          |          | mbranes  |       |        | branes CLI | _       |           | TOTAL   | CL2   |          |       |        | TOT       | AL CLM |           |
| (Population Served)  | Mean   | 5th       | 95th  | Mean  | 5th     | 95th   | Mean |           |       |          |         |       |      |           |       | Mean    |         | 95th     |          |          |       | Mean   |            |         | ean       | 5tl     |       | 95t      | h     | Mean   |           | 5th    | 95th      |
| (i opalation ocivea) | moun   | M         | 00    | moun  | NI      | 00111  | moun | 0         | 00    | moun     | P       | 00111 | moun | Q         | 00    | moun    | R       | 0041     | moan     | S        | 001.1 | moun   | T          |         |           | C+E+G+I |       |          |       |        | B+D+F+F   |        |           |
| <100                 |        |           |       |       |         |        | 2.0% |           | 2.0%  | 1.3%     | 1.3%    | 1.3%  | 0.7% |           | 1.1%  | 0.5%    |         | 0.00/    | 2 10/    | 6 2.1%   | 2 10/ | 1 /10/ | 1.4% 1.    | 10/     | 54.5%     | 3.2.01. | 46.7% |          | 62.3% |        | 5.5%      | 42.6%  | 48.3%     |
| 100-499              |        |           |       |       |         |        |      | 1.1%      |       | 1.0%     | 1.0%    | 1.0%  |      |           |       |         |         |          |          | 6 0.5%   |       | ,.     | 0.4% 0.    | .,,     | 45.4%     |         | 40.7% |          | 50.8% |        | .6%       | 51.2%  | 58.0%     |
| 500-999              |        |           |       |       |         |        |      |           |       | ,        | ,       | ,     |      |           |       |         |         |          |          |          |       |        |            |         |           |         |       |          |       |        |           |        |           |
| ****                 |        |           |       |       |         |        |      | 1.1%      |       | 1.0%     | 1.0%    | 1.0%  |      |           |       |         |         |          |          | 0.5%     |       |        | 0.4% 0.    |         | 45.4%     |         | 40.0% |          | 50.8% |        | .6%       | 51.2%  | 58.0%     |
| 1,000-3,299          |        |           |       |       |         |        |      | 1.0%      |       | 1.2%     | 1.2%    | 1.2%  | 1.1% | 0.8%      |       |         |         |          |          | 6 0.2%   |       |        | 0.2% 0.    |         | 39.4%     |         | 33.9% |          | 44.8% |        | 0.6%      | 56.9%  | 64.4%     |
| 3,300-9,999          |        |           |       |       |         |        |      | 1.0%      |       | 1.2%     | 1.2%    | 1.2%  |      |           |       |         |         |          |          |          |       |        | 0.2% 0.    |         | 39.4%     |         | 33.9% |          | 44.8% |        | 1.6%      | 56.9%  | 64.4%     |
| 10,000-49,999        | 0.8%   | 0.8%      | 0.8%  | 1.0%  | 1.0%    | 1.0%   | 0.3% | 0.3%      | 0.3%  | 0.4%     | 0.4%    | 0.4%  | 0.0% |           |       |         |         |          |          | 6 0.3%   |       |        | 0.4% 0.    |         | 43.2%     |         | 43.2% |          | 43.2% | 56     | 5.8%      | 56.8%  | 56.8%     |
| 50,000-99,999        | 0.0%   | 0.0%      | 0.0%  | 0.0%  | 0.0%    | 0.0%   | 0.0% | 0.0%      | 0.0%  | 0.0%     | 0.0%    | 0.0%  | 0.0% | 0.0%      | 0.0%  | 0.0%    | 0.0%    | 0.0%     | 0.0%     | 0.0%     | 0.0%  | 0.0%   | 0.0% 0.    | 0%      | 0.0%      |         | 0.0%  |          | 0.0%  | (      | 0.0%      | 0.0%   | 0.0%      |
| 100,000-999,999      | 0.8%   | 0.8%      | 0.8%  | 1.0%  | 1.0%    | 1.0%   | 0.3% | 0.3%      | 0.3%  | 0.4%     | 0.4%    | 0.4%  | 0.0% | 0.0%      | 0.0%  | 0.0%    | 0.0%    | 0.0%     | 0.3%     | 6 0.3%   | 0.3%  | 0.4%   | 0.4% 0.    | 4%      | 43.2%     |         | 43.2% |          | 43.2% | 56     | 5.8%      | 56.8%  | 56.8%     |
| >=1,000,000          | 0.0%   | 0.0%      | 0.0%  | 0.0%  | 0.0%    | 0.0%   | 0.0% | 0.0%      | 0.0%  | 0.0%     | 0.0%    | 0.0%  | 0.0% | 0.0%      | 0.0%  | 0.0%    | 0.0%    | 0.0%     | 0.0%     | 6 0.0%   | 0.0%  | 0.0%   | 0.0% 0.    | 0%      | 0.0%      |         | 0.0%  |          | 0.0%  | (      | 0.0%      | 0.0%   | 0.0%      |
| Total %              | 0.0%   | 0.0%      | 0.0%  | 0.0%  | 0.0%    | 0.0%   | 1 3% | 1.3%      | 1 3%  | 1.1%     | 1.1%    | 1.1%  | 1.0% | 0.7%      | 1.3%  | 1.0%    | 0.7%    | 1 4%     | 0.9%     | 6 0.9%   | 0.9%  | 0.7%   | 0.7% 0.    | 7%      | 47.2%     |         | 41.1% |          | 53.2% | 52     | .8%       | 49.6%  | 56.1%     |

Note: Detail may not add to totals due to independent rounding

Source: Surface water systems serving <10,000 people: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Stage 2 Preferred Alternative, 20% Safety Margin. Surface water systems serving 10,000 o

Exhibit C.17d

Post-Stage 2 DBPR Treatment Technologies-in-Place for NTNCWS Surface Water Plants (Number of Plants by Residual Disinfection Type)

Stage 2 Preferred Alternative, 20% Safety Margin

|                     |                  |          |      |      |          |      |      |          |        |          |             |      |      |          |      |       |          |      | , .  |        |      |       |          |      |         |        |          |          |      |      |        |          |         |      |
|---------------------|------------------|----------|------|------|----------|------|------|----------|--------|----------|-------------|------|------|----------|------|-------|----------|------|------|--------|------|-------|----------|------|---------|--------|----------|----------|------|------|--------|----------|---------|------|
| System Size         |                  | nced Tre |      |      |          |      |      | e Dioxid | le CL2 | Chlorine | e Dioxide ( | CLM  | U    | V CL2    |      | יט    | V CLM    |      | Ozo  | one CL | 2    | Ozo   | ne CLM   |      | MF/UF C | L2     | м        | IF/UF CL | _M   | GAC  | 10 CL2 | e        | AC 10 C | LM   |
| (Population Served) | Mean             | 5th      | 95th | Mean | 5th      | 95th | Mean | 5th      | 95th   | Mean     | 5th 9       | 95th | Mean | 5th      | 95th | Mean  | 5th 9    | 95th | Mean | 5th    | 95th | Mean  | 5th 95th | Mean | 5th     | 95th   | Mean     | 5th      | 95th | Mean | 5th 95 | th Mear  | n 5th   | 95th |
| (* 5)               |                  | A        |      |      | В        |      |      | С        |        |          | D           |      |      | E        |      |       | F        |      |      | G      |      |       | Н        |      | 1       |        |          | J        |      |      | K      |          | L       |      |
| <100                | 69               | 57       | 81   | 72   | 70       | 74   |      |          |        |          |             |      | 10   | 5        | 15   | 7     | 4        | 11   |      |        |      |       |          | 33   | 33      | 3 33   | 3 16     | 16       | 16   | i .  |        |          |         |      |
| 100-499             | 82               | 69       | 96   | 124  | 118      | 131  | 3    | 3        | 4      | 4        | 3           | 5    | 4    | 2        | 6    | 4     | 2        | 6    | 16   | 16     | 16   | 14    | 14 14    | 28   | 28      | 3 28   | 15       | 15       | 15   | 3    |        |          |         |      |
| 500-999             | 28               | 23       | 33   | 42   | 40       | 45   | 1    | 1        | 1      | 1        | 1           | 2    | 1    | 1        | 2    | 1     | 1        | 2    | 5    | 5      | 5    | 5     | 5 5      | 9    | ) 9     | 9 9    | 5        | 5        | 5    | ;    |        |          |         |      |
| 1,000-3,299         | 22               | 18       | 26   | 42   | 40       | 44   | 2    | 2        | 2      | 3        | 2           | 3    | 1    | 1        | 1    | 1     | 1        | 2    | 4    | 4      | 4    | 4     | 4 4      | 6    | ; (     | 6 6    | 3        | 3        | 3    | 8    |        |          |         |      |
| 3,300-9,999         | 6                | 5        | 7    | 11   | 11       | 12   | 1    | 1        | 1      | 1        | 1           | 1    | 0    | 0        | 0    | 0     | 0        | 1    | 1    | 1      | 1    | 1     | 1 1      | 2    | : 2     | 2 2    | 2 1      | 1        | 1    |      |        |          |         |      |
| 10,000-49,999       | 2                | 2        | 2    | 2    | 2        | 2    | 0    | 0        | 0      | 0        | 0           | 0    | 0    | 0        | 0    | 0     | 0        | 0    | 0    | 0      | 0    | 0     | 0 0      | 0    | ) (     | ) (    | 0        | 0        | 0    | 0    | 0      | 0        | 0 0     | 0    |
| 50,000-99,999       | 0                | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0      | 0        | 0           | 0    | 0    | 0        | 0    | 0     | 0        | 0    | 0    | 0      | 0    | 0     | 0 0      | 0    | ) (     | ) (    | 0        | 0        | 0    | 0    | 0      | 0        | 0 0     | 0    |
| 100,000-999,999     | 0                | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0      | 0        | 0           | 0    | 0    | 0        | 0    | 0     | 0        | 0    | 0    | 0      | 0    | 0     | 0 0      | 0    | ) (     | ) (    | 0        | 0        | 0    | 0    | 0      | 0        | 0 0     | 0    |
| >=1,000,000         | 0                | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0      | 0        | 0           | 0    | 0    | 0        | 0    | 0     | 0        | 0    | 0    | 0      | 0    | 0     | 0 0      | 0    | ) (     | ) (    | 0        | 0        | 0    | 0    | 0      | 0        | 0 0     | 0    |
| Total Plants        | 210              | 174      | 245  | 295  | 281      | 309  | 7    | 7        | 8      | 9        | 8           | 11   | 17   | 9        | 25   | 15    | 8        | 22   | 26   | 26     | 26   | 25    | 25 25    | 77   | 7       | 7 77   | 40       | 40       | 40   | 0    | 0      | 0        | 0 0     | 0    |
| System Size         | GAC <sup>2</sup> | 10 + AD  | CL2  | GAC1 | 0 + AD C | CLM  | GA   | C20 CL   | .2     | GA       | C20 CLM     |      | GAC2 | ) + AD ( | CL2  | GAC20 | ) + AD C | CLM  | Memb | ranes  | CL2  | Membr | anes CLM |      |         | TOT    | AL CL2   |          |      |      | TC     | TAL CLM  | l       |      |
| (Population Served) | Mean             | 5th      | 95th | Mean | 5th      | 95th | Mean | 5th      | 95th   | Mean     | 5th 9       | 95th | Mean | 5th      | 95th | Mean  | 5th 9    | 95th | Mean | 5th    | 95th | Mean  | 5th 95th | Me   | ean     | Ę      | 5th      | 9        | 5th  | Mear | i      | 5th      | 95      | ōth  |
|                     |                  | M        |      |      | N        |      |      | 0        |        |          | Р           |      |      | Q        |      |       | R        |      |      | S      |      |       | T        |      | U = A   | +C+E+G | +I+K+M+0 | O+Q+S    |      | V =  | B+D+F  | +H+J+L+N | N+P+R+1 | Γ    |
| <100                |                  |          |      |      |          |      | 4    | 4        | 4      | 3        | 3           | 3    | 2    | 1        | 2    | 1     | 1        | 2    | 5    | 5      | 5    | 3     | 3 3      |      | 123     | 3      | 105      |          | 141  |      | 103    | 9        | 6       | 109  |
| 100-499             |                  |          |      |      |          |      | 3    | 3        | 3      | 3        | 3           | 3    | 3    | 2        | 4    | 4     | 3        | 5    | 1    | 1      | 1    | 1     | 1 2      |      | 142     | 2      | 125      |          | 159  |      | 170    | 16       | 0       | 181  |
| 500-999             |                  |          |      |      |          |      | 1    | 1        | 1      | 1        | 1           | 1    | 1    | 1        | 1    | 1     | 1        | 2    | 0    | 0      | 0    | 1     | 0 1      |      | 48      | 3      | 42       |          | 54   | ı    | 58     | 5-       | 4       | 61   |
| 1,000-3,299         |                  |          |      |      |          |      | 1    | 1        | 1      | 1        | 1           | 1    | 1    | 1        | 1    | 1     | 1        | 2    | 0    | 0      | 0    | 0     | 0 0      |      | 36      | 3      | 31       |          | 41   |      | 56     | 5        | 2       | 59   |
| 3,300-9,999         |                  |          |      |      |          |      | 0    | 0        | 0      | 0        | 0           | 0    | 0    | 0        | 0    | 0     | 0        | 0    | 0    | 0      | 0    | 0     | 0 0      |      | 10      | )      | 8        |          | 11   |      | 15     | 1-       | 4       | 16   |
| 10,000-49,999       | 0                | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0      | 0        | 0           | 0    | 0    | 0        | 0    | 0     | 0        | 0    | 0    | 0      | 0    | 0     | 0 0      |      | 2       | 2      | 2        |          | 2    |      | 3      |          | 3       | 3    |
| 50,000-99,999       | 0                | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0      | 0        | 0           | 0    | 0    | 0        | 0    | 0     | 0        | 0    | 0    | 0      | 0    | 0     | 0 0      |      | (       | )      | 0        |          | 0    |      | 0      |          | 0       | 0    |
| 100,000-999,999     | 0                | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0      | 0        | 0           | 0    | 0    | 0        | 0    | 0     | 0        | 0    | 0    | 0      | 0    | 0     | 0 0      |      | (       | )      | 0        |          | 0    | )    | 1      |          | 1       | 1    |
| >=1,000,000         | 0                | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0      | 0        | 0           | 0    | 0    | 0        | 0    | 0     | 0        | 0    | 0    | 0      | 0    | 0     | 0 0      |      | (       | )      | 0        |          | 0    | )    | 0      |          | 0       | 0    |
| Total Plants        | 0                | 0        | 0    | 0    | 0        | 0    | 10   | 10       | 10     | 8        | 8           | 8    | 7    | 5        | 10   | 8     | 5        | 11   | 7    | 7      | 7    | 5     | 5 6      |      | 362     | 2      | 315      |          | 408  | 3    | 405    | 38       | 0       | 430  |
|                     |                  |          |      |      |          |      |      |          |        |          |             |      |      |          |      |       |          |      |      |        |      |       |          |      |         |        |          |          |      |      |        |          |         |      |

Note: Detail may not add to totals due to independent rounding

Source: Surface water systems serving <10,000 people: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Stage 2 Preferred Alternative, 20% Safety Margin. Surface water systems serving 10,000 o

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

Exhibit C.18a

Post-Stage 2 DBPR Treatment Technologies-in-Place for CWS Ground Water Plants (Percent of Plants, by Residual Disinfectant Type)

Stage 2 Preferred Alternative, 20% Safety Margin

| System Size<br>(Population Served) | No Advanced<br>Treatment<br>Technology<br>CL21 | No Advanced<br>Treatment<br>Technology<br>CLM1 | UV CL2 | UV CLM | Ozone<br>CL2 | Ozone<br>CLM | GAC20<br>CL2 | GAC20<br>CLM | Membranes<br>CL2 | Membranes<br>CLM | Total Using CL2 | Total Using CLM |
|------------------------------------|------------------------------------------------|------------------------------------------------|--------|--------|--------------|--------------|--------------|--------------|------------------|------------------|-----------------|-----------------|
| ,                                  | A                                              | В                                              | С      | D      | Е            | F            | G            | Н            | ĺ                | J                | K = A+C+E+G+I   | L = B+D+F+H+J   |
| <100                               | 93.5%                                          | 3.4%                                           | 0.0%   | 1.1%   | 0.0%         | 0.0%         | 0.4%         | 0.9%         | 0.3%             | 0.5%             | 94.2%           | 5.8%            |
| 100-499                            | 92.1%                                          | 4.2%                                           | 0.0%   | 1.6%   | 0.2%         | 0.5%         | 0.2%         | 0.6%         | 0.1%             | 0.5%             | 92.6%           | 7.4%            |
| 500-999                            | 92.1%                                          | 4.2%                                           | 0.0%   | 1.6%   | 0.2%         | 0.5%         | 0.2%         | 0.6%         | 0.1%             | 0.5%             | 92.6%           | 7.4%            |
| 1,000-3,299                        | 93.0%                                          | 3.6%                                           | 0.0%   | 1.6%   | 0.3%         | 0.9%         | 0.0%         | 0.1%         | 0.1%             | 0.5%             | 93.4%           | 6.6%            |
| 3,300-9,999                        | 93.0%                                          | 3.6%                                           | 0.0%   | 1.6%   | 0.3%         | 0.9%         | 0.0%         | 0.1%         | 0.1%             | 0.5%             | 93.4%           | 6.6%            |
| 10,000-49,999                      | 87.1%                                          | 8.6%                                           |        |        | 0.9%         | 1.0%         | 0.0%         | 0.2%         | 1.7%             | 0.5%             | 89.7%           | 10.3%           |
| 50,000-99,999                      | 87.1%                                          | 8.6%                                           |        |        | 0.9%         | 1.0%         | 0.0%         | 0.2%         | 1.7%             | 0.5%             | 89.7%           | 10.3%           |
| 100,000-999,999                    | 87.5%                                          | 8.4%                                           |        |        | 0.9%         | 0.9%         | 0.0%         | 0.2%         | 1.7%             | 0.4%             | 90.1%           | 9.9%            |
| >=1,000,000                        | 87.4%                                          | 8.5%                                           |        |        | 0.9%         | 0.9%         | 0.0%         | 0.2%         | 1.7%             | 0.4%             | 90.0%           | 10.0%           |
| Total %                            | 91.8%                                          | 4.6%                                           | 0.0%   | 1.3%   | 0.3%         | 0.6%         | 0.1%         | 0.5%         | 0.4%             | 0.5%             | 92.6%           | 7.4%            |

Note: Detail may not add to totals due to independent rounding

Source: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.17) to the Technology Selection Delta for the Stage 2 Preferred Alternative, 20% Safety Margin.

Exhibit C.18b

Post-Stage 2 DBPR Treatment Technologies-in-Place for CWS Ground Water Plants (Number of Plants, by Residual Disinfectant Type)

Stage 2 Preferred Alternative, 20% Safety Margin

| System Size<br>(Population Served) | No Advanced<br>Treatment<br>Technology<br>CL21 | No Advanced<br>Treatment<br>Technology<br>CLM1 | UV CL2 | UV CLM | Ozone<br>CL2 | Ozone<br>CLM | GAC20<br>CL2 | GAC20<br>CLM | Membranes<br>CL2 | Membranes<br>CLM | Total Using CL2 | Total Using CLM |
|------------------------------------|------------------------------------------------|------------------------------------------------|--------|--------|--------------|--------------|--------------|--------------|------------------|------------------|-----------------|-----------------|
|                                    | Α                                              | В                                              | С      | D      | Е            | F            | G            | Н            | I                | J                | K = A+C+E+G+I   | L = B+D+F+H+J   |
| <100                               | 6,005                                          | 217                                            | 0      | 70     | 0            | 0            | 23           | 56           | 22               | 29               | 6,051           | 372             |
| 100-499                            | 14,038                                         | 640                                            | 0      | 243    | 25           | 74           | 27           | 97           | 20               | 80               | 14,109          | 1,133           |
| 500-999                            | 5,612                                          | 256                                            | 0      | 97     | 10           | 29           | 11           | 39           | 8                | 32               | 5,640           | 453             |
| 1,000-3,299                        | 7,060                                          | 273                                            | 0      | 118    | 22           | 66           | 0            | 8            | 4                | 36               | 7,086           | 502             |
| 3,300-9,999                        | 4,680                                          | 181                                            | 0      | 78     | 15           | 44           | 0            | 5            | 3                | 24               | 4,698           | 332             |
| 10,000-49,999                      | 4,690                                          | 464                                            |        |        | 48           | 53           | 0            | 10           | 91               | 25               | 4,829           | 553             |
| 50,000-99,999                      | 624                                            | 62                                             |        |        | 6            | 7            | 0            | 1            | 12               | 3                | 642             | 74              |
| 100,000-999,999                    | 803                                            | 77                                             |        |        | 8            | 8            | 0            | 2            | 15               | 4                | 827             | 91              |
| >=1,000,000                        | 24                                             | 2                                              |        |        | 0            | 0            | 0            | 0            | 0                | 0                | 25              | 3               |
| Total Plants                       | 43,535                                         | 2,173                                          | 0      | 607    | 134          | 282          | 61           | 218          | 175              | 233              | 43,906          | 3,514           |

Note: Detail may not add to totals due to independent rounding

Source: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.17) to the Technology Selection Delta for the Stage 2 Preferred Alternative, 20% Safety Margin.

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

Exhibit C.18c

Post-Stage 2 DBPR Treatment Technologies-in-Place for NTNCWS Ground Water Plants (Percent of Plants, by Residual Disinfectant Type)

Stage 2 Preferred Alternative, 20% Safety Margin

| System Size<br>(Population Served) | No Advanced<br>Treatment<br>Technology<br>CL21 | No Advanced<br>Treatment<br>Technology<br>CLM1 | UV CL2 | UV CLM | Ozone<br>CL2 | Ozone<br>CLM | GAC20<br>CL2 | GAC20<br>CLM | Membranes<br>CL2 | Membranes<br>CLM | Total Using CL2 | Total Using CLM |
|------------------------------------|------------------------------------------------|------------------------------------------------|--------|--------|--------------|--------------|--------------|--------------|------------------|------------------|-----------------|-----------------|
|                                    | Α                                              | В                                              | O      | D      | Е            | F            | G            | Н            | I                | J                | K = A+C+E+G+I   | L = B+D+F+H+J   |
| <100                               | 93.5%                                          | 3.4%                                           | 0.0%   | 1.1%   | 0.0%         | 0.0%         | 0.4%         | 0.9%         | 0.3%             | 0.5%             | 94.2%           | 5.8%            |
| 100-499                            | 92.1%                                          | 4.2%                                           | 0.0%   | 1.6%   | 0.2%         | 0.5%         | 0.2%         | 0.6%         | 0.1%             | 0.5%             | 92.6%           | 7.4%            |
| 500-999                            | 92.1%                                          | 4.2%                                           | 0.0%   | 1.6%   | 0.2%         | 0.5%         | 0.2%         | 0.6%         | 0.1%             | 0.5%             | 92.6%           | 7.4%            |
| 1,000-3,299                        | 93.0%                                          | 3.6%                                           | 0.0%   | 1.6%   | 0.3%         | 0.9%         | 0.0%         | 0.1%         | 0.1%             | 0.5%             | 93.4%           | 6.6%            |
| 3,300-9,999                        | 93.0%                                          | 3.6%                                           | 0.0%   | 1.6%   | 0.3%         | 0.9%         | 0.0%         | 0.1%         | 0.1%             | 0.5%             | 93.4%           | 6.6%            |
| 10,000-49,999                      | 87.1%                                          | 8.6%                                           |        |        | 0.9%         | 1.0%         | 0.0%         | 0.2%         | 1.7%             | 0.5%             | 89.7%           | 10.3%           |
| 50,000-99,999                      | 87.1%                                          | 8.6%                                           |        |        | 0.9%         | 1.0%         | 0.0%         | 0.2%         | 1.7%             | 0.5%             | 89.7%           | 10.3%           |
| 100,000-999,999                    | 87.5%                                          | 8.4%                                           |        |        | 0.9%         | 0.9%         | 0.0%         | 0.2%         | 1.7%             | 0.4%             | 90.1%           | 9.9%            |
| >=1,000,000                        | 0.0%                                           | 0.0%                                           |        |        | 0.0%         | 0.0%         | 0.0%         | 0.0%         | 0.0%             | 0.0%             | 0.0%            | 0.0%            |
| Total %                            | 92.8%                                          | 3.8%                                           | 0.0%   | 1.4%   | 0.1%         | 0.3%         | 0.3%         | 0.7%         | 0.2%             | 0.5%             | 93.3%           | 6.7%            |

Note: Detail may not add to totals due to independent rounding

Source: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.17) to the Technology Selection Delta for the Stage 2 Preferred Alternative, 20% Safety Margin.

Exhibit C.18d

Post-Stage 2 DBPR Treatment Technologies-in-Place for NTNCWS Ground Water Plants (Number of Plants, by Residual Disinfectant Type)

Stage 2 Preferred Alternative, 20% Safety Margin

| System Size<br>(Population Served) | No Advanced<br>Treatment<br>Technology<br>CL21 | No Advanced<br>Treatment<br>Technology<br>CLM1 | UV CL2 | UV CLM | Ozone<br>CL2 | Ozone<br>CLM | GAC20<br>CL2 | GAC20<br>CLM | Membranes<br>CL2 | Membranes<br>CLM | Total Using CL2 | Total Using CLM |
|------------------------------------|------------------------------------------------|------------------------------------------------|--------|--------|--------------|--------------|--------------|--------------|------------------|------------------|-----------------|-----------------|
|                                    | Α                                              | В                                              | С      | D      | Е            | F            | G            | Н            | I                | J                | K = A+C+E+G+I   | L = B+D+F+H+J   |
| <100                               | 2,331                                          | 84                                             | 0      | 27     | 0            | 0            | 9            | 22           | 9                | 11               | 2,348           | 145             |
| 100-499                            | 1,961                                          | 89                                             | 0      | 34     | 3            | 10           | 4            | 14           | 3                | 11               | 1,971           | 158             |
| 500-999                            | 543                                            | 25                                             | 0      | 9      | 1            | 3            | 1            | 4            | 1                | 3                | 545             | 44              |
| 1,000-3,299                        | 230                                            | 9                                              | 0      | 4      | 1            | 2            | 0            | 0            | 0                | 1                | 231             | 16              |
| 3,300-9,999                        | 20                                             | 1                                              | 0      | 0      | 0            | 0            | 0            | 0            | 0                | 0                | 20              | 1               |
| 10,000-49,999                      | 3                                              | 0                                              |        |        | 0            | 0            | 0            | 0            | 0                | 0                | 3               | 0               |
| 50,000-99,999                      | 0                                              | 0                                              |        |        | 0            | 0            | 0            | 0            | 0                | 0                | 0               | 0               |
| 100,000-999,999                    | 0                                              | 0                                              |        |        | 0            | 0            | 0            | 0            | 0                | 0                | 0               | 0               |
| >=1,000,000                        | 0                                              | 0                                              |        |        | 0            | 0            | 0            | 0            | 0                | 0                | 0               | 0               |
| Total Plants                       | 5,087                                          | 208                                            | 0      | 75     | 5            | 16           | 14           | 39           | 12               | 27               | 5,119           | 365             |

Note: Detail may not add to totals due to independent rounding

Source: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.17) to the Technology Selection Delta for the Stage 2 Preferred Alternative, 20% Safety Margin.

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

Exhibit C.19a

#### Stage 2 DBPR Treatment Technology Selection Deltas for CWS Surface Water Plants (Percent of Plants by Residual Disinfection Type)

Stage 2 Preferred Alternative, 25% Safety Margin Converting to CLM UV Ozone GAC10 System Size CL2 CLM CL<sub>2</sub> CLM CL2 CLM CL2 CLM CL2 CLM (Population Mean 5th 95th 5th 95th Mean 5th 95th 5th 95th Mean 5th 5th 95th Mean 5th 95th 5th 95th Mean 5th 95th 5th 95th Mean 5th 95th Mean Mean Mean Mean Mean Served) Α С D G Н K <100 2.1% 1.1% 3.09 4.5% 2.3% 6.6% 3.3% 1.7% 4.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.09 100-499 4.5% 2.3% 1.4% 0.7% 2.1% 0.0% 6.69 0.1% 0.1% 0.2% 0.4% 0.2% 1.3% 0.7% 2.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 500-999 4.5% 2.3% 6.69 0.1% 0.1% 0.2% 0.4% 0.2% 0.6% 1.3% 0.7% 1.4% 0.7% 2.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1,000-3,299 4.6% 2.4% 6.99 0.2% 0.1% 0.3% 1.0% 0.5% 1.5% 1.0% 0.5% 1.5% 1.4% 0.7% 2.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.09 3.300-9.999 4 6% 2 4% 6.9% 0.2% 0.1% 0.3% 1.0% 0.5% 1.5% 1.0% 0.5% 1.5% 1 4% 0.7% 2.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 10.000-49.999 7.0% 13.99 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 5.1% 3.4% 6.8% 1.5% 1.0% 1.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 50,000-99,999 7.0% 13.99 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 5.1% 3.4% 6.8% 1.5% 1.0% 1.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.09 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100,000-999,999 10.5% 7.0% 13.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 5.1% 3.4% 6.8% 1.5% 1.0% 1.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 13 99 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 3.4% 1.5% 1.0% 1.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% =1 000 000 10.5% 7.0% 5 1% 6.8% 0.0% 0.0% Total % 4 1% 9.4% 0.1% 0.0% 0.4% 0.6% 2.9% 1.8% 3.9% 0.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% GAC10 + Advanced Disinfectants GAC20 + Advanced Disinfectants Membranes GAC20 System Size CL M CL2 CLM CI 2 CL M CL2 CI M CI 2 Total Converting to CLM Total Adding Treatment Technology (Population Served) Mean 5th 95th Mean 5th  $\Gamma = A + C + E + G + I + K + M + C$ М +Q+S L = SUM(A:S)0 Ω 0.7% 0.4% 1.1% 0.5% 0.3% 0.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% <100 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 5.9% 3.1% 8.8% 11.1% 5.8% 16.5% 100-499 0.0% 0.0% 0.0% 0.0% 0.3% 0.9% 0.8% 0.4% 1.1% 0.0% 0.0% 0.0% 0.1% 0.0% 0.1% 3.7% 10.5% 9.2% 4.8% 13.6% 0.0% 0.09 500-999 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.6% 0.3% 0.9% 0.8% 0.4% 1.1% 0.0% 0.0% 0.0% 0.1% 0.0% 0.1% 7.1% 3.7% 10.5% 9.2% 4.8% 13.6% 9.6% 5.0% 14.2% 0.5% 1.3% 1.000-3.299 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.5% 0.3% 0.8% 0.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.09 7.9% 4.1% 11.7% 9.7% 5.0% 14.39 3,300-9,999 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.5% 0.3% 0.8% 0.9% 0.5% 1.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 7.9% 4.1% 11.7% 9.7% 5.0% 14.3% 10,000-49,999 1.0% 2.1% 0.6% 0.4% 0.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.09 8.4% 16.7% 19.2% 12.8% 25.5% 50,000-99,999 1.6% 1.0% 2.1% 0.6% 0.4% 0.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 12.6% 8.4% 16.7% 19.2% 12.8% 25.5% 19.2% 12.8% 25.5% 100,000-999,999 1.6% 1.0% 2.1% 0.6% 0.4% 0.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 12.6% 8.4% 16.7% 19.2% 12.8% 25.5% 0.0% 0.0% 0.0% 0.0% >=1,000,000 1.6% 1.0% 2.1% 0.6% 0.4% 0.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 12.6% 8.4% 16.7% 19.2% 12.8% 25.5% Total % 0.6% 0.4% 0.8% 0.2% 0.2% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.4% 0.2% 0.5% 0.5% 0.3% 0.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 5.6% 13.4% 8.1% 18.7% 13.4% 8.1% 18.7%

Note: Detail may not add to totals due to independent rounding

Source: Technology Selection for the Stage 2 Preferred Alternative, 25% Safety Margin minus the Stage 1 Technology Selection from Appendix C, Exhibit C.1a.

Exhibit C.19b

# Stage 2 DBPR Treatment Technology Selection Deltas for CWS Surface Water Plants (Number of Plants by Residual Disinfection Type)

|                                                                                                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |            |                       |                 |         |     |            |                      |                                     |      |                     |                                                         |        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                              | ,                   | /largin                         |              |      |       |                                     |      |                                                                         |                                                     |                                                                             |                                    |                                               |                                                                                        |                              |                 |             |
|-----------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|-----------------------|-----------------|---------|-----|------------|----------------------|-------------------------------------|------|---------------------|---------------------------------------------------------|--------|-----------------------------------------|----------------------------------------------|---------------------|---------------------------------|--------------|------|-------|-------------------------------------|------|-------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------|------------------------------|-----------------|-------------|
| System Size                                                                                               | Conve      | erting to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CLM                   |            |                       | lorine          | Dioxide |     |            |                      |                                     | U\   | /                   |                                                         |        |                                         |                                              | Ozo                 |                                 |              |      |       |                                     | М    | F/UF                                                                    |                                                     |                                                                             |                                    |                                               | GA                                                                                     | C10                          |                 |             |
| (Population                                                                                               |            | Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |            | CL2                   |                 |         | CLM |            |                      | CL2                                 |      |                     | CLM                                                     |        |                                         | CL2                                          |                     |                                 | CLM          |      |       | CL2                                 |      |                                                                         | CLM                                                 |                                                                             |                                    | CL2                                           |                                                                                        |                              | CLM             |             |
| Served)                                                                                                   | Mean       | 5th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95th                  | Mean       | 5th                   | 95th            | Mean    | 5th | 95th       | Mean                 | 5th                                 | 95th | Mean                | 5th                                                     | 95th   | Mean                                    | 5th                                          | 95th                | Mean                            | 5th 9        | 5th  | Mean  | 5th                                 | 95th | Mean                                                                    | 5th                                                 | 95th                                                                        | Mean                               | 5th                                           | 95th                                                                                   | Mean                         | 5th             | 95th        |
|                                                                                                           |            | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |            |                       | E               | В       |     |            |                      |                                     | С    |                     |                                                         |        |                                         |                                              |                     | )                               |              |      |       |                                     |      | E                                                                       |                                                     |                                                                             |                                    |                                               |                                                                                        | F                            |                 |             |
| <100                                                                                                      | 7          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                    |            |                       |                 |         |     |            | 16                   | 8                                   | 24   | 12                  | 6                                                       | 18     |                                         |                                              |                     |                                 |              |      | 0     | 0                                   | 0    | 0                                                                       | 0                                                   | 0                                                                           |                                    |                                               |                                                                                        |                              |                 |             |
| 100-499                                                                                                   | 34         | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 51                    | 1          | 1                     | 1               | 3       | 2   | 5          | 10                   | 5                                   | 15   | 11                  | 6                                                       | 16     | 0                                       | 0                                            | 0                   | 0                               | 0            | 0    | 0     | 0                                   | 0    | 0                                                                       | 0                                                   | 0                                                                           |                                    |                                               |                                                                                        |                              |                 |             |
| 500-999                                                                                                   | 22         | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32                    | 1          | 0                     | 1               | 2       | 1   | 3          | 6                    | 3                                   | 10   | 7                   | 4                                                       | 10     | 0                                       | 0                                            | 0                   | 0                               | 0            | 0    | 0     | 0                                   | 0    | 0                                                                       | 0                                                   | 0                                                                           |                                    |                                               |                                                                                        |                              |                 |             |
| 1,000-3,299                                                                                               | 52         | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 78                    | 2          | 1                     | 3               | 11      | 6   | 16         | 12                   | 6                                   | 17   | 15                  | 8                                                       | 23     | 0                                       | 0                                            | 0                   | 0                               | 0            | 0    | 0     | 0                                   | 0    | 0                                                                       | 0                                                   | 0                                                                           |                                    |                                               |                                                                                        |                              |                 |             |
| 3,300-9,999                                                                                               | 58         | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 86                    | 2          | 1                     | 4               | 12      | 6   | 18         | 13                   | 7                                   | 19   |                     | 9                                                       | 26     | 0                                       | 0                                            | 0                   | 0                               | 0            | 0    | 0     | 0                                   | 0    | 0                                                                       | 0                                                   | 0                                                                           |                                    |                                               |                                                                                        |                              |                 |             |
| 10,000-49,999                                                                                             | 135        | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 180                   | 0          | 0                     | 0               | 0       | 0   | 0          | 66                   | 44                                  |      | 19                  | 13                                                      | 25     | 0                                       | 0                                            | 0                   | 0                               | 0            | 0    | 0     | 0                                   | 0    | 0                                                                       | 0                                                   | 0                                                                           | 0                                  | 0                                             | 0                                                                                      | 0                            | 0               | 0           |
| 50,000-99,999                                                                                             | 61         | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 81                    | 0          | 0                     | 0               | 0       | 0   | 0          | 29                   | 20                                  | 39   | 8                   | 6                                                       | 11     | 0                                       | 0                                            | 0                   | 0                               | 0            | 0    | 0     | 0                                   | 0    | 0                                                                       | 0                                                   | 0                                                                           | 0                                  | 0                                             | 0                                                                                      | 0                            | 0               | 0           |
| 100,000-999,999                                                                                           | 64         | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 85                    | 0          | 0                     | 0               | 0       | 0   | 0          | 31                   | 21                                  | 41   | 9                   | 6                                                       | 12     | 0                                       | 0                                            | 0                   | 0                               | 0            | 0    | 0     | 0                                   | 0    | 0                                                                       | 0                                                   | 0                                                                           | 0                                  | 0                                             | 0                                                                                      | 0                            | 0               | 0           |
| >=1,000,000                                                                                               | 8          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                    | 0          | 0                     | 0               | 0       | 0   | 0          | 4                    | 2                                   | 5    | 1                   | 1                                                       | 1      | 0                                       | 0                                            | 0                   | 0                               | 0            | 0    | 0     | 0                                   | 0    | 0                                                                       | 0                                                   | 0                                                                           | 0                                  | 0                                             | 0                                                                                      | 0                            | 0               | 0           |
| Total Plants                                                                                              | 442        | 269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 613                   | 6          | 3                     | _               |         | 15  | 42         | 188                  | 117                                 | 258  | 100                 | 57                                                      | 142    | Λ                                       |                                              | _                   | 0                               | Ω            | 0    | 0     | 0                                   | 0    | 0                                                                       | 0                                                   | ^                                                                           |                                    |                                               |                                                                                        | 0                            | 0               | 0           |
|                                                                                                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | ·          |                       | 9               | 28      | 15  |            |                      | 117                                 | 258  |                     |                                                         |        | U                                       | 0                                            | U                   | U                               | U            | U    | Ū     | U                                   | U    | U                                                                       | U                                                   | U                                                                           | 0                                  | 0                                             | 0                                                                                      | 0                            | U               | U           |
| System Size                                                                                               |            | AC10 + /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | ed Disinfo | ectants               | 9               | 28      |     |            | C20                  |                                     | 258  |                     | AC20 +                                                  |        | ed Disir                                | nfectants                                    |                     | U                               | , N          | U    | ranes |                                     | U    |                                                                         |                                                     |                                                                             |                                    |                                               |                                                                                        |                              |                 | 0           |
|                                                                                                           | G/         | AC10 + /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Advance               | ed Disinfo | ectants<br>CLM        | 9               |         | CL2 | GA         | C20                  | CLM                                 |      | G                   | AC20 +<br>CL2                                           | Advano | ed Disir                                | nfectants<br>CLM                             |                     |                                 | CL2          | lemb | ranes | CLM                                 |      | Total Cor                                                               | nverting                                            | to CLM                                                                      | To                                 | otal Add                                      | ing Trea                                                                               | atment Te                    | chnology        |             |
| System Size                                                                                               |            | AC10 + /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Advance               | ed Disinfo | ectants<br>CLM        | 9<br>95th       |         |     | GA         |                      |                                     | 95th |                     | AC20 +                                                  | Advano | ed Disir                                | nfectants<br>CLM                             |                     | Mean                            | CL2          | lemb | ranes |                                     | 95th | Total Cor<br>Mean                                                       | nverting<br>5th                                     | to CLM<br>95th                                                              |                                    |                                               | ing Trea                                                                               |                              |                 | y<br>95th   |
| System Size<br>(Population                                                                                | G/         | AC10 + /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Advance<br>95th       | ed Disinfo | ectants<br>CLM        | 9<br>95th       |         | CL2 | GA<br>95th | Mean                 | CLM                                 |      | G                   | AC20 +<br>CL2                                           | Advano | ed Disir                                | nfectants<br>CLM                             |                     |                                 | CL2          | lemb | ranes | CLM                                 |      | Total Cor<br>Mean<br>T=A+C+l                                            | nverting<br>5th<br>E+G+I+                           | to CLM<br>95th                                                              | To                                 | otal Add                                      | ing Trea                                                                               | atment Te<br>Mean            | chnology        |             |
| System Size<br>(Population<br>Served)                                                                     | G/         | AC10 + /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Advance               | ed Disinfo | ectants<br>CLM        | 9<br>95th       |         | CL2 | GA<br>95th | Mean                 | CLM                                 |      | G                   | AC20 +<br>CL2                                           | Advano | ed Disir                                | nfectants<br>CLM                             | 95th                | Mean                            | CL2          | lemb | ranes | CLM                                 |      | Total Cor<br>Mean<br>T=A+C+l                                            | nverting<br>5th                                     | to CLM<br>95th<br>K+M+O                                                     | To<br>Mean                         | otal Add<br>5th                               | ing Trea                                                                               | atment Te                    | chnology        |             |
| System Size<br>(Population<br>Served)                                                                     | G/         | AC10 + /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Advance<br>95th       | ed Disinfo | ectants<br>CLM        | 9<br>95th       |         | CL2 | GA<br>95th | Mean H               | CLM                                 |      | G                   | AC20 +<br>CL2<br>5th                                    | Advano | ed Disir                                | nfectants<br>CLM<br>5th                      |                     | Mean<br>0                       | CL2          | lemb | ranes | CLM<br>5th                          |      | Total Cor<br>Mean<br>T=A+C+I                                            | 5th<br>E+G+I+<br>+Q+S                               | to CLM<br>95th<br>K+M+O                                                     | To Mean                            | otal Add<br>5th                               | ing Trea<br>95th<br>L = SL<br>59                                                       | atment Te<br>Mean<br>JM(A:S) | chnology        |             |
| System Size<br>(Population<br>Served)<br><100<br>100-499                                                  | G/         | AC10 + /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Advance<br>95th       | ed Disinfo | ectants<br>CLM        | 9<br>95th       | Mean    | CL2 | GA<br>95th | Mean                 | CLM<br>5th                          |      | Mean                | AC20 +<br>CL2                                           | Advano | ed Disir                                | nfectants<br>CLM                             | 95th                | Mean                            | CL2<br>5th 9 | lemb | ranes | CLM<br>5th                          |      | Total Cor<br>Mean<br>T=A+C+l                                            | 5th<br>E+G+I+<br>+Q+S<br>11                         | to CLM<br>95th<br>K+M+O<br>31<br>81                                         | To<br>Mean                         | otal Add<br>5th                               | ing Trea<br>95th<br>L = SL                                                             | atment Te<br>Mean<br>JM(A:S) | chnology<br>5th | 95th        |
| System Size<br>(Population<br>Served)<br><100<br>100-499<br>500-999                                       | G/         | AC10 + /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Advance<br>95th       | ed Disinfo | ectants<br>CLM        | 9<br>95th       | Mean    | CL2 | GA<br>95th | Mean  H  0 0 0       | CLM<br>5th<br>0<br>0                |      | Mean                | AC20 +<br>CL2<br>5th                                    | Advano | Mean  2 6 4                             | nfectants<br>CLM<br>5th                      | 95th<br>3<br>9<br>5 | Mean 0 0 0 0                    | CL2<br>5th 9 | lemb | ranes | CLM<br>5th                          |      | Total Cor<br>Mean<br>T=A+C+l<br>21<br>54<br>34                          | 5th<br>E+G+I+<br>+Q+S<br>11<br>28<br>18             | to CLM<br>95th<br>K+M+O<br>31<br>81<br>51                                   | Mean 40 70 44                      | 5th  21 37 23                                 | 95th  L = SL  59  104                                                                  | atment Te<br>Mean<br>JM(A:S) | chnology        |             |
| System Size<br>(Population<br>Served)<br><100<br>100-499<br>500-999<br>1,000-3,299                        | G/         | AC10 + /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Advance<br>95th       | ed Disinfo | ectants<br>CLM        | 9<br>95th       | Mean    | CL2 | GA<br>95th | Mean H               | CLM<br>5th                          |      | Mean  3 5           | AC20 +<br>CL2<br>5th                                    | Advano | Mean  2 6 4 10                          | nfectants<br>CLM<br>5th                      | 95th                | Mean<br>0                       | CL2<br>5th 9 | lemb | ranes | CLM<br>5th                          |      | Total Cor<br>Mean<br>T=A+C+l<br>21<br>54<br>34<br>89                    | 5th<br>E+G+I+<br>+Q+S<br>11<br>28<br>18<br>47       | to CLM<br>95th<br>K+M+O<br>31<br>81<br>51<br>132                            | Mean  40  70  44  109              | otal Add<br>5th<br>21<br>37<br>23<br>57       | ing Trea<br>95th<br>L = SL<br>59<br>104<br>66<br>162                                   | Mean  JM(A:S)  385           | chnology<br>5th | 95th        |
| System Size<br>(Population<br>Served)<br><100<br>100-499<br>500-999<br>1,000-3,299<br>3,300-9,999         | Mean       | AC10 + AC | 95th<br>G             | ed Disinfo | ectants<br>CLM        | 9<br>95th       | Mean    | CL2 | GA<br>95th | Mean  H  0 0 0       | CLM<br>5th<br>0<br>0                |      | Mean  3 5           | AC20 +<br>CL2<br>5th                                    | Advano | Mean  2 6 4                             | nfectants<br>CLM<br>5th                      | 95th<br>3<br>9<br>5 | Mean 0 0 0 0                    | CL2<br>5th 9 | lemb | ranes | CLM<br>5th                          |      | Total Cor<br>Mean<br>T=A+C+l<br>21<br>54<br>34<br>89<br>99              | 5th<br>E+G+I+<br>+Q+S<br>11<br>28<br>18<br>47<br>52 | to CLM<br>95th<br>K+M+O<br>31<br>81<br>51<br>132                            | Mean  40  70  44  109  122         | 21<br>37<br>23<br>57<br>63                    | ing Trea<br>95th<br>L = SL<br>59<br>104<br>66<br>162<br>180                            | atment Te<br>Mean<br>JM(A:S) | chnology<br>5th | 95th        |
| System Size (Population Served)  <100 100-499 500-999 1,000-3,299 3,300-9,999 10,000-49,999               | Mean 20    | AC10 + /<br>CL2<br>5th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95th<br>G             | ed Disinfo | ectants<br>CLM<br>5th | 9<br>95th       | Mean    | CL2 | GA<br>95th | Mean  H  0 0 0       | CLM<br>5th<br>0<br>0                |      | Mean  3 5           | AC20 +<br>CL2<br>5th                                    | Advano | Mean  2 6 4 10                          | onfectants<br>CLM<br>5th<br>1<br>3<br>2<br>5 | 95th<br>3<br>9<br>5 | 0<br>0<br>0<br>0<br>0           | CL2<br>5th 9 | lemb | ranes | CLM<br>5th                          |      | Total Cor<br>Mean<br>T=A+C+l<br>21<br>54<br>34<br>89<br>99<br>162       | 11<br>28<br>18<br>47<br>52<br>108                   | to CLM<br>95th<br>K+M+O<br>31<br>81<br>51<br>132<br>147<br>216              | To Mean  40  70  44  109  122  248 | 21<br>37<br>23<br>57<br>63<br>166             | ing Trea<br>95th<br>L = SL<br>59<br>104<br>66<br>162<br>180<br>330                     | atment Te<br>Mean<br>JM(A:S) | chnology<br>5th | 95th        |
| System Size (Population Served)  <100 100-499 500-999 1,000-3,299 3,300-9,999 10,000-49,999 50,000-99,999 | Mean  20 9 | AC10 + AC | 95th<br>G<br>27<br>12 | Mean       | ectants<br>CLM<br>5th | 95th            | Mean    | CL2 | GA<br>95th | Mean H 0 0 0 0 0 0 0 | CLM<br>5th<br>0<br>0<br>0<br>0<br>0 |      | Mean  3 5 3 6 7 0 0 | AC20 +<br>CL2<br>5th<br>1<br>2<br>2<br>3<br>4<br>0<br>0 | Advano | Mean  2 6 4 10                          | CLM                                          | 95th<br>3<br>9<br>5 | 0<br>0<br>0<br>0<br>0           | CL2<br>5th 9 | lemb | ranes | CLM<br>5th<br>0<br>0<br>0<br>0<br>0 |      | Total Cor<br>Mean<br>T=A+C+l<br>21<br>54<br>34<br>89<br>99<br>162<br>73 | 11<br>28<br>18<br>47<br>52<br>108<br>49             | to CLM<br>95th<br>K+M+O<br>31<br>81<br>51<br>132<br>147<br>216<br>97        | To Mean  40 70 44 109 122 248 111  | 21<br>37<br>23<br>57<br>63<br>166<br>74       | ing Trea<br>95th<br>L = SL<br>59<br>104<br>66<br>162<br>180<br>330<br>148              | JM(A:S)                      | chnology<br>5th | 95th<br>570 |
| System Size (Population Served)  <100 100-499 500-999 1,000-3,299 3,300-9,999 10,000-49,999 10,000-99,999 | Mean 20    | AC10 + /<br>CL2<br>5th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95th<br>G             | Mean       | ectants<br>CLM<br>5th | 995th 11 5      | Mean    | CL2 | GA<br>95th | Mean  H  0 0 0 0 0   | CLM<br>5th<br>0<br>0<br>0           |      | Mean  3 5 3 6 7     | 1<br>2<br>2<br>3<br>4                                   | Advano | Mean  2 6 4 10                          | onfectants<br>CLM<br>5th                     | 95th<br>3<br>9<br>5 | 0<br>0<br>0<br>0<br>0           | CL2<br>5th 9 | lemb | ranes | 0<br>0<br>0<br>0<br>0               |      | Total Cor<br>Mean<br>T=A+C+l<br>21<br>54<br>34<br>89<br>99<br>162       | 11<br>28<br>18<br>47<br>52<br>108                   | to CLM<br>95th<br>K+M+O<br>31<br>81<br>51<br>132<br>147<br>216              | To Mean  40  70  44  109  122  248 | 21<br>37<br>23<br>57<br>63<br>166<br>74<br>78 | ing Trea<br>95th<br>L = SL<br>59<br>104<br>66<br>162<br>180<br>330<br>148<br>156       | JM(A:S) 385                  | chnology<br>5th | 95th        |
| System Size (Population Served)  <100 100-499 500-999 1,000-3,299 3,300-9,999 10,000-49,999 50,000-99,999 | Mean  20 9 | AC10 + /<br>CL2<br>5th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95th<br>G<br>27<br>12 | Mean       | ectants<br>CLM<br>5th | 995th 11 5 1 21 | Mean    | CL2 | GA<br>95th | Mean H 0 0 0 0 0 0 0 | CLM<br>5th<br>0<br>0<br>0<br>0<br>0 |      | Mean  3 5 3 6 7 0 0 | AC20 +<br>CL2<br>5th<br>1<br>2<br>2<br>3<br>4<br>0<br>0 | Advano | Mean  2 6 4 10                          | CLM                                          | 95th<br>3<br>9<br>5 | 0<br>0<br>0<br>0<br>0<br>0<br>0 | CL2<br>5th 9 | lemb | ranes | CLM<br>5th<br>0<br>0<br>0<br>0<br>0 |      | Total Cor<br>Mean<br>T=A+C+l<br>21<br>54<br>34<br>89<br>99<br>162<br>73 | 11<br>28<br>18<br>47<br>52<br>108<br>49             | to CLM<br>95th<br>K+M+O<br>31<br>81<br>51<br>132<br>147<br>216<br>97<br>102 | To Mean  40 70 44 109 122 248 111  | 21<br>37<br>23<br>57<br>63<br>166<br>74       | ing Trea<br>95th<br>L = SU<br>59<br>104<br>66<br>162<br>180<br>330<br>148<br>156<br>19 | JM(A:S)  385                 | chnology<br>5th | 95th<br>570 |

Note: Detail may not add to totals due to independent rounding

Source: Above table with technologies switching from an advanced technology with Cl2 to the same advanced technology with CLM being moved into the CLM only column

Exhibit C.19c

#### Stage 2 DBPR Treatment Technology Selection Deltas for NTNCWS Surface Water Plants (Percent of Plants by Residual Disinfection Type)

|                                                                                                  |                 |                 |                      |                 |                                         |                      |                                                      |                                                                  |                                                      |                                              |                                                                      | •                                                    | nage z                                       | rielelle                        | eu Aite                                      | manve,                                       | 25% Sa                                                          | ilety ivi                                                    | argiii                                               |                                                                 |                                             |                                              |                                                  |                                              |                                                                          |                                                                        |                                                                            |                                                        |                                                       |                                                                      |                         |                 |               |
|--------------------------------------------------------------------------------------------------|-----------------|-----------------|----------------------|-----------------|-----------------------------------------|----------------------|------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------|----------------------------------------------|--------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|-------------------------|-----------------|---------------|
| System Size                                                                                      | Conve           | erting to       | CLM                  |                 |                                         | Chlorine             | e Dioxide                                            |                                                                  |                                                      |                                              |                                                                      | U٧                                                   | ′                                            |                                 |                                              |                                              |                                                                 | Ozo                                                          |                                                      |                                                                 |                                             |                                              |                                                  | М                                            | F/UF                                                                     |                                                                        |                                                                            |                                                        |                                                       | GAG                                                                  | 210                     |                 |               |
| (Population                                                                                      |                 | Only            |                      |                 | CL2                                     |                      |                                                      | CLM                                                              |                                                      |                                              | CL2                                                                  |                                                      |                                              | CLM                             |                                              |                                              | CL2                                                             |                                                              |                                                      | CLM                                                             |                                             |                                              | CL2                                              |                                              |                                                                          | CLM                                                                    |                                                                            |                                                        | CL2                                                   |                                                                      |                         | CLM             |               |
| Served)                                                                                          | Mean            | 5th             | 95th                 | Mean            | 5th                                     | 95th                 | Mean                                                 | 5th                                                              | 95th                                                 | Mean                                         | 5th                                                                  | 95th                                                 | Mean                                         | 5th                             | 95th                                         | Mean                                         | 5th                                                             | 95th                                                         | Mean                                                 | 5th                                                             | 95th                                        | Mean                                         | 5th                                              | 95th                                         | Mean                                                                     | 5th                                                                    | 95th                                                                       | Mean                                                   | 5th                                                   | 95th                                                                 | Mean                    | 5th             | 95th          |
|                                                                                                  |                 | Α               |                      |                 | В                                       |                      |                                                      | С                                                                |                                                      |                                              | D                                                                    |                                                      |                                              | Е                               |                                              |                                              | F                                                               |                                                              |                                                      | G                                                               |                                             |                                              | Н                                                |                                              |                                                                          | 1                                                                      |                                                                            |                                                        | J                                                     |                                                                      |                         | K               |               |
| <100                                                                                             | 2.1%            | 1.1%            | 3.0%                 |                 |                                         |                      |                                                      |                                                                  |                                                      | 4.5%                                         | 2.3%                                                                 | 6.6%                                                 | 3.3%                                         | 1.7%                            | 4.9%                                         |                                              |                                                                 |                                                              |                                                      |                                                                 |                                             | 0.0%                                         | 0.0%                                             | 0.0%                                         | 0.0%                                                                     | 0.0%                                                                   | 0.0%                                                                       |                                                        |                                                       |                                                                      |                         |                 |               |
| 100-499                                                                                          | 4.5%            | 2.3%            | 6.6%                 | 0.1%            | 0.1%                                    | 0.2%                 | 0.4%                                                 | 0.2%                                                             | 0.6%                                                 | 1.3%                                         | 0.7%                                                                 | 2.0%                                                 | 1.4%                                         | 0.7%                            | 2.1%                                         | 0.0%                                         | 0.0%                                                            | 0.0%                                                         | 0.0%                                                 | 0.0%                                                            | 0.0%                                        | 0.0%                                         | 0.0%                                             | 0.0%                                         | 0.0%                                                                     | 0.0%                                                                   | 0.0%                                                                       |                                                        |                                                       |                                                                      |                         |                 |               |
| 500-999                                                                                          | 4.5%            | 2.3%            | 6.6%                 | 0.1%            | 0.1%                                    | 0.2%                 | 0.4%                                                 | 0.2%                                                             | 0.6%                                                 | 1.3%                                         | 0.7%                                                                 | 2.0%                                                 | 1.4%                                         | 0.7%                            | 2.1%                                         | 0.0%                                         | 0.0%                                                            | 0.0%                                                         | 0.0%                                                 | 0.0%                                                            | 0.0%                                        | 0.0%                                         | 0.0%                                             | 0.0%                                         | 0.0%                                                                     | 0.0%                                                                   | 0.0%                                                                       |                                                        |                                                       |                                                                      |                         |                 |               |
| 1,000-3,299                                                                                      | 4.6%            | 2.4%            | 6.9%                 | 0.2%            | 0.1%                                    | 0.3%                 | 1.0%                                                 | 0.5%                                                             | 1.5%                                                 | 1.0%                                         | 0.5%                                                                 | 1.5%                                                 | 1.4%                                         | 0.7%                            | 2.0%                                         | 0.0%                                         | 0.0%                                                            | 0.0%                                                         | 0.0%                                                 | 0.0%                                                            | 0.0%                                        | 0.0%                                         | 0.0%                                             | 0.0%                                         | 0.0%                                                                     | 0.0%                                                                   | 0.0%                                                                       |                                                        |                                                       |                                                                      |                         |                 |               |
| 3,300-9,999                                                                                      | 4.6%            | 2.4%            | 6.9%                 | 0.2%            | 0.1%                                    | 0.3%                 | 1.0%                                                 | 0.5%                                                             | 1.5%                                                 | 1.0%                                         | 0.5%                                                                 | 1.5%                                                 | 1.4%                                         | 0.7%                            | 2.0%                                         | 0.0%                                         | 0.0%                                                            | 0.0%                                                         | 0.0%                                                 | 0.0%                                                            | 0.0%                                        | 0.0%                                         | 0.0%                                             | 0.0%                                         | 0.0%                                                                     | 0.0%                                                                   | 0.0%                                                                       |                                                        |                                                       |                                                                      |                         |                 |               |
| 10,000-49,999                                                                                    | 10.5%           | 7.0%            | 13.9%                | 0.0%            | 0.0%                                    | 0.0%                 | 0.0%                                                 | 0.0%                                                             | 0.0%                                                 | 5.1%                                         | 3.4%                                                                 | 6.8%                                                 | 1.5%                                         | 1.0%                            | 1.9%                                         | 0.0%                                         | 0.0%                                                            | 0.0%                                                         | 0.0%                                                 | 0.0%                                                            | 0.0%                                        | 0.0%                                         | 0.0%                                             | 0.0%                                         | 0.0%                                                                     | 0.0%                                                                   | 0.0%                                                                       | 0.0%                                                   | 0.0%                                                  | 0.0%                                                                 | 0.0%                    | 0.0%            | 0.0%          |
| 50,000-99,999                                                                                    | 0.0%            | 0.0%            | 0.0%                 | 0.0%            | 0.0%                                    | 0.0%                 | 0.0%                                                 | 0.0%                                                             | 0.0%                                                 | 0.0%                                         | 0.0%                                                                 | 0.0%                                                 | 0.0%                                         | 0.0%                            | 0.0%                                         | 0.0%                                         | 0.0%                                                            |                                                              | 0.0%                                                 | 0.0%                                                            | 0.0%                                        | 0.0%                                         | 0.0%                                             | 0.0%                                         | 0.0%                                                                     | 0.0%                                                                   | 0.0%                                                                       | 0.0%                                                   | 0.0%                                                  | 0.0%                                                                 | 0.0%                    | 0.0%            | 0.0%          |
| 100,000-999,999                                                                                  | 10.5%           | 7.0%            | 13.9%                | 0.0%            | 0.0%                                    | 0.0%                 | 0.0%                                                 | 0.0%                                                             | 0.0%                                                 | 5.1%                                         | 3.4%                                                                 | 6.8%                                                 | 1.5%                                         | 1.0%                            | 1.9%                                         | 0.0%                                         | 0.0%                                                            | 0.0%                                                         | 0.0%                                                 | 0.0%                                                            | 0.0%                                        | 0.0%                                         | 0.0%                                             | 0.0%                                         | 0.0%                                                                     | 0.0%                                                                   | 0.0%                                                                       | 0.0%                                                   | 0.0%                                                  | 0.0%                                                                 | 0.0%                    | 0.0%            | 0.0%          |
| >=1,000,000                                                                                      | 0.0%            | 0.0%            | 0.0%                 | 0.0%            | 0.0%                                    | 0.0%                 | 0.0%                                                 | 0.0%                                                             | 0.0%                                                 | 0.0%                                         | 0.0%                                                                 | 0.0%                                                 | 0.0%                                         | 0.0%                            | 0.0%                                         | 0.0%                                         | 0.0%                                                            | 0.0%                                                         | 0.0%                                                 | 0.0%                                                            | 0.0%                                        | 0.0%                                         | 0.0%                                             | 0.0%                                         | 0.0%                                                                     | 0.0%                                                                   | 0.0%                                                                       | 0.0%                                                   | 0.0%                                                  | 0.0%                                                                 | 0.0%                    | 0.0%            | 0.0%          |
| Total %                                                                                          | 3.8%            | 2.0%            | 5.7%                 | 0.1%            | 0.1%                                    | 0.1%                 | 0.4%                                                 | 0.2%                                                             | 0.5%                                                 | 2.2%                                         | 1.2%                                                                 | 3.3%                                                 | 2.0%                                         | 1.0%                            | 2.9%                                         | 0.0%                                         | 0.0%                                                            | 0.0%                                                         | 0.0%                                                 | 0.0%                                                            | 0.0%                                        | 0.0%                                         | 0.0%                                             | 0.0%                                         | 0.0%                                                                     | 0.0%                                                                   | 0.0%                                                                       | 0.0%                                                   | 0.0%                                                  | 0.0%                                                                 | 0.0%                    | 0.0%            | 0.0%          |
|                                                                                                  |                 |                 |                      |                 |                                         |                      |                                                      |                                                                  |                                                      |                                              |                                                                      |                                                      |                                              | ,                               |                                              | 0.070                                        | ,                                                               | 0.070                                                        |                                                      |                                                                 |                                             |                                              |                                                  |                                              |                                                                          |                                                                        |                                                                            |                                                        | 0.0,0                                                 |                                                                      |                         |                 |               |
| System Size                                                                                      | G               | AC10+           | Advance              | ed Disinfe      | ectants                                 | 3                    |                                                      |                                                                  | GA                                                   | AC20                                         |                                                                      |                                                      |                                              |                                 |                                              |                                              | fectants                                                        |                                                              |                                                      |                                                                 | Memb                                        | ranes                                        |                                                  |                                              |                                                                          |                                                                        |                                                                            |                                                        |                                                       |                                                                      |                         |                 |               |
| System Size<br>(Population                                                                       | G               | AC10 +<br>CL2   | Advance              |                 | ectants<br>CLM                          | 3                    |                                                      | CL2                                                              | GA                                                   | AC20                                         | CLM                                                                  |                                                      |                                              |                                 |                                              | ed Disir                                     |                                                                 |                                                              |                                                      |                                                                 | Memb                                        |                                              | CLM                                              |                                              | Total Con                                                                | verting                                                                | to CLM                                                                     | To                                                     |                                                       | ng Trea                                                              | ment Te                 | chnology        | ,             |
|                                                                                                  | Mean            |                 |                      |                 |                                         |                      | Mean                                                 | CL2<br>5th                                                       | GA<br>95th                                           | AC20<br>Mean                                 |                                                                      |                                                      |                                              | AC20 +                          |                                              | ed Disir                                     | nfectants<br>CLM                                                |                                                              |                                                      | CL2                                                             | Membi<br>95th                               |                                              |                                                  | 95th                                         | Total Con<br>Mean                                                        | verting<br>5th                                                         | to CLM<br>95th                                                             | To<br>Mean                                             |                                                       | ng Trea                                                              |                         | chnology<br>5th | /<br>95th     |
| (Population                                                                                      |                 | CL2             |                      |                 | CLM                                     |                      | Mean                                                 |                                                                  |                                                      |                                              | CLM                                                                  |                                                      | G                                            | AC20 +<br>CL2                   | Advanc                                       | ed Disir                                     | nfectants<br>CLM                                                | ;                                                            |                                                      | CL2                                                             |                                             |                                              |                                                  | 95th                                         |                                                                          | 5th                                                                    | 95th                                                                       |                                                        | otal Addi                                             |                                                                      |                         |                 |               |
| (Population                                                                                      |                 | CL2             |                      |                 | CLM                                     |                      | Mean                                                 |                                                                  |                                                      |                                              | CLM                                                                  |                                                      | G                                            | AC20 +<br>CL2                   | Advanc                                       | ed Disir                                     | nfectants<br>CLM                                                | ;                                                            |                                                      | CL2                                                             |                                             |                                              |                                                  | 95th                                         | Mean<br>T=A+C+E                                                          | 5th                                                                    | 95th                                                                       |                                                        | otal Addi                                             |                                                                      | Mean                    |                 |               |
| (Population                                                                                      |                 | CL2             |                      |                 | CLM<br>5th                              |                      | Mean<br>0.0%                                         | 5th                                                              |                                                      |                                              | CLM<br>5th                                                           |                                                      | G                                            | CL2<br>5th                      | Advanc                                       | ed Disir<br>Mean                             | ofectants<br>CLM<br>5th                                         | 95th                                                         |                                                      | CL2<br>5th                                                      | 95th                                        |                                              | 5th<br>S                                         | 95th<br>0.0%                                 | Mean<br>T=A+C+E                                                          | 5th<br>E+G+I+h                                                         | 95th                                                                       |                                                        | otal Addi                                             | 95th<br>L = SU                                                       | Mean                    |                 |               |
| (Population<br>Served)                                                                           |                 | CL2             |                      |                 | CLM<br>5th                              |                      |                                                      | 5th<br>N                                                         | 95th                                                 | Mean                                         | CLM<br>5th                                                           | 95th                                                 | Mean                                         | CL2<br>5th<br>P<br>0.4%         | Advanc<br>95th                               | ed Disir<br>Mean                             | CLM<br>5th                                                      | 95th<br>0.8%                                                 | Mean                                                 | CL2<br>5th<br>R<br>0.0%                                         | 95th                                        | Mean                                         | 5th<br>S                                         | 0.0%                                         | Mean<br>T=A+C+E                                                          | 5th<br>E+G+l+h<br>+Q+S<br>3.1%                                         | 95th<br><+M+O                                                              | Mean                                                   | otal Addi<br>5th                                      | 95th<br>L = SU<br>16.5%                                              | Mean                    |                 |               |
| (Population<br>Served)                                                                           |                 | CL2             |                      |                 | CLM<br>5th                              |                      | 0.0%                                                 | 5th<br>N<br>0.0%                                                 | 95th<br>0.0%                                         | Mean 0.0%                                    | CLM<br>5th<br>O                                                      | 95th<br>0.0%                                         | Mean 0.7%                                    | CL2<br>5th<br>P<br>0.4%         | 95th<br>1.1%<br>0.9%                         | Mean  0.5%                                   | CLM<br>5th<br>Q<br>0.3%<br>0.4%<br>0.4%                         | 95th<br>0.8%<br>1.1%<br>1.1%                                 | Mean 0.0%                                            | CL2<br>5th<br>R<br>0.0%                                         | 95th<br>0.0%<br>0.0%                        | Mean<br>0.0%                                 | 5th<br>S<br>0.0%                                 | 0.0%                                         | Mean<br>T=A+C+E<br>5.9%<br>7.1%                                          | 5th<br>E+G+l+h<br>+Q+S<br>3.1%<br>3.7%                                 | 95th<br>K+M+O<br>8.8%<br>10.5%                                             | Mean<br>11.1%                                          | 5th                                                   | 95th<br>L = SU<br>16.5%<br>13.6%                                     | Mean                    |                 | 95th          |
| (Population<br>Served)<br><100<br>100-499                                                        |                 | CL2             |                      |                 | CLM<br>5th                              |                      | 0.0%                                                 | 5th<br>N<br>0.0%<br>0.0%                                         | 95th<br>0.0%<br>0.0%                                 | Mean 0.0% 0.0%                               | CLM<br>5th<br>O<br>0.0%<br>0.0%                                      | 95th<br>0.0%<br>0.0%                                 | Mean  0.7%  0.6%                             | P 0.4% 0.3% 0.3%                | 95th<br>1.1%<br>0.9%                         | Mean  0.5%  0.8%                             | CLM<br>5th<br>Q<br>0.3%<br>0.4%                                 | 95th<br>0.8%<br>1.1%<br>1.1%                                 | 0.0%<br>0.0%                                         | CL2<br>5th<br>R<br>0.0%<br>0.0%<br>0.0%                         | 95th<br>0.0%<br>0.0%                        | Mean  0.0%  0.1%                             | 5th<br>S<br>0.0%<br>0.0%<br>0.0%                 | 0.0%                                         | Mean<br>T=A+C+E<br>5.9%<br>7.1%                                          | 5th<br>E+G+I+h<br>+Q+S<br>3.1%<br>3.7%<br>3.7%                         | 95th<br>K+M+O<br>8.8%<br>10.5%                                             | Mean<br>11.1%<br>9.2%                                  | 5th<br>5.8%<br>4.8%                                   | 95th<br>L = SU<br>16.5%<br>13.6%<br>13.6%                            | Mean<br>M(A:S)          | 5th             | 95th          |
| (Population<br>Served)<br><100<br>100-499<br>500-999                                             |                 | CL2             |                      |                 | CLM<br>5th                              |                      | 0.0%<br>0.0%<br>0.0%                                 | 5th<br>N<br>0.0%<br>0.0%<br>0.0%                                 | 95th<br>0.0%<br>0.0%<br>0.0%                         | 0.0%<br>0.0%<br>0.0%                         | CLM<br>5th<br>O<br>0.0%<br>0.0%<br>0.0%                              | 95th<br>0.0%<br>0.0%<br>0.0%                         | 0.7%<br>0.6%<br>0.6%                         | P 0.4% 0.3% 0.3% 0.3%           | 95th<br>1.1%<br>0.9%<br>0.9%                 | Mean  0.5%  0.8%  0.8%                       | CLM<br>5th<br>Q<br>0.3%<br>0.4%<br>0.4%                         | 95th<br>0.8%<br>1.1%<br>1.1%<br>1.3%                         | 0.0%<br>0.0%<br>0.0%                                 | CL2<br>5th<br>R<br>0.0%<br>0.0%<br>0.0%                         | 95th<br>0.0%<br>0.0%<br>0.0%<br>0.0%        | 0.0%<br>0.1%<br>0.1%                         | 5th<br>S<br>0.0%<br>0.0%<br>0.0%<br>0.0%         | 0.0%<br>0.1%<br>0.1%                         | Mean<br>T=A+C+E<br>5.9%<br>7.1%<br>7.1%                                  | 5th<br>E+G+I+h<br>+Q+S<br>3.1%<br>3.7%<br>3.7%<br>4.1%                 | 95th<br>K+M+O<br>8.8%<br>10.5%<br>10.5%<br>11.7%                           | Mean 11.1% 9.2% 9.2%                                   | 5.8%<br>4.8%<br>4.8%                                  | 95th<br>L = SU<br>16.5%<br>13.6%<br>13.6%<br>14.3%                   | Mean<br>M(A:S)          | 5th             | 95th          |
| (Population<br>Served)<br><100<br>100-499<br>500-999<br>1,000-3,299                              |                 | CL2             |                      | Mean            | CLM<br>5th<br>M                         |                      | 0.0%<br>0.0%<br>0.0%<br>0.0%                         | 5th<br>N<br>0.0%<br>0.0%<br>0.0%<br>0.0%                         | 95th<br>0.0%<br>0.0%<br>0.0%<br>0.0%                 | 0.0%<br>0.0%<br>0.0%<br>0.0%                 | CLM<br>5th<br>O .0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                  | 95th<br>0.0%<br>0.0%<br>0.0%<br>0.0%                 | 0.7%<br>0.6%<br>0.6%<br>0.5%                 | P 0.4% 0.3% 0.3% 0.3%           | 95th<br>1.1%<br>0.9%<br>0.9%<br>0.8%<br>0.8% | 0.5%<br>0.8%<br>0.8%<br>0.9%                 | CLM 5th  Q 0.3% 0.4% 0.4% 0.5%                                  | 95th  0.8% 1.1% 1.1% 1.3% 1.3%                               | 0.0%<br>0.0%<br>0.0%<br>0.0%                         | CL2<br>5th<br>R<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%         | 95th<br>0.0%<br>0.0%<br>0.0%<br>0.0%        | 0.0%<br>0.1%<br>0.1%<br>0.0%                 | 5th<br>S<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0% | 0.0%<br>0.1%<br>0.1%<br>0.0%                 | Mean<br>T=A+C+E<br>5.9%<br>7.1%<br>7.1%<br>7.9%                          | 5th<br>E+G+I+h<br>+Q+S<br>3.1%<br>3.7%<br>3.7%<br>4.1%<br>4.1%<br>8.4% | 95th<br>K+M+O<br>8.8%<br>10.5%<br>10.5%<br>11.7%                           | 11.1%<br>9.2%<br>9.2%<br>9.7%<br>9.7%                  | 5.8%<br>4.8%<br>4.8%<br>5.0%                          | 95th<br>L = SU<br>16.5%<br>13.6%<br>13.6%<br>14.3%                   | Mean<br>M(A:S)          | 5th             | 95th          |
| (Population<br>Served)  <100 100-499 500-999 1,000-3,299 3,300-9,999 10,000-49,999 50,000-99,999 | Mean            | CL2<br>5th<br>L | 95th<br>2.1%<br>0.0% | Mean  0.6% 0.0% | CLM<br>5th<br>M<br>0.4%<br>0.0%         | 95th<br>0.8%<br>0.0% | 0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                 | 5th<br>N<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0% | 95th<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0% | 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%           | CLM 5th  O 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%                        | 95th<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0% | 0.7%<br>0.6%<br>0.6%<br>0.5%<br>0.5%<br>0.0% | P 0.4% 0.3% 0.3% 0.0% 0.0%      | 95th  1.1% 0.9% 0.9% 0.8% 0.8% 0.0% 0.0%     | 0.5%<br>0.8%<br>0.8%<br>0.9%<br>0.9%<br>0.0% | CLM<br>5th<br>Q<br>0.3%<br>0.4%<br>0.4%<br>0.5%<br>0.0%<br>0.0% | 95th  0.8%  1.1%  1.1%  1.3%  1.3%  0.0%                     | 0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                 | CL2<br>5th<br>R<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0% | 95th  0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%    | 0.0%<br>0.1%<br>0.1%<br>0.0%<br>0.0%<br>0.0% | Sth 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0       | 0.0%<br>0.1%<br>0.1%<br>0.0%<br>0.0%         | Mean<br>T=A+C+E<br>5.9%<br>7.1%<br>7.1%<br>7.9%<br>7.9%<br>12.6%<br>0.0% | 5th<br>E+G+I+h<br>+Q+S<br>3.1%<br>3.7%<br>4.1%<br>4.1%<br>8.4%<br>0.0% | 95th<br>X+M+O<br>8.8%<br>10.5%<br>10.5%<br>11.7%<br>11.7%<br>16.7%<br>0.0% | 11.1%<br>9.2%<br>9.2%<br>9.7%<br>9.7%<br>19.2%<br>0.0% | 5.8%<br>4.8%<br>4.8%<br>5.0%<br>5.0%<br>12.8%<br>0.0% | 95th<br>L = SU<br>16.5%<br>13.6%<br>14.3%<br>14.3%<br>25.5%<br>0.0%  | Mean<br>M(A:S)<br>10.1% | 5th<br>5.3%     | 95th<br>14.9% |
| (Population<br>Served) <100 100-499 500-999 1,000-3,299 3,300-9,999 10,000-49,999                | Mean 1.6%       | CL2<br>5th<br>L | 95th<br>2.1%         | Mean 0.6%       | CLM<br>5th<br>M<br>0.4%<br>0.0%         | 95th<br>0.8%<br>0.0% | 0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                 | 5th  N 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%                             | 95th  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%             | 0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0% | CLM<br>5th<br>O 0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0% | 95th<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%         | 0.7%<br>0.6%<br>0.6%<br>0.5%<br>0.5%         | P 0.4% 0.3% 0.3% 0.0% 0.0%      | 95th  1.1%  0.9%  0.9%  0.8%  0.8%  0.0%     | 0.5%<br>0.8%<br>0.8%<br>0.9%<br>0.9%         | CLM<br>5th<br>Q<br>0.3%<br>0.4%<br>0.4%<br>0.5%<br>0.5%<br>0.0% | 95th<br>0.8%<br>1.1%<br>1.1%<br>1.3%<br>1.3%<br>0.0%<br>0.0% | 0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%         | CL2<br>5th<br>R<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0% | 95th  0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%    | 0.0%<br>0.1%<br>0.1%<br>0.0%<br>0.0%         | Sth 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0       | 0.0%<br>0.1%<br>0.1%<br>0.0%<br>0.0%         | Mean<br>T=A+C+E<br>5.9%<br>7.1%<br>7.1%<br>7.9%<br>7.9%<br>12.6%         | 5th<br>E+G+I+h<br>+Q+S<br>3.1%<br>3.7%<br>4.1%<br>4.1%<br>8.4%<br>0.0% | 95th<br>C+M+O<br>8.8%<br>10.5%<br>10.5%<br>11.7%<br>11.7%                  | Mean  11.1%  9.2%  9.2%  9.7%  9.7%  19.2%             | 5.8%<br>4.8%<br>4.8%<br>5.0%<br>5.0%<br>12.8%<br>0.0% | 95th<br>L = SU<br>16.5%<br>13.6%<br>13.6%<br>14.3%<br>14.3%<br>25.5% | Mean<br>M(A:S)<br>10.1% | 5th             | 95th<br>14.9% |
| (Population<br>Served)  <100 100-499 500-999 1,000-3,299 3,300-9,999 10,000-49,999 50,000-99,999 | Mean  1.6% 0.0% | CL2<br>5th<br>L | 95th<br>2.1%<br>0.0% | Mean  0.6% 0.0% | CLM<br>5th<br>M<br>0.4%<br>0.0%<br>0.4% | 95th<br>0.8%<br>0.0% | 0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0% | 5th<br>N<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0% | 95th<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0% | 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%           | CLM 5th  O 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%                        | 95th<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0% | 0.7%<br>0.6%<br>0.6%<br>0.5%<br>0.5%<br>0.0% | P 0.4% 0.3% 0.3% 0.0% 0.0% 0.0% | 95th  1.1% 0.9% 0.9% 0.8% 0.8% 0.0% 0.0%     | 0.5% 0.8% 0.9% 0.0% 0.0%                     | CLM<br>5th<br>Q<br>0.3%<br>0.4%<br>0.4%<br>0.5%<br>0.0%<br>0.0% | 95th  0.8%  1.1%  1.1%  1.3%  0.0%  0.0%  0.0%               | 0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0% | CL2<br>5th<br>R<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0% | 95th  0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0. | 0.0%<br>0.1%<br>0.1%<br>0.0%<br>0.0%<br>0.0% | S 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0         | 0.0%<br>0.1%<br>0.1%<br>0.0%<br>0.0%<br>0.0% | Mean<br>T=A+C+E<br>5.9%<br>7.1%<br>7.1%<br>7.9%<br>7.9%<br>12.6%<br>0.0% | 5th<br>E+G+I+h<br>+Q+S<br>3.1%<br>3.7%<br>4.1%<br>4.1%<br>8.4%<br>0.0% | 95th<br>X+M+O<br>8.8%<br>10.5%<br>10.5%<br>11.7%<br>11.7%<br>16.7%<br>0.0% | 11.1%<br>9.2%<br>9.2%<br>9.7%<br>9.7%<br>19.2%<br>0.0% | 5.8%<br>4.8%<br>4.8%<br>5.0%<br>5.0%<br>12.8%<br>0.0% | 95th<br>L = SU<br>16.5%<br>13.6%<br>14.3%<br>14.3%<br>25.5%<br>0.0%  | Mean<br>M(A:S)<br>10.1% | 5th<br>5.3%     | 95th<br>14.9% |

Note: Detail may not add to totals due to independent rounding

Source: Technology Selection for the Stage 2 Preferred Alternative, 25% Safety Margin minus the Stage 1 Technology Selection from Appendix C, Exhibit C.1b.

Exhibit C.19d

# Stage 2 DBPR Treatment Technology Selection Deltas for NTNCWS Surface Water Plants (Number of Plants by Residual Disinfection Type) Stage 2 Preferred Alternative 25% Safety Margin

|                                                                                                           |           |                      |                 |                   |                       |                |           |     |      |                      |                           |      |                                                  |                                               |                | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 25% Sa                      | ,    |                         |              |          |       |                                     |      |                                        |                                                        |                                            |                               |                                |                            |                                              |                 |           |
|-----------------------------------------------------------------------------------------------------------|-----------|----------------------|-----------------|-------------------|-----------------------|----------------|-----------|-----|------|----------------------|---------------------------|------|--------------------------------------------------|-----------------------------------------------|----------------|-----------------------------------------|-----------------------------|------|-------------------------|--------------|----------|-------|-------------------------------------|------|----------------------------------------|--------------------------------------------------------|--------------------------------------------|-------------------------------|--------------------------------|----------------------------|----------------------------------------------|-----------------|-----------|
| System Size                                                                                               | Conve     | erting to            | CLM             |                   |                       | hlorine        | e Dioxide |     |      |                      |                           | U\   | /                                                |                                               |                |                                         |                             | Ozo  |                         |              |          |       |                                     | М    | F/UF                                   |                                                        |                                            |                               |                                | G/                         | AC10                                         |                 |           |
| (Population                                                                                               |           | Only                 |                 |                   | CL2                   |                |           | CLM |      |                      | CL2                       |      |                                                  | CLM                                           |                |                                         | CL2                         |      |                         | CLM          |          |       | CL2                                 |      |                                        | CLM                                                    |                                            |                               | CL2                            |                            |                                              | CLM             |           |
| Served)                                                                                                   | Mean      | 5th                  | 95th            | Mean              | 5th                   | 95th           | Mean      | 5th | 95th | Mean                 | 5th                       | 95th | Mean                                             | 5th                                           | 95th           | Mean                                    | 5th                         | 95th | Mean                    | 5th 9        | 5th      | Mean  | 5th                                 | 95th | Mean                                   | 5th                                                    | 95th                                       | Mean                          | 5th                            | 95th                       | Mean                                         | 5th             | 95th      |
|                                                                                                           |           | Α                    |                 |                   |                       |                | В         |     |      |                      |                           | С    |                                                  |                                               |                |                                         |                             |      | D                       |              |          |       |                                     |      | E                                      |                                                        |                                            |                               |                                |                            | F                                            |                 |           |
| <100                                                                                                      | 5         | 2                    | 7               |                   |                       |                |           |     |      | 10                   | 5                         | 15   | 7                                                | 4                                             | 11             |                                         |                             |      |                         |              |          | 0     | 0                                   | 0    | 0                                      | 0                                                      | 0                                          |                               |                                |                            |                                              |                 |           |
| 100-499                                                                                                   | 14        | 7                    | 21              | 0                 | 0                     | 1              | 1         | 1   | 2    | 4                    | 2                         | 6    | 4                                                | 2                                             | 6              | 0                                       | 0                           | 0    | 0                       | 0            | 0        | 0     | 0                                   | 0    | 0                                      | 0                                                      | 0                                          |                               |                                |                            |                                              |                 |           |
| 500-999                                                                                                   | 5         | 2                    | 7               | 0                 | 0                     | 0              | 0         | 0   | 1    | 1                    | 1                         | 2    | 1                                                | 1                                             | 2              | 0                                       | 0                           | 0    | 0                       | 0            | 0        | 0     | 0                                   | 0    | 0                                      | 0                                                      | 0                                          |                               |                                |                            |                                              |                 |           |
| 1,000-3,299                                                                                               | 4         | 2                    | 6               | 0                 | 0                     | 0              | 1         | 0   | 1    | 1                    | 1                         | 1    | 1                                                | 1                                             | 2              | 0                                       | 0                           | 0    | 0                       | 0            | 0        | 0     | 0                                   | 0    | 0                                      | 0                                                      | 0                                          |                               |                                |                            |                                              |                 |           |
| 3,300-9,999                                                                                               | 1         | 1                    | 2               | 0                 | 0                     | 0              | 0         | 0   | 0    | 0                    | 0                         | 0    | 0                                                | 0                                             | 1              | 0                                       | 0                           | 0    | 0                       | 0            | 0        | 0     | 0                                   | 0    | 0                                      | 0                                                      | 0                                          |                               |                                |                            |                                              |                 |           |
| 10,000-49,999                                                                                             | 1         | 0                    | 1               | 0                 | 0                     | 0              | 0         | 0   | 0    | 0                    | 0                         | 0    | 0                                                | 0                                             | 0              | 0                                       | 0                           | 0    | 0                       | 0            | 0        | 0     | 0                                   | 0    | 0                                      | 0                                                      | 0                                          | 0                             | 0                              | (                          | 0 0                                          | 0               | 0         |
| 50,000-99,999                                                                                             | 0         | 0                    | 0               | 0                 | 0                     | 0              | 0         | 0   | 0    | 0                    | 0                         | 0    | 0                                                | 0                                             | 0              | 0                                       | 0                           | 0    | 0                       | 0            | 0        | 0     | 0                                   | 0    | 0                                      | 0                                                      | 0                                          | 0                             | 0                              | (                          | 0 0                                          | 0               | 0         |
| 100,000-999,999                                                                                           | 0         | 0                    | 0               | 0                 | 0                     | 0              | 0         | 0   | 0    | 0                    | 0                         | 0    | 0                                                | 0                                             | 0              | 0                                       | 0                           | 0    | 0                       | 0            | 0        | 0     | 0                                   | 0    | 0                                      | 0                                                      | 0                                          | 0                             | 0                              | (                          | 0                                            | 0               | 0         |
| >=1,000,000                                                                                               | 0         | 0                    | 0               | 0                 | 0                     | 0              | 0         | 0   | 0    | 0                    | 0                         | 0    | 0                                                | 0                                             | 0              | 0                                       | 0                           | 0    | 0                       | 0            | 0        | 0     | 0                                   | 0    | 0                                      | 0                                                      | 0                                          | 0                             | 0                              | (                          | 0                                            | 0               | 0         |
| Total Plants                                                                                              | 29        | 15                   | 43              | 1                 | Ω                     | - 1            | 3         | - 1 | 4    | 17                   | 9                         | 25   | 15                                               | 8                                             | 22             | 0                                       | 0                           | 0    | 0                       | Ω            | Λ        | Ω     | 0                                   | 0    | 0                                      | 0                                                      | 0                                          | 0                             | 0                              | -                          | 0 0                                          | 0               | Ω         |
| . otar . iarito                                                                                           |           |                      |                 |                   | U                     | - 1            | 3         |     | 4    | 17                   | Э                         | 25   |                                                  |                                               |                |                                         |                             | U    | U                       | U            | U        | U     | U                                   | U    | U                                      | U                                                      | U                                          | U                             | U                              | (                          | , ,                                          | 0               | U         |
| System Size                                                                                               |           | AC10 +               |                 | ed Disinf         | ectants               |                | 3         | ,   | GA   | C20                  |                           | 25   |                                                  | AC20 +                                        |                | ced Disir                               | nfectants                   |      | 0                       | N            | lemb     | ranes |                                     | 0    |                                        |                                                        |                                            |                               |                                |                            |                                              |                 | -         |
| System Size<br>(Population                                                                                | G/        | AC10 +<br>CL2        | Advance         | ed Disinf         | ectants<br>CLM        |                |           | CL2 |      | C20                  | CLM                       |      | G.                                               | AC20 +<br>CL2                                 | Advan          | ced Disir                               | nfectants<br>CLM            |      |                         | CL2          |          |       | CLM                                 |      | Total Co                               | nverting                                               | to CLM                                     | Т                             | otal Ado                       | ling Tre                   | atment Te                                    | echnolog        |           |
| System Size                                                                                               |           | AC10 +               |                 | ed Disinf         | ectants<br>CLM        | 95th           |           |     |      |                      |                           | 95th |                                                  | AC20 +                                        | Advan          | ced Disir                               | nfectants<br>CLM            |      | Mean                    | CL2          |          |       |                                     | 95th | Total Co                               | nverting<br>5th                                        | to CLM<br>95th                             | T<br>Mean                     |                                | ling Tre                   |                                              |                 | y<br>95th |
| System Size<br>(Population                                                                                | G/        | AC10 +<br>CL2        | Advance<br>95th | ed Disinf<br>Mean | ectants<br>CLM        | 95th           |           |     | 95th | Mean                 | CLM                       |      | G.                                               | AC20 +<br>CL2                                 | Advan          | ced Disir                               | nfectants<br>CLM            |      |                         | CL2          |          |       | CLM                                 |      | Total Co<br>Mean<br>T=A+C+             | nverting<br>5th<br>E+G+I+                              | to CLM<br>95th                             | T<br>Mean                     | otal Ado                       | ling Tre<br>95th           | atment Te                                    | echnolog        |           |
| System Size<br>(Population<br>Served)                                                                     | G/        | AC10 +<br>CL2        | Advance         | ed Disinf<br>Mean | ectants<br>CLM        | 95th           |           |     | 95th | Mean                 | CLM                       |      | G.                                               | AC20 +<br>CL2                                 | Advand<br>95th | ced Disir                               | nfectants<br>CLM            |      |                         | CL2          |          |       | CLM                                 |      | Total Co<br>Mean<br>T=A+C+             | nverting<br>5th                                        | to CLM<br>95th<br>K+M+O                    | T<br>Mean                     | otal Add                       | ling Tre<br>95th<br>L = SI | atment Te                                    | echnolog        |           |
| System Size<br>(Population<br>Served)                                                                     | G/        | AC10 +<br>CL2        | Advance<br>95th | ed Disinf<br>Mean | ectants<br>CLM        | 95th           |           |     | 95th | Mean H               | CLM                       |      | Mean 2                                           | AC20 +<br>CL2                                 | Advan          | Mean                                    | nfectants<br>CLM            |      | Mean 0                  | CL2          |          |       | CLM<br>5th                          |      | Total Con<br>Mean<br>T=A+C+            | nverting<br>5th<br>E+G+I+<br>+Q+S                      | to CLM<br>95th<br>K+M+O                    | T<br>Mean                     | otal Add<br>5th                | ling Tre<br>95th<br>L = SI | Mean  UM(A:S)                                | echnolog        |           |
| System Size<br>(Population<br>Served)<br><100<br>100-499                                                  | G/        | AC10 +<br>CL2        | Advance<br>95th | ed Disinf<br>Mean | ectants<br>CLM        | 95th           | Mean      |     | 95th | Mean                 | CLM<br>5th                |      | G.<br>Mean                                       | AC20 +<br>CL2                                 | Advand<br>95th | ced Disir                               | nfectants<br>CLM            | 95th | Mean                    | CL2<br>5th 9 | 5th<br>J |       | CLM<br>5th                          |      | Total Co<br>Mean<br>T=A+C+             | nverting<br>5th<br>E+G+I+                              | to CLM<br>95th<br>K+M+O                    | T<br>Mean                     | otal Add                       | ling Tre<br>95th<br>L = SI | Mean  UM(A:S)                                | echnolog<br>5th | 95th      |
| System Size<br>(Population<br>Served)<br><100<br>100-499<br>500-999                                       | G/        | AC10 +<br>CL2        | Advance<br>95th | ed Disinf<br>Mean | ectants<br>CLM        | 95th           | Mean      |     | 95th | Mean H               | CLM<br>5th<br>0<br>0      |      | Mean 2                                           | AC20 +<br>CL2<br>5th                          | Advand<br>95th | Mean                                    | 5th  1 0                    | 95th | Mean 0                  | CL2<br>5th 9 | 5th<br>J |       | CLM<br>5th                          |      | Total Con<br>Mean<br>T=A+C+            | nverting<br>5th<br>E+G+I+<br>+Q+S                      | 95th<br>95th<br>K+M+O<br>20<br>33          | T<br>Mean                     | otal Add<br>5th                | 95th  L = SI  37 42        | atment Te<br>Mean<br>UM(A:S)                 | echnolog<br>5th |           |
| System Size<br>(Population<br>Served)<br><100<br>100-499<br>500-999<br>1,000-3,299                        | G/        | AC10 +<br>CL2        | Advance<br>95th | ed Disinf<br>Mean | ectants<br>CLM        | 95th           | Mean      |     | 95th | Mean H               | CLM<br>5th                |      | Mean 2                                           | AC20 +<br>CL2<br>5th                          | Advand<br>95th | Mean                                    | onfectants<br>CLM<br>5th    | 95th | Mean 0                  | CL2<br>5th 9 | 5th<br>J |       | CLM<br>5th                          |      | Total Con<br>Mean<br>T=A+C+            | nverting<br>5th<br>E+G+I+<br>+Q+S                      | to CLM<br>95th<br>K+M+O                    | T Mean 25 29                  | otal Add<br>5th                | 95th<br>L = SI<br>37       | atment Te<br>Mean<br>UM(A:S)                 | echnolog<br>5th | 95th      |
| System Size (Population Served)  <100 100-499 500-999 1,000-3,299 3,300-9,999                             | G/        | AC10 +<br>CL2        | Advance<br>95th | ed Disinf<br>Mean | ectants<br>CLM        | 95th           | Mean      |     | 95th | Mean  H  0 0 0       | CLM<br>5th<br>0<br>0      |      | Mean  2 2 1                                      | AC20 +<br>CL2<br>5th                          | Advand<br>95th | Mean                                    | 5th  1 0                    | 95th | Mean  0 0 0             | CL2<br>5th 9 | 5th<br>J |       | CLM<br>5th                          |      | Total Con<br>Mean<br>T=A+C+            | nverting<br>5th<br>E+G+I+<br>+Q+S                      | 95th<br>95th<br>K+M+O<br>20<br>33          | T Mean 25 29 10               | otal Add<br>5th                | 95th  L = SI  37 42        | atment Te<br>Mean<br>UM(A:S)                 | echnolog<br>5th | 95th      |
| System Size (Population Served)  <100 100-499 500-999 1,000-3,299 3,300-9,999 10,000-49,999               | G/        | AC10 +<br>CL2        | Advance<br>95th | ed Disinf<br>Mean | ectants<br>CLM        | 95th           | Mean      |     | 95th | Mean  H  0 0 0       | CLM<br>5th<br>0<br>0      |      | Mean  2 2 1                                      | AC20 +<br>CL2<br>5th                          | Advand<br>95th | Mean                                    | 5th  1 0 0                  | 95th | Mean  0 0 0             | CL2<br>5th 9 | 5th<br>J |       | CLM<br>5th                          |      | Total Co<br>Mean<br>T=A+C+             | nverting<br>5th<br>E+G+I+<br>+Q+S                      | 20<br>33<br>11<br>11<br>3                  | T Mean 25 29 10               | otal Add<br>5th                | 95th  L = SI  37 42        | atment Te<br>Mean<br>UM(A:S)                 | echnolog<br>5th | 95th      |
| System Size (Population Served)  <100 100-499 500-999 1,000-3,299 3,300-9,999 10,000-49,999 50,000-99,999 | G/        | AC10 +<br>CL2<br>5th | Advance<br>95th | Mean              | ectants<br>CLM<br>5th | 95th<br>0<br>0 | Mean      |     | 95th | Mean  H  0 0 0 0 0   | CLM<br>5th<br>0<br>0<br>0 |      | G. Mean 2 2 1 0 0                                | AC20 +<br>CL2<br>5th                          | Advand<br>95th | Mean                                    | onfectants CLM 5th  1 0 0 0 | 95th | 0<br>0<br>0<br>0<br>0   | CL2<br>5th 9 | 5th<br>J |       | 0<br>0<br>0<br>0<br>0               |      | Total Co<br>Mean<br>T=A+C+             | nverting<br>5th<br>E+G+l+<br>+Q+S<br>7<br>12<br>4<br>4 | 95th<br>K+M+O<br>20<br>33<br>11<br>11<br>3 | T Mean 25 29 10               | otal Add<br>5th                | 95th  L = SI  37 42        | atment Te<br>Mean<br>UM(A:S)                 | echnolog<br>5th | 95th      |
| System Size (Population Served)  <100 100-499 500-999 1,000-3,299 3,300-9,999 10,000-49,999               | G/        | AC10 +<br>CL2<br>5th | Advance<br>95th | Mean 0            | ectants<br>CLM<br>5th | 95th<br>0<br>0 | Mean      |     | 95th | Mean  H  0 0 0 0 0   | CLM<br>5th<br>0<br>0<br>0 |      | G. Mean 2 2 1 0 0                                | AC20 +<br>CL2<br>5th                          | Advand<br>95th | Mean                                    | onfectants CLM 5th  1 0 0 0 | 95th | 0<br>0<br>0<br>0<br>0   | CL2<br>5th 9 | 5th<br>J |       | 0<br>0<br>0<br>0<br>0               |      | Total Co<br>Mean<br>T=A+C+             | 7<br>12<br>4<br>1<br>0                                 | 95th<br>K+M+O<br>20<br>33<br>11<br>11<br>3 | T Mean 25 29 10               | otal Add<br>5th                | 95th  L = SI  37 42        | atment Te<br>Mean<br>UM(A:S)                 | echnolog<br>5th | 95th      |
| System Size (Population Served)  <100 100-499 500-999 1,000-3,299 3,300-9,999 10,000-49,999 50,000-99,999 | Mean  0 0 | AC10 +<br>CL2<br>5th | Advance<br>95th | Mean  0 0         | ectants CLM 5th       | 95th 0 0 0     | Mean      |     | 95th | Mean H 0 0 0 0 0 0 0 | CLM 5th 0 0 0 0 0 0 0 0 0 |      | G. Mean  2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | AC20 +<br>CL2<br>5th<br>1<br>1<br>0<br>0<br>0 | Advand<br>95th | Mean                                    | CLM                         | 95th | Mean  0 0 0 0 0 0 0 0 0 | CL2<br>5th 9 | 5th<br>J |       | CLM<br>5th<br>0<br>0<br>0<br>0<br>0 |      | Total Col Mean T=A+C+  13 22 8 7 2 1 0 | nverting 5th E+G+I+ +Q+S 7 12 4 4 1 0 0                | 20<br>333<br>11<br>11<br>3<br>0<br>0       | T Mean  25 29 10 9 2 11 0 0 0 | 13<br>15<br>55<br>15<br>5<br>1 | 95th  L = SI  37 42        | atment Te Mean  UM(A:S)  7 2 4 3 4 1 1 0 0 1 | echnolog<br>5th | 95th      |

Note: Detail may not add to totals due to independent rounding

Source: Above table with technologies switching from an advanced technology with CI2 to the same advanced technology with CLM being moved into the CLM only column

Exhibit C.20a

Stage 2 DBPR Treatment Technology Selection Deltas for CWS Ground Water Plants (Percent of Plants, by Residual Disinfectant Type)

Stage 2 Preferred Alternative, 25% Safety Margin

|                     |          |        |        |       |       |       | •     | <u> </u>  |           |                  |        |         |
|---------------------|----------|--------|--------|-------|-------|-------|-------|-----------|-----------|------------------|--------|---------|
|                     |          |        |        |       |       |       |       |           |           |                  | Total  | Adding  |
| System Size         |          |        |        | Ozone | Ozone | GAC20 | GAC20 | Membranes | Membranes | Total Converting | Trea   | tment   |
| (Population Served) | CLM Only | UV CL2 | UV CLM | CL2   | CLM   | CL2   | CLM   | CL2       | CLM       | to CLM           | Tech   | nology  |
|                     | Α        | В      | С      | D     | Е     | F     | G     | Н         | 1         | J = A+C+E+G+I    | K = SI | UM(A:I) |
| <100                | 1.0%     | 0.0%   | 1.1%   | 0.0%  | 0.0%  | 0.4%  | 0.0%  | 0.0%      | 0.0%      | 2.0%             | 2.4%   |         |
| 100-499             | 1.4%     | 0.0%   | 1.6%   | 0.0%  | 0.0%  | 0.2%  | 0.0%  | 0.0%      | 0.0%      | 3.0%             | 3.2%   |         |
| 500-999             | 1.4%     | 0.0%   | 1.6%   | 0.0%  | 0.0%  | 0.2%  | 0.0%  | 0.0%      | 0.0%      | 3.0%             | 3.2%   | 2.9%    |
| 1,000-3,299         | 1.1%     | 0.0%   | 1.6%   | 0.0%  | 0.0%  | 0.0%  | 0.0%  | 0.0%      | 0.0%      | 2.7%             | 2.7%   |         |
| 3,300-9,999         | 1.1%     | 0.0%   | 1.6%   | 0.0%  | 0.0%  | 0.0%  | 0.0%  | 0.0%      | 0.0%      | 2.7%             | 2.7%   |         |
| 10,000-49,999       | 1.4%     |        |        | 0.1%  | 0.2%  | 0.0%  | 0.2%  | 0.0%      | 0.2%      | 2.0%             | 2.1%   |         |
| 50,000-99,999       | 1.4%     |        |        | 0.1%  | 0.2%  | 0.0%  | 0.2%  | 0.0%      | 0.2%      | 2.0%             | 2.1%   | 2.1%    |
| 100,000-999,999     | 1.3%     |        |        | 0.1%  | 0.2%  | 0.0%  | 0.1%  | 0.0%      | 0.2%      | 1.9%             | 2.0%   | 2.170   |
| >=1,000,000         | 1.5%     |        |        | 0.1%  | 0.2%  | 0.0%  | 0.1%  | 0.0%      | 0.2%      | 2.0%             | 2.1%   |         |
| Total %             | 1.3%     | 0.0%   | 1.3%   | 0.0%  | 0.0%  | 0.1%  | 0.0%  | 0.0%      | 0.0%      | 2.6%             | 2.8%   | 2.8%    |

Note: Detail may not add to totals due to independent rounding

Exhibit C.20b

Stage 2 DBPR Treatment Technology Selection Deltas for CWS Ground Water Plants (Number of Plants, by Residual Disinfectant Type)

Stage 2 Preferred Alternative, 25% Safety Margin

|                     |          |        |        |       |       |       | , =0 /0 00:0 | ,         |           |                  |       |         |
|---------------------|----------|--------|--------|-------|-------|-------|--------------|-----------|-----------|------------------|-------|---------|
|                     |          |        |        |       |       |       |              |           |           |                  | Total | Adding  |
| System Size         |          |        |        | Ozone | Ozone | GAC20 | GAC20        | Membranes | Membranes | Total Converting | Trea  | atment  |
| (Population Served) | CLM Only | UV CL2 | UV CLM | CL2   | CLM   | CL2   | CLM          | CL2       | CLM       | to CLM           | Tech  | nology  |
|                     | Α        | В      | С      | D     | E     | F     | G            | Н         | I         | J = A+C+E+G+I    | K = S | UM(A:I) |
| <100                | 61       | 0      | 70     | 0     | 0     | 23    | 0            | 0         | 0         | 132              | 155   |         |
| 100-499             | 213      | 0      | 243    | 0     | 0     | 27    | 0            | 0         | 0         | 456              | 483   | 1       |
| 500-999             | 85       | 0      | 97     | 0     | 0     | 11    | 0            | 0         | 0         | 182              | 193   | 1,169   |
| 1,000-3,299         | 82       | 0      | 118    | 0     | 0     | 0     | 4            | 0         | 0         | 204              | 204   | 1       |
| 3,300-9,999         | 54       | 0      | 78     | 0     | 0     | 0     | 2            | 0         | 0         | 135              | 135   | 1       |
| 10,000-49,999       | 75       |        |        | 3     | 12    | 0     | 8            | 2         | 11        | 107              | 111   | <br>    |
| 50,000-99,999       | 10       |        |        | 0     | 2     | 0     | 1            | 0         | 2         | 14               | 15    | 4.45    |
| 100,000-999,999     | 12       |        |        | 0     | 2     | 0     | 1            | 0         | 2         | 17               | 18    | 145     |
| >=1,000,000         | 0        |        |        | 0     | 0     | 0     | 0            | 0         | 0         | 1                | 1     | İ       |
| Total Plants        | 593      | 0      | 607    | 4     | 15    | 61    | 17           | 2         | 15        | 1,247            | 1,314 | 1,314   |

Note: Detail may not add to totals due to independent rounding

Exhibit C.20c
Stage 2 DBPR Treatment Technology Selection Deltas for NTNCWS Ground Water Plants (Percent of Plants, by Residual Disinfectant Type)
Stage 2 Preferred Alternative, 25% Safety Margin

|                     |          |        |        | Olugo = | 1 1010110u | Aiternative | , 20 /0 Oaio | iy inai giii |           |                  |       |         |
|---------------------|----------|--------|--------|---------|------------|-------------|--------------|--------------|-----------|------------------|-------|---------|
|                     |          |        |        |         |            |             |              |              |           |                  | Total | Adding  |
| System Size         |          |        |        | Ozone   | Ozone      | GAC20       | GAC20        | Membranes    | Membranes | Total Converting | Trea  | tment   |
| (Population Served) | CLM Only | UV CL2 | UV CLM | CL2     | CLM        | CL2         | CLM          | CL2          | CLM       | to CLM           | Tech  | nology  |
|                     | Α        | В      | С      | D       | Е          | F           | G            | Н            | I         | J = A+C+E+G+I    | K = S | UM(A:I) |
| <100                | 1.0%     | 0.0%   | 1.1%   | 0.0%    | 0.0%       | 0.4%        | 0.0%         | 0.0%         | 0.0%      | 2.0%             | 2.4%  |         |
| 100-499             | 1.4%     | 0.0%   | 1.6%   | 0.0%    | 0.0%       | 0.2%        | 0.0%         | 0.0%         | 0.0%      | 3.0%             | 3.2%  |         |
| 500-999             | 1.4%     | 0.0%   | 1.6%   | 0.0%    | 0.0%       | 0.2%        | 0.0%         | 0.0%         | 0.0%      | 3.0%             | 3.2%  | 2.8%    |
| 1,000-3,299         | 1.1%     | 0.0%   | 1.6%   | 0.0%    | 0.0%       | 0.0%        | 0.0%         | 0.0%         | 0.0%      | 2.7%             | 2.7%  |         |
| 3,300-9,999         | 1.1%     | 0.0%   | 1.6%   | 0.0%    | 0.0%       | 0.0%        | 0.0%         | 0.0%         | 0.0%      | 2.7%             | 2.7%  |         |
| 10,000-49,999       | 1.4%     |        |        | 0.1%    | 0.2%       | 0.0%        | 0.2%         | 0.0%         | 0.2%      | 2.0%             | 2.1%  |         |
| 50,000-99,999       | 1.4%     |        |        | 0.1%    | 0.2%       | 0.0%        | 0.2%         | 0.0%         | 0.2%      | 2.0%             | 2.1%  | 2.1%    |
| 100,000-999,999     | 1.3%     |        |        | 0.1%    | 0.2%       | 0.0%        | 0.1%         | 0.0%         | 0.2%      | 1.9%             | 2.0%  | 2.170   |
| >=1,000,000         | 0.0%     |        |        | 0.0%    | 0.0%       | 0.0%        | 0.0%         | 0.0%         | 0.0%      | 0.0%             | 0.0%  |         |
| Total %             | 1.2%     | 0.0%   | 1.4%   | 0.0%    | 0.0%       | 0.3%        | 0.0%         | 0.0%         | 0.0%      | 2.5%             | 2.8%  | 2.8%    |

Note: Detail may not add to totals due to independent rounding

Exhibit C.20d

Stage 2 DBPR Treatment Technology Selection Deltas for NTNCWS Ground Water Plants (Number of Plants, by Residual Disinfectant Type)

Stage 2 Preferred Alternative, 25% Safety Margin

|                     |          |        |        |       |       |       |       |           |           |                  | Total  | Adding  |
|---------------------|----------|--------|--------|-------|-------|-------|-------|-----------|-----------|------------------|--------|---------|
| System Size         |          |        |        | Ozone | Ozone | GAC20 | GAC20 | Membranes | Membranes | Total Converting | Trea   | tment   |
| (Population Served) | CLM Only | UV CL2 | UV CLM | CL2   | CLM   | CL2   | CLM   | CL2       | CLM       | to CLM           | Tech   | nology  |
|                     | Α        | В      | С      | D     | Е     | F     | G     | Н         | I         | J = A+C+E+G+I    | K = SI | UM(A:I) |
| <100                | 24       | 0      | 27     | 0     | 0     | 9     | 0     | 0         | 0         | 51               | 60     |         |
| 100-499             | 30       | 0      | 34     | 0     | 0     | 4     | 0     | 0         | 0         | 64               | 67     |         |
| 500-999             | 8        | 0      | 9      | 0     | 0     | 1     | 0     | 0         | 0         | 18               | 19     | 153     |
| 1,000-3,299         | 3        | 0      | 4      | 0     | 0     | 0     | 0     | 0         | 0         | 7                | 7      |         |
| 3,300-9,999         | 0        | 0      | 0      | 0     | 0     | 0     | 0     | 0         | 0         | 1                | 1      |         |
| 10,000-49,999       | 0        |        |        | 0     | 0     | 0     | 0     | 0         | 0         | 0                | 0      |         |
| 50,000-99,999       | 0        |        |        | 0     | 0     | 0     | 0     | 0         | 0         | 0                | 0      | 0       |
| 100,000-999,999     | 0        |        |        | 0     | 0     | 0     | 0     | 0         | 0         | 0                | 0      | U       |
| >=1,000,000         | 0        |        |        | 0     | 0     | 0     | 0     | 0         | 0         | 0                | 0      |         |
| Total Plants        | 65       | 0      | 75     | 0     | 0     | 14    | 0     | 0         | 0         | 140              | 154    | 154     |

Note: Detail may not add to totals due to independent rounding

#### Exhibit C.21a

# Post-Stage 2 DBPR Treatment Technologies-in-Place for CWS Surface Water Plants (Percent of Plants by Residual Disinfection Type) Stage 2 Preferred Alternative, 25% Safety Margin

|                     |       |            |       |       |           |       |         |          |        |          |           |      | Jia  | JE Z FIE | ieneu | Alternat | ive, 25  | /o Jaii | ety iviai | yııı    |      |      |          |      |       |           |         |        |        |                |        |         |         |           |
|---------------------|-------|------------|-------|-------|-----------|-------|---------|----------|--------|----------|-----------|------|------|----------|-------|----------|----------|---------|-----------|---------|------|------|----------|------|-------|-----------|---------|--------|--------|----------------|--------|---------|---------|-----------|
| System Size         |       | anced Trea |       |       | anced Tre |       | Chlorin | e Dioxio | de CL2 | Chlorine | e Dioxide | CLM  | ι    | JV CL2   |       | U\       | / CLM    |         | Oz        | zone CL | 2    | Oz   | one CLI  | М    | MF    | UF CL2    | 2       | MF     | UF CLI | И              | GAC    | 10 CL2  | GA      | .C 10 CLM |
| (Population Served) | Mean  | 5th        | 95th  | Mean  | 5th       | 95th  | Mean    | 5th      | 95th   | Mean     | 5th       | 95th | Mean | 5th      | 95th  | Mean     | 5th 9    | 95th    | Mean      | 5th     | 95th | Mean | 5th      | 95th | Mean  | 5th       | 95th    | Mean   | 5th    | 95th           | Mean 5 | th 95tl | Mean    | 5th 95th  |
|                     |       | Α          |       |       | В         |       |         | С        |        |          | D         |      |      | Е        |       |          | F        |         |           | G       |      |      | Н        |      |       | ı         |         |        | J      |                |        | <       |         | L         |
| <100                | 30.7% | 25.4%      | 36.0% | 31.8% | 30.8%     | 32.8% |         |          |        |          |           |      | 4.5% | 2.3%     | 6.6%  | 3.3%     | 1.7%     | 4.9%    |           |         |      |      |          |      | 14.5% | 14.5%     | 14.5%   | 7.1%   | 7.1%   | 7.1%           |        |         |         |           |
| 100-499             | 26.4% | 22.0%      | 30.8% | 39.9% | 37.8%     | 42.0% | 1.1%    | 1.0%     | 1.1%   | 1.3%     | 1.1%      | 1.5% | 1.3% | 0.7%     | 2.0%  | 1.4%     | 0.7%     | 2.1%    | 5.1%      | 5.1%    | 5.1% | 4.6% | 4.6%     | 4.6% | 8.9%  | 8.9%      | 8.9%    | 4.8%   | 4.8%   | 4.8%           |        |         |         |           |
| 500-999             | 26.4% | 22.0%      | 30.8% | 39.9% | 37.8%     | 42.0% | 1.1%    | 1.0%     | 1.1%   | 1.3%     | 1.1%      | 1.5% | 1.3% | 0.7%     | 2.0%  | 1.4%     | 0.7%     | 2.1%    | 5.1%      | 5.1%    | 5.1% | 4.6% | 4.6%     | 4.6% | 8.9%  | 8.9%      | 8.9%    | 4.8%   | 4.8%   | 4.8%           |        |         |         |           |
| 1,000-3,299         | 23.8% | 19.1%      | 28.4% | 46.0% | 43.8%     | 48.2% | 2.1%    | 2.0%     | 2.2%   | 3.1%     | 2.6%      | 3.6% | 1.0% | 0.5%     | 1.5%  | 1.4%     | 0.7%     | 2.0%    | 4.0%      | 4.0%    | 4.0% | 4.5% | 4.5%     | 4.5% | 6.2%  | 6.2%      | 6.2%    | 2.9%   | 2.9%   | 2.9%           |        |         |         |           |
| 3,300-9,999         | 23.8% |            |       | 46.0% |           |       |         |          |        | 3.1%     | 2.6%      | 3.6% | 1.0% | 0.5%     | 1.5%  | 1.4%     |          |         |           | 4.0%    |      |      | 4.5%     |      |       | 6.2%      | 6.2%    | 2.9%   | 2.9%   | 2.9%           |        |         |         |           |
| 10,000-49,999       | 27.5% |            |       | 41.4% |           |       |         |          |        | 3.5%     | 3.5%      | 3.5% | 1.9% | 1.9%     | ,     | 2.9%     |          |         |           | 5.1%    |      |      | 7.7%     |      | ,.    | 0.7%      | 0.7%    | 1.1%   | 1.1%   | 1.1%           | 0.9% 0 |         | ,       | 1.3% 1.3% |
| 50,000-99,999       | 27.5% |            |       | 41.4% |           |       |         |          |        | 3.5%     | 3.5%      | 3.5% |      | 1.9%     |       | 2.9%     |          |         |           |         |      |      |          |      |       | 0.7%      |         | 1.1%   | 1.1%   | 1.1%           | 0.9% 0 |         |         | 1.3% 1.3% |
| 100,000-999,999     | 27.5% |            |       | 41.4% |           |       |         |          |        | 3.5%     | 3.5%      | 3.5% |      |          | 1.9%  | 2.9%     |          |         |           |         |      |      |          |      |       | 0.7%      | 0.7%    | 1.1%   | 1.1%   | 1.1%           |        | .9% 0.9 |         | 1.3% 1.3% |
| >=1,000,000         | 27.5% | 27.5%      | 27.5% | 41.4% | 41.4%     | 41.4% | 2.3%    | 2.3%     | 2.3%   | 3.5%     | 3.5%      | 3.5% | 1.9% | 1.9%     | 1.9%  | 2.9%     | 2.9%     | 2.9%    | 5.1%      | 5.1%    | 5.1% | 7.7% | 7.7%     | 7.7% | 0.7%  | 0.7%      | 0.7%    | 1.1%   | 1.1%   | 1.1%           | 0.9% 0 | .9% 0.9 | % 1.3%  | 1.3% 1.3% |
| Total %             | 26.1% | 23.3%      | 28.9% | 42.2% | 41.0%     | 43.5% | 1.9%    | 1.8%     | 1.9%   | 2.7%     | 2.5%      | 3.0% | 1.6% | 1.2%     | 2.0%  | 2.1%     | 1.6%     | 2.5%    | 4.4%      | 4.4%    | 4.4% | 5.5% | 5.5%     | 5.5% | 5.0%  | 5.0%      | 5.0%    | 2.8%   | 2.8%   | 2.8%           | 0.3% 0 | .3% 0.3 | % 0.5%  | 0.5% 0.5% |
| System Size         | GAC   | 10 + AD C  | CL2   | GAC.  | 10 + AD   | CLM   | GA      | AC20 CL  | L2     | GA       | C20 CLI   | Л    | GAC2 | 0 + AD   | CL2   | GAC20    | ) + AD C | CLM     | Mem       | branes  | CL2  | Memb | oranes ( | CLM  |       |           | TOTAL   | CL2    |        |                |        | TOT     | AL CLM  |           |
| (Population Served) | Mean  | 5th        | 95th  | Mean  | 5th       | 95th  | Mean    | 5th      | 95th   | Mean     | 5th       | 95th | Mean | 5th      | 95th  | Mean     | 5th !    | 95th    | Mean      | 5th     | 95th | Mean | 5th      | 95th | Mea   |           | 5th     |        | 951    | th             | Mean   |         | 5th     | 95th      |
|                     |       | М          |       |       | N         |       |         | 0        |        |          | Р         |      |      | Q        |       |          | R        |         |           | S       |      |      | Т        |      |       | U = A + C | C+E+G+I | +K+M+O | )+Q+S  |                | V =    | B+D+F+l | I+J+L+N | +P+R+T    |
| <100                |       |            |       |       |           |       | 2.0%    | 2.0%     | 2.0%   | 1.3%     | 1.3%      | 1.3% | 0.7% | 0.4%     | 1.1%  | 0.5%     | 0.3%     | 0.8%    | 2.1%      | 2.1%    | 2.1% | 1.4% | 1.4%     | 1.4% |       | 54.5%     |         | 46.7%  |        | 62.3%          | 45     | .5%     | 42.6%   | 48.3%     |
| 100-499             |       |            |       |       |           |       | 1.1%    | 1.1%     | 1.1%   | 1.0%     | 1.0%      | 1.0% | 1.1% | 0.8%     | 1.4%  | 1.2%     | 0.8%     | 1.6%    | 0.5%      | 0.5%    | 0.5% | 0.5% | 0.4%     | 0.5% |       | 45.4%     |         | 40.0%  |        | 50.8%          | 54     | .6%     | 51.2%   | 58.0%     |
| 500-999             |       |            |       |       |           |       |         | 1.1%     |        | 1.0%     | 1.0%      | 1.0% |      | 0.8%     |       | 1.2%     |          |         |           | 0.5%    |      |      | 0.4%     | 0.5% |       | 45.4%     |         | 40.0%  |        | 50.8%          | 54     | .6%     | 51.2%   |           |
| 1,000-3,299         |       |            |       |       |           |       | 1.0%    | 1.0%     | 1.0%   | 1.2%     | 1.2%      | 1.2% | 1.1% | 0.8%     | 1.3%  | 1.5%     | 1.1%     | 1.9%    | 0.2%      | 0.2%    | 0.2% | 0.2% | 0.2%     | 0.2% |       | 39.4%     |         | 33.9%  |        | 44.8%          | 60     | .6%     | 56.9%   |           |
| 3,300-9,999         |       |            |       |       |           |       |         | 1.0%     |        | 1.2%     | 1.2%      | 1.2% |      | 0.8%     |       | 1.5%     |          |         |           |         |      |      | 0.2%     | 0.2% |       | 39.4%     |         | 33.9%  |        | 44.8%          |        | .6%     | 56.9%   |           |
| 10,000-49,999       | 1.0%  | 1.0%       | 1.0%  |       |           |       | 0.1%    |          |        | 0.2%     | 0.2%      | 0.2% |      | 0.0%     |       | 0.0%     |          |         |           |         |      |      | 0.4%     | 0.4% |       | 39.9%     |         | 39.9%  |        | 39.9%          |        | .1%     | 60.1%   | 60.1%     |
| 50,000-99,999       | 1.0%  | 1.0%       | 1.0%  |       |           |       | 0.1%    |          |        | 0.2%     | 0.2%      | 0.2% |      | 0.0%     |       | 0.0%     |          |         |           | 0.3%    |      |      |          |      |       | 39.9%     |         | 39.9%  |        | 39.9%          |        | .1%     | 60.1%   | 60.1%     |
| 100,000-999,999     | 1.0%  | 1.0%       | 1.0%  |       | 1.5%      |       | 0.1%    |          |        | 0.2%     | 0.2%      | 0.2% |      | 0.0%     |       | 0.0%     |          |         |           | 0.3%    |      |      | 0.4%     | ,.   |       | 39.9%     |         | 39.9%  |        | 39.9%          |        | .1%     | 60.1%   | 60.1%     |
| >=1,000,000         | 1.0%  | 1.0%       | 1.0%  | 1.5%  | 1.5%      | 1.5%  | 0.1%    | 0.1%     | 0.1%   | 0.2%     | 0.2%      | 0.2% | 0.0% |          |       | 0.0%     | 0.0%     | _       |           |         |      |      |          | 0.4% |       | 39.9%     |         | 39.9%  |        | 39.9%<br>45.0% | 60     | .1%     | 60.1%   |           |
| Total %             |       |            |       |       |           |       | 0.7%    |          |        | 0.8%     | 0.8%      | 0.8% |      |          |       |          |          |         |           |         | 0.4% |      |          |      |       | 41.6%     |         | 38.1%  |        |                |        | 4%      | 56.3%   | 60.6%     |

Note: Detail may not add to totals due to independent rounding

Source: Surface water systems serving <10,000 people: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Stage 2 Preferred Alternative, 25% Safety Margin. Surface water systems serving 10,000 o

Exhibit C.21b

Post-Stage 2 DBPR Treatment Technologies-in-Place for CWS Surface Water Plants (Number of Plants by Residual Disinfection Type)

Stage 2 Preferred Alternative, 25% Safety Margin

| System Size                                                                                | No Advar | nced Tre  |                 |         | nced Tre |       | Chlorine                | Dioxide     | e CL2                                | Chlorine          | Dioxide C         | CLM                                  | U              | V CL2     |                            | UV                | CLM                                          | C                                                                                  | Ozone C                            | L2                                 | Ozo              | one CLM                   | N                         | IF/UF CL2                                                  |         | MF/I                                          | UF CLM |                                        | GAC  | 10 CL2                                        | G/                                                        | .C 10 CLM                                                      |
|--------------------------------------------------------------------------------------------|----------|-----------|-----------------|---------|----------|-------|-------------------------|-------------|--------------------------------------|-------------------|-------------------|--------------------------------------|----------------|-----------|----------------------------|-------------------|----------------------------------------------|------------------------------------------------------------------------------------|------------------------------------|------------------------------------|------------------|---------------------------|---------------------------|------------------------------------------------------------|---------|-----------------------------------------------|--------|----------------------------------------|------|-----------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------|
| (Population Served)                                                                        | Mean     | 5th       | 95th            | Mean    | 5th      | 95th  | Mean                    | 5th         | 95th                                 | Mean              | 5th 9             | 95th                                 | Mean           | 5th       | 95th                       | Mean 5            | th 95th                                      | Mean                                                                               | 5th                                | 95th                               | Mean             | 5th 95th                  | Mean                      | 5th 9                                                      | 95th N  | /lean                                         | 5th 9  | 95th                                   | Mean | 5th 95                                        | th Mean                                                   | 5th 95th                                                       |
|                                                                                            |          | Α         |                 |         | В        |       |                         | С           |                                      |                   | D                 |                                      |                | E         |                            |                   | F                                            |                                                                                    | G                                  |                                    |                  | Н                         |                           | 1                                                          |         |                                               | J      |                                        |      | K                                             |                                                           | L                                                              |
| <100                                                                                       | 110      | 91        | 129             | 114     | 111      | 118   |                         |             |                                      |                   |                   |                                      | 16             | 8         | 24                         | 12                | 6 1                                          | 8                                                                                  |                                    |                                    |                  |                           | 52                        | 52                                                         | 52      | 26                                            | 26     | 26                                     |      |                                               |                                                           |                                                                |
| 100-499                                                                                    | 203      | 169       | 236             | 306     | 289      | 322   | 8                       | 8           | 9                                    | 10                | 8                 | 11                                   | 10             | 5         | 15                         | 11                | 6 1                                          | 6 39                                                                               | 39                                 | 39                                 | 35               | 35 3                      | 5 68                      | 68                                                         | 68      | 37                                            | 37     | 37                                     |      |                                               |                                                           |                                                                |
| 500-999                                                                                    | 128      | 106       | 149             | 193     | 182      | 203   | 5                       | 5           | 6                                    | 6                 | 5                 | 7                                    | 6              | 3         | 10                         | 7                 | 4 1                                          | 0 24                                                                               | 1 24                               | 24                                 | 22               | 22 2                      | 2 43                      | 43                                                         | 43      | 23                                            | 23     | 23                                     |      |                                               |                                                           |                                                                |
| 1,000-3,299                                                                                | 269      | 216       | 321             | 519     | 494      | 544   | 24                      | 23          | 25                                   | 35                | 30                | 40                                   | 12             | 6         | 17                         | 15                | 8 2                                          | 3 45                                                                               | 5 45                               | 45                                 | 51               | 51 5                      | 1 70                      | 70                                                         | 70      | 32                                            | 32     | 32                                     |      |                                               |                                                           |                                                                |
| 3,300-9,999                                                                                | 299      | 241       | 357             | 579     | 551      | 607   | 26                      | 25          | 27                                   | 39                | 33                | 45                                   | 13             | 7         | 19                         | 17                | 9 2                                          | 6 50                                                                               | 50                                 | 50                                 | 56               | 56 5                      | 6 78                      | 78                                                         | 78      | 36                                            | 36     | 36                                     |      |                                               |                                                           |                                                                |
| 10,000-49,999                                                                              | 355      | 355       | 355             | 534     | 534      | 534   | 30                      | 30          | 30                                   | 45                | 45                | 45                                   | 25             | 25        | 25                         | 37                | 37 3                                         | 7 66                                                                               | 66                                 | 66                                 | 99               | 99 9                      | 9 9                       | 9                                                          | 9       | 14                                            | 14     | 14                                     | 11   | 11                                            | 11 17                                                     | 17 17                                                          |
| 50,000-99,999                                                                              | 159      | 159       | 159             | 240     | 240      | 240   | 14                      | 14          | 14                                   | 20                | 20                | 20                                   | 11             | 11        | 11                         | 17                | 17 1                                         | 7 30                                                                               | 30                                 | 30                                 | 45               | 45 4                      | 5 4                       | 4                                                          | 4       | 6                                             | 6      | 6                                      | 5    | 5                                             | 5 8                                                       | 8 8                                                            |
| 100,000-999,999                                                                            | 168      | 168       | 168             | 253     | 253      | 253   | 14                      | 14          | 14                                   | 21                | 21                | 21                                   | 12             | 12        | 12                         | 17                | 17 1                                         | 7 31                                                                               | I 31                               | 31                                 | 47               | 47 4                      | 7 4                       | 4                                                          | 4       | 7                                             | 7      | 7                                      | 5    | 5                                             | 5 8                                                       | 8 8                                                            |
| >=1,000,000                                                                                | 20       | 20        | 20              | 30      | 30       | 30    | 2                       | 2           | 2                                    | 3                 | 3                 | 3                                    | 1              | 1         | 1                          | 2                 | 2                                            | 2 4                                                                                | 1 4                                | 4                                  | 6                | 6                         | 6 1                       | 1                                                          | 1       | 1                                             | 1      | 1                                      | 1    | 1                                             | 1 1                                                       | 1 1                                                            |
| Total Plants                                                                               | 1,711    | 1,526     | 1,895           | 2,768   | 2,685    | 2,851 | 123                     | 120         | 126                                  | 180               | 166               | 194                                  | 106            | 79        | 134                        | 135               | 106 16                                       | 5 290                                                                              | 290                                | 290                                | 361              | 361 36                    | 1 329                     | 329                                                        | 329     | 182                                           | 182    | 182                                    | 22   | 22                                            | 22 34                                                     | 34 34                                                          |
| System Size                                                                                | GAC1     | 10 + AD ( | CL2             | GAC1    | 0 + AD 0 | CLM   | GAG                     | C20 CL2     | 2                                    | GAC               | 20 CLM            |                                      | GAC20          | ) + AD (  | CL2                        | GAC20 -           | + AD CLM                                     | Men                                                                                | nbranes                            | CL2                                | Memb             | ranes CLM                 |                           |                                                            | TOTAL ( | CL2                                           |        |                                        |      | TC                                            | TAL CLM                                                   |                                                                |
| (5 ) (1 )                                                                                  |          |           |                 |         |          |       |                         |             |                                      |                   |                   |                                      |                |           |                            |                   |                                              | 11101                                                                              |                                    |                                    |                  |                           |                           |                                                            |         |                                               |        |                                        |      |                                               |                                                           |                                                                |
| (Population Served)                                                                        | Mean     | 5th       | 95th            | Mean    | 5th      | 95th  | Mean                    | 5th         | 95th                                 | Mean              | 5th 9             | 95th                                 | Mean           | 5th       | 95th                       | Mean 5            | 5th 95th                                     |                                                                                    | 5th                                | 95th                               | Mean             | 5th 95th                  | n Me                      |                                                            | 5th     |                                               | 95th   |                                        | Mear |                                               | 5th                                                       | 95th                                                           |
| (Population Served)                                                                        | Mean     | 5th<br>M  | 95th            | Mean    | 5th<br>N | 95th  | Mean                    | 5th         | 95th                                 | Mean              | 5th 9             | 95th                                 | Mean           | 5th<br>Q  | 95th                       |                   |                                              |                                                                                    | 5th<br>S                           | 95th                               | Mean             | 5th 95th                  | n Me                      |                                                            |         | K+M+O+                                        |        |                                        |      | 1                                             | 5th<br>+H+J+L+N                                           |                                                                |
| (Population Served)                                                                        | Mean     |           | 95th            | Mean    | -        | 95th  | Mean<br>7               | -           | 95th<br>7                            | Mean<br>5         |                   | 95th<br>5                            | Mean<br>3      |           | 95th<br>4                  |                   | 5th 95th                                     |                                                                                    |                                    | 95th<br>8                          | Mean<br>5        | 5th 95th<br>T 5           | 1 Me                      | ean                                                        |         | K+M+O+<br>168                                 |        | 224                                    | V =  | 1                                             |                                                           | +P+R+T                                                         |
| ( )                                                                                        | Mean     |           | 95th            | Mean    | -        | 95th  | Mean<br>7<br>8          | -           | 95th<br>7<br>8                       | Mean 5            |                   | 95th<br>5<br>7                       | Mean<br>3<br>8 |           | 95th<br>4<br>11            |                   | 5th 95th                                     |                                                                                    | S                                  | 95th<br>8                          | Mean<br>5<br>4   | 5th 95th<br>T 5 3         | 5<br>4                    | ean<br>U = A+C+I                                           |         |                                               |        | 224<br>390                             | V =  | n<br>= B+D+F+                                 | +H+J+L+N                                                  | +P+R+T<br>174                                                  |
| <100                                                                                       | Mean     |           | 95th            | Mean    | -        | 95th  | 7                       | 7           | 95th<br>7<br>8<br>5                  | Mean 5 7 5        |                   | 95th<br>5<br>7<br>5                  | Mean 3 8 5     |           | 95th<br>4<br>11<br>7       | 2                 | 5th 95th                                     |                                                                                    | S<br>8 8                           | 95th<br>8<br>3<br>2                | 5<br>4<br>2      | 5th 95th<br>T 5<br>3 2    | 5<br>4<br>2               | u = A+C+I<br>196                                           |         | 168                                           |        |                                        | V =  | n<br>= B+D+F+<br>163                          | +H+J+L+N<br>153                                           | +P+R+T<br>174<br>445                                           |
| <100<br>100-499                                                                            | Mean     |           | 95th            | Mean    | -        | 95th  | 7                       | 7           | 95th<br>7<br>8<br>5                  | 5<br>7<br>5<br>13 |                   | 5<br>7<br>5<br>13                    | 3<br>8<br>5    |           | 95th<br>4<br>11<br>7<br>15 | 2                 | 5th 95th                                     | Mean 3 8 2 3 8 2                                                                   | S 8 8 3 2 2                        | 95th<br>8<br>3<br>2                | 5<br>4<br>2      | 5th 95th<br>T 5<br>3<br>2 | 5 4 2 2 2                 | U = A+C+l<br>196<br>348                                    |         | 168<br>307                                    |        | 390                                    | V =  | 163<br>418                                    | +H+J+L+N<br>153<br>392                                    | +P+R+T<br>174<br>445<br>280                                    |
| <100<br>100-499<br>500-999                                                                 | Mean     |           | 95th            | Mean    | -        | 95th  | 7<br>8<br>5             | 7<br>8<br>5 | 95th<br>7<br>8<br>5<br>12<br>13      | 5<br>7<br>5       | P 5 7 5           | 5<br>7<br>5<br>13                    | 3<br>8<br>5    | Q 1 6 4   | 4<br>11<br>7               | 2<br>9<br>6       | 6th 95th<br>R<br>1<br>6 1<br>4               | Mean 3 8 2 3 8 2 2 2                                                               | S 8 8 3 2 2 2 2                    | 95th<br>8<br>3<br>2<br>2<br>2      | 5<br>4<br>2      | T 5 3 2                   | 5 4 2 2 2 2               | U = A+C+I<br>196<br>348<br>219                             |         | 168<br>307<br>193                             |        | 390<br>245                             | V =  | 163<br>418<br>264                             | 153<br>392<br>247                                         | +P+R+T<br>174<br>445<br>280<br>728                             |
| <100<br>100-499<br>500-999<br>1,000-3,299                                                  | Mean 13  |           | 95th            | Mean 20 | -        | 95th  | 7<br>8<br>5             | 7<br>8<br>5 | 95th 7 8 5 12 13                     | 5<br>7<br>5       | 5<br>7<br>5<br>13 | 95th<br>5<br>7<br>5<br>13<br>15<br>3 | 3<br>8<br>5    | Q 1 6 4 9 | 4<br>11<br>7<br>15         | 2<br>9<br>6<br>17 | 5th 95th<br>R<br>1<br>6 1<br>4<br>12 2       | Mean 3 8 2 3 8 2 2 2                                                               | S 8 8 3 2 2 2 2                    | 95th<br>8<br>3<br>2<br>2<br>2<br>4 | 5<br>4<br>2<br>2 | T 5 3 2 2                 | 5 4 2 2 2 6 6             | U = A+C+I<br>196<br>348<br>219<br>445                      |         | 168<br>307<br>193<br>383                      |        | 390<br>245<br>506                      | V =  | 163<br>418<br>264<br>685                      | 153<br>392<br>247<br>642                                  | +P+R+T<br>174<br>445<br>280<br>728<br>811                      |
| <100<br>100-499<br>500-999<br>1,000-3,299<br>3,300-9,999                                   |          | M         | 95th<br>13<br>6 |         | N        |       | 7<br>8<br>5<br>12<br>13 | 7<br>8<br>5 | 95th<br>7<br>8<br>5<br>12<br>13<br>2 | 5<br>7<br>5       | 5<br>7<br>5<br>13 | 95th<br>5<br>7<br>5<br>13<br>15<br>3 | 3<br>8<br>5    | Q 1 6 4 9 | 4<br>11<br>7<br>15         | 2<br>9<br>6<br>17 | 5th 95th<br>R<br>1<br>6 1<br>4<br>12 2       | Mean 3 8 2 3 8 2 2 2                                                               | S  8  8  8  8  8  2  2  2  2  4  4 | 95th  8 3 2 2 4 2                  | 5<br>4<br>2<br>2 | T 5 3 2 2                 | 5 4 2 2 2 6 6 3           | ean<br>U = A+C+I<br>196<br>348<br>219<br>445<br>495        |         | 168<br>307<br>193<br>383<br>426               |        | 390<br>245<br>506<br>564               | V=   | 163<br>418<br>264<br>685<br>763               | +H+J+L+N<br>153<br>392<br>247<br>642<br>716               | +P+R+T<br>174<br>445<br>280<br>728<br>811<br>776               |
| <100<br>100-499<br>500-999<br>1,000-3,299<br>3,300-9,999<br>10,000-49,999                  |          | M         | 95th<br>13<br>6 | 20      | N        |       | 7<br>8<br>5<br>12<br>13 | 7<br>8<br>5 | 95th  7  8 5 12 13 2 1               | 5<br>7<br>5       | 5<br>7<br>5<br>13 | 95th 5 7 5 13 15 3 1                 | 3<br>8<br>5    | Q 1 6 4 9 | 4<br>11<br>7<br>15         | 2<br>9<br>6<br>17 | 5th 95th<br>R<br>1<br>6 1<br>4<br>12 2       | Mean 3 8 2 3 8 2 2 2 4 2 0 4                                                       | S  8 8 8 8 8 2 2 2 2 2 4 4 2 2 2   | 95th  8 3 2 2 4 2 2                | 5<br>4<br>2<br>2 | T 5 3 2 2                 | 5 4 2 2 2 2 6 6 3 3 3     | u = A+C+I<br>196<br>348<br>219<br>445<br>495<br>516        |         | 168<br>307<br>193<br>383<br>426<br>516        |        | 390<br>245<br>506<br>564<br>516        | V=   | 163<br>418<br>264<br>685<br>763               | 153<br>392<br>247<br>642<br>716<br>776                    | +P+R+T<br>174<br>445<br>280<br>728<br>811<br>776<br>348        |
| <100<br>100-499<br>500-999<br>1,000-3,299<br>3,300-9,999<br>10,000-49,999<br>50,000-99,999 |          | M         | 95th  13 6 6 1  | 20 9    | N        |       | 7<br>8<br>5<br>12<br>13 | 7<br>8<br>5 | 95th  7 8 5 12 13 2 1 1 0            | 5<br>7<br>5       | 5<br>7<br>5<br>13 | 95th 5 7 5 13 15 3 1                 | 3<br>8<br>5    | Q 1 6 4 9 | 4<br>11<br>7<br>15         | 2<br>9<br>6<br>17 | 5th 95th<br>R 1 6 1<br>4 12 2<br>13 2<br>0 0 | Mean  33 88 22 38 22 24 24 22 2 20 44 20 44 20 20 20 20 20 20 20 20 20 20 20 20 20 | S  8 8 8 8 8 2 2 2 2 2 4 4 2 2 2   | 95th  8  3  2  2  4  2  0          | 5<br>4<br>2<br>2 | T 5 3 2 2                 | 5 4 2 2 2 2 6 6 3 3 3 0 0 | u = A+C+I<br>196<br>348<br>219<br>445<br>495<br>516<br>231 |         | 168<br>307<br>193<br>383<br>426<br>516<br>231 |        | 390<br>245<br>506<br>564<br>516<br>231 | V=   | 163<br>418<br>264<br>685<br>763<br>776<br>348 | +H+J+L+N<br>153<br>392<br>247<br>642<br>716<br>776<br>348 | +P+R+T<br>174<br>445<br>280<br>728<br>811<br>776<br>348<br>367 |

Note: Detail may not add to totals due to independent rounding

Source: Surface water systems serving <10,000 people: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Stage 2 Preferred Alternative, 25% Safety Margin. Surface water systems serving 10,000 o

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

#### Exhibit C.21c

# Post-Stage 2 DBPR Treatment Technologies-in-Place for NTNCWS Surface Water Plants (Percent of Plants by Residual Disinfection Type) Stage 2 Preferred Alternative, 25% Safety Margin

|                     |       |           |       |       |           |       |          |          |        |          |         |      | Olu  | 90 2 1 1 | rienieu | Aiterna | uve, zo  | 70 Jai | Cty Iviai | ıgııı   |      |      |          |      |       |         |         |        |         |       |          |        |         |           |
|---------------------|-------|-----------|-------|-------|-----------|-------|----------|----------|--------|----------|---------|------|------|----------|---------|---------|----------|--------|-----------|---------|------|------|----------|------|-------|---------|---------|--------|---------|-------|----------|--------|---------|-----------|
| System Size         |       | anced Tre |       |       | inced Tre |       | Chlorine | e Dioxid | le CL2 | Chlorine | Dioxide | CLM  | ι    | JV CL2   |         | U       | V CLM    |        | 0:        | zone CI | _2   | Oz   | one CLI  | М    | MF.   | /UF CL2 | 2       | MF     | /UF CLI | 1     | GAC 10   | CL2    | GA      | C 10 CLM  |
| (Population Served) | Mean  | 5th       | 95th  | Mean  | 5th       | 95th  | Mean     | 5th      | 95th   | Mean     | 5th     | 95th | Mean | 5th      | 95th    | Mean    | 5th      | 95th   | Mean      | 5th     | 95th | Mean | 5th      | 95th | Mean  | 5th     | 95th    | Mean   | 5th     | 95th  | Mean 5th | 95th   | Mean    | 5th 95th  |
| ( )                 |       | Α         |       |       | В         |       |          | С        |        |          | D       |      |      | Е        |         |         | F        |        |           | G       |      |      | Н        |      |       | ı       |         |        | J       |       | K        |        |         | L         |
| <100                | 30.7% | 25.4%     | 36.0% | 31.8% | 30.8%     | 32.8% |          |          |        |          |         |      | 4.5% | 2.3%     | 6.6%    | 3.3%    | 1.7%     | 4.9%   |           |         |      |      |          |      | 14.5% | 14.5%   | 14.5%   | 7.1%   | 7.1%    | 7.1%  |          |        |         |           |
| 100-499             | 26.4% | 22.0%     | 30.8% | 39.9% | 37.8%     | 42.0% | 1.1%     | 1.0%     | 1.1%   | 1.3%     | 1.1%    | 1.5% | 1.3% | 0.7%     | 2.0%    | 1.4%    | 0.7%     | 2.1%   | 5.1%      | 5.1%    | 5.1% | 4.6% | 4.6%     | 4.6% | 8.9%  | 8.9%    | 8.9%    | 4.8%   | 4.8%    | 4.8%  |          |        |         |           |
| 500-999             | 26.4% | 22.0%     | 30.8% | 39.9% | 37.8%     | 42.0% | 1.1%     | 1.0%     | 1.1%   | 1.3%     | 1.1%    | 1.5% | 1.3% | 0.7%     | 2.0%    | 1.4%    | 0.7%     | 2.1%   | 5.1%      | 5.1%    | 5.1% | 4.6% | 4.6%     | 4.6% | 8.9%  | 8.9%    | 8.9%    | 4.8%   | 4.8%    | 4.8%  |          |        |         |           |
| 1,000-3,299         | 23.8% | 19.1%     | 28.4% | 46.0% | 43.8%     | 48.2% | 2.1%     | 2.0%     | 2.2%   | 3.1%     | 2.6%    | 3.6% | 1.0% | 0.5%     | 1.5%    | 1.4%    | 0.7%     | 2.0%   | 4.0%      | 4.0%    | 4.0% | 4.5% | 4.5%     | 4.5% | 6.2%  | 6.2%    | 6.2%    | 2.9%   | 2.9%    | 2.9%  |          |        |         |           |
| 3,300-9,999         | 23.8% | 19.1%     | 28.4% | 46.0% | 43.8%     | 48.2% | 2.1%     | 2.0%     | 2.2%   | 3.1%     | 2.6%    | 3.6% | 1.0% | 0.5%     | 1.5%    | 1.4%    | 0.7%     | 2.0%   | 4.0%      | 4.0%    | 4.0% | 4.5% | 4.5%     | 4.5% | 6.2%  | 6.2%    | 6.2%    | 2.9%   | 2.9%    | 2.9%  |          |        |         |           |
| 10,000-49,999       | 27.5% | 27.5%     | 27.5% | 41.4% | 41.4%     | 41.4% | 2.3%     | 2.3%     | 2.3%   | 3.5%     | 3.5%    | 3.5% | 1.9% | 1.9%     | 1.9%    | 2.9%    | 2.9%     | 2.9%   | 5.1%      | 5.1%    | 5.1% | 7.7% | 7.7%     | 7.7% | 0.7%  | 0.7%    | 0.7%    | 1.1%   | 1.1%    | 1.1%  | 0.9% 0.9 | % 0.9% | 1.3%    | 1.3% 1.3% |
| 50,000-99,999       | 0.0%  | 0.0%      | 0.0%  | 0.0%  | 0.0%      | 0.0%  | 0.0%     | 0.0%     | 0.0%   | 0.0%     | 0.0%    | 0.0% | 0.0% | 0.0%     | 0.0%    | 0.0%    | 0.0%     | 0.0%   | 0.0%      | 0.0%    | 0.0% | 0.0% | 0.0%     | 0.0% | 0.0%  | 0.0%    | 0.0%    | 0.0%   | 0.0%    | 0.0%  | 0.0% 0.0 | % 0.0% | 0.0%    | 0.0% 0.0% |
| 100,000-999,999     | 27.5% | 27.5%     | 27.5% | 41.4% | 41.4%     | 41.4% | 2.3%     | 2.3%     | 2.3%   | 3.5%     | 3.5%    | 3.5% | 1.9% | 1.9%     | 1.9%    | 2.9%    | 2.9%     | 2.9%   | 5.1%      | 5.1%    | 5.1% | 7.7% | 7.7%     | 7.7% | 0.7%  | 0.7%    | 0.7%    | 1.1%   | 1.1%    | 1.1%  | 0.9% 0.9 | % 0.9% | 1.3%    | 1.3% 1.3% |
| >=1,000,000         | 0.0%  | 0.0%      | 0.0%  | 0.0%  | 0.0%      | 0.0%  | 0.0%     | 0.0%     | 0.0%   | 0.0%     | 0.0%    | 0.0% | 0.0% | 0.0%     | 0.0%    | 0.0%    | 0.0%     | 0.0%   | 0.0%      | 0.0%    | 0.0% | 0.0% | 0.0%     | 0.0% | 0.0%  | 0.0%    | 0.0%    | 0.0%   | 0.0%    | 0.0%  | 0.0% 0.0 | % 0.0% | 0.0%    | 0.0% 0.0% |
| Total %             | 27.3% | 22.6%     | 32.0% | 38.5% | 36.7%     | 40.3% | 0.9%     | 0.9%     | 1.0%   | 1.2%     | 1.0%    | 1.4% | 2.2% | 1.2%     | 3.3%    | 2.0%    | 1.0%     | 2.9%   | 3.4%      | 3.4%    | 3.4% | 3.2% | 3.2%     | 3.2% | 10.1% | 10.1%   | 10.1%   | 5.2%   | 5.2%    | 5.2%  | 0.0% 0.0 | % 0.0% | 0.0%    | 0.0% 0.0% |
| System Size         | GAC   | 10 + AD ( | CL2   | GAC.  | 10 + AD   | CLM   | GA       | C20 CL   | .2     | GA       | C20 CLN | И    | GAC2 | 20 + AD  | CL2     | GAC20   | ) + AD ( | CLM    | Mem       | nbranes | CL2  | Meml | branes ( | CLM  |       |         | TOTAL   | CL2    |         |       |          | TOTA   | L CLM   |           |
| (Population Served) | Mean  | 5th       | 95th  | Mean  | 5th       | 95th  | Mean     | 5th      | 95th   | Mean     | 5th     | 95th | Mean | 5th      | 95th    | Mean    | 5th      | 95th   | Mean      | 5th     | 95th | Mean | 5th      | 95th | Mea   | n       | 5th     | h      | 95      | h     | Mean     | 5      | ith     | 95th      |
|                     |       | М         |       |       | N         |       |          | 0        |        |          | Р       |      |      | Q        |         |         | R        |        |           | S       |      |      | T        |      |       | U = A+C | C+E+G+I | +K+M+O | +Q+S    |       | V = B    | +D+F+H | -J+L+N+ | +P+R+T    |
| <100                |       |           |       |       |           |       | 2.0%     | 2.0%     | 2.0%   | 1.3%     | 1.3%    | 1.3% | 0.7% | 0.4%     | 1.1%    | 0.5%    | 0.3%     | 0.8%   | 2.1%      | 2.1%    | 2.1% | 1.4% | 1.4%     | 1.4% |       | 54.5%   |         | 46.7%  |         | 62.3% | 45.5     | %      | 42.6%   | 48.3%     |
| 100-499             |       |           |       |       |           |       | 1.1%     | 1.1%     | 1.1%   | 1.0%     | 1.0%    | 1.0% | 1.1% | 0.8%     | 1.4%    | 1.2%    | 0.8%     | 1.6%   | 0.5%      | 0.5%    | 0.5% | 0.5% | 0.4%     | 0.5% |       | 45.4%   |         | 40.0%  |         | 50.8% | 54.6     | %      | 51.2%   | 58.0%     |
| 500-999             |       |           |       |       |           |       | 1.1%     | 1.1%     | 1.1%   | 1.0%     | 1.0%    | 1.0% | 1.1% | 0.8%     | 1.4%    | 1.2%    | 0.8%     | 1.6%   | 0.5%      | 0.5%    | 0.5% | 0.5% | 0.4%     | 0.5% |       | 45.4%   |         | 40.0%  |         | 50.8% | 54.6     | %      | 51.2%   | 58.0%     |
| 1,000-3,299         |       |           |       |       |           |       | 1.0%     | 1.0%     | 1.0%   | 1.2%     | 1.2%    | 1.2% | 1.1% | 0.8%     | 1.3%    | 1.5%    | 1.1%     | 1.9%   | 0.2%      | 0.2%    | 0.2% | 0.2% | 0.2%     | 0.2% |       | 39.4%   |         | 33.9%  |         | 44.8% | 60.6     | %      | 56.9%   | 64.4%     |
| 3,300-9,999         |       |           |       |       |           |       | 1.0%     | 1.0%     | 1.0%   | 1.2%     | 1.2%    | 1.2% | 1.1% | 0.8%     | 1.3%    | 1.5%    | 1.1%     | 1.9%   | 0.2%      | 0.2%    | 0.2% | 0.2% | 0.2%     | 0.2% |       | 39.4%   |         | 33.9%  |         | 44.8% | 60.6     | %      | 56.9%   | 64.4%     |
| 10,000-49,999       | 1.0%  | 1.0%      | 1.0%  | 1.5%  | 1.5%      | 1.5%  | 0.1%     | 0.1%     | 0.1%   | 0.2%     | 0.2%    | 0.2% | 0.0% | 0.0%     | 0.0%    | 0.0%    | 0.0%     | 0.0%   | 0.3%      | 0.3%    | 0.3% | 0.4% | 0.4%     | 0.4% |       | 39.9%   |         | 39.9%  |         | 39.9% | 60.1     | %      | 60.1%   | 60.1%     |
| 50,000-99,999       | 0.0%  | 0.0%      | 0.0%  | 0.0%  | 0.0%      | 0.0%  | 0.0%     | 0.0%     | 0.0%   | 0.0%     | 0.0%    | 0.0% | 0.0% | 0.0%     | 0.0%    | 0.0%    | 0.0%     | 0.0%   | 0.0%      | 0.0%    | 0.0% | 0.0% | 0.0%     | 0.0% |       | 0.0%    |         | 0.0%   |         | 0.0%  | 0.0      | %      | 0.0%    | 0.0%      |
| 100,000-999,999     | 1.0%  | 1.0%      | 1.0%  | 1.5%  | 1.5%      | 1.5%  | 0.1%     | 0.1%     | 0.1%   | 0.2%     | 0.2%    | 0.2% | 0.0% | 0.0%     | 0.0%    | 0.0%    | 0.0%     | 0.0%   | 0.3%      | 0.3%    | 0.3% | 0.4% | 0.4%     | 0.4% |       | 39.9%   |         | 39.9%  |         | 39.9% | 60.1     | %      | 60.1%   |           |
| >=1,000,000         | 0.0%  | 0.0%      | 0.0%  | 0.0%  | 0.0%      | 0.0%  | 0.0%     | 0.0%     | 0.0%   | 0.0%     | 0.0%    | 0.0% | 0.0% | 0.0%     | 0.0%    | 0.0%    | 0.0%     | 0.0%   | 0.0%      | 0.0%    | 0.0% | 0.0% | 0.0%     | 0.0% |       | 0.0%    |         | 0.0%   |         | 0.0%  | 0.0      | %      | 0.0%    | 0.0%      |
|                     |       | 0.0%      | 0.0%  | 0.0%  | 0.0%      | 0.0%  | 1.3%     |          |        | 1.1%     | 1.1%    |      | 1.0% |          |         |         |          |        |           |         |      |      |          |      |       | 47.1%   |         | 41.0%  |         | 53.2% | 52.9     |        | 49.6%   | 56.1%     |

Note: Detail may not add to totals due to independent rounding

Source: Surface water systems serving <10,000 people: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Stage 2 Preferred Alternative, 25% Safety Margin. Surface water systems serving 10,000 o

Exhibit C.21d

Post-Stage 2 DBPR Treatment Technologies-in-Place for NTNCWS Surface Water Plants (Number of Plants by Residual Disinfection Type)

Stage 2 Preferred Alternative, 25% Safety Margin

| System Size                                                                        |      | ced Trea    |      | No Advan | iced Trea   |      | Chlorine    | Dioxide                    | CL2                             | Chlorine D | Dioxide CLM                             |                                                       | UV CL2      |                                      | UV C             | LM                              | Ozo                             | ne CL2    | Oz                                            | one CLM     |                                      | MF/UF CL2              |                              | MF/UF CI                                  | LM               | GAC  | 10 CL2                 | GAC                   | C 10 CLM         |
|------------------------------------------------------------------------------------|------|-------------|------|----------|-------------|------|-------------|----------------------------|---------------------------------|------------|-----------------------------------------|-------------------------------------------------------|-------------|--------------------------------------|------------------|---------------------------------|---------------------------------|-----------|-----------------------------------------------|-------------|--------------------------------------|------------------------|------------------------------|-------------------------------------------|------------------|------|------------------------|-----------------------|------------------|
| (Population Served)                                                                | Mean | 0,          | 95th | Mean     | 0,          | 95th |             |                            | _                               |            | 5th 95th                                | Mean                                                  |             | 95th                                 |                  |                                 |                                 | 5th 95th  |                                               | 5th 95t     |                                      |                        |                              |                                           | 95th             |      | 5th 95th               |                       | 5th 95th         |
| , ,                                                                                |      | Α           |      |          | В           |      |             | С                          |                                 |            | D                                       |                                                       | Е           |                                      | F                |                                 |                                 | G         |                                               | Н           |                                      | 1                      |                              | J                                         |                  |      | K                      |                       | L                |
| <100                                                                               | 69   | 57          | 81   | 72       | 70          | 74   |             |                            |                                 |            |                                         | 10                                                    | 5           | 15                                   | 7                | 4 11                            |                                 |           |                                               |             | 3:                                   | 3 33                   | 33 10                        | 6 16                                      | 6 16             |      |                        |                       |                  |
| 100-499                                                                            | 82   | 69          | 96   | 124      | 118         | 131  | 3           | 3                          | 4                               | 4          | 3 5                                     | 5 4                                                   | 2           | 6                                    | 4                | 2 6                             | 16                              | 16 1      | 14                                            | 14          | 14 2                                 | 8 28                   | 28 1                         | 5 15                                      | 5 15             | i    |                        |                       |                  |
| 500-999                                                                            | 28   | 23          | 33   | 42       | 40          | 45   | 1           | 1                          | 1                               | 1          | 1 2                                     | 2 1                                                   | 1           | 2                                    | 1                | 1 2                             | 5                               | 5         | 5 5                                           | 5           | 5                                    | 9 9                    | 9 :                          | 5 5                                       | 5 5              | i l  |                        |                       |                  |
| 1,000-3,299                                                                        | 22   | 18          | 26   | 42       | 40          | 44   | 2           | 2                          | 2                               | 3          | 2 3                                     | 3 1                                                   | 1           | 1                                    | 1                | 1 2                             | 4                               | 4         | 1 4                                           | 4           | 4                                    | 6 6                    | 6                            | 3 3                                       | 3 3              | 8    |                        |                       |                  |
| 3,300-9,999                                                                        | 6    | 5           | 7    | 11       | 11          | 12   | 1           | 1                          | 1                               | 1          | 1 '                                     | 1 0                                                   | 0           | 0                                    | 0                | 0 1                             | 1                               | 1         | 1 1                                           | 1           | 1 :                                  | 2 2                    | 2                            | 1 1                                       | 1 1              |      |                        |                       |                  |
| 10,000-49,999                                                                      | 1    | 1           | 1    | 2        | 2           | 2    | 0           | 0                          | 0                               | 0          | 0 (                                     | 0                                                     | 0           | 0                                    | 0                | 0 0                             | 0                               | 0         | 0                                             | 0           | 0                                    | 0 0                    | 0 (                          | 0 0                                       | 0 0              | 0    | 0                      | 0 0                   | 0 0              |
| 50,000-99,999                                                                      | 0    | 0           | 0    | 0        | 0           | 0    | 0           | 0                          | 0                               | 0          | 0 (                                     | 0                                                     | 0           | 0                                    | 0                | 0 0                             | 0                               | 0         | 0                                             | 0           | 0                                    | 0 0                    | 0 (                          | 0 0                                       | 0 0              | 0    | 0                      | 0 0                   | 0 0              |
| 100,000-999,999                                                                    | 0    | 0           | 0    | 0        | 0           | 0    | 0           | 0                          | 0                               | 0          | 0 (                                     | 0                                                     | 0           | 0                                    | 0                | 0 0                             | 0                               | 0         | 0                                             | 0           | 0                                    | 0 0                    | 0 (                          | 0 0                                       | 0 0              | 0    | 0                      | 0 0                   | 0 0              |
| >=1,000,000                                                                        | 0    | 0           | 0    | 0        | 0           | 0    | 0           | 0                          | 0                               | 0          | 0 (                                     | 0                                                     | 0           | 0                                    | 0                | 0 0                             | 0                               | 0         | 0                                             | 0           | 0                                    | 0 0                    | 0 (                          | 0 0                                       | 0 0              | 0    | 0                      | 0 0                   | 0 0              |
| Total Plants                                                                       | 209  | 173         | 245  | 295      | 281         | 309  | 7           | 7                          | 8                               | 9          | 8 1                                     | 1 17                                                  | 9           | 25                                   | 15               | 8 22                            | 26                              | 26 2      | 25                                            | 25          | 25 7                                 | 7 77                   | 77 40                        | 0 40                                      | 0 40             | 0    | 0                      | 0 0                   | 0 0              |
| System Size                                                                        | GAC1 | 0 + AD C    | L2   | GAC10    | ) + AD C    | LM   | GAC         | C20 CL2                    |                                 | GAC2       | 20 CLM                                  | GAC                                                   | 20 + AD     | CL2                                  | GAC20 +          | AD CLM                          | Memb                            | ranes CL2 | Meml                                          | oranes CLM  |                                      | TC                     | TAL CL2                      |                                           |                  |      | TOT                    | AL CLM                |                  |
| (Population Served)                                                                | Mean | 5th         | 95th | Mean     | 5th         | 95th | Mean        | 5th 9                      | 5th N                           | Mean 5     | 5th 95th                                | Mean                                                  | 5th         | 95th                                 | Mean 5t          | n 95th                          | Mean                            | 5th 95th  | Mean                                          | 5th 95t     | h M                                  | 1ean                   | 5th                          | 9                                         | 95th             | Mear | 1                      | 5th                   | 95th             |
|                                                                                    |      |             |      |          |             |      |             |                            |                                 |            |                                         |                                                       |             |                                      |                  |                                 | wican                           |           |                                               |             |                                      |                        |                              |                                           |                  |      |                        |                       |                  |
| 400                                                                                |      | M           |      |          | N           |      |             | 0                          |                                 |            | Р                                       |                                                       | Q           |                                      | R                |                                 | Wican                           | S         |                                               | T           |                                      | U = A+C+E+             | ·G+I+K+M·                    |                                           |                  |      | B+D+F+H                | I+J+L+N+I             | P+R+T            |
| <100                                                                               |      | М           |      |          | N           |      | 4           | O<br>4                     | 4                               |            | P 3 3                                   | 3 2                                                   | Q<br>1      | 2                                    |                  |                                 | 5                               |           | 5 3                                           | T 3         | 3                                    | U = A+C+E+<br>123      | -G+I+K+M-<br>10              | +0+Q+S                                    |                  | V =  | B+D+F+H<br>103         | +J+L+N+ <br>96        | P+R+T<br>109     |
| <100<br>100-499                                                                    |      | M           |      |          | N           |      | 4 3         | O<br>4<br>3                | 4 3                             |            | ·                                       | 3 2                                                   | Q 1 2       | 2                                    |                  |                                 | 5                               |           | 5 3<br>1 1                                    | 3<br>1      | 3 2                                  |                        |                              | +O+Q+S<br>5                               |                  | V =  |                        |                       |                  |
|                                                                                    |      | M           |      |          | N           |      | 4           | 4                          | 4<br>3<br>1                     | 3          | 3 3                                     | 3 2<br>3 3                                            | 1           | 2 4 1                                |                  | 1 2                             | 5<br>1<br>0                     |           | 5 3<br>1 1                                    | 3<br>1<br>0 | 3 2 1                                | 123                    | 10                           | +O+Q+S<br>5<br>5                          | 141              | V =  | 103                    | 96                    | 109              |
| 100-499                                                                            |      | М           |      |          | N           |      | 4           | 4                          | 4<br>3<br>1                     | 3          | 3 3                                     | 3 2<br>3 3<br>1 1                                     | 1           | 2 4 1                                |                  | 1 2                             | 5<br>1<br>0                     |           | 5 3<br>1 1<br>0 1                             | T 3 1 0 0 0 | 3<br>2<br>1                          | 123<br>142             | 109                          | +O+Q+S<br>5<br>5<br>2                     | 141<br>159       | V =  | 103<br>170             | 96<br>160             | 109<br>181       |
| 100-499<br>500-999                                                                 |      | M           |      |          | N           |      | 4           | 4                          | 4<br>3<br>1<br>1<br>0           | 3          | 3 3                                     | 3 2<br>3 3<br>1 1<br>1 1<br>0 0                       | 1           | 2<br>4<br>1<br>1<br>0                |                  | 1 2                             | 5<br>1<br>0<br>0                |           | 5 3<br>1 1<br>0 1<br>0 0                      | 1 0         | 3<br>2<br>1<br>0                     | 123<br>142<br>48       | 109<br>129<br>42<br>3        | +O+Q+S<br>5<br>5<br>2                     | 141<br>159<br>54 | V =  | 103<br>170<br>58       | 96<br>160<br>54       | 109<br>181<br>61 |
| 100-499<br>500-999<br>1,000-3,299                                                  | 0    | 0           | 0    | 0        | 0           | 0    | 4<br>3<br>1 | 4                          | 4<br>3<br>1<br>1<br>0           | 3          | 3 3 3 3 3 3 3 4 1 1 1 1 1 1 1 1 1 1 1 1 | 3 2<br>3 3<br>1 1<br>1 1<br>0 0                       | 1<br>2<br>1 | 2<br>4<br>1<br>1<br>0                | 1<br>4<br>1<br>1 | 1 2<br>3 5<br>1 2<br>1 2        | 5<br>1<br>0<br>0                |           | 5 3<br>1 1<br>0 1<br>0 0<br>0 0               | 1 0         | 3<br>2<br>1<br>0<br>0                | 123<br>142<br>48<br>36 | 109<br>129<br>42<br>3        | +O+Q+S<br>5<br>5<br>2                     | 141<br>159<br>54 | V =  | 103<br>170<br>58<br>56 | 96<br>160<br>54<br>52 | 109<br>181<br>61 |
| 100-499<br>500-999<br>1,000-3,299<br>3,300-9,999                                   | 0    | 0<br>0      | 0    | 0        | 0<br>0      | 0    | 4<br>3<br>1 | 4                          | 4<br>3<br>1<br>1<br>0<br>0      | 3          | 3 3 3 3 3 3 3 4 1 1 1 1 1 1 1 1 1 1 1 1 | 3 2<br>3 3<br>1 1<br>1 1<br>0 0                       | 1<br>2<br>1 | 2<br>4<br>1<br>1<br>0<br>0           | 1<br>4<br>1<br>1 | 1 2<br>3 5<br>1 2<br>1 2        | 5<br>1<br>0<br>0<br>0           |           | 5 3<br>1 1<br>0 1<br>0 0<br>0 0<br>0 0        | 1 0         | 3<br>2<br>1<br>0<br>0                | 123<br>142<br>48<br>36 | 109<br>129<br>42<br>3        | +O+Q+S<br>5<br>5<br>2                     | 141<br>159<br>54 | V =  | 103<br>170<br>58<br>56 | 96<br>160<br>54<br>52 | 109<br>181<br>61 |
| 100-499<br>500-999<br>1,000-3,299<br>3,300-9,999<br>10,000-49,999                  | 0 0  | 0<br>0      | 0 0  | ŭ        | 0<br>0<br>0 | 0 0  | 4<br>3<br>1 | 4                          | 4<br>3<br>1<br>1<br>0<br>0<br>0 | 3          | 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3 2<br>3 3<br>1 1 1<br>1 1 0 0<br>0 0 0               | 1<br>2<br>1 | 2<br>4<br>1<br>1<br>0<br>0<br>0      | 1<br>4<br>1<br>1 | 1 2<br>3 5<br>1 2<br>1 2<br>0 0 | 5<br>1<br>0<br>0<br>0<br>0      |           | 5 3<br>1 1 1<br>0 1<br>0 0<br>0 0<br>0 0      | 1 0         | 3<br>2<br>1<br>0<br>0<br>0           | 123<br>142<br>48<br>36 | 10:<br>12:<br>4:<br>3:<br>4: | +O+Q+S<br>5<br>5<br>2                     | 141<br>159<br>54 | V =  | 103<br>170<br>58<br>56 | 96<br>160<br>54<br>52 | 109<br>181<br>61 |
| 100-499<br>500-999<br>1,000-3,299<br>3,300-9,999<br>10,000-49,999<br>50,000-99,999 |      | 0<br>0<br>0 | 0 0  | 0        | 0<br>0<br>0 | 0 0  | 4<br>3<br>1 | 4<br>3<br>1<br>1<br>0<br>0 | 4<br>3<br>1<br>1<br>0<br>0<br>0 | 3          | 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 33 23 33 33 34 11 11 11 11 11 11 11 11 11 11 11 11 11 | 1<br>2<br>1 | 2<br>4<br>1<br>1<br>0<br>0<br>0<br>0 | 1<br>4<br>1<br>1 | 1 2 3 5 1 2 1 2 0 0 0 0 0 0 0   | 5<br>1<br>0<br>0<br>0<br>0<br>0 |           | 5 3<br>1 1<br>0 1<br>0 0<br>0 0<br>0 0<br>0 0 | 1 0         | 3<br>2<br>1<br>0<br>0<br>0<br>0<br>0 | 123<br>142<br>48<br>36 | 10:<br>12:<br>4:<br>3:<br>4: | +O+Q+S<br>5<br>5<br>2<br>1<br>8<br>2<br>0 | 141<br>159<br>54 | V =  | 103<br>170<br>58<br>56 | 96<br>160<br>54<br>52 | 109<br>181<br>61 |

Note: Detail may not add to totals due to independent rounding

Source: Surface water systems serving <10,000 people: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.16) to the Technology Selection Delta for the Stage 2 Preferred Alternative, 25% Safety Margin. Surface water systems serving 10,000 o

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

Exhibit C.22a

Post-Stage 2 DBPR Treatment Technologies-in-Place for CWS Ground Water Plants (Percent of Plants, by Residual Disinfectant Type)

Stage 2 Preferred Alternative, 25% Safety Margin

|                     |                          |                          |        | lage Z FTE | 10110a 7 ti | torriative | 3, <u>2070 0</u> a | ioty iliai g |           |           |                 |                 |
|---------------------|--------------------------|--------------------------|--------|------------|-------------|------------|--------------------|--------------|-----------|-----------|-----------------|-----------------|
|                     | No Advanced<br>Treatment | No Advanced<br>Treatment |        |            |             |            |                    |              |           |           |                 |                 |
| System Size         | Technology               | Technology               |        |            | Ozone       | Ozone      | GAC20              | GAC20        | Membranes | Membranes |                 |                 |
| (Population Served) | CL21                     | CLM1                     | UV CL2 | UV CLM     | CL2         | CLM        | CL2                | CLM          | CL2       | CLM       | Total Using CL2 | Total Using CLM |
|                     | Α                        | В                        | С      | D          | Е           | F          | G                  | Н            | l         | J         | K = A+C+E+G+I   | L = B+D+F+H+J   |
| <100                | 93.5%                    | 3.4%                     | 0.0%   | 1.1%       | 0.0%        | 0.0%       | 0.4%               | 0.9%         | 0.3%      | 0.5%      | 94.2%           | 5.8%            |
| 100-499             | 92.1%                    | 4.2%                     | 0.0%   | 1.6%       | 0.2%        | 0.5%       | 0.2%               | 0.6%         | 0.1%      | 0.5%      | 92.6%           | 7.4%            |
| 500-999             | 92.1%                    | 4.2%                     | 0.0%   | 1.6%       | 0.2%        | 0.5%       | 0.2%               | 0.6%         | 0.1%      | 0.5%      | 92.6%           | 7.4%            |
| 1,000-3,299         | 93.0%                    | 3.6%                     | 0.0%   | 1.6%       | 0.3%        | 0.9%       | 0.0%               | 0.1%         | 0.1%      | 0.5%      | 93.4%           | 6.6%            |
| 3,300-9,999         | 93.0%                    | 3.6%                     | 0.0%   | 1.6%       | 0.3%        | 0.9%       | 0.0%               | 0.1%         | 0.1%      | 0.5%      | 93.4%           | 6.6%            |
| 10,000-49,999       | 87.1%                    | 8.6%                     |        |            | 0.9%        | 1.0%       | 0.0%               | 0.2%         | 1.7%      | 0.5%      | 89.7%           | 10.3%           |
| 50,000-99,999       | 87.1%                    | 8.6%                     |        |            | 0.9%        | 1.0%       | 0.0%               | 0.2%         | 1.7%      | 0.5%      | 89.7%           | 10.3%           |
| 100,000-999,999     | 87.5%                    | 8.4%                     |        |            | 0.9%        | 0.9%       | 0.0%               | 0.2%         | 1.7%      | 0.4%      | 90.1%           | 9.9%            |
| >=1,000,000         | 87.4%                    | 8.5%                     |        |            | 0.9%        | 0.9%       | 0.0%               | 0.2%         | 1.7%      | 0.4%      | 90.0%           | 10.0%           |
| Total %             | 91.8%                    | 4.6%                     | 0.0%   | 1.3%       | 0.3%        | 0.6%       | 0.1%               | 0.5%         | 0.4%      | 0.5%      | 92.6%           | 7.4%            |

Note: Detail may not add to totals due to independent rounding

Source: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.17) to the Technology Selection Delta for the Stage 2 Preferred Alternative, 25% Safety Margin.

Exhibit C.22b

Post-Stage 2 DBPR Treatment Technologies-in-Place for CWS Ground Water Plants (Number of Plants, by Residual Disinfectant Type)

Stage 2 Preferred Alternative, 25% Safety Margin

| System Size<br>(Population Served) | No Advanced<br>Treatment<br>Technology<br>CL21 | No Advanced<br>Treatment<br>Technology<br>CLM1 | UV CL2 | UV CLM | Ozone<br>CL2 | Ozone<br>CLM | GAC20<br>CL2 | GAC20<br>CLM | Membranes<br>CL2 | Membranes<br>CLM | Total Using CL2 | Total Using CLM |
|------------------------------------|------------------------------------------------|------------------------------------------------|--------|--------|--------------|--------------|--------------|--------------|------------------|------------------|-----------------|-----------------|
|                                    | Α                                              | В                                              | С      | D      | Е            | F            | G            | Н            | I                | J                | K = A+C+E+G+I   | L = B+D+F+H+J   |
| <100                               | 6,005                                          | 217                                            | 0      | 70     | 0            | 0            | 23           | 56           | 22               | 29               | 6,051           | 372             |
| 100-499                            | 14,038                                         | 640                                            | 0      | 243    | 25           | 74           | 27           | 97           | 20               | 80               | 14,109          | 1,133           |
| 500-999                            | 5,612                                          | 256                                            | 0      | 97     | 10           | 29           | 11           | 39           | 8                | 32               | 5,640           | 453             |
| 1,000-3,299                        | 7,060                                          | 273                                            | 0      | 118    | 22           | 66           | 0            | 8            | 4                | 36               | 7,086           | 502             |
| 3,300-9,999                        | 4,680                                          | 181                                            | 0      | 78     | 15           | 44           | 0            | 5            | 3                | 24               | 4,698           | 332             |
| 10,000-49,999                      | 4,690                                          | 464                                            |        |        | 48           | 53           | 0            | 10           | 91               | 25               | 4,829           | 553             |
| 50,000-99,999                      | 624                                            | 62                                             |        |        | 6            | 7            | 0            | 1            | 12               | 3                | 642             | 74              |
| 100,000-999,999                    | 803                                            | 77                                             |        |        | 8            | 8            | 0            | 2            | 15               | 4                | 827             | 91              |
| >=1,000,000                        | 24                                             | 2                                              |        |        | 0            | 0            | 0            | 0            | 0                | 0                | 25              | 3               |
| Total Plants                       | 43,535                                         | 2,173                                          | 0      | 607    | 134          | 282          | 61           | 218          | 175              | 233              | 43,906          | 3,514           |

Note: Detail may not add to totals due to independent rounding

Source: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.17) to the Technology Selection Delta for the Stage 2 Preferred Alternative, 25% Safety Margin.

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

Exhibit C.22c

Post-Stage 2 DBPR Treatment Technologies-in-Place for NTNCWS Ground Water Plants (Percent of Plants, by Residual Disinfectant Type)

Stage 2 Preferred Alternative, 25% Safety Margin

| System Size<br>(Population Served) | No Advanced<br>Treatment<br>Technology<br>CL21 | No Advanced<br>Treatment<br>Technology<br>CLM1 | UV CL2 | UV CLM | Ozone<br>CL2 | Ozone<br>CLM | GAC20<br>CL2 | GAC20<br>CLM | Membranes<br>CL2 | Membranes<br>CLM | Total Using CL2 | Total Using CLM |
|------------------------------------|------------------------------------------------|------------------------------------------------|--------|--------|--------------|--------------|--------------|--------------|------------------|------------------|-----------------|-----------------|
|                                    | Α                                              | В                                              | O      | D      | Е            | F            | G            | Н            | I                | J                | K = A+C+E+G+I   | L = B+D+F+H+J   |
| <100                               | 93.5%                                          | 3.4%                                           | 0.0%   | 1.1%   | 0.0%         | 0.0%         | 0.4%         | 0.9%         | 0.3%             | 0.5%             | 94.2%           | 5.8%            |
| 100-499                            | 92.1%                                          | 4.2%                                           | 0.0%   | 1.6%   | 0.2%         | 0.5%         | 0.2%         | 0.6%         | 0.1%             | 0.5%             | 92.6%           | 7.4%            |
| 500-999                            | 92.1%                                          | 4.2%                                           | 0.0%   | 1.6%   | 0.2%         | 0.5%         | 0.2%         | 0.6%         | 0.1%             | 0.5%             | 92.6%           | 7.4%            |
| 1,000-3,299                        | 93.0%                                          | 3.6%                                           | 0.0%   | 1.6%   | 0.3%         | 0.9%         | 0.0%         | 0.1%         | 0.1%             | 0.5%             | 93.4%           | 6.6%            |
| 3,300-9,999                        | 93.0%                                          | 3.6%                                           | 0.0%   | 1.6%   | 0.3%         | 0.9%         | 0.0%         | 0.1%         | 0.1%             | 0.5%             | 93.4%           | 6.6%            |
| 10,000-49,999                      | 87.1%                                          | 8.6%                                           |        |        | 0.9%         | 1.0%         | 0.0%         | 0.2%         | 1.7%             | 0.5%             | 89.7%           | 10.3%           |
| 50,000-99,999                      | 87.1%                                          | 8.6%                                           |        |        | 0.9%         | 1.0%         | 0.0%         | 0.2%         | 1.7%             | 0.5%             | 89.7%           | 10.3%           |
| 100,000-999,999                    | 87.5%                                          | 8.4%                                           |        |        | 0.9%         | 0.9%         | 0.0%         | 0.2%         | 1.7%             | 0.4%             | 90.1%           | 9.9%            |
| >=1,000,000                        | 0.0%                                           | 0.0%                                           |        |        | 0.0%         | 0.0%         | 0.0%         | 0.0%         | 0.0%             | 0.0%             | 0.0%            | 0.0%            |
| Total %                            | 92.8%                                          | 3.8%                                           | 0.0%   | 1.4%   | 0.1%         | 0.3%         | 0.3%         | 0.7%         | 0.2%             | 0.5%             | 93.3%           | 6.7%            |

Note: Detail may not add to totals due to independent rounding

Source: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.17) to the Technology Selection Delta for the Stage 2 Preferred Alternative, 25% Safety Margin.

Exhibit C.22d

Post-Stage 2 DBPR Treatment Technologies-in-Place for NTNCWS Ground Water Plants (Number of Plants, by Residual Disinfectant Type)

Stage 2 Preferred Alternative, 25% Safety Margin

| System Size<br>(Population Served) | No Advanced<br>Treatment<br>Technology<br>CL21 | No Advanced<br>Treatment<br>Technology<br>CLM1 | UV CL2 | UV CLM | Ozone<br>CL2 | Ozone<br>CLM | GAC20<br>CL2 | GAC20<br>CLM | Membranes<br>CL2 | Membranes<br>CLM | Total Using CL2 | Total Using CLM |
|------------------------------------|------------------------------------------------|------------------------------------------------|--------|--------|--------------|--------------|--------------|--------------|------------------|------------------|-----------------|-----------------|
|                                    | Α                                              | В                                              | С      | D      | Е            | F            | G            | Н            | I                | J                | K = A+C+E+G+I   | L = B+D+F+H+J   |
| <100                               | 2,331                                          | 84                                             | 0      | 27     | 0            | 0            | 9            | 22           | 9                | 11               | 2,348           | 145             |
| 100-499                            | 1,961                                          | 89                                             | 0      | 34     | 3            | 10           | 4            | 14           | 3                | 11               | 1,971           | 158             |
| 500-999                            | 543                                            | 25                                             | 0      | 9      | 1            | 3            | 1            | 4            | 1                | 3                | 545             | 44              |
| 1,000-3,299                        | 230                                            | 9                                              | 0      | 4      | 1            | 2            | 0            | 0            | 0                | 1                | 231             | 16              |
| 3,300-9,999                        | 20                                             | 1                                              | 0      | 0      | 0            | 0            | 0            | 0            | 0                | 0                | 20              | 1               |
| 10,000-49,999                      | 3                                              | 0                                              |        |        | 0            | 0            | 0            | 0            | 0                | 0                | 3               | 0               |
| 50,000-99,999                      | 0                                              | 0                                              |        |        | 0            | 0            | 0            | 0            | 0                | 0                | 0               | 0               |
| 100,000-999,999                    | 0                                              | 0                                              |        |        | 0            | 0            | 0            | 0            | 0                | 0                | 0               | 0               |
| >=1,000,000                        | 0                                              | 0                                              |        |        | 0            | 0            | 0            | 0            | 0                | 0                | 0               | 0               |
| Total Plants                       | 5,087                                          | 208                                            | 0      | 75     | 5            | 16           | 14           | 39           | 12               | 27               | 5,119           | 365             |

Note: Detail may not add to totals due to independent rounding

Source: Add Technologies-in-Place for the Pre-Stage 2 Baseline (Exhibit 3.17) to the Technology Selection Delta for the Stage 2 Preferred Alternative, 25% Safety Margin.

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

<sup>&</sup>lt;sup>1</sup>No advanced Treatment Technologies includes conventional, non-conventional, and softening plants.

# Appendix D Rule Activity Schedule

# Appendix D Rule Activity Schedule

This appendix presents the year-by-year schedules for systems for the following rule activities: capital and operations and maintenance (O&M) treatment technology costs (Exhibits D.3 and D.4), implementation (Exhibit D.5), Initial Distribution System Evaluation (IDSE) activities (Exhibit D.6), preparation of monitoring plans (Exhibit D.7), annual routine monitoring (Exhibit D.8), and operational evaluations (Exhibit D.9). Schedules for State/Primacy Agency activities are presented in Exhibit D.10. These schedules are based on the Stage 2 implementation timeline, as presented in Exhibit D.1. When systems and States had several years within which to complete a rule activity, the Environmental Protection Agency (EPA) assumed that the same proportion of systems would perform the activity in each year. EPA recognizes that more systems may start in early or later years, but believes that a uniform schedule is still a reasonable approximation nationally.

14 15

16

17

18

19

20

21

22 23

24

1

#### **Exhibit D.1 Schedule of Rule Activities**



<sup>&</sup>lt;sup>1</sup> Includes all systems that are part of a combined distribution system that have a largest system with this population.

Notes: Systems adding disinfection for the Ground Water Rule (GWR) are predicted to add disinfection after Stage 2 systems begin compliance monitoring.

The IDSE plan is comprised of either the Standard Monitoring plan, a system specific study (SSS) plan, or 40/30 certification. IDSE includes either completing the Standard Monitoring or a SSS.

#### D.1 Estimate of Small and Medium Systems on Early Implementation Schedules

Systems are required to perform IDSE and routine monitoring on the same schedule as the largest system in their combined distribution system. For the Stage 2 DBPR, a combined distribution system encompasses all systems that are connected by common buyers and sellers. EPA used the linking analysis described in Chapter 3, section 3.4.2.1 to approximate systems' combined distribution systems. The linking analysis uses a variety of decision rules to calculate the linked population for a given system. Exhibit D.2a presents an estimate of surface water CWSs that will be on early implementation schedules based on the linking analysis.

There are uncertainties in using the results of the linking exercise to estimate the number of small systems on accelerated schedules. Consider the example buying and selling relationships shown in Exhibit

<sup>&</sup>lt;sup>2</sup> A State may grant up to an additional 2 years for systems to comply if the State determines that additional time is necessary for capital improvements.

<sup>&</sup>lt;sup>3</sup> Subpart H systems that must conduct *Cryptosporidium* monitoring have an additional 12 months to comply with the Stage 2 Disinfectants and Disinfection Byproducts Rule (DBPR) maximum contaminant levels (MCLs).

D.2b. In this example, systems E and F would be linked to system G. System C would not be linked to system G, however, according to the linking protocol since F is larger than C (20K to 10K). This means that system G would be on the same schedule as systems E and F, but not system A. According to the definition of combined distribution systems, systems E, F, and G should be included in the same combined distribution system as system A and would be on the earliest schedule. Thus, the estimate of small systems on early implementation based on the linking analysis is likely underestimated in this appendix, resulting in a potential underestimate of costs and benefits. The impacts of this uncertainty on benefits and costs of the Stage 2 DBPR are expected to be very minor.

#### Exhibit D.2a Numbers of Surface Water CWSs on Accelerated Schedules

|         |          |         | Number of     | Number of     | Number of     |               |               |          |
|---------|----------|---------|---------------|---------------|---------------|---------------|---------------|----------|
|         |          |         | Smaller       | Smaller       | Smaller       |               |               |          |
|         |          |         | Systems       | Systems       | Systems       |               |               |          |
|         |          |         | Buying from   | Buying from   | Buying from   | Percent       | Percent       | Percent  |
|         | Size     |         | or Selling to | or Selling to | or Selling to | Systems on    | Systems on    | Systems  |
|         | Category | Total   | Medium 1      | Medium 2      | Large         | Medium 1      | Medium 2      | on Large |
| Type of | (People  | Systems | Category      | Category      | Category      | Schedule      | Schedule      | Schedule |
| System  | Served)  | Α       | В             | С             | D             | $E = B/A^{1}$ | $F = C/A^{1}$ | G = D/A  |
| S       | Small    | 9,397   | 1,874         | 465           | 1,535         | 19.94%        | 4.95%         | 16.34%   |
| ×       | Medium 1 | 1,773   |               | 81            | 508           | 66.78%        | 4.57%         | 28.65%   |
| ×       | Medium 2 | 334     |               |               | 102           |               | 69.46%        | 30.54%   |
| S       | Large    | 299     |               |               |               |               |               | 100.00%  |

Notes:

Small serves < 10,000 retail population

Medium 1 serves from 10,000 to 49,999 retail population

Medium 2 serves from 50,000 to 99,999 retail population

Large serves 100,000 or more retail population

Sources:

(A) - (D) SDWIS 4th quarter 2003 frozen database - IDSE4 analysis 10/14/2004

 $<sup>^{1}</sup>$  For medium 1 E = 1 - F - G, for medium 2 F = 1 - G

# **Exhibit D.2b Example of a Combined Distribution System**



**D.2** Capital and Operation and Maintenance Schedule

The schedule for making treatment technology changes is based on the rule schedule. EPA assumed that systems will start making capital improvements as soon as their IDSE monitoring is complete. Capital costs for large systems are spread evenly over a 5-year period, including 3 years for compliance plus a possible 2-year extension for systems making capital improvements. The even distribution of costs over this period reflects both proactive systems that begin implementing solutions as soon as problems are noted and systems that require the full 5 years.

Capital costs are spread over 5 years for medium systems, 6 years for small systems not conducting *Cryptosporidium* monitoring, and 7 years for small systems conducting *Cryptosporidium* monitoring.<sup>1</sup> Costs for small and medium systems are distributed according to the estimated percent of systems on accelerated schedules. O&M costs for all system sizes lag behind capital costs by 1 year and are incurred annually.

Exhibits D.3a and D.3b display the capital cost schedule for surface and ground water systems, respectively. Exhibits D.4a and D.4b display the O&M costs for surface and ground water systems, respectively.

<sup>&</sup>lt;sup>1</sup>Time periods for capital costs for small and medium systems include a possible 2-year extension for systems making capital improvements.

# 

# 

# **D.3** Implementation and IDSE Schedule

EPA assumed that systems will incur half of their implementation costs the year before they begin IDSE monitoring and the other half the year after completing their IDSE monitoring. The implementation and IDSE schedules for small surface water CWSs are adjusted to account for small systems that are in a combined distribution system with medium and large systems and are thus on an earlier schedule. See section D.1 for a discussion on how EPA estimated the number of systems on an accelerated schedule. Implementation costs are distributed according to the estimated percentages of systems on accelerated schedules. For example, for the 50,000 to 99,999 category incurring IDSE costs, 31 percent are expected to be on the greater than 100,000 schedule, and the remaining 69 percent are expected to stay on the 50,000 to 99,999 schedule, which is delayed by 6 months.

The IDSE schedule applies to costs related to the standard monitoring, System Specific Studies (SSSs), and 40/30 certification. Although the 40/30 certification will occur before the IDSE and SSSs, the portion of the costs represented by the 40/30 certification is so small (< 0.1%) that discounting it on a separate schedule would make no noticeable difference in total costs. Therefore, to simplify the calculations, EPA discounted the 40/30 costs using the same schedule.

Exhibits D.5a and D.5b present the schedule for implementation costs for surface and ground water systems, respectively. Exhibits D.6a and D.6b display the schedule for IDSE costs for surface and ground water systems, respectively.

### **D.4** Monitoring Plans

The routine monitoring plans indicate the planned locations and schedule on which routine monitoring will be conducted, based on information collected during the IDSE and provided in the IDSE report. EPA assumed that the costs for preparing routine monitoring plans will be incurred as soon as the IDSE ends. This may be a conservative estimate, as systems could potentially delay monitoring plans until just before the Stage 2 DBPR requirements take effect. Exhibits D.7a and D.7b display the schedule for monitoring plan preparation for surface and ground water systems, respectively.

#### **D.5** Additional Routine Monitoring

The costs for additional routine monitoring are assumed to begin when Stage 2 DBPR requirements take effect. Systems that add disinfection to comply with the Ground Water Rule (GWR) will have to monitor and will incur these costs. These systems will not incur costs for making treatment technology changes or for the IDSE, as the two rules are expected to be promulgated in the same time frame. EPA assumes that systems choosing to install disinfection to comply with the GWR will also maintain compliance with the Stage 2 DBPR. Although there may be a slight decrease in systems qualifying because of the change from RAA to LRAA, other systems may qualify as they install better treatment technologies. EPA believes monitoring costs incurred for the reduced monitoring systems from Stage 1 to Stage 2 are expected to change minimally. This EA does not calculate costs associated with changes in reduced monitoring status. Exhibits D.8a and D.8b display the routine monitoring costs for surface and ground water systems, respectively.

# **D.6** Operational Evaluations

An operational evaluation is only triggered when a system exceeds an operational evaluation level. Since a system needs at least three quarters of data to calculate an operational evaluation level, EPA assumes that operational evaluations will not begin until 1 year after Stage 2 DBPR requirements take effect. Exhibits D.9a and D.9b display the operational evaluation level schedule for costs for surface and ground water systems, respectively.

### **D.7** Primacy Agency Schedule

EPA assumed that primacy agencies will incur implementation costs during the first 2 years after promulgation of the Stage 2 DBPR. Since primacy agencies will incur IDSE costs as systems conduct their IDSEs, cost were weighted according to the number of systems performing the IDSE each year. EPA assumed that monitoring costs will be incurred annually. Exhibit D.10 displays the schedule for primacy agency costs.

#### Exhibit D.3a Schedule for Surface Water Capital Costs

#### **All Alternatives**

|       | C        | Community \        | Nater Systei       | ms       | Nontrans   | ient Noncon        | nmunity Wat        | er Systems |
|-------|----------|--------------------|--------------------|----------|------------|--------------------|--------------------|------------|
| Year  | < 10,000 | 10,000 -<br>49,999 | 50,000 -<br>99,999 | 100,000+ | < 10,000   | 10,000 -<br>49,999 | 50,000 -<br>99,999 | 100,000+   |
| 1     | -        | -                  | -                  | -        | -          | -                  | -                  | =          |
| 2     | -        | -                  | -                  | -        | -          | -                  | -                  | -          |
| 3     | -        | -                  | -                  | -        | -          | -                  | -                  | -          |
| 4     | -        | -                  | 10%                | 20%      | -          | -                  | 10%                | 20%        |
| 5     | 10%      | 10%                | 20%                | 20%      | 10%        | 10%                | 20%                | 20%        |
| 6     | 20%      | 20%                | 20%                | 20%      | 20%        | 20%                | 20%                | 20%        |
| 7     | 20%      | 20%                | 20%                | 20%      | 20%        | 20%                | 20%                | 20%        |
| 8     | 20%      | 20%                | 20%                | 20%      | 20%        | 20%                | 20%                | 20%        |
| 9     | 20%      | 20%                | 10%                | -        | 20%        | 20%                | 10%                | -          |
| 10    | 10%      | 10%                | -                  | -        | 10%        | 10%                | 0%                 | -          |
| 11-25 |          | •                  |                    | No Cap   | ital Costs | •                  |                    |            |

#### Exhibit D.3b Schedule for Ground Water Capital Costs

#### All Alternatives

|         | C        | Community \        | Nater Systei       | ms       | Nontrans   | ient Noncon        | nmunity Wat        | er Systems |
|---------|----------|--------------------|--------------------|----------|------------|--------------------|--------------------|------------|
| Year    | < 10,000 | 10,000 -<br>49,999 | 50,000 -<br>99,999 | 100,000+ | < 10,000   | 10,000 -<br>49,999 | 50,000 -<br>99,999 | 100,000+   |
| 1       | -        | 10,000             | -                  | ,        | 110,000    | 10,000             | -                  | ,          |
| 2       |          | -                  |                    |          | -          | -                  | -                  | -          |
| _       | -        | -                  | -                  | -        | -          | -                  | -                  | -          |
| 3       | -        | -                  | -                  | -        | -          | -                  | -                  | Ī          |
| 4       | -        | -                  | 10%                | 20%      | -          | -                  | 10%                | 20%        |
| 5       | 10%      | 10%                | 20%                | 20%      | 10%        | 10%                | 20%                | 20%        |
| 6       | 20%      | 20%                | 20%                | 20%      | 20%        | 20%                | 20%                | 20%        |
| 7       | 20%      | 20%                | 20%                | 20%      | 20%        | 20%                | 20%                | 20%        |
| 8       | 20%      | 20%                | 20%                | 20%      | 20%        | 20%                | 20%                | 20%        |
| 9       | 20%      | 20%                | 10%                | -        | 20%        | 20%                | 10%                | -          |
| 10      | 10%      | 10%                | -                  | -        | 10%        | 10%                | -                  | -          |
| 11 - 25 |          | •                  |                    | No Cap   | ital Costs | •                  |                    |            |

#### Exhibit D.4a Schedule for Surface Water O&M Costs

#### **All Alternatives**

|      | C        | ommunity V         | Nater Syster       | ns       | Nontrans | sient Noncom       | munity Wate        | r Systems |
|------|----------|--------------------|--------------------|----------|----------|--------------------|--------------------|-----------|
| Year | < 10,000 | 10,000 -<br>49,999 | 50,000 -<br>99,999 | 100,000+ | < 10,000 | 10,000 -<br>49,999 | 50,000 -<br>99,999 | 100,000+  |
| 1    | -        | -                  | -                  | -        | -        | -                  | -                  | -         |
| 2    | -        | -                  | -                  | -        | -        | -                  | -                  | -         |
| 3    | -        | -                  | -                  | -        | -        | -                  | -                  | -         |
| 4    | -        | -                  | -                  | -        | -        | -                  | -                  | -         |
| 5    | -        | -                  | 10%                | 20%      | -        | -                  | 10%                | 20%       |
| 6    | 10%      | 10%                | 30%                | 40%      | 10%      | 10%                | 30%                | 40%       |
| 7    | 30%      | 30%                | 50%                | 60%      | 30%      | 30%                | 50%                | 60%       |
| 8    | 50%      | 50%                | 70%                | 80%      | 50%      | 50%                | 70%                | 80%       |
| 9    | 70%      | 70%                | 90%                | 100%     | 70%      | 70%                | 90%                | 100%      |
| 10   | 90%      | 90%                | 100%               | 100%     | 90%      | 90%                | 100%               | 100%      |
| 11   | 100%     | 100%               | 100%               | 100%     | 100%     | 100%               | 100%               | 100%      |
| 12   | 100%     | 100%               | 100%               | 100%     | 100%     | 100%               | 100%               | 100%      |
| 13   | 100%     | 100%               | 100%               | 100%     | 100%     | 100%               | 100%               | 100%      |
| 14   | 100%     | 100%               | 100%               | 100%     | 100%     | 100%               | 100%               | 100%      |
| 15   | 100%     | 100%               | 100%               | 100%     | 100%     | 100%               | 100%               | 100%      |
| 16   | 100%     | 100%               | 100%               | 100%     | 100%     | 100%               | 100%               | 100%      |
| 17   | 100%     | 100%               | 100%               | 100%     | 100%     | 100%               | 100%               | 100%      |
| 18   | 100%     | 100%               | 100%               | 100%     | 100%     | 100%               | 100%               | 100%      |
| 19   | 100%     | 100%               | 100%               | 100%     | 100%     | 100%               | 100%               | 100%      |
| 20   | 100%     | 100%               | 100%               | 100%     | 100%     | 100%               | 100%               | 100%      |
| 21   | 100%     | 100%               | 100%               | 100%     | 100%     | 100%               | 100%               | 100%      |
| 22   | 100%     | 100%               | 100%               | 100%     | 100%     | 100%               | 100%               | 100%      |
| 23   | 100%     | 100%               | 100%               | 100%     | 100%     | 100%               | 100%               | 100%      |
| 24   | 100%     | 100%               | 100%               | 100%     | 100%     | 100%               | 100%               | 100%      |
| 25   | 100%     | 100%               | 100%               | 100%     | 100%     | 100%               | 100%               | 100%      |

#### Exhibit D.4b Schedule for Ground Water O&M Costs

#### **All Alternatives**

|      | С        | ommunity V         | Vater Syster       | ns       | Nontrans | sient Noncom       | munity Wate        | r Systems |
|------|----------|--------------------|--------------------|----------|----------|--------------------|--------------------|-----------|
| Year | < 10,000 | 10,000 -<br>49,999 | 50,000 -<br>99,999 | 100,000+ | < 10,000 | 10,000 -<br>49,999 | 50,000 -<br>99,999 | 100,000+  |
| 1    | -        | -                  | -                  | -        | -        | -                  | -                  | -         |
| 2    | -        | -                  | -                  | -        | -        | -                  | -                  | -         |
| 3    | -        | -                  | -                  | -        | -        | -                  | -                  | -         |
| 4    | -        | -                  | -                  | -        | -        | -                  | -                  | -         |
| 5    | -        | -                  | 10%                | 20%      | -        | -                  | 10%                | 20%       |
| 6    | 10%      | 10%                | 30%                | 40%      | 10%      | 10%                | 30%                | 40%       |
| 7    | 30%      | 30%                | 50%                | 60%      | 30%      | 30%                | 50%                | 60%       |
| 8    | 50%      | 50%                | 70%                | 80%      | 50%      | 50%                | 70%                | 80%       |
| 9    | 70%      | 70%                | 90%                | 100%     | 70%      | 70%                | 90%                | 100%      |
| 10   | 90%      | 90%                | 100%               | 100%     | 90%      | 90%                | 100%               | 100%      |
| 11   | 100%     | 100%               | 100%               | 100%     | 100%     | 100%               | 100%               | 100%      |
| 12   | 100%     | 100%               | 100%               | 100%     | 100%     | 100%               | 100%               | 100%      |
| 13   | 100%     | 100%               | 100%               | 100%     | 100%     | 100%               | 100%               | 100%      |
| 14   | 100%     | 100%               | 100%               | 100%     | 100%     | 100%               | 100%               | 100%      |
| 15   | 100%     | 100%               | 100%               | 100%     | 100%     | 100%               | 100%               | 100%      |
| 16   | 100%     | 100%               | 100%               | 100%     | 100%     | 100%               | 100%               | 100%      |
| 17   | 100%     | 100%               | 100%               | 100%     | 100%     | 100%               | 100%               | 100%      |
| 18   | 100%     | 100%               | 100%               | 100%     | 100%     | 100%               | 100%               | 100%      |
| 19   | 100%     | 100%               | 100%               | 100%     | 100%     | 100%               | 100%               | 100%      |
| 20   | 100%     | 100%               | 100%               | 100%     | 100%     | 100%               | 100%               | 100%      |
| 21   | 100%     | 100%               | 100%               | 100%     | 100%     | 100%               | 100%               | 100%      |
| 22   | 100%     | 100%               | 100%               | 100%     | 100%     | 100%               | 100%               | 100%      |
| 23   | 100%     | 100%               | 100%               | 100%     | 100%     | 100%               | 100%               | 100%      |
| 24   | 100%     | 100%               | 100%               | 100%     | 100%     | 100%               | 100%               | 100%      |
| 25   | 100%     | 100%               | 100%               | 100%     | 100%     | 100%               | 100%               | 100%      |

#### Exhibit D.5a Schedule for SW PWS Implementation Costs

#### **All Alternatives**

|      | Co                      | ommunity W         | later Systen       | ns       | Nontransient Noncommunity Water Systems |                    |                    |          |  |
|------|-------------------------|--------------------|--------------------|----------|-----------------------------------------|--------------------|--------------------|----------|--|
| Year | < 10,000                | 10,000 -<br>49,999 | 50,000 -<br>99,999 | 100,000+ | < 10,000                                | 10,000 -<br>49,999 | 50,000 -<br>99,999 | 100,000+ |  |
| 1    | 11%                     | 17%                | 50%                | 50%      | -                                       | -                  | 50%                | 50%      |  |
| 2    | 39%                     | 33%                | -                  | -        | 50%                                     | 50%                | -                  | -        |  |
| 3    | -                       | -                  | -                  | -        | -                                       | -                  | -                  | -        |  |
| 4    | 9%                      | 15%                | 33%                | 50%      | -                                       | -                  | 25%                | 50%      |  |
| 5    | 21%                     | 18%                | 17%                | -        | 25%                                     | 25%                | 25%                | -        |  |
| 6    | 20%                     | 17%                | -                  | -        | 25%                                     | 25%                | -                  | -        |  |
| 7-25 | No Implementation Costs |                    |                    |          |                                         |                    |                    |          |  |

Source: Derived from rule implementation schedule.

The schedule for all systems assumes that they will incur half of implementation costs as they prepare for the IDSE and the other half as they prepare for compliance with the Stage 2 requirements.

The schedule for small surface water systems has been adjusted to account for consecutive systems that are on a faster schedule because they buy from or sell to larger systems

#### Exhibit D.5b Schedule for GW PWS Implementation Costs

#### **All Alternatives**

|        | Co                      | ommunity W         | ommunity Water Systems |          |          | Nontransient Noncommunity Water Systems |                    |          |  |
|--------|-------------------------|--------------------|------------------------|----------|----------|-----------------------------------------|--------------------|----------|--|
| Year   | < 10,000                | 10,000 -<br>49,999 | 50,000 -<br>99,999     | 100,000+ | < 10,000 | 10,000 -<br>49,999                      | 50,000 -<br>99,999 | 100,000+ |  |
| 1      | -                       | -                  | 50%                    | 50%      | -        | -                                       | 50%                | 50%      |  |
| 2      | 50%                     | 50%                | -                      | -        | 50%      | 50%                                     | -                  | -        |  |
| 3      | -                       | -                  | -                      | -        | -        | -                                       | -                  | -        |  |
| 4      | -                       | -                  | 25%                    | 50%      | -        | -                                       | 25%                | 50%      |  |
| 5      | 25%                     | 25%                | 25%                    | -        | 25%      | 25%                                     | 25%                | -        |  |
| 6      | 25%                     | 25%                | -                      | -        | 25%      | 25%                                     | -                  | -        |  |
| 7 - 25 | No Implementation Costs |                    |                        |          |          |                                         |                    |          |  |

Source: Derived from rule implementation schedule.

The schedule for all systems assumes that they will incur half of implementation costs as they prepare for the IDSE and the other half as they prepare for compliance with the Stage 2 requirements.

The schedule for small surface water systems has been adjusted to account for consecutive systems that are on a faster schedule because they buy from or sell to larger systems

#### Exhibit D.6a Schedule for SW PWS IDSE Costs

#### All Alternatives

| All Alteri |          | ommunity W         | /ater Syster       | ns       | Nontransient Noncommunity Water Systems |                    |                    |          |
|------------|----------|--------------------|--------------------|----------|-----------------------------------------|--------------------|--------------------|----------|
| Year       | < 10,000 | 10,000 -<br>49,999 | 50,000 -<br>99,999 | 100,000+ | < 10,000                                | 10,000 -<br>49,999 | 50,000 -<br>99,999 | 100,000+ |
| 1          | -        | -                  | -                  | -        | -                                       | -                  | -                  |          |
| 2          | 8%       | 14%                | 15%                | 50%      | -                                       | -                  | -                  | 50%      |
| 3          | 23%      | 52%                | 85%                | 50%      | -                                       | 50%                | 100%               | 50%      |
| 4          | 69%      | 33%                | -                  | -        | 100%                                    | 50%                | -                  | -        |
| 5 - 25     |          |                    |                    | No IDS   | E Costs                                 |                    |                    |          |

Source: Derived from rule implementation schedule.

Although 40/30 Certification costs will be incurred earlier, the percent of total costs is so small as to be negligible.

#### Exhibit D.6b Schedule for GW PWS IDSE Costs

#### **All Alternatives**

|        | Co       | ommunity W         | ater Systen        | ns       | Nontransient Noncommunity Water Systems |                    |                    |          |  |  |  |
|--------|----------|--------------------|--------------------|----------|-----------------------------------------|--------------------|--------------------|----------|--|--|--|
| Year   | < 10,000 | 10,000 -<br>49,999 | 50,000 -<br>99,999 | 100,000+ | < 10,000                                | 10,000 -<br>49,999 | 50,000 -<br>99,999 | 100,000+ |  |  |  |
| 1      | -        | -                  | -                  | -        | -                                       | -                  | -                  | -        |  |  |  |
| 2      | -        | -                  | -                  | 50%      | -                                       | -                  | -                  | 50%      |  |  |  |
| 3      | -        | 50%                | 100%               | 50%      | -                                       | 50%                | 100%               | 50%      |  |  |  |
| 4      | 100%     | 50%                | -                  | -        | 100%                                    | 50%                | -                  | -        |  |  |  |
| 5 - 25 |          |                    |                    | No IDS   | E Costs                                 |                    |                    |          |  |  |  |

Source: Derived from rule implementation schedule.

The schedule for small surface water systems has been adjusted to account for consecutive systems that are on a faster schedule because they buy from or sell to larger systems

#### Exhibit D.7a Schedule for SW PWS Monitoring Plan Costs

#### **All Alternatives**

|        | Con      | nmunity W                | ater Syst          | ems      | Nontransient Noncommunity Water Systems |                    |                    |          |  |
|--------|----------|--------------------------|--------------------|----------|-----------------------------------------|--------------------|--------------------|----------|--|
| Year   | < 10,000 | 10,000 -<br>49,999       | 50,000 -<br>99,999 | 100,000+ | < 10,000                                | 10,000 -<br>49,999 | 50,000 -<br>99,999 | 100,000+ |  |
| 1      | -        | -                        | -                  | -        | -                                       | -                  | -                  | -        |  |
| 2      | -        | -                        | -                  | -        | -                                       | -                  | -                  | -        |  |
| 3      | 8%       | 14%                      | 15%                | 50%      | -                                       | -                  | -                  | 50%      |  |
| 4      | 23%      | 52%                      | 85%                | 50%      | -                                       | 50%                | 100%               | 50%      |  |
| 5      | 69%      | 33%                      | -                  | -        | 100%                                    | 50%                | -                  | -        |  |
| 6 - 25 |          | No Monitoring Plan Costs |                    |          |                                         |                    |                    |          |  |

Source: Derived from rule implementation schedule.

The schedule for small surface water systems has been adjusted to account for consecutive systems that are

#### Exhibit D.7b Schedule for GW PWS Monitoring Plan Costs

#### **All Alternatives**

|        |                          | Community          | Water Syste        | ms       | NonTransient Noncommunity Water Systems |                    |                    |          |
|--------|--------------------------|--------------------|--------------------|----------|-----------------------------------------|--------------------|--------------------|----------|
| Year   | < 10,000                 | 10,000 -<br>49,999 | 50,000 -<br>99,999 | 100,000+ | < 10,000                                | 10,000 -<br>49,999 | 50,000 -<br>99,999 | 100,000+ |
| 1      | -                        | -                  | -                  | -        | -                                       | -                  | -                  | -        |
| 2      | -                        | -                  | -                  | -        | -                                       | -                  | -                  | -        |
| 3      | -                        | -                  | -                  | 50%      | -                                       | -                  | -                  | 50%      |
| 4      | -                        | 50%                | 100%               | 50%      | -                                       | 50%                | 100%               | 50%      |
| 5      | 100%                     | 50%                | -                  | -        | 100%                                    | 50%                | -                  | -        |
| 6 - 25 | No Monitoring Plan Costs |                    |                    |          |                                         |                    |                    |          |

Source: Derived from rule implementation schedule.

The schedule for small surface water systems has been adjusted to account for consecutive systems that are on a faster

Exhibit D.8a Schedule for Annual Surface Water Stage 2 Routine Compliance Monitoring Costs

|      | Co       | ommunity W         | later Syster       | ns       | Nontransie | ent Noncom         | munity Wate        | er Systems |
|------|----------|--------------------|--------------------|----------|------------|--------------------|--------------------|------------|
| Year | < 10,000 | 10,000 -<br>49,999 | 50,000 -<br>99,999 | 100,000+ | < 10,000   | 10,000 -<br>49,999 | 50,000 -<br>99,999 | 100,000+   |
| 1    | -        | -                  | -                  | -        | -          | -                  | -                  | -          |
| 2    | -        | -                  | -                  | -        | -          | -                  | -                  | -          |
| 3    | -        | -                  | -                  | -        | -          | -                  | -                  | -          |
| 4    | -        | =                  | -                  | -        | -          | -                  | -                  | -          |
| 5    | -        | -                  | -                  | -        | -          | -                  | -                  | -          |
| 6    | -        | =                  | -                  | -        | -          | -                  | -                  | -          |
| 7    | -        | =                  | 50%                | 100%     | -          | -                  | 50%                | 100%       |
| 8    | 50%      | 50%                | 100%               | 100%     | 50%        | 50%                | 100%               | 100%       |
| 9    | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 10   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 11   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 12   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 13   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 14   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 15   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 16   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 17   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 18   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 19   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 20   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 21   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 22   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 23   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 24   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 25   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |

Exhibit D.8b Schedule for Annual Ground Water Routine Stage 2 Compliance Monitoring Costs

|      | Co       | ommunity W         | ater Syster        | ns       | Nontransie | ent Noncom         | munity Wat         | er Systems |
|------|----------|--------------------|--------------------|----------|------------|--------------------|--------------------|------------|
| Year | < 10,000 | 10,000 -<br>49,999 | 50,000 -<br>99,999 | 100,000+ | < 10,000   | 10,000 -<br>49,999 | 50,000 -<br>99,999 | 100,000+   |
| 1    | -        | -                  | -                  | -        | -          | -                  | -                  | -          |
| 2    | -        | -                  | -                  | -        | -          | -                  | -                  | -          |
| 3    | -        | =                  | -                  | -        | -          | -                  | -                  | -          |
| 4    | -        | =                  | -                  | -        | -          | -                  | -                  | -          |
| 5    | -        | -                  | -                  | -        | -          | -                  | -                  | -          |
| 6    | -        | -                  | -                  | -        | -          | -                  | -                  | -          |
| 7    | -        | -                  | 50%                | 100%     | -          | -                  | 50%                | 100%       |
| 8    | 50%      | 50%                | 100%               | 100%     | 50%        | 50%                | 100%               | 100%       |
| 9    | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 10   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 11   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 12   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 13   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 14   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 15   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 16   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 17   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 18   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 19   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 20   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 21   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 22   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 23   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 24   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 25   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |

Exhibit D.9a Schedule for Annual Surface Water Operational Evaluation Costs

|      | Co       | ommunity W         | later Syster       | ns       | Nontransie | ent Noncom         | munity Wate        | er Systems |
|------|----------|--------------------|--------------------|----------|------------|--------------------|--------------------|------------|
| Year | < 10,000 | 10,000 -<br>49,999 | 50,000 -<br>99,999 | 100,000+ | < 10,000   | 10,000 -<br>49,999 | 50,000 -<br>99,999 | 100,000+   |
| 1    | -        | -                  | -                  | -        | -          | -                  | -                  | -          |
| 2    | -        | -                  | -                  | -        | -          | -                  | -                  | -          |
| 3    | -        | -                  | -                  | -        | -          | -                  | -                  | -          |
| 4    | -        | -                  | -                  | -        | -          | -                  | -                  | -          |
| 5    | -        | -                  | -                  | -        | -          | -                  | -                  | -          |
| 6    | -        | -                  | -                  | -        | -          | -                  | -                  | -          |
| 7    | -        | -                  | -                  | -        | -          | -                  | -                  | -          |
| 8    | -        | -                  | 50%                | 100%     | -          | -                  | 50%                | 100%       |
| 9    | 50%      | 50%                | 100%               | 100%     | 50%        | 50%                | 100%               | 100%       |
| 10   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 11   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 12   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 13   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 14   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 15   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 16   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 17   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 18   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 19   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 20   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 21   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 22   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 23   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 24   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 25   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |

Exhibit D.9b Schedule for Annual Ground Water Operational Evaluation Costs

|      | Co       | ommunity W         | later Syster       | ns       | Nontransie | ent Noncom         | munity Wate        | er Systems |
|------|----------|--------------------|--------------------|----------|------------|--------------------|--------------------|------------|
| Year | < 10,000 | 10,000 -<br>49,999 | 50,000 -<br>99,999 | 100,000+ | < 10,000   | 10,000 -<br>49,999 | 50,000 -<br>99,999 | 100,000+   |
| 1    | -        | -                  | -                  | -        | -          | -                  | -                  | -          |
| 2    | -        | -                  | -                  | -        | -          | -                  | -                  | -          |
| 3    | -        | -                  | -                  | -        | -          | -                  | -                  | -          |
| 4    | -        | -                  | -                  | -        | -          | -                  | -                  | -          |
| 5    | -        | -                  | -                  | -        | -          | -                  | -                  | -          |
| 6    | -        | -                  | -                  | -        | -          | -                  | -                  | -          |
| 7    | -        | -                  | -                  | -        | -          | -                  | -                  | -          |
| 8    | -        | -                  | 50%                | 100%     | -          | -                  | 50%                | 100%       |
| 9    | 50%      | 50%                | 100%               | 100%     | 50%        | 50%                | 100%               | 100%       |
| 10   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 11   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 12   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 13   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 14   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 15   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 16   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 17   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 18   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 19   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 20   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 21   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 22   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 23   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 24   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |
| 25   | 100%     | 100%               | 100%               | 100%     | 100%       | 100%               | 100%               | 100%       |

#### Exhibit D.10 Schedule for State/Primacy Agency Costs

#### **All Alternatives**

| Year | Implementation<br>Costs | IDSE Costs | Monitoring Plan<br>Costs | Compliance<br>Monitoring Costs | Significant<br>Excursion Report<br>Cost |
|------|-------------------------|------------|--------------------------|--------------------------------|-----------------------------------------|
| 1    | 50%                     | -          | -                        | -                              | -                                       |
| 2    | 50%                     | 2%         | -                        | -                              | -                                       |
| 3    | -                       | 6%         | 2%                       | -                              | -                                       |
| 4    | -                       | 92%        | 6%                       | -                              | -                                       |
| 5    | -                       | -          | 92%                      | -                              | -                                       |
| 6    | -                       | -          | -                        | -                              | -                                       |
| 7    | -                       | -          | -                        | 100%                           | 100%                                    |
| 8    | -                       | -          | -                        | 100%                           | 100%                                    |
| 9    | -                       | -          | -                        | 100%                           | 100%                                    |
| 10   | -                       | -          | -                        | 100%                           | 100%                                    |
| 11   | -                       | -          | -                        | 100%                           | 100%                                    |
| 12   | -                       | -          | -                        | 100%                           | 100%                                    |
| 13   | -                       | -          | -                        | 100%                           | 100%                                    |
| 14   | -                       | -          | -                        | 100%                           | 100%                                    |
| 15   | -                       | -          | •                        | 100%                           | 100%                                    |
| 16   | -                       | -          | -                        | 100%                           | 100%                                    |
| 17   | -                       | -          | -                        | 100%                           | 100%                                    |
| 18   | -                       | -          | ı                        | 100%                           | 100%                                    |
| 19   | -                       | -          | •                        | 100%                           | 100%                                    |
| 20   | -                       | -          | •                        | 100%                           | 100%                                    |
| 21   | -                       | -          | ı                        | 100%                           | 100%                                    |
| 22   | -                       | -          | ı                        | 100%                           | 100%                                    |
| 23   | -                       | -          | •                        | 100%                           | 100%                                    |
| 24   | -                       | -          |                          | 100%                           | 100%                                    |
| 25   | -                       | -          | -                        | 100%                           | 100%                                    |

Source: Derived from rule implementation schedule.

State implementation will occur in years 1 and 2 as states prepare their primacy packages.

State IDSE activities will lag 6 months behind large system IDSE progress and be concurrent with IDSE work by small systems.

## Appendix E

# Annual Bladder Cancer Cases Avoided as a Result of the Stage 2 DBPR

# E.1 Introduction

This appendix presents the assumptions and calculations used to estimate reductions in the number of bladder cancer cases as a result of the Stage 2 Disinfectants and Disinfection Byproducts Rule (DBPR), and supports the discussion related to average exposure reduction in Chapter 5. This Appendix is organized as follows:

- Section E.2 describes the number of baseline bladder cancers in the U.S. by age group and in total.
- Section E.3 explains the derivation of Population Attributable Risk (PAR), Relative Risk (RR) and Odds Ratios (OR); it explains the derivation of the PAR of bladder cancer associated with chlorination disinfection byproducts (DBPs); and it presents estimates of the pre-Stage 1 occurrence of bladder cancer cases attributable to DBPs using three different approaches.
- Section E.4 defines "Annual bladder cancer cases ultimately avoidable" in relation to predicted reductions in total trihalomethane (TTHM) and haloacetic acid (HAA5) concentrations from pre-Stage 1 to pre-Stage 2 and from pre-Stage 2 to post-Stage 2 conditions for all regulatory alternatives.
- Section E.5 defines "cessation lag" and discusses how it affects the prediction of avoidable cases in the population born prior to rule implementation.
- Section E.6 presents the computational procedures for predicting cases of bladder cancer avoided for each regulatory alternative, along with consideration of model uncertainties. It also presents the implementation schedule and describes how it affects the computation of costs and benefits over the 25-year horizon considered in the benefit analysis.
- Section E.7 presents the results in detail.

All data in this appendix are derived from the Stage 2 DBPR Benefits Model (USEPA 2005).

# E.2 Baseline Bladder Cancer Cases in the U.S., in Total and by Age Group

 The American Cancer Society (ACS) predicted in 2004 that 60,240 new cases of bladder cancer would occur in the U.S. population that year, of which 75 percent were expected to occur in men and 25 percent in women (ACS 2004). To model the incidence of bladder cancer cases and cases attributable to DBPs so that information on latency can be considered, it is necessary to use bladder cancer incidence

E-1

 data that represent the age at which bladder cancer cases occur. (See Section E.3 for how latency is incorporated into the benefits calculations.)

The National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER 2004) program provides data on cancer rates (new cases per 100,000 population per year) as a function of age in 5-year intervals. EPA used this information in conjunction with population-by-age data from the 2000 U.S. Census to estimate the number of new cases of bladder cancer by age in one-year steps for ages 1 through 101:

$$BI_i = POP_i \times \underline{Br_i}$$

$$100,000$$
(Equation E.1)

where for any age i,  $BI_i$  is the number of new bladder cancer cases per year by age,  $POP_i$  is the population for that age, and  $Br_i$  is the background rate per 100,000 people for that age from the SEER data.

The results of these calculations and the SEER data upon which they are based are shown in Exhibit E.1. The number of new bladder cancer cases per year starts to increase at about age 35 and peaks at 1,500 to over 2,000 cases per one-year age group from about age 66 to 85. Although the annual rate of bladder cancer does not decline much after age 85, the incidence of bladder cancer does, because of the overall decline in the number of individuals alive after that age.

Note that the total cases obtained by this procedure, 56,506, is slightly lower than the prediction for 2004 from the American Cancer Society data noted above. This likely reflects EPA's use of the census population data from 2000. Though the American Cancer Society data uses more recent population data, it was necessary to use the U.S. Census population age group breakdown to estimate the age-group incidence. Using the SEER data with the 2000 census data may be a slight underestimate, but the impact on the benefits will be small.

#### E.3 Derivation of PAR and Bladder Cancer Incidence Associated with DBPs

This section first explains the general concepts of PAR, RR and OR.<sup>1</sup> It then presents the derivation of PAR for bladder cancer associated with DBPs and estimates the pre-Stage 1 occurrence of bladder cancer attributable to DBPs.

<sup>&</sup>lt;sup>1</sup> Additional background information on the concepts of PAR, OR, and RR is available in Rockhill et al. (1998) and Gordis (2000)

#### E.3.1 Introduction to Concepts of OR, RR and PAR

The risk assessment methodology used to estimate the number of cancer cases that are attributable to DBPs in chlorinated drinking water involves the estimation of a PAR value. PAR, which is also referred to frequently and perhaps more appropriately as Population Attributable Fraction, is a measure of the fraction of a disease that occurs in the population that is attributable to some specified risk factor. It can also be interpreted as a measure of the fraction of that disease that would be eliminated from the population if that risk factor were eliminated.

As stated in the previous section, ACS estimated that 60,240 new cases of bladder cancer would occur in 2004. As described in Chapter 5, available epidemiological data indicate an association between bladder cancer and exposure to chlorinated (disinfected) drinking water. PAR in this case would be the fraction of those 60,240 new cases of bladder cancer occurring annually in the entire U.S. population that could be attributed to exposure to disinfected drinking water (i.e., the risk factor).

For the purposes of illustrating the derivation of PAR values, suppose that the distribution of the bladder cancer cases in the population were known with respect to those who are exposed to disinfected water and those who are not. Exhibit E.2 provides a hypothetical example of such a distribution. Several measures in Exhibit E.2 suggest that exposure to DBPs is a risk factor for cases of bladder cancer. For example, as shown in the last column, the bladder cancer risk for exposed individuals (2.03 x 10<sup>-4</sup>) is higher than that for unexposed individuals (1.81 x 10<sup>-4</sup>). This is further shown by the RR measure of 1.123 for exposed to unexposed individuals. RR is an important measure in evaluating epidemiological data.

Another important measure used in evaluating epidemiological data is the OR. The odds of an event occurring are simply the ratio of the number of events to the number of non-events. So, in the example used here the odds of a case being exposed is 10.61 (51,632 / 4,868) whereas the odds of a non-case being exposed is 9.44 (254,426,956 / 26,938,450). The OR for exposed to non-exposed cases is 1.123. If exposure were not related to the event, then we would expect an OR equal to one. If exposure is positively linked to the event, then the OR will be greater than one, and an odds ratio that is statistically significantly greater than one indicates that the positive association has not occurred by chance.

It is important to note that the identical value of 1.123 for both the OR and RR in this example does not imply that they are identical measures. As will be discussed further below, RR is the desired measure for calculating PAR from sample data; however, an OR is often more readily obtained from available studies and can under appropriate conditions be used as an approximation of RR (Rockhill et al. 1998, Gordis 2000).

One other indication of a relationship between exposure and increased incidence is that the probability of having been exposed for someone who has bladder cancer (0.914) is higher than the probability of having been exposed for someone who does not (0.904).

There are alternative ways to calculate PAR using various measures of risk (Gordis 2000). The most direct method would be to calculate PAR from the difference between the risk in the entire population ( $R_i$ ) and the risk in the unexposed population ( $R_u$ ) divided by the total risk:

That is, this example would imply that 10% (i.e., approximately 5,650 cases) of the 56,506 bladder cancer cases are due to exposure to DBPs.

E-4

### Exhibit E.1 Baseline Incidence of Bladder Cancer, Pre-Stage 1 Conditions

|         | Number of      | Background     |                |         | Number of      | Background     | l              |
|---------|----------------|----------------|----------------|---------|----------------|----------------|----------------|
|         | Individuals in | Incidence Rate | Baseline Cases |         | Individuals in | Incidence Rate | Baseline Cases |
|         | Age Group      | (per 100,000)  | (in Age Group) |         | Age Group      | (per 100,000)  | (in Age Group) |
| Age     |                | _              | C = A * B /    | Age     |                | _              | C = A * B /    |
| (years) | А              | В              | 100,000        | (years) | Α              | В              | 100,000        |
| 1       | 3,805,648      | 0.0574         | 2              | 52      | 3,616,997      | 15.3155        | 554            |
| 2       | 3,820,582      | 0.0574         | 2              | 53      | 3,707,436      | 15.3155        | 568            |
| 3       | 3,790,446      | 0.0574         | 2              | 54      | 3,635,040      | 15.3155        | 557            |
| 4       | 3,832,799      | 0.0574         | 2              | 55      | 2,817,560      | 15.3155        | 432            |
| 5       | 3,926,323      | 0.0574         | 2              | 56      | 2,850,600      | 28.8233        | 822            |
| 6       | 3,965,103      | 0.0274         | 1              | 57      | 2,837,452      | 28.8233        | 818            |
| 7       | 4,019,705      | 0.0274         | 1              | 58      | 2,864,020      | 28.8233        | 826            |
| 8       | 4,118,147      | 0.0274         | 1              | 59      | 2,540,152      | 28.8233        | 732            |
| 9       | 4,179,230      | 0.0274         | 1              | 60      | 2,377,013      | 28.8233        | 685            |
| 10      | 4,267,320      | 0.0274         | 1              | 61      | 2,319,944      | 49.3850        | 1,146          |
| 11      | 4,274,056      | 0.0215         | 1              | 62      | 2,221,227      | 49.3850        | 1,097          |
| 12      | 4,115,093      | 0.0215         | 1              | 63      | 2,171,072      | 49.3850        | 1,072          |
| 13      | 4,075,842      | 0.0215         | 1              | 64      | 2,053,151      | 49.3850        | 1,014          |
| 14      | 4,010,850      | 0.0215         | 1              | 65      | 2,040,053      | 49.3850        | 1,007          |
| 15      | 4,052,231      | 0.0215         | 1              | 66      | 2,029,911      | 77.0165        | 1,563          |
| 16      | 4,019,404      | 0.0892         | 4              | 67      | 1,860,320      | 77.0165        | 1,433          |
| 17      | 3,975,021      | 0.0892         | 4              | 68      | 1,896,451      | 77.0165        | 1,461          |
| 18      | 4,046,012      | 0.0892         | 4              | 69      | 1,864,515      | 77.0165        | 1,436          |
| 19      | 4,051,598      | 0.0892         | 4              | 70      | 1,882,348      | 77.0165        | 1,450          |
| 20      | 4,127,855      | 0.0892         | 4              | 71      | 1,875,175      | 111.1442       | 2,084          |
| 21      | 4,049,448      | 0.2299         | 9              | 72      | 1,788,269      | 111.1442       | 1,988          |
| 22      | 3,841,082      | 0.2299         | 9              | 73      | 1,791,696      | 111.1442       | 1,991          |
| 23      | 3,758,648      | 0.2299         | 9              | 74      | 1,725,168      | 111.1442       | 1,917          |
| 24      | 3,673,582      | 0.2299         | 8              | 75      | 1,677,133      | 111.1442       | 1,864          |
| 25      | 3,641,241      | 0.2299         | 8              | 76      | 1,651,641      | 137.7068       | 2,274          |
| 26      | 3,744,539      | 0.4917         | 18             | 77      | 1,556,567      | 137.7068       | 2,143          |
| 27      | 3,619,660      | 0.4917         | 18             | 78      | 1,460,781      | 137.7068       | 2,012          |
| 28      | 3,789,800      | 0.4917         | 19             | 79      | 1,431,916      | 137.7068       | 1,972          |
| 29      | 3,984,812      | 0.4917         | 20             | 80      | 1,314,908      | 137.7068       | 1,811          |
| 30      | 4,242,525      | 0.4917         | 21             | 81      | 1,207,365      | 157.3246       | 1,899          |
| 31      | 4,289,970      | 0.7423         | 32             | 82      | 1,072,048      | 157.3246       | 1,687          |
| 32      | 4,011,575      | 0.7423         | 30             | 83      | 981,562        | 157.3246       | 1,544          |
| 33      | 3,994,121      | 0.7423         | 30             | 84      | 883,063        | 157.3246       | 1,389          |
| 34      | 4,026,573      | 0.7423         | 30             | 85      | 801,329        | 157.3246       | 1,261          |
| 35      | 4,188,149      | 0.7423         | 31             | 86      | 730,194        | 147.3673       | 1,076          |
| 36      | 4,516,118      | 1.8064         | 82             | 87      | 635,154        | 147.3673       | 936            |
| 37      | 4,511,168      | 1.8064         | 81             | 88      | 557,330        | 147.3673       | 821            |
| 38      | 4,517,060      | 1.8064         | 82             | 89      | 465,481        | 147.3673       | 686            |
| 39      | 4,553,814      | 1.8064         | 82             | 90      | 401,659        | 147.3673       | 592            |
| 40      | 4,608,504      | 1.8064         | 83             | 91      | 327,904        | 147.3673       | 483            |
| 41      | 4,711,434      | 3.8318         | 181            | 92      | 266,386        | 147.3673       | 393            |
| 42      | 4,466,676      | 3.8318         | 171            | 93      | 218,217        | 147.3673       | 322            |
| 43      | 4,547,220      | 3.8318         | 174            | 94      | 169,066        | 147.3673       | 249            |
| 44      | 4,407,870      | 3.8318         | 169            | 95      | 130,958        | 147.3673       | 193            |
| 45      | 4,308,663      | 3.8318         | 165            | 96      | 98,095         | 147.3673       | 145            |
| 46      | 4,341,460      | 7.7976         | 339            | 97      | 72,680         | 147.3673       | 107            |
| 47      | 4,087,563      | 7.7976         | 319            | 98      | 52,844         | 147.3673       | 78             |
| 48      | 4,019,692      | 7.7976         | 313            | 99      | 36,003         | 147.3673       | 53             |
| 49      | 3,885,145      | 7.7976         | 303            | 100     | 27,162         | 147.3673       | 40             |
| 50      | 3,758,544      | 7.7976         | 293            | 101     | 50,454         | 147.3673       | 74             |
| 51      | 3,808,515      | 15.3155        | 583            | Total   | 281,421,906    |                | 56,506         |

Sources:

<sup>(</sup>A) 2000 U.S. Census data

<sup>(</sup>B) National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER, 2004)

|                     | 0                                           | N 0                                             | Tatala                           | Dist.                                     |
|---------------------|---------------------------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------|
|                     | Cases                                       | Non-Cases                                       | Totals                           | Risk                                      |
| Exposed to DBPs     | 51,632<br>(C <sub>e</sub> )                 | 254,426,956<br>(N <sub>e</sub> )                | 254,478,588<br>(T <sub>e</sub> ) | $2.03 \times 10^{-4}$ $(R_e = C_e / T_e)$ |
| Not exposed to DBPs | 4,868<br>(C <sub>u</sub> )                  | 26,938,450<br>(N <sub>u</sub> )                 | 26,943,318<br>(T <sub>u</sub> )  | $1.81 \times 10^{-4}$ $(R_u = C_u / T_u)$ |
| Totals              | 56,500<br>(C <sub>t</sub> )                 | 281,365,406<br>(N <sub>t</sub> )                | 281,421,906<br>(T <sub>t</sub> ) | $2.01 \times 10^{-4}$ $(R_t = C_t / T_t)$ |
|                     |                                             |                                                 | Probability of<br>Exposure       | Relative Risk<br>(RR)                     |
|                     |                                             |                                                 | $0.904$ $(P_{e/t} = T_e / T_t)$  | 1.123 $(RR = R_e / R_u)$                  |
|                     | Probability of<br>DBP Exposure<br>for Cases | Probability of<br>DBP Exposure<br>for Non-Cases |                                  |                                           |
|                     | $0.914$ $(P_{e/c} = C_e / C_t)$             | $0.904$ $(P_{e/n} = N_e / N_t)$                 |                                  |                                           |
|                     | Odds of Cases<br>Being Exposed              | Odds of Non-<br>Cases Being<br>Exposed          |                                  |                                           |
|                     | $10.61$ $(O_C = C_e / C_u)$                 | $9.44  (O_N = N_e / N_u)$                       |                                  |                                           |
|                     | Odds Ratio<br>(OR)                          |                                                 |                                  |                                           |
|                     |                                             | 123<br>O <sub>C</sub> / O <sub>N</sub> )        |                                  |                                           |

One can also calculate PAR from the information provided by the *RR* and the probability of exposure in the overall population:

$$PAR = \frac{P_{e/t}(RR-1)}{[P_{e/t}(RR-1)]+1} = \frac{0.904 \times (1.123-1)}{[0.904 \times (1.123-1)]+1} = \frac{0.1112}{1.1112} = 0.1001 \approx 10\%$$
 (Equation E.3)

Equation E.3 is essentially a transformation of Equation E.2.

A third method for calculating PAR from these data is:

$$PAR = P_{e/c}[(RR-1)/RR] = 0.914[(1.123-1)/1.123] = 0.914 \times 0.1095 = 0.1001 = 10\%$$

(Equation E.4)

In this third formulation for calculating PAR, the value obtained from the quantity [(RR-1)/RR] is a direct measure of the attributable fraction within the exposed group. That is, in this example, 10.95% of the cases within the exposed group are attributable to that exposure, or  $0.1095 \times C_e$ . The corresponding fraction of total cases due to exposure is, then,  $[(0.1095 \times C_e)/C_t]$ , or  $[0.1095 \times (C_e/C_t)]$  which is 0.914  $\times$  0.1095 = 10%.

A more detailed discussion of these alternative methods of calculating PAR is provided in Rockhill et al. (1998), who also provide some additional information regarding limitations on the use of these approaches. The major limitation the authors note is that Equations E.2 and E.3 are only valid as shown here when confounding is controlled for in the study, whereas Equation E.4 can be used to provide internally valid estimates when confounding exists (examples of possible confounding factors include age, sex, smoking history, occupation, socioeconomic status). "Confounding" refers to a factor that is associated with the exposure and independently affects the risk of developing the disease. More detail on basic epidemiological terms can be found in epidemiological texts, including Gordis (2000).

Of course, having information such as that presented in the hypothetical data above for the entire population is extremely rare, and PAR values are typically estimated from representative sample data provided in epidemiological studies. There are two primary types of epidemiological studies that can provide data for estimating PAR: cohort (prospective) studies and case-control (retrospective) studies.

Prospective cohort studies can most directly provide the data needed for PAR calculations. In these studies, sample populations are selected at random to be representative of exposure to the risk factor of interest without any prior consideration of the presence or absence of the disease in the sample. A major problem with prospective studies is that when the disease of interest is relatively rare, a very large sample group is required in order to obtain a sufficient number of cases of the disease for subsequent analysis.

For example, if one were to attempt a prospective study for a disease having a risk factor similar to those assumed for bladder cancer in this example (approximately  $2 \times 10^{-4}$ ), it would be necessary to

have a sample population of at least 1,000,000 people (and likely more than that) to ensure observation of enough cases to be able to estimate RRs and PAR values to a reasonable degree of precision. Exhibit E.3 provides a display of such a prospective study. In this example, the researchers would target a sample of 1,000,000 individuals whose exposure would be representative of the more than 281 million in the overall population who they are meant to represent.

**Exhibit E.3 Hypothetical Data for a Prospective Study** 

|                     | Cases | Non-Cases | Totals    | Risk                    |
|---------------------|-------|-----------|-----------|-------------------------|
| Exposed to DBPs     | 184   | 905,876   | 906,060   | 2.03x 10 <sup>-4</sup>  |
| Not exposed to DBPs | 17    | 93,923    | 93,940    | 1.81 x 10 <sup>-4</sup> |
| Totals              | 201   | 999,799   | 1,000,000 | 2.01 x 10 <sup>-4</sup> |

Assuming also that the observed incidence of cases for the exposed and unexposed groups represent the actual risks in those underlying populations (as shown in Exhibit E.3), then one would expect a total of only 201 cases in the entire 1,000,000 sample group -184 in the exposed subset and a mere 17 in the unexposed subset.

If one were actually able to carry out such a study, then PAR could be calculated using these data and the methods described previously. However, it should be obvious from the sample size requirements alone that prospective studies for diseases with such a low frequency of occurrence are highly impractical, and indeed they are rarely conducted.

The alternative study approach—and that which has been used in the epidemiological studies used in this Economic Analysis (EA)—is to use retrospective case-control studies. These have the advantage of a more practical sample size. Their potential disadvantage, however, is that one cannot calculate RR values for PAR calculations directly. However, it is possible to calculate an OR from a case-control study which, under appropriate conditions, can be used as an estimate of RR for PAR calculations.

In a typical case-control epidemiological study, a researcher would identify a group of cases, ideally selected in a manner that is unbiased with respect to the underlying exposure factor of interest. Similarly, a set of controls (non-cases) would be selected in a manner that is also unbiased with respect to the underlying exposure factor of interest. Exhibit E.4 presents a set of hypothetical data for such a case-control study. For this example, it is assumed that the study identifies 201 cases and that these are found (ideally) to be distributed as expected (based on our overall hypothetical data set) with respect to exposure. The researcher also selects a set of controls not having the disease (1,000 assumed here), also distributed ideally in a manner that is representative of exposure for non-cases.

E-8

Exhibit E.4 Hypothetical Data for a Case-Control Study

|                     | Cases                                                         | Non-Cases<br>(Controls)                         | Totals | Risk                                                      |
|---------------------|---------------------------------------------------------------|-------------------------------------------------|--------|-----------------------------------------------------------|
| Exposed to DBPs     | 184                                                           | 904                                             | 1,088  | Risk within exposure                                      |
| Not exposed to DBPs | 17                                                            | 96                                              | 113    | subgroups and for<br>the entire sample<br>group cannot be |
| Totals              | 201                                                           | 1,000                                           | 1,201  | calculated.                                               |
|                     | Probability of<br>DBP Exposure<br>for Cases (P <sub>d</sub> ) | Probability of<br>DBP Exposure<br>for Non-Cases |        |                                                           |
|                     | 0.915<br>(184 / 201)                                          | 0.904<br>(904 / 1,000)                          |        |                                                           |
|                     | Odds of Cases<br>Being Exposed                                | Odds of Non-<br>Cases Being<br>Exposed          |        |                                                           |
|                     | 10.82<br>(184 / 17)                                           | 9.42<br>(904 / 96)                              |        |                                                           |
|                     | OR<br>1.149<br>(10.82 / 9.42)                                 |                                                 |        |                                                           |
|                     |                                                               |                                                 |        |                                                           |

In a case-control study such as this, "Risk" (and therefore Relative Risk) would be meaningless and entirely an artifact of the number of cases and controls selected. Therefore, it is not possible to use Equation E.1 to calculate PAR values from a case-control study. However, it is possible to calculate the OR (that is, the ratio of the odds of a case being exposed to the odds of a non-case being exposed as shown in these examples) from a case-control study. The OR can be used as an estimate for RR, allowing PAR to be calculated from the alternative formulations, when the case-control study is designed and executed in a manner that meets three main conditions (Rockhill et al. 1998, Gordis 2000):

- The disease being considered occurs at a low frequency in the studied population.
- The cases have been selected in a manner that is representative with regard to the history of exposure of all people with the disease in the population from which they are drawn.
- The controls have been selected in a manner that is representative with regard to the history of exposure of all people without the disease in the population from which they are drawn.

If these conditions are met, then the OR will be a reasonable estimate of the RR and can be used in place of RR in Equations 3 or 4 for calculating PAR.

It is important to note, however, that the use of Equation E.3 is limited to circumstances where there is no confounding and ORs calculated directly, as shown here, are used (Rockhill et al. 1998). Usually, this is not the case and it is necessary in a case-control study to adjust for confounding factors. This is often done by computing ORs that take into account the interactions of multiple (potential) risk factors by the use of logistic regression techniques. In such cases, Equation E.4 is the appropriate equation to use to calculate PAR. Using the case-control example here, that calculation would be:

$$PAR = P_d [(OR - 1) / OR] = 0.915 \times [(1.149 - 1) / 1.149] = 0.915 \times 0.1297 = 0.1187 = 11.9\%$$

In the foregoing examples of PAR calculations, the population is stratified into two exposure groups only: those with and those without. More often, multiple exposure groups are used to represent potential relationships between exposure levels and risk. For PAR calculations involving multiple exposure groups, the PAR equations shown above as Equations E.3 and E.4 can be modified as follows:

$$PAR = \frac{\sum_{i=0}^{k} (p_{e/t(i)})(RR_i - 1)}{1 + \sum_{i=0}^{k} (p_{e/t(i)})(RR_i - 1)}$$
 (Equation E.5)

$$PAR = \sum_{i=0}^{k} p_{e/c(i)} \left( \frac{RR_i - 1}{RR_i} \right)$$
 (Equation E.6)

The first of these multiple-exposure-group forms of the PAR calculations corresponds to Equation E.3 and the second to Equation E.4. They both indicate that there are "k" exposure categories, including an unexposed referent group for which the RR = 1 (or OR = 1 if ORs are being used in place of RR). These equations are also addressed more fully in Rockhill et al. (1998). As indicated in the next section, Equation E.6 was used to compute PAR from the epidemiological data for bladder cancer associated with exposure to chlorinated drinking water.

It is useful to note that calculation of the ORs from epidemiological data where there are multiple exposure categories and where there is a need to adjust for confounding factors (e.g., age, sex, smoking, occupation, socioeconomic status, etc.) generally is performed using logistic regression methods rather than the simple method shown above. As noted in the following section in this Appendix, logistic regression methods were used to compute the ORs in the specific studies used in this EA to estimate PARs for pre-Stage 1 bladder cancer incidence.

#### E.3.2 Data Sources for and Methods for the Pre-Stage 1 Bladder Cancer PAR Analysis

The relationship between bladder cancer and chlorinated DBP exposure has historically been the most strongly supported association among various cancers and chlorinated drinking water. The Stage 1 DBPR RIA (USEPA 1998a) presented EPA's review of the large body of epidemiology literature for bladder cancer and its association with DBPs in drinking water. From that review, EPA concluded that although causality has not been established, the data support a weak association that is worthy of concern. The epidemiological studies used to support the Stage 1 DBPR, the Stage 2 DBPR proposal, and the Stage 2 DBPR final rule are identified in the next two sections. A more detailed discussion of these studies is provided in Chapter 6.

This is because the various epidemiology studies that are the sources of data used to estimate PAR were all conducted prior to promulgation and implementation of the Stage 1 DBPR. The risk and benefits analysis supporting the Stage 2 DBPR begins with the Pre-Stage 1 estimate of the number of new bladder cancer cases each year, that is, the annual cases that can be attributed to DBPs given the national occurrence and exposure conditions prior to the Stage 1 rule. Anticipated reductions in these occurrence and exposure levels due to the Stage 1 rule are then accounted for, and following that the anticipated reductions in occurrence and exposure due to the Stage 2 rule are considered in order to estimate the rule's benefits.

#### E.3.2.1 Data Sources Used for the Stage 1 and Stage 2 DBP Proposed Rule

Consistent with the approach used for the Stage 1 DBPR, the Stage 2 DBPR proposal (July 2003) EPA used data provided in five epidemiological studies to calculate the Pre-Stage 1 PAR values for bladder cancer associated with exposure to chlorinated drinking water:

- Cantor et al. (1985, 1987)<sup>2</sup>
- McGeehin et al. (1993)
- King and Marrett (1996)
- Freedman et al. (1997)
- Cantor et al. (1998)

These five studies provided a range of estimates of PAR from 2 percent to 17 percent bounded by a 95 percent confidence interval ranging as high as 33 percent and truncated at 0 percent to maintain biological plausibility. As discussed below, EPA is also using the data from these five studies for one of the approaches for calculating the Pre-Stage 1 PAR values in support of the Stage 2 Final Rule.

<sup>&</sup>lt;sup>2</sup>Cantor et al. 1985 and Cantor et al. 1987 use the same epidemiological data

#### E.3.2.2 Data Sources Used for the Final Rule

Just prior to the publication of the Stage 2 DBPR proposal in 2003, a meta-analysis study of bladder cancer and the consumption of chlorinated drinking water that was published by Villanueva et al. (2003). Subsequent to the publication of the Stage 2 proposal, a study group comprised of some of the same investigators published another study using a pooled analysis that focused more specifically on bladder cancer related to TTHMs in drinking water.

In support of the final Stage 2 DBPR, EPA has considered three approaches to estimating the Pre-Stage 1 PAR value. These are based on the three sets of studies noted above:

- Using the range of Population Attributable Risk (PAR) values derived from consideration of 5 individual epidemiology studies used for the Stage 1 EA and the Stage 2 proposal EA (yields a pre-Stage 1 range of best estimates for PAR of 2% to 17%).
- Using the Odds Ratio (OR) of 1.2 from the Villanueva et al. (2003) meta-analysis that reflects both sexes, ever exposed population from the studies considered (yields a pre-Stage 1 best estimate for PAR of ~16%)
- Using the Villanueva et al. (2004) pooled data analysis to develop a dose-response relationship for OR as a function of Average TTHM. The dose-response relationship was modeled as linear with an intercept of OR = 1.0 at TTHM exposure level = 0 (yields a pre-Stage 1 best estimate for PAR of ~17%)

EPA considers all three of these approaches to estimating the PAR for DBPs to be equally valid and to provide plausible quantitative estimates of bladder cancer risk, which are similar to each other. EPA has long recognized that while the several epidemiology studies described above indicate a potential association between exposure to DBPs in drinking water and bladder cancer incidence, uncertainty remains with respect to quantifying the number of new bladder cases that occur each year that can be attributed to that exposure.

Two basic methodologies for using the epidemiology data are represented in the three approaches. The first is to consider multiple studies separately rather than combining the information into a single estimate of the attributable risk. The second is to combine the information provided by multiple epidemiology studies using either a meta-analysis or a pooled data analysis. Each methodology has advantages and disadvantages.

One advantage to keeping estimates of individual studies separate and presenting them as a full range of plausible results, is that an explicit depiction of the extent of uncertainty that exists in the quantitative risk estimate is retained. EPA chose to consider studies separately in the economic analyses for both the Stage 1 DBP rule and the proposal for the Stage 2 DBP rule. EPA relied upon a range of risk estimates derived separately from 5 key studies that were published in the 1980's and 1990's. The individual estimates of the fraction of bladder cancer cases attributable to DBP exposure (or more specifically to chlorinated water exposure) obtained from each of these five studies covered a wide range:

2% to 17%. Further, as EPA noted, consideration of uncertainty for each of the individual estimates leads a wider range of values and, on the low end, includes the possibility of 0%.

One criterion to consider when deciding whether or not to combine multiple studies is the heterogeneity of the data. In developing the Stage 1 rule, EPA evaluated two meta-analyses available at that time (Poole et al., 1997 and Morris et al., 1992) and concluded that the existing studies were too heterogeneous to be combined in any way.

Meta-analyses and pooled data analyses are two approaches that are used to combine the information provided by multiple epidemiology studies. In a meta-analysis, the measures of an effect size obtained in the individual studies (such as the Odds Ratio) are weighted, typically by the inverse of the variance of the effect size, and the weighted values combined to obtain the overall estimate of that effect. In a pooled data analysis, the underlying data of the multiple studies are combined together, typically without weighting, and an estimate of the effect is made from the combined data as though it were obtained from a single study.

Meta-analysis is more commonly used for combining multiple epidemiology studies than is pooled data analysis. If heterogeneity is not properly controlled for across the studies used, pooled data analysis can be subject to outcomes that are greater, less, and often opposite that of the outcomes observed in the individual studies (Bravata and Olkin, 2001). Although the results of meta-analysis can also be affected by heterogeneity across the studies used, it is not as subject to these same effects. Meta-analysis can also combine data by weighting certain studies more than others, while pooled data analysis cannot do this. However, whereas meta-analysis is limited to consideration of the specific effect measures studied by the author's of the underlying studies, pooled data analysis can provide an opportunity to evaluate an effect that was not specifically considered in some or all of the underlying studies.

EPA determined that the meta-analysis published by Villanueva et al. (2003) and the pooled data analysis published by Villanueva et al. (2004), both of which combine the results of multiple select studies, offer reasonable approaches to arriving at a single, overall estimate of attributable risk while still retaining an appropriate characterization of the uncertainty in that risk estimate.

The Villanueva et al. (2003) meta-analysis, which considered four of the same five studies as EPA has used historically for its PAR analyses in addition to two other lower weighted studies, obtained results that are consistent with the five study estimates. The meta-analysis found a relationship between duration of exposure to DBPs (or chlorinated water) and risk of bladder cancer, which EPA used to inform the relationship between exposure and risk. With this approach to estimating risk, EPA assumes that the exposure of the study populations is characteristic of the National pre-Stage 1 exposure without knowing the exposure levels explicitly.

The Villanueva et al. (2004) pooled data analysis produced results that are consistent with the other approaches. The Villanueva et al. (2004) paper provided a dose response relationship between OR and TTHM concentrations that allowed EPA to estimate PAR values based specifically on the estimated average concentrations of TTHMs before and after implementation of the Stage 2 rule, a unique feature not possible with the other two approaches. A variety of methods, including modeling, were used to estimate TTHM concentrations. In using the Villanueva et al. (2004) analysis to estimate risk, EPA

assumes that these estimated exposures represent the exposure of the study populations and that the study population exposures are characteristic of the National pre-Stage 1 exposure. In addition, the Villanueva et al. (2004) paper used different studies, one of which is unpublished, than the other approaches. In using the analysis, EPA assumes that the relationship found between exposure and risk is valid for the US population although the study populations in the pooled analysis are from Italy, Canada, France, and Finland as well as the US.

Additional discussion of the studies included in each of these approaches is provided in Chapter 6. The remainder of this section focuses primarily on the derivation of Pre-Stage 1 PAR estimates from these studies.

#### E.3.3 Derivation of Pre-Stage 1 PAR values for the Final Rule

Approach 1: Pre-Stage 1 PAR Range Based on Five Studies

Exhibit E.5 summarizes the key data from the five studies (note that Cantor et al. 1985 and Cantor et al. 1987 use the same epidemiological data) used to calculate PAR values for pre-Stage 1 bladder cancer incidence. These studies are discussed more fully in Chapter 6 of the EA. The ORs and their 95% confidence intervals for each exposure group were calculated by the researchers performing these studies.

EPA calculated PAR values from the data shown in Exhibit E.5 using the multiple-exposure-group form of Equation E.3 as described in Section E.2.1. These calculations and the resulting PAR values are shown in Exhibit E.6. The PAR estimates shown in Exhibit E.6 reflect the point estimates of the ORs for each exposure group in each study. As shown in Exhibit E.5, the researchers for those studies also presented 95% confidence intervals for those ORs, reflecting uncertainty in the values.

EPA has calculated corresponding 95% confidence intervals on the PAR point estimates shown in Exhibit E.6 using a Monte Carlo simulation analysis. The confidence intervals on the ORs reported by the researchers were used to parameterize each OR as a normal distribution. For each study, 10,000 iterations were run, and the OR for each exposure group was selected from its respective uncertainty distribution assuming independence among the groups (and among the studies). PAR values were calculated (using the computation as shown in Exhibit E.4) for each of the 10,000 iterations and collected.

Using the 10,000 PAR estimates for each study, lower and upper confidence bounds were derived. The upper 95% confidence limit is taken from the 97.5 percentile values. The lower limit is taken from the 2.5 percentile values of the 10,000 values, unless those values are below zero, in which case the lower confidence interval is assumed to be 0% because it is biologically implausible that the true PAR value should be less than 0%. The confidence intervals obtained from the Monte Carlo simulation are summarized in Exhibit E.7.

|   | Study                      | Location                          | Sex  | Years of Exposure                           | # of Cases                                             | # of Controls                                                                                        | OR <sup>1</sup><br>(95% C.I.)                                                            | P <sub>c/e(i)</sub> <sup>2</sup>                   |
|---|----------------------------|-----------------------------------|------|---------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------|
|   | Cantor et                  | 10                                |      | 0<br>1-19<br>20-39<br>40-59<br>>59          | 231<br>141<br>324<br>437<br>111<br><i>Total: 1,244</i> | 570<br>285<br>650<br>849<br>196<br><i>Total:</i> 2,550                                               | 1.0<br>1.1 (0.8-1.4)<br>1.0 (0.8-1.3)<br>1.0 (0.8-1.3)<br>1.1 (0.8-1.5)                  | 0.186<br>0.113<br>0.260<br>0.351<br>0.089          |
|   | al. 1985,<br>1987          | Geographic<br>areas               | Both | 0<br>1-19<br>20-39<br>40-59<br>>59          | 153<br>107<br>236<br>310<br>74<br><i>Total: 880</i>    | 345<br>173<br>379<br>430<br>91<br><i>Total: 1,418</i>                                                | 1.0<br>1.2 (0.9-1.7)<br>1.1 (0.8-1.6)<br>1.3 (0.9-1.9)<br>1.4 (0.9-2.3)                  | 0.174<br>0.122<br>0.268<br>0.352<br>0.084          |
| } | Cantor et<br>al. 1998      | lowa                              | Both | 0<br>0-19<br>20-39<br>40-59<br>>59          | 689<br>257<br>87<br>61<br>29<br><i>Total: 1,123</i>    | 1275<br>428<br>139<br>101<br>40<br><i>Total: 1,983</i>                                               | 1.0<br>1.0 (0.8-1.2)<br>1.1 (0.8-1.4)<br>1.2 (0.8-1.7)<br>1.5 (0.9-2.6)                  | 0.614<br>0.229<br>0.077<br>0.054<br>0.026          |
|   | Freedman<br>et al. 1997    | Washington<br>County,<br>Maryland | Both | 0<br>1-10<br>11-20<br>21-30<br>31-40<br>>40 | 79<br>91<br>56<br>38<br>16<br>13<br><i>Total:</i> 293  | 722<br>701<br>432<br>266<br>107<br>78<br><i>Total:</i> 2,306                                         | 1.0<br>1.0 (0.6-1.5)<br>1.0 (0.6-1.6)<br>1.1 (0.6-1.8)<br>1.1 (0.6-2.2)<br>1.4 (0.7-2.9) | 0.270<br>0.311<br>0.191<br>0.130<br>0.055<br>0.044 |
|   | King and<br>Marret<br>1996 | Ontario,<br>Canada                | Both | 0-9<br>10-19<br>20-34<br>>35                | 157<br>55<br>169<br>315<br><i>Total: 696</i>           | 413<br>154<br>433<br>545<br><i>Total: 1,54</i> 5                                                     | 1.0<br>1.0 (0.7-1.5)<br>1.2 (0.9-1.5)<br>1.4 (1.1-1.8)                                   | 0.226<br>0.079<br>0.243<br>0.453                   |
|   | McGeehin<br>et al. 1993    | Colorado                          | Both | 0<br>1-10<br>11-20<br>21-30<br>>30          | 104<br>37<br>38<br>32<br>116<br><i>Total:</i> 327      | 102<br>46 <sup>3</sup><br>29 <sup>3</sup><br>25 <sup>3</sup><br>50 <sup>3</sup><br><i>Total:</i> 252 | 1.0<br>0.7 (0.4-1.2)<br>1.1 (0.6-2.0)<br>1.3 (0.7-2.5)<br>2.1 (1.4-3.2)                  | 0.318<br>0.113<br>0.116<br>0.098<br>0.355          |

Notes: <sup>1</sup> ORs and 95 percent confidence intervals as reported in the studies.

<sup>&</sup>lt;sup>2</sup> Probability of a case being in the indicated years of each i<sup>th</sup> exposure group.

<sup>&</sup>lt;sup>3</sup> Actual number of controls for McGeehin *et al.* were not available, proportions were used.

Source: Quantification of Bladder Cancer Risk from Exposure to Chlorinated Surface Water (USEPA 1998h).

## Exhibit E.6 Summary of PAR Calculations from OR Data for Five Epidemiological Studies

| 3           |  |
|-------------|--|
| 4           |  |
| 5<br>6<br>7 |  |
| 8           |  |
| 9<br>10     |  |
| 11<br>12    |  |
| 13<br>14    |  |

|                      | Years of |     |                     |                                  |     |
|----------------------|----------|-----|---------------------|----------------------------------|-----|
| Study                | Exposure | OR  | P <sub>e/c(i)</sub> | P <sub>e/c(i)</sub> x[(OR-1)/OR] | PAR |
| •                    | 0        | 1.0 | 0.186               | 0.000                            |     |
|                      | < 19     | 1.1 | 0.113               | 0.010                            |     |
|                      | 20-39    | 1.0 | 0.260               | 0.000                            | 2%  |
|                      | 40-59    | 1.0 | 0.351               | 0.000                            |     |
| Comton at al. 4005   | >59      | 1.1 | 0.089               | 0.008                            |     |
| Cantor et al., 1985, |          |     |                     | Sum = 0.018                      |     |
| 1987                 | 0        | 1.0 | 0.174               | 0.000                            |     |
|                      | < 19     | 1.2 | 0.122               | 0.020                            |     |
|                      | 20-39    | 1.1 | 0.268               | 0.024                            | 15% |
|                      | 40-59    | 1.3 | 0.352               | 0.081                            |     |
|                      | >59      | 1.4 | 0.084               | 0.024                            |     |
|                      |          |     |                     | Sum = 0.149                      |     |
| Cantor et al., 1998  | 0        | 1.0 | 0.614               | 0.000                            |     |
| ,                    | < 19     | 1.0 | 0.229               | 0.000                            |     |
|                      | 20-39    | 1.1 | 0.077               | 0.007                            | 3%  |
|                      | 40-59    | 1.2 | 0.054               | 0.009                            |     |
|                      | >59      | 1.5 | 0.026               | 0.009                            |     |
|                      |          |     |                     | Sum = 0.025                      |     |
| Freedman et al.,     | 0        | 1.0 | 0.270               | 0.000                            |     |
| 1997                 | 1-10     | 1.0 | 0.311               | 0.000                            |     |
|                      | 11-20    | 1.0 | 0.191               | 0.000                            | 3%  |
|                      | 21-30    | 1.1 | 0.130               | 0.012                            |     |
|                      | 31-40    | 1.1 | 0.055               | 0.005                            |     |
|                      | >40      | 1.4 | 0.044               | 0.013                            |     |
|                      |          |     |                     | Sum = 0.029                      |     |
| King and Marret,     | 0-9      | 1.0 | 0.226               | 0.000                            |     |
| 1996                 | 10-19    | 1.0 | 0.079               | 0.000                            |     |
|                      | 20-34    | 1.2 | 0.243               | 0.040                            | 17% |
|                      | >35      | 1.4 | 0.453               | 0.129                            |     |
|                      |          |     |                     | Sum = 0.169                      |     |
| McGeehin et al.,     | 0        | 1.0 | 0.318               | 0.000                            |     |
| 1993                 | 1-10     | 0.7 | 0.113               | -0.048                           |     |
|                      | 11-20    | 1.1 | 0.116               | 0.011                            | 17% |
|                      | 21-30    | 1.3 | 0.098               | 0.023                            | .,- |
|                      | >30      | 2.1 | 0.355               | 0.186                            |     |
|                      |          |     |                     | Sum = 0.170                      |     |

### Exhibit E.7 Summary of PAR Values with Confidence Intervals Obtained from Monte Carlo Simulation

| Christia              | PAR Valu     | Point Estimates |              |              |
|-----------------------|--------------|-----------------|--------------|--------------|
| Study                 | Lower 95% CI | Mean            | Upper 95% CI | from Studies |
| Cantor et al., 1985   | 0%           | 3%              | 15%          | 2%           |
| Cantor et al., 1987   | 0%           | 17%             | 31%          | 15%          |
| Cantor et al., 1998   | 0%           | 2%              | 8%           | 3%           |
| Freedman et al., 1997 | 0%           | 3%              | 22%          | 3%           |
| King and Marret, 1996 | 1%           | 17%             | 28%          | 17%          |
| McGeehin et al., 1993 | 0%           | 17%             | 33%          | 17%          |

In addition to the uncertainty in the PAR values calculated for each of the individual studies as reflected by the confidence intervals, it is important to consider the uncertainty associated with the use of those studies—each of which was based upon a specific subset of the entire US population—to represent the PAR value for the US population as a whole.

One important consideration in this regard is the extent to which exposure in the study population groups is comparable to exposure in the overall US population. Exhibit E.8 provides an overall summary of the percent of cases and controls in each study who were in the DBP exposure groups (across all exposure durations). As shown in this exhibit, the exposure groups typically range from 65 – 80% of the study populations, with one instance (Cantor 1998) where only about 35 – 40% of the study population were exposed to DBPs. It is currently estimated that approximately 90% of the US population consumes water from public water supplies that are disinfecting, and the vast majority of these systems use chlorination (USEPA 2005k). As a result, it can be argued that the PAR values obtained from these five epidemiological studies under-represent exposure in the United States, and that the actual PAR values are higher than suggested by the values calculated and used in this EA.

Lastly, it is important to recognize that, notwithstanding the associations indicated by these studies, causality has not yet been established between bladder cancer and exposure to chlorinated water. Therefore, it is possible that the attributable risk from chlorinated water is zero, but not probable.

Exhibit E.8 Summary of Study Group DBP Exposure for Five Epidemiological Studies

| Study                 | Total<br>Cases | Cases in<br>Exposed<br>Group<br>(b) | % of Cases in<br>Exposed<br>Group<br>(b/a) % | Odds of Case<br>Being in<br>Exposed Group<br>(b) / (a-b) | % of<br>Controls in<br>Exposed<br>Group |
|-----------------------|----------------|-------------------------------------|----------------------------------------------|----------------------------------------------------------|-----------------------------------------|
| Cantor et al., 1985   | 1,244          | 1,013                               | 81.4%                                        | 4.4                                                      | 80%                                     |
| Cantor et al., 1987   | 880            | 727                                 | 82.6                                         | 4.8                                                      | 76%                                     |
| Cantor et al., 1998   | 1,123          | 434                                 | 38.6%                                        | 0.6                                                      | 35%                                     |
| Freedman et al., 1997 | 293            | 214                                 | 73.0%                                        | 2.7                                                      | 70%                                     |
| King and Marret, 1996 | 696            | 539                                 | 77.4%                                        | 3.4                                                      | 75%                                     |
| McGeehin et al., 1993 | 327            | 223                                 | 68.2%                                        | 2.1                                                      | 65%                                     |

Approach 2: Pre-Stage 1 PAR Based on Villanueva et al. (2003) Meta-Analysis

As discussed in Chapter 6, the Villanueva et al. (2003) meta-analysis generated several estimates of the OR for bladder cancer as a function of sex (men, women, both) and exposure duration (mid-term, long-term, ever-exposed). Exhibit E.9 summarizes the OR values for these various combinations of exposure and population groups.

Of the various OR values shown in Exhibit E.9 from the Villanueva et al. (2003) meta-analysis, EPA determined that the estimates for the Ever Exposed, Both Sexes was the most appropriate to use for estimating an overall PAR for the Stage 2 benefits analysis since it includes both men and women, and it covers of the full range of exposure conditions experienced in the population being addressed by this analysis.

Using Equation E.3 for the PAR calculation, with the other assumptions noted below, EPA derived a PAR estimate from these data of 15.7%:

$$PAR = \frac{Pe \times (RR - 1)}{1 + [Pe \times (rr - 1)]} = \frac{0.935 \times (1.2 - 1)}{1 + [0.935 \times (1.2 - 1)]} = 0.157$$
(Equation E.7)

EPA has used the OR from Villanueva et al. (2003) as the estimate for RR in the PAR calculations (see earlier discussion) and including an estimate of 0.935 for  $P_e$ , the portion of the population exposed to chlorinated water obtained from the estimated 263 million people exposed to chlorinated water (see Chapter 3 for baseline estimates) and a total US population of 281 million (U.S. Census Bureau 2001).

Using the lower and upper 95% confidence interval estimates on the OR of 1.1 and 1.4, respectively, yields corresponding lower and upper bound PAR values of 8.5% and 27.2%.

Exhibit E.9 Combined OR estimates from Villanueva et al. 2003

| Exposure Category      | Combined OR (95% CI) |  |  |  |  |
|------------------------|----------------------|--|--|--|--|
| Mid Term (1-40 years)  |                      |  |  |  |  |
| Both Sexes             | 1.1 (1.0 - 1.2)      |  |  |  |  |
| Men                    | 1.3 (1.0 - 1.7)      |  |  |  |  |
| Women                  | 1.0 (0.7 - 1.6)      |  |  |  |  |
| Long Term (> 40 years) |                      |  |  |  |  |
| Both Sexes             | 1.4 (1.2 - 1.7) *    |  |  |  |  |
| Men                    | 1.6 (1.2 - 2.2) *    |  |  |  |  |
| Women                  | 1.4 (0.6 - 3.6)      |  |  |  |  |
| Ever-Exposed           |                      |  |  |  |  |
| Both Sexes             | 1.2 (1.1 - 1.4) *    |  |  |  |  |
| Men                    | 1.4 (1.1 - 1.9) *    |  |  |  |  |
| Women                  | 1.2 (0.7 - 1.8)      |  |  |  |  |

Note: The Mid Term and Long Term OR estimates are based on the five case control studies; the Ever Exposed OR estimates are based on those five studies plus the Wilkins and Comstock cohort study.

Approach 3: Pre-Stage 1 PAR Based on Villanueva et al. (2004) Pooled Analysis

As discussed in Chapter 6, the Villanueva et al. (2004) study involved a pooled analysis using some of the same studies included in their 2003 meta-analysis and included among the "Five Studies" used for the Stage 1 rule and Stage 2 proposal. One notable aspect of the Villanueva et al. (2004) study is its focus on the relationship between OR and TTHM exposure measures specifically. Villanueva et al. (2004) included results showing a dose-response relationship of increasing OR as a function of average TTHM exposure and as a function of cumulative TTHM exposure.

<sup>\*</sup> Statistically significant

For this approach to estimating the Pre-Stage 1 PAR value, EPA drew upon the information relating OR to average TTHM exposure concentrations to develop a dose-response relationship. Exhibit E.10 provides a summary of the information on this relationship that is presented in the Villanueva et al. (2004) study.

### Exhibit E.10 Summary of Estimated OR Values Associated with Average TTHM **Exposures for Both Sexes from Villanueva et al. (2004)**

| Average TTHM (ug/L) | OR   | 95% CI      |
|---------------------|------|-------------|
| 0                   | 1.00 | NA          |
| > 0                 | 1.18 | 1.00 - 1.39 |
| 0 - 1               | 1.00 | NA          |
| >1                  | 1.18 | 1.06 - 1.32 |
| 0 - 1               | 1.00 | NA          |
| > 1 - 5             | 1.08 | 0.93 - 1.26 |
| > 5 - 25            | 1.15 | 0.98 - 1.35 |
| > 25 - 50           | 1.22 | 1.04 - 1.42 |
| > 50                | 1.31 | 1.12 - 1.54 |

The authors of the Villanueva et al. (2004) also provided EPA with a more detailed data showing the relationship between OR and average TTHM level. These are presented in Exhibit E.11.

Exhibit E.11 Detailed Data on OR as a Function of Average TTHM Exposure Level by Kogevinas and Villanueva (2005)

| Average<br>TTHM (ug/L) | Odds Ratio | Lower 95% CI | Upper 95% CI |
|------------------------|------------|--------------|--------------|
| 0                      | 1.00       |              | -            |
| 10                     | 1.13       | 0.96         | 1.33         |
| 20                     | 1.16       | 0.98         | 1.38         |
| 30                     | 1.17       | 1.00         | 1.37         |
| 40                     | 1.19       | 1.02         | 1.39         |
| 50                     | 1.22       | 1.04         | 1.43         |
| 60                     | 1.26       | 1.08         | 1.47         |
| 70                     | 1.32       | 1.12         | 1.55         |
| 80                     | 1.38       | 1.14         | 1.68         |
| 90                     | 1.46       | 1.13         | 1.89         |
| 100                    | 1.55       | 1.11         | 2.17         |
| 110                    | 1.66       | 1.07         | 2.55         |
| 120                    | 1.77       | 1.03         | 3.06         |
| 130                    | 1.90       | 0.98         | 3.66         |

EPA used the detailed data in Exhibit E.11 to derive a linear relationships between the average TTHM concentration and the OR. Since the OR at 0 ug/L TTHM is 1.0 by definition, the slope for the linear relationship was derived with the intercept forced to 1.0 and 0 ug/L. For the best estimates, the slope of the linear relationship was estimated to be 0.00581. Linear relationships were also derived from the data in Exhibit E.11 for the lower and upper 95% CI values. The slopes for these were estimated to be 0.00072 for the lower confidence bound and 0.01393 for the upper confidence bound. These linear relationships are shown in Exhibit E.12 along with the data used to derive them.

The Pre-Stage 1 OR values were estimated from these linear relationships using the estimated Pre-Stage 1 average TTHM concentration of 38.05 ug/L and the slopes noted above as OR = 1.0 + (slope \* 38.05). The resulting OR values are shown in Exhibit E.13 below. Also shown are the corresponding Pre-Stage 1 PAR values for these OR estimates derived from the PAR calculation method show previously for Approach 2.

Exhibit E.12 OR as a Function of Average TTHM from Data Provided by Villanueva et al. ( 2004) Authors (Linear Regression with Intercept Forced to 1.0)



#### Exhibit E.13 Estimates of OR and PAR Values from Villanueva et al. (2004) Data

|     | Lower 95% CI | Best Estimate | Upper 95% CI |
|-----|--------------|---------------|--------------|
| OR  | 1.03         | 1.22          | 1.53         |
| PAR | 0.025        | 0.171         | 0.331        |

#### E.3.4 Estimates of Pre-Stage 1 Annual Bladder Cancer Cases Attributable to DBPs

Using the Pre-Stage 1 PAR values described in the preceding section, estimates of the Pre-Stage 1 annual bladder cancer cases attributable to DBPs can be made by applying the PAR values to the estimated 56,506 new cases of bladder cancer per year from all causes. These estimates are shown in Exhibit E.14

Exhibit E.14 Estimated Pre-Stage 1 Annual Bladder Cancer Cases Attributable to DBPs Based on the Three Approaches to PAR

|            | Lower 95% CI Best Estimate |               | Upper 95% CI |
|------------|----------------------------|---------------|--------------|
| Approach 1 | 0                          | 1,130 - 9,606 | 18,647       |
| Approach 2 | 4,830                      | 8,899         | 15,376       |
| Approach 3 | 1,412                      | 9,670         | 18,716       |

Note: The "Best Estimate" for Approach 1 reflects the 2% to 17% range of PAR values from the five studies used.

#### E.4 Derivation of Annual Bladder Cancer Cases Ultimately Avoidable

As discussed further in the Section E.5 below, there is an anticipated delay (cessation lag) between when the reductions in DBP occurrence and exposure levels begin following implementation of Stage 2 and when the full achievement of the reduction in annual bladder cases expected for that reduction in exposure occurs. The discussion in Section E.5 focuses on modeling this transition period from higher risks to lower risks following exposure reduction.

The end-point of that transition period is the realization of the full benefits of the rule in terms of annual bladder cancer cases avoided. The purpose of this section is to describe how EPA has quantified that end-point, which is referred to here as the annual bladder cancer cases ultimately avoidable for Stage 2. As discussed here, it is necessary to first determine the expected annual cases avoided from Stage 1, and then use the post-Stage 1 cases remaining that are attributable to DBPs to derive the annual bladder cancer cases ultimately avoidable for Stage 2.

10 11

14 15 16

17

18

24

25

30

31

36

37

42

43

44

#### E.4.1 Relationship of Cases Avoided to Average DBP Reduction

The quantitative benefits calculations in this EA assume that there is a linear relationship between average DBP concentration and the cases of bladder cancer attributable to DBPs, at least within the general range of concentrations people will typically be exposed to, on average, before and after the rule. This implies that for a given percent reduction in the national average DBP concentration (for example, 10%) there will be a similar reduction in the annual cases of bladder cancer attributable to DBP exposure (that is, also 10% for this example). The amount of time it takes to achieve the full reduction in the number of attributable cases is called the cessation lag period.

EPA recognizes that this assumption of linearity is uncertain, and that there is limited data to establish and evaluate this relationship in detail. A key source of supporting data for this assumption is the Villanueva et al. (2004) pooled data analysis study which provided the basis for the linear dose-response relationship used in Approach 3 for PAR described in the proceeding section.

In the context of assuming linearity in this range, it is important to note the implications of what a non-linear relationship would be, relative to the assumption of linearity made here. A dose-response relationship for a carcinogen that is non-linear in lower dose ranges is typically sublinear. If that is the case for DBPs, then the assumption of linearity back to zero being used here would be conservative with respect to the estimation of benefits from the Stage 2 rule. That is, if the relationship is sublinear in this range, then the slope would be steeper and the estimated cases avoided for a given change in average DBP levels could be greater than that which is currently being estimated.

On the other hand, if the relationship were markedly supralinear in the range of interest, DBP reductions expected from the Stage 2 rule might result in a substantially lower reduction in attributable cases in the DBP concentration range of concern. However, supralinearity would also imply that at some lower DBP concentrations the reduction in attributable cases relative to the reduction in DBPs would become quite high as the slope for this relationship becomes very steep again.

EPA concluded that the assumption of a straight linear relationship back to zero, which falls between these two options of sublinearity and supralinearity, is a reasonable approximation given the uncertainty in knowing the actual dose-response relationship. This uncertainty is discussed further in Section 6.6.

To estimate bladder cancer cases avoided as a result of the Stage 2 DBPR, the average reduction in plant-mean TTHM and HAA5 concentrations is assumed to represent the range of reductions for all chlorination DBPs. A more detailed explanation of the derivation of the estimated reduction in concentration can be found in Chapter 5. Using these two DBP classes as indicators for all chlorination DBPs may overestimate or underestimate the true concentration reduction. However, because measurable halogen-substituted DBP concentrations, comprised primarily of TTHM and HAA5, are estimated to make up 30 to 60 percent of the measured total organic halide (TOX) concentration (Singer 1999), TTHM and HAA5 reductions are assumed to be reasonable indicators of the overall DBP reductions. Separate evaluations for TTHM and HAA5 are carried throughout the analyses.

The specific calculations to arrive at the annual bladder cancer cases ultimately avoidable from Stage 1 and Stage 2 for Approaches 1 and 2 are different from those for Approach 3. For Approaches 1 and 2, the linearity assumption used to estimate the effects of DBP reductions for Stage 1 and Stage 2 is applied to the estimated Pre-Stage 1 cases attributable to DBPs. First, the Pre-Stage 2 cases attributable are calculated as:

Pre-Stage 2 Cases Attributable = Pre-Stage 1 Cases Attributable \* (1 - % DBP Reduction for Stage 1)

The % DBP Reduction for Stage 1 is calculated from the estimated Pre-Stage 1 and Post-Stage 1 national average DBP (either TTHM or HAA5) concentrations. If, for example, the Pre-Stage 1 cases attributable to DBPs is 8,899 and the %DBP reduction estimate for Stage 1 is 26.96%, the Pre-Stage 2 cases attributable are 6,500 (= 8,899\* 0.7304). The Stage 1 cases avoided are then calculated as the difference between the Pre-Stage 1 and Pre-Stage 2 attributable cases.

Similarly, to estimate the annual bladder cancer cases ultimately avoidable for Stage 2, the Post-Stage 2 cases attributable are calculated as:

Stage 2 Cases Attributable = Pre-Stage 2 Attributable Cases \* (1 - % DBP Reduction for Stage 2)

Using the example, if the % DBP reduction from Stage 1 to Stage 2 is 8%, then the Post-Stage 2 attributable cases would be 5,995 ( = 6,500 \* 0.9224). The Stage 2 cases avoided are then calculated as the difference between the Pre-Stage 2 and Post-Stage 2 attributable cases.

For Approach 3, the calculation of annual bladder cancer cases ultimately avoidable from Stage 1 and Stage 2 is different from that for Approaches 1 and 2. Whereas Approaches 1 and 2 can produce a PAR estimate for Pre-Stage 1 only, the dose-response function derived from the Villanueva et al. (2004) study used in Approach 3 allows for the PAR to be calculated explicitly for Pre-Stage 1, Pre-Stage 2 and Post-Stage 2 based on the corresponding estimated national average TTHM concentrations.

To calculate the PAR for these rule stages, it is first necessary to calculate the OR values for the national average TTHM concentrations estimated for each stage. Using the slope of 0.00581 (see earlier discussion of the Approach 3 dose-response function), and the indicated estimates of TTHMs, the OR values for each stage are calculated as:

$$OR_{\text{Pr }eSt1} = 1.0 + (0.00581 * 38.05) = 1.221$$
  
 $OR_{\text{Pr }eSt2} = 1.0 + (0.00581 * 27.79) = 1.161$   
 $OR_{\text{PostSt2}} = 1.0 + (0.00581 * 25.64) = 1.149$ 

$$PAR_{\text{Pr}\,eSt1} = \frac{0.935 * (OR_{\text{Pr}\,eSt1} - 1.0)}{1 + [0.935 * (OR_{\text{Pr}\,eSt1} - 1.0)]} = 17.1\%$$

$$PAR_{\text{Pr}\,eSt2} = \frac{0.935 * (OR_{\text{Pr}\,eSt1} - 1.0)}{1 + [0.935 * (OR_{\text{Pr}\,eSt1} - 1.0)]} = 13.1\%$$

$$PAR_{PostSt2} = \frac{0.935 * (OR_{PreSt1} - 1.0)}{1 + [0.935 * (OR_{PreSt1} - 1.0)]} = 12.2\%$$

For Pre-Stage 1, the attributable cases can be calculated by multiply the total bladder cancer cases by the Pre-Stage 1 PAR value. If, for example, using the Pre-Stage 1 total cases is 56,506, the attributable cases would be 9,670 (= 56,506 \* 0.171).

The calculation of cases attributable after Stage 1 and after Stage 2 for Approach 3 requires that the total cases at each stage to which the PAR is applied appropriately reflects reductions in those total cases resulting from the DBP reductions for the stages. This is done by recognizing that:

$$PAR = \underline{Attributable\ Cases} = \underline{Attributable\ Cases}$$
 $Total\ Cases$ 
 $(NonAttributable\ Cases + Attributable\ cases)$ 

Rearranging this relationship yields:

$$Attributable \ Cases = \underline{PAR * NonAttributable \ Cases}$$

$$(1-PAR)$$

If 9,670 of the 56,506 Pre-Stage 1 cases are attributable to DBPs, then 46,836 (= 56,506 - 9,670) are not attributable to DBPs. Using that information and the formula above, the Pre-Stage 2 and Post-Stage 2 attributable cases would be calculated as:

$$AttribCases_{\text{Pr}eSt2} = \frac{0.131*46,836}{(1-0.131)} = 7,036$$

AttribCases<sub>PostSt2</sub> = 
$$\frac{0.121*46,836}{(1-0.131)}$$
 = 6,515

The cases avoided from Stage 1 and Stage 2 are then calculated by subtraction:

Stage 1 Cases Avoided = 9,670 - 7,063 = 2,607Stage 2 Cases Avoided = 7,063 - 6,515 = 548

#### E.4.2 Results for Stage 1 and Stage 2

#### E.4.2.1 **Estimates of Cases Attributable and Annual Bladder Cancer Cases Ultimately** Avoidable Using the Three Approaches to Pre-Stage 1 PAR

This section provides detailed estimates of the Pre-Stage 1, Pre-Stage 2 and Post-Stage 2 attributable cases of bladder cancer, and the corresponding annual bladder cancer cases ultimately avoidable for the Stage 1 and Stage 2 (preferred option) rules. These estimates reflect the three approaches to estimating PAR described previously.

Exhibit E.15 presents estimates of the Pre-Stage 1 cases attributable to DBPs for the three approaches. As noted, these value are obtained by multiplying the indicated PAR values by 56,506, the estimated total annual bladder cancer cases due to all causes.

#### Exhibit E.15 Pre-Stage 1 Cases Attributable to DBPs from Three Approaches to PAR (Pre-Stage 1 PAR Estimates)

|                          | Lower 95%<br>CI for PAR | Best Estimate for PAR |           | Upper 95% CI<br>for PAR |
|--------------------------|-------------------------|-----------------------|-----------|-------------------------|
| Approach 1:              | 0                       | 1,130                 | 9,606     | 18,647                  |
| Five Studies             | (0% PAR)                | (2% PAR)              | (17% PAR) | (33% PAR)               |
| Approach 2:              | 4,830                   | 8,899                 |           | 15,376                  |
| Villanueva et al. (2003) | (8.5% PAR)              | (15.7% PAR)           |           | (27.2% PAR)             |
| Approach 3:              | 1,412                   | 9,670                 |           | 18,716                  |
| Villanueva et al. (2004) | (2.5% PAR)              | (17.1% PAR)           |           | (33.1% PAR)             |

Note: Calculated from Pre-Stage 1 PAR \* 56,506 Some numbers may reflect rounding

Exhibit E.16 presents the estimated Pre-Stage 2 attributable cases based on the estimated percent reduction in the national average TTHM concentration from Stage 1.

### Exhibit E.16 Pre-Stage 2 Cases Attributable to DBPs from Three Approaches to PAR, Based on Stage 1 TTHM Reduction of 27.0%

|                                         | Lower 95% CI for<br>Pre-Stage 1 PAR | Best Estimate for PAR |       | Upper 95% CI for<br>Pre-Stage 1 PAR |
|-----------------------------------------|-------------------------------------|-----------------------|-------|-------------------------------------|
| Approach 1:<br>Five Studies             | 0                                   | 825                   | 7,016 | 13,620                              |
| Approach 2:<br>Villanueva et al. (2003) | 3,528                               | 6,500                 |       | 11,231                              |
| Approach 3:<br>Villanueva et al. (2004) | 1,032                               | 7,063                 |       | 13,670                              |

Note: Approaches 1 and 2 are calculated from the Pre-Stage 1 values in Exhibit E.15 multiplied by 0.73 (that is, a 27.0% reduction in TTHMs implying a 27.0% reduction in attributable cases)

Approach 3 is calculated from the Post-Stage 1 PAR based on the OR for TTHM = 27.79 ug/L as described previously.

Some numbers may reflect rounding

Exhibit E.17 provides the estimated Stage 1 cases avoided for the three approaches based on the estimated Stage 1 TTHM reduction. As described previously, these are obtained by subtracting the Pre-Stage 2 attributable cases from the Pre-Stage 1 attributable cases.

#### Exhibit E.17 Stage 1 Cases Avoided from Three Approaches to PAR, Based on Stage 1 TTHM Reduction of 27.0%

|                                         | Lower 95%<br>CI for PAR | Best Estimate for<br>Pre-Stage 1 PAR |       | Upper 95% CI for<br>Pre-Stage 1 PAR |
|-----------------------------------------|-------------------------|--------------------------------------|-------|-------------------------------------|
| Approach 1:<br>Five Studies             | 0                       | 305                                  | 2,590 | 5,027                               |
| Approach 2:<br>Villanueva et al. (2003) | 1,302                   | 2,399                                |       | 4,145                               |
| Approach 3:<br>Villanueva et al. (2004) | 381                     | 2,607                                |       | 5,046                               |

Notes: Some numbers may reflect rounding

These represent the difference between the Pre-Stage 1 cases attributable (Exhibit E.15) and the Pre-Stage 2 cases attributable (Exhibit E.16).

Exhibit E.18 presents estimates of the Post-Stage 2 attributable cases based on the estimated percent reduction in the national average TTHM concentration from Stage 2. The % reduction values

shown are the 5<sup>th</sup> percentile, mean, and 95<sup>th</sup> percentile values for TTHMs for the range reflecting uncertainty as described in Chapter 5.

Exhibit E.18 Post-Stage 2 Cases Attributable to DBPs from Three Approaches to PAR, Based on Stage 2 TTHM Reductions

|                                     | Lower 95% CI for<br>Pre-Stage 1 PAR | Best Estimate for<br>Pre-Stage 1 PAR |       | Upper 95% CI for<br>Pre-Stage 1 PAR |  |  |
|-------------------------------------|-------------------------------------|--------------------------------------|-------|-------------------------------------|--|--|
| Approach 1: Five Studio             | es                                  |                                      |       |                                     |  |  |
| 4.5% Reduction                      | 0                                   | 788                                  | 6,702 | 13,010                              |  |  |
| 7.8% Reduction                      | 0                                   | 761                                  | 6,472 | 12,563                              |  |  |
| 11.1% Reduction                     | 0                                   | 734                                  | 6,240 | 12,113                              |  |  |
| Approach 2:Villanueva et al. (2003) |                                     |                                      |       |                                     |  |  |
| 4.5% Reduction                      | 3,370                               | 6,2                                  | 209   | 10,728                              |  |  |
| 7.8% Reduction                      | 3,254                               | 5,9                                  | 995   | 10,359                              |  |  |
| 11.1% Reduction                     | 3,138                               | 5,7                                  | 781   | 9,989                               |  |  |
| Approach 3: Villanueva              | et al. (2004)                       |                                      |       |                                     |  |  |
| 4.5% Reduction                      | 985                                 | 6,747                                |       | 13,058                              |  |  |
| 7.8% Reduction                      | 951                                 | 6,515                                |       | 12,610                              |  |  |
| 11.1% Reduction                     | 917                                 | 6,2                                  | 282   | 12,158                              |  |  |

Note: Approaches 1 and 2 are calculated from the Post-Stage 1 values in Exhibit E.17 multiplied by 1 minus % Reduction indicated.

For Approach 3 is calculated from the Post-Stage 2 PAR based on the OR for the TTHM concentration resulting from the indicated Stage 2 % reduction.

Some numbers may reflect rounding

Exhibit E.19 provides the estimated Stage 2 cases avoided for the three approaches based on the estimated Stage 2 TTHM % reduction. As described previously, these are obtained by subtracting the Pre-Stage 2 attributable cases from the Pre-Stage 1 attributable cases.

### Exhibit E.19 Stage 2 Cases Avoided from Three Approaches to PAR, Based on Stage 2 TTHM Reductions

|                       | Lower 95% CI for<br>Pre-Stage 1 PAR | Best Estimate for<br>Pre-Stage 1 PAR |     | Upper 95% CI for<br>Pre-Stage 1 PAR |
|-----------------------|-------------------------------------|--------------------------------------|-----|-------------------------------------|
| Approach 1: Five Stud | lies                                |                                      |     |                                     |
| 4.5% Reduction        | 0                                   | 37                                   | 314 | 610                                 |
| 7.8% Reduction        | 0                                   | 64                                   | 544 | 1,057                               |
| 11.1% Reduction       | 0                                   | 91                                   | 776 | 1,507                               |
| Approach 2:Villanueva | et al. (2003)                       |                                      |     |                                     |
| 4.5% Reduction        | 158                                 |                                      | 291 | 503                                 |
| 7.8% Reduction        | 274                                 |                                      | 504 | 872                                 |
| 11.1% Reduction       | 390                                 | 719                                  |     | 1,242                               |
| Approach 3: Villanuev | a et al. (2004)                     |                                      | ·   |                                     |
| 4.5% Reduction        | 46                                  | 316                                  |     | 612                                 |
| 7.8% Reduction        | 80                                  | 548                                  |     | 1,061                               |
| 11.1% Reduction       | 114                                 | 781                                  |     | 1,512                               |

Note: Some numbers may reflect rounding

Exhibits E.20 through E.22 provide estimates of the Pre-Stage 2 cases attributable, Post-Stage 2 cases attributable and Stage 2 Cases avoided based on reductions in average HAA5 concentrations. As noted in these tables, Approach 3 is not used since it is based on a dose-response function involving TTHMs and not HAA5s.

## Exhibit E.20 Pre-Stage 2 Cases Attributable to DBPs from Three Approaches to PAR, Based on Stage 1 HAA5 Reduction of 28.6%

|                                         | Lower 95%<br>CI for PAR                      | Best Estimate for<br>Pre-Stage 1 PAR |  | Upper 95% CI for<br>Pre-Stage 1 PAR |
|-----------------------------------------|----------------------------------------------|--------------------------------------|--|-------------------------------------|
| Approach 1:<br>Five Studies             | 0                                            | 807 6,863                            |  | 13,322                              |
| Approach 2:<br>Villanueva et al. (2003) | 3,451                                        | 6,358                                |  | 10,986                              |
| Approach 3:<br>Villanueva et al. (2004) | Approach 3 not applicable to HAA5 reductions |                                      |  | ductions                            |

Notes: Approaches 1 and 2 are calculated from the Pre-Stage 1 values in Exhibit E.19 multiplied by 0.714 (a 28.6% reduction in HAA5s implying a 28.6% reduction in attributable cases).

Some numbers may reflect rounding

## Exhibit E.21 Post-Stage 2 Cases Attributable to DBPs from Three Approaches to PAR, Based on Stage 2 HAA5 Reductions

|                                              | Lower 95% CI for<br>Pre-Stage 1 PAR | Best Estimate for Pre-<br>Stage 1 PAR |       | Upper 95% CI for<br>Pre-Stage 1 PAR |  |  |
|----------------------------------------------|-------------------------------------|---------------------------------------|-------|-------------------------------------|--|--|
| Approach 1: Five Studies                     | }                                   |                                       |       |                                     |  |  |
| 5.0% Reduction                               | 0                                   | 767                                   | 6,520 | 12,656                              |  |  |
| 9.0% Reduction                               | 0                                   | 735                                   | 6,247 | 12,127                              |  |  |
| 13.5% Reduction                              | 0                                   | 698                                   | 5,937 | 11,525                              |  |  |
| Approach 2:Villanueva et                     | al. (2003)                          |                                       |       |                                     |  |  |
| 5.0% Reduction                               | 3,278                               | 6                                     | ,040  | 10,437                              |  |  |
| 9.0% Reduction                               | 3,141                               | 5.                                    | ,788  | 10,001                              |  |  |
| 13.5% Reduction                              | 2,985                               | 5                                     | ,500  | 9,503                               |  |  |
| Approach 3: Villanueva et al. (2004)         |                                     |                                       |       |                                     |  |  |
| Approach 3 not applicable to HAA5 reductions |                                     |                                       |       |                                     |  |  |

Notes: Approaches 1 & 2 are calculated from the Post-Stage 1 values in Exhibit E.20 multiplied by 1 minus % Reduction indicated.

Approach 3 is calculated from the Post-Stage 2 PAR based on the OR for the TTHM concentration resulting from the indicated Stage 2 % reduction

Some numbers may reflect rounding

#### Exhibit E.22 Stage 2 Cases Avoided from Three Approaches to PAR, Based on Stage 2 HAA5 Reductions

|                        | Lower 95% CI for<br>Pre-Stage 1 PAR | Best Estimate for<br>Pre-Stage 1 PAR |              | Upper 95% CI for<br>Pre-Stage 1 PAR |
|------------------------|-------------------------------------|--------------------------------------|--------------|-------------------------------------|
| Approach 1: Five Studi | ies                                 |                                      |              |                                     |
| 5.0% Reduction         | 0                                   | 40                                   | 343          | 667                                 |
| 9.0% Reduction         | 0                                   | 72 616                               |              | 1,196                               |
| 13.5% Reduction        | 0                                   | 109 926                              |              | 1,798                               |
| Approach 2:Villanueva  | et al. (2003)                       | •                                    |              |                                     |
| 5.0% Reduction         | 173                                 |                                      | 318          | 549                                 |
| 9.0% Reduction         | 310                                 |                                      | 570          | 985                                 |
| 13.5% Reduction        | 466                                 | 858                                  |              | 1,483                               |
| Approach 3: Villanueva | a et al. (2004)                     |                                      |              |                                     |
|                        | Approach 3 not applic               | able to HAA                          | 5 reductions |                                     |

Note: Some numbers may reflect rounding

#### E.4.2.2 Annual Bladder Cancer Cases Ultimately Avoidable Estimated in Benefits Model

As discussed in Chapter 6, for the sake of simplicity, EPA has selected Approach 2 based on Villanueva et al. (2003) to estimate Pre-Stage 1 PAR values to carry through the full benefits modeling. That is, the Monte Carlo simulation used to generate the benefits of the Stage 2 rule used only the inputs from Approach 3 to estimate Pre-Stage 1 PAR values. This simulation included uncertainty in the OR values reported by Villanueva et al. (2003) for the PAR calculations, and also included uncertainty in the predicted DBP reductions for Stage 2. Exhibits E.23 and E.24 summarize the estimated annual bladder cancer cases ultimately avoidable for both Stage 1 and Stage 2 derived from the benefits simulation model.

## Exhibit E.23 Annual Bladder Cancer Cases Ultimately Avoidable for the Stage 1 DBPR

|      | Post-Stage 1 (Pre-Stage 2) Cases |                      |        | Maximum | Cases Avoid  | ded for the |  |
|------|----------------------------------|----------------------|--------|---------|--------------|-------------|--|
|      | Attri                            | Attributable to DBPs |        |         | Stage 1 DBPR |             |  |
| DBP  | Mean                             | 5th                  | 95th   | Mean    | 5th          | 95th        |  |
| TTHM | 7,420                            | 4,072                | 10,695 | 2,739   | 1,503        | 3,947       |  |
| HAA5 | 7,258                            | 3,983                | 10,461 | 2,901   | 1,592        | 4,181       |  |

|      | Post-Stage 2 Cases |                      |       | Maximum Cases Avoided for |     |       |
|------|--------------------|----------------------|-------|---------------------------|-----|-------|
|      | Attrik             | Attributable to DBPs |       | the Stage 2 DBPR          |     |       |
| DBP  | Mean               | 5th                  | 95th  | Mean                      | 5th | 95th  |
| TTHM | 6,843              | 3,813                | 9,808 | 577                       | 229 | 1,079 |
| HAA5 | 6,591              | 3,657                | 9,461 | 667                       | 252 | 1,271 |

#### **E.5 Adjustments to Account for Cessation Lag**

6 7 8

11

12

13

14 15

16

17

18 19

20

21 22

23

24

25

26

27 28

29

30

31

#### E.5.1 **Background**

9 If the reduction in bladder cancer risk for individuals exposed to DBPs from drinking water were 10

to begin immediately when the DBP levels in drinking water are reduced as result of these regulations, then the benefits of the regulations in terms of annual bladder cancer cases avoided would simply be the annual bladder cancer cases ultimately avoidable (as described in the preceding section) starting when

those exposure reductions begin and continuing each year thereafter.

Cancer risk reductions (in terms of annual individual risk) are, generally not expected to occur instantaneously when exposure to a carcinogen is reduced or eliminated. Rather, it is expected that the risks for those individuals having had previous higher exposures will decline over time, eventually reaching or at least approaching the risk level associated with the lower exposure levels. The rate may depend upon a combination of the carcinogen, its particular end-point and mode of action, and other factors as mentioned in Chapter 6.

The term "cessation lag" is used to refer to this transition period between higher risks from higher exposures and lower risks from lower exposures. Cessation lag models, based on available empirical data of cancer risk reduction following exposure reduction to carcinogens, have been used in this benefits analysis to quantify the rate of the risk reduction following rule implementation and reduction in exposure to DBPs from drinking water.

This section of Appendix E provides some additional background on cessation lag and describes the specific data sources and model-fitting procedures used to derive the cessation lag models included in the Stage 2 benefits analysis. It also describes the calculations performed in the benefits model to compute the annual cases avoided each year following exposure reduction that draw upon the cessation lag models.

32 33

When considering cessation lag and its incorporation into the benefits modeling, it is important to separate the exposed population into two groups: (1) those who are alive at the time that the rule is implemented and who have, therefore, already been exposed for some portion of their lifetime at the higher pre-rule DBP levels, and (2) those who are born after the rule is implemented who will only ever be exposed to the lower post-rule DBP levels.

Cessation lag enters into the calculation of benefits only for the first of these two groups. Cessation lag does not enter into the calculation of benefits for the second group since there is no change from a higher to a lower exposure level for that population, and therefore there is no transition period from the higher to the lower risk level.

At some point following rule implementation, the annual cases avoided will become equal to the annual bladder cancer cases ultimately avoidable. The time that it takes for this to occur depends mainly upon the cessation lag model and how it describes the transition to the lower risks. It is also influenced by the turn-over in the population from being composed primarily of those alive prior to rule implementation to being composed primarily of those born after rule implementation. It is useful to note that the absolute upper bound on the time that it will take for the annual cases avoided to become equal to the annual cases ultimately avoidable described in the preceding section is when the population is composed solely of those who were born after the rule has gone into effect. For the purposes of the Stage 2 benefits modeling, it is assumed that this will be 100 years after the rule is implemented. At that time (and from that point forward) the annual bladder cancer cases ultimately avoidable is achieved for the exposed population.

#### **E.5.2** Data Sources for Cessation Lag Models

As noted above, the bladder cancer risk reductions are not expected to be instantaneous; Rather, it is assumed that there is a transition period from the risk associated with the higher DBP exposure levels to the risk associated with the lower exposure levels. The challenge is to estimate the rate at which this transition occurs.

No epidemiological or other empirical data are available that specifically address the rate or pattern of achieving the bladder cancer benefits of DBP exposure reductions. In lieu of using data specific to DBPs, EPA is drawing upon empirical data from three epidemiology studies that address the rate at which cancer risk reduction occurs for individuals following exposure reduction to other carcinogens. The three studies used, and the cancer end-points and risk factors they consider, are:

- 1. Hrubec and McLaughlin (1997a): smoking and lung cancer
- 2. Hartge et al. (1987): smoking and bladder cancer
- 3. Chen and Gibb (2003): arsenic (in drinking water) and bladder cancer

Each study provides information on how the cancer risk for individuals having some high level of exposure to the risk factor for a substantial portion of their lifetime transitions over time to the risk for individuals at some lower level of exposure following exposure reduction. The first two data sets involve a change from smoking to not-smoking (complete cessation) while the third involves a change from a high arsenic exposure level of 50 micrograms per liter (ug/L) in drinking water to a lower exposure level of 10 ug/L.

In all cases, the risk reduction in these studies is considered over time in terms of changes in the RR of cancer where "relative" refers to the lower exposure group (for example, never-smokers for the first two studies; and those always exposed to 10 ug/L of arsenic for the third study). For these lower

exposure groups, referred to as the referent group, the RR is set equal to 1.0. That is, the risk for the exposed individuals is measured relative to the risk of those who have not been exposed (or who are at a lower exposure). This referent group therefore represents the lowest possible risk that can be reached following the exposure reduction.

#### E.5.3 Model Specification Using Cessation Lag

The benefits model incorporates cessation lag by using the concept of % Maximum Relative Risk Reduction (%MRRR) which is expressed as:

$$\frac{\%MRRR_j}{RR_0 - RR_j} \times 100$$
 (Equation E.8)

That is, the %MRRR achieved in any year j following exposure cessation or reduction is computed as the Relative Risk for those at the higher exposure level  $(RR_0)$  minus the Relative Risk observed in year j for those whose exposure has been reduced  $(RR_j)$ , divided by the maximum Relative Risk reduction, which is the Relative Risk for those at the higher exposure  $(RR_0)$  minus 1.0 (since 1.0 is the lowest value of Relative Risk that can be achieved under this formulation).

The empirical Relative Risk reduction data in these studies typically provides the changes in RR for several time periods (usually ranges) representing years following exposure reduction. To be incorporated in the Stage 2 benefits modeling, continuous functions were fit to the empirical data from each of the three studies and those functions were then used to calculate the %MRRR for each year after exposure reduction begins.

#### **E.5.3.1** Model Fitting Process

Based on a set of analyses performed, two general functional forms were found to provide the most suitable fits to the data from each of these studies. These are a Weibull function and a Pareto function, as shown below:

Weibull Function:

$$LF_{j} = 1 - e^{-\left(\frac{j}{r}\right)^{q}}$$
 (Equation E.9)

Pareto Function:

$$LF_{j} = 1 - \left(1 + \frac{j}{r}\right)^{q}$$
 (Equation E.10)

As discussed later in this section, EPA initially evaluated nine different functions for the cessation lag model form from which these two were selected.

Here the term LFj refers to the "Lag Function" value for year j after rule implementation and is the modeled equivalent to the %MRRR noted above for – and derived from – the empirical data sets. All LFj values fall between 0 and 1. The parameters q and r in these functions are estimated from the curve fitting procedures using the data from the individual studies.

All model fitting procedures were carried out in SAS.

Smoking and Bladder Cancer

The smoking and bladder cancer data used to parameterize the cessation lag models for smoking and bladder cancer is derived from Table 1 of Hartge et al. (1987) and shown in Exhibit E.25. The study provides values for RR and years following cessation, and %MRRR was calculated from these data using the RR for never smokers as the referent value (RR = 1.0).

Exhibit E.25 Summary of Smoking / Bladder Cancer Data from Hartge et al. (1987)
Used to Model Cessation Lag

| Years After<br>Cessation | Estimated RR<br>(95% CI) | %MRRR<br>(Using Estimated RR<br>Value) |
|--------------------------|--------------------------|----------------------------------------|
| < 1 (RR <sub>0</sub> )   | 2.9 (2.6 - 3.3)          | 0.0%                                   |
| 1 - 10                   | 2.2 ( 1.9 - 2.6)         | 36.8%                                  |
| 10 - 20                  | 1.6 ( 1.4 - 1.9)         | 68.4%                                  |
| 20 - 30                  | 1.7 (1.4 - 2.1)          | 63.2%                                  |
| 30 - 40                  | 1.3 (1.0 - 1.7)          | 84.2%                                  |
| > 40                     | 1.5 (1.1- 2.1)           | 73.7%                                  |
| Never Smokers            | 1.0                      | NA                                     |

Exhibit E.26 is a graph of the Weibull form using parameters fit to the best estimates of the RR in the study and the mid-point of the years after cessation together with the empirical data for those inputs. The estimated parameters for the Weibull form for these inputs are q = 0.52; r = 17.539.

### Exhibit E.26 Graph of the Weibull Form for Smoking / Bladder Cancer Data



Exhibit E.27 is a graph of the Pareto form using parameters fit to the best estimates of the RR in the study and the mid-point of the years after cessation together with the empirical data for those inputs. The estimated parameters for the Pareto form for these inputs are  $a = -4.11 \times 10^7$ ;  $b = 7.703 \times 10^8$ .



Smoking and Lung Cancer

The smoking and lung cancer data used to parameterize the cessation lag models for smoking and lung cancer is derived from Table 4 of Hrubec and McLaughlin (1997a) and are presented in Exhibit E.28. The study provides values for RR and years following cessation, and %MRRR was calculated from these data using the RR for never smokers as the referent value (RR = 1.0). The Hrubec and McLaughlin study did not provide an estimate of RR for current smokers for the RR $_0$  value. The range of values used, as shown in Exhibit E.28, were obtained from two sources: The American Cancer Society (2004) and Halpern et al. (1993).

| Years After<br>Cessation | Estimated RR<br>(95% CI) | %MRRR<br>(Using Estimated RR<br>Value) |
|--------------------------|--------------------------|----------------------------------------|
| < 1 (RR0)                | 22.1 (16.6 - 29.5)*      | 0.0%                                   |
| 1 - 5                    | 16.1 ( 10.4 - 24.8)      | 18.4%                                  |
| 5 - 10                   | 7.8 ( 5.7 - 10.5)        | 69.9%                                  |
| 10 - 20                  | 5.1 ( 4.2 - 6.1)         | 81.8%                                  |
| 20 - 30                  | 3.3 (2.8 - 4.0)          | 86.5%                                  |
| 30 - 40                  | 2.0 (1.6 - 2.6)          | 95.6%                                  |
| > 40                     | 1.5 (1.1- 2.0)           | 97.1%                                  |
| Never Smokers            | 1.0                      | NA                                     |

<sup>\*</sup>RR<sub>0</sub> values for current smokers were not provided in Hrubec and McLaughlin (1997b). The values used here were obtained from relative risks for current smokers reported by American Cancer Society (2004) and Halpern et al. (1993)

Exhibit E.29 is a graph of the Weibull form using parameters fit to the best estimates of the RR in the study and the mid-point of the years after cessation together with the empirical data for those inputs. The estimated parameters for the Weibull form for these inputs are q = 9.17; r = 9.00.

0.8

6 7 Exhibit E.30 is a graph of the Pareto form using parameters fit to the best estimates of the RR in the study and the mid-point of the years after cessation together with the empirical data for those inputs. The estimated parameters for the Pareto form for these inputs are  $q = -9.388 \times 10^8$ ;  $r = 8.402 \times 10^9$ .

35

40

45

50



Arsenic (from drinking water) and Bladder Cancer

The data used to parameterize the cessation lag models for arsenic from drinking water and bladder cancer is derived from Table 5 of Chen and Gibb (2003) and are shown in Exhibit E.31. Data are shown separately for the smokers and non-smokers. However, parameters for the Weibull and Pareto functions were estimated using both the smoker and non-smoker data together. The data were not weighted to reflect smoking because the results were so similar between the two groups and information on the proportion of smokers in the study group was not available.

The arsenic and bladder cancer data did not provide ranges for either the RR or the years following arsenic exposure reduction, and therefore it was not possible to generate uncertainty sets of parameters for this cessation lag model as was done for the smoking and bladder cancer and the smoking and lung cancer cessation lag models.

 

# Exhibit E.31 Summary of Arsenic / Bladder Cancer Data from Chen and Gibb (2003) used to Model Cessation Lag

| Years After<br>Exposure<br>Reduction from<br>50 to 10 ug/L | Estimated<br>RR for<br>Smokers | %MRRR for<br>Smokers | Estimated RR<br>for Non-<br>Smokers | %MRRR for<br>Non-Smokers |
|------------------------------------------------------------|--------------------------------|----------------------|-------------------------------------|--------------------------|
| 0 (RR0)                                                    | 1.0360                         | 0.0%                 | 1.0396                              | 0.0%                     |
| 8                                                          | 1.0141                         | 60.80%               | 1.0096                              | 75.69%                   |
| 12                                                         | 1.0065                         | 81.85%               | 1.0087                              | 77.89%                   |
| 20                                                         | 1.0044                         | 87.82%               | 1.0098                              | 75.26%                   |
| 22                                                         | 1.0050                         | 86.25%               | 0.9989                              | 102.77%                  |
| 23                                                         | 1.0012                         | 96.74%               | 1.0000                              | 100%                     |
| 25                                                         | 1.0000                         | 100%                 | 1.0000                              | 100%                     |
| Always at 10 ug/L                                          | 1.0                            | NA                   | 1.0                                 | NA                       |

Exhibit E.32 is a graph of the Weibull form using parameters fit using both the smoker and non-smoker data on RR in the study and the years after cessation, together with the empirical data for those inputs (smokers are diamonds; non-smokers are circles). The estimated parameters for the Weibull form for these inputs are a = 1.079 b = 6.635.



Exhibit E.33 is a graph of the Pareto form using parameters fit to %MRRR using both the smoker and non-smoker data on RR in the study and the years after cessation, together with the empirical data for those inputs (smokers are diamonds; non-smokers are circles). The estimated parameters for the Pareto form for these inputs are  $a = -7.224 \times 10^6$ ;  $b = 4.629 \times 10^7$ .

8

3



# E.5.3.2 Other Model Forms Evaluated for the Cessation Lag Function

There were a total of nine functional forms initially considered for the cessation lag models. The general shape of the cessation lag (as %MRRR over time) was expected to be an increasing function on the range of 0 to 1 over the domain of years following cessation, reaching or becoming asymptotic to 1 as the number of years following cessation increases. Therefore, a set of general functional forms were identified that exhibit this pattern. The specific set of function forms evaluated was (x is time after cessation, a, b, and c are model parameters):

Weibull (3 parameters): 
$$f(x) = 1 - e^{-(x-c/b)^n}$$

Weibull (2 parameters): 
$$f(x) = 1 - e^{-\left(\frac{x}{b}\right)^a}$$

Pareto I: 
$$f(x) = 1 - \left(\frac{b}{x}\right)^a$$

Pareto II: 
$$f(x) = 1 - \left(1 + \frac{x}{b}\right)^a$$

Log n: 
$$f(x) = a \cdot \ln(x) + b$$

Logistic: 
$$f(x) = \left(1 + e^{-\frac{(x-a)}{b}}\right)^{-1}$$

Exponential: 
$$f(x) = a \cdot e^{-bx} + c$$

LgS: 
$$f(x) = a \cdot (1 + b \cdot e^{-cx})^{-1}$$

Extreme: 
$$f(x) = e^{-e^{-\frac{a-x}{h}}}$$

All of these functions were evaluated using the best estimates of the RR values and the mid-points of the ranges of years following cessation provided in the three studies. For the Stage 2 benefits modeling, the objective of exploring several various model forms was to select two forms for each data set rather than a single "best fit" to capture some measure of model uncertainty.

For uniformity in running the benefits analysis, it was desired that the same two models forms be used for all three cessation lag data sets, so model selection was not strictly the best fits for each data set, although the two models ultimately selected were among the best fits in all cases. Goodness of fit tests performed included average-square-residuals, sign test and run test.

Because it was also desired that uncertainty in the parameter values for each of the two model forms selected be considered in the benefits modeling, it was also necessary that a large set of parameters for the models reflecting that uncertainty (by considering the reported ranges of values in years following cessation for each group and the range of RR values reflected by the 95% CI reported for the RR values) were able to be readily estimated in SAS using its nonlinear curve fitting procedures.

Some model forms were found not to converge or to do so with great difficulty with certain input data; generally, these were cases where the models also did not fit well.

Another desired characteristic of the cessation lag functions was that the curves that were fit to the data would pass through the origin - that is, it would predict 0% maximum relative risk reduction at 0 years after cessation. Not all of these model forms did that with the estimated parameters for all of the data sets.

The parameters for these various functional forms were estimated in SAS using the NLIN SAS procedure. Estimation of a nonlinear model is an iterative process that begins with a set of initial parameter value estimates as inputs and explores alternative values around them. The procedure evaluates the residual sum of squares at each combination of parameter values to determine the set of parameter values producing the lowest residual sum of squares. The numerical method used to come up with alternative parameter estimates was the default Modified Gauss-Newton

Based on the results of these model fits together with the other general criteria and characteristics described above, it was determined that the 2-parameter Weibull and the Pareto IIa model forms were the most suitable for these data sets.

## E.5.3.3 Benefit Model Calculation Using Cessation Lag Function

The number of cases avoided among that part of the population born before the rule goes into effect for a specific age group i in any j years after implementation is computed in the benefits model as:

$$CAVS2_{bij} = (CAVS2MAX_i) \times (LF_i)$$
 for all  $i > j$  (Equation E.11)

Here, the subscript b refers to those born before the Stage 2 rule is implemented, i refers to each of the one-year age groups and j refers to the number of years after exposure reduction. The total cases avoided across all age groups born before rule implementation in any given year j is:

$$CAVS2_{b,j} = \sum_{i=j+1}^{100} (CAVS2MAX_i) * (LF_j)$$
 (Equation E.12)

So, for example, 25 years after the rule goes into effect (j = 25) the age groups comprising those born before the rule went into effect are ages 26 (i = j + 1) to 100. (As noted previously, 25 years after the rule is implemented those in age groups 25 years old or younger will all have been born after the rule went into effect.)

The annual bladder cancer cases ultimately avoidable for each age group born before the rule goes into effect (and exposure reduction begins) is reduced according to the fraction of the maximum relative risk reduction that is estimated from the Lag Function to be attained j years (25 in this example) after exposure to the lower levels of DBPs began (based on the particular cessation lag function used).

# E.6 Computational Procedures for Predicting Cases of Bladder Cancer Avoided

The purpose of this section is to provide all necessary equations and background information for computing the final number of annual cancer cases avoided.

## E.6.1 Estimating Cases Avoided for Populations Born Before and After the Rule

The calculation of annual benefits for the portion of the population born after the rule is implemented is relatively straightforward. For any specific age group born after the rule is implemented, the annual benefits are simply based on the cases ultimately avoidable for that age group. The total for all age groups born after the rule is implemented is the sum across all the appropriate age groups.

So, for example, 10 years after the rule goes into effect, this part of the population consists only of those who are 10 years old or younger; the benefit of the rule is calculated as the sum of the cases ultimately avoidable for each age group 1 through 10. Similarly, 25 years after the rule goes into effect, the benefits for this portion of the population are the sum of the annual cases ultimately avoidable for each age group 1 through 25. In the modeling performed for Stage 2, the population is considered in one-year age groups through age 100. Therefore, 100 years after the rule is implemented, the entire population is composed of individuals born after the rule is implemented and at that time—at the latest—and from that time on the cases ultimately avoidable will be achieved.

While the modeling for the Stage 2 benefits is set up for the full 100-year time horizon, the focus for the comparison of benefits with costs is limited to the first 25 years after the rule is implemented. Nevertheless, for the sake of completeness, these benefits (cases avoided) are computed in the model for each year after the rule and are combined with the benefits (cases avoided) obtained for the other portion of the population: those who are born before the Stage 2 is implemented.

The calculation of annual benefits for the portion of the population born before implementation of the rule must account for cessation lag. To provide initial insight into how the annual benefits are computed each year for this part of the population born, consider the group of people who are 50 years old at the time the rule goes into effect. One year after the rule is implemented, that group has become the 51-year-old group, two years after the rule they are the 52-year-old group, and so on. For example, if the annual cases ultimately avoidable from Stage 2 for the 51-year-old age group is 5.3 cases, the number for the 52-year-old group would be approximately 5.1 cases. Again, if the benefits of the Stage 2 exposure reduction to those who have had some years of exposure to the pre-Stage 2 levels of DBPs (in this case 50 years of such exposure) were instantaneous, then one year after the rule is implemented the expected benefits would be all of those 5.3 cases and two years after they would be all of the 5.1 cases – just as if those individuals had spent their entire lives exposed only to the lower, post-Stage 2 levels.

As we have discussed in Section E.5, however, cancer risk reductions are not instantaneous; there is a transition period from the risk associated with the higher exposure levels to the risk associated with the lower exposure levels (referred to as cessation lag). Section E.5 provides a discussion of how cessation lag is accounted for in the population born before the rule is implemented.

Cases avoided for the two populations (those born before and those born after the rule is implemented) are added to produce total cases avoided for the rule.

## E.6.2 Accounting for Uncertainties in the Benefits Model

The calculation of bladder cancer cases avoided is carried out as a Monte Carlo simulation where uncertainty in several of the key inputs is considered quantitatively. Three separate benefits estimates are modeled, each representing the use of one of the three studies serving as the basis for the cessation lag function as noted above (smoking/lung cancer; smoking/bladder cancer; and arsenic/bladder cancer). Each model is run independently for percent DBP reduction based on TTHM and HAA5.

Each of these three separate cessation lag models is, as noted, a Monte Carlo simulation in which several specific inputs will be incorporated as uncertainty variables. These are:

- 1. Three approaches were used to estimate the baseline number of bladder cancer cases attributable to DBP exposure. For the sake of simplicity, one approach using data from Villanueva et al. (2003) was carried through the full benefits model.
- 2. The PAR value for Pre-Stage 1 that is derived from the Villanueva et al. (2003) study is input as an uncertain variable. Specifically, the OR and its 95% confidence interval reported by Villanueva et al. (2003) were used to parameterize a triangular uncertainty distribution with minumum = 1.0725, mode = 1.2, and maximum = 1.4359. The minimum was estimated from the lower 95% bound of 1.1 multiplied by 0.975; the maximum was estimated from the upper 95% confidence bound of 1.4 divided by 0.975; the mode of 1.2 was taken from the best estimate of the OR reported by the authors. Note that the expected value of this distribution of 1.24 is higher than the mode of 1.2 because of the asymmetry of the 95% confidence interval reported by Villanueva et al. (2003). The confidence bounds from Villanueva et al. (2003) capture a significant portion of the confidence intervals of the other two approaches.
- 3. Percent DBP (TTHM or HAA5) reductions for Stage 1 and Stage 2. These values are derived using the SWAT model and the ICR Matrix Method. For the estimates of DBP reduction as a result of the Stage 2 DBPR, EPA produces two separate estimates of percent reduction to account for the potential impact of the IDSE on the compliance forecast. Also, the uncertainty in SWAT-predicted equations is incorporated into the model.
- 4. Model form uncertainty for cessation lag functions. As noted above, two functional forms have been used to model the Lag Function values: Weibull and Pareto. In the Monte Carlo simulation, one or the other of these functions is selected randomly (with equal probability) on a given iteration.
- 5. Model parameter uncertainty for cessation lag functions. For the Lag Functions based on the smoking/lung cancer and the smoking/bladder cancer data sets, the two parameters

for the Weibull and Pareto functions (q and r as shown above) are uncertain values; that uncertainty is accounted for in the simulation. One thousand parameter pairs were estimated for each function reflecting uncertainty in the time following cessation and in the reported RR values in those studies and, on a given iteration, once one of the two functional forms has been selected at random, a parameter pair for that function is selected at random and used for the subsequent calculations. Note that for the arsenic/bladder cancer data provided in the Chen and Gibb study, there was insufficient information to estimate the uncertainty around these parameters (Chen and Gibb 2003). In the model runs using the arsenic/bladder cancer data, only the single best estimates of those parameters are used once the model function is randomly selected.

# **E.6.3** Benefits Model Equations

The function and flow of the model is presented in Exhibit E.34. The upper portion presents the model inputs and distributions for uncertain values. The bottom portion shows the progression of the model.

The model is run independently to produce PAR values for TTHM and HAA5 as indicators of DBP reduction, and for each of three cessation lag functions based on smoking and lung cancer, smoking and bladder cancer, and arsenic and bladder cancer data (a total of 6 estimates of PAR). The PAR values are generated by using the slope (S) for DBP risk as a function of age, estimated from Villanueva et al. (2003) and Equations E.5 and E.6, as described earlier.

The set of PAR values for each run are used to generate sets of cases attributable to chlorination DBPs (CATT) as in Equation E.15 by using the background incidence of bladder cancer (BI) from Equation E.1.

$$CATT_i = BI_i \times PAR_i$$
 (Equation E.13)

The sets of values for CATT are then used to generate sets of the cases ultimately avoidable due to Stage 1 (CAVS1Max) by using the following equation:

$$CAVS1Max = CATT \times (S1Red)$$
 (Equation E.14)

The percent reduction in average DBP (TTHM or HAA5) concentration from Pre-Stage 1 to Post-Stage 1 (S1Red) is applied to the cases attributable to DBPs.

These ultimately avoidable values are used to calculate sets of cases avoided for Stage 1. The total of cases consists of cases avoided for two different populations, those born before the rule and those born after the rule. Since the group that is born after the rule only experiences post-rule exposure levels, the cases avoided for this group are equal to the cases ultimately avoidable (CAVS1a = CAVS1Max). For the population alive when the rule is promulgated, there will be a cessation lag effect, as described in Section E.5. The cases avoided for this group is some fraction of the ultimate value, each year after the rule is promulgated. This is referred to as the lag function (LF). The cases avoided for this group is

- 1 CAVS1b = (CAVS1Max  $\times$  LF). The lag function is explained in more detail in Section E.5.3.1. To
- estimate the total cases avoided by the Stage 1 rule, the cases avoided for each of the two populations is
- 3 summed to come up with sets of cases avoided (CAVS1). The model then repeats this process for all 6
- 4 combinations of the two DBPs and three cessation lag models.

#### В. A. C. Define Values for Constant Inputs: Create Sets of "k" Values for Uncertain Set number of iterations (=k) Inputs: Note: For all runs Ages i = 1...101 (1) OR (Triangular Dist.) and Years After Stage 2 Exposure S1Red<sub>TTHM</sub> S2Red<sub>TTHM</sub> (Uniform Dist.) (2) Reduction j = 1...100. S2Red<sub>TTHM</sub> (Uniform Dist.) (3) S1Red<sub>HAA5</sub> LF form and parameters POP: (4) (1) Smoking/Bladder (5) BR<sub>i</sub> (2) Smoking/Lung (3) Arsenic/Bladder Definitions: Fraction of population exposed to DBPs OR Odds Ratio to Calculate Pre-Stage 1 PAR S1Red % reductions in avg. DBP concentrations from pre- to post- Stage 1 **S2Red** % reductions in avg. DBP concentrations from pre- to post- Stage 2 POP; Population at age = i LF Lag function BR. Background bladder cancer rate from SEER for age = i Number of iterations **Model Inputs**



 A similar process is performed for the annual cases ultimately avoidable due to Stage 2 (CAVS2Max), but this built on the CAVS1Max in the following equation:

 $CAVS2Max = [CATT - CAVS1Max] \times S2Red$ 

(Equation E.15)

The percent reduction in average DBP (TTHM or HAA5) concentration from Pre-Stage 2 to Post-Stage 2 is applied to the cases available after Stage 1 (S2Red). Note that while the percent DBP reduction for Stage 1 is a point estimate, the percent DBP reduction for Stage 2 incorporates uncertainties (see previous section).

These ultimate values are used to calculate sets of cases avoided for Stage 2. As was the case for Stage 1, the total cases avoided consist of those for two different populations, those born before the rule and those born after the rule. Since the group that is born after the rule only experiences post-rule exposure levels, the cases avoided for this group equal the cases ultimately avoidable (CAVS2a = CAVS2Max). As described for Stage 1 above, we apply the lag function to obtain the cases avoided for the population alive when the rule is promulgated,  $CAV2b = CAVS2Max \times LF$ . To estimate the total cases avoided by the Stage 2 rule, the cases avoided for each of the two populations is summed to come up with sets of cases avoided (CAVS2). The model then repeats this process for all 6 combinations of the two DBPs and three cessation lag models.

Addition details for the Stage 2 DBPR benefits model are provided in Appendix K.

## E.6.4 Allocating Cases Avoided to Different System Size and Source Water Categories

The total number of bladder cancer cases avoided as a result of the Stage 2 DBPR includes those from all system sizes and source water categories. To adjust the projection of cases over 25 years to account for the rule implementation schedule (see next Section), the total cases are allocated to the following system categories:

- Large and medium surface water systems
- Small surface water systems
- Large and medium ground water systems
- Small groundwater systems

The cases are allocated in proportion to 1) total population served and 2) reduction in TTHM or HAA5 concentrations. The percent of cases allocated to the four system categories is shown in Exhibit E.35 for the Stage 1 DBPR, and Exhibit E.36 for the Stage 2 DBPR.

|                 | Population  | Population<br>(Percent of | Pre-Stage 2<br>DBP<br>Concentration | Pre-S2<br>Population<br>Weighted<br>Average | Percent<br>Reduction in<br>DBP | Amount<br>Reduced | Population<br>Weighted<br>Amount | Allocation of Cases |
|-----------------|-------------|---------------------------|-------------------------------------|---------------------------------------------|--------------------------------|-------------------|----------------------------------|---------------------|
|                 | Served      | Total)                    | (µg/L)                              | Concentration                               | Concentration                  | (µg/L)            | Reduced                          | Avoided             |
| System Size and |             | B = A /                   |                                     |                                             |                                |                   |                                  |                     |
| Type:           | Α           | 263,024,518               | С                                   | D = B * C                                   | E                              | F = C * E         | G = F * B                        | H = G/G total       |
| TTHM            |             | •                         | •                                   |                                             | •                              |                   |                                  |                     |
| SW > 10,000     | 160,935,736 | 61.2%                     | 48.70                               | 29.80                                       | 27.17%                         | 13.23             | 8.10                             | 78.9%               |
| SW < 10,000     | 8,422,403   | 3.2%                      | 82.80                               | 2.65                                        | 57.16%                         | 47.33             | 1.52                             | 14.8%               |
| GW > 10,000     | 65,152,168  | 24.8%                     | 15.36                               | 3.80                                        | 14.31%                         | 2.20              | 0.54                             | 5.3%                |
| GW < 10,000     | 28,514,211  | 10.8%                     | 16.53                               | 1.79                                        | 5.64%                          | 0.93              | 0.10                             | 1.0%                |
| Total           | 263,024,518 | 100.0%                    |                                     |                                             |                                |                   | 10.26                            | 100%                |
| HAA5            |             |                           |                                     |                                             |                                |                   |                                  |                     |
| SW > 10,000     | 160,935,736 | 61.2%                     | 35.48                               | 21.71                                       | 29.54%                         | 10.48             | 6.41                             | 85.6%               |
| SW < 10,000     | 8,422,403   | 3.2%                      | 45.32                               | 1.45                                        | 44.83%                         | 20.32             | 0.65                             | 8.7%                |
| GW > 10,000     | 65,152,168  | 24.8%                     | 8.45                                | 2.09                                        | 17.63%                         | 1.49              | 0.37                             | 4.9%                |
| GW < 10,000     | 28,514,211  | 10.8%                     | 9.09                                | 0.99                                        | 6.13%                          | 0.56              | 0.06                             | 0.8%                |
| Total           | 263,024,518 | 100.0%                    |                                     |                                             |                                |                   | 7.49                             | 100%                |

Note: Allocation of cases to system sizes within the size classes noted above (<>10,000) are consistent with the available DBP information and calculations on a finer level must be based upon population only.

Sources: (A) Population baseline in Chapter 3

(C) (E) Exhibit 5.22

3

# Exhibit E.36 Allocation of Cases Avoided by the Stage 2 DBPR to System Categories

|                        | Population<br>Served | Population<br>(Percent of<br>Total) | Pre-Stage 2<br>DBP<br>Concentration<br>(μg/L) | Pre-S2 Population<br>Weighted Average<br>Concentration | Percent<br>Reduction in<br>DBP<br>Concentration | Amount<br>Reduced<br>(µg/L) | Population<br>Weighted<br>Amount<br>Reduced | Allocation of Cases Avoided |
|------------------------|----------------------|-------------------------------------|-----------------------------------------------|--------------------------------------------------------|-------------------------------------------------|-----------------------------|---------------------------------------------|-----------------------------|
| System Size and Type:  | А                    | B = A /<br>263,024,518              | С                                             | D = B * C                                              | E                                               | F = C * E                   | G = F * B                                   | H = G/G total               |
| туре.<br>ТТНМ (20% SM) | A                    | 203,024,318                         | C                                             | D=B C                                                  | L                                               | I = C L                     | G=1 B                                       | TT = G/G total              |
| SW > 10.000            | 160,935,736          | 61.2%                               | 35.47                                         | 21.70                                                  | 7.30%                                           | 2.59                        | 1.58                                        | 91.8%                       |
| SW < 10.000            | 8,422,403            | 3.2%                                | 35.47                                         | 1.14                                                   | 7.30%                                           | 2.59                        |                                             |                             |
| GW > 10,000            | 65,152,168           | 24.8%                               | 13.16                                         | 3.26                                                   | 1.44%                                           | 0.19                        |                                             | 2.7%                        |
| GW < 10,000            | 28,514,211           | 10.8%                               | 15.60                                         | 1.69                                                   | 0.72%                                           | 0.11                        | 0.01                                        | 0.7%                        |
| Total                  | 263,024,518          | 100.0%                              |                                               |                                                        |                                                 |                             | 1.73                                        | 100%                        |
| HAA5 (20% SM)          |                      |                                     |                                               |                                                        |                                                 |                             |                                             |                             |
| SW > 10,000            | 160,935,736          | 61.2%                               | 25.00                                         | 15.30                                                  | 7.69%                                           | 1.92                        | 1.18                                        | 88.1%                       |
| SW < 10,000            | 8,422,403            | 3.2%                                | 25.00                                         | 0.80                                                   | 7.69%                                           | 1.92                        | 0.06                                        | 4.6%                        |
| GW > 10,000            | 65,152,168           | 24.8%                               | 6.96                                          | 1.72                                                   | 4.47%                                           | 0.31                        | 0.08                                        | 5.8%                        |
| GW < 10,000            | 28,514,211           | 10.8%                               | 8.53                                          | 0.92                                                   | 2.23%                                           | 0.19                        | 0.02                                        | 1.5%                        |
| Total                  | 263,024,518          | 100.0%                              |                                               |                                                        |                                                 |                             | 1.34                                        | 100%                        |
| TTHM (25% SM)          |                      |                                     |                                               |                                                        |                                                 |                             |                                             |                             |
| SW > 10,000            | 160,935,736          | 61.2%                               | 35.47                                         | 21.70                                                  | 11.16%                                          | 3.96                        | 2.42                                        | 94.5%                       |
| SW < 10,000            | 8,422,403            | 3.2%                                | 35.47                                         | 1.14                                                   | 7.30%                                           | 2.59                        | 0.08                                        | 3.2%                        |
| GW > 10,000            | 65,152,168           | 24.8%                               | 13.16                                         | 3.26                                                   | 1.44%                                           | 0.19                        | 0.05                                        | 1.8%                        |
| GW < 10,000            | 28,514,211           | 10.8%                               | 15.60                                         | 1.69                                                   | 0.72%                                           | 0.11                        | 0.01                                        | 0.5%                        |
| Total                  | 263,024,518          | 100.0%                              |                                               |                                                        |                                                 |                             | 2.56                                        | 100%                        |
| HAA5 (25% SM)          |                      |                                     |                                               |                                                        |                                                 |                             | 1                                           |                             |
| SW > 10,000            | 160,935,736          |                                     | 25.00                                         | 15.30                                                  | 12.23%                                          | 3.06                        |                                             | 92.2%                       |
| SW < 10,000            | 8,422,403            | 3.2%                                | 25.00                                         | 0.80                                                   | 7.69%                                           | 1.92                        | 0.06                                        |                             |
| GW > 10,000            | 65,152,168           |                                     | 6.96                                          | 1.72                                                   | 4.47%                                           | 0.31                        | 0.08                                        | 3.8%                        |
| GW < 10,000            | 28,514,211           | 10.8%                               | 8.53                                          | 0.92                                                   | 2.23%                                           | 0.19                        | 0.02                                        | 1.0%                        |
| Total                  | 263,024,518          | 100.0%                              |                                               |                                                        | / 40.000)                                       | -1-44                       | 2.03                                        | 100%                        |

Note:

Allocation of cases to system sizes within the size classes noted above (<>10,000) are consistent with the available DBP information and calculations on a finer level must be based upon population only.

Sources:

- (A) Population baseline in Chapter 3
- (C) Exhibit 5.22

(E) For SW, Percent Reduction = [(SWAT predicted reduction) + ICR/SWAT ratio \* (SWAT predicted reduction)]/2. See Exhibit 5.18. For GW, see Exhibit 5.23

3

# E.6.5 Adjusting the 25-year Projection of Cases Avoided to Account for the Rule Implementation Schedule

6 7 8

9

10

11

12

4

5

Reduction in exposure to DBPs does not begin immediately when the Stage 2 DBPR is promulgated. Water systems are given a certain amount of time to make treatment technology changes to come into compliance with the rule. Appendix D shows estimates of when systems will install treatment technology changes (in the form of cumulative percentages) based on the required compliance schedule. Exhibit E.37 shows the estimated schedule for large and medium surface water systems, small surface water systems, large and medium ground water systems, and small ground water systems, as

derived from Appendix D. The projected total estimate of bladder cancer cases avoided is multiplied by the percentages in Exhibit E.37 to generate the final stream of bladder cancer cases avoided for 25 years after the rule is promulgated.

Exhibit E.37 Estimated Schedule for Systems Making Treatment Technology Changes to Comply with the Stage 2 DBPR

| Year after Rule | % Surface W | later Systems | % Ground Wa | ter Systems |
|-----------------|-------------|---------------|-------------|-------------|
| Promulgation    | Small       | Large         | Small       | Large       |
| 1               | 0%          | 0%            | 0%          | 0%          |
| 2               | 0%          | 0%            | 0%          | 0%          |
| 3               | 0%          | 0%            | 0%          | 0%          |
| 4               | 0%          | 0%            | 0%          | 0%          |
| 5               | 0%          | 0%            | 15%         | 24%         |
| 6               | 15%         | 22%           | 31%         | 47%         |
| 7               | 31%         | 43%           | 46%         | 71%         |
| 8               | 46%         | 65%           | 62%         | 95%         |
| 9               | 62%         | 87%           | 77%         | 99%         |
| 10              | 77%         | 96%           | 92%         | 100%        |
| 11              | 92%         | 100%          | 100%        | 100%        |
| 12              | 100%        | 100%          | 100%        | 100%        |
| 13              | 100%        | 100%          | 100%        | 100%        |
| 14              | 100%        | 100%          | 100%        | 100%        |
| 15              | 100%        | 100%          | 100%        | 100%        |
| 16              | 100%        | 100%          | 100%        | 100%        |
| 17              | 100%        | 100%          | 100%        | 100%        |
| 18              | 100%        | 100%          | 100%        | 100%        |
| 19              | 100%        | 100%          | 100%        | 100%        |
| 20              | 100%        | 100%          | 100%        | 100%        |
| 21              | 100%        | 100%          | 100%        | 100%        |
| 22              | 100%        | 100%          | 100%        | 100%        |
| 23              | 100%        | 100%          | 100%        | 100%        |
| 24              | 100%        | 100%          | 100%        | 100%        |
| 25              | 100%        | 100%          | 100%        | 100%        |

Note: Small systems serve less than 10,000 people and large system serve greater than or equal to 10,000 people.

## **E.7** Detailed Results Output from Models

This section presents detailed results for annual cancer cases avoided (adjusted for cessation lag and rule implementation schedule) for the Stage 2 DBPR Preferred Regulatory Alternative (includes a requirement for the IDSE), all other regulatory alternatives, and all sensitivity analyses. Results for TTHM are shown for each alternative; however, detailed results for HAA5 are shown only for the Preferred Regulatory Alternative. The derivation of results using HAA5 occurrence data is exactly the same as the calculations using TTHM occurrence data. The percent reductions are similar.

## Matrix of Section E.7 Contents

| Applicable Rule<br>Alternative(s) | Applicable DBP(s) | Cessation Lag<br>Model Form | Exhibit Description                                | Applicable Source<br>Water Type(s) | Applicable<br>System Size | Exhibit<br>Number |
|-----------------------------------|-------------------|-----------------------------|----------------------------------------------------|------------------------------------|---------------------------|-------------------|
|                                   |                   |                             | Mean Number of Cases Avoided By Age Group and Yr   | All                                | All                       | E.38a             |
|                                   |                   | Smoking/Lung                | , ,                                                | Surface                            | All                       | E.38b             |
|                                   |                   | Cancer                      | Projection of Cases Avoided by Year                | Ground                             | All                       | E.38c             |
|                                   |                   |                             |                                                    | All                                | All                       | E.38d             |
|                                   |                   |                             | Mean Number of Cases Avoided By Age Group and Yr   | All                                | All                       | E.38e             |
|                                   | ттнм              | Smoking/Bladde              | , ,                                                | Surface                            | All                       | E.38f             |
|                                   | I I HIVI          | r Cancer                    | Projection of Cases Avoided by Year                | Ground                             | All                       | E.38q             |
|                                   |                   |                             |                                                    | All                                | All                       | E.38h             |
|                                   |                   |                             | Mean Number of Cases Avoided By Age Group and Yr   | All                                | All                       | E.38i             |
|                                   |                   | Arsenic/Bladder             |                                                    | Surface                            | All                       | E.38i             |
|                                   |                   | Cancer                      | Projection of Cases Avoided by Year                | Ground                             | All                       | E.38k             |
| Stage 2 Preferred                 |                   |                             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,            | All                                | All                       | E.38l             |
| Alternative                       |                   |                             | Mean Number of Cases Avoided By Age Group and Yr   |                                    | All                       | E.39a             |
|                                   |                   | Smoking/Lung                | moasor or outdoor worded by rigo Group and Tr      | Surface                            | All                       | E.39b             |
|                                   |                   | Cancer                      | Projection of Cases Avoided by Year                | Ground                             | All                       | E.39c             |
|                                   |                   | Carloci                     | 1 Tojoular or Guada 7 Worded by Toda               | All                                | All                       | E.39d             |
|                                   |                   |                             | Mean Number of Cases Avoided By Age Group and Yr   |                                    | All                       | E.39e             |
|                                   |                   | Smoking/Bladde              | iviean Number of Cases Avoided by Age Group and Tr | Surface                            | All                       | E.39f             |
|                                   | HAA5              | r Cancer                    | Projection of Cases Avoided by Year                | Ground                             | All                       | E.39a             |
|                                   |                   | i Cancei                    | Projection of Cases Avoided by Teal                | All                                | All                       | E.39g             |
|                                   |                   |                             | Man Number of Coope Avoided Dv Age Crown and Va    |                                    | All                       | E.39i             |
|                                   |                   | Arsenic/Bladder             | Mean Number of Cases Avoided By Age Group and Yr   |                                    | All                       |                   |
|                                   |                   | Cancer                      | Projection of Cases Avoided by Year                | Surface                            |                           | E.39j             |
|                                   |                   | Cancer                      | Projection of Cases Avoided by Year                | Ground<br>All                      | All                       | E.39k<br>E.39l    |
|                                   |                   |                             | N N I (0 A : I I B A 0 I I V                       |                                    |                           |                   |
|                                   |                   | Constinue I                 | Mean Number of Cases Avoided By Age Group and Yr   |                                    | All                       | E.40a             |
| Stage 2 Alternative 1             | TTHM              | Smoking/Lung                | Desiration of Ocean Assistant by Vers              | Surface                            | All                       | E.40b             |
|                                   |                   | Cancer                      | Projection of Cases Avoided by Year                | Ground                             | All                       | E.40c<br>E.40d    |
|                                   | ļ                 |                             |                                                    | All                                | All                       |                   |
|                                   |                   |                             | Mean Number of Cases Avoided By Age Group and Yr   |                                    | All                       | E.41a             |
| Stage 2 Alternative 2             | TTHM              | Smoking/Lung                |                                                    | Surface                            | All                       | E.41b             |
| •                                 |                   | Cancer                      | Projection of Cases Avoided by Year                | Ground                             | All                       | E.41c             |
|                                   |                   |                             |                                                    | All                                | All                       | E.41d             |
|                                   |                   |                             | Mean Number of Cases Avoided By Age Group and Yr   |                                    | All                       | E.42a             |
| Stage 2 Alternative 3             | TTHM              | Smoking/Lung                |                                                    | Surface                            | All                       | E.42b             |
|                                   |                   | Cancer                      | Projection of Cases Avoided by Year                | Ground                             | All                       | E.42c             |
|                                   |                   |                             |                                                    | All                                | All                       | E.42d             |
| Stage 2                           |                   |                             | Mean Number of Cases Avoided By Age Group and Yr   |                                    | All                       | E.43a             |
| Colorectal Sensitivity            | ттнм              | Smoking/Lung                |                                                    | Surface                            | All                       | E.43b             |
| Analysis                          |                   | Cancer                      | Projection of Cases Avoided by Year                | Ground                             | All                       | E.43c             |
| 7 trialy 0.10                     |                   |                             |                                                    | All                                | All                       | E.43d             |
| Stage 2                           |                   |                             | Mean Number of Cases Avoided By Age Group and Yr   | All                                | All                       | E.44a             |
| Preferred Alternative.            | ттнм              | Smoking/Lung                |                                                    | Surface                            | All                       | E.44b             |
| 20% Safety Margin                 | ' ' ' ' ' ' '     | Cancer                      | Projection of Cases Avoided by Year                | Ground                             | All                       | E.44c             |
| 2070 Galety Margin                |                   |                             |                                                    | All                                | All                       | E.44d             |
| Stage 2                           |                   |                             | Mean Number of Cases Avoided By Age Group and Yr   | All                                | All                       | E.45a             |
| Preferred Alternative,            | ттнм              | Smoking/Lung                |                                                    | Surface                            | All                       | E.45b             |
|                                   | I I I IIVI        | Cancer                      | Projection of Cases Avoided by Year                | Ground                             | All                       | E.45c             |
| 25% Safety Margin                 | 1                 | 1                           | *                                                  | All                                | All                       | E.45d             |

# Section E.7.1 Projection of Cases - Preferred Alternative TTHM as Indicator

# Exhibit E.38a Mean Number of Cases Avoided by Age Group per year following rule promulgation (Smoking/Lung Cancer model - TTHM - Preferred Alternative)

|                         |                  |                  | (Smoki           | ng/Lung (        | Jancer mo          | odel - TTH         | M - Prefer           | red Alterna          | itive)               |                    |                      |            |
|-------------------------|------------------|------------------|------------------|------------------|--------------------|--------------------|----------------------|----------------------|----------------------|--------------------|----------------------|------------|
| Years After<br>the Rule | 1-10             | Group<br>11-20   | 21-30            | 31-40            | 41-50              | 51-60              | 61-70                | 71-80                | 81-90                | 91-100+            | Total                | %          |
| 1                       | 0                | 0                | 0                | 0                | 0                  | 0                  | 0                    | 0                    | 0                    | 0                  | 0                    | 0%         |
| 2                       | 0                | 0                | 0                | 0                | 0                  | 0                  | 0                    | 0                    | 0                    | 0                  | 0                    | 0%         |
| 3<br>4                  | 0                | 0                | 0                | 0                | 0                  | 0                  | 0                    | 0                    | 0                    | 0                  | 0                    | 0%         |
| 5                       | 0                | 0                | 0                | 0                | 0                  | 0                  | 0                    | 0                    | 0                    | 0                  | 0                    | 0%         |
| 6                       | 0.0113           | 0.0095           | 0.0588           | 0.2379           | 1.0265             | 2.7816             | 5.3633               | 8.4843               | 5.0303               | 0.9038             | 23.9073              | 4%         |
| 7 8                     | 0.0298           | 0.0243<br>0.0436 | 0.1505<br>0.2696 | 0.6095<br>1.0917 | 2.6297<br>4.7104   | 7.1257<br>12.7640  | 13.7393<br>24.6108   | 21.7345<br>38.9322   | 12.8864<br>23.0829   | 2.3152<br>4.1472   | 61.2449<br>109.7064  | 11%<br>19% |
| 9                       | 0.0828           | 0.0668           | 0.4135           | 1.6743           | 7.2241             | 19.5755            | 37.7444              | 59.7085              | 35.4012              | 6.3603             | 168.2516             | 29%        |
| 10                      | 0.1067<br>0.1256 | 0.0864<br>0.1045 | 0.5348<br>0.6462 | 2.1654<br>2.6168 | 9.3431<br>11.2904  | 25.3174<br>30.5940 | 48.8155<br>58.9895   | 77.2220<br>93.3165   | 45.7849<br>55.3273   | 8.2259<br>9.9403   | 217.6021<br>262.9511 | 38%<br>46% |
| 12                      | 0.1238           | 0.1045           | 0.7455           | 3.0186           | 13.0241            | 35.2920            | 68.0480              | 107.6462             | 63.8234              | 11.4668            | 303.3250             | 53%        |
| 13                      | 0.1503           | 0.1346           | 0.8326           | 3.3713           | 14.5459            | 39.4157            | 75.9990              | 120.2242             | 71.2809              | 12.8066            | 338.7611             | 59%        |
| 14<br>15                | 0.1574<br>0.1627 | 0.1465<br>0.1564 | 0.9066<br>0.9674 | 3.6710<br>3.9172 | 15.8389<br>16.9014 | 42.9194<br>45.7984 | 82.7546<br>88.3058   | 130.9109             | 77.6171<br>82.8237   | 13.9450<br>14.8804 | 368.8674<br>393.6061 | 64%<br>68% |
| 16                      | 0.1663           | 0.1650           | 1.0179           | 4.1218           | 17.7843            | 48.1907            | 92.9184              | 146.9892             | 87.1499              | 15.6577            | 414.1613             | 72%        |
| 17                      | 0.1685           | 0.1728           | 1.0603           | 4.2935           | 18.5251            | 50.1981            | 96.7891              | 153.1122             | 90.7802              | 16.3099            | 431.4098             | 75%        |
| 18<br>19                | 0.1696<br>0.1699 | 0.1798<br>0.1862 | 1.0963<br>1.1272 | 4.4393<br>4.5643 | 19.1541<br>19.6935 | 51.9025<br>53.3641 | 100.0754<br>102.8936 | 158.3110<br>162.7691 | 93.8625<br>96.5058   | 16.8637<br>17.3386 | 446.0543<br>458.6124 | 77%<br>79% |
| 20                      | 0.1700           | 0.1918           | 1.1539           | 4.6724           | 20.1599            | 54.6280            | 105.3306             | 166.6243             | 98.7915              | 17.7493            | 469.4717             | 81%        |
| 21                      | 0.1700           | 0.1976           | 1.1772           | 4.7666           | 20.5664            | 55.7294            | 107.4542             | 169.9837             | 100.7833             | 18.1071            | 478.9355             | 83%        |
| 22                      | 0.1700<br>0.1700 | 0.2034           | 1.1976<br>1.2156 | 4.8493<br>4.9223 | 20.9230            | 56.6959<br>57.5493 | 109.3177<br>110.9631 | 172.9316<br>175.5345 | 102.5311             | 18.4212<br>18.6984 | 487.2410<br>494.5750 | 84%<br>86% |
| 24                      | 0.1700           | 0.2155           | 1.2316           | 4.9871           | 21.5175            | 58.3067            | 112.4236             | 177.8448             | 105.4441             | 18.9445            | 501.0854             | 87%        |
| 25                      | 0.1700<br>0.1700 | 0.2210           | 1.2459<br>1.2608 | 5.0448<br>5.0966 | 21.7667<br>21.9898 | 58.9821<br>59.5867 | 113.7258<br>114.8916 | 179.9047<br>181.7490 | 106.6655             | 19.1640<br>19.3604 | 506.8904<br>512.0889 | 88%<br>89% |
| 26<br>27                | 0.1700           | 0.2275           | 1.2763           | 5.1430           | 22.1904            | 60.1300            | 115.9392             | 183.4063             | 107.7390             | 19.5369            | 516.7613             | 90%        |
| 28                      | 0.1700           | 0.2289           | 1.2921           | 5.1849           | 22.3711            | 60.6199            | 116.8838             | 184.9005             | 109.6274             | 19.6961            | 520.9748             | 90%        |
| 29<br>30                | 0.1700           | 0.2293           | 1.3082           | 5.2228<br>5.2572 | 22.5346<br>22.6829 | 61.0629<br>61.4646 | 117.7379<br>118.5125 | 186.2517<br>187.4770 | 110.4286             | 19.8400<br>19.9706 | 524.7861<br>528.2421 | 91%<br>91% |
| 31                      | 0.1700           | 0.2294           | 1.3228           | 5.2884           | 22.8177            | 61.8299            | 119.2168             | 188.5911             | 111.1551             | 20.0892            | 528.2421             | 91%        |
| 32                      | 0.1700           | 0.2294           | 1.3523           | 5.3169           | 22.9405            | 62.1628            | 119.8586             | 189.6063             | 112.4176             | 20.1974            | 534.2517             | 93%        |
| 33                      | 0.1700           | 0.2294           | 1.3671<br>1.3822 | 5.3429<br>5.3667 | 23.0527<br>23.1554 | 62.4668<br>62.7450 | 120.4447<br>120.9812 | 190.5336<br>191.3822 | 112.9673             | 20.2962            | 536.8707<br>539.2692 | 93%<br>93% |
| 35                      | 0.1700           | 0.2294           | 1.3963           | 5.3885           | 23.2495            | 63.0001            | 121.4731             | 192.1604             | 113.9319             | 20.4695            | 541.4688             | 94%        |
| 36                      | 0.1700           | 0.2294           | 1.4069           | 5.4126           | 23.3360            | 63.2345<br>63.4502 | 121.9250             | 192.8753<br>193.5332 | 114.3557             | 20.5456            | 543.4910             | 94%        |
| 37<br>38                | 0.1700<br>0.1700 | 0.2294           | 1.4140           | 5.4384<br>5.4658 | 23.4156<br>23.4890 | 63.4502<br>63.6490 | 122.3409<br>122.7242 | 193.5332<br>194.1395 | 114.7457<br>115.1053 | 20.6157            | 545.3532<br>547.0705 | 94%<br>95% |
| 39                      | 0.1700           | 0.2294           | 1.4190           | 5.4946           | 23.5567            | 63.8325            | 123.0781             | 194.6995             | 115.4372             | 20.7399            | 548.6570             | 95%        |
| 40<br>41                | 0.1700<br>0.1700 | 0.2294<br>0.2294 | 1.4193<br>1.4194 | 5.5215<br>5.5516 | 23.6194<br>23.6774 | 64.0023<br>64.1594 | 123.4054<br>123.7085 | 195.2172<br>195.6966 | 115.7442<br>116.0285 | 20.7951            | 550.1237<br>551.4869 | 95%<br>96% |
| 42                      | 0.1700           | 0.2294           | 1.4194           | 5.5842           | 23.7312            | 64.3052            | 123.9895             | 196.1412             | 116.2921             | 20.8935            | 552.7557             | 96%        |
| 43                      | 0.1700           | 0.2294           | 1.4194           | 5.6190           | 23.7811            | 64.4406            | 124.2506             | 196.5541             | 116.5369             | 20.9375            | 553.9387             | 96%        |
| 44<br>45                | 0.1700<br>0.1700 | 0.2294           | 1.4194           | 5.6559<br>5.6908 | 23.8276<br>23.8708 | 64.5665<br>64.6838 | 124.4933<br>124.7194 | 196.9381<br>197.2957 | 116.7646<br>116.9766 | 20.9784            | 555.0433<br>556.0724 | 96%<br>96% |
| 46                      | 0.1700           | 0.2294           | 1.4194           | 5.7168           | 23.9253            | 64.7931            | 124.9302             | 197.6292             | 117.1743             | 21.0520            | 557.0397             | 96%        |
| 47                      | 0.1700           | 0.2294           | 1.4194           | 5.7344           | 23.9894            | 64.8951            | 125.1269             | 197.9404             | 117.3588             | 21.0852            | 557.9491             | 97%        |
| 48<br>49                | 0.1700<br>0.1700 | 0.2294           | 1.4194           | 5.7440<br>5.7464 | 24.0626<br>24.1437 | 64.9905<br>65.0798 | 125.3109<br>125.4830 | 198.2314<br>198.5037 | 117.5313<br>117.6928 | 21.1162<br>21.1452 | 558.8057<br>559.6134 | 97%<br>97% |
| 50                      | 0.1700           | 0.2294           | 1.4194           | 5.7472           | 24.2207            | 65.1634            | 125.6443             | 198.7588             | 117.8441             | 21.1724            | 560.3697             | 97%        |
| 51<br>52                | 0.1700           | 0.2294           | 1.4194<br>1.4194 | 5.7474<br>5.7474 | 24.3042<br>24.3912 | 65.2419<br>65.3156 | 125.7955<br>125.9376 | 198.9981<br>199.2229 | 117.9860<br>118.1192 | 21.1978<br>21.2218 | 561.0897<br>561.7744 | 97%<br>97% |
| 53                      | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.4814            | 65.3848            | 126.0712             | 199.4341             | 118.2444             | 21.2443            | 562.4265             | 97%        |
| 54                      | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.5743            | 65.4500            | 126.1968             | 199.6330             | 118.3623             | 21.2655            | 563.0481             | 98%        |
| 55<br>56                | 0.1700           | 0.2294           | 1.4194<br>1.4194 | 5.7474<br>5.7474 | 24.6603<br>24.7240 | 65.5114<br>65.6007 | 126.3152<br>126.4269 | 199.8202<br>199.9969 | 118.4734             | 21.2854            | 563.6321<br>564.1970 | 98%<br>98% |
| 57                      | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7666            | 65.7147            | 126.5323             | 200.1636             | 118.6769             | 21.3220            | 564.7423             | 98%        |
| 58<br>59                | 0.1700<br>0.1700 | 0.2294<br>0.2294 | 1.4194<br>1.4194 | 5.7474<br>5.7474 | 24.7898<br>24.7955 | 65.8525<br>66.0121 | 126.6319<br>126.7261 | 200.3211             | 118.7703<br>118.8587 | 21.3388<br>21.3546 | 565.2706<br>565.7833 | 98%<br>98% |
| 60                      | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7976            | 66.1611            | 126.7261             | 200.4701             | 118.9423             | 21.3546            | 566.2632             | 98%        |
| 61                      | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 66.3163            | 126.8997             | 200.7448             | 119.0216             | 21.3839            | 566.7304             | 98%        |
| 62                      | 0.1700           | 0.2294<br>0.2294 | 1.4194<br>1.4194 | 5.7474<br>5.7474 | 24.7979<br>24.7979 | 66.4744<br>66.6355 | 126.9798<br>127.0559 | 200.8715<br>200.9918 | 119.0967<br>119.1680 | 21.3974            | 567.1839<br>567.6256 | 98%<br>98% |
| 64                      | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 66.8005            | 127.1281             | 201.1061             | 119.2358             | 21.4224            | 568.0570             | 98%        |
| 65                      | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 66.9537            | 127.1968             | 201.2147             | 119.3002             | 21.4340            | 568.4635             | 98%        |
| 66<br>67                | 0.1700           | 0.2294<br>0.2294 | 1.4194<br>1.4194 | 5.7474<br>5.7474 | 24.7979<br>24.7979 | 67.0671<br>67.1415 | 127.3080<br>127.4575 | 201.3182<br>201.4166 | 119.3615<br>119.4198 | 21.4450<br>21.4554 | 568.8638<br>569.2551 | 99%        |
| 68                      | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1818            | 127.6427             | 201.5105             | 119.4755             | 21.4654            | 569.6401             | 99%        |
| 69<br>70                | 0.1700<br>0.1700 | 0.2294           | 1.4194<br>1.4194 | 5.7474<br>5.7474 | 24.7979<br>24.7979 | 67.1918<br>67.1954 | 127.8595<br>128.0697 | 201.5999<br>201.6853 | 119.5285<br>119.5792 | 21.4750<br>21.4841 | 570.0188<br>570.3777 | 99%<br>99% |
| 71                      | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 128.2900             | 201.7669             | 119.6275             | 21.4928            | 570.7373             | 99%        |
| 72                      | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 128.5131             | 201.8448             | 119.6738             | 21.5011            | 571.0929             | 99%        |
| 73<br>74                | 0.1700<br>0.1700 | 0.2294<br>0.2294 | 1.4194<br>1.4194 | 5.7474<br>5.7474 | 24.7979<br>24.7979 | 67.1960<br>67.1960 | 128.7408<br>128.9729 | 201.9194<br>201.9908 | 119.7180<br>119.7603 | 21.5090<br>21.5166 | 571.4474<br>571.8008 | 99%        |
| 75                      | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 129.1944             | 202.0592             | 119.8008             | 21.5239            | 572.1385             | 99%        |
| 76<br>77                | 0.1700<br>0.1700 | 0.2294<br>0.2294 | 1.4194<br>1.4194 | 5.7474<br>5.7474 | 24.7979<br>24.7979 | 67.1960<br>67.1960 | 129.3621<br>129.4765 | 202.1902<br>202.3781 | 119.8397<br>119.8770 | 21.5309<br>21.5376 | 572.4830<br>572.8292 | 99%<br>99% |
| 78                      | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 129.4765             | 202.5761             | 119.9127             | 21.5376            | 573.1783             | 99%        |
| 79                      | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 129.5564             | 202.9138             | 119.9470             | 21.5502            | 573.5276             | 99%        |
| 80<br>81                | 0.1700<br>0.1700 | 0.2294<br>0.2294 | 1.4194<br>1.4194 | 5.7474<br>5.7474 | 24.7979<br>24.7979 | 67.1960<br>67.1960 | 129.5623<br>129.5633 | 203.2014             | 119.9800             | 21.5561<br>21.5618 | 573.8599<br>574.1882 | 99%        |
| 82                      | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 203.7749             | 120.0422             | 21.5673            | 574.5078             | 100%       |
| 83                      | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 204.0497             | 120.0715             | 21.5725            | 574.8172             | 100%       |
| 84<br>85                | 0.1700           | 0.2294<br>0.2294 | 1.4194           | 5.7474<br>5.7474 | 24.7979<br>24.7979 | 67.1960<br>67.1960 | 129.5633<br>129.5633 | 204.3167<br>204.5630 | 120.0998             | 21.5776<br>21.5825 | 575.1174<br>575.3959 | 100%       |
| 86                      | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 204.7452             | 120.2020             | 21.5872            | 575.6578             | 100%       |
| 87<br>88                | 0.1700<br>0.1700 | 0.2294           | 1.4194<br>1.4194 | 5.7474           | 24.7979<br>24.7979 | 67.1960<br>67.1960 | 129.5633             | 204.8678             | 120.3178             | 21.5917            | 575.9008<br>576.1235 | 100%       |
| 89                      | 0.1700           | 0.2294           | 1.4194           | 5.7474<br>5.7474 | 24.7979            | 67.1960            | 129.5633<br>129.5633 | 204.9346<br>204.9512 | 120.4694<br>120.6518 | 21.5961<br>21.6004 | 576.1235<br>576.3268 | 100%       |
| 90                      | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 204.9573             | 120.8220             | 21.6044            | 576.5072             | 100%       |
| 91<br>92                | 0.1700           | 0.2294           | 1.4194<br>1.4194 | 5.7474<br>5.7474 | 24.7979<br>24.7979 | 67.1960<br>67.1960 | 129.5633<br>129.5633 | 204.9584<br>204.9584 | 120.9755<br>121.1091 | 21.6084<br>21.6122 | 576.6657<br>576.8031 | 100%       |
| 93                      | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 204.9584             | 121.1091             | 21.6159            | 576.9213             | 100%       |
| 94                      | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 204.9584             | 121.3201             | 21.6195            | 577.0214             | 100%       |
| 95<br>96                | 0.1700           | 0.2294           | 1.4194<br>1.4194 | 5.7474<br>5.7474 | 24.7979<br>24.7979 | 67.1960<br>67.1960 | 129.5633<br>129.5633 | 204.9584<br>204.9584 | 121.4012<br>121.4579 | 21.6229<br>21.6368 | 577.1059<br>577.1765 | 100%       |
| 97                      | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 204.9584             | 121.4939             | 21.6587            | 577.2344             | 100%       |
| 98                      | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 204.9584             | 121.5129             | 21.6871            | 577.2818             | 100%       |
| 99<br>100               | 0.1700<br>0.1700 | 0.2294<br>0.2294 | 1.4194<br>1.4194 | 5.7474<br>5.7474 | 24.7979<br>24.7979 | 67.1960<br>67.1960 | 129.5633<br>129.5633 | 204.9584<br>204.9584 | 121.5177<br>121.5194 | 21.7201<br>21.7483 | 577.3196<br>577.3495 | 100%       |
|                         |                  |                  |                  |                  |                    |                    |                      |                      |                      |                    |                      |            |

## Exhibit E.38b Yearly Cancer Cases Avoided by System Size

Smoking/Lung Cancer Model - Surface Water Systems

TTHM - Preferred Alternative

|               |      | <100 |      |      | 100-499 |      |      | 500-999      |      |       | 1,000-3,299 |      | :              | 3,300-9,999 |        |                 | 10,000-49,99 | 9                | 50,0           | 000-99,99 | 9        | 10               | 0,000-999,9 | 199              |                  | ≥1,000,000     |                    |
|---------------|------|------|------|------|---------|------|------|--------------|------|-------|-------------|------|----------------|-------------|--------|-----------------|--------------|------------------|----------------|-----------|----------|------------------|-------------|------------------|------------------|----------------|--------------------|
| Year          | mean | 5th  | 95th | mean | 5th     | 95th | mean | 5th          | 95th | mean  | 5th         | 95th | mean           | 5th         | 95th   | mean            | 5th          | 95th             | mean           | 5th       | 95th     | mean             | 5th         | 95th             | mean             | 5th            | 95th               |
| 2005          |      |      | -    |      |         | -    |      | -            |      |       |             | -    | -              |             | -      |                 |              |                  |                |           |          | -                |             |                  |                  |                | -                  |
| 2006          | -    | -    | -    |      | -       | -    |      | -            |      |       |             | -    | -              |             | -      | -               | -            | -                | -              |           | -        | -                |             | -                | -                |                | -                  |
| 2007          | -    | -    | -    | -    | -       | -    | -    | -            | -    | -     | -           | -    | -              | -           | -      | -               | -            | -                | -              | -         | -        | -                | -           | -                | -                | -              | -                  |
| 2008          | -    | -    | -    | -    | -       | -    | -    | -            | -    |       | -           | -    | -              | -           | -      | -               | -            | -                | -              | -         | -        | -                | -           | -                | -                | -              | -                  |
| 2009          | -    | -    | -    | -    | -       | -    | -    | -            | -    | -     |             | -    | -              | -           | -      | -               | -            | -                | -              | -         | -        | -                | -           | -                | -                | -              | -                  |
| 2010          | 0.00 | 0.00 | 0.00 | 0.01 | 0.00    | 0.03 | 0.02 | 0.00         | 0.05 | 0.13  | 0.01        | 0.33 | 0.37           | 0.02        | 0.95   | 2.48            | 0.16         | 7.02             | 2.16           | 0.14      | 6.11     | 9.55             | 0.64        | 27.04            | 8.13             | 0.54           | 23.02              |
| 2011          | 0.00 | 0.00 | 0.01 | 0.03 | 0.00    | 0.07 | 0.05 | 0.01         | 0.12 | 0.34  | 0.04        | 0.77 | 0.96           | 0.12        | 2.19   | 6.34            | 0.92         | 16.46            | 5.53           | 0.80      | 14.35    | 24.45            | 3.55        | 63.46            | 20.81            | 3.02           | 54.01              |
| 2012          | 0.01 | 0.00 | 0.01 | 0.05 | 0.01    | 0.11 | 0.09 | 0.02         | 0.20 | 0.60  | 0.12        | 1.28 | 1.72           | 0.36        | 3.65   | 11.36           | 2.36         | 27.71            | 9.90           | 2.06      | 24.14    | 43.80            | 9.12        | 106.81           | 37.27            | 7.76           | 90.90              |
| 2013          | 0.01 | 0.00 | 0.02 | 0.08 | 0.02    | 0.16 | 0.14 | 0.04         | 0.29 | 0.92  | 0.26        | 1.85 | 2.64           | 0.73        | 5.28   | 17.42           | 4.49         | 40.43            | 15.18          | 3.91      | 35.23    | 67.17            | 17.30       | 155.87           | 57.17            | 14.72          | 132.65             |
| 2014          | 0.01 | 0.00 | 0.02 | 0.11 | 0.04    | 0.22 | 0.20 | 0.07         | 0.38 | 1.30  | 0.43        | 2.47 | 3.71           | 1.23        | 7.06   | 24.52           | 7.07         | 54.68            | 20.29          | 6.09      | 44.59    | 84.98            | 26.62       | 183.73           | 72.32            | 22.66          | 156.36             |
| 2015          | 0.02 | 0.01 | 0.03 | 0.15 | 0.06    | 0.28 | 0.27 | 0.10         | 0.49 | 1.72  | 0.63        | 3.16 | 4.91           | 1.81        | 9.04   | 31.34           | 9.90         | 67.22            | 24.54          | 8.23      | 51.40    | 101.13           | 34.93       | 209.18           | 86.06            | 29.73          | 178.02             |
| 2016          | 0.02 | 0.01 | 0.04 | 0.19 | 0.08    | 0.33 | 0.33 | 0.13         | 0.58 | 2.11  | 0.85        | 3.75 | 6.03           | 2.44        | 10.71  | 36.96           | 12.60        | 76.49            | 28.34          | 10.02     | 57.64    | 115.69           | 41.55       | 233.31           | 98.46            | 35.36          | 198.56             |
| 2017          | 0.02 | 0.01 | 0.04 | 0.21 | 0.09    | 0.37 | 0.38 | 0.17         | 0.64 | 2.43  | 1.07        | 4.15 | 6.95           | 3.07        | 11.87  | 41.92           | 14.92        | 84.60            | 31.70          | 11.45     | 63.27    | 128.55           | 46.54       | 255.37           | 109.40           | 39.61          | 217.34             |
| 2018          | 0.03 | 0.01 | 0.04 | 0.24 | 0.11    | 0.40 | 0.42 | 0.20         | 0.70 | 2.71  | 1.27        | 4.49 | 7.74           | 3.62        | 12.86  | 46.28           | 16.74        | 91.90            | 34.59          | 12.53     | 68.33    | 139.35           | 50.47       | 274.84           | 118.60           | 42.95          | 233.91             |
| 2019          | 0.03 | 0.01 | 0.05 | 0.26 | 0.13    | 0.42 | 0.46 | 0.22         | 0.75 | 2.95  | 1.42        | 4.81 | 8.43           | 4.07        | 13.75  | 50.01           | 18.15        | 98.40            | 36.98          | 13.43     | 72.55    | 148.07           | 53.78       | 290.02           | 126.02           | 45.77          | 246.82             |
| 2020          | 0.03 | 0.01 | 0.05 | 0.28 | 0.14    | 0.45 | 0.49 | 0.24         | 0.79 | 3.15  | 1.55        | 5.09 | 9.02           | 4.43        | 14.55  | 53.11           | 19.30        | 103.97           | 38.94          | 14.17     | 75.98    | 155.31           | 56.59       | 302.39           | 132.18           | 48.16          | 257.36             |
| 2021          | 0.03 | 0.02 | 0.05 | 0.29 | 0.14    | 0.47 | 0.52 | 0.25         | 0.82 | 3.33  | 1.64        | 5.31 | 9.52           | 4.70        | 15.20  | 55.67           | 20.30        | 108.23           | 40.58          | 14.82     | 78.65    | 161.41           | 58.99       | 312.36           | 137.37           | 50.20          | 265.84             |
| 2022          | 0.03 | 0.02 | 0.05 | 0.31 | 0.15    | 0.48 | 0.54 | 0.27         | 0.85 | 3.47  | 1.72        | 5.50 | 9.93           | 4.92        | 15.73  | 57.82           | 21.17        | 111.82           | 41.98          | 15.39     | 80.99    | 166.61           | 61.15       | 321.11           | 141.80           | 52.04          | 273.28             |
| 2023          | 0.03 | 0.02 | 0.05 | 0.32 | 0.16    | 0.50 | 0.56 | 0.28         | 0.88 | 3.59  | 1.79        | 5.65 | 10.28          | 5.11        | 16.16  | 59.65           | 21.90        | 114.85           | 43.17          | 15.87     | 82.97    | 171.09           | 62.96       | 328.52           | 145.60           | 53.58          | 279.59             |
| 2024          | 0.04 | 0.02 | 0.05 | 0.33 | 0.16    | 0.51 | 0.57 | 0.29         | 0.90 | 3.70  | 1.84        | 5.78 | 10.58          | 5.27        | 16.54  | 61.22           | 22.51        | 117.56           | 44.20          | 16.28     | 84.71    | 174.96           | 64.51       | 334.81           | 148.90           | 54.90          | 284.95             |
| 2025          | 0.04 | 0.02 | 0.06 | 0.33 | 0.17    | 0.52 | 0.59 | 0.29         | 0.92 | 3.79  | 1.89        | 5.90 | 10.84          | 5.40        | 16.89  | 62.58           | 23.05        | 119.89           | 45.10          | 16.63     | 86.28    | 178.34           | 65.78       | 341.14           | 151.78           | 55.98          | 290.33             |
| 2026          | 0.04 | 0.02 | 0.06 | 0.34 | 0.17    | 0.53 | 0.60 | 0.30         | 0.93 | 3.87  | 1.93        | 6.00 | 11.07          | 5.52        | 17.17  | 63.77           | 23.52        | 121.96           | 45.89          | 16.92     | 87.71    | 181.32           | 66.85       | 346.47           | 154.31           | 56.89          | 294.87             |
| 2027          | 0.04 | 0.02 | 0.06 | 0.35 | 0.17    | 0.54 | 0.61 | 0.31         | 0.95 | 3.94  | 1.97        | 6.10 | 11.27          | 5.63        | 17.45  | 64.82           | 23.93        | 123.96           | 46.58          | 17.19     | 89.08    | 183.95           | 67.87       | 351.84           | 156.55           | 57.76          | 299.43             |
| 2028          | 0.04 | 0.02 | 0.06 | 0.35 | 0.18    | 0.55 | 0.62 | 0.31         | 0.96 | 4.00  | 2.00        | 6.19 | 11.45          | 5.73        | 17.71  | 65.74<br>66.57  | 24.28        | 125.69<br>127.17 | 47.20<br>47.75 | 17.44     | 90.25    | 186.29<br>188.37 | 68.87       | 356.17<br>359.72 | 158.54<br>160.32 | 58.62<br>59.32 | 303.12<br>306.15   |
|               |      | 0.02 |      | 4.59 | 2.15    | 7.47 |      |              |      | 52.10 | 24.47       |      | 149.03         | 70.00       | 242.72 | 879.59          | 311.87       | 1,740.00         | 650.60         |           | 1.285.44 | 2.610.40         | 927.76      | 5.154.18         | 2.221.61         | 789.58         | 4.386.51           |
| Total<br>Avg. | 0.49 | 0.23 | 0.80 | 0.18 | 0.09    | 0.30 | 0.32 | 3.79<br>0.15 | 0.53 | 2.08  | 0.98        | 3.39 | 149.03<br>5.96 | 2.80        | 9.71   | 879.59<br>35.18 | 12.47        | 1,740.00         | 26.02          | 9.24      | 51.42    | 104.42           | 37.11       | 206.17           | 88.86            | 789.58         | 4,386.51<br>175.46 |

Avg. - All Size Categories 263 94 517

## Exhibit E.38c Yearly Cancer Cases Avoided by System Size

Smoking/Lung Cancer Model - Ground Water Systems

TTHM - Preferred Alternative

|       |      | <100 |      |       | 100-499 |       |       | 500-999 |       | 1     | ,000-3,29 | 99    | 3,           | 300-9,99     | 9            | 10           | ,000-49,99   | 99           | 50,   | 000-99,9 | 99    | 100,         | 000-999 | ,999         | ≥1    | ,000,00 | 0     |
|-------|------|------|------|-------|---------|-------|-------|---------|-------|-------|-----------|-------|--------------|--------------|--------------|--------------|--------------|--------------|-------|----------|-------|--------------|---------|--------------|-------|---------|-------|
| Year  | mean | 5th  | 95th | mean  | 5th     | 95th  | mean  | 5th     | 95th  | mean  | 5th       | 95th  | mean         | 5th          | 95th         | mean         | 5th          | 95th         | mean  | 5th      | 95th  | mean         | 5th     | 95th         | mean  | 5th     | 95th  |
| 2005  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -     | -         | -     | -            | -            | -            | -            | -            | -            | -     | -        | -     | -            | -       | -            | -     | -       | -     |
| 2006  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -     | -         | -     | -            | -            | -            | -            | -            | -            | -     | -        | -     | -            | -       | -            | -     | -       | -     |
| 2007  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -     | -         | -     | -            | -            | -            | -            | -            | -            | -     | -        | -     | -            | -       | -            | -     | -       | -     |
| 2008  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -     | -         | -     | -            | -            | -            | -            | -            | -            | -     | -        | -     | -            | -       | -            | -     | -       | -     |
| 2009  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -     | -         | -     | -            | -            | -            | -            | -            | -            | -     | -        | -     | -            | -       | -            | -     | -       | -     |
| 2010  | 0.01 | 0.00 | 0.01 | 0.04  | 0.00    | 0.10  | 0.04  | 0.00    | 0.10  | 0.12  | 0.01      | 0.31  | 0.19         | 0.01         | 0.49         | 0.24         | 0.01         | 0.61         | 0.10  | 0.01     | 0.25  | 0.28         | 0.01    | 0.70         | 0.05  | 0.00    | 0.12  |
| 2011  | 0.01 | 0.00 | 0.03 | 0.10  | 0.01    | 0.22  | 0.10  | 0.01    | 0.24  | 0.31  | 0.04      | 0.72  | 0.50         | 0.06         | 1.14         | 0.61         | 0.08         | 1.40         | 0.26  | 0.03     | 0.59  | 0.71         | 0.09    | 1.63         | 0.12  | 0.02    | 0.27  |
| 2012  | 0.02 | 0.00 | 0.05 | 0.18  | 0.04    | 0.37  | 0.19  | 0.04    | 0.40  | 0.56  | 0.12      | 1.20  | 0.89         | 0.19         | 1.89         | 1.10         | 0.23         | 2.34         | 0.46  | 0.10     | 0.98  | 1.28         | 0.27    | 2.72         | 0.21  | 0.04    | 0.45  |
| 2013  | 0.04 | 0.01 | 0.07 | 0.27  | 0.07    | 0.54  | 0.29  | 0.08    | 0.57  | 0.86  | 0.24      | 1.73  | 1.37         | 0.38         | 2.73         | 1.69         | 0.47         | 3.38         | 0.71  | 0.20     | 1.42  | 1.96         | 0.54    | 3.93         | 0.33  | 0.09    | 0.65  |
| 2014  | 0.05 | 0.02 | 0.10 | 0.38  | 0.13    | 0.72  | 0.40  | 0.13    | 0.77  | 1.21  | 0.40      | 2.31  | 1.92         | 0.64         | 3.66         | 2.37         | 0.79         | 4.53         | 0.94  | 0.33     | 1.77  | 2.48         | 0.90    | 4.55         | 0.41  | 0.15    | 0.76  |
| 2015  | 0.07 | 0.03 | 0.12 | 0.50  | 0.18    | 0.92  | 0.53  | 0.20    | 0.98  | 1.61  | 0.59      | 2.96  | 2.54         | 0.94         | 4.68         | 3.02         | 1.16         | 5.49         | 1.14  | 0.47     | 2.00  | 2.94         | 1.26    | 5.09         | 0.49  | 0.21    | 0.85  |
| 2016  | 0.08 | 0.03 | 0.15 | 0.61  | 0.25    | 1.09  | 0.65  | 0.26    | 1.16  | 1.97  | 0.80      | 3.51  | 3.12         | 1.26         | 5.55         | 3.56         | 1.52         | 6.16         | 1.31  | 0.59     | 2.22  | 3.34         | 1.56    | 5.60         | 0.56  | 0.26    | 0.93  |
| 2017  | 0.10 | 0.04 | 0.16 | 0.71  | 0.31    | 1.21  | 0.75  | 0.33    | 1.29  | 2.27  | 1.00      | 3.89  | 3.60         | 1.59         | 6.15         | 4.02         | 1.86         | 6.74         | 1.46  | 0.70     | 2.41  | 3.70         | 1.79    | 6.07         | 0.62  | 0.30    | 1.01  |
| 2018  | 0.11 | 0.05 | 0.18 | 0.79  | 0.37    | 1.31  | 0.84  | 0.39    | 1.40  | 2.53  | 1.19      | 4.21  | 4.01         | 1.88         | 6.66         | 4.42         | 2.12         | 7.25         | 1.58  | 0.77     | 2.58  | 4.00         | 1.95    | 6.48         | 0.67  | 0.33    | 1.08  |
| 2019  | 0.12 | 0.06 | 0.19 | 0.86  | 0.42    | 1.40  | 0.91  | 0.44    | 1.49  | 2.76  | 1.33      | 4.51  | 4.37         | 2.11         | 7.13         | 4.76         | 2.33         | 7.71         | 1.69  | 0.83     | 2.73  | 4.24         | 2.09    | 6.82         | 0.71  | 0.35    | 1.14  |
| 2020  | 0.12 | 0.06 | 0.20 | 0.92  | 0.45    | 1.48  | 0.98  | 0.48    | 1.58  | 2.95  | 1.45      | 4.77  | 4.67         | 2.29         | 7.54         | 5.05         | 2.49         | 8.11         | 1.78  | 0.88     | 2.84  | 4.44         | 2.20    | 7.09         | 0.74  | 0.37    | 1.18  |
| 2021  | 0.13 | 0.06 | 0.21 | 0.97  | 0.48    | 1.55  | 1.03  | 0.51    | 1.65  | 3.12  | 1.54      | 4.98  | 4.93         | 2.43         | 7.88         | 5.29         | 2.62         | 8.41         | 1.85  | 0.92     | 2.93  | 4.62         | 2.29    | 7.28         | 0.77  | 0.38    | 1.21  |
| 2022  | 0.14 | 0.07 | 0.22 | 1.01  | 0.50    | 1.60  | 1.08  | 0.53    | 1.71  | 3.25  | 1.61      | 5.15  | 5.14         | 2.55         | 8.15         | 5.49         | 2.73         | 8.66         | 1.92  | 0.95     | 3.01  | 4.77         | 2.37    | 7.47         | 0.79  | 0.40    | 1.24  |
| 2023  | 0.14 | 0.07 | 0.22 | 1.05  | 0.52    | 1.65  | 1.12  | 0.55    | 1.75  | 3.37  | 1.67      | 5.29  | 5.33         | 2.65         | 8.37         | 5.67         | 2.82         | 8.88         | 1.97  | 0.98     | 3.08  | 4.90         | 2.44    | 7.62         | 0.82  | 0.41    | 1.27  |
| 2024  | 0.15 | 0.07 | 0.23 | 1.08  | 0.54    | 1.69  | 1.15  | 0.57    | 1.80  | 3.47  | 1.73      | 5.42  | 5.48         | 2.73         | 8.57         | 5.82         | 2.90         | 9.07         | 2.02  | 1.01     | 3.13  | 5.01         | 2.50    | 7.76         | 0.83  | 0.42    | 1.29  |
| 2025  | 0.15 | 0.07 | 0.23 | 1.11  | 0.55    | 1.72  | 1.18  | 0.59    | 1.83  | 3.55  | 1.77      | 5.53  | 5.62         | 2.80         | 8.75         | 5.95         | 2.97         | 9.23         | 2.06  | 1.03     | 3.19  | 5.11         | 2.55    | 7.91         | 0.85  | 0.42    | 1.32  |
| 2026  | 0.15 | 0.08 | 0.24 | 1.13  | 0.56    | 1.75  | 1.20  | 0.60    | 1.86  | 3.63  | 1.81      | 5.63  | 5.74         | 2.86         | 8.90         | 6.06         | 3.03         | 9.39         | 2.10  | 1.05     | 3.24  | 5.19         | 2.59    | 8.03         | 0.86  | 0.43    | 1.34  |
| 2027  | 0.16 | 0.08 | 0.24 | 1.15  | 0.57    | 1.78  | 1.22  | 0.61    | 1.89  | 3.69  | 1.84      | 5.72  | 5.84         | 2.92         | 9.04         | 6.16         | 3.08         | 9.54         | 2.13  | 1.06     | 3.29  | 5.27         | 2.63    | 8.15         | 0.88  | 0.44    | 1.36  |
| 2028  | 0.16 | 0.08 | 0.24 | 1.17  | 0.58    | 1.81  | 1.24  | 0.62    | 1.92  | 3.75  | 1.88      | 5.80  | 5.93<br>6.01 | 2.97<br>3.01 | 9.18<br>9.30 | 6.25<br>6.33 | 3.13<br>3.18 | 9.67<br>9.79 | 2.16  | 1.08     | 3.34  | 5.34<br>5.40 | 2.68    | 8.25<br>8.34 | 0.89  | 0.45    | 1.37  |
| Total | 2.06 | 0.08 | 3.35 | 15.20 | 7.14    | 24.76 | 16.17 | 7.59    | 26.34 | 48.81 | 22.92     | 79.52 | 77.21        | 36.26        | 125.78       | 83.89        | 39.50        | 136.35       | 29.81 | 14.07    | 48.37 | 74.95        | 35.42   | 121.50       | 12.48 | 5.90    | 20.23 |
| Avg.  | 0.08 | 0.97 | 0.13 | 0.61  | 0.29    | 0.99  | 0.65  | 0.30    | 1.05  | 1.95  | 0.92      | 3.18  | 3.09         | 1.45         | 5.03         | 3.36         | 1.58         | 5.45         | 1.19  | 0.56     | 1.93  | 3.00         | 1.42    | 4.86         | 0.50  | 0.24    | 0.81  |

Avg. - All Size Categories 14.42 6.79 23.45

## Exhibit E.38d Yearly Cancer Cases Avoided by System Size

Smoking/Lung Cancer Model - All Water Systems

### TTHM - Preferred Alternative

|       |      | <100 |      |       | 100-499 |       |       | 500-999 |       |        | 1,000-3,29 | 9      | ;      | 3,300-9,999  |        |        | 10,000-49,9 | 99       |                | 50,000-99,99   | 9              | 100              | ,000-999,9     | 99               |                  | ≥1,000,000     |                  |
|-------|------|------|------|-------|---------|-------|-------|---------|-------|--------|------------|--------|--------|--------------|--------|--------|-------------|----------|----------------|----------------|----------------|------------------|----------------|------------------|------------------|----------------|------------------|
| Year  | mean | 5th  | 95th | mean  | 5th     | 95th  | mean  | 5th     | 95th  | mean   | 5th        | 95th   | mean   | 5th          | 95th   | mean   | 5th         | 95th     | mean           | 5th            | 95th           | mean             | 5th            | 95th             | mean             | 5th            | 95th             |
| 2005  |      |      |      |       |         |       |       |         |       |        |            |        |        |              |        |        |             |          |                |                |                |                  |                | -                | -                |                | -                |
| 2006  |      | -    | -    | -     | -       |       | -     | -       | -     |        | -          | -      |        |              |        |        | -           |          |                |                |                | -                |                | -                |                  |                |                  |
| 2007  | -    | -    | -    | -     | -       | -     | -     | -       |       | -      | -          | -      | -      | -            | -      |        | -           | -        | -              | -              | -              | -                | -              | -                | -                |                | -                |
| 2008  | -    | -    | -    | -     | -       | -     | -     | -       |       | -      | -          |        | -      | -            | -      |        | -           | -        | -              | -              | -              | -                | -              | -                | -                | -              | -                |
| 2009  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -      | -          | -      | -      | -            | -      |        | -           | -        | -              | -              | -              | -                | -              | -                | -                |                | -                |
| 2010  | 0.01 | 0.00 | 0.02 | 0.05  | 0.00    | 0.13  | 0.06  | 0.00    | 0.15  | 0.25   | 0.01       | 0.64   | 0.57   | 0.03         | 1.44   | 2.72   | 0.18        | 7.62     | 2.26           | 0.15           | 6.37           | 9.83             | 0.65           | 27.75            | 8.17             | 0.54           | 23.13            |
| 2011  | 0.02 | 0.00 | 0.04 | 0.13  | 0.02    | 0.29  | 0.16  | 0.02    | 0.36  | 0.65   | 0.08       | 1.49   | 1.46   | 0.19         | 3.33   | 6.96   | 1.00        | 17.87    | 5.78           | 0.83           | 14.93          | 25.17            | 3.64           | 65.09            | 20.93            | 3.03           | 54.28            |
| 2012  | 0.03 | 0.01 | 0.06 | 0.23  | 0.05    | 0.48  | 0.28  | 0.06    | 0.59  | 1.17   | 0.24       | 2.47   | 2.61   | 0.54         | 5.55   | 12.46  | 2.59        | 30.05    | 10.36          | 2.16           | 25.12          | 45.08            | 9.38           | 109.52           | 37.49            | 7.80           | 91.35            |
| 2013  | 0.05 | 0.01 | 0.09 | 0.35  | 0.10    | 0.70  | 0.43  | 0.12    | 0.86  | 1.79   | 0.50       | 3.57   | 4.01   | 1.11         | 8.01   | 19.12  | 4.96        | 43.82    | 15.89          | 4.11           | 36.65          | 69.13            | 17.84          | 159.80           | 57.49            | 14.81          | 133.31           |
| 2014  | 0.06 | 0.02 | 0.12 | 0.49  | 0.16    | 0.94  | 0.60  | 0.20    | 1.15  | 2.51   | 0.83       | 4.78   | 5.63   | 1.87         | 10.72  | 26.89  | 7.86        | 59.20    | 21.23          | 6.42           | 46.36          | 87.46            | 27.53          | 188.28           | 72.73            | 22.81          | 157.12           |
| 2015  | 0.08 | 0.03 | 0.15 | 0.65  | 0.24    | 1.20  | 0.80  | 0.29    | 1.47  | 3.32   | 1.23       | 6.12   | 7.45   | 2.75         | 13.72  | 34.36  | 11.06       | 72.71    | 25.68          | 8.69           | 53.41          | 104.06           | 36.19          | 214.27           | 86.55            | 29.94          | 178.87           |
| 2016  | 0.10 | 0.04 | 0.18 | 0.80  | 0.32    | 1.42  | 0.98  | 0.40    | 1.74  | 4.08   | 1.65       | 7.25   | 9.15   | 3.70         | 16.26  | 40.52  | 14.13       | 82.65    | 29.65          | 10.61          | 59.86          | 119.04           | 43.11          | 238.91           | 99.02            | 35.62          | 199.49           |
| 2017  | 0.12 | 0.05 | 0.20 | 0.92  | 0.41    | 1.58  | 1.13  | 0.50    | 1.93  | 4.70   | 2.08       | 8.04   | 10.54  | 4.65         | 18.03  | 45.94  | 16.77       | 91.34    | 33.16          | 12.14          | 65.68          | 132.25           | 48.33          | 261.45           | 110.02           | 39.91          | 218.35           |
| 2018  | 0.13 | 0.06 | 0.22 | 1.03  | 0.48    | 1.71  | 1.26  | 0.59    | 2.09  | 5.24   | 2.45       | 8.71   | 11.75  | 5.50         | 19.52  | 50.70  | 18.86       | 99.15    | 36.18          | 13.31          | 70.91          | 143.35           | 52.42          | 281.32           | 119.26           | 43.28          | 234.99           |
| 2019  | 0.14 | 0.07 | 0.24 | 1.12  | 0.54    | 1.83  | 1.37  | 0.66    | 2.24  | 5.71   | 2.76       | 9.31   | 12.80  | 6.18         | 20.88  | 54.78  | 20.48       | 106.12   | 38.67          | 14.26          | 75.28          | 152.31           | 55.87          | 296.84           | 126.72           | 46.12          | 247.96           |
| 2020  | 0.15 | 0.08 | 0.25 | 1.20  | 0.59    | 1.93  | 1.47  | 0.72    | 2.37  | 6.11   | 3.00       | 9.85   | 13.70  | 6.72         | 22.09  | 58.17  | 21.79       | 112.08   | 40.72          | 15.05          | 78.83          | 159.76           | 58.79          | 309.48           | 132.92           | 48.53          | 258.54           |
| 2021  | 0.16 | 0.08 | 0.26 | 1.26  | 0.62    | 2.02  | 1.55  | 0.76    | 2.47  | 6.44   | 3.18       | 10.29  | 14.45  | 7.13<br>7.47 | 23.07  | 60.96  | 22.92       | 116.64   | 42.44<br>43.89 | 15.74<br>16.35 | 81.58<br>84.00 | 166.03<br>171.38 | 61.28<br>63.52 | 319.65<br>328.59 | 138.14<br>142.59 | 50.58<br>52.43 | 267.05<br>274.53 |
| 2022  | 0.17 | 0.08 | 0.27 | 1.36  | 0.68    | 2.09  |       | 0.83    | 2.56  | 6.96   | 3.46       | 10.65  | 15.61  | 7.47         | 24.53  | 65.32  | 24.72       | 123.73   | 45.14          | 16.86          | 86.05          | 171.38           | 65.40          | 336.15           | 146.42           | 53.99          | 280.86           |
| 2024  | 0.18 | 0.09 | 0.28 | 1.40  | 0.70    | 2.10  | 1.72  | 0.86    | 2.69  | 7.17   | 3.57       | 11.20  | 16.07  | 8.00         | 25.12  | 67.04  | 25.41       | 126.63   | 46.22          | 17.28          | 87.84          | 179.97           | 67.01          | 342.57           | 149.74           | 55.32          | 286.24           |
| 2025  | 0.19 | 0.09 | 0.29 | 1.44  | 0.72    | 2.24  | 1.76  | 0.88    | 2.75  | 7.34   | 3.66       | 11.44  | 16.46  | 8.21         | 25.64  | 68.53  | 26.01       | 129.12   | 47.16          | 17.66          | 89.47          | 183.45           | 68.33          | 349.05           | 152.63           | 56.41          | 291.65           |
| 2026  | 0.19 | 0.09 | 0.29 | 1.47  | 0.73    | 2.28  | 1.80  | 0.90    | 2.79  | 7.50   | 3.74       | 11.63  | 16.81  | 8.39         | 26.07  | 69.84  | 26.55       | 131.34   | 47.98          | 17.97          | 90.96          | 186.51           | 69.44          | 354.50           | 155.18           | 57.32          | 296.20           |
| 2027  | 0.19 | 0.10 | 0.30 | 1.50  | 0.75    | 2.32  | 1.83  | 0.92    | 2.84  | 7.63   | 3.81       | 11.82  | 17.11  | 8.55         | 26.50  | 70.98  | 27.01       | 133.50   | 48.71          | 18.25          | 92.37          | 189.22           | 70.50          | 359.99           | 157.43           | 58.20          | 300.79           |
| 2028  | 0.20 | 0.10 | 0.30 | 1.52  | 0.76    | 2.35  | 1.86  | 0.93    | 2.88  | 7.75   | 3.88       | 11.99  | 17.38  | 8.69         | 26.89  | 72.00  | 27.41       | 135.36   | 49.36          | 18.52          | 93.58          | 191.62           | 71.55          | 364.42           | 159.43           | 59.06          | 304.50           |
| 2029  | 0.20 | 0.10 | 0.31 | 1.54  | 0.77    | 2.38  | 1.89  | 0.95    | 2.92  | 7.86   | 3.94       | 12.15  | 17.62  | 8.83         | 27.25  | 72.90  | 27.77       | 136.95   | 49.93          | 18.76          | 94.57          | 193.77           | 72.42          | 368.06           | 161.22           | 59.77          | 307.53           |
| Total | 2.55 | 1.20 | 4.15 | 19.78 | 9.29    | 32.23 | 24.25 | 11.39   | 39.50 | 100.91 | 47.39      | 164.36 | 226.24 | 106.26       | 368.50 | 963.48 | 351.38      | 1,876.35 | 680.42         | 245.11         | 1,333.82       | 2,685.35         | 963.18         | 5,275.68         | 2,234.09         | 795.48         | 4,406.74         |
| Avg.  | 0.10 | 0.05 | 0.17 | 0.79  | 0.37    | 1.29  | 0.97  | 0.46    | 1.58  | 4.04   | 1.90       | 6.57   | 9.05   | 4.25         | 14.74  | 38.54  | 14.06       | 75.05    | 27.22          | 9.80           | 53.35          | 107.41           | 38.53          | 211.03           | 89.36            | 31.82          | 176.27           |

Avg. - All Size Categories 277 101 540

# Exhibit E.38e Cases avoided by Age Group per year following rule promulgation (Smoking/Bladder Cancer model - TTHM - Preferred Alternative)

| Years After | Age (            |                  |                  |                  |                    | del - TTHI         |                      |                      |                      |                    |                      |            |
|-------------|------------------|------------------|------------------|------------------|--------------------|--------------------|----------------------|----------------------|----------------------|--------------------|----------------------|------------|
| the Rule    | 1-10             | 11-20            | 21-30            | 31-40            | 41-50              | 51-60              | 61-70                | 71-80                | 81-90                | 91-100+            | Total                | %          |
| 1           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000               | 0%         |
| 2           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000               | 0%         |
| 3           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000               | 0%<br>0%   |
| 5           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000               | 0%         |
| 6           | 0.0110           | 0.0090           | 0.0557           | 0.2255           | 0.9730             | 2.6367             | 5.0839               | 8.0423               | 4.7683               | 0.8567             | 22.6621              | 4%         |
| 7           | 0.0279           | 0.0211           | 0.1306           | 0.5288           | 2.2814             | 6.1819             | 11.9196              | 18.8558              | 11.1796              | 2.0086             | 53.1353              | 9%         |
| 8           | 0.0500           | 0.0356           | 0.2203           | 0.8922           | 3.8497             | 10.4317            | 20.1139              | 31.8185              | 18.8652              | 3.3894             | 89.6666              | 16%        |
| 9           | 0.0765           | 0.0522           | 0.3227           | 1.3068           | 5.6384             | 15.2787            | 29.4595              | 46.6025              | 27.6306              | 4.9642             | 131.3322             | 23%        |
| 10<br>11    | 0.0984           | 0.0633<br>0.0725 | 0.3914<br>0.4488 | 1.5847<br>1.8172 | 6.8373<br>7.8408   | 18.5273<br>21.2465 | 35.7233<br>40.9662   | 56.5113<br>64.8052   | 33.5055<br>38.4230   | 6.0197<br>6.9032   | 159.2621<br>182.6397 | 28%<br>32% |
| 11          | 0.1163           | 0.0725           | 0.4488           | 2.0139           | 7.8408<br>8.6891   | 23.5453            | 45.3986              | 71.8168              | 42.5802              | 7.6501             | 202.4023             | 35%        |
| 13          | 0.1418           | 0.0873           | 0.5403           | 2.1877           | 9.4393             | 25.5780            | 49.3179              | 78.0169              | 46.2562              | 8.3106             | 219.8761             | 38%        |
| 14          | 0.1504           | 0.0936           | 0.5793           | 2.3458           | 10.1213            | 27.4262            | 52.8816              | 83.6543              | 49.5986              | 8.9111             | 235.7623             | 41%        |
| 15          | 0.1580           | 0.0994           | 0.6152           | 2.4912           | 10.7485            | 29.1256            | 56.1582              | 88.8377              | 52.6718              | 9.4632             | 250.3690             | 43%        |
| 16          | 0.1636           | 0.1059           | 0.6485           | 2.6258           | 11.3294            | 30.6998            | 59.1935              | 93.6392              | 55.5187              | 9.9747             | 263.8991             | 46%        |
| 17          | 0.1673           | 0.1130           | 0.6794           | 2.7512           | 11.8705            | 32.1659            | 62.0203              | 98.1110              | 58.1700              | 10.4511            | 276.4996             | 48%        |
| 18<br>19    | 0.1693<br>0.1698 | 0.1206<br>0.1288 | 0.7084<br>0.7356 | 2.8685<br>2.9785 | 12.3764<br>12.8510 | 33.5368<br>34.8229 | 64.6637<br>67.1435   | 102.2926<br>106.2155 | 60.6493<br>62.9751   | 10.8965<br>11.3144 | 288.2821<br>299.3351 | 50%<br>52% |
| 20          | 0.1700           | 0.1366           | 0.7611           | 3.0819           | 13.2974            | 36.0326            | 69.4759              | 109.9051             | 65.1627              | 11.7074            | 309.7308             | 54%        |
| 21          | 0.1700           | 0.1467           | 0.7852           | 3.1795           | 13.7182            | 37.1728            | 71.6744              | 113.3829             | 67.2247              | 12.0779            | 319.5322             | 55%        |
| 22          | 0.1700           | 0.1587           | 0.8079           | 3.2715           | 14.1156            | 38.2495            | 73.7504              | 116.6670             | 69.1718              | 12.4277            | 328.7902             | 57%        |
| 23          | 0.1700           | 0.1727           | 0.8295           | 3.3586           | 14.4914            | 39.2677            | 75.7138              | 119.7729             | 71.0134              | 12.7585            | 337.5486             | 59%        |
| 24          | 0.1700           | 0.1885           | 0.8498           | 3.4411           | 14.8472            | 40.2321            | 77.5732              | 122.7144             | 72.7574              | 13.0719            | 345.8457             | 60%        |
| 25          | 0.1700           | 0.2039           | 0.8691           | 3.5193           | 15.1847            | 41.1465            | 79.3363              | 125.5034             | 74.4110              | 13.3690            | 353.7132             | 61%        |
| 26          | 0.1700           | 0.2155           | 0.8953           | 3.5936           | 15.5050            | 42.0144            | 81.0097              | 128.1507             | 75.9805              | 13.6510            | 361.1857             | 63%        |
| 27<br>28    | 0.1700<br>0.1700 | 0.2235<br>0.2279 | 0.9274<br>0.9650 | 3.6641<br>3.7312 | 15.8093<br>16.0986 | 42.8390<br>43.6231 | 82.5996<br>84.1115   | 130.6658<br>133.0575 | 77.4717<br>78.8898   | 13.9189<br>14.1737 | 368.2894<br>375.0483 | 64%<br>65% |
| 28<br>29    | 0.1700           | 0.2279           | 1.0076           | 3.7312           | 16.0986            | 44.3693            | 84.1115<br>85.5503   | 133.05/5             | 78.8898<br>80.2392   | 14.1/3/            | 375.0483             | 66%        |
| 30          | 0.1700           | 0.2293           | 1.0485           | 3.8558           | 16.6363            | 45.0800            | 86.9206              | 137.5012             | 81.5244              | 14.6470            | 387.6133             | 67%        |
| 31          | 0.1700           | 0.2294           | 1.0947           | 3.9137           | 16.8862            | 45.7573            | 88.2265              | 139.5671             | 82.7493              | 14.8671            | 393.4614             | 68%        |
| 32          | 0.1700           | 0.2294           | 1.1449           | 3.9689           | 17.1246            | 46.4032            | 89.4719              | 141.5371             | 83.9174              | 15.0769            | 399.0444             | 699        |
| 33          | 0.1700           | 0.2294           | 1.1995           | 4.0217           | 17.3520            | 47.0195            | 90.6602              | 143.4170             | 85.0319              | 15.2772            | 404.3784             | 70%        |
| 34          | 0.1700           | 0.2294           | 1.2589           | 4.0720           | 17.5692            | 47.6079            | 91.7948              | 145.2117             | 86.0960              | 15.4684            | 409.4783             | 71%        |
| 35          | 0.1700           | 0.2294           | 1.3181           | 4.1201           | 17.7766            | 48.1700            | 92.8785              | 146.9262             | 87.1125              | 15.6510            | 414.3525             | 72%        |
| 36<br>37    | 0.1700<br>0.1700 | 0.2294           | 1.3636<br>1.3953 | 4.1858<br>4.2669 | 17.9749<br>18.1645 | 48.7072<br>49.2210 | 93.9144<br>94.9049   | 148.5648<br>150.1318 | 88.0841<br>89.0131   | 15.8255<br>15.9925 | 419.0198<br>423.4894 | 73%        |
| 38          | 0.1700           | 0.2294           | 1.4133           | 4.3627           | 18.3458            | 49.7124            | 95.8526              | 151.6309             | 89.9019              | 16.1521            | 427.7712             | 74%        |
| 39          | 0.1700           | 0.2294           | 1.4176           | 4.4723           | 18.5194            | 50.1829            | 96.7596              | 153.0658             | 90.7526              | 16.3050            | 431.8747             | 75%        |
| 40          | 0.1700           | 0.2294           | 1.4191           | 4.5799           | 18.6857            | 50.6333            | 97.6282              | 154.4398             | 91.5673              | 16.4513            | 435.8041             | 76%        |
| 41          | 0.1700           | 0.2294           | 1.4194           | 4.7121           | 18.8449            | 51.0649            | 98.4603              | 155.7560             | 92.3477              | 16.5916            | 439.5963             | 769        |
| 42          | 0.1700           | 0.2294           | 1.4194           | 4.8664           | 18.9976            | 51.4785            | 99.2577              | 157.0175             | 93.0956              | 16.7259            | 443.2580             | 779        |
| 43          | 0.1700           | 0.2294           | 1.4194           | 5.0413           | 19.1439            | 51.8750            | 100.0223             | 158.2271             | 93.8128              | 16.8548            | 446.7959             | 779        |
| 44<br>45    | 0.1700<br>0.1700 | 0.2294           | 1.4194<br>1.4194 | 5.2357<br>5.4271 | 19.2843<br>19.4190 | 52.2554<br>52.6204 | 100.7557<br>101.4595 | 159.3872<br>160.5005 | 94.5006<br>95.1607   | 16.9784<br>17.0970 | 450.2160<br>453.5029 | 78%<br>79% |
| 46          | 0.1700           | 0.2294           | 1.4194           | 5.5728           | 19.6352            | 52.9707            | 102.1351             | 161.5692             | 95.7944              | 17.2108            | 456.7070             | 79%        |
| 47          | 0.1700           | 0.2294           | 1.4194           | 5.6729           | 19.9249            | 53.3072            | 102.7838             | 162.5955             | 96.4029              | 17.3201            | 459.8261             | 809        |
| 48          | 0.1700           | 0.2294           | 1.4194           | 5.7287           | 20.2861            | 53.6305            | 103.4071             | 163.5815             | 96.9874              | 17.4251            | 462.8652             | 809        |
| 49          | 0.1700           | 0.2294           | 1.4194           | 5.7419           | 20.7132            | 53.9411            | 104.0061             | 164.5291             | 97.5492              | 17.5261            | 465.8256             | 819        |
| 50          | 0.1700           | 0.2294           | 1.4194           | 5.7466           | 21.1320            | 54.2398            | 104.5820             | 165.4400             | 98.0894              | 17.6231            | 468.6717             | 819        |
| 51          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 21.6120            | 54.5271            | 105.1359             | 166.3163             | 98.6089              | 17.7165            | 471.4827             | 829        |
| 52<br>53    | 0.1700<br>0.1700 | 0.2294           | 1.4194<br>1.4194 | 5.7474<br>5.7474 | 22.1353<br>22.6987 | 54.8034<br>55.0694 | 105.6688<br>106.1817 | 167.1593<br>167.9706 | 99.1087<br>99.5897   | 17.8063<br>17.8927 | 474.2479<br>476.9689 | 829<br>839 |
| 54          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 23.2980            | 55.3255            | 106.1817             | 168.7517             | 100.0529             | 17.8927            | 479.6457             | 839        |
| 55          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 23.8685            | 55.5722            | 107.1511             | 169.5041             | 100.4990             | 18.0560            | 482.2171             | 849        |
| 56          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.2970            | 56.0363            | 107.6093             | 170.2290             | 100.9288             | 18.1333            | 484.7999             | 849        |
| 57          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.5863            | 56.6982            | 108.0510             | 170.9277             | 101.3430             | 18.2077            | 487.3802             | 859        |
| 58          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7451            | 57.5557            | 108.4768             | 171.6013             | 101.7424             | 18.2794            | 489.9670             | 859        |
| 59          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7826            | 58.5971            | 108.8875             | 172.2510             | 102.1276             | 18.3487            | 492.5607             | 859        |
| 60<br>61    | 0.1700<br>0.1700 | 0.2294<br>0.2294 | 1.4194           | 5.7474<br>5.7474 | 24.7958<br>24.7979 | 59.5888<br>60.6560 | 109.2838<br>109.6662 | 172.8779<br>173.4829 | 102.4992<br>102.8579 | 18.4154<br>18.4799 | 495.0272<br>497.5071 | 869<br>869 |
| 62          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 61.7754            | 110.0354             | 173.4829             | 102.8579             | 18.4799            | 499.9882             | 879        |
| 63          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 62.9477            | 110.3920             | 174.6310             | 103.5387             | 18.6022            | 502.4758             | 879        |
| 64          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 64.1770            | 110.7365             | 175.1760             | 103.8618             | 18.6602            | 504.9757             | 889        |
| 65          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 65.3403            | 111.0695             | 175.7027             | 104.1740             | 18.7163            | 507.3669             | 889        |
| 66          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 66.2091            | 111.7617             | 176.2118             | 104.4759             | 18.7706            | 509.7932             | 889        |
| 67          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 66.7826            | 112.7858             | 176.7042             | 104.7679             | 18.8230            | 512.2276             | 899        |
| 68          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.0936            | 114.1233             | 177.1804             | 105.0503             | 18.8738            | 514.6855             | 899        |
| 69<br>70    | 0.1700<br>0.1700 | 0.2294           | 1.4194<br>1.4194 | 5.7474<br>5.7474 | 24.7979<br>24.7979 | 67.1667<br>67.1920 | 115.7463<br>117.3459 | 177.6413<br>178.0875 | 105.3235<br>105.5880 | 18.9229<br>18.9704 | 517.1648<br>519.5479 | 90%        |
| 71          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1920            | 117.3459             | 178.0875             | 105.5880             | 19.0164            | 522.0031             | 919        |
| 72          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 120.8369             | 178.9379             | 106.0922             | 19.0610            | 524.4881             | 919        |
| 73          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 122.6847             | 179.3433             | 106.3326             | 19.1041            | 527.0248             | 919        |
| 74          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 124.6021             | 179.7362             | 106.5656             | 19.1460            | 529.6100             | 929        |
| 75          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 126.4600             | 180.1172             | 106.7914             | 19.1866            | 532.1153             | 929        |
| 76          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 127.8741             | 181.0629             | 107.0104             | 19.2259            | 534.7335             | 939        |
| 77<br>78    | 0.1700<br>0.1700 | 0.2294           | 1.4194<br>1.4194 | 5.7474<br>5.7474 | 24.7979<br>24.7979 | 67.1960<br>67.1960 | 128.8434<br>129.3858 | 182.5312<br>184.5084 | 107.2229<br>107.4291 | 19.2641<br>19.3011 | 537.4217<br>540.1847 | 939        |
| 78<br>79    | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 129.3858             | 186.9613             | 107.4291             | 19.3011            | 542.9997             | 949        |
| 80          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 129.5563             | 189.3987             | 107.8236             | 19.3720            | 545.7108             | 959        |
| 81          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 191.8889             | 108.0123             | 19.4059            | 548.4307             | 959        |
| 82          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 194.3579             | 108.1957             | 19.4389            | 551.1159             | 969        |
| 83          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 196.7818             | 108.3740             | 19.4709            | 553.7501             | 969        |
| 84          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 199.1668             | 108.5472             | 19.5020            | 556.3394             | 969        |
| 85          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 201.3927             | 108.7157             | 19.5323            | 558.7641             | 979        |
| 86<br>87    | 0.1700<br>0.1700 | 0.2294           | 1.4194<br>1.4194 | 5.7474<br>5.7474 | 24.7979<br>24.7979 | 67.1960<br>67.1960 | 129.5633<br>129.5633 | 203.0439<br>204.1582 | 109.3389<br>110.3550 | 19.5617<br>19.5904 | 561.0680<br>563.2269 | 979<br>989 |
| 87<br>88    | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979<br>24.7979 | 67.1960<br>67.1960 | 129.5633<br>129.5633 | 204.1582             | 110.3550             | 19.5904<br>19.6182 | 563.2269<br>565.2238 | 989        |
| 89          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 204.7613             | 111.7208             | 19.6182            | 567.0631             | 989        |
| 90          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 204.9509             | 114.9616             | 19.6718            | 568.7078             | 999        |
| 91          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 204.9584             | 116.3835             | 19.6975            | 570.1629             | 999        |
| 92          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 204.9584             | 117.6289             | 19.7226            | 571.4334             | 999        |
| 93          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 204.9584             | 118.7057             | 19.7471            | 572.5345             | 999        |
| 94          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 204.9584             | 119.6191             | 19.7709            | 573.4718             | 999        |
| 95          | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 204.9584             | 120.3931             | 19.7941            | 574.2690             | 100        |
| 96<br>97    | 0.1700<br>0.1700 | 0.2294           | 1.4194<br>1.4194 | 5.7474<br>5.7474 | 24.7979<br>24.7979 | 67.1960<br>67.1960 | 129.5633<br>129.5633 | 204.9584<br>204.9584 | 120.9360<br>121.2807 | 19.9208<br>20.1295 | 574.9387<br>575.4921 | 100        |
| a i         | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 204.9584             | 121.2807             | 20.1295            | 575.4921<br>575.9466 | 100        |
| 98          |                  |                  |                  |                  | 5, 5               |                    |                      |                      |                      | 2000               |                      |            |
| 98<br>99    | 0.1700           | 0.2294           | 1.4194           | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 204.9584             | 121.5033             | 20.7264            | 576.3115             | 100        |

## Exhibit E.38f Yearly Cancer Cases Avoided by System Size

Smoking/Bladder Cancer Model - Surface Water Systems

### TTHM - Preferred Alternative

|       |      | <100 |      |      | 100-499 |      |      | 500-999 |      | 1     | ,000-3,299 |       |       | 3,300-9,999 |        |                | 10,000-49,99 | 9              | 50,0   | 00-99,999 |                | 10       | 0,000-999,9    | 99       |                | ≥1,000,000 |          |
|-------|------|------|------|------|---------|------|------|---------|------|-------|------------|-------|-------|-------------|--------|----------------|--------------|----------------|--------|-----------|----------------|----------|----------------|----------|----------------|------------|----------|
| Year  | mean | 5th  | 95th | mean | 5th     | 95th | mean | 5th     | 95th | mean  | 5th        | 95th  | mean  | 5th         | 95th   | mean           | 5th          | 95th           | mean   | 5th       | 95th           | mean     | 5th            | 95th     | mean           | 5th        | 95th     |
| 2005  | -    |      | -    | -    |         |      |      | -       | -    |       |            |       |       |             | -      |                | -            |                | -      |           |                | -        |                |          |                |            | -        |
| 2006  | -    | -    | -    | -    | -       |      | -    | -       | -    | -     | -          | -     | -     | -           | -      | -              | -            | -              | -      | -         | -              | -        | -              | -        | -              | -          | -        |
| 2007  | -    | -    | -    | -    | -       |      | -    | -       | -    | -     | -          | -     | -     | -           |        | -              | -            | -              | -      | -         | -              | -        | -              | -        | -              | -          | -        |
| 2008  | -    | -    | -    | -    | -       |      | -    | -       | -    | -     | -          | -     | -     | -           |        | -              | -            | -              | -      | -         | -              | -        | -              | -        | -              | -          | -        |
| 2009  | -    | -    | -    | -    | -       | -    | -    | -       | -    |       |            | -     | -     |             | -      | -              | -            | -              | -      |           | -              | -        | -              | -        | -              | -          | -        |
| 2010  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00    | 0.03 | 0.02 | 0.00    | 0.05 | 0.11  | 0.02       | 0.33  | 0.30  | 0.05        | 0.96   | 2.37           | 0.25         | 7.98           | 2.07   | 0.22      | 6.95           | 9.14     | 0.96           | 30.76    | 7.78           | 0.82       | 26.18    |
| 2011  | 0.00 | 0.00 | 0.01 | 0.02 | 0.00    | 0.06 | 0.04 | 0.01    | 0.11 | 0.25  | 0.05       | 0.73  | 0.73  | 0.16        | 2.09   | 5.55           | 0.74         | 17.41          | 4.84   | 0.64      | 15.17          | 21.41    | 2.85           | 67.11    | 18.22          | 2.43       | 57.11    |
| 2012  | 0.00 | 0.00 | 0.01 | 0.04 | 0.01    | 0.10 | 0.07 | 0.02    | 0.18 | 0.43  | 0.11       | 1.16  | 1.24  | 0.31        | 3.33   | 9.37           | 1.46         | 27.78          | 8.16   | 1.27      | 24.21          | 36.11    | 5.63           | 107.08   | 30.73          | 4.79       | 91.13    |
| 2013  | 0.01 | 0.00 | 0.02 | 0.06 | 0.02    | 0.14 | 0.10 | 0.03    | 0.25 | 0.64  | 0.18       | 1.62  | 1.83  | 0.51        | 4.64   | 13.71          | 2.40         | 38.68          | 11.95  | 2.09      | 33.70          | 52.85    | 9.27           | 149.10   | 44.98          | 7.89       | 126.89   |
| 2014  | 0.01 | 0.00 | 0.02 | 0.08 | 0.02    | 0.19 | 0.14 | 0.04    | 0.33 | 0.87  | 0.26       | 2.11  | 2.50  | 0.75        | 6.02   | 18.52          | 3.56         | 50.27          | 15.10  | 3.00      | 40.33          | 62.25    | 12.78          | 163.02   | 52.98          | 10.88      | 138.74   |
| 2015  | 0.01 | 0.00 | 0.02 | 0.10 | 0.03    | 0.23 | 0.18 | 0.06    | 0.41 | 1.13  | 0.36       | 2.62  | 3.24  | 1.03        | 7.49   | 22.57          | 4.81         | 58.48          | 17.24  | 3.87      | 43.37          | 70.15    | 16.16          | 173.70   | 59.70          | 13.76      | 147.83   |
| 2016  | 0.01 | 0.00 | 0.03 | 0.12 | 0.04    | 0.26 | 0.21 | 0.07    | 0.46 | 1.36  | 0.46       | 2.98  | 3.88  | 1.33        | 8.53   | 25.40          | 6.01         | 62.49          | 19.09  | 4.71      | 45.83          | 77.10    | 19.44          | 182.76   | 65.61          | 16.54      | 155.54   |
| 2017  | 0.01 | 0.01 | 0.03 | 0.13 | 0.05    | 0.28 | 0.24 | 0.09    | 0.49 | 1.53  | 0.56       | 3.17  | 4.37  | 1.62        | 9.06   | 27.87          | 7.15         | 65.70          | 20.74  | 5.51      | 47.98          | 83.36    | 22.54          | 191.27   | 70.94          | 19.19      | 162.78   |
| 2018  | 0.02 | 0.01 | 0.03 | 0.15 | 0.06    | 0.29 | 0.26 | 0.10    | 0.51 | 1.68  | 0.66       | 3.32  | 4.80  | 1.89        | 9.49   | 30.09          | 8.24         | 68.53          | 22.23  | 6.26      | 49.92          | 89.08    | 25.46          | 198.49   | 75.81          | 21.67      | 168.92   |
| 2019  | 0.02 | 0.01 | 0.03 | 0.16 | 0.07    | 0.30 | 0.28 | 0.12    | 0.53 | 1.82  | 0.75       | 3.45  | 5.20  | 2.15        | 9.87   | 32.11          | 9.26         | 71.09          | 23.61  | 6.97      | 51.58          | 94.35    | 28.18          | 204.68   | 80.29          | 23.98      | 174.19   |
| 2020  | 0.02 | 0.01 | 0.03 | 0.17 | 0.07    | 0.31 | 0.30 | 0.13    | 0.55 | 1.94  | 0.84       | 3.57  | 5.56  | 2.39        | 10.22  | 33.97          | 10.22        | 73.41          | 24.88  | 7.62      | 53.11          | 99.23    | 30.70          | 210.45   | 84.45          | 26.12      | 179.11   |
| 2021  | 0.02 | 0.01 | 0.03 | 0.18 | 0.08    | 0.32 | 0.32 | 0.14    | 0.57 | 2.06  | 0.92       | 3.69  | 5.90  | 2.63        | 10.55  | 35.70          | 11.11        | 75.56          | 26.06  | 8.24      | 54.59          | 103.79   | 33.06          | 216.22   | 88.33          | 28.13      | 184.02   |
| 2022  | 0.02 | 0.01 | 0.04 | 0.19 | 0.09    | 0.33 | 0.34 | 0.15    | 0.59 | 2.18  | 1.00       | 3.80  | 6.22  | 2.85        | 10.86  | 37.31          | 11.96        | 77.59          | 27.17  | 8.82      | 56.03          | 108.06   | 35.34          | 221.93   | 91.96          | 30.08      | 188.87   |
| 2023  | 0.02 | 0.01 | 0.04 | 0.20 | 0.09    | 0.34 | 0.35 | 0.17    | 0.60 | 2.28  | 1.07       | 3.90  | 6.52  | 3.06        | 11.16  | 38.81<br>40.23 | 12.77        | 79.50<br>81.33 | 28.21  | 9.39      | 57.39<br>58.66 | 112.06   | 37.54<br>39.65 | 227.29   | 95.37<br>98.57 | 31.95      | 193.44   |
| 2024  | 0.02 | 0.01 | 0.04 | 0.21 | 0.10    | 0.35 | 0.37 | 0.19    | 0.62 | 2.36  | 1.20       | 4.01  | 7.06  | 3.25        | 11.75  | 41.56          | 14.30        | 83.08          | 30.10  | 10.46     | 59.84          | 119.38   | 41.73          | 232.11   | 101.60         | 35.75      | 201.33   |
| 2026  | 0.02 | 0.01 | 0.04 | 0.22 | 0.11    | 0.37 | 0.40 | 0.19    | 0.65 | 2.56  | 1.26       | 4.21  | 7.31  | 3.59        | 12.04  | 42.81          | 15.03        | 84.84          | 30.97  | 10.97     | 61.06          | 122.73   | 43.71          | 241.30   | 104.45         | 37.20      | 205.36   |
| 2027  | 0.02 | 0.01 | 0.04 | 0.23 | 0.11    | 0.38 | 0.41 | 0.20    | 0.67 | 2.64  | 1.31       | 4.30  | 7.55  | 3.74        | 12.30  | 44.00          | 15.73        | 86.43          | 31.79  | 11.47     | 62.18          | 125.91   | 45.63          | 245.78   | 107.16         | 38.83      | 209.18   |
| 2028  | 0.03 | 0.01 | 0.04 | 0.24 | 0.12    | 0.39 | 0.42 | 0.21    | 0.68 | 2.72  | 1.36       | 4.39  | 7.77  | 3.88        | 12.55  | 45.12          | 16.41        | 87.92          | 32.57  | 11.94     | 63.25          | 128.92   | 47.48          | 249.99   | 109.72         | 40.41      | 212.76   |
| 2029  | 0.03 | 0.01 | 0.04 | 0.25 | 0.12    | 0.39 | 0.43 | 0.22    | 0.69 | 2.79  | 1.40       | 4.47  | 7.98  | 4.01        | 12.78  | 46.18          | 17.06        | 89.46          | 33.30  | 12.39     | 64.35          | 131.77   | 49.24          | 254.31   | 112.15         | 41.90      | 216.43   |
| Total | 0.32 | 0.14 | 0.59 | 2.98 | 1.31    | 5.45 | 5.25 | 2.31    | 9.60 | 33.83 | 14.90      | 61.92 | 96.77 | 42.63       | 177.13 | 593.25         | 182.01       | 1,287.51       | 439.24 | 135.77    | 949.52         | 1,763.45 | 547.34         | 3,803.91 | 1,500.80       | 465.82     | 3,237.35 |
| Avg.  | 0.01 | 0.01 | 0.02 | 0.12 | 0.05    | 0.22 | 0.21 | 0.09    | 0.38 | 1.35  | 0.60       | 2.48  | 3.87  | 1.71        | 7.09   | 23.73          | 7.28         | 51.50          | 17.57  | 5.43      | 37.98          | 70.54    | 21.89          | 152.16   | 60.03          | 18.63      | 129.49   |

Avg. - All Size Categories 177.44 55.69 381.32

## Exhibit E.38g Yearly Cancer Cases Avoided by System Size

Smoking/Bladder Cancer Model - Ground Water Systems

TTHM - Preferred Alternative

|       |      | <100 |      |      | 100-499 |       |       | 500-999 |       | 1     | 1,000-3,299 | )            | 3     | ,300-9,999 |              | 10    | 0,000-49,99 | 9            | 50    | ,000-99,9 | 99    | 100   | 0,000-999,9 | 999          | 2    | 1,000,00 | 0     |
|-------|------|------|------|------|---------|-------|-------|---------|-------|-------|-------------|--------------|-------|------------|--------------|-------|-------------|--------------|-------|-----------|-------|-------|-------------|--------------|------|----------|-------|
| Year  | mean | 5th  | 95th | mean | 5th     | 95th  | mean  | 5th     | 95th  | mean  | 5th         | 95th         | mean  | 5th        | 95th         | mean  | 5th         | 95th         | mean  | 5th       | 95th  | mean  | 5th         | 95th         | mean | 5th      | 95th  |
| 2005  | -    | -    | -    | -    | -       | -     | -     | -       | -     | -     | -           | -            |       |            | -            | -     | -           | -            | -     | -         | -     | -     | -           |              | -    |          | -     |
| 2006  | -    | -    | -    | -    | -       | -     | -     | -       | -     | -     | -           | -            | -     | -          | -            | -     | -           | -            | -     | -         | -     | -     | -           | -            | -    | -        | -     |
| 2007  | -    | -    | -    | -    | -       | -     | -     | -       | -     | -     | -           | -            | -     | -          | -            | -     | -           | -            | -     | -         | -     | -     | -           | -            | -    | -        | -     |
| 2008  | -    | -    | -    | -    | -       | -     | -     | -       | -     | -     | -           | -            | -     | -          | -            | -     | -           | -            | -     | -         | -     | -     | -           | -            | -    | -        | -     |
| 2009  | -    | -    | -    | -    | -       | -     | -     | -       | -     | -     | -           | -            | -     | -          | -            | -     | -           | -            | -     | -         | -     | -     | -           | -            | -    | -        | -     |
| 2010  | 0.00 | 0.00 | 0.01 | 0.03 | 0.01    | 0.10  | 0.03  | 0.01    | 0.10  | 0.10  | 0.02        | 0.31         | 0.16  | 0.03       | 0.50         | 0.19  | 0.03        | 0.61         | 0.08  | 0.01      | 0.26  | 0.23  | 0.04        | 0.71         | 0.04 | 0.01     | 0.12  |
| 2011  | 0.01 | 0.00 | 0.03 | 0.07 | 0.02    | 0.21  | 0.08  | 0.02    | 0.23  | 0.24  | 0.05        | 0.68         | 0.38  | 0.08       | 1.08         | 0.46  | 0.10        | 1.33         | 0.19  | 0.04      | 0.56  | 0.54  | 0.12        | 1.55         | 0.09 | 0.02     | 0.26  |
| 2012  | 0.02 | 0.00 | 0.05 | 0.13 | 0.03    | 0.34  | 0.13  | 0.03    | 0.36  | 0.41  | 0.10        | 1.09         | 0.64  | 0.16       | 1.73         | 0.79  | 0.20        | 2.13         | 0.33  | 0.08      | 0.89  | 0.92  | 0.23        | 2.47         | 0.15 | 0.04     | 0.41  |
| 2013  | 0.03 | 0.01 | 0.06 | 0.19 | 0.05    | 0.47  | 0.20  | 0.05    | 0.50  | 0.60  | 0.17        | 1.52         | 0.95  | 0.26       | 2.40         | 1.17  | 0.32        | 2.97         | 0.49  | 0.14      | 1.24  | 1.36  | 0.38        | 3.44         | 0.23 | 0.06     | 0.57  |
| 2014  | 0.03 | 0.01 | 0.08 | 0.26 | 0.08    | 0.61  | 0.27  | 0.08    | 0.65  | 0.82  | 0.24        | 1.97         | 1.30  | 0.39       | 3.12         | 1.60  | 0.48        | 3.85         | 0.63  | 0.19      | 1.49  | 1.63  | 0.52        | 3.76         | 0.27 | 0.09     | 0.63  |
| 2015  | 0.04 | 0.01 | 0.10 | 0.33 | 0.11    | 0.76  | 0.35  | 0.11    | 0.81  | 1.06  | 0.34        | 2.45         | 1.68  | 0.53       | 3.88         | 1.97  | 0.64        | 4.48         | 0.73  | 0.25      | 1.60  | 1.87  | 0.65        | 4.01         | 0.31 | 0.11     | 0.67  |
| 2016  | 0.05 | 0.02 | 0.12 | 0.40 | 0.14    | 0.87  | 0.42  | 0.14    | 0.93  | 1.27  | 0.44        | 2.80         | 2.01  | 0.69       | 4.42         | 2.25  | 0.80        | 4.79         | 0.82  | 0.30      | 1.69  | 2.07  | 0.78        | 4.22         | 0.35 | 0.13     | 0.70  |
| 2017  | 0.06 | 0.02 | 0.13 | 0.45 | 0.16    | 0.92  | 0.47  | 0.18    | 0.98  | 1.43  | 0.53        | 2.97         | 2.26  | 0.84       | 4.70         | 2.50  | 0.95        | 5.04         | 0.90  | 0.35      | 1.77  | 2.26  | 0.90        | 4.42         | 0.38 | 0.15     | 0.74  |
| 2018  | 0.07 | 0.03 | 0.13 | 0.49 | 0.19    | 0.97  | 0.52  | 0.20    | 1.03  | 1.57  | 0.62        | 3.11         | 2.49  | 0.98       | 4.92         | 2.72  | 1.10        | 5.25         | 0.97  | 0.40      | 1.84  | 2.44  | 1.02        | 4.58         | 0.41 | 0.17     | 0.76  |
| 2019  | 0.07 | 0.03 | 0.14 | 0.53 | 0.22    | 1.01  | 0.56  | 0.23    | 1.07  | 1.70  | 0.70        | 3.23         | 2.69  | 1.11       | 5.12         | 2.92  | 1.24        | 5.45         | 1.04  | 0.45      | 1.90  | 2.60  | 1.13        | 4.73         | 0.43 | 0.19     | 0.79  |
| 2020  | 0.08 | 0.03 | 0.14 | 0.57 | 0.24    | 1.04  | 0.60  | 0.26    | 1.11  | 1.82  | 0.78        | 3.35         | 2.88  | 1.24       | 5.30         | 3.11  | 1.37        | 5.63         | 1.10  | 0.49      | 1.96  | 2.75  | 1.24        | 4.86         | 0.46 | 0.21     | 0.81  |
| 2021  | 0.08 | 0.04 | 0.15 | 0.60 | 0.27    | 1.08  | 0.64  | 0.29    | 1.15  | 1.93  | 0.86        | 3.46         | 3.06  | 1.36       | 5.47         | 3.29  | 1.49        | 5.79         | 1.16  | 0.53      | 2.01  | 2.89  | 1.34        | 4.99         | 0.48 | 0.22     | 0.83  |
| 2022  | 0.09 | 0.04 | 0.15 | 0.63 | 0.29    | 1.11  | 0.68  | 0.31    | 1.18  | 2.04  | 0.93        | 3.56<br>3.66 | 3.22  | 1.48       | 5.63<br>5.78 | 3.46  | 1.61        | 5.96<br>6.12 | 1.21  | 0.57      | 2.07  | 3.03  | 1.44        | 5.13<br>5.27 | 0.50 | 0.24     | 0.85  |
| 2023  | 0.09 | 0.04 | 0.15 | 0.69 | 0.33    | 1.14  | 0.71  | 0.35    | 1.24  | 2.14  | 1.06        | 3.76         | 3.52  | 1.68       | 5.76         | 3.76  | 1.72        | 6.29         | 1.31  | 0.64      | 2.12  | 3.15  | 1.60        | 5.42         | 0.52 | 0.25     | 0.90  |
| 2024  | 0.10 | 0.04 | 0.16 | 0.09 | 0.35    | 1.20  | 0.74  | 0.37    | 1.28  | 2.23  | 1.12        | 3.85         | 3.66  | 1.78       | 6.09         | 3.90  | 1.91        | 6.44         | 1.36  | 0.67      | 2.10  | 3.38  | 1.67        | 5.55         | 0.56 | 0.28     | 0.92  |
| 2026  | 0.10 | 0.05 | 0.17 | 0.75 | 0.37    | 1.23  | 0.79  | 0.39    | 1.31  | 2.40  | 1.18        | 3.94         | 3.79  | 1.86       | 6.24         | 4.03  | 1.99        | 6.60         | 1.40  | 0.70      | 2.29  | 3.49  | 1.74        | 5.67         | 0.58 | 0.29     | 0.94  |
| 2027  | 0.10 | 0.05 | 0.17 | 0.77 | 0.38    | 1.25  | 0.82  | 0.41    | 1.34  | 2.47  | 1.23        | 4.03         | 3.91  | 1.94       | 6.38         | 4.16  | 2.07        | 6.73         | 1.44  | 0.72      | 2.33  | 3.59  | 1.80        | 5.78         | 0.60 | 0.30     | 0.96  |
| 2028  | 0.11 | 0.05 | 0.17 | 0.79 | 0.40    | 1.28  | 0.84  | 0.42    | 1.36  | 2.55  | 1.27        | 4.11         | 4.03  | 2.01       | 6.50         | 4.27  | 2.14        | 6.86         | 1.48  | 0.75      | 2.37  | 3.68  | 1.86        | 5.87         | 0.61 | 0.31     | 0.98  |
| 2029  | 0.11 | 0.06 | 0.18 | 0.81 | 0.41    | 1.30  | 0.87  | 0.43    | 1.39  | 2.61  | 1.31        | 4.19         | 4.14  | 2.08       | 6.62         | 4.38  | 2.21        | 6.98         | 1.52  | 0.77      | 2.41  | 3.77  | 1.91        | 5.97         | 0.63 | 0.32     | 0.99  |
| Total | 1.34 | 0.59 | 2.45 | 9.87 | 4.34    | 18.07 | 10.50 | 4.62    | 19.23 | 31.70 | 13.95       | 58.04        | 50.14 | 22.07      | 91.82        | 54.58 | 24.21       | 99.31        | 19.44 | 8.67      | 35.21 | 48.94 | 21.88       | 88.39        | 8.15 | 3.64     | 14.72 |
| Avg.  | 0.05 | 0.02 | 0.10 | 0.39 | 0.17    | 0.72  | 0.42  | 0.18    | 0.77  | 1.27  | 0.56        | 2.32         | 2.01  | 0.88       | 3.67         | 2.18  | 0.97        | 3.97         | 0.78  | 0.35      | 1.41  | 1.96  | 0.88        | 3.54         | 0.33 | 0.15     | 0.59  |

Avg. - All Size Categories 9.39 4.16 17.09

## Exhibit E.38h Yearly Cancer Cases Avoided by System Size

Smoking/Bladder Cancer Model - All Water Systems

TTHM - Preferred Alternative

|       |      | <100 |      |       | 100-499 |       |       | 500-999 |       | 1     | ,000-3,299 | )      |        | 3,300-9,999 | )      | 1      | 0,000-49,99 | 9        | 50     | 0,000-99,99 | 99     | 100      | 0,000-999,9 | 99       | 2        | 1,000,000 | ,        |
|-------|------|------|------|-------|---------|-------|-------|---------|-------|-------|------------|--------|--------|-------------|--------|--------|-------------|----------|--------|-------------|--------|----------|-------------|----------|----------|-----------|----------|
| Year  | mean | 5th  | 95th | mean  | 5th     | 95th  | mean  | 5th     | 95th  | mean  | 5th        | 95th   | mean   | 5th         | 95th   | mean   | 5th         | 95th     | mean   | 5th         | 95th   | mean     | 5th         | 95th     | mean     | 5th       | 95th     |
| 2005  | -    | -    | -    | -     | -       | -     | -     |         | -     | -     | -          | -      | -      | -           | -      | -      | -           | -        | -      | -           | -      | -        | -           | -        | -        | -         | -        |
| 2006  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -     | -          | -      | -      | -           | -      | -      | -           | -        | -      | -           | -      | -        | -           | -        | -        | -         | -        |
| 2007  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -     | -          | -      | -      | -           | -      | -      | -           | -        | -      | -           | -      | -        | -           | -        | -        | -         | -        |
| 2008  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -     | -          | -      | -      | -           | -      | -      | -           | -        | -      | -           | -      | -        | -           | -        | -        | -         | -        |
| 2009  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -     | -          | -      | -      | -           | -      | -      | -           | -        | -      | -           | -      | -        | -           | -        | -        | -         | -        |
| 2010  | 0.01 | 0.00 | 0.02 | 0.04  | 0.01    | 0.13  | 0.05  | 0.01    | 0.16  | 0.21  | 0.04       | 0.65   | 0.46   | 0.08        | 1.45   | 2.57   | 0.28        | 8.59     | 2.15   | 0.23        | 7.21   | 9.37     | 1.00        | 31.47    | 7.82     | 0.82      | 26.29    |
| 2011  | 0.01 | 0.00 | 0.04 | 0.10  | 0.02    | 0.28  | 0.12  | 0.03    | 0.34  | 0.49  | 0.11       | 1.41   | 1.10   | 0.24        | 3.17   | 6.02   | 0.84        | 18.74    | 5.03   | 0.69        | 15.73  | 21.95    | 2.97        | 68.65    | 18.31    | 2.44      | 57.37    |
| 2012  | 0.02 | 0.01 | 0.06 | 0.16  | 0.04    | 0.44  | 0.20  | 0.05    | 0.54  | 0.84  | 0.21       | 2.25   | 1.88   | 0.47        | 5.05   | 10.16  | 1.66        | 29.91    | 8.49   | 1.35        | 25.10  | 37.03    | 5.86        | 109.55   | 30.88    | 4.83      | 91.54    |
| 2013  | 0.03 | 0.01 | 0.08 | 0.24  | 0.07    | 0.62  | 0.30  | 0.08    | 0.75  | 1.24  | 0.34       | 3.14   | 2.79   | 0.77        | 7.04   | 14.88  | 2.73        | 41.64    | 12.44  | 2.23        | 34.95  | 54.21    | 9.64        | 152.54   | 45.20    | 7.95      | 127.46   |
| 2014  | 0.04 | 0.01 | 0.10 | 0.33  | 0.10    | 0.80  | 0.41  | 0.12    | 0.98  | 1.69  | 0.51       | 4.08   | 3.80   | 1.13        | 9.15   | 20.12  | 4.04        | 54.12    | 15.74  | 3.19        | 41.81  | 63.88    | 13.30       | 166.78   | 53.25    | 10.96     | 139.37   |
| 2015  | 0.06 | 0.02 | 0.13 | 0.43  | 0.14    | 0.99  | 0.53  | 0.17    | 1.22  | 2.19  | 0.70       | 5.07   | 4.91   | 1.57        | 11.37  | 24.54  | 5.45        | 62.96    | 17.97  | 4.12        | 44.97  | 72.01    | 16.82       | 177.71   | 60.01    | 13.87     | 148.50   |
| 2016  | 0.07 | 0.02 | 0.15 | 0.51  | 0.18    | 1.13  | 0.63  | 0.22    | 1.39  | 2.63  | 0.90       | 5.78   | 5.89   | 2.02        | 12.96  | 27.65  | 6.81        | 67.29    | 19.91  | 5.01        | 47.52  | 79.17    | 20.22       | 186.98   | 65.96    | 16.67     | 156.25   |
| 2017  | 0.07 | 0.03 | 0.16 | 0.58  | 0.21    | 1.20  | 0.71  | 0.26    | 1.47  | 2.96  | 1.09       | 6.14   | 6.63   | 2.45        | 13.76  | 30.37  | 8.11        | 70.74    | 21.63  | 5.86        | 49.75  | 85.62    | 23.45       | 195.68   | 71.32    | 19.34     | 163.51   |
| 2018  | 0.08 | 0.03 | 0.16 | 0.64  | 0.25    | 1.26  | 0.78  | 0.31    | 1.54  | 3.25  | 1.28       | 6.43   | 7.29   | 2.87        | 14.41  | 32.81  | 9.34        | 73.78    | 23.20  | 6.66        | 51.76  | 91.51    | 26.48       | 203.07   | 76.21    | 21.84     | 169.69   |
| 2019  | 0.09 | 0.04 | 0.17 | 0.69  | 0.29    | 1.31  | 0.85  | 0.35    | 1.61  | 3.52  | 1.45       | 6.68   | 7.89   | 3.26        | 14.98  | 35.03  | 10.49       | 76.54    | 24.64  | 7.41        | 53.48  | 96.95    | 29.31       | 209.40   | 80.73    | 24.17     | 174.98   |
| 2020  | 0.10 | 0.04 | 0.18 | 0.74  | 0.32    | 1.36  | 0.91  | 0.39    | 1.66  | 3.77  | 1.62       | 6.92   | 8.45   | 3.63        | 15.52  | 37.09  | 11.58       | 79.04    | 25.98  | 8.11        | 55.07  | 101.99   | 31.94       | 215.31   | 84.91    | 26.33     | 179.92   |
| 2021  | 0.10 | 0.04 | 0.18 | 0.78  | 0.35    | 1.40  | 0.96  | 0.43    | 1.72  | 4.00  | 1.78       | 7.15   | 8.96   | 3.99        | 16.02  | 38.99  | 12.60       | 81.35    | 27.22  | 8.77        | 56.60  | 106.69   | 34.40       | 221.22   | 88.81    | 28.36     | 184.85   |
| 2022  | 0.11 | 0.05 | 0.19 | 0.83  | 0.38    | 1.44  | 1.01  | 0.46    | 1.77  | 4.21  | 1.93       | 7.35   | 9.45   | 4.33        | 16.48  | 40.77  | 13.57       | 83.54    | 28.38  | 9.40        | 58.10  | 111.08   | 36.78       | 227.06   | 92.47    | 30.32     | 189.73   |
| 2023  | 0.11 | 0.05 | 0.19 | 0.87  | 0.41    | 1.48  | 1.06  | 0.50    | 1.82  | 4.41  | 2.07       | 7.55   | 9.90   | 4.65        | 16.94  | 42.43  | 14.49       | 85.62    | 29.47  | 10.00       | 59.52  | 115.21   | 39.06       | 232.56   | 95.89    | 32.20     | 194.31   |
| 2024  | 0.12 | 0.06 | 0.20 | 0.90  | 0.43    | 1.52  | 1.11  | 0.53    | 1.87  | 4.60  | 2.20       | 7.76   | 10.32  | 4.94        | 17.40  | 43.99  | 15.36       | 87.62    | 30.49  | 10.57       | 60.85  | 119.09   | 41.25       | 237.53   | 99.12    | 34.01     | 198.44   |
| 2025  | 0.12 | 0.06 | 0.20 | 0.94  | 0.45    | 1.56  | 1.15  | 0.56    | 1.91  | 4.78  | 2.32       | 7.96   | 10.72  | 5.20        | 17.84  | 45.46  | 16.21       | 89.52    | 31.46  | 11.13       | 62.07  | 122.76   | 43.40       | 242.11   | 102.16   | 35.79     | 202.26   |
| 2026  | 0.13 | 0.06 | 0.21 | 0.97  | 0.48    | 1.60  | 1.19  | 0.58    | 1.96  | 4.95  | 2.43       | 8.15   | 11.10  | 5.45        | 18.28  | 46.84  | 17.02       | 91.43    | 32.37  | 11.67       | 63.34  | 126.22   | 45.45       | 246.97   | 105.03   | 37.49     | 206.30   |
| 2027  | 0.13 | 0.06 | 0.21 | 1.00  | 0.50    | 1.63  | 1.23  | 0.61    | 2.00  | 5.11  | 2.53       | 8.33   | 11.46  | 5.68        | 18.68  | 48.15  | 17.80       | 93.16    | 33.23  | 12.19       | 64.51  | 129.50   | 47.42       | 251.56   | 107.75   | 39.13     | 210.14   |
| 2028  | 0.13 | 0.07 | 0.21 | 1.03  | 0.51    | 1.67  | 1.26  | 0.63    | 2.04  | 5.26  | 2.63       | 8.50   | 11.80  | 5.89        | 19.05  | 49.39  | 18.55       | 94.78    | 34.05  | 12.69       | 65.62  | 132.60   | 49.33       | 255.86   | 110.33   | 40.72     | 213.74   |
| 2029  | 0.14 | 0.07 | 0.22 | 1.06  | 0.53    | 1.70  | 1.30  | 0.65    | 2.08  | 5.41  | 2.71       | 8.66   | 12.12  | 6.08        | 19.40  | 50.57  | 19.27       | 96.44    | 34.82  | 13.16       | 66.76  | 135.55   | 51.15       | 260.28   | 112.77   | 42.22     | 217.42   |
| Total | 1.66 | 0.73 | 3.03 | 12.85 | 5.66    | 23.52 | 15.75 | 6.93    | 28.83 | 65.53 | 28.85      | 119.97 | 146.92 | 64.70       | 268.95 | 647.83 | 206.22      | 1,386.82 | 458.69 | 144.44      | 984.72 | 1,812.39 | 569.22      | 3,892.30 | 1,508.95 | 469.46    | 3,252.07 |
| Avg.  | 0.07 | 0.03 | 0.12 | 0.51  | 0.23    | 0.94  | 0.63  | 0.28    | 1.15  | 2.62  | 1.15       | 4.80   | 5.88   | 2.59        | 10.76  | 25.91  | 8.25        | 55.47    | 18.35  | 5.78        | 39.39  | 72.50    | 22.77       | 155.69   | 60.36    | 18.78     | 130.08   |

Avg. - All Size Categories 187 60 398

# Exhibit E.38i Cases avoided by Age Group per year following rule promulgation (Arsenic/Bladder Cancer model - TTHM - Preferred Alternative)

| the Rule       | Age G            | 11-20            | 21-30  | 31-40            | 41-50              | 51-60              | 61-70                | 71-80                | 81-90                | 91-100+            | Total                | %        |
|----------------|------------------|------------------|--------|------------------|--------------------|--------------------|----------------------|----------------------|----------------------|--------------------|----------------------|----------|
| 1              | 0.0000           | 0.0000           | 0.0000 | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000               | 0%       |
| 2              | 0.0000           | 0.0000           | 0.0000 | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000               | 0%       |
| 3              | 0.0000           | 0.0000           | 0.0000 | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000               | 0%       |
| 4              | 0.0000           | 0.0000           | 0.0000 | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000               | 09       |
| 5              | 0.0000           | 0.0000           | 0.0000 | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000               | 09       |
| 6              | 0.0166           | 0.0178           | 0.1102 | 0.4463           | 1.9255             | 5.2177             | 10.0604              | 15.9147              | 9.4358               | 1.6953             | 44.8403              | 89       |
| 7              | 0.0409           | 0.0432           | 0.2671 | 1.0815           | 4.6664             | 12.6448            | 24.3810              | 38.5687              | 22.8673              | 4.1084             | 108.6693             | 19       |
| 8              | 0.0701           | 0.0738           | 0.4564 | 1.8482           | 7.9744             | 21.6086            | 41.6644              | 65.9096              | 39.0778              | 7.0209             | 185.7041             | 32       |
| 9              | 0.1030           | 0.1083           | 0.6700 | 2.7131           | 11.7060            | 31.7202            | 61.1610              | 96.7517              | 57.3640              | 10.3063            | 272.6036             | 47       |
| 10             | 0.1251           | 0.1315           | 0.8139 | 3.2955           | 14.2188            | 38.5292            | 74.2897              | 117.5201             | 69.6777              | 12.5186            | 331.1200             | 57       |
| 11             | 0.1407           | 0.1493           | 0.9237 | 3.7402           | 16.1376            | 43.7287            | 84.3151<br>91.8560   | 133.3795             | 79.0807              | 14.2079            | 375.8034             | 65       |
| 12<br>13       | 0.1512<br>0.1581 | 0.1626<br>0.1730 | 1.0063 | 4.0747           | 17.5809<br>18.6961 | 47.6396<br>50.6614 | 97.6824              | 145.3085<br>154.5255 | 86.1534<br>91.6181   | 15.4787<br>16.4605 | 409.4119<br>435.3783 | 71<br>75 |
| 14             | 0.1561           | 0.1730           | 1.1208 | 4.5385           | 19.5820            | 53.0620            | 102.3111             | 161 8477             | 95.9594              | 17.2404            | 456.0056             | 79       |
| 15             | 0.1658           | 0.1878           | 1.1617 | 4.7040           | 20.2959            | 54.9967            | 106.0413             | 167.7486             | 99.4581              | 17.8690            | 472.6289             | 82       |
| 16             | 0.1679           | 0.1934           | 1.1950 | 4.8388           | 20.8779            | 56.5737            | 109.0820             | 172.5588             | 102.3100             | 18.3814            | 486,1790             | 84       |
| 17             | 0.1692           | 0.1983           | 1.2224 | 4.9499           | 21.3571            | 57.8720            | 111.5855             | 176.5190             | 104.6581             | 18.8033            | 497.3348             | 86       |
| 18             | 0.1698           | 0.2026           | 1.2452 | 5.0422           | 21.7552            | 58.9509            | 113.6656             | 179.8096             | 106.6091             | 19.1538            | 506.6041             | 88       |
| 19             | 0.1700           | 0.2065           | 1.2643 | 5.1195           | 22.0889            | 59.8551            | 115.4092             | 182.5678             | 108.2444             | 19.4476            | 514.3732             | 89       |
| 20             | 0.1700           | 0.2097           | 1.2805 | 5.1849           | 22.3709            | 60.6194            | 116.8828             | 184.8988             | 109.6265             | 19.6959            | 520.9394             | 90       |
| 21             | 0.1700           | 0.2129           | 1.2942 | 5.2406           | 22.6112            | 61.2705            | 118.1382             | 186.8849             | 110.8040             | 19.9075            | 526.5341             | 91       |
| 22             | 0.1700           | 0.2161           | 1.3060 | 5.2884           | 22.8175            | 61.8295            | 119.2161             | 188.5900             | 111.8149             | 20.0891            | 531.3378             | 92       |
| 23             | 0.1700           | 0.2193           | 1.3162 | 5.3297           | 22.9960            | 62.3131            | 120.1484             | 190.0648             | 112.6893             | 20.2462            | 535.4930             | 93       |
| 24             | 0.1700           | 0.2224           | 1.3251 | 5.3658           | 23.1514            | 62.7342            | 120.9604             | 191.3493             | 113.4510             | 20.3831            | 539.1127             | 93       |
| 25             | 0.1700           | 0.2252           | 1.3329 | 5.3973           | 23.2877            | 63.1035            | 121.6724             | 192.4756             | 114.1187             | 20.5030            | 542.2864             | 94       |
| 26             | 0.1700           | 0.2272           | 1.3409 | 5.4252           | 23.4079            | 63.4293            | 122.3006             | 193.4695             | 114.7080             | 20.6089            | 545.0875             | 94       |
| 27             | 0.1700           | 0.2285           | 1.3489 | 5.4499           | 23.5146            | 63.7185            | 122.8582             | 194.3514<br>195.1386 | 115.2310             | 20.7029            | 547.5740             | 95<br>95 |
| 28             |                  |                  | 1.3571 | 5.4720           | 23.6099            | 63.9765            | 123.3558             |                      | 115.6977             | 20.7867            | 549.7934<br>551 7844 | 95<br>96 |
| 29<br>30       | 0.1700           | 0.2294           | 1.3652 | 5.4918<br>5.5097 | 23.6953            | 64.2080<br>64.4165 | 123.8020             | 195.8445<br>196.4807 | 116.1162<br>116.4934 | 20.8619            | 551.7844<br>553.5783 | 96°      |
| 31             | 0.1700           | 0.2294           | 1.3726 | 5.5258           | 23.7722            | 64.6053            | 124.2042             | 195.4807             | 116.8346             | 20.9297            | 555.2023             | 96       |
| 32             | 0.1700           | 0.2294           | 1.3872 | 5.5405           | 23.9052            | 64.7767            | 124.8986             | 197.5792             | 117.1447             | 21.0467            | 556.6782             | 96       |
| 33             | 0.1700           | 0.2294           | 1.3944 | 5.5538           | 23.9628            | 64.9330            | 125.2000             | 198.0560             | 117.4274             | 21.0975            | 558.0244             | 97       |
| 34             | 0.1700           | 0.2294           | 1.4017 | 5.5661           | 24.0156            | 65.0760            | 125.4757             | 198.4920             | 117.6859             | 21.1439            | 559.2563             | 97       |
| 35             | 0.1700           | 0.2294           | 1.4085 | 5.5773           | 24.0640            | 65.2071            | 125.7285             | 198.8920             | 117.9231             | 21.1865            | 560.3865             | 97       |
| 36             | 0.1700           | 0.2294           | 1.4135 | 5.5895           | 24.1085            | 65.3277            | 125.9611             | 199.2600             | 118.1412             | 21.2257            | 561.4267             | 97       |
| 37             | 0.1700           | 0.2294           | 1.4169 | 5.6024           | 24.1495            | 65.4389            | 126.1755             | 199.5992             | 118.3423             | 21.2619            | 562.3862             | 97       |
| 38             | 0.1700           | 0.2294           | 1.4188 | 5.6161           | 24.1875            | 65.5417            | 126.3737             | 199.9127             | 118.5282             | 21.2953            | 563.2734             | 98       |
| 39             | 0.1700           | 0.2294           | 1.4192 | 5.6302           | 24.2226            | 65.6369            | 126.5572             | 200.2030             | 118.7003             | 21.3262            | 564.0951             | 98       |
| 40             | 0.1700           | 0.2294           | 1.4194 | 5.6434           | 24.2552            | 65.7252            | 126.7274             | 200.4723             | 118.8600             | 21.3549            | 564.8572             | 98       |
| 41             | 0.1700           | 0.2294           | 1.4194 | 5.6579           | 24.2855            | 65.8072            | 126.8857             | 200.7226             | 119.0084             | 21.3815            | 565.5675             | 98       |
| 42             | 0.1700           | 0.2294           | 1.4194 | 5.6733           | 24.3136            | 65.8836            | 127.0329             | 200.9556             | 119.1465             | 21.4063            | 566.2307             | 98       |
| 43             | 0.1700           | 0.2294           | 1.4194 | 5.6896           | 24.3399            | 65.9548            | 127.1702             | 201.1727             | 119.2752             | 21.4295            | 566.8508             | 98       |
| 44             | 0.1700           | 0.2294           | 1.4194 | 5.7066           | 24.3644            | 66.0213            | 127.2983             | 201.3754             | 119.3954             | 21.4511            | 567.4312             | 98       |
| 45<br>46       | 0.1700           | 0.2294           | 1.4194 | 5.7224           | 24.3874            | 66.0834<br>66.1415 | 127.4181             | 201.5648             | 119.5077<br>119.6128 | 21.4712            | 567.9737<br>568.4843 | 98<br>98 |
| 47             | 0.1700           | 0.2294           | 1.4194 | 5.7418           | 24.4464            | 66.1959            | 127.6350             | 201.9080             | 119.7112             | 21.5078            | 568.9650             | 99       |
| 48             | 0.1700           | 0.2294           | 1.4194 | 5.7460           | 24.4814            | 66.2469            | 127.7334             | 202.0637             | 119.8035             | 21.5244            | 569,4182             | 99       |
| 49             | 0.1700           | 0.2294           | 1.4194 | 5.7470           | 24.5193            | 66.2948            | 127.8258             | 202.2098             | 119.8901             | 21.5399            | 569.8457             | 99       |
| 50             | 0.1700           | 0.2294           | 1.4194 | 5.7473           | 24.5548            | 66.3398            | 127.9126             | 202.3471             | 119.9715             | 21.5546            | 570.2465             | 99       |
| 51             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.5922            | 66.3821            | 127.9941             | 202.4761             | 120.0480             | 21.5683            | 570.6272             | 99       |
| 52             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.6304            | 66.4220            | 128.0709             | 202.5976             | 120.1200             | 21.5813            | 570.9883             | 99       |
| 53             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.6691            | 66.4594            | 128.1432             | 202.7119             | 120.1879             | 21.5934            | 571.3311             | 99       |
| 54             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7080            | 66.4948            | 128.2113             | 202.8197             | 120.2518             | 21.6049            | 571.6567             | 99       |
| 55             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7433            | 66.5281            | 128.2756             | 202.9214             | 120.3120             | 21.6157            | 571.9624             | 99       |
| 56             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7691            | 66.5716            | 128.3362             | 203.0173             | 120.3689             | 21.6260            | 572.2554             | 99       |
| 57             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7860            | 66.6238            | 128.3935             | 203.1079             | 120.4226             | 21.6356            | 572.5358             | 99       |
| 58             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7950            | 66.6841            | 128.4477             | 203.1935             | 120.4734             | 21.6447            | 572.8047             | 99       |
| 59             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7971            | 66.7514            | 128.4988             | 203.2746             | 120.5214             | 21.6534            | 573.0629             | 99       |
| 60             |                  | 0.2294           | 1.4194 | 5.7474           | 24.7978            | 66.8131            | 128.5473             | 203.3512             |                      | 21.6615            | 573.3039             | 99       |
| 61<br>62       | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            | 66.8753<br>66.9367 | 128.5931<br>128.6365 | 203.4237             | 120.6098<br>120.6506 | 21.6692            | 573.5353<br>573.7568 | 99       |
| 63             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            | 66.9975            | 128.6777             | 203.4924             | 120.6891             |                    | 573.9694             | 99       |
| 64             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            | 67.0580            | 128.7167             | 203.5574             | 120.6691             | 21.6901            | 574.1738             | 99       |
| 65             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            | 67.1127            | 128.7537             | 203.6777             | 120.7257             |                    | 574.1738             | 99       |
| 66             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            |                    | 128.8039             |                      |                      |                    | 574.5494             | 100      |
| 67             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            | 67.1781            | 128.8656             |                      | 120.8247             |                    | 574.7264             | 100      |
| 68             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            | 67.1917            | 128.9373             |                      | 120.8544             |                    | 574.8968             | 100      |
| 69             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            | 67.1948            | 129.0175             | 203.8837             | 120.8827             | 21.7183            | 575.0611             | 100      |
| 70             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            | 67.1958            | 129.0932             |                      | 120.9095             | 21.7231            | 575.2148             | 100      |
| 71             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            | 67.1960            | 129.1693             |                      |                      |                    | 575.3643             | 100      |
| 72             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            |                    | 129.2438             |                      |                      |                    | 575.5085             | 100      |
| 73             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            | 67.1960            | 129.3173             | 204.0523             | 120.9825             | 21.7362            |                      | 100      |
| 74             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            |                    | 129.3898             |                      |                      |                    | 575.7841             | 100      |
| 75             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            | 67.1960            | 129.4567             |                      | 121.0256             |                    | 575.9113             | 100      |
| 76             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            |                    | 129.5062             |                      | 121.0456             |                    | 576.0363             | 100      |
| 77<br>78       | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979<br>24.7979 | 67.1960<br>67.1960 | 129.5394<br>129.5575 | 204.2427             | 121.0647<br>121.0829 | 21.7510            | 576.1579<br>576.2765 | 100      |
| 78<br>79       | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            | 67.1960            | 129.5575             |                      | 121.1003             |                    | 576.3916             | 100      |
| 79<br>80       | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            |                    |                      | 204.4121             |                      |                    | 576.4984             | 100      |
| 81             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 204.4979             | 121.1100             | 21.7632            | 576.6004             | 10       |
| 82             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            |                    | 129.5633             |                      | 121.1478             |                    | 576.6968             | 10       |
| 83             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            |                    | 129.5633             |                      |                      |                    | 576.7875             | 100      |
| 84             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            |                    |                      |                      | 121.1761             |                    | 576.8729             | 10       |
| 85             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 204.8640             | 121.1893             | 21.7733            |                      | 10       |
| 86             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            |                    | 129.5633             |                      |                      |                    | 577.0206             | 10       |
| 87             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 204.9379             | 121.2451             | 21.7778            | 577.0843             | 100      |
| 88             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            |                    |                      | 204.9534             |                      |                    | 577.1410             | 10       |
| 89             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 204.9570             | 121.3292             | 21.7818            | 577.1914             | 100      |
| 90             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            |                    | 129.5633             |                      |                      | 21.7837            |                      | 10       |
| 91             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 204.9584             | 121.4051             | 21.7856            | 577.2724             | 10       |
| 92             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 204.9584             | 121.4350             | 21.7873            | 577.3041             | 100      |
| 93             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 204.9584             | 121.4598             | 21.7890            | 577.3306             | 100      |
| 94             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 204.9584             | 121.4802             | 21.7906            | 577.3526             | 100      |
| 95             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 204.9584             | 121.4967             | 21.7921            | 577.3706             | 100      |
| 96             | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 204.9584             | 121.5080             | 21.7955            | 577.3853             | 100      |
|                | 0.1700           | 0.2294           | 1.4194 | 5.7474           | 24.7979            | 67.1960            | 129.5633             | 204.9584             | 121.5150             | 21.8003            | 577.3971             | 100      |
| 97             |                  |                  |        |                  |                    |                    |                      |                      |                      |                    |                      |          |
| 97<br>98<br>99 | 0.1700<br>0.1700 | 0.2294           | 1.4194 | 5.7474<br>5.7474 | 24.7979<br>24.7979 | 67.1960            | 129.5633             | 204.9584             | 121.5185             | 21.8061            | 577.4065             | 100      |

## Exhibit E.38j Yearly Cancer Cases Avoided by System Size

Arsenic/Bladder Cancer Model - Surface Water Systems

#### TTHM - Preferred Alternative

|               |      | <100 |      |              | 100-499      |      |      | 500-999      |               | 1             | 1,000-3,299   |       |                | 3,300-9,999 |                 | 1                 | 0,000-49,999    | )                 |                 | 50,000-99,999   |                   | 1                  | 00,000-999,999    | )                  |                    | ≥1,000,000     |                    |
|---------------|------|------|------|--------------|--------------|------|------|--------------|---------------|---------------|---------------|-------|----------------|-------------|-----------------|-------------------|-----------------|-------------------|-----------------|-----------------|-------------------|--------------------|-------------------|--------------------|--------------------|----------------|--------------------|
| Year          | mean | 5th  | 95th | mean         | 5th          | 95th | mean | 5th          | 95th          | mean          | 5th           | 95th  | mean           | 5th         | 95th            | mean              | 5th             | 95th              | mean            | 5th             | 95th              | mean               | 5th               | 95th               | mean               | 5th            | 95th               |
| 2005          | -    | -    | -    | -            | -            | -    | -    | -            | -             |               | -             | -     | -              | -           | -               | -                 | -               | -                 | -               | -               | -                 | -                  | -                 | -                  | -                  | -              | -                  |
| 2006          | -    | -    | -    | -            | -            | -    | -    | -            | -             | -             | -             | -     |                | -           | -               | -                 | -               | -                 | -               | -               | -                 | -                  | -                 | -                  | -                  | -              | -                  |
| 2007          | -    | -    | -    | -            | -            | -    | -    | -            | -             |               | -             | -     |                | -           | -               | -                 | -               | -                 | -               | -               | -                 |                    | -                 | -                  | -                  | -              | -                  |
| 2008          | -    | -    | -    | -            | -            | -    | -    | -            |               | -             | -             | -     |                | -           | -               | -                 | -               | -                 | -               | -               |                   | -                  | -                 |                    | -                  | -              | -                  |
| 2009          | -    |      | -    | -            | -            | -    | -    | -            |               |               |               |       |                | -           | -               | -                 | -               | -                 | -               | -               | -                 |                    | -                 | -                  | -                  | -              | -                  |
| 2010          | 0.00 | 0.00 | 0.00 | 0.02         | 0.01         | 0.04 | 0.04 | 0.01         | 0.07          | 0.23          | 0.09          | 0.43  | 0.65           | 0.26        | 1.23            | 4.67              | 1.21            | 10.23             | 4.07            | 1.05            | 8.91              | 18.00              | 4.65              | 39.44              | 15.32              | 3.96           | 33.56              |
| 2011          | 0.01 | 0.00 | 0.01 | 0.05         | 0.02         | 0.09 | 0.09 | 0.04         | 0.15          | 0.56          | 0.25          | 1.00  | 1.61           | 0.70        | 2.85            | 11.30             | 3.34            | 23.78             | 9.85            | 2.91            | 20.72             | 43.56              | 12.89             | 91.67              | 37.07              | 10.97          | 78.02              |
| 2012          | 0.01 | 0.00 | 0.02 | 0.09         | 0.04         | 0.15 | 0.15 | 0.07         | 0.26          | 0.97          | 0.45          | 1.65  | 2.79           | 1.29        | 4.73            | 19.29             | 6.20            | 39.46             | 16.81           | 5.41            | 34.39             | 74.37              | 23.92             | 152.12             | 63.29              | 20.36          | 129.46             |
| 2013          | 0.01 | 0.01 | 0.02 | 0.13         | 0.06         | 0.21 | 0.22 | 0.11         | 0.37          | 1.44          | 0.69          | 2.38  | 4.13           | 1.97        | 6.81            | 28.30             | 9.62            | 56.69             | 24.66           | 8.39            | 49.40             | 109.11             | 37.10             | 218.54             | 92.86              | 31.57          | 185.99             |
| 2014          | 0.02 | 0.01 | 0.03 | 0.17         | 0.08         | 0.28 | 0.30 | 0.15         | 0.49          | 1.96          | 0.95          | 3.16  | 5.60           | 2.72        | 9.04            | 38.10             | 13.47           | 75.11             | 31.16           | 11.22           | 60.99             | 128.87             | 47.30             | 250.11             | 109.68             | 40.25          | 212.85             |
| 2015          | 0.02 | 0.01 | 0.04 | 0.22         | 0.11         | 0.35 | 0.39 | 0.19         | 0.62          | 2.51          | 1.23          | 3.98  | 7.17           | 3.53        | 11.39           | 46.18             | 17.06           | 89.37             | 35.32           | 13.41           | 67.51             | 143.45             | 55.19             | 272.55             | 122.09             | 46.97          | 231.96             |
| 2016          | 0.03 | 0.01 | 0.04 | 0.26         | 0.13         | 0.41 | 0.46 | 0.23         | 0.72          | 2.97          | 1.49          | 4.63  | 8.49           | 4.26        | 13.25           | 51.44             | 19.83           | 97.63             | 38.45           | 15.10           | 72.34             | 154.69             | 61.29             | 289.80             | 131.65             | 52.17          | 246.63             |
| 2017          | 0.03 | 0.02 | 0.05 | 0.29         | 0.15         | 0.44 | 0.51 | 0.26         | 0.78          | 3.28          | 1.68          | 5.03  | 9.39           | 4.80        | 14.39           | 55.43             | 21.98           | 103.82            | 40.90           | 16.41           | 76.13             | 163.55             | 66.02             | 303.60             | 139.19             | 56.19          | 258.38             |
| 2018          | 0.03 | 0.02 | 0.05 | 0.31         | 0.16         | 0.47 | 0.55 | 0.28         | 0.83          | 3.53          | 1.82          | 5.34  | 10.09          | 5.21        | 15.27           | 58.57             | 23.63           | 108.73            | 42.84           | 17.43           | 79.22             | 170.65             | 69.68             | 314.95             | 145.23             | 59.30          | 268.04             |
| 2019          | 0.04 | 0.02 | 0.05 | 0.33         | 0.17         | 0.49 | 0.58 | 0.30         | 0.87          | 3.72          | 1.93          | 5.59  | 10.63          | 5.52        | 15.99           | 61.07             | 24.92           | 112.75            | 44.41           | 18.21           | 81.78             | 176.40             | 72.50             | 324.46             | 150.13             | 61.71          | 276.13             |
| 2020          | 0.04 | 0.02 | 0.05 | 0.34         | 0.18         | 0.51 | 0.60 | 0.31         | 0.90          | 3.87          | 2.02          | 5.80  | 11.06          | 5.78        | 16.58           | 63.10             | 25.91           | 116.11            | 45.69           | 18.82           | 83.96             | 181.12             | 74.69             | 332.55             | 154.14             | 63.57          | 283.02             |
| 2021          | 0.04 | 0.02 | 0.06 | 0.35         | 0.18         | 0.53 | 0.62 | 0.32         | 0.93          | 3.99          | 2.09          | 5.97  | 11.41          | 5.98        | 17.08           | 64.76             | 26.68           | 118.96            | 46.75           | 19.29           | 85.81             | 185.02             | 76.39             | 339.52             | 157.46             | 65.01          | 288.95             |
| 2022          | 0.04 | 0.02 | 0.06 | 0.36         | 0.19         | 0.54 | 0.63 | 0.33         | 0.95          | 4.09          | 2.15          | 6.11  | 11.69          | 6.14        | 17.49           | 66.13             | 27.28           | 121.41            | 47.63           | 19.65           | 87.43             | 188.27             | 77.70             | 345.58             | 160.23             | 66.13          | 294.10             |
| 2023          | 0.04 | 0.02 | 0.06 | 0.37         | 0.19         | 0.55 | 0.65 | 0.34         | 0.97          | 4.17          | 2.19          | 6.23  | 11.92          | 6.26        | 17.83           | 67.28             | 27.74           | 123.54            | 48.37           | 19.94           | 88.83             | 191.02             | 78.71             | 350.88             | 162.57             | 66.99          | 298.62             |
| 2024          | 0.04 | 0.02 | 0.06 | 0.37         | 0.20         | 0.56 | 0.66 | 0.34         | 0.98          | 4.23          | 2.22          | 6.34  | 12.11          | 6.36        | 18.12           | 68.24             | 28.09           | 125.41            | 48.99           | 20.15           | 90.07             | 193.34             | 79.50             | 355.56             | 164.55             | 67.66          | 302.60             |
| 2025          | 0.04 | 0.02 | 0.06 | 0.38         | 0.20         | 0.57 | 0.67 | 0.35         | 1.00          | 4.29          | 2.25          | 6.42  | 12.27          | 6.43        | 18.37           | 69.06             | 28.37           | 127.05            | 49.52           | 20.32           | 91.16             | 195.33             | 80.10             | 359.71             | 166.24             | 68.17          | 306.13             |
| 2026          | 0.04 | 0.02 | 0.06 | 0.38         | 0.20         | 0.57 | 0.67 | 0.35         | 1.01          | 4.33          | 2.27          | 6.49  | 12.40          | 6.49        | 18.58           | 69.76             | 28.58           | 128.51            | 49.98           | 20.45           | 92.14             | 197.05             | 80.57             | 363.41             | 167.70             | 68.57          | 309.28             |
| 2027          | 0.04 | 0.02 | 0.06 | 0.38         | 0.20         | 0.58 | 0.68 | 0.35         | 1.02          | 4.37          | 2.28          | 6.56  | 12.51          | 6.53        | 18.76           | 70.36             | 28.75           | 129.81            | 50.38           | 20.55           | 93.01             | 198.54             | 80.94             | 366.72             | 168.97             | 68.88          | 312.10             |
| 2028          | 0.04 | 0.02 | 0.06 | 0.39         | 0.20         | 0.58 | 0.68 | 0.36         | 1.03          | 4.41          | 2.30          | 6.61  | 12.60<br>12.69 | 6.57        | 18.92<br>19.05  | 70.89             | 28.88<br>28.97  | 130.98            | 50.72<br>51.03  | 20.63           | 93.80<br>94.50    | 199.85             | 81.22<br>81.44    | 369.71             | 170.08             | 69.12<br>69.31 | 314.64             |
| 2029          |      | 0.02 |      |              |              |      |      |              | 1.03          |               | 2.31          | 6.66  |                | 6.60        |                 | 71.34             |                 |                   |                 |                 |                   | 200.99             |                   | 372.40             | 171.06             |                | 316.93             |
| Total<br>Avg. | 0.60 | 0.31 | 0.91 | 5.58<br>0.22 | 2.87<br>0.11 | 0.34 | 9.82 | 5.06<br>0.20 | 14.95<br>0.60 | 63.35<br>2.53 | 32.64<br>1.31 | 96.39 | 181.21<br>7.25 | 93.38       | 275.72<br>11.03 | 1,055.26<br>42.21 | 420.52<br>16.82 | 1,971.40<br>78.86 | 777.54<br>31.10 | 310.05<br>12.40 | 1,452.13<br>58.09 | 3,113.18<br>124.53 | 1,241.79<br>49.67 | 5,813.25<br>232.53 | 2,649.50<br>105.98 | 1,056.84       | 4,947.42<br>197.90 |

Avg. - All Size Categories 314.24 126.54 583.23

## Exhibit E.38k Yearly Cancer Cases Avoided by System Size

Arsenic/Bladder Cancer Model - Ground Water Systems

TTHM - Preferred Alternative

|       |      | <100 |      |       | 100-499 |       |       | 500-999 |       | 1     | 1,000-3,299 |              |       | 3,300-9,999 | 9            | 1            | 0,000-49,99 | 99           | 50    | ,000-99,9 | 99    | 100          | 0,000-999,9 | 999          | 2     | 1,000,00 | 0     |
|-------|------|------|------|-------|---------|-------|-------|---------|-------|-------|-------------|--------------|-------|-------------|--------------|--------------|-------------|--------------|-------|-----------|-------|--------------|-------------|--------------|-------|----------|-------|
| Year  | mean | 5th  | 95th | mean  | 5th     | 95th  | mean  | 5th     | 95th  | mean  | 5th         | 95th         | mean  | 5th         | 95th         | mean         | 5th         | 95th         | mean  | 5th       | 95th  | mean         | 5th         | 95th         | mean  | 5th      | 95th  |
| 2005  | -    |      | -    | -     | -       | -     | -     |         |       |       | -           | -            |       | -           |              | -            |             | -            | -     | -         | -     |              | -           | -            | -     | -        | -     |
| 2006  | -    | -    | -    | -     |         | -     | -     | -       | -     | -     | -           | -            | -     | -           |              | -            | -           | -            | -     | -         | -     | -            | -           | -            | -     | -        | -     |
| 2007  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -     | -           | -            | -     | -           | -            | -            | -           | -            | -     | -         | -     | -            | -           | -            | -     | -        | -     |
| 2008  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -     | -           | -            | -     | -           | -            | -            | -           | -            | -     | -         | -     | -            | -           | -            | -     | -        | -     |
| 2009  | -    |      | -    | -     | -       | -     | -     | -       | -     | -     | -           | -            | -     | -           |              | -            | -           | -            | -     | -         | -     | -            | -           | -            | -     | -        | -     |
| 2010  | 0.01 | 0.00 | 0.02 | 0.07  | 0.03    | 0.13  | 0.07  | 0.03    | 0.13  | 0.21  | 0.08        | 0.40         | 0.34  | 0.13        | 0.64         | 0.42         | 0.16        | 0.78         | 0.17  | 0.07      | 0.33  | 0.48         | 0.19        | 0.91         | 0.08  | 0.03     | 0.15  |
| 2011  | 0.02 | 0.01 | 0.04 | 0.16  | 0.07    | 0.29  | 0.17  | 0.08    | 0.31  | 0.53  | 0.23        | 0.93         | 0.83  | 0.36        | 1.48         | 1.03         | 0.45        | 1.82         | 0.43  | 0.19      | 0.76  | 1.20         | 0.52        | 2.12         | 0.20  | 0.09     | 0.35  |
| 2012  | 0.04 | 0.02 | 0.07 | 0.28  | 0.13    | 0.48  | 0.30  | 0.14    | 0.51  | 0.91  | 0.42        | 1.55         | 1.44  | 0.67        | 2.45         | 1.78         | 0.83        | 3.03         | 0.75  | 0.35      | 1.27  | 2.07         | 0.96        | 3.51         | 0.35  | 0.16     | 0.58  |
| 2013  | 0.06 | 0.03 | 0.09 | 0.42  | 0.20    | 0.69  | 0.45  | 0.21    | 0.74  | 1.35  | 0.65        | 2.23         | 2.14  | 1.02        | 3.53         | 2.64         | 1.26        | 4.36         | 1.11  | 0.53      | 1.82  | 3.07         | 1.46        | 5.06         | 0.51  | 0.24     | 0.84  |
| 2014  | 0.08 | 0.04 | 0.12 | 0.57  | 0.28    | 0.92  | 0.61  | 0.29    | 0.98  | 1.83  | 0.89        | 2.96         | 2.90  | 1.41        | 4.68         | 3.59         | 1.74        | 5.78         | 1.41  | 0.69      | 2.26  | 3.68         | 1.83        | 5.80         | 0.61  | 0.30     | 0.97  |
| 2015  | 0.10 | 0.05 | 0.16 | 0.73  | 0.36    | 1.16  | 0.78  | 0.38    | 1.24  | 2.35  | 1.15        | 3.73         | 3.71  | 1.83        | 5.91         | 4.38         | 2.18        | 6.90         | 1.62  | 0.82      | 2.51  | 4.13         | 2.10        | 6.35         | 0.69  | 0.35     | 1.06  |
| 2016  | 0.12 | 0.06 | 0.18 | 0.87  | 0.43    | 1.35  | 0.92  | 0.46    | 1.44  | 2.78  | 1.39        | 4.34         | 4.40  | 2.20        | 6.87         | 4.92         | 2.50        | 7.57         | 1.77  | 0.91      | 2.70  | 4.48         | 2.30        | 6.79         | 0.75  | 0.38     | 1.13  |
| 2017  | 0.13 | 0.07 | 0.20 | 0.96  | 0.49    | 1.47  | 1.02  | 0.52    | 1.56  | 3.08  | 1.57        | 4.72         | 4.87  | 2.49        | 7.46         | 5.33         | 2.75        | 8.09         | 1.90  | 0.98      | 2.86  | 4.76         | 2.46        | 7.15         | 0.79  | 0.41     | 1.19  |
| 2018  | 0.14 | 0.07 | 0.21 | 1.03  | 0.53    | 1.56  | 1.09  | 0.56    | 1.66  | 3.30  | 1.70        | 5.01         | 5.23  | 2.70        | 7.92         | 5.66         | 2.93        | 8.51         | 1.99  | 1.04      | 2.99  | 4.97         | 2.60        | 7.45         | 0.83  | 0.43     | 1.24  |
| 2019  | 0.15 | 0.08 | 0.22 | 1.08  | 0.56    | 1.63  | 1.15  | 0.60    | 1.74  | 3.48  | 1.81        | 5.24         | 5.51  | 2.86        | 8.29         | 5.91         | 3.08        | 8.85         | 2.07  | 1.08      | 3.09  | 5.15         | 2.70        | 7.70         | 0.86  | 0.45     | 1.28  |
| 2020  | 0.15 | 0.08 | 0.23 | 1.13  | 0.59    | 1.69  | 1.20  | 0.63    | 1.80  | 3.62  | 1.89        | 5.43         | 5.73  | 2.99        | 8.59         | 6.11         | 3.20        | 9.14         | 2.13  | 1.12      | 3.18  | 5.29         | 2.78        | 7.90         | 0.88  | 0.46     | 1.32  |
| 2021  | 0.16 | 0.08 | 0.24 | 1.16  | 0.61    | 1.74  | 1.24  | 0.65    | 1.85  | 3.74  | 1.96        | 5.60         | 5.91  | 3.10        | 8.85         | 6.28         | 3.30        | 9.38         | 2.18  | 1.14      | 3.25  | 5.40         | 2.84        | 8.07         | 0.90  | 0.47     | 1.34  |
| 2022  | 0.16 | 0.08 | 0.24 | 1.19  | 0.63    | 1.78  | 1.27  | 0.67    | 1.90  | 3.83  | 2.01        | 5.73         | 6.06  | 3.18        | 9.07         | 6.41         | 3.37        | 9.58         | 2.22  | 1.17      | 3.31  | 5.50         | 2.89        | 8.21         | 0.92  | 0.48     | 1.37  |
| 2023  | 0.16 | 0.09 | 0.25 | 1.22  | 0.64    | 1.82  | 1.29  | 0.68    | 1.94  | 3.90  | 2.05        | 5.84<br>5.94 | 6.18  | 3.24        | 9.25<br>9.39 | 6.52<br>6.62 | 3.43        | 9.75<br>9.89 | 2.25  | 1.18      | 3.37  | 5.58<br>5.64 | 2.93        | 8.33<br>8.45 | 0.93  | 0.49     | 1.39  |
| 2024  | 0.17 | 0.09 | 0.25 | 1.25  | 0.66    | 1.85  | 1.33  | 0.69    | 1.99  | 4.02  | 2.10        | 6.02         | 6.36  | 3.33        | 9.59         | 6.69         | 3.51        | 10.02        | 2.20  | 1.20      | 3.45  | 5.70         | 2.99        | 8.54         | 0.94  | 0.49     | 1.42  |
| 2026  | 0.17 | 0.09 | 0.26 | 1.26  | 0.66    | 1.89  | 1.35  | 0.70    | 2.02  | 4.06  | 2.10        | 6.09         | 6.42  | 3.36        | 9.63         | 6.76         | 3.54        | 10.12        | 2.33  | 1.22      | 3.49  | 5.74         | 3.00        | 8.61         | 0.96  | 0.50     | 1.43  |
| 2027  | 0.17 | 0.09 | 0.26 | 1.28  | 0.67    | 1.91  | 1.36  | 0.71    | 2.04  | 4.10  | 2.14        | 6.15         | 6.48  | 3.38        | 9.72         | 6.81         | 3.56        | 10.12        | 2.34  | 1.22      | 3.51  | 5.78         | 3.02        | 8.68         | 0.96  | 0.50     | 1.45  |
| 2028  | 0.17 | 0.09 | 0.26 | 1.29  | 0.67    | 1.93  | 1.37  | 0.71    | 2.05  | 4.13  | 2.15        | 6.20         | 6.53  | 3.40        | 9.80         | 6.86         | 3.57        | 10.29        | 2.36  | 1.23      | 3.54  | 5.82         | 3.03        | 8.74         | 0.97  | 0.50     | 1.45  |
| 2029  | 0.18 | 0.09 | 0.26 | 1.29  | 0.67    | 1.94  | 1.38  | 0.72    | 2.07  | 4.15  | 2.16        | 6.24         | 6.57  | 3.42        | 9.87         | 6.90         | 3.59        | 10.36        | 2.37  | 1.23      | 3.56  | 5.85         | 3.04        | 8.78         | 0.97  | 0.51     | 1.46  |
| Total | 2.50 | 1.29 | 3.81 | 18.48 | 9.52    | 28.13 | 19.66 | 10.13   | 29.93 | 59.35 | 30.57       | 90.34        | 93.88 | 48.35       | 142.91       | 101.63       | 52.42       | 154.43       | 35.99 | 18.57     | 54.66 | 90.30        | 46.59       | 137.12       | 15.04 | 7.76     | 22.84 |
| Avg.  | 0.10 | 0.05 | 0.15 | 0.74  | 0.38    | 1.13  | 0.79  | 0.41    | 1.20  | 2.37  | 1.22        | 3.61         | 3.76  | 1.93        | 5.72         | 4.07         | 2.10        | 6.18         | 1.44  | 0.74      | 2.19  | 3.61         | 1.86        | 5.48         | 0.60  | 0.31     | 0.91  |

Avg. - All Size Categories 17.47 9.01 26.57

## Exhibit E.38I Yearly Cancer Cases Avoided by System Size

Arsenic/Bladder Cancer Model - All Water Systems

### TTHM - Preferred Alternative

|       |      | <100 |      |       | 100-499 |       |       | 500-999 |       | 1            | ,000-3,299   | )      | 3              | 3,300-9,999  |                | 10             | 0,000-49,99    | 9                |                | 50,000-99, | 999            | 1        | 00,000-999,99  | 9                |                  | ≥1,000,000     |                  |
|-------|------|------|------|-------|---------|-------|-------|---------|-------|--------------|--------------|--------|----------------|--------------|----------------|----------------|----------------|------------------|----------------|------------|----------------|----------|----------------|------------------|------------------|----------------|------------------|
| Year  | mean | 5th  | 95th | mean  | 5th     | 95th  | mean  | 5th     | 95th  | mean         | 5th          | 95th   | mean           | 5th          | 95th           | mean           | 5th            | 95th             | mean           | 5th        | 95th           | mean     | 5th            | 95th             | mean             | 5th            | 95th             |
| 2005  | -    | -    | -    | -     | -       | -     |       | -       | -     | -            | -            | -      | -              | -            | -              | -              |                |                  | -              |            | -              | -        | -              | -                | -                | -              |                  |
| 2006  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -            | -            | -      | -              | -            | -              | -              | -              | -                | -              | -          | -              | -        | -              | -                | -                | -              | -                |
| 2007  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -            | -            | -      | -              | -            | -              | -              | -              | -                | -              | -          | -              | -        | -              | -                | -                | -              | -                |
| 2008  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -            | -            | -      | -              | -            | -              | -              | -              | -                | -              | -          | -              | -        | -              | -                | -                | -              | -                |
| 2009  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -            | -            | -      | -              | -            | -              | -              | -              | -                | -              | -          | -              | -        | -              | -                | -                | -              | -                |
| 2010  | 0.01 | 0.00 | 0.02 | 0.09  | 0.03    | 0.16  | 0.11  | 0.04    | 0.20  | 0.44         | 0.17         | 0.83   | 0.99           | 0.39         | 1.86           | 5.09           | 1.37           | 11.01            | 4.24           | 1.12       | 9.24           | 18.48    | 4.84           | 40.35            | 15.40            | 3.99           | 33.72            |
| 2011  | 0.03 | 0.01 | 0.05 | 0.21  | 0.09    | 0.38  | 0.26  | 0.11    | 0.46  | 1.09         | 0.48         | 1.93   | 2.44           | 1.07         | 4.33           | 12.33          | 3.80           | 25.60            | 10.28          | 3.10       | 21.49          | 44.76    | 13.42          | 93.79            | 37.27            | 11.06          | 78.37            |
| 2012  | 0.05 | 0.02 | 0.08 | 0.37  | 0.17    | 0.63  | 0.45  | 0.21    | 0.77  | 1.89         | 0.87         | 3.20   | 4.23           | 1.96         | 7.18           | 21.08          | 7.03           | 42.49            | 17.56          | 5.75       | 35.65          | 76.44    | 24.88          | 155.63           | 63.64            | 20.52          | 130.05           |
| 2013  | 0.07 | 0.03 | 0.12 | 0.55  | 0.26    | 0.90  | 0.67  | 0.32    | 1.11  | 2.80         | 1.33         | 4.61   | 6.27           | 2.99         | 10.34          | 30.95          | 10.89          | 61.05            | 25.77          | 8.91       | 51.22          | 112.18   | 38.56          | 223.59           | 93.37            | 31.82          | 186.83           |
| 2014  | 0.10 | 0.05 | 0.15 | 0.74  | 0.36    | 1.20  | 0.91  | 0.44    | 1.47  | 3.79         | 1.84         | 6.12   | 8.50           | 4.12         | 13.72          | 41.68          | 15.22          | 80.89            | 32.58          | 11.91      | 63.25          | 132.55   | 49.13          | 255.91           | 110.29           | 40.56          | 213.82           |
| 2015  | 0.12 | 0.06 | 0.20 | 0.95  | 0.47    | 1.51  | 1.17  | 0.57    | 1.85  | 4.85         | 2.39         | 7.72   | 10.88          | 5.35         | 17.30          | 50.56          | 19.24          | 96.27            | 36.94          | 14.22      | 70.02          | 147.58   | 57.29          | 278.90           | 122.77           | 47.32          | 233.02           |
| 2016  | 0.15 | 0.07 | 0.23 | 1.13  | 0.56    | 1.76  | 1.38  | 0.69    | 2.16  | 5.75         | 2.88         | 8.97   | 12.88          | 6.46         | 20.12          | 56.36          | 22.33          | 105.20           | 40.22          | 16.01      | 75.04          | 159.17   | 63.60          | 296.58           | 132.40           | 52.55          | 247.76           |
| 2017  | 0.16 | 0.08 | 0.25 | 1.25  | 0.64    | 1.91  | 1.53  | 0.78    | 2.34  | 6.36         | 3.25         | 9.75   | 14.26          | 7.28         | 21.85          | 60.77          | 24.72          | 111.91           | 42.79          | 17.39      | 78.99          | 168.31   | 68.48          | 310.75           | 139.98           | 56.60          | 259.57           |
| 2018  | 0.17 | 0.09 | 0.26 | 1.34  | 0.69    | 2.03  | 1.64  | 0.85    | 2.49  | 6.83         | 3.53         | 10.35  | 15.31          | 7.90         | 23.19          | 64.22          | 26.57          | 117.24           | 44.83          | 18.47      | 82.20          | 175.62   | 72.27          | 322.40           | 146.06           | 59.73          | 269.28           |
| 2019  | 0.18 | 0.09 | 0.27 | 1.41  | 0.73    | 2.12  | 1.73  | 0.90    | 2.60  | 7.20         | 3.74         | 10.83  | 16.14          | 8.38         | 24.28          | 66.98          | 28.00          | 121.60           | 46.48          | 19.30      | 84.88          | 181.55   | 75.20          | 332.16           | 150.99           | 62.15          | 277.42           |
| 2020  | 0.19 | 0.10 | 0.28 | 1.47  | 0.77    | 2.20  | 1.80  | 0.94    | 2.70  | 7.49         | 3.91         | 11.23  | 16.80          | 8.77         | 25.17          | 69.21          | 29.12          | 125.25           | 47.82          | 19.94      | 87.14          | 186.41   | 77.47          | 340.45           | 155.02           | 64.03          | 284.34           |
| 2021  | 0.20 | 0.10 | 0.29 | 1.51  | 0.79    | 2.27  | 1.86  | 0.97    | 2.78  | 7.73         | 4.05         | 11.57  | 17.32          | 9.08         | 25.93          | 71.04          | 29.98          | 128.34           | 48.93          | 20.44      | 89.07          | 190.42   | 79.23          | 347.59           | 158.36           | 65.48          | 290.30           |
| 2022  | 0.20 | 0.10 | 0.30 | 1.55  | 0.81    | 2.32  | 1.90  | 1.00    | 2.85  | 7.92         | 4.15         | 11.85  | 17.75          | 9.32         | 26.56          | 72.54          | 30.65          | 130.99           | 49.85          | 20.82      | 90.74          | 193.77   | 80.59          | 353.78           | 161.15           | 66.61          | 295.47           |
| 2023  | 0.20 | 0.11 | 0.31 | 1.58  | 0.83    | 2.37  | 1.94  | 1.02    | 2.90  | 8.07         | 4.24         | 12.08  | 18.10          | 9.50         | 27.08          | 73.80          | 31.16          | 133.29           | 50.62          | 21.12      | 92.20          | 196.59   | 81.64          | 359.21           | 163.49           | 67.48          | 300.01           |
| 2024  | 0.21 | 0.11 | 0.31 | 1.61  | 0.84    | 2.41  | 1.97  | 1.03    | 2.95  | 8.20         | 4.30         | 12.27  | 18.39          | 9.65         | 27.52          | 74.86          | 31.57          | 135.30           | 51.27          | 21.35      | 93.48          | 198.99   | 82.46          | 364.00           | 165.49           | 68.15          | 304.00           |
| 2025  | 0.21 | 0.11 | 0.31 | 1.63  | 0.85    | 2.44  | 2.00  | 1.05    | 2.99  | 8.31         | 4.35         | 12.44  | 18.62          | 9.76         | 27.88          | 75.75          | 31.88          | 137.07           | 51.83          | 21.53      | 94.62          | 201.03   | 83.09          | 368.24           | 167.19           | 68.67          | 307.55           |
| 2026  | 0.21 | 0.11 | 0.32 | 1.65  | 0.86    | 2.47  | 2.02  | 1.06    | 3.02  | 8.40<br>8.47 | 4.39<br>4.42 | 12.58  | 18.82<br>18.99 | 9.85<br>9.92 | 28.20<br>28.48 | 76.51<br>77.17 | 32.12<br>32.31 | 138.63<br>140.03 | 52.31<br>52.72 | 21.67      | 95.63<br>96.53 | 202.80   | 83.58<br>83.95 | 372.02<br>375.40 | 168.66<br>169.93 | 69.07<br>69.38 | 310.71<br>313.55 |
| 2027  | 0.21 | 0.11 | 0.32 | 1.67  | 0.87    | 2.49  | 2.04  | 1.06    | 3.08  | 8.53         | 4.42         | 12.70  | 19.13          | 9.92         | 28.72          | 77.74          | 32.45          | 141.27           | 53.08          | 21.76      | 97.34          | 204.33   | 84.25          | 378.44           | 171.05           | 69.63          | 316.10           |
| 2029  | 0.22 | 0.11 | 0.33 | 1.68  | 0.88    | 2.53  | 2.06  | 1.07    | 3.10  | 8.59         | 4.45         | 12.90  | 19.26          | 10.01        | 28.92          | 78.24          | 32.56          | 142.39           | 53.40          | 21.92      | 98.06          | 206.84   | 84.47          | 381.18           | 172.03           | 69.81          | 318.40           |
| Total | 3.10 | 1.60 | 4.72 | 24.05 | 12.39   | 36.61 | 29.48 | 15.19   | 44.88 | 122.70       | 63.21        | 186.73 | 275.09         | 141.73       | 418.63         | 1.156.89       | 472.94         | 2.125.83         | 813.53         | 328.62     | 1.506.79       | 3.203.48 | 1,288,38       | 5.950.37         | 2.664.54         | 1.064.59       | 4.970.25         |
| Avg.  | 0.12 | 0.06 | 0.19 | 0.96  | 0.50    | 1.46  | 1.18  | 0.61    | 1.80  | 4.91         | 2.53         | 7.47   | 11.00          | 5.67         | 16.75          | 46.28          | 18.92          | 85.03            | 32.54          | 13.14      | 60.27          | 128.14   | 51.54          | 238.01           | 106.58           | 42.58          | 198.81           |

Avg. - All Size Categories 332 136 610

# Section E.7.2 Projection of Cases - Preferred Alternative HAA5 as Indicator

|           |                            |                            |                  |                  |                    |                    | ıp (year             |                      |                      |                  |                      |    |
|-----------|----------------------------|----------------------------|------------------|------------------|--------------------|--------------------|----------------------|----------------------|----------------------|------------------|----------------------|----|
| After the | 1-10                       | 11-20                      | 21-30            | 31-40            | 41-50              | 51-60              | 61-70                | 71-80                |                      | 91-100+          | Total                | %  |
| 1 2       | 0.0000                     | 0.0000                     | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000           | 0.0000               | 09 |
| 3         | 0.0000                     | 0.0000                     | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000           | 0.0000               | 09 |
| 4         | 0.0000                     | 0.0000                     | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000           | 0.0000               | 09 |
| 5         | 0.0000                     | 0.0000                     | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000           | 0.0000               | 09 |
| 6<br>7    | 0.0130                     | 0.0110                     | 0.0678           | 0.2744           | 1.1840<br>3.0315   | 3.2083<br>8.2147   | 6.1860               | 9.7858<br>25.0561    | 5.8020<br>14.8557    | 1.0424<br>2.6690 | 27.5746<br>70.6046   | 45 |
| 8         | 0.0622                     | 0.0502                     | 0.3108           | 1.2584           | 5.4296             | 14.7128            | 28.3684              | 44.8765              | 26.6073              | 4.7804           |                      | 19 |
| 9         | 0.0956                     | 0.0770                     | 0.4767           | 1.9301           | 8.3279             | 22.5665            | 43.5113              | 68.8313              | 40.8100              | 7.3321           | 193.9585             | 29 |
| 10        | 0.1232                     | 0.0997                     | 0.6170           | 2.4983           | 10.7794            | 29.2095            | 56.3200              | 89.0935              | 52.8235              |                  | 251.0547             | 36 |
| 11<br>12  | 0.1451                     | 0.1206                     | 0.7460           | 3.0208           | 13.0338<br>15.0405 | 35.3181<br>40.7559 | 68.0983<br>78.5832   | 107.7259<br>124.3121 | 63.8707<br>73.7046   |                  | 303.5546<br>350.2861 | 46 |
| 13        | 0.1736                     | 0.1555                     | 0.9619           | 3.8948           | 16.8045            | 45.5359            | 87.7996              | 138.8917             | 82.3489              |                  | 391.3616             | 56 |
| 14        | 0.1818                     | 0.1693                     | 1.0477           | 4.2422           | 18.3038            | 49.5984            | 95.6328              | 151.2832             | 89.6958              |                  | 426.2702             | 64 |
| 15<br>16  | 0.1880                     | 0.1807                     | 1.1181           | 4.5276<br>4.7645 | 19.5351<br>20.5572 | 52.9349<br>55.7047 | 102.0660             | 161.4600<br>169.9083 | 95.7296              |                  | 454.9392<br>478.7387 | 7  |
| 17        | 0.1947                     | 0.1997                     | 1.1767           | 4.7645           | 21,4143            | 58.0271            | 111.8844             |                      | 104.9385             |                  | 498.6929             | 75 |
| 18        | 0.1960                     | 0.2078                     | 1.2673           | 5.1317           | 22.1416            | 59.9978            | 115.6843             | 183.0029             | 108.5024             | 19.4940          | 515.6257             | 7  |
| 19        | 0.1963                     | 0.2153                     | 1.3030           | 5.2762           | 22.7649            | 61.6870            |                      | 188.1552             |                      |                  | 530.1392             | 7  |
| 20<br>21  | 0.1964                     | 0.2217                     | 1.3339           | 5.4011           | 23.3038            | 63.1472<br>64.4191 | 121.7566<br>124.2091 |                      | 114.1978             |                  | 542.6846<br>553.6137 | 8  |
| 22        | 0.1964                     | 0.2351                     | 1.3843           | 5.6053           | 24.1850            | 65.5350            | 126.3606             |                      |                      |                  | 563.2028             | 8  |
| 23        | 0.1964                     | 0.2420                     | 1.4051           | 5.6896           | 24.5485            | 66.5200            | 128.2599             | 202.8966             | 120.2973             | 21.6131          | 571.6685             | 8  |
| 24<br>25  | 0.1964                     | 0.2491                     | 1.4236           | 5.7643<br>5.8310 | 24.8711<br>25.1587 | 67.3941<br>68.1734 | 129.9454<br>131.4480 | 205.5629<br>207.9399 | 121.8781<br>123.2875 |                  | 579.1820<br>585.8807 | 8  |
| 26        | 0.1964                     | 0.2599                     | 1.4400           | 5.8907           | 25.4161            | 68.8711            |                      | 210.0678             | 124.5492             | 22.3770          |                      | 8  |
| 27        | 0.1964                     | 0.2629                     | 1.4751           | 5.9443           | 25.6475            | 69.4979            |                      | 211.9797             |                      |                  | 597.2690             | 90 |
| 28        | 0.1964                     | 0.2645                     | 1.4933           | 5.9926           | 25.8560            | 70.0630            |                      |                      | 126.7047             | 22.7643          | 602.1296             | 9  |
| 29        | 0.1964                     | 0.2649                     | 1.5119           | 6.0363           | 26.0446            | 70.5740            |                      | 215.2621             | 127.6288             |                  | 606.5260             | 9  |
| 30<br>31  | 0.1964                     | 0.2650                     | 1.5287           | 6.0760           | 26.2156<br>26.3711 | 71.0374<br>71.4587 |                      | 216.6755<br>217.9604 |                      |                  | 610.5124<br>614.1381 | 9  |
| 32        | 0.1964                     | 0.2650                     | 1.5627           | 6.1448           | 26.5127            | 71.8426            |                      | 219.1314             |                      |                  | 617.4437             | 9  |
| 33        | 0.1964                     | 0.2650                     | 1.5797           | 6.1748           | 26.6421            | 72.1932            |                      |                      | 130.5570             |                  | 620.4642             | 9  |
| 34<br>35  | 0.1964                     | 0.2650                     | 1.5971           | 6.2023           | 26.7605<br>26.8691 | 72.5141<br>72.8083 |                      | 221.1795<br>222.0768 |                      |                  | 623.2301<br>625.7666 | 9  |
| 36        | 0.1964                     | 0.2650                     | 1.6255           | 6.2552           | 26.9688            | 73.0785            |                      | 222.9011             |                      |                  | 628.0985             | 9  |
| 37        | 0.1964                     | 0.2650                     | 1.6337           | 6.2849           | 27.0606            | 73.3272            |                      |                      | 132.6078             |                  | 630.2457             | 9  |
| 38        | 0.1964                     | 0.2650                     | 1.6383           | 6.3164           | 27.1452            | 73.5565            |                      | 224.3590             |                      |                  | 632.2259             | 9  |
| 39<br>40  | 0.1964                     | 0.2650                     | 1.6394           | 6.3496<br>6.3806 | 27.2233<br>27.2956 | 73.7681<br>73.9638 |                      | 225.0046<br>225.6015 |                      |                  | 634.0551<br>635.7463 | 9  |
| 41        | 0.1964                     | 0.2650                     | 1.6398           | 6.4152           | 27.3624            | 74.1451            |                      | 226.1543             |                      |                  | 637.3179             | 9  |
| 42        | 0.1964                     | 0.2650                     | 1.6398           | 6.4526           | 27.4245            | 74.3132            |                      | 226.6669             | 134.3908             |                  | 638.7807             | 9  |
| 43        | 0.1964                     | 0.2650                     | 1.6398           | 6.4927           | 27.4821            | 74.4692            |                      | 227.1430             |                      |                  | 640.1443             | 9  |
| 44<br>45  | 0.1964                     | 0.2650                     | 1.6398           | 6.5350<br>6.5751 | 27.5356<br>27.5855 | 74.6144<br>74.7495 |                      | 227.5857<br>227.9980 | 134.9355<br>135.1800 |                  | 641.4177<br>642.6039 | 9  |
| 46        | 0.1964                     | 0.2650                     | 1.6398           | 6.6050           | 27.6482            | 74.8755            |                      | 228.3823             |                      |                  | 643.7186             | g  |
| 47        | 0.1964                     | 0.2650                     | 1.6398           | 6.6251           | 27.7219            | 74.9932            | 144.5974             | 228.7411             | 135.6205             | 24.3661          | 644.7667             | g  |
| 48        | 0.1964                     | 0.2650                     | 1.6398           | 6.6362           | 27.8060            | 75.1031            |                      | 229.0765             |                      |                  | 645.7538             | g  |
| 49<br>50  | 0.1964                     | 0.2650                     | 1.6398           | 6.6389<br>6.6399 | 27.8992<br>27.9877 | 75.2060<br>75.3024 |                      | 229.3904<br>229.6844 |                      |                  | 646.6844<br>647.5557 | 9  |
| 51        | 0.1964                     | 0.2650                     | 1.6398           | 6.6400           | 28.0835            | 75.3928            |                      | 229.9601             |                      |                  | 648.3850             | 9  |
| 52        | 0.1964                     | 0.2650                     | 1.6398           | 6.6400           | 28.1833            | 75.4777            | 145.5317             | 230.2191             | 136.4968             | 24.5236          | 649.1736             | 9  |
| 53        | 0.1964                     | 0.2650                     | 1.6398           | 6.6400           | 28.2867            | 75.5575            |                      | 230.4625             |                      |                  | 649.9244             | 9  |
| 54<br>55  | 0.1964                     | 0.2650                     | 1.6398           | 6.6400<br>6.6400 | 28.3932<br>28.4918 | 75.6326<br>75.7034 |                      | 230.6916<br>230.9074 |                      |                  | 650.6400<br>651.3126 | 9  |
| 56        | 0.1964                     | 0.2650                     | 1.6398           | 6.6400           | 28.5648            | 75.8061            |                      |                      | 137.0256             |                  | 651.9627             | 9  |
| 57        | 0.1964                     | 0.2650                     | 1.6398           | 6.6400           | 28.6136            | 75.9369            |                      |                      | 137.1394             |                  | 652.5900             | 9  |
| 58<br>59  | 0.1964                     | 0.2650                     | 1.6398           | 6.6400<br>6.6400 | 28.6402<br>28.6467 | 76.0948<br>76.2776 |                      | 231.4844<br>231.6560 |                      |                  | 653.1976<br>653.7871 | 9  |
| 60        | 0.1964                     | 0.2650                     | 1.6398           | 6.6400           | 28.6490            | 76.4485            |                      | 231.8185             |                      |                  | 654.3390             | 9  |
| 61        | 0.1964                     | 0.2650                     | 1.6398           | 6.6400           | 28.6494            | 76.6263            | 146.6400             | 231.9724             | 137.5363             | 24.7103          | 654.8760             | 9  |
| 62        | 0.1964                     | 0.2650                     | 1.6398           | 6.6400           | 28.6494            | 76.8073            |                      |                      | 137.6228             |                  | 655.3973             | 9  |
| 63<br>64  | 0.1964                     | 0.2650                     | 1.6398           | 6.6400<br>6.6400 | 28.6494<br>28.6494 | 76.9917<br>77.1803 |                      | 232.2568             | 137.7050             |                  | 655.9046<br>656.4000 | 9  |
| 65        | 0.1964                     | 0.2650                     | 1.6398           | 6.6400           | 28.6494            | 77.3555            |                      | 232.5135             |                      |                  | 656.8668             | 9  |
| 66        | 0.1964                     | 0.2650                     | 1.6398           | 6.6400           | 28.6494            | 77.4852            | 147.1096             | 232.6325             | 137.9277             | 24.7806          | 657.3263             | 9  |
| 67        | 0.1964                     | 0.2650                     | 1.6398           | 6.6400           | 28.6494            |                    |                      | 232.7458             |                      |                  | 657.7753             | 9  |
| 68        | 0.1964                     | 0.2650                     | 1.6398           | 6.6400<br>6.6400 | 28.6494<br>28.6494 | 77.6163<br>77.6277 | 147.4928<br>147.7406 | 232.8538<br>232.9567 | 138.0589<br>138.1200 | 24.8042          | 658.2166<br>658.6509 | 9  |
| 70        | 0.1964                     | 0.2650                     | 1.6398           | 6.6400           | 28.6494            | 77.6316            |                      | 233.0550             |                      | 24.8257          | 659.0623             | 9  |
| 71        | 0.1964                     | 0.2650                     | 1.6398           | 6.6400           | 28.6494            | 77.6322            | 148.2331             | 233.1488             | 138.2339             | 24.8357          | 659.4744             | 9  |
| 72<br>73  | 0.1964                     | 0.2650                     | 1.6398<br>1.6398 | 6.6400<br>6.6400 |                    |                    |                      | 233.2385             |                      |                  | 659.8816<br>660.2875 | 9  |
| 73        | 0.1964                     | 0.2650                     | 1.6398           |                  | 28.6494            |                    |                      | 233.3243             |                      |                  | 660.6919             | 9  |
| 75        | 0.1964                     | 0.2650                     | 1.6398           |                  | 28.6494            |                    |                      | 233.4851             |                      |                  | 661.0783             | 9  |
| 76        | 0.1964                     | 0.2650                     | 1.6398           |                  | 28.6494            |                    |                      | 233.6350             |                      |                  | 661.4722             | 9  |
| 77<br>78  | 0.1964                     | 0.2650                     | 1.6398           |                  | 28.6494<br>28.6494 |                    |                      | 233.8498<br>234.1268 |                      |                  | 661.8680<br>662.2686 | 9  |
| 78<br>79  | 0.1964                     | 0.2650                     | 1.6398           |                  | 28.6494            |                    |                      | 234.1268             |                      |                  | 662.6654             | 9  |
| 80        | 0.1964                     | 0.2650                     | 1.6398           | 6.6400           | 28.6494            | 77.6322            | 149.6851             | 234.7894             | 138.6391             | 24.9085          | 663.0450             | 9  |
| 81        | 0.1964                     | 0.2650                     | 1.6398           |                  | 28.6494            |                    |                      | 235.1201             |                      |                  | 663.4197             | 9  |
| 82<br>83  | 0.1964                     | 0.2650                     | 1.6398           |                  | 28.6494<br>28.6494 |                    |                      | 235.4434<br>235.7565 |                      |                  | 663.7843<br>664.1372 | 10 |
| 83        | 0.1964                     | 0.2650                     | 1.6398           |                  | 28.6494            |                    |                      | 236.0605             |                      |                  | 664.1372<br>664.4796 | 10 |
| 85        | 0.1964                     | 0.2650                     | 1.6398           | 6.6400           | 28.6494            | 77.6322            | 149.6861             | 236.3412             | 138.8081             | 24.9388          | 664.7971             | 10 |
| 86        | 0.1964                     | 0.2650                     | 1.6398           |                  | 28.6494            |                    |                      | 236.5486             |                      |                  | 665.0956             | 10 |
| 87<br>88  | 0.1964                     | 0.2650                     | 1.6398           |                  | 28.6494<br>28.6494 |                    |                      | 236.6882<br>236.7642 |                      |                  | 665.3724<br>665.6260 | 10 |
| 89        | 0.1964                     | 0.2650                     | 1.6398           |                  | 28.6494            |                    |                      | 236.7832             |                      |                  | 665.8575             | 10 |
| 90        | 0.1964                     | 0.2650                     | 1.6398           | 6.6400           | 28.6494            | 77.6322            | 149.6861             | 236.7899             | 139.5998             | 24.9640          | 666.0629             | 10 |
| 91        | 0.1964                     | 0.2650                     | 1.6398           |                  | 28.6494            |                    |                      | 236.7910             |                      |                  | 666.2432             | 10 |
| 92<br>93  | 0.1964                     | 0.2650                     | 1.6398           |                  | 28.6494<br>28.6494 |                    |                      | 236.7910<br>236.7910 |                      |                  | 666.3994<br>666.5340 | 10 |
| 94        | 0.1964                     | 0.2650                     | 1.6398           |                  | 28.6494            |                    |                      | 236.7910             |                      |                  | 666.6478             | 10 |
| 96        | 0.1964                     | 0.2650                     | 1.6398           | 6.6400           | 28.6494            | 77.6322            | 149.6861             | 236.7910             | 140.2587             | 24.9852          | 666.7440             | 10 |
|           |                            |                            | 1.6398           | 0.0400           | 28.6494            | 77 6322            | 149 6861             | 236 7910             | 140.3232             | 25 0010          | 666.8242             | 10 |
| 96        | 0.1964                     | 0.2650                     |                  |                  |                    |                    |                      |                      |                      |                  |                      |    |
|           | 0.1964<br>0.1964<br>0.1964 | 0.2650<br>0.2650<br>0.2650 | 1.6398           | 6.6400           |                    | 77.6322            | 149.6861             | 236.7910             | 140.3641             | 25.0260          | 666.8901<br>666.9439 | 10 |

## Exhibit E.39b Yearly Cancer Cases Avoided by System Size

Smoking/Lung Cancer Model - Surface Water Systems

#### HAA5 - Preferred Alternative

| IIAAG |      | Alternativ | •    |      |         |      |      |         |       |       |             |       |        |             |        |        |              |          |        |              |          |          |                |          |          |            |          |
|-------|------|------------|------|------|---------|------|------|---------|-------|-------|-------------|-------|--------|-------------|--------|--------|--------------|----------|--------|--------------|----------|----------|----------------|----------|----------|------------|----------|
|       |      | <100       |      |      | 100-499 |      |      | 500-999 |       |       | 1,000-3,299 |       | 1      | 3,300-9,999 |        |        | 10,000-49,99 |          |        | 50,000-99,99 |          |          | 00,000-999,999 |          |          | ≥1,000,000 |          |
| Year  | mean | 5th        | 95th | mean | 5th     | 95th | mean | 5th     | 95th  | mean  | 5th         | 95th  | mean   | 5th         | 95th   | mean   | 5th          | 95th     | mean   | 5th          | 95th     | mean     | 5th            | 95th     | mean     | 5th        | 95th     |
| 2005  | -    | -          | -    | -    | -       | -    | -    | -       | -     | -     | -           | -     | -      | -           | -      | -      | -            | -        | -      | -            | -        | -        | -              | -        | -        | -          | -        |
| 2006  | -    | -          | -    | -    | -       | -    | -    | -       | -     | -     | -           | -     | -      |             | -      | -      | -            | -        | -      | -            | -        | -        | -              | -        | -        | -          | -        |
| 2007  | -    | -          | -    | -    | -       | -    | -    | -       | -     | -     | -           | -     | -      |             | -      | -      | -            | -        | -      | -            | -        | -        | -              | -        | -        | -          | -        |
| 2008  | -    | -          | -    | -    | -       |      | -    | -       | -     |       |             |       | -      |             | -      | -      | -            | -        | -      | -            | -        | -        | -              | -        | -        | -          | -        |
| 2009  |      | -          | -    | -    | -       | -    | -    | -       | -     | -     | -           | -     | -      |             | -      | -      |              | -        | -      | -            | -        | -        | -              | -        | -        | -          |          |
| 2010  | 0.00 | 0.00       | 0.00 | 0.01 | 0.00    | 0.03 | 0.02 | 0.00    | 0.06  | 0.14  | 0.01        | 0.37  | 0.41   | 0.02        | 1.06   | 2.77   | 0.19         | 8.12     | 2.41   | 0.17         | 7.07     | 10.67    | 0.73           | 31.29    | 9.08     | 0.62       | 26.63    |
| 2011  | 0.00 | 0.00       | 0.01 | 0.03 | 0.00    | 0.08 | 0.06 | 0.01    | 0.13  | 0.37  | 0.05        | 0.86  | 1.06   | 0.14        | 2.47   | 7.08   | 1.02         | 18.90    | 6.17   | 0.89         | 16.47    | 27.30    | 3.92           | 72.87    | 23.23    | 3.34       | 62.02    |
| 2012  | 0.01 | 0.00       | 0.01 | 0.06 | 0.01    | 0.13 | 0.10 | 0.02    | 0.22  | 0.67  | 0.14        | 1.43  | 1.91   | 0.41        | 4.10   | 12.68  | 2.59         | 31.87    | 11.05  | 2.26         | 27.77    | 48.89    | 10.00          | 122.85   | 41.61    | 8.51       | 104.55   |
| 2013  | 0.01 | 0.00       | 0.02 | 0.09 | 0.03    | 0.18 | 0.16 | 0.04    | 0.32  | 1.02  | 0.29        | 2.08  | 2.93   | 0.82        | 5.94   | 19.45  | 4.85         | 46.53    | 16.95  | 4.22         | 40.55    | 74.99    | 18.68          | 179.39   | 63.82    | 15.90      | 152.67   |
| 2014  | 0.01 | 0.00       | 0.03 | 0.13 | 0.04    | 0.24 | 0.22 | 0.07    | 0.43  | 1.44  | 0.48        | 2.78  | 4.11   | 1.37        | 7.96   | 27.38  | 7.58         | 62.85    | 22.66  | 6.52         | 51.23    | 94.89    | 28.48          | 210.99   | 80.76    | 24.24      | 179.57   |
| 2015  | 0.02 | 0.01       | 0.03 | 0.17 | 0.06    | 0.31 | 0.30 | 0.11    | 0.55  | 1.90  | 0.70        | 3.57  | 5.44   | 1.99        | 10.20  | 35.01  | 10.53        | 77.17    | 27.42  | 8.73         | 59.01    | 113.00   | 37.02          | 240.27   | 96.17    | 31.50      | 204.49   |
| 2016  | 0.02 | 0.01       | 0.04 | 0.21 | 0.08    | 0.37 | 0.36 | 0.14    | 0.66  | 2.34  | 0.93        | 4.23  | 6.69   | 2.67        | 12.10  | 41.31  | 13.35        | 87.56    | 31.68  | 10.58        | 65.95    | 129.36   | 43.78          | 266.78   | 110.09   | 37.26      | 227.04   |
| 2017  | 0.03 | 0.01       | 0.04 | 0.24 | 0.10    | 0.41 | 0.42 | 0.18    | 0.73  | 2.70  | 1.17        | 4.70  | 7.71   | 3.34        | 13.43  | 46.88  | 15.73        | 96.73    | 35.46  | 12.04        | 72.25    | 143.81   | 48.92          | 291.35   | 122.39   | 41.63      | 247.96   |
| 2018  | 0.03 | 0.01       | 0.05 | 0.26 | 0.12    | 0.45 | 0.47 | 0.21    | 0.79  | 3.01  | 1.38        | 5.10  | 8.60   | 3.94        | 14.58  | 51.77  | 17.64        | 105.00   | 38.71  | 13.20        | 78.00    | 155.95   | 53.12          | 313.60   | 132.72   | 45.21      | 266.89   |
| 2019  | 0.03 | 0.01       | 0.05 | 0.29 | 0.14    | 0.48 | 0.51 | 0.24    | 0.85  | 3.28  | 1.55        | 5.46  | 9.37   | 4.43        | 15.61  | 55.97  | 19.13        | 112.53   | 41.39  | 14.16        | 82.94    | 165.74   | 56.77          | 331.47   | 141.06   | 48.32      | 282.10   |
| 2020  | 0.03 | 0.02       | 0.05 | 0.31 | 0.15    | 0.51 | 0.54 | 0.26    | 0.90  | 3.51  | 1.68        | 5.79  | 10.03  | 4.80        | 16.55  | 59.45  | 20.38        | 118.95   | 43.59  | 14.98        | 87.00    | 173.86   | 59.85          | 346.64   | 147.96   | 50.93      | 295.01   |
| 2021  | 0.03 | 0.02       | 0.06 | 0.33 | 0.16    | 0.53 | 0.57 | 0.28    | 0.94  | 3.70  | 1.79        | 6.06  | 10.58  | 5.11        | 17.34  | 62.32  | 21.47        | 124.03   | 45.43  | 15.69        | 90.27    | 180.70   | 62.51          | 358.79   | 153.78   | 53.20      | 305.35   |
| 2022  | 0.04 | 0.02       | 0.06 | 0.34 | 0.16    | 0.55 | 0.60 | 0.29    | 0.97  | 3.86  | 1.87        | 6.28  | 11.04  | 5.36        | 17.96  | 64.72  | 22.41        | 128.21   | 46.99  | 16.30        | 92.94    | 186.52   | 64.75          | 368.56   | 158.74   | 55.10      | 313.67   |
| 2023  | 0.04 | 0.02       | 0.06 | 0.35 | 0.17    | 0.57 | 0.62 | 0.30    | 1.00  | 4.00  | 1.95        | 6.46  | 11.43  | 5.57        | 18.49  | 66.77  | 23.17        | 131.78   | 48.33  | 16.78        | 95.18    | 191.53   | 66.56          | 376.71   | 163.00   | 56.65      | 320.60   |
| 2024  | 0.04 | 0.02       | 0.06 | 0.36 | 0.18    | 0.58 | 0.64 | 0.31    | 1.03  | 4.11  | 2.01        | 6.63  | 11.77  | 5.75        | 18.96  | 68.53  | 23.76        | 134.81   | 49.48  | 17.17        | 97.09    | 195.86   | 68.00          | 383.68   | 166.69   | 57.87      | 326.53   |
| 2025  | 0.04 | 0.02       | 0.06 | 0.37 | 0.18    | 0.60 | 0.65 | 0.32    | 1.05  | 4.22  | 2.06        | 6.78  | 12.06  | 5.90        | 19.38  | 70.06  | 24.29        | 137.44   | 50.49  | 17.50        | 98.87    | 199.64   | 69.18          | 390.75   | 169.91   | 58.88      | 332.55   |
| 2026  | 0.04 | 0.02       | 0.07 | 0.38 | 0.19    | 0.61 | 0.67 | 0.33    | 1.07  | 4.30  | 2.11        | 6.90  | 12.31  | 6.02        | 19.74  | 71.39  | 24.75        | 139.83   | 51.37  | 17.79        | 100.58   | 202.97   | 70.19          | 397.49   | 172.74   | 59.74      | 338.29   |
| 2027  | 0.04 | 0.02       | 0.07 | 0.39 | 0.19    | 0.62 | 0.68 | 0.33    | 1.09  | 4.38  | 2.14        | 7.02  | 12.53  | 6.13        | 20.07  | 72.56  | 25.15        | 142.14   | 52.14  | 18.05        | 102.18   | 205.91   | 71.27          | 403.60   | 175.24   | 60.65      | 343.49   |
| 2028  | 0.04 | 0.02       | 0.07 | 0.39 | 0.19    | 0.63 | 0.69 | 0.34    | 1.11  | 4.45  | 2.17        | 7.13  | 12.73  | 6.22        | 20.39  | 73.59  | 25.52        | 144.32   | 52.83  | 18.34        | 103.67   | 208.52   | 72.44          | 409.29   | 177.46   | 61.65      | 348.33   |
| 2029  | 0.04 | 0.02       | 0.07 | 0.40 | 0.19    | 0.64 | 0.70 | 0.34    | 1.12  | 4.51  | 2.20        | 7.23  | 12.90  | 6.29        | 20.68  | 74.51  | 25.88        | 146.24   | 53.45  | 18.60        | 104.94   | 210.85   | 73.44          | 414.09   | 179.45   | 62.50      | 352.41   |
| Total | 0.55 | 0.25       | 0.92 | 5.10 | 2.35    | 8.53 | 8.98 | 4.14    | 15.02 | 57.90 | 26.67       | 96.84 | 165.64 | 76.28       | 277.03 | 984.21 | 329.37       | 1,995.02 | 728.00 | 243.97       | 1,473.97 | 2,920.94 | 979.61         | 5,910.45 | 2,485.89 | 833.71     | 5,030.14 |
| Avg.  | 0.02 | 0.01       | 0.04 | 0.20 | 0.09    | 0.34 | 0.36 | 0.17    | 0.60  | 2.32  | 1.07        | 3.87  | 6.63   | 3.05        | 11.08  | 39.37  | 13.17        | 79.80    | 29.12  | 9.76         | 58.96    | 116.84   | 39.18          | 236.42   | 99.44    | 33.35      | 201.21   |

Avg. - All Size Categories 294.29 99.85 592.32

## Exhibit E.39c Yearly Cancer Cases Avoided by System Size

Smoking/Lung Cancer Model - Ground Water Systems

### HAA5 - Preferred Alternative

|       |      | <100 |      |       | 100-499 |       |       | 500-999 |       | 1     | 1,000-3,299 |       | ;     | 3,300-9,999 |        | 1      | 0,000-49,999 | )      | 5            | 0,000-99,9 | 99           | 1              | 00,000-999,99 | 19     |       | ≥1,000,000 |       |
|-------|------|------|------|-------|---------|-------|-------|---------|-------|-------|-------------|-------|-------|-------------|--------|--------|--------------|--------|--------------|------------|--------------|----------------|---------------|--------|-------|------------|-------|
| Year  | mean | 5th  | 95th | mean  | 5th     | 95th  | mean  | 5th     | 95th  | mean  | 5th         | 95th  | mean  | 5th         | 95th   | mean   | 5th          | 95th   | mean         | 5th        | 95th         | mean           | 5th           | 95th   | mean  | 5th        | 95th  |
| 2005  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -     | -           | -     | -     | -           | -      | -      | -            | -      | -            | -          | -            | -              | -             | -      | -     | -          | -     |
| 2006  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -     | -           | -     | -     | -           | -      | -      | -            | -      | -            | -          | -            | -              | -             | -      | -     | -          | -     |
| 2007  | -    | -    | -    | -     | -       |       | -     | -       |       | -     | -           |       | -     | -           | -      | -      | -            | -      | -            | -          | -            | -              | -             | -      | -     | -          | -     |
| 2008  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -     | -           | -     | -     | -           | -      | -      | -            | -      | -            | -          | -            | -              | -             | -      | -     | -          | -     |
| 2009  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -     | -           | -     | -     | -           | -      | -      | -            | -      | -            | -          | -            | -              | -             | -      | -     | -          | -     |
| 2010  | 0.00 | 0.00 | 0.01 | 0.03  | 0.00    | 0.08  | 0.03  | 0.00    | 0.09  | 0.11  | 0.01        | 0.27  | 0.17  | 0.01        | 0.43   | 0.62   | 0.03         | 1.59   | 0.26         | 0.01       | 0.67         | 0.72           | 0.04          | 1.85   | 0.12  | 0.01       | 0.31  |
| 2011  | 0.01 | 0.00 | 0.03 | 0.08  | 0.01    | 0.20  | 0.09  | 0.01    | 0.21  | 0.27  | 0.04        | 0.63  | 0.43  | 0.06        | 0.99   | 1.59   | 0.21         | 3.69   | 0.67         | 0.09       | 1.54         | 1.84           | 0.24          | 4.28   | 0.31  | 0.04       | 0.71  |
| 2012  | 0.02 | 0.00 | 0.04 | 0.15  | 0.03    | 0.32  | 0.16  | 0.03    | 0.35  | 0.49  | 0.10        | 1.04  | 0.77  | 0.16        | 1.65   | 2.85   | 0.61         | 6.12   | 1.19         | 0.25       | 2.56         | 3.31           | 0.70          | 7.11   | 0.55  | 0.12       | 1.18  |
| 2013  | 0.03 | 0.01 | 0.06 | 0.23  | 0.07    | 0.47  | 0.25  | 0.07    | 0.50  | 0.74  | 0.21        | 1.51  | 1.18  | 0.33        | 2.39   | 4.37   | 1.23         | 8.87   | 1.83         | 0.51       | 3.71         | 5.07           | 1.43          | 10.30  | 0.84  | 0.24       | 1.71  |
| 2014  | 0.04 | 0.01 | 0.09 | 0.33  | 0.11    | 0.63  | 0.35  | 0.12    | 0.67  | 1.05  | 0.35        | 2.03  | 1.65  | 0.55        | 3.20   | 6.14   | 2.04         | 11.89  | 2.44         | 0.85       | 4.64         | 6.41           | 2.33          | 11.95  | 1.07  | 0.39       | 1.99  |
| 2015  | 0.06 | 0.02 | 0.11 | 0.43  | 0.16    | 0.81  | 0.46  | 0.17    | 0.86  | 1.38  | 0.51        | 2.60  | 2.19  | 0.80        | 4.11   | 7.82   | 2.96         | 14.44  | 2.94         | 1.19       | 5.27         | 7.59           | 3.21          | 13.41  | 1.26  | 0.53       | 2.23  |
| 2016  | 0.07 | 0.03 | 0.13 | 0.53  | 0.21    | 0.96  | 0.56  | 0.22    | 1.02  | 1.70  | 0.68        | 3.08  | 2.69  | 1.07        | 4.87   | 9.20   | 3.88         | 16.24  | 3.38         | 1.50       | 5.85         | 8.65           | 3.94          | 14.80  | 1.44  | 0.66       | 2.46  |
| 2017  | 80.0 | 0.04 | 0.14 | 0.61  | 0.26    | 1.06  | 0.65  | 0.28    | 1.13  | 1.96  | 0.85        | 3.42  | 3.10  | 1.34        | 5.41   | 10.40  | 4.70         | 17.79  | 3.77         | 1.76       | 6.36         | 9.57           | 4.50          | 16.05  | 1.59  | 0.75       | 2.67  |
| 2018  | 0.09 | 0.04 | 0.16 | 0.68  | 0.31    | 1.16  | 0.72  | 0.33    | 1.23  | 2.19  | 1.00        | 3.71  | 3.46  | 1.58        | 5.87   | 11.45  | 5.37         | 19.18  | 4.11         | 1.95       | 6.82         | 10.35          | 4.93          | 17.16  | 1.72  | 0.82       | 2.86  |
| 2019  | 0.10 | 0.05 | 0.17 | 0.74  | 0.35    | 1.24  | 0.79  | 0.37    | 1.32  | 2.38  | 1.12        | 3.97  | 3.77  | 1.78        | 6.29   | 12.35  | 5.89         | 20.44  | 4.38         | 2.10       | 7.22         | 10.99          | 5.28          | 18.08  | 1.83  | 0.88       | 3.01  |
| 2020  | 0.11 | 0.05 | 0.18 | 0.79  | 0.38    | 1.31  | 0.85  | 0.40    | 1.40  | 2.55  | 1.22        | 4.21  | 4.04  | 1.93        | 6.66   | 13.09  | 6.30         | 21.53  | 4.61<br>4.80 | 2.23       | 7.55<br>7.81 | 11.52<br>11.97 | 5.58<br>5.82  | 18.83  | 1.92  | 0.93       | 3.14  |
| 2021  | 0.11 | 0.05 | 0.19 | 0.87  | 0.40    | 1.42  | 0.89  | 0.45    | 1.46  | 2.81  | 1.36        | 4.41  | 4.20  | 2.05        | 7.23   | 14.24  | 6.93         | 23.09  | 4.00         | 2.33       | 8.04         | 12.36          | 6.03          | 19.44  | 2.06  | 1.00       | 3.33  |
| 2022  | 0.12 | 0.06 | 0.19 | 0.91  | 0.42    | 1.42  | 0.96  | 0.45    | 1.56  | 2.91  | 1.42        | 4.71  | 4.60  | 2.10        | 7.45   | 14.69  | 7.17         | 23.72  | 5.11         | 2.50       | 8.23         | 12.69          | 6.21          | 20.42  | 2.00  | 1.03       | 3.40  |
| 2024  | 0.13 | 0.06 | 0.20 | 0.93  | 0.45    | 1.50  | 0.99  | 0.48    | 1.60  | 2.99  | 1.46        | 4.83  | 4.74  | 2.31        | 7.64   | 15.08  | 7.37         | 24.26  | 5.23         | 2.56       | 8.40         | 12.98          | 6.35          | 20.79  | 2.16  | 1.06       | 3.46  |
| 2025  | 0.13 | 0.06 | 0.21 | 0.96  | 0.47    | 1.54  | 1.02  | 0.50    | 1.63  | 3.07  | 1.50        | 4.93  | 4.85  | 2.37        | 7.81   | 15.42  | 7.54         | 24.74  | 5.34         | 2.61       | 8.55         | 13.23          | 6.48          | 21.18  | 2.20  | 1.08       | 3.53  |
| 2026  | 0.13 | 0.06 | 0.21 | 0.98  | 0.48    | 1.56  | 1.04  | 0.51    | 1.66  | 3.13  | 1.53        | 5.03  | 4.95  | 2.42        | 7.95   | 15.72  | 7.69         | 25.17  | 5.43         | 2.66       | 8.70         | 13.46          | 6.58          | 21.54  | 2.24  | 1.10       | 3.59  |
| 2027  | 0.13 | 0.07 | 0.22 | 0.99  | 0.49    | 1.59  | 1.06  | 0.52    | 1.69  | 3.19  | 1.56        | 5.11  | 5.04  | 2.47        | 8.08   | 15.98  | 7.81         | 25.58  | 5.52         | 2.70       | 8.84         | 13.65          | 6.67          | 21.87  | 2.27  | 1.11       | 3.64  |
| 2028  | 0.14 | 0.07 | 0.22 | 1.01  | 0.49    | 1.62  | 1.07  | 0.52    | 1.72  | 3.24  | 1.58        | 5.19  | 5.12  | 2.50        | 8.21   | 16.21  | 7.91         | 25.98  | 5.59         | 2.73       | 8.97         | 13.83          | 6.74          | 22.18  | 2.30  | 1.12       | 3.69  |
| 2029  | 0.14 | 0.07 | 0.22 | 1.02  | 0.50    | 1.64  | 1.09  | 0.53    | 1.74  | 3.28  | 1.60        | 5.26  | 5.19  | 2.53        | 8.33   | 16.41  | 7.99         | 26.32  | 5.66         | 2.75       | 9.08         | 13.99          | 6.80          | 22.44  | 2.33  | 1.13       | 3.74  |
| Total | 1.78 | 0.82 | 2.97 | 13.12 | 6.04    | 21.96 | 13.96 | 6.42    | 23.36 | 42.13 | 19.39       | 70.52 | 66.65 | 30.67       | 111.56 | 217.33 | 100.28       | 363.02 | 77.24        | 35.71      | 128.83       | 194.18         | 89.88         | 323.64 | 32.34 | 14.97      | 53.90 |
| Avg.  | 0.07 | 0.03 | 0.12 | 0.52  | 0.24    | 0.88  | 0.56  | 0.26    | 0.93  | 1.69  | 0.78        | 2.82  | 2.67  | 1.23        | 4.46   | 8.69   | 4.01         | 14.52  | 3.09         | 1.43       | 5.15         | 7.77           | 3.60          | 12.95  | 1.29  | 0.60       | 2.16  |

Avg. - All Size Categories 26.35 12.17 43.99

### Exhibit E.39d Yearly Cancer Cases Avoided by System Size

Smoking/Lung Cancer Model - All Water Systems

### HAA5 - Preferred Alternative

| HAA5- | Preferred | Alternativ | ve   |       |         |       |       |         |       |        |             |        |        |             |        |          |               |          |        |               |          |          |               |          |          |            |          |
|-------|-----------|------------|------|-------|---------|-------|-------|---------|-------|--------|-------------|--------|--------|-------------|--------|----------|---------------|----------|--------|---------------|----------|----------|---------------|----------|----------|------------|----------|
|       |           | <100       |      |       | 100-499 |       |       | 500-999 |       |        | 1,000-3,299 |        |        | 3,300-9,999 |        | 1        | 10,000-49,999 | 9        |        | 50,000-99,999 | 9        | 1        | 00,000-999,99 | 9        |          | ≥1,000,000 |          |
| Year  | mean      | 5th        | 95th | mean  | 5th     | 95th  | mean  | 5th     | 95th  | mean   | 5th         | 95th   | mean   | 5th         | 95th   | mean     | 5th           | 95th     | mean   | 5th           | 95th     | mean     | 5th           | 95th     | mean     | 5th        | 95th     |
| 2005  |           |            |      |       |         | -     |       | -       | -     |        |             |        |        |             | -      | -        |               | -        |        | -             |          | -        | -             |          | -        | -          | -        |
| 2006  |           |            | -    | -     | -       | -     | -     | -       | -     |        | -           |        | -      |             | -      | -        | -             | -        |        | -             |          |          | -             | -        |          |            | -        |
| 2007  | -         | -          | -    |       | -       | -     |       | -       | -     |        | -           | -      | -      | -           | -      | -        | -             | -        |        | -             | -        | -        | -             |          | -        |            | -        |
| 2008  | -         | -          | -    |       | -       | -     |       | -       | -     |        | -           | -      | -      | -           | -      | -        | -             | -        |        | -             | -        | -        | -             |          | -        |            | -        |
| 2009  |           | -          | -    | -     | -       | -     |       |         | -     | -      |             | -      | -      | -           | -      | -        | -             |          | -      | -             |          |          | -             |          | -        |            | -        |
| 2010  | 0.01      | 0.00       | 0.01 | 0.05  | 0.00    | 0.12  | 0.06  | 0.00    | 0.15  | 0.25   | 0.01        | 0.64   | 0.58   | 0.03        | 1.49   | 3.38     | 0.22          | 9.71     | 2.67   | 0.18          | 7.74     | 11.38    | 0.77          | 33.13    | 9.20     | 0.63       | 26.93    |
| 2011  | 0.01      | 0.00       | 0.03 | 0.12  | 0.02    | 0.27  | 0.15  | 0.02    | 0.34  | 0.64   | 0.09        | 1.49   | 1.49   | 0.20        | 3.46   | 8.67     | 1.23          | 22.59    | 6.84   | 0.98          | 18.02    | 29.14    | 4.17          | 77.15    | 23.54    | 3.38       | 62.73    |
| 2012  | 0.03      | 0.01       | 0.06 | 0.21  | 0.04    | 0.45  | 0.26  | 0.06    | 0.57  | 1.15   | 0.25        | 2.48   | 2.68   | 0.57        | 5.75   | 15.53    | 3.20          | 37.99    | 12.24  | 2.52          | 30.33    | 52.20    | 10.71         | 129.96   | 42.16    | 8.63       | 105.74   |
| 2013  | 0.04      | 0.01       | 0.08 | 0.32  | 0.09    | 0.65  | 0.41  | 0.11    | 0.82  | 1.77   | 0.50        | 3.59   | 4.10   | 1.16        | 8.33   | 23.82    | 6.08          | 55.40    | 18.78  | 4.74          | 44.26    | 80.06    | 20.11         | 189.68   | 64.66    | 16.14      | 154.38   |
| 2014  | 0.06      | 0.02       | 0.11 | 0.45  | 0.15    | 0.88  | 0.57  | 0.19    | 1.10  | 2.48   | 0.83        | 4.81   | 5.76   | 1.92        | 11.16  | 33.52    | 9.62          | 74.73    | 25.10  | 7.37          | 55.87    | 101.30   | 30.81         | 222.94   | 81.83    | 24.63      | 181.56   |
| 2015  | 0.08      | 0.03       | 0.14 | 0.60  | 0.22    | 1.12  | 0.75  | 0.28    | 1.41  | 3.29   | 1.20        | 6.16   | 7.64   | 2.79        | 14.31  | 42.83    | 13.48         | 91.61    | 30.36  | 9.92          | 64.29    | 120.59   | 40.22         | 253.68   | 97.43    | 32.04      | 206.72   |
| 2016  | 0.09      | 0.04       | 0.17 | 0.74  | 0.29    | 1.33  | 0.93  | 0.37    | 1.68  | 4.04   | 1.61        | 7.31   | 9.39   | 3.74        | 16.98  | 50.51    | 17.22         | 103.80   | 35.07  | 12.09         | 71.80    | 138.01   | 47.71         | 281.58   | 111.53   | 37.91      | 229.51   |
| 2017  | 0.11      | 0.05       | 0.19 | 0.85  | 0.37    | 1.48  | 1.07  | 0.46    | 1.86  | 4.66   | 2.02        | 8.11   | 10.82  | 4.69        | 18.84  | 57.28    | 20.43         | 114.52   | 39.23  | 13.79         | 78.61    | 153.39   | 53.42         | 307.40   | 123.99   | 42.38      | 250.63   |
| 2018  | 0.12      | 0.06       | 0.20 | 0.95  | 0.43    | 1.60  | 1.19  | 0.55    | 2.02  | 5.19   | 2.38        | 8.81   | 12.06  | 5.52        | 20.45  | 63.22    | 23.01         | 124.17   | 42.81  | 15.15         | 84.82    | 166.31   | 58.05         | 330.76   | 134.45   | 46.03      | 269.75   |
| 2019  | 0.13      | 0.06       | 0.22 | 1.03  | 0.49    | 1.72  | 1.30  | 0.61    | 2.16  | 5.66   | 2.67        | 9.43   | 13.14  | 6.20        | 21.90  | 68.32    | 25.02         | 132.96   | 45.77  | 16.26         | 90.16    | 176.73   | 62.05         | 349.55   | 142.89   | 49.20      | 285.11   |
| 2020  | 0.14      | 0.07       | 0.23 | 1.10  | 0.53    | 1.82  | 1.39  | 0.66    | 2.29  | 6.06   | 2.90        | 10.00  | 14.07  | 6.74        | 23.21  | 72.55    | 26.68         | 140.48   | 48.20  | 17.21         | 94.55    | 185.38   | 65.43         | 365.46   | 149.88   | 51.86      | 298.14   |
| 2021  | 0.15      | 0.07       | 0.24 | 1.16  | 0.56    | 1.91  | 1.47  | 0.71    | 2.40  | 6.39   | 3.08        | 10.47  | 14.84  | 7.16        | 24.32  | 76.03    | 28.11         | 146.43   | 50.23  | 18.03         | 98.09    | 192.67   | 68.33         | 378.23   | 155.78   | 54.17      | 308.59   |
| 2022  | 0.15      | 0.08       | 0.25 | 1.21  | 0.59    | 1.98  | 1.53  | 0.74    | 2.49  | 6.67   | 3.24        | 10.85  | 15.49  | 7.52        | 25.20  | 78.97    | 29.34         | 151.31   | 51.96  | 18.72         | 100.97   | 198.88   | 70.78         | 388.53   | 160.80   | 56.11      | 316.99   |
| 2023  | 0.16      | 0.08       | 0.26 | 1.26  | 0.61    | 2.03  | 1.58  | 0.77    | 2.56  | 6.91   | 3.36        | 11.17  | 16.03  | 7.81        | 25.94  | 81.47    | 30.34         | 155.50   | 53.44  | 19.28         | 103.42   | 204.21   | 72.77         | 397.12   | 165.11   | 57.68      | 324.00   |
| 2024  | 0.17      | 0.08       | 0.27 | 1.29  | 0.63    | 2.09  | 1.63  | 0.80    | 2.63  | 7.11   | 3.47        | 11.46  | 16.50  | 8.06        | 26.60  | 83.61    | 31.14         | 159.08   | 54.71  | 19.73         | 105.48   | 208.84   | 74.35         | 404.47   | 168.85   | 58.93      | 329.99   |
| 2025  | 0.17      | 0.08       | 0.27 | 1.33  | 0.65    | 2.13  | 1.67  | 0.82    | 2.69  | 7.28   | 3.56        | 11.71  | 16.91  | 8.27        | 27.19  | 85.48    | 31.83         | 162.18   | 55.83  | 20.11         | 107.42   | 212.87   | 75.66         | 411.93   | 172.11   | 59.96      | 336.08   |
| 2026  | 0.17      | 0.08       | 0.28 | 1.35  | 0.66    | 2.17  | 1.71  | 0.83    | 2.74  | 7.44   | 3.64        | 11.93  | 17.27  | 8.45        | 27.69  | 87.10    | 32.44         | 165.00   | 56.80  | 20.44         | 109.28   | 216.42   | 76.78         | 419.03   | 174.98   | 60.84      | 341.88   |
| 2027  | 0.18      | 0.09       | 0.28 | 1.38  | 0.67    | 2.21  | 1.74  | 0.85    | 2.78  | 7.57   | 3.70        | 12.13  | 17.58  | 8.59        | 28.15  | 88.53    | 32.96         | 167.72   | 57.66  | 20.75         | 111.02   | 219.56   | 77.94         | 425.47   | 177.51   | 61.76      | 347.13   |
| 2028  | 0.18      | 0.09       | 0.29 | 1.40  | 0.68    | 2.24  | 1.76  | 0.86    | 2.82  | 7.69   | 3.75        | 12.32  | 17.85  | 8.72        | 28.60  | 89.80    | 33.43         | 170.30   | 58.42  | 21.06         | 112.63   | 222.35   | 79.18         | 431.47   | 179.76   | 62.77      | 352.03   |
| 2029  | 0.18      | 0.09       | 0.29 | 1.42  | 0.69    | 2.28  | 1.79  | 0.87    | 2.86  | 7.79   | 3.80        | 12.49  | 18.10  | 8.82        | 29.01  | 90.92    | 33.88         | 172.56   | 59.10  | 21.35         | 114.02   | 224.84   | 80.24         | 436.53   | 181.77   | 63.63      | 356.15   |
| Total | 2.32      | 1.07       | 3.89 | 18.22 | 8.38    | 30.48 | 22.94 | 10.56   | 38.38 | 100.04 | 46.06       | 167.37 | 232.29 | 106.95      | 388.58 | 1,201.54 | 429.65        | 2,358.05 | 805.23 | 279.68        | 1,602.81 | 3,115.13 | 1,069.49      | 6,234.09 | 2,518.23 | 848.67     | 5,084.03 |
| Avg.  | 0.09      | 0.04       | 0.16 | 0.73  | 0.34    | 1.22  | 0.92  | 0.42    | 1.54  | 4.00   | 1.84        | 6.69   | 9.29   | 4.28        | 15.54  | 48.06    | 17.19         | 94.32    | 32.21  | 11.19         | 64.11    | 124.61   | 42.78         | 249.36   | 100.73   | 33.95      | 203.36   |

Avg. - All Size Categories 320.64 112.02 636.31

Exhibit E.39e Cases avoided by Age Group per year following rule promulgation (Smoking/Bladder Cancer model - HAA5 - Preferred Alternative)

| Years     | Age  | Group |       |       |       |       |       |       |       |       |
|-----------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| After the | 1-10 | 11-20 | 21-30 | 31-40 | 41-50 | 51-60 | 61-70 | 71-80 | 81-90 | 91-10 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Years     | Age G  |        |        |        |         |         |          |          |          |         |          |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|--------|--------|--------|---------|---------|----------|----------|----------|---------|----------|-----|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | After the | _      | 11-20  | 21-30  | 31-40  | 41-50   | 51-60   | 61-70    | 71-80    | 81-90    | 91-100+ | Total    | %   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |        |        |        |         |         |          |          |          |         |          |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |        |        |        |         |         |          |          |          |         |          |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |        |        |        |        |         |         |          |          |          |         |          |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |        |        |        |         |         |          |          |          |         |          |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8         |        | 0.0416 | 0.2572 | 1.0415 |         | 12.1771 | 23.4792  | 37.1421  | 22.0216  | 3.9565  | 104.6685 | 16% |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9         | 0.0887 | 0.0608 | 0.3764 | 1.5240 | 6.5756  | 17.8180 | 34.3557  | 54.3479  | 32.2228  | 5.7893  | 153.1592 | 23% |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10        | 0.1139 | 0.0737 | 0.4561 | 1.8469 | 7.9689  | 21.5935 | 41.6354  | 65.8638  | 39.0506  | 7.0160  | 185.6189 | 28% |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11        | 0.1346 | 0.0845 | 0.5225 | 2.1158 | 9.1291  | 24.7376 | 47.6975  | 75.4536  | 44.7364  | 8.0375  | 212.6492 | 32% |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12        | 0.1511 | 0.0935 | 0.5784 | 2.3420 | 10.1050 | 27.3820 | 52.7964  | 83.5196  | 49.5187  | 8.8967  | 235.3836 | 36% |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |        |        |        |        |         |         |          |          |          |         |          |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |        |        |        |        |         |         |          |          |          |         |          |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |        |        |        |         |         |          |          |          |         |          |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |        | 0.8518 |        |         |         |          |          |          |         |          |     |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20        | 0.1964 |        | 0.8810 | 3.5675 | 15.3926 | 41.7098 | 80.4225  | 127.2217 | 75.4297  | 13.5520 | 358.5312 | 54% |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21        | 0.1964 | 0.1696 | 0.9086 | 3.6792 | 15.8744 | 43.0154 | 82.9399  | 131.2040 | 77.7908  | 13.9762 | 369.7544 | 56% |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22        | 0.1964 | 0.1835 | 0.9347 | 3.7846 | 16.3293 | 44.2481 | 85.3165  | 134.9637 | 80.0199  | 14.3767 | 380.3534 | 57% |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |        |        |        |        |         |         |          |          |          |         |          |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | _      |        |        |        |         |         |          |          |          | 1011011 | -90-000  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |        |        |        |         |         |          |          |          |         |          |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 1.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 1,164   0,260   1,266   4,461   2,003   54,265   0,4670   0,6576   69,172   17,260   0,46,260   70, 71, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31        | 0.1964 | 0.2650 | 1.2644 | 4.5196 | 19.5003 |         |          |          | 95.5593  | 17.1686 | 454.3716 | 68% |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 1966   0.2000   1.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 1966   0.2000   1.5753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 1964   0.2600   1.6100   0.2600   1.6100   0.2600   0.26000   0.26000   0.20000   0.20000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.26000   0.   |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 1886                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 1,164   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,260   1,686   0,26   | 38        |        |        | 1.6328 | 5.0351 |         | 57.3692 | 110.6160 | 174.9854 | 103.7488 | 18.6399 | 493.6603 | 74% |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39        | 0.1964 | 0.2650 | 1.6378 | 5.1617 | 21.3704 | 57.9082 | 111.6551 | 176.6292 | 104.7234 | 18.8150 | 498.3622 | 75% |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |        |        | 1.6396 | 5.2861 |         |         |          |          |          |         |          |     |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |        |        | 1.6398 | 6.2680 | 22.4015 | 60.7022 | 117.0424 | 185.1514 | 109.7762 | 19.7228 | 523.1658 | 79% |
| 184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | 0.1964 | 0.2650 | 1.6398 | 6.4373 | 22.6508 | 61.1041 | 117.8173 | 186.3773 | 110.5030 | 19.8534 | 526.8446 | 79% |
| 1964   0.2560   1.6586   6.6582   2.8687   6.2777   195-965   180.749   112.5560   2.0725   760.5562   275.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 47        | 0.1964 | 0.2650 | 1.6398 | 6.5535 | 22.9856 | 61.4901 | 118.5617 | 187.5548 | 111.2012 | 19.9788 | 530.4272 | 80% |
| 1860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |        |        |        |        |         |         |          |          |          |         |          |     |
| Section   Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |        |        |        |         |         |          |          |          |         |          |     |
| SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |        |        |        |        |         |         |          |          |          |         |          |     |
| State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 1966   0.1984   0.2860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |        |        | 1.6398 | 6.6400 | 26.2052 | 63.5136 | 122.4631 | 193.7265 | 114.8604 | 20.6363 | 550.1464 | 83% |
| Section   Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54        | 0.1964 | 0.2650 | 1.6398 | 6.6400 | 26.9024 | 63.8079 | 123.0306 | 194.6242 | 115.3926 | 20.7319 | 553.2309 | 83% |
| Section   Company   Comp   |           |        |        | 1.6398 |        |         |         |          |          |          |         |          |     |
| 196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |        |        |        |        |         |         |          |          |          |         |          |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |        |        |        |         |         |          |          |          |         |          |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |        |        |        |         |         |          |          |          |         |          |     |
| Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Comp   |           |        |        |        |        |         |         |          |          |          |         |          |     |
| Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |        |        | 1.6398 | 6.6400 | 28.6494 | 70.0020 | 126.4710 | 200.0667 | 118.6194 | 21.3117 | 573.8615 |     |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 62        | 0.1964 | 0.2650 | 1.6398 | 6.6400 | 28.6494 | 71.3064 | 126.8962 | 200.7393 | 119.0183 | 21.3833 | 576.7342 | 87% |
| 65 0.1964 0.2000 1.6388 6.6400 28.6944 78.496 128.0007 202.6241 120.1368 21.5841 505.2072 87.864   66 0.1964 0.2000 1.6388 6.6400 28.6944 78.496 128.0007 202.6241 120.1368 21.5840 598.103 699.   67 0.1964 0.2000 1.6388 6.6400 28.6944 77.6100 120.1378 120.000 27.976 593.000 699.   68 0.1964 0.2000 1.6388 6.6400 28.6944 77.5152 115.012 20.2354 121.460 29.100 599.   69 0.1964 0.2000 1.6388 6.6400 28.6944 77.5152 115.012 20.2354 121.460 29.2006 599.   70 0.1964 0.2000 1.6388 6.6400 28.6944 77.6502 115.015 205.3751 117.7609 28.771 599.300 699.   71 0.1964 0.2000 1.6388 6.6400 28.6944 77.6502 115.000 125.0000 124.000 21.4016 29.000 699.   72 0.1964 0.2000 1.6388 6.6400 28.6944 77.6502 115.000 503.000 124.000 21.4016 29.000 699.   73 0.1964 0.2000 1.6388 6.6400 28.6944 77.6502 115.000 503.000 124.000 21.2016 29.000 699.   74 0.1964 0.2000 1.6388 6.6400 28.6944 77.6502 115.000 503.000 122.000 122.000 01.1508 10.000   75 0.1964 0.2000 1.6388 6.6400 28.6944 77.6502 146.000 200.000 12.000 12.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.000 115.00 | 63        | 0.1964 | 0.2650 | 1.6398 | 6.6400 | 28.6494 | 72.6733 | 127.3070 | 201.3891 | 119.4036 | 21.4525 | 579.6162 | 87% |
| 0.1964   0.2600   1.6588   6.6400   26.694   77.692   10.00029   20.7799   72.0500   27.779   69.81003   28.94   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.81003   69.810   |           |        |        | 1.6398 |        |         |         |          |          |          |         |          |     |
| 67 0.1964 0.2000 1.6588 6.6400 28.6944 77.1969 10.00029 20.7789 10.0000 27.7071 90.03500 89.6 68 0.1984 0.2000 1.6588 6.6400 28.6944 77.1958 10.0002 90.2789 10.0000 27.7071 90.03500 89.6 70 0.1984 0.2000 1.6588 6.6400 28.6944 77.7659 10.0000 27.7080 10.1000 27.7089 12.7080 91.7080 91.7080 71 0.1984 0.2000 1.6588 6.6400 28.6944 77.6502 16.6005 20.5795 10.1080 27.7199 91.8771 99.4865 97.6 72 0.1984 0.2000 1.6588 6.6400 28.6944 77.6502 16.6005 20.5795 10.1080 27.7199 91.8771 99.4865 97.6 73 0.1984 0.2000 1.6588 6.6400 28.6944 77.6502 16.6005 20.5795 10.21802 11.8771 99.4865 97.6 74 0.1984 0.2000 1.6588 6.6400 28.6944 77.6502 14.6005 20.7796 12.2661 10.2000 10.1507 97.6 74 0.1984 0.2000 1.6588 6.6400 28.6944 77.6502 14.6005 20.7796 12.2662 12.2600 10.0007 97.6 75 0.1984 0.2000 1.6588 6.6400 28.6944 77.6502 14.6005 20.7796 12.2662 12.2600 10.1508 97.6 76 0.1984 0.2000 1.6588 6.6400 28.6944 77.6502 14.6005 20.7796 12.2662 12.2600 10.1508 97.7 77 0.1984 0.2000 1.6588 6.6400 28.6944 77.6502 14.6005 20.7796 12.2662 12.2600 10.1508 97.7 78 0.1984 0.2000 1.6588 6.6400 28.6944 77.6502 14.6003 20.7796 12.2662 12.2706 20.2000 10.1508 97.7 79 0.1984 0.2000 1.6588 6.6400 28.6944 77.6502 14.6003 20.7796 12.26621 12.2106 20.2000 10.1508 97.7 79 0.1984 0.2000 1.6588 6.6400 28.6944 77.6502 14.6007 20.5544 12.2800 20.2000 10.2698 97.7 79 0.1984 0.2000 1.6588 6.6400 28.6944 77.6502 14.6007 20.5544 12.2800 20.000 10.2796 97.7 79 0.1984 0.2000 1.6588 6.6400 28.6944 77.6502 14.6007 20.5544 12.2800 20.000 10.3500 97.7 79 0.1984 0.2000 1.6588 6.6400 28.6944 77.6502 14.6007 20.5544 12.2800 20.000 10.3500 97.7 79 0.1984 0.2000 1.6588 6.6400 28.6944 77.6502 14.6007 20.5544 12.2800 20.000 10.3500 97.7 79 0.1984 0.2000 1.6588 6.6400 28.6944 77.6502 14.6007 20.5544 12.2800 20.000 10.3500 97.7 79 0.1984 0.2000 1.6588 6.6400 28.6944 77.6502 14.6007 20.5544 12.2800 20.000 10.3500 97.7 79 0.1984 0.2000 1.6588 6.6400 28.6944 77.6502 14.6007 10.3500 12.2000 12.2000 08.0000 97.7 79 0.1984 0.2000 1.6588 6.6400 28.6944 77.6502 14.6007 10.3500 12.2000 1 |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 0.1964   0.2050   1.6388   6.6400   2.6494   77.5755   17.6412   204.2384   17.1465   27.856   59.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865   69.7865     |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 1966   0.1864   0.2860   1.6868   6.6400   2.6644   77.5622   1.684015   20.5359   127.1461   27.222   28.6671   29.56   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.74   27.   |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 71 0.1964 0.2000 1.6588 6.6400 28.6944 77.6522 187.8704 026.8716 12.2006 21.9503 02.2972 97.6 72 0.1964 0.2000 1.6588 6.6400 28.6944 77.6522 187.8705 205.3707 12.2006 21.9503 02.2972 97.6 73 0.1964 0.2000 1.6588 6.6400 28.6944 77.6522 187.8705 205.3707 12.2972 12.2000 01.1968 97.6 74 0.1964 0.2000 1.6588 6.6400 28.6944 77.6522 187.8000 287.2006 12.2006 12.2000 01.1968 97.6 75 0.1964 0.2000 1.6588 6.6400 28.6944 77.6522 187.8000 287.2006 12.2000 01.1969 12.0 76 0.1964 0.2000 1.6588 6.6400 28.6944 77.6522 187.8000 287.2006 12.2000 01.1969 14.0 77 0.1964 0.2000 1.6588 6.6400 28.6944 77.6522 187.8000 22.2006 12.2000 01.1969 14.0 78 0.1964 0.2000 1.6588 6.6400 28.6944 77.6522 187.8000 22.2006 12.2000 01.2000 01.0 79 0.1964 0.2000 1.6588 6.6400 28.6944 77.6522 187.8000 22.2006 12.2000 12.2000 62.2704 197.0 79 0.1964 0.2000 1.6588 6.6400 28.6944 77.6522 187.8000 22.2006 12.2000 12.2000 62.2704 197.0 79 0.1964 0.2000 1.6588 6.6400 28.6944 77.6522 187.8000 22.2000 12.2000 12.2000 62.2000 197.0 79 0.1964 0.2000 1.6588 6.6400 28.6944 77.6522 187.8000 22.2000 12.2000 12.2000 62.2000 197.0 79 0.1964 0.2000 1.6588 6.6400 28.6944 77.6522 187.8000 22.2000 12.2000 12.2000 62.2000 197.0 79 0.1964 0.2000 1.6588 6.6400 28.6944 77.6522 187.8000 22.2000 12.4000 22.2000 62.0000 197.0 79 0.1964 0.2000 1.6588 6.6400 28.6944 77.6522 187.8000 12.2000 12.4000 22.2000 62.0000 197.0 79 0.1964 0.2000 1.6588 6.6400 28.6944 77.6522 187.8000 12.2000 12.4000 22.2000 62.0000 197.0 79 0.1964 0.2000 1.6588 6.6400 28.6944 77.6522 188.8000 12.2000 12.4000 22.2000 62.0000 197.0 79 0.1964 0.2000 1.6588 6.6400 28.6944 77.6522 188.8000 12.2000 12.4000 22.2000 62.0000 197.0 79 0.1964 0.2000 1.6588 6.6400 28.6944 77.6522 188.8000 12.0000 12.4000 22.2000 62.0000 197.0 79 0.1964 0.2000 1.6588 6.6400 28.6944 77.6522 188.8000 12.0000 12.4000 22.2000 62.5000 697.0 79 0.1964 0.2000 1.6588 6.6400 28.6944 77.6522 188.8000 12.0000 12.0000 12.2000 62.5000 697.0 79 0.1964 0.2000 1.6588 6.6400 28.6944 77.6522 188.8000 12.0000 12.0000 12.2000 62.6940 97.70000 188.8000  |           |        |        |        |        |         | 77.5993 | 133.5335 | 204.8602 | 121.4616 |         |          |     |
| 72 0.1964 0.2000 1.6588 6.6400 28.6984 77.6522 198.4796 208.2012 123.382 21.9817 005.1905 91%. 73 0.1964 0.2000 1.6588 6.6400 28.6984 77.6522 198.4796 208.2001 123.382 21.9817 005.1905 91%. 74 0.1964 0.2000 1.6588 6.6400 28.6984 77.6522 148.6003 207.796 122.815 21.2008 61.0001 125.89 67%. 75 0.1964 0.2000 1.6588 6.6400 28.6984 77.6522 148.6003 207.796 122.815 122.600 61.1588 67%. 76 0.1964 0.2000 1.6588 6.6400 28.6984 77.6522 148.6003 207.796 122.815 122.600 61.1588 67%. 77 0.1964 0.2000 1.6588 6.6400 28.6984 77.6522 148.6003 207.796 122.815 122.600 122.900 61.796 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127.815 127 | 70        | 0.1964 | 0.2650 | 1.6398 | 6.6400 | 28.6494 | 77.6282 | 135.4015 | 205.3751 | 121.7669 | 21.8771 | 599.4395 | 90% |
| 173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |        |        | 1.6398 |        |         |         |          |          |          |         | 602.2972 | 90% |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 77        |        |        |        |        |         |         |          |          |          |         |          | 93% |
| 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 78        | 0.1964 | 0.2650 | 1.6398 |        |         |         | 149.4793 | 212.8444 | 123.8946 | 22.2594 | 623.5007 | 94% |
| 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 88 0 1984 0 2080 1 1508 0 68400 2 86494 77,6522 148,6881 22,680 7 12,5887 2 2460 6 683223 974,  86 0 1984 0 2080 1 1508 0 68400 2 86,694 77,6522 148,6881 22,6807 1 12,5887 2 42,971 0 64,2585 974,  87 0 1984 0 2080 1 1508 0 68400 2 86,984 77,6522 148,6881 22,6807 1 12,5887 2 52,971 0 62,251 977,  88 0 1984 0 2080 1 1508 0 68400 2 86,984 77,6522 148,6881 22,6897 1 12,5897 2 52,971 0 62,251 977,  89 0 1984 0 2080 1 1508 0 68400 2 86,984 77,6522 148,6881 22,6891 22,6891 22,689 (24,584 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684 124,684  |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 84 01964 02650 16598 6.6040 28.694 77.6522 148.6951 22.00200 125.1964 22.4050 662.305 975.  85 01964 02650 16598 6.6040 28.694 77.6522 148.6951 22.5010 7152.394 72.5271 645.2915 975.  87 01964 02650 16598 6.6040 28.694 77.6522 148.6951 22.5950 125.591 22.591 697.5927 977.  88 01964 02650 16598 6.6040 28.694 77.6522 148.6951 22.5950 125.590 22.591 697.5927 977.  89 01964 02650 16598 6.6040 28.694 77.6522 148.6951 26.7520 26.7520 125.590 697.776 97.  89 01964 02650 16598 6.6040 28.694 77.6522 148.6951 26.7724 100.6552 26.695 677.795 97.  89 01964 02650 16598 6.6040 28.6944 77.6522 148.6951 26.7724 100.6552 26.695 677.795 97.  89 01964 02650 16598 6.6040 28.6944 77.6522 148.6951 26.7724 100.6552 26.7249 67.  89 01964 02650 16598 6.6040 28.6944 77.6522 148.6951 28.7794 103.6552 22.406 66.7073 97.  89 01964 02650 16598 6.6040 28.6944 77.6522 148.6951 28.7794 103.6552 22.406 66.7073 97.  89 01964 02650 16598 6.6040 28.6944 77.6522 148.6951 28.7794 103.6752 27.046 66.7073 97.  89 01964 02650 16598 6.6040 28.6944 77.6522 148.6951 28.7794 103.6752 27.046 66.7073 97.  89 01964 02650 16598 6.6040 28.6944 77.6522 148.6951 28.7794 103.6752 27.046 66.7073 97.  89 01964 02650 16598 6.6040 28.6944 77.6522 148.6951 28.7794 103.6752 27.046 66.7073 97.  89 01964 02650 16598 6.6040 28.6944 77.6522 148.6951 28.7794 103.6752 27.046 66.7073 97.  89 01964 02650 16598 6.6040 28.6944 77.6522 148.6951 28.77940 103.6752 27.046 66.7073 97.  89 01964 02650 16598 6.6040 28.6944 77.6522 148.6951 28.77940 103.7052 22.044 66.8073 107.  89 01964 02650 16598 6.6040 28.6944 77.6522 148.6951 28.77940 103.7052 22.044 66.8073 107.  89 01964 02650 16598 6.6040 28.6944 77.6522 148.6951 28.77940 103.7052 22.044 66.8073 107.  89 01964 02650 16598 6.6040 28.6944 77.6522 148.6951 28.77940 103.7052 22.0446 66.8073 107.  89 01964 02650 16598 6.6040 28.6944 77.6522 148.6951 28.77940 103.7052 22.0444 66.8073 107.  80 01964 02650 16598 6.6040 28.6944 77.6522 148.6951 28.77940 103.7052 22.0444 66.8073 107.  80 01964 02650 16598 6.6040 28.6944 77.6522 148.6951 28 |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 86 01964 02600 16398 0.6400 28.6944 77.6522 148.6961 22.6107 125.3847 2.2271 662.2315 97%. 87 01964 02600 16398 0.6400 28.6944 77.6522 148.6961 22.6107 125.3847 2.2271 662.2315 97%. 88 01964 02600 16398 0.6400 28.6944 77.6522 148.6961 22.6550 172.5019 22.9545 062.6324 19%. 99 01964 02600 16398 0.6400 28.6944 77.6522 148.6961 22.6550 122.5019 22.9545 062.6324 19%. 90 01964 02600 16398 0.6400 28.6944 77.6522 148.6961 22.6550 122.5019 22.6980 08.6980 97%. 91 01964 02600 16398 0.6400 28.6944 77.6522 148.6961 22.774 103.6952 22.6980 062.6980 97%. 91 01964 02600 16398 0.6400 28.6944 77.6522 148.6961 22.774 103.6952 22.7840 062.0073 97%. 91 01964 02600 16398 0.6400 28.6944 77.6522 148.6961 22.7740 103.6252 22.7840 062.0073 97%. 92 01964 02600 16398 0.6400 28.6944 77.6522 148.6961 22.7790 155.6252 22.7840 062.0073 97%. 93 01964 02600 16398 0.6400 28.6944 77.6522 148.6961 22.7790 155.6252 22.7840 062.0073 97%. 94 01964 02600 16398 0.6400 28.6944 77.6522 148.6961 22.7791 155.6052 22.7840 062.0073 97%. 95 01964 02600 16398 0.6400 28.6944 77.6522 148.6961 22.7791 155.6052 22.7840 062.4007 07%. 96 01964 02600 16398 0.6400 28.6944 77.6522 148.6961 22.7791 156.00702 22.7744 061.4050 97%. 96 01964 02600 16398 0.6400 28.6944 77.6522 148.6961 22.7791 156.00702 22.7744 061.4050 97%. 97 01964 02600 16398 0.6400 28.6944 77.6522 148.6961 22.7791 156.00702 22.7744 061.4050 97%. 97 01964 02600 16398 0.6400 28.6944 77.6522 148.6961 22.7791 156.00702 22.7244 064.4050 97%. 97 01964 02600 16398 0.6400 28.6944 77.6522 148.6961 22.7791 156.1052 12.2745 064.6071 107%. 98 01964 02600 16398 0.6400 28.6944 77.6522 148.6961 22.7791 156.1052 12.2745 064.6071 107%.                                                                                                                                                                                                                                                                                                                                                                                                       |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 88 0 1984 0 2690 1 1588 0 6400 2 8694 7 76522 148695 124594 1281 0 22501 6 872527 97%   89 0 1984 0 2590 1 1588 0 6400 2 8694 7 76522 148695 128550 127500 2 2501 6 87250 97%   89 0 1984 0 2590 1 1588 0 6400 2 8694 7 7652 1 148695 1 28500 1 25300 2 2568 0 627500 98%   89 0 1984 0 2590 1 1588 0 6600 2 8694 7 7652 1 148695 1 28500 1 28500 2 2568 0 62750 98%   99 0 1984 0 2590 1 1588 0 6600 2 8694 7 7652 1 148695 1 287724 1 158692 2 2568 0 64590 98%   99 0 1984 0 2590 1 1588 0 6600 2 8694 7 76522 1 148695 1 28770 1 158500 2 2569 0 68850 98%   99 0 1984 0 2590 1 1588 0 6600 2 8694 7 76522 1 148695 1 28770 1 158500 2 2590 0 60850 98%   99 0 1984 0 2590 1 1588 0 6600 2 8694 7 76522 1 148695 1 28770 1 158500 2 2500 0 60850 98%   99 0 1984 0 2590 1 1588 0 6600 2 8694 7 76522 1 148695 1 28770 1 158500 2 2501 0 60700 98%   99 0 1984 0 2590 1 1588 0 6600 2 8694 7 76522 1 148695 1 28770 1 158500 2 2501 0 62400 1 62400   99 0 1984 0 2590 1 1588 0 6600 2 8694 7 76522 1 148695 1 28770 1 158500 2 2501 0 62400 1 62400   99 0 1984 0 2590 1 1588 0 6600 2 8694 7 76522 1 148695 1 28770 1 158500 2 2501 0 62400 1 62400   99 0 1984 0 2590 1 1588 0 6600 2 8694 7 76522 1 148695 1 28770 1 158500 2 2501 0 62400 1 62400   99 0 1984 0 2590 1 1588 0 6600 2 8694 7 76522 1 148695 1 28770 1 158500 2 2501 0 62400 1 62400   90 0 1984 0 2590 1 1588 0 6600 2 8694 7 76522 1 148695 1 28770 1 158500 2 2501 0 62400 1 62400   90 0 1984 0 2590 1 1589 0 6600 2 8694 7 76522 1 148695 1 28770 1 158500 2 2501 0 62400 1 62400   90 0 1984 0 2590 1 1589 0 6600 2 8694 7 76522 1 148695 1 28770 1 158500 2 2501 0 62400 1 62400   90 0 1984 0 2590 1 1589 0 6600 2 8694 7 76522 1 148695 1 28770 1 158500 2 2501 0 62400 1 62400   90 0 1984 0 2590 1 1589 0 6600 2 8694 7 76522 1 148695 1 28770 1 158500 2 2501 0 62400 1 62400   90 0 1984 0 2590 1 1589 0 6600 2 8694 7 76522 1 148695 1 28770 1 158500 2 2501 0 62400 1 62400   90 0 1984 0 2590 1 1589 0 6600 2 8694 7 76522 1 148695 1 28770 1 158500 2 2501 0 62400 2 7690 0 7690 0 7690 0 7690 0 7690 0 7690 0 7690 0 7690 0 7690 0 769 |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 86        | 0.1964 | 0.2650 | 1.6398 | 6.6400 | 28.6494 | 77.6322 | 149.6861 | 234.5464 | 126.1130 | 22.5613 | 647.9297 |     |
| 88 0 1994 0 2000 1 1558 0 66400 2 81694 77 5522 1 481681 28,779 1 134582 2 12681 643570 975. 91 0 1994 0 2000 1 15588 0 66400 2 81694 77 5522 1 481681 28,779 1 134587 2 27189 0 681587 0 975. 92 0 1994 0 2000 1 15588 0 66400 2 81694 77 5522 1 481681 28,779 1 134587 2 27189 0 691587 975. 93 0 1994 0 2000 1 15588 0 66400 2 81694 77 5522 1 481681 28,779 1 134587 2 27189 0 691587 975. 94 0 1994 0 2000 1 15588 0 66400 2 81694 77 5522 1 481681 28,779 1 137 107 2 2778 0 613570 975. 95 0 1994 0 2000 1 15588 0 66400 2 81694 77 5522 1 481681 28,779 1 137 137 12 2778 0 613570 1075. 96 0 1994 0 2000 1 15588 0 66400 2 81694 77 5522 1 481681 28,779 1 137 107 2 2778 0 613570 1075. 97 0 1994 0 2000 1 1558 0 66400 2 81694 77 5522 1 481681 28,779 1 137 107 2 2778 0 613570 1075. 97 0 1994 0 2000 1 1588 0 66400 2 81694 77 5522 1 481681 28,779 1 137 107 2 2274 0 641570 1075. 97 0 1994 0 2000 1 1588 0 66400 2 81694 77 5522 1 481681 28,779 1 137 107 12 2274 0 641570 1075. 98 0 1994 0 2000 1 1588 0 66400 2 81694 77 5522 1 481681 28,779 1 137 107 12 22241 0 641570 1075. 98 0 1994 0 2000 1 1588 0 66400 2 81694 77 5522 1 481681 28,779 1 137 107 12 22241 0 641570 1075.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 90 0 1994 0 2000 16398 0 6400 28.694 77.6522 148.095 26.793 12.095 26.298 0 68.895 97.  10 1964 0 2050 1 16398 0 6400 28.694 77.6522 148.095 26.793 15.293 27.794 0 68.595 97.  10 1974 0 2050 16398 0 6400 28.694 77.6522 148.095 26.7910 153.293 27.794 0 68.395 97.  10 1974 0 2050 1639 0 6400 28.694 77.6522 148.095 26.7910 137.091 27.774 0 69.395 97.  10 1974 0 2050 1639 0 6400 28.694 77.6522 148.095 26.7910 137.091 27.774 0 69.395 97.  10 1974 0 2050 1639 0 6400 28.694 77.6522 148.095 26.7910 137.091 27.774 0 69.395 97.  10 1974 0 2050 1639 0 6400 28.694 77.6522 148.095 26.7910 137.007 22.2111 06.4107 107.  10 1974 0 2050 1639 0 6400 28.694 77.6522 148.095 26.7910 137.007 22.2111 06.4107 107.  10 1974 0 2050 1639 0 6400 28.694 77.6522 148.095 26.7910 140.112 27.2214 06.4157 107.  10 1984 0 2050 1639 0 6400 28.694 77.6522 148.095 26.7910 140.112 27.2214 06.4157 107.  10 1984 0 2050 1639 0 6400 28.694 77.6522 148.095 26.7910 140.112 27.2214 06.4157 107.  10 1984 0 2050 1639 0 6400 28.694 77.6522 148.095 26.7910 140.112 27.2214 06.4157 107.  10 1984 0 2050 1639 0 6400 28.694 77.6522 148.095 26.7910 140.112 27.2214 06.4571 107.007.  10 1984 0 2050 1639 0 6400 28.694 77.6522 148.095 26.7910 140.112 27.2214 06.4571 107.007.  10 1984 0 2050 1639 0 6400 28.694 77.6522 148.095 26.7910 140.112 27.2214 06.4571 107.007.  10 1984 0 2050 1639 0 6400 28.694 77.6522 148.095 26.7910 140.112 27.2214 06.2050 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107.000 107 |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 91 01964 02600 16586 6.6400 28.6944 77.6522 148.6861 267.7910 135.6563 227.89 663.8927 924. 92 01964 02600 16586 6.6400 28.6944 77.6522 148.6861 267.7910 135.6563 227.490 660.0703 924. 93 01964 02600 16586 6.6400 28.6944 77.6522 148.6861 267.7910 135.6153 227.8740 683.276 924. 94 01964 02600 16586 6.6400 28.6944 77.6522 148.6861 267.7910 135.9162 22.041 662.4629 924. 95 01964 02600 16586 6.6400 28.6944 77.6522 148.6861 267.7910 135.9162 22.041 662.4629 924. 96 01964 02600 16586 6.6400 28.6944 77.6522 148.6861 267.7910 135.9162 22.9916 664.1877 100.7916 97 01964 02600 16586 6.6400 28.6944 77.6522 148.6861 267.7910 135.9162 22.9916 664.1877 100.7916 98 01964 02600 16586 6.6400 28.6944 77.6522 148.6861 267.7910 135.9162 22.9916 664.1877 100.7916 99 01964 02600 16586 6.6400 28.6944 77.6522 148.6861 267.7910 140.1129 22.2241 664.8571 100.7916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 22 01964 02600 16586 66400 26694 77.6522 148.0801 26.7910 137.6922 2240 680.7010 197.6 31 01964 02600 16586 66400 26.994 77.6522 148.0801 26.7910 137.6912 22.7714 681.5070 97.6 46 01964 02600 16586 66400 26.994 77.6522 148.0801 26.7910 139.1626 22.0911 602.4809 97.6 47 01964 02600 16586 66400 26.994 77.6522 148.0801 26.7910 139.1626 22.0911 602.4809 97.6 47 01964 02600 16586 66400 26.994 77.6522 148.0801 26.7910 139.1626 22.0911 602.4809 107.6 48 01964 02600 16586 66400 26.994 77.6522 148.0801 26.7910 139.162 22.2911 604.8571 107.6 49 01964 02600 16586 66400 26.994 77.6522 148.0801 26.7910 140.1129 22.2911 604.8571 107.6 49 01964 02600 16586 66400 26.994 77.6522 148.0801 26.7910 140.1129 12.2914 664.8571 107.6 49 01964 02600 16586 66400 26.994 77.6522 148.0801 26.7910 140.1129 12.2914 664.8571 107.6 49 01964 02600 16586 66400 26.994 17.6522 148.0801 26.7910 140.1129 12.2914 664.8571 107.6 49 01964 02600 16586 66400 26.994 17.6522 148.0801 26.7910 140.1129 12.2914 664.8571 107.6 49 01964 02600 16586 66400 26.994 164.094 17.6522 148.0801 26.7910 140.1129 12.2914 664.8571 107.6 49 01964 02600 16586 66400 26.994 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094 164.094  |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 93 0 1964 0.2650 1.6586 6.6400 28.6494 77.6522 148.6861 280.7910 137.0912 22.794 661.8076 99%. 94 0.1964 0.2650 1.6586 6.6400 28.6494 77.6522 148.6861 280.7910 138.1652 28.041 662.4899 99%. 95 0.1964 0.2650 1.6586 6.6400 28.6494 77.6522 148.6862 280.7910 138.7082 148.6841 663.4200 100%. 96 0.1964 0.2650 1.6586 6.6400 28.6494 77.6522 148.6862 280.7910 139.7081 2.29156 66.1857 100%. 97 0.1964 0.2650 1.6586 6.6400 28.6494 77.6522 148.6861 280.7910 139.7081 2.29156 66.1857 100%. 98 0.1964 0.2650 1.6586 6.6400 28.6494 77.6522 148.6861 280.7910 140.1126 22.241 664.8371 100%. 98 0.1964 0.2650 1.6586 6.6400 28.6494 77.6522 148.6861 280.7910 140.2162 28.2416 68.8371 100%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 94 0.1964 0.2650 1.6586 6.6400 28.644 77.6522 148.6861 280.7910 138.1628 22.8041 602.4859 995. 95 0.1984 0.2650 1.6586 6.6400 28.6494 77.6522 148.6861 280.7910 138.0709 22.8111 663.4200 1005. 96 0.1984 0.2650 1.6586 6.6400 28.6494 77.6522 148.685 280.7910 138.7910 27.9910 681.791 1005. 97 0.1984 0.2650 1.6586 6.6400 28.6494 77.6522 148.6851 280.7910 140.1129 22.2241 664.8371 1005. 98 0.1984 0.2650 1.6586 6.6400 28.6494 77.6522 148.6851 280.7910 140.1129 22.2241 664.8371 1005. 99 0.1984 0.2650 1.6586 6.6400 28.6494 77.6522 148.6851 280.7910 140.1129 22.2416 694.8371 1007.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |        |        | 1.6398 |        |         |         |          |          |          |         |          |     |
| 96 0.1964 0.2650 1.6588 6.6400 28.6494 77.6522 148.0861 28.7910 119.7061 22.9795 684.1877 100%<br>97 0.1984 0.2650 1.6588 6.6400 28.6494 77.6522 148.0861 28.7910 140.1129 22.2241 684.8371 100%<br>98 0.1984 0.2650 1.6588 6.6400 28.6494 77.6522 148.0861 28.7910 140.2561 23.5494 687.888 100%<br>99 0.1984 0.2650 1.6588 6.6400 28.6494 77.6522 148.0861 28.7970 140.3786 2.9240 68.7988 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 94        | 0.1964 | 0.2650 | 1.6398 |        |         |         | 149.6861 | 236.7910 | 138.1628 | 22.8041 | 662.4669 |     |
| 97 0.1964 0.2860 1.6398 6.6400 28.644 77.6322 148.2861 28.7910 140.1129 23.2241 684.8371 100%<br>98 0.1964 0.2850 1.6389 6.6600 28.644 77.6322 148.2861 28.7910 140.3251 23.544 686.3370 100%<br>99 0.1964 0.2850 1.638 6.6600 28.644 77.6522 148.661 28.7910 140.3251 23.240 687.988 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 98 0.1964 0.2850 1.6398 6.6400 28.6484 77.6322 149.6861 236.7910 140.3251 23.5454 685.3705 100% 99 0.1964 0.2850 1.6398 6.6400 28.6484 77.6322 149.6861 236.7910 140.3748 23.9240 685.7988 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |        |        |        |         |         |          |          |          |         |          |     |
| 99 0.1964 0.2650 1.6398 6.6400 28.6494 77.6322 149.6861 236.7910 140.3748 23.9240 665.7988 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |        |        |        |         |         |          |          |          |         |          |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |        |        |        |         |         |          |          |          |         |          |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |        |        |        |         |         |          |          |          |         |          |     |

### Exhibit E.39f Yearly Cancer Cases Avoided by System Size

Smoking/Bladder Cancer Model - Surface Water Systems

### HAA5 - Preferred Alternative

|       |      | <100 |      |      | 100-499 |      |      | 500-999 |       | 1     | ,000-3,299 |       |              | 3,300-9,999 | ı      |                | 10,000-49,99   | 99       | 50,0   | 000-99,99 | 9              | 10       | 0,000-999,     | 999              |          | ≥1,000,000     |          |
|-------|------|------|------|------|---------|------|------|---------|-------|-------|------------|-------|--------------|-------------|--------|----------------|----------------|----------|--------|-----------|----------------|----------|----------------|------------------|----------|----------------|----------|
| Year  | mean | 5th  | 95th | mean | 5th     | 95th | mean | 5th     | 95th  | mean  | 5th        | 95th  | mean         | 5th         | 95th   | mean           | 5th            | 95th     | mean   | 5th       | 95th           | mean     | 5th            | 95th             | mean     | 5th            | 95th     |
| 2005  | -    | -    | -    | -    |         | -    | -    | -       | -     |       |            |       |              |             | -      | -              |                | -        |        |           |                | -        | -              | -                |          | -              |          |
| 2006  | -    | -    | -    | -    |         | -    | -    | -       | -     |       |            |       |              | -           | -      | -              | -              | -        | -      | -         | -              | -        | -              | -                | -        | -              |          |
| 2007  | -    | -    | -    | -    |         | -    | -    | -       | -     | -     | -          | -     |              | -           | -      | -              | -              | -        | -      | -         | -              | -        | -              | -                | -        | -              | -        |
| 2008  | -    | -    | -    | -    |         | -    | -    | -       | -     | -     | -          | -     |              | -           | -      | -              | -              | -        | -      | -         | -              | -        | -              | -                | -        | -              | -        |
| 2009  | -    | -    | -    | -    |         | -    | -    | -       | -     | -     |            | -     |              | -           | -      | -              | -              | -        | -      | -         | -              | -        | -              | -                |          | -              | -        |
| 2010  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00    | 0.03 | 0.02 | 0.00    | 0.06  | 0.12  | 0.02       | 0.38  | 0.35         | 0.06        | 1.10   | 2.70           | 0.26           | 9.12     | 2.35   | 0.23      | 7.95           | 10.40    | 1.02           | 35.17            | 8.85     | 0.87           | 29.93    |
| 2011  | 0.00 | 0.00 | 0.01 | 0.03 | 0.01    | 0.07 | 0.04 | 0.01    | 0.13  | 0.29  | 0.06       | 0.84  | 0.82         | 0.16        | 2.40   | 6.31           | 0.78           | 19.93    | 5.50   | 0.68      | 17.36          | 24.32    | 3.03           | 76.82            | 20.70    | 2.57           | 65.38    |
| 2012  | 0.00 | 0.00 | 0.01 | 0.04 | 0.01    | 0.12 | 0.08 | 0.02    | 0.21  | 0.49  | 0.11       | 1.34  | 1.40         | 0.33        | 3.83   | 10.62          | 1.55           | 31.81    | 9.26   | 1.35      | 27.72          | 40.95    | 5.97           | 122.62           | 34.85    | 5.08           | 104.36   |
| 2013  | 0.01 | 0.00 | 0.02 | 0.06 | 0.02    | 0.16 | 0.11 | 0.03    | 0.29  | 0.72  | 0.19       | 1.87  | 2.07         | 0.54        | 5.35   | 15.53          | 2.54           | 44.40    | 13.53  | 2.22      | 38.69          | 59.86    | 9.81           | 171.16           | 50.95    | 8.34           | 145.67   |
| 2014  | 0.01 | 0.00 | 0.02 | 0.09 | 0.02    | 0.21 | 0.15 | 0.04    | 0.38  | 0.99  | 0.28       | 2.43  | 2.82         | 0.79        | 6.95   | 20.96          | 3.76           | 57.69    | 17.09  | 3.16      | 46.30          | 70.39    | 13.48          | 187.24           | 59.90    | 11.47          | 159.35   |
| 2015  | 0.01 | 0.00 | 0.03 | 0.11 | 0.03    | 0.27 | 0.20 | 0.06    | 0.47  | 1.27  | 0.38       | 3.02  | 3.65         | 1.10        | 8.64   | 25.50          | 5.06           | 67.13    | 19.48  | 4.06      | 49.81          | 79.20    | 16.98          | 199.54           | 67.40    | 14.45          | 169.82   |
| 2016  | 0.01 | 0.00 | 0.03 | 0.13 | 0.04    | 0.30 | 0.24 | 0.08    | 0.53  | 1.53  | 0.49       | 3.44  | 4.36         | 1.41        | 9.85   | 28.67          | 6.30           | 71.77    | 21.53  | 4.93      | 52.66          | 86.93    | 20.35          | 210.06           | 73.99    | 17.32          | 178.77   |
| 2017  | 0.02 | 0.01 | 0.03 | 0.15 | 0.05    | 0.32 | 0.27 | 0.09    | 0.57  | 1.71  | 0.60       | 3.66  | 4.90         | 1.72        | 10.46  | 31.42          | 7.50           | 75.48    | 23.36  | 5.77      | 55.11          | 93.89    | 23.61          | 219.53           | 79.91    | 20.10          | 186.84   |
| 2018  | 0.02 | 0.01 | 0.04 | 0.17 | 0.06    | 0.34 | 0.29 | 0.11    | 0.59  | 1.88  | 0.70       | 3.83  | 5.38         | 2.01        | 10.95  | 33.89          | 8.64           | 78.66    | 25.02  | 6.57      | 57.27          | 100.24   | 26.72          | 227.71           | 85.31    | 22.74          | 193.80   |
| 2019  | 0.02 | 0.01 | 0.04 | 0.18 | 0.07    | 0.35 | 0.32 | 0.12    | 0.62  | 2.03  | 0.80       | 3.98  | 5.82         | 2.29        | 11.39  | 36.13          | 9.73           | 81.54    | 26.55  | 7.33      | 59.16          | 106.09   | 29.66          | 234.74           | 90.29    | 25.24          | 199.78   |
| 2020  | 0.02 | 0.01 | 0.04 | 0.19 | 0.08    | 0.36 | 0.34 | 0.14    | 0.64  | 2.18  | 0.89       | 4.12  | 6.22         | 2.55        | 11.79  | 38.19          | 10.75          | 84.18    | 27.96  | 8.03      | 60.89          | 111.51   | 32.38          | 241.19           | 94.90    | 27.56          | 205.27   |
| 2021  | 0.02 | 0.01 | 0.04 | 0.20 | 0.09    | 0.37 | 0.36 | 0.15    | 0.66  | 2.31  | 0.98       | 4.25  | 6.60         | 2.80        | 12.16  | 40.11          | 11.72          | 86.59    | 29.27  | 8.70      | 62.53          | 116.55   | 34.93          | 247.63           | 99.19    | 29.73          | 210.74   |
| 2022  | 0.02 | 0.01 | 0.04 | 0.21 | 0.09    | 0.38 | 0.38 | 0.16    | 0.68  | 2.43  | 1.06       | 4.37  | 6.95         | 3.04        | 12.49  | 41.89          | 12.64          | 88.81    | 30.50  | 9.33      | 64.12          | 121.28   | 37.38          | 253.93           | 103.21   | 31.82          | 216.11   |
| 2023  | 0.02 | 0.01 | 0.04 | 0.22 | 0.10    | 0.39 | 0.39 | 0.18    | 0.69  | 2.54  | 1.14       | 4.48  | 7.28<br>7.58 | 3.26        | 12.80  | 43.56          | 13.51          | 91.00    | 31.64  | 9.94      | 65.69          | 125.71   | 39.74          | 260.12           | 106.98   | 33.82          | 221.38   |
| 2024  | 0.03 | 0.01 | 0.04 | 0.23 | 0.11    | 0.40 | 0.41 | 0.19    | 0.71  | 2.65  | 1.21       | 4.58  | 7.58         | 3.47        | 13.11  | 45.12<br>46.59 | 14.35<br>15.16 | 95.24    | 33.74  | 10.53     | 67.18<br>68.61 | 129.87   | 42.04<br>44.26 | 265.82<br>271.30 | 110.53   | 35.78<br>37.66 | 226.23   |
| 2025  | 0.03 | 0.01 | 0.04 | 0.24 | 0.11    | 0.41 | 0.43 | 0.20    | 0.73  | 2.75  | 1.35       | 4.80  | 8.15         | 3.85        | 13.72  | 47.98          | 15.16          | 97.20    | 34.70  | 11.64     | 69.99          | 137.51   | 46.37          | 271.30           | 117.03   | 39.47          | 235.52   |
| 2027  | 0.03 | 0.01 | 0.05 | 0.26 | 0.12    | 0.42 | 0.46 | 0.22    | 0.76  | 2.94  | 1.40       | 4.90  | 8.41         | 4.01        | 14.01  | 49.29          | 16.69          | 99.08    | 35.61  | 12.16     | 71.32          | 141.02   | 48.40          | 281.91           | 120.02   | 41.19          | 239.92   |
| 2028  | 0.03 | 0.01 | 0.05 | 0.27 | 0.12    | 0.44 | 0.40 | 0.23    | 0.78  | 3.02  | 1.46       | 5.00  | 8.65         | 4.17        | 14.30  | 50.53          | 17.40          | 100.92   | 36.47  | 12.66     | 72.61          | 144.35   | 50.34          | 286.99           | 122.85   | 42.85          | 244.24   |
| 2029  | 0.03 | 0.01 | 0.05 | 0.27 | 0.13    | 0.45 | 0.48 | 0.23    | 0.79  | 3.11  | 1.51       | 5.10  | 8.88         | 4.31        | 14.58  | 51.71          | 18.09          | 102.58   | 37.28  | 13.14     | 73.75          | 147.50   | 52.19          | 291.29           | 125.53   | 44.42          | 247.91   |
| Total | 0.36 | 0.15 | 0.67 | 3.33 | 1.40    | 6.26 | 5.86 | 2.47    | 11.02 | 37.82 | 15.91      | 71.08 | 108.18       | 45.52       | 203.31 | 666.71         | 192.39         | 1,476.28 | 493.56 | 143.53    | 1,088.72       | 1,981.37 | 578.66         | 4,361.49         | 1,686.27 | 492.47         | 3,711.89 |
| Avg.  | 0.01 | 0.01 | 0.03 | 0.13 | 0.06    | 0.25 | 0.23 | 0.10    | 0.44  | 1.51  | 0.64       | 2.84  | 4.33         | 1.82        | 8.13   | 26.67          | 7.70           | 59.05    | 19.74  | 5.74      | 43.55          | 79.25    | 23.15          | 174.46           | 67.45    | 19.70          | 148.48   |

Avg. - All Size Categories 199.34 58.90 437.23

### Exhibit E.39g Yearly Cancer Cases Avoided by System Size

Smoking/Bladder Cancer Model - Ground Water Systems

### HAA5 - Preferred Alternative

|               |      | <100 |      |              | 100-499      |       |      | 500-999      |               | 1             | ,000-3,299    |               | 3     | ,300-9,999 | 1             | 10             | 0,000-49,9    | 99              | 50,           | 000-99,99     | 99    | 100            | 0,000-999,9   | 999            | 2             | 1,000,00 | 0             |
|---------------|------|------|------|--------------|--------------|-------|------|--------------|---------------|---------------|---------------|---------------|-------|------------|---------------|----------------|---------------|-----------------|---------------|---------------|-------|----------------|---------------|----------------|---------------|----------|---------------|
| Year          | mean | 5th  | 95th | mean         | 5th          | 95th  | mean | 5th          | 95th          | mean          | 5th           | 95th          | mean  | 5th        | 95th          | mean           | 5th           | 95th            | mean          | 5th           | 95th  | mean           | 5th           | 95th           | mean          | 5th      | 95th          |
| 2005          | -    | -    | -    | -            | -            | -     | -    | -            | -             | -             | -             | -             | -     | -          | -             | -              | -             | -               | -             | -             | -     | -              | -             | -              | -             | -        | -             |
| 2006          | -    | -    | -    | -            | -            | -     | -    | -            | -             | -             | -             | -             | -     | -          | -             | -              | -             | -               | -             | -             | -     | -              | -             | -              | -             | -        | -             |
| 2007          | -    | -    | -    | -            | -            | -     | -    | -            | -             | -             | -             | -             | -     | -          | -             | -              | -             | -               | -             | -             | -     | -              | -             | -              | -             | -        | -             |
| 2008          | -    | -    | -    | -            | -            | -     | -    | -            | -             | -             | -             | -             | -     | -          | -             | -              | -             | -               | -             | -             | -     | -              | -             | -              | -             | -        | -             |
| 2009          | -    | -    | -    | -            | -            | -     | -    | -            | -             | -             | -             | -             | -     | -          | -             | -              | -             | -               | -             | -             | -     | -              | -             | -              | -             | -        | -             |
| 2010          | 0.00 | 0.00 | 0.01 | 0.03         | 0.00         | 0.09  | 0.03 | 0.00         | 0.09          | 0.09          | 0.01          | 0.28          | 0.14  | 0.02       | 0.44          | 0.52           | 0.08          | 1.64            | 0.22          | 0.03          | 0.69  | 0.60           | 0.10          | 1.91           | 0.10          | 0.02     | 0.32          |
| 2011          | 0.01 | 0.00 | 0.03 | 0.07         | 0.01         | 0.19  | 0.07 | 0.01         | 0.20          | 0.21          | 0.04          | 0.61          | 0.33  | 0.07       | 0.97          | 1.23           | 0.25          | 3.59            | 0.51          | 0.10          | 1.50  | 1.43           | 0.29          | 4.16           | 0.24          | 0.05     | 0.69          |
| 2012          | 0.02 | 0.00 | 0.04 | 0.11         | 0.03         | 0.30  | 0.12 | 0.03         | 0.32          | 0.36          | 0.08          | 0.98          | 0.56  | 0.13       | 1.54          | 2.10           | 0.49          | 5.73            | 0.88          | 0.20          | 2.40  | 2.43           | 0.56          | 6.65           | 0.41          | 0.09     | 1.11          |
| 2013          | 0.02 | 0.01 | 0.06 | 0.16         | 0.04         | 0.42  | 0.17 | 0.05         | 0.45          | 0.53          | 0.14          | 1.36          | 0.83  | 0.22       | 2.15          | 3.10           | 0.80          | 7.99            | 1.30          | 0.33          | 3.35  | 3.59           | 0.93          | 9.28           | 0.60          | 0.15     | 1.54          |
| 2014          | 0.03 | 0.01 | 0.07 | 0.22         | 0.06         | 0.55  | 0.24 | 0.07         | 0.59          | 0.72          | 0.20          | 1.77          | 1.14  | 0.32       | 2.80          | 4.22           | 1.18          | 10.38           | 1.66          | 0.48          | 4.00  | 4.29           | 1.28          | 10.15          | 0.72          | 0.21     | 1.69          |
| 2015          | 0.04 | 0.01 | 0.09 | 0.29         | 0.09         | 0.68  | 0.31 | 0.09         | 0.73          | 0.93          | 0.28          | 2.20          | 1.47  | 0.44       | 3.48          | 5.19           | 1.59          | 12.08           | 1.91          | 0.62          | 4.31  | 4.89           | 1.61          | 10.81          | 0.81          | 0.27     | 1.80          |
| 2016          | 0.05 | 0.02 | 0.11 | 0.35         | 0.11         | 0.78  | 0.37 | 0.12         | 0.83          | 1.11          | 0.36          | 2.51          | 1.76  | 0.57       | 3.97          | 5.90           | 1.99          | 12.92           | 2.14          | 0.75          | 4.55  | 5.43           | 1.94          | 11.38          | 0.90          | 0.32     | 1.90          |
| 2017          | 0.05 | 0.02 | 0.11 | 0.39         | 0.14         | 0.83  | 0.41 | 0.14         | 0.88          | 1.25          | 0.44          | 2.66          | 1.97  | 0.69       | 4.21          | 6.53           | 2.36          | 13.59           | 2.34          | 0.87          | 4.77  | 5.92           | 2.24          | 11.90          | 0.99          | 0.37     | 1.98          |
| 2018          | 0.06 | 0.02 | 0.12 | 0.43         | 0.16         | 0.87  | 0.45 | 0.17         | 0.92          | 1.37          | 0.51          | 2.79          | 2.17  | 0.81       | 4.41          | 7.10           | 2.72          | 14.16           | 2.53          | 0.99          | 4.95  | 6.37           | 2.53          | 12.34          | 1.06          | 0.42     | 2.06          |
| 2019          | 0.06 | 0.02 | 0.12 | 0.46         | 0.18         | 0.90  | 0.49 | 0.19         | 0.96          | 1.48          | 0.58          | 2.90          | 2.34  | 0.92       | 4.59          | 7.63           | 3.06          | 14.68           | 2.70          | 1.11          | 5.12  | 6.78           | 2.81          | 12.72          | 1.13          | 0.47     | 2.12          |
| 2020          | 0.07 | 0.03 | 0.13 | 0.49         | 0.20         | 0.93  | 0.52 | 0.21         | 0.99          | 1.58          | 0.65          | 3.00          | 2.50  | 1.02       | 4.75          | 8.12           | 3.39          | 15.15           | 2.86          | 1.22          | 5.27  | 7.17           | 3.07          | 13.07          | 1.19          | 0.51     | 2.18          |
| 2021          | 0.07 | 0.03 | 0.13 | 0.52         | 0.22         | 0.96  | 0.56 | 0.24         | 1.03          | 1.68          | 0.71          | 3.10          | 2.66  | 1.13       | 4.90          | 8.57           | 3.69          | 15.58           | 3.01          | 1.32          | 5.41  | 7.53           | 3.32          | 13.42          | 1.25          | 0.55     | 2.23          |
| 2022          | 0.07 | 0.03 | 0.13 | 0.55         | 0.24         | 0.99  | 0.59 | 0.26         | 1.05          | 1.77          | 0.77          | 3.18          | 2.80  | 1.22       | 5.03          | 9.00           | 3.98          | 15.98           | 3.16          | 1.41          | 5.55  | 7.87           | 3.55          | 13.76          | 1.31          | 0.59     | 2.29          |
| 2023          | 0.08 | 0.03 | 0.14 | 0.58         | 0.26         | 1.01  | 0.61 | 0.27         | 1.08          | 1.85          | 0.83          | 3.26          | 2.93  | 1.31       | 5.16          | 9.40           | 4.26          | 16.38           | 3.29          | 1.51          | 5.68  | 8.19           | 3.78          | 14.10          | 1.36          | 0.63     | 2.35          |
| 2024          | 0.08 | 0.04 | 0.14 | 0.60         | 0.27         | 1.04  | 0.64 | 0.29         | 1.11          | 1.93          | 0.88          | 3.34          | 3.05  | 1.40       | 5.28          | 9.78           | 4.52          | 16.77           | 3.41          | 1.59          | 5.81  | 8.50           | 3.98          | 14.41          | 1.41          | 0.66     | 2.40          |
| 2025          | 0.08 | 0.04 | 0.14 | 0.62         | 0.29         | 1.06  | 0.66 | 0.31         | 1.13          | 2.00          | 0.93          | 3.42          | 3.17  | 1.47       | 5.40          | 10.13          | 4.76          | 17.15           | 3.53          | 1.67          | 5.94  | 8.78           | 4.17          | 14.71          | 1.46          | 0.69     | 2.45          |
| 2026          | 0.09 | 0.04 | 0.15 | 0.65         | 0.30         | 1.09  | 0.69 | 0.32         | 1.16          | 2.07          | 0.98          | 3.49          | 3.28  | 1.55       | 5.52          | 10.47          | 4.98          | 17.52           | 3.64          | 1.74          | 6.06  | 9.05           | 4.35          | 15.03          | 1.51          | 0.72     | 2.50          |
| 2027          | 0.09 | 0.04 | 0.15 | 0.67         | 0.32         | 1.11  | 0.71 | 0.34         | 1.18          | 2.14          | 1.02          | 3.57          | 3.38  | 1.61       | 5.64          | 10.78          | 5.18          | 17.89           | 3.75          | 1.81          | 6.19  | 9.31           | 4.50          | 15.34          | 1.55          | 0.75     | 2.55          |
| 2028          | 0.09 | 0.04 | 0.15 | 0.69         | 0.33         | 1.13  | 0.73 | 0.35         | 1.21          | 2.20          | 1.06          | 3.64          | 3.48  | 1.68       | 5.76<br>5.87  | 11.08          | 5.36<br>5.53  | 18.25<br>18.61  | 3.85          | 1.87          | 6.32  | 9.55<br>9.78   | 4.64<br>4.78  | 15.65<br>15.95 | 1.59          | 0.77     | 2.61          |
|               |      |      |      |              |              |       |      |              |               |               |               |               |       |            |               |                |               |                 |               |               |       |                |               |                |               |          |               |
| Total<br>Avg. | 0.05 | 0.49 | 0.09 | 8.57<br>0.34 | 3.60<br>0.14 | 16.11 | 9.12 | 3.83<br>0.15 | 17.15<br>0.69 | 27.52<br>1.10 | 11.57<br>0.46 | 51.76<br>2.07 | 43.53 | 18.30      | 81.87<br>3.27 | 142.21<br>5.69 | 60.17<br>2.41 | 266.05<br>10.64 | 50.65<br>2.03 | 21.55<br>0.86 | 94.30 | 127.48<br>5.10 | 54.41<br>2.18 | 9.47           | 21.23<br>0.85 | 9.06     | 39.42<br>1.58 |

Avg. - All Size Categories 17.26 7.32 32.22

### Exhibit E.39h Yearly Cancer Cases Avoided by System Size

Smoking/Bladder Cancer Model - All Water Systems

### HAA5 - Preferred Alternative

|       |      | <100 |      |       | 100-499 |       |       | 500-999 |       |       | 1,000-3,299 | )            |        | 3,300-9,999 |                |                | 10,000-49,99   | 9        | 50     | 0,000-99,99 | 9              | 10       | 0,000-999,9    | 199              |          | ≥1,000,000     |          |
|-------|------|------|------|-------|---------|-------|-------|---------|-------|-------|-------------|--------------|--------|-------------|----------------|----------------|----------------|----------|--------|-------------|----------------|----------|----------------|------------------|----------|----------------|----------|
| Year  | mean | 5th  | 95th | mean  | 5th     | 95th  | mean  | 5th     | 95th  | mean  | 5th         | 95th         | mean   | 5th         | 95th           | mean           | 5th            | 95th     | mean   | 5th         | 95th           | mean     | 5th            | 95th             | mean     | 5th            | 95th     |
| 2005  |      |      | -    | -     |         | -     | -     |         |       |       |             |              |        |             |                | -              | -              | -        |        |             |                |          | -              | -                |          | -              | -        |
| 2006  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -     | -           |              |        | -           | -              | -              | -              | -        | -      | -           | -              | -        | -              | -                | -        | -              | -        |
| 2007  |      | -    | -    | -     | -       | -     | -     | -       | -     | -     | -           |              |        | -           |                | -              | -              |          | -      | -           | -              | -        | -              | -                | -        | -              | · -      |
| 2008  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -     | -           |              |        | -           | -              | -              | -              | -        | -      | -           | -              | -        | -              | -                | -        |                | · -      |
| 2009  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -     | -           |              |        | -           | -              | -              | -              | -        | -      | -           | -              | -        | -              | -                | -        | -              | i - I    |
| 2010  | 0.00 | 0.00 | 0.02 | 0.04  | 0.01    | 0.12  | 0.05  | 0.01    | 0.15  | 0.21  | 0.03        | 0.66         | 0.49   | 0.08        | 1.54           | 3.22           | 0.35           | 10.76    | 2.57   | 0.26        | 8.64           | 11.00    | 1.11           | 37.07            | 8.95     | 0.88           | 30.25    |
| 2011  | 0.01 | 0.00 | 0.03 | 0.09  | 0.02    | 0.26  | 0.11  | 0.02    | 0.33  | 0.50  | 0.10        | 1.45         | 1.15   | 0.23        | 3.37           | 7.54           | 1.03           | 23.51    | 6.01   | 0.79        | 18.87          | 25.75    | 3.31           | 80.98            | 20.93    | 2.62           | 66.07    |
| 2012  | 0.02 | 0.00 | 0.05 | 0.15  | 0.04    | 0.42  | 0.19  | 0.04    | 0.53  | 0.85  | 0.20        | 2.32         | 1.97   | 0.46        | 5.38           | 12.72          | 2.03           | 37.53    | 10.13  | 1.55        | 30.12          | 43.38    | 6.53           | 129.27           | 35.25    | 5.17           | 105.46   |
| 2013  | 0.03 | 0.01 | 0.08 | 0.23  | 0.06    | 0.59  | 0.29  | 0.07    | 0.74  | 1.25  | 0.32        | 3.23         | 2.91   | 0.75        | 7.51           | 18.63          | 3.34           | 52.39    | 14.83  | 2.55        | 42.04          | 63.46    | 10.73          | 180.43           | 51.55    | 8.50           | 147.21   |
| 2014  | 0.04 | 0.01 | 0.10 | 0.31  | 0.09    | 0.77  | 0.39  | 0.11    | 0.96  | 1.71  | 0.48        | 4.20         | 3.96   | 1.11        | 9.75           | 25.17          | 4.94           | 68.08    | 18.74  | 3.64        | 50.30          | 74.68    | 14.75          | 197.38           | 60.62    | 11.68          | 161.04   |
| 2015  | 0.05 | 0.02 | 0.12 | 0.40  | 0.12    | 0.95  | 0.51  | 0.15    | 1.20  | 2.20  | 0.66        | 5.22         | 5.11   | 1.54        | 12.12          | 30.69          | 6.65           | 79.21    | 21.39  | 4.68        | 54.12          | 84.09    | 18.59          | 210.35           | 68.22    | 14.72          | 171.62   |
| 2016  | 0.06 | 0.02 | 0.14 | 0.48  | 0.16    | 1.08  | 0.60  | 0.20    | 1.36  | 2.64  | 0.85        | 5.95         | 6.12   | 1.98        | 13.82          | 34.57          | 8.29           | 84.69    | 23.67  | 5.68        | 57.22          | 92.36    | 22.29          | 221.44           | 74.89    | 17.64          | 180.67   |
| 2017  | 0.07 | 0.02 | 0.15 | 0.54  | 0.19    | 1.15  | 0.68  | 0.24    | 1.45  | 2.96  | 1.04        | 6.32         | 6.88   | 2.41        | 14.68          | 37.95          | 9.87           | 89.07    | 25.71  | 6.65        | 59.88          | 99.81    | 25.85          | 231.43           | 80.89    | 20.47          | 188.82   |
| 2018  | 0.08 | 0.03 | 0.15 | 0.59  | 0.22    | 1.21  | 0.75  | 0.28    | 1.52  | 3.25  | 1.21        | 6.62         | 7.55   | 2.82        | 15.37          | 40.99          | 11.37          | 92.82    | 27.56  | 7.56        | 62.22          | 106.61   | 29.25          | 240.05           | 86.37    | 23.16          | 195.85   |
| 2019  | 0.08 | 0.03 | 0.16 | 0.64  | 0.25    | 1.25  | 0.81  | 0.32    | 1.58  | 3.52  | 1.38        | 6.88         | 8.16   | 3.20        | 15.97          | 43.76          | 12.79          | 96.21    | 29.25  | 8.43        | 64.28          | 112.87   | 32.46          | 247.46           | 91.42    | 25.71          | 201.90   |
| 2020  | 0.09 | 0.04 | 0.17 | 0.68  | 0.28    | 1.30  | 0.86  | 0.35    | 1.63  | 3.76  | 1.54        | 7.12<br>7.35 | 8.73   | 3.57        | 16.54<br>17.06 | 46.31<br>48.68 | 14.14          | 99.33    | 30.82  | 9.25        | 66.15          | 118.68   | 35.45          | 254.26           | 96.09    | 28.07<br>30.28 | 207.45   |
| 2021  | 0.09 | 0.04 | 0.17 | 0.73  | 0.31    | 1.37  | 0.96  | 0.39    | 1.73  | 4.20  | 1.83        | 7.55         | 9.25   | 4.26        | 17.52          | 50.89          | 15.42<br>16.62 | 104.80   | 32.29  | 10.02       | 67.94<br>69.66 | 124.09   | 38.25<br>40.94 | 261.04<br>267.69 | 100.45   | 32.41          | 212.98   |
| 2023  | 0.10 | 0.05 | 0.18 | 0.80  | 0.36    | 1.41  | 1.01  | 0.42    | 1.77  | 4.39  | 1.97        | 7.73         | 10.20  | 4.57        | 17.96          | 52.96          | 17.77          | 107.38   | 34.93  | 11.44       | 71.37          | 133.90   | 43.52          | 274.22           | 108.35   | 34.45          | 223.72   |
| 2024  | 0.11 | 0.05 | 0.18 | 0.83  | 0.38    | 1.44  | 1.05  | 0.48    | 1.82  | 4.58  | 2.10        | 7.92         | 10.64  | 4.87        | 18.39          | 54.90          | 18.87          | 109.92   | 36.14  | 12.12       | 73.00          | 138.37   | 46.03          | 280.23           | 111.94   | 36.44          | 228.63   |
| 2025  | 0.11 | 0.05 | 0.19 | 0.87  | 0.40    | 1.48  | 1.09  | 0.51    | 1.86  | 4.76  | 2.21        | 8.11         | 11.04  | 5.14        | 18.82          | 56.72          | 19.91          | 112.39   | 37.27  | 12.76       | 74.55          | 142.58   | 48.42          | 286.01           | 115.33   | 38.36          | 233.34   |
| 2026  | 0.11 | 0.05 | 0.19 | 0.90  | 0.42    | 1.51  | 1.13  | 0.53    | 1.90  | 4.92  | 2.32        | 8.29         | 11.43  | 5.40        | 19.24          | 58.45          | 20.92          | 114.72   | 38.34  | 13.38       | 76.05          | 146.56   | 50.72          | 291.77           | 118.54   | 40.19          | 238.02   |
| 2027  | 0.12 | 0.06 | 0.20 | 0.92  | 0.44    | 1.54  | 1.16  | 0.56    | 1.94  | 5.08  | 2.42        | 8.46         | 11.79  | 5.63        | 19.65          | 60.08          | 21.86          | 116.97   | 39.36  | 13.97       | 77.51          | 150.33   | 52.90          | 297.25           | 121.57   | 41.94          | 242.47   |
| 2028  | 0.12 | 0.06 | 0.20 | 0.95  | 0.46    | 1.57  | 1.20  | 0.58    | 1.98  | 5.22  | 2.52        | 8.64         | 12.13  | 5.84        | 20.06          | 61.62          | 22.76          | 119.17   | 40.32  | 14.53       | 78.93          | 153.90   | 54.98          | 302.63           | 124.44   | 43.62          | 246.85   |
| 2029  | 0.12 | 0.06 | 0.20 | 0.98  | 0.47    | 1.60  | 1.23  | 0.60    | 2.02  | 5.36  | 2.60        | 8.81         | 12.46  | 6.04        | 20.46          | 63.08          | 23.62          | 121.20   | 41.23  | 15.06       | 80.19          | 157.29   | 56.97          | 307.24           | 127.16   | 45.21          | 250.56   |
| Total | 1.52 | 0.64 | 2.85 | 11.90 | 5.00    | 22.37 | 14.98 | 6.30    | 28.17 | 65.34 | 27.48       | 122.83       | 151.71 | 63.82       | 285.19         | 808.92         | 252.56         | 1,742.32 | 544.21 | 165.08      | 1,183.02       | 2,108.85 | 633.07         | 4,598.23         | 1,707.49 | 501.53         | 3,751.31 |
| Avg.  | 0.06 | 0.03 | 0.11 | 0.48  | 0.20    | 0.89  | 0.60  | 0.25    | 1.13  | 2.61  | 1.10        | 4.91         | 6.07   | 2.55        | 11.41          | 32.36          | 10.10          | 69.69    | 21.77  | 6.60        | 47.32          | 84.35    | 25.32          | 183.93           | 68.30    | 20.06          | 150.05   |

Avg. - All Size Categories 216.60 66.22 469.45

Exhibit E.39i Cases avoided by Age Group per year following rule promulgation

| Arsenic/Bladder Cancer model - HAA5 - Preferred Alternative) |
|--------------------------------------------------------------|
|                                                              |

| ı | Years     | Age G  | iroup  |                  |                  |                    |         |          |                      |          |                    |                      |            |
|---|-----------|--------|--------|------------------|------------------|--------------------|---------|----------|----------------------|----------|--------------------|----------------------|------------|
|   | After the | 1-10   | 11-20  | 21-30            | 31-40            | 41-50              | 51-60   | 61-70    | 71-80                | 81-90    | 91-100+            | Total                | %          |
|   | 1         | 0.0000 | 0.0000 | 0.0000           | 0.0000           | 0.0000             | 0.0000  | 0.0000   | 0.0000               | 0.0000   | 0.0000             | 0.0000               | 0%         |
|   | 2         | 0.0000 | 0.0000 | 0.0000           | 0.0000           | 0.0000             | 0.0000  | 0.0000   | 0.0000               | 0.0000   | 0.0000             | 0.0000               | 0%         |
|   | 3         | 0.0000 | 0.0000 | 0.0000           | 0.0000           | 0.0000             | 0.0000  | 0.0000   | 0.0000               | 0.0000   | 0.0000             | 0.0000               | 0%         |
|   | 4         | 0.0000 | 0.0000 | 0.0000           | 0.0000           | 0.0000             | 0.0000  | 0.0000   | 0.0000               | 0.0000   | 0.0000             | 0.0000               | 0%         |
|   | 5         | 0.0000 | 0.0000 | 0.0000           | 0.0000           | 0.0000             | 6.0619  | 0.0000   | 0.0000               | 0.0000   | 0.0000             | 0.0000<br>52.0953    | 0%<br>8%   |
|   | 7         | 0.0473 | 0.0501 | 0.3097           | 1.2542           | 54115              |         | 28.2738  |                      | 26.5185  |                    | 126.0202             | 19%        |
|   | 8         | 0.0811 | 0.0854 | 0.5287           | 2.1406           | 9.2361             | 25.0275 | 48.2566  | 76.3380              | 45.2608  |                    | 215.0867             | 32%        |
|   | 9         | 0.1191 | 0.1253 | 0.7753           | 3.1395           | 13.5460            | 36.7062 | 70.7747  | 111.9598             | 66.3809  | 11.9263            | 315.4533             | 47%        |
|   | 10        | 0.1447 | 0.1521 | 0.9413           | 3.8117           | 16.4460            |         | 85.9261  |                      | 80.5917  |                    | 382.9853             | 57%        |
|   | 11        | 0.1627 | 0.1726 | 1.0676           | 4.3231           |                    |         | 97.4555  |                      | 91.4053  | 16.4223            |                      | 66%        |
|   | 12        | 0.1747 | 0.1878 | 1.1622           |                  | 20.3052            |         |          | 167.8253<br>178.3893 | 99.5035  | 17.8772<br>19.0025 |                      | 71%        |
|   | 13<br>14  | 0.1826 | 0.1997 | 1.2354           |                  |                    |         |          | 178.3893             |          |                    | 526.2763             | 75%<br>79% |
|   | 15        | 0.1915 | 0.2167 | 1.3405           |                  | 23,4194            |         |          | 193.5647             |          | 20.6190            |                      | 82%        |
|   | 16        | 0.1940 | 0.2232 | 1.3788           | 5.5830           | 24.0886            | 65.2738 | 125.8571 | 199.0955             | 118.0436 | 21.2082            | 560.9457             | 84%        |
|   | 17        | 0.1954 | 0.2288 | 1.4104           |                  | 24.6403            | 66.7689 | 128.7398 | 203.6558             | 120.7474 | 21.6940            | 573.7917             | 86%        |
|   | 18        | 0.1962 | 0.2338 | 1.4366           |                  | 25.0995            |         |          | 207.4508             |          | 22.0982            |                      | 88%        |
|   | 19        | 0.1964 | 0.2383 | 1.4587           |                  | 25.4850<br>25.8113 |         |          | 210.6369             |          | 22.4376            | 593.4565<br>601.0539 | 89%<br>90% |
|   | 20<br>21  | 0.1964 | 0.2458 | 1.4774           |                  | 26.0898            |         |          |                      | 120.4857 |                    |                      | 91%        |
|   | 22        | 0.1964 | 0.2495 | 1,5070           |                  |                    |         |          | 217.6150             |          | 23.1809            |                      | 92%        |
|   | 23        | 0.1964 | 0.2532 | 1.5189           | 6.1504           | 26.5367            | 71.9075 | 138.6478 | 219.3294             | 130.0403 | 23.3636            | 617.9442             | 93%        |
|   | 24        | 0.1964 | 0.2569 | 1.5293           | 6.1923           | 26.7176            |         |          | 220.8249             |          |                    | 622.1582             | 93%        |
|   | 25        | 0.1964 | 0.2601 | 1.5384           | 6.2291           | 26.8765            |         |          | 222.1379             |          |                    | 625.8581             | 94%        |
|   | 26        | 0.1964 | 0.2625 | 1.5476           | 6.2617           | 27.0168            |         |          | 223.2979             |          |                    | 629.1275             | 94%        |
| ı | 27<br>28  | 0.1964 | 0.2640 | 1.5671           |                  | 27.1416<br>27.2530 |         |          | 224.3286<br>225.2493 |          | 23.8961<br>23.9942 |                      | 96%<br>96% |
|   | 28        | 0.1964 | 0.2648 | 1.5762           |                  | 27.3530            |         |          | 226.0758             |          | 24.0822            |                      | 96%        |
| ı | 30        | 0.1964 | 0.2650 | 1.5848           |                  | 27.4431            |         |          | 226.8212             |          | 24.1616            |                      | 96%        |
| ı | 31        | 0.1964 | 0.2650 | 1.5934           |                  | 27.5248            |         |          | 227.4962             |          |                    | 640.9666             | 98%        |
|   | 32        | 0.1964 | 0.2650 | 1.6019           |                  | 27.5990            |         |          | 228.1098             |          | 24.2989            |                      | 98%        |
|   | 33        | 0.1964 | 0.2650 | 1.6104           |                  | 27.6667            |         |          | 228.6694             |          | 24.3585            |                      | 97%        |
|   | 34<br>35  | 0.1964 | 0.2650 | 1.6190           |                  | 27.7287            |         |          | 229.1815<br>229.6515 |          | 24.4131            | 645.7254             | 97%<br>97% |
|   | 36        | 0.1964 | 0.2650 | 1.6270           |                  | 27.7856            |         |          | 230.0840             |          |                    | 648.2760             | 97%        |
| ı | 37        | 0.1964 | 0.2650 | 1.6369           |                  |                    |         |          | 230.4828             |          | 24.5517            |                      | 97%        |
|   | 38        | 0.1964 | 0.2650 | 1.6391           |                  | 27.9308            | 75.6850 | 145.9314 | 230.8515             | 136.8718 | 24.5909            | 650.4474             | 98%        |
|   | 39        | 0.1964 | 0.2650 | 1.6396           |                  | 27.9721            |         |          | 231.1929             |          | 24.6273            |                      | 98%        |
|   | 40        | 0.1964 | 0.2650 | 1.6398           |                  | 28.0104            |         |          | 231.5098             |          |                    | 652.3106<br>653.1463 | 98%        |
|   | 41<br>42  | 0.1964 | 0.2650 | 1.6398           |                  |                    |         |          | 231.8042             |          | 24.6924            |                      | 98%        |
|   | 43        | 0.1964 | 0.2650 | 1,6398           |                  | 28.1101            |         |          | 232.3339             |          |                    | 654.6563             | 98%        |
|   | 44        | 0.1964 | 0.2650 | 1.6398           | 6.5919           | 28.1390            | 76.2493 | 147.0193 | 232.5724             | 137.8922 | 24.7743            | 655.3396             | 98%        |
|   | 45        | 0.1964 | 0.2650 | 1.6398           | 6.6105           | 28.1660            | 76.3223 | 147.1603 | 232.7954             | 138.0244 | 24.7980            | 655.9782             | 98%        |
|   | 46        | 0.1964 | 0.2650 | 1.6398           |                  |                    |         |          | 233.0040             |          | 24.8202            |                      | 98%        |
|   | 47        | 0.1964 | 0.2650 | 1.6398           |                  |                    |         |          | 233.1994             |          |                    | 657.1451             | 99%        |
|   | 48<br>49  | 0.1964 | 0.2650 | 1.6398           |                  |                    |         |          | 233.3827             |          | 24.8606            | 657.6786<br>658.1818 | 99%        |
|   | 50        | 0.1964 | 0.2650 | 1,6398           |                  |                    |         |          | 233.7163             |          | 24.8961            |                      | 99%        |
|   | 51        | 0.1964 | 0.2650 | 1.6398           | 6.6400           | 28.4071            | 76.6741 | 147.8384 | 233.8682             | 138.6604 | 24.9123            | 659.1018             | 99%        |
|   | 52        | 0.1964 | 0.2650 | 1.6398           |                  | 28.4521            |         |          | 234.0112             |          | 24.9275            |                      | 99%        |
|   | 53        | 0.1964 | 0.2650 | 1.6398           |                  |                    |         |          | 234.1459             |          | 24.9419            |                      | 99%        |
|   | 54        | 0.1964 | 0.2650 | 1.6398           |                  | 28.5434<br>28.5850 |         |          | 234.2728             |          | 24.9554<br>24.9681 |                      | 99%        |
|   | 55<br>56  | 0.1964 | 0.2650 | 1.6398           |                  |                    |         |          | 234.3925             |          | 24.9681            |                      | 99%        |
|   | 57        | 0.1964 | 0.2650 | 1.6398           | 6.6400           |                    |         |          | 234.6121             |          | 24.9915            |                      | 99%        |
|   | 58        | 0.1964 | 0.2650 | 1.6398           | 6.6400           | 28.6460            | 77.0296 | 148.3725 | 234.7129             | 139.1612 | 25.0023            | 661.6658             | 99%        |
|   | 59        | 0.1964 | 0.2650 | 1.6398           | 6.6400           |                    |         |          | 234.8082             |          | 25.0124            |                      | 99%        |
|   | 60        | 0.1964 | 0.2650 | 1.6398           | 6.6400           |                    |         |          | 234.8985             |          |                    | 662.2536             | 99%        |
|   | 61        | 0.1964 | 0.2650 | 1.6398           | 6.6400<br>6.6400 |                    |         |          | 234.9839<br>235.0648 |          |                    | 662.5260<br>662.7869 | 99%        |
|   | 62<br>63  | 0.1964 | 0.2650 | 1.6398           | 6.6400           |                    |         |          | 235.0648             |          |                    | 662.7869<br>663.0372 | 99%        |
|   | 64        | 0.1964 | 0.2650 | 1,6398           | 6.6400           |                    |         |          | 235.2141             |          |                    | 663.2779             | 99%        |
| ı | 65        | 0.1964 | 0.2650 | 1.6398           | 6.6400           |                    |         |          | 235.2830             |          | 25.0630            | 663.5030             | 99%        |
|   | 66        | 0.1964 | 0.2650 | 1.6398           | 6.6400           |                    |         |          | 235.3485             |          | 25.0700            |                      | 99%        |
|   | 67        | 0.1964 | 0.2650 | 1.6398           | 6.6400           |                    |         |          | 235.4106             |          | 25.0766            |                      | 100%       |
|   | 68        | 0.1964 | 0.2650 | 1.6398           | 6.6400<br>6.6400 |                    |         |          | 235.4697<br>235.5258 |          | 25.0829            | 664.1292<br>664.3226 | 100%       |
|   | 69<br>70  | 0.1964 | 0.2650 | 1.6398           |                  |                    |         |          | 235.5258             |          | 25.0888            |                      | 100%       |
| ı | 71        | 0.1964 | 0.2650 | 1.6398           |                  |                    |         |          |                      | 139.7048 |                    |                      | 100%       |
|   | 72        | 0.1964 | 0.2650 | 1.6398           |                  |                    |         |          |                      | 139.7335 |                    |                      | 100%       |
| ı | 73        | 0.1964 | 0.2650 | 1.6398           |                  |                    |         |          |                      | 139.7608 |                    |                      | 100%       |
|   | 74        | 0.1964 |        | 1.6398           |                  |                    |         |          |                      |          |                    |                      |            |
|   | 75<br>76  |        |        | 1.6398<br>1.6398 |                  |                    |         |          |                      |          |                    |                      | 100%       |
| ı | 77        |        |        | 1.6398           |                  |                    |         |          |                      |          |                    |                      | 100%       |
|   | 78        |        |        | 1.6398           |                  |                    |         |          |                      |          |                    |                      |            |
|   | 79        |        |        | 1.6398           |                  |                    |         |          |                      |          |                    |                      | 100%       |
|   | 80        |        |        | 1.6398           |                  |                    |         |          |                      |          |                    |                      | 100%       |
|   | 81<br>82  |        |        | 1.6398           |                  |                    |         |          |                      |          |                    |                      |            |
|   | 82        |        |        | 1.6398           |                  |                    |         |          |                      |          |                    |                      | 100%       |
|   | 84        |        |        | 1.6398           |                  |                    |         |          |                      |          |                    |                      | 100%       |
| ı | 85        | 0.1964 | 0.2650 | 1.6398           | 6.6400           | 28.6494            | 77.6322 | 149.6861 | 236.6798             | 140.0041 | 25.1537            | 666.5467             | 100%       |
|   | 86        |        |        | 1.6398           |                  |                    |         |          |                      |          |                    |                      | 100%       |
|   | 87        |        |        | 1.6398           |                  |                    |         |          |                      |          |                    |                      | 100%       |
|   | 88        |        |        | 1.6398           |                  |                    |         |          |                      |          |                    |                      |            |
|   | 89<br>90  |        |        | 1.6398           |                  |                    |         |          |                      |          |                    |                      | 100%       |
| ı | 91        |        |        | 1.6398           |                  |                    |         |          |                      |          |                    |                      | 100%       |
|   | 92        |        |        | 1.6398           |                  |                    |         |          |                      |          |                    |                      |            |
| ı | 93        |        | 0.2650 | 1.6398           | 6.6400           | 28.6494            | 77.6322 | 149.6861 | 236.7910             | 140.3227 | 25.1721            | 666.9949             | 100%       |
|   | 94        |        |        | 1.6398           |                  |                    |         |          |                      |          |                    |                      | 100%       |
|   | 96        |        |        | 1.6398           |                  |                    |         |          |                      |          |                    |                      |            |
|   | 96<br>97  |        |        | 1.6398<br>1.6398 |                  |                    |         |          |                      |          |                    |                      |            |
|   | 98        |        |        | 1.6398           |                  |                    |         |          |                      |          |                    |                      |            |
|   | 99        | 0.1964 |        | 1.6398           |                  |                    |         |          |                      |          |                    |                      | 100%       |
|   | 100       | 0.1964 | 0.2650 | 1.6398           | 6.6400           | 28.6494            | 77.6322 | 149.6861 | 236.7910             | 140.3932 | 25.2062            | 667.0995             | 100%       |

### Exhibit E.39j Yearly Cancer Cases Avoided by System Size

Arsenic/Bladder Cancer Model - Surface Water Systems

### HAA5 - Preferred Alternative

|       |      | <100 |      |      | 100-499 |      |       | 500-999 |       |       | 1,000-3,299 | ı      |        | 3,300-9,999 |        |                | 10,000-49,999 | )                |                | 50,000-99,999 |          | 1                | 00,000-999,99  | 9                |                  | ≥1,000,000     |                  |
|-------|------|------|------|------|---------|------|-------|---------|-------|-------|-------------|--------|--------|-------------|--------|----------------|---------------|------------------|----------------|---------------|----------|------------------|----------------|------------------|------------------|----------------|------------------|
| Year  | mean | 5th  | 95th | mean | 5th     | 95th | mean  | 5th     | 95th  | mean  | 5th         | 95th   | mean   | 5th         | 95th   | mean           | 5th           | 95th             | mean           | 5th           | 95th     | mean             | 5th            | 95th             | mean             | 5th            | 95th             |
| 2005  | -    | -    | -    | -    | -       | -    |       | -       |       |       |             | -      | -      | -           | -      |                | -             |                  | -              | -             | -        | -                |                | -                | -                | -              | -                |
| 2006  | -    | -    | -    | -    | -       | -    |       | -       |       |       |             | -      | -      | -           | -      | -              | -             | -                | -              | -             | -        | -                | -              | -                | -                | -              | - '              |
| 2007  | -    | -    | -    | -    | -       | -    |       |         |       |       | -           | -      | -      | -           | -      | -              | -             | -                | -              |               | -        | -                | -              | -                | -                | -              | - '              |
| 2008  | -    | -    | -    | -    | -       | -    | -     | -       | -     |       | -           | -      | -      | -           | -      | -              | -             |                  | -              | -             | -        | -                | -              | -                | -                | -              | - '              |
| 2009  | -    | -    | -    | -    | -       | -    | -     | -       | -     | -     | -           | -      | -      | -           | -      | -              | -             |                  | -              | -             | -        | -                | -              | -                | -                | -              | -                |
| 2010  | 0.00 | 0.00 | 0.00 | 0.02 | 0.01    | 0.04 | 0.04  | 0.01    | 0.08  | 0.26  | 0.09        | 0.49   | 0.73   | 0.27        | 1.41   | 5.26           | 1.26          | 11.72            | 4.59           | 1.10          | 10.21    | 20.29            | 4.87           | 45.18            | 17.27            | 4.15           | 38.45            |
| 2011  | 0.01 | 0.00 | 0.01 | 0.06 | 0.02    | 0.10 | 0.10  | 0.04    | 0.18  | 0.63  | 0.26        | 1.15   | 1.80   | 0.74        | 3.28   | 12.71          | 3.51          | 27.24            | 11.08          | 3.06          | 23.74    | 48.99            | 13.52          | 105.02           | 41.70            | 11.51          | 89.37            |
| 2012  | 0.01 | 0.00 | 0.02 | 0.10 | 0.04    | 0.17 | 0.17  | 0.07    | 0.30  | 1.09  | 0.48        | 1.90   | 3.11   | 1.38        | 5.45   | 21.67          | 6.51          | 45.21            | 18.88          | 5.67          | 39.39    | 83.52            | 25.08          | 174.27           | 71.08            | 21.35          | 148.31           |
| 2013  | 0.02 | 0.01 | 0.03 | 0.14 | 0.07    | 0.24 | 0.25  | 0.11    | 0.42  | 1.61  | 0.74        | 2.74   | 4.60   | 2.12        | 7.83   | 31.75          | 10.09         | 64.94            | 27.67          | 8.79          | 56.59    | 122.39           | 38.90          | 250.35           | 104.16           | 33.11          | 213.06           |
| 2014  | 0.02 | 0.01 | 0.03 | 0.19 | 0.09    | 0.32 | 0.34  | 0.16    | 0.56  | 2.18  | 1.03        | 3.63   | 6.23   | 2.93        | 10.38  | 42.70          | 14.13         | 86.05            | 34.92          | 11.76         | 69.87    | 144.32           | 49.60          | 286.52           | 122.82           | 42.21          | 243.84           |
| 2015  | 0.03 | 0.01 | 0.04 | 0.25 | 0.12    | 0.40 | 0.43  | 0.21    | 0.71  | 2.79  | 1.33        | 4.57   | 7.97   | 3.81        | 13.07  | 51.71          | 17.89         | 102.38           | 39.52          | 14.06         | 77.34    | 160.47           | 57.87          | 312.24           | 136.57           | 49.25          | 265.73           |
| 2016  | 0.03 | 0.02 | 0.05 | 0.29 | 0.14    | 0.47 | 0.51  | 0.25    | 0.82  | 3.30  | 1.61        | 5.30   | 9.44   | 4.60        | 15.16  | 57.54          | 20.79         | 111.85           | 42.99          | 15.84         | 82.87    | 172.92           | 64.27          | 331.99           | 147.16           | 54.70          | 282.54           |
| 2017  | 0.03 | 0.02 | 0.05 | 0.32 | 0.16    | 0.51 | 0.57  | 0.28    | 0.89  | 3.65  | 1.81        | 5.74   | 10.43  | 5.19        | 16.42  | 61.96          | 23.04         | 118.94           | 45.70          | 17.21         | 87.22    | 182.74           | 69.23          | 347.80           | 155.52           | 58.92          | 296.00           |
| 2018  | 0.04 | 0.02 | 0.06 | 0.34 | 0.17    | 0.53 | 0.61  | 0.30    | 0.94  | 3.91  | 1.97        | 6.07   | 11.20  | 5.62        | 17.37  | 65.44          | 24.78         | 124.56           | 47.86          | 18.28         | 90.75    | 190.61           | 73.06          | 360.80           | 162.22           | 62.18          | 307.06           |
| 2019  | 0.04 | 0.02 | 0.06 | 0.36 | 0.18    | 0.56 | 0.64  | 0.32    | 0.98  | 4.12  | 2.08        | 6.34   | 11.79  | 5.95        | 18.14  | 68.22          | 26.13         | 129.17           | 49.60          | 19.10         | 93.69    | 197.01           | 76.03          | 371.70           | 167.67           | 64.70          | 316.34           |
| 2020  | 0.04 | 0.02 | 0.06 | 0.38 | 0.19    | 0.58 | 0.67  | 0.34    | 1.02  | 4.29  | 2.17        | 6.56   | 12.27  | 6.21        | 18.77  | 70.47          | 27.17         | 133.01           | 51.03          | 19.74         | 96.18    | 202.26           | 78.32          | 380.97           | 172.13           | 66.66          | 324.23           |
| 2021  | 0.04 | 0.02 | 0.06 | 0.39 | 0.20    | 0.59 | 0.69  | 0.35    | 1.05  | 4.42  | 2.24        | 6.75   | 12.65  | 6.41        | 19.30  | 72.32          | 27.98         | 136.28           | 52.21          | 20.23         | 98.31    | 206.61           | 80.10          | 388.95           | 175.83           | 68.17          | 331.02           |
| 2022  | 0.04 | 0.02 | 0.07 | 0.40 | 0.20    | 0.61 | 0.70  | 0.36    | 1.07  | 4.53  | 2.30        | 6.90   | 12.96  | 6.57        | 19.74  | 73.85          | 28.60         | 139.09           | 53.19          | 20.61         | 100.15   | 210.25           | 81.47          | 395.89           | 178.93           | 69.34          | 336.92           |
| 2023  | 0.04 | 0.02 | 0.07 | 0.41 | 0.21    | 0.62 | 0.72  | 0.36    | 1.09  | 4.62  | 2.34        | 7.03   | 13.22  | 6.71        | 20.12  | 75.13          | 29.09         | 141.53           | 54.01          | 20.91         | 101.77   | 213.32           | 82.54          | 401.96           | 181.54           | 70.24          | 342.09           |
| 2024  | 0.04 | 0.02 | 0.07 | 0.41 | 0.21    | 0.63 | 0.73  | 0.37    | 1.11  | 4.69  | 2.38        | 7.15   | 13.43  | 6.81        | 20.45  | 76.21          | 29.46         | 143.67           | 54.71          | 21.13         | 103.18   | 215.93           | 83.36          | 407.32           | 183.77           | 70.95          | 346.65           |
| 2025  | 0.04 | 0.02 | 0.07 | 0.42 | 0.21    | 0.64 | 0.74  | 0.37    | 1.12  | 4.76  | 2.41        | 7.25   | 13.60  | 6.89        | 20.74  | 77.13          | 29.75         | 145.55           | 55.31          | 21.31         | 104.44   | 218.17           | 84.00          | 412.08           | 185.67           | 71.49          | 350.70           |
| 2026  | 0.05 | 0.02 | 0.07 | 0.42 | 0.21    | 0.65 | 0.75  | 0.38    | 1.14  | 4.81  | 2.43        | 7.34   | 13.75  | 6.96        | 21.00  | 77.91          | 29.97         | 147.22           | 55.83          | 21.45         | 105.56   | 220.10           | 84.49          | 416.32           | 187.32           | 71.91          | 354.31           |
| 2027  | 0.05 | 0.02 | 0.07 | 0.43 | 0.22    | 0.65 | 0.75  | 0.38    | 1.15  | 4.85  | 2.45        | 7.42   | 13.87  | 7.02        | 21.22  | 78.59<br>79.18 | 30.15         | 148.71<br>150.05 | 56.27          | 21.55         | 106.56   | 221.78           | 84.87<br>85.17 | 420.12           | 188.75<br>190.00 | 72.23<br>72.48 | 357.54           |
| 2028  | 0.05 | 0.02 | 0.07 | 0.43 | 0.22    | 0.66 | 0.76  | 0.38    | 1.16  | 4.89  | 2.47        | 7.49   | 13.98  | 7.07        | 21.41  | 79.18          | 30.28         | 150.05           | 56.66<br>57.01 | 21.63         | 107.45   | 223.26<br>224.55 | 85.17<br>85.40 | 423.53<br>426.62 | 190.00           | 72.48          | 360.45<br>363.08 |
| Total | 0.67 | 0.33 | 1.03 | 6.19 | 3.09    | 9.63 | 10.90 | 5.44    | 16.96 | 70.31 | 35.09       | 109.37 | 201.13 | 100.37      | 312.85 | 1,179.45       | 440.97        | 2,258.42         | 869.03         | 325.12        | 1,663.55 | 3,479,48         | 1,302.16       | 6,659.62         | 2,961.24         | 1,108.21       | 5,667.73         |
| Avg.  | 0.03 | 0.01 | 0.04 | 0.25 | 0.12    | 0.39 | 0.44  | 0.22    | 0.68  | 2.81  | 1.40        | 4.37   | 8.05   | 4.01        | 12.51  | 47.18          | 17.64         | 90.34            | 34.76          | 13.00         | 66.54    | 139.18           | 52.09          | 266.38           | 118.45           | 44.33          | 226.71           |

Avg. - All Size Categories 351.14 132.83 667.97

### Exhibit E.39k Yearly Cancer Cases Avoided by System Size

Arsenic/Bladder Cancer Model - Ground Water Systems

HAA5 - Preferred Alternative

|       |      | <100 |      |       | 100-499 |       |       | 500-999 |       |       | 1,000-3,299 |       |       | 3,300-9,999 | 9      | 1      | 0,000-49,99 | 19     | 50    | ,000-99,9 | 199    | 100    | 0,000-999, | 999    | 2     | 1,000,00 | 0     |
|-------|------|------|------|-------|---------|-------|-------|---------|-------|-------|-------------|-------|-------|-------------|--------|--------|-------------|--------|-------|-----------|--------|--------|------------|--------|-------|----------|-------|
| Year  | mean | 5th  | 95th | mean  | 5th     | 95th  | mean  | 5th     | 95th  | mean  | 5th         | 95th  | mean  | 5th         | 95th   | mean   | 5th         | 95th   | mean  | 5th       | 95th   | mean   | 5th        | 95th   | mean  | 5th      | 95th  |
| 2005  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -     | -           | -     |       | -           | -      | -      | -           | -      | -     | -         | -      | -      | -          | -      | -     | -        | -     |
| 2006  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -     | -           | -     | -     | -           | -      | -      | -           | -      | -     | -         | -      | -      | -          | -      | -     | -        | -     |
| 2007  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -     | -           | -     | -     | -           | -      | -      | -           | -      | -     | -         | -      | -      | -          | -      | -     | -        | -     |
| 2008  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -     | -           | -     | -     | -           | -      | -      | -           | -      | -     | -         | -      | -      | -          | -      | -     | -        | -     |
| 2009  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -     | -           | -     | -     | -           | -      | -      | -           | -      | -     | -         | -      | -      | -          | -      | -     | -        | -     |
| 2010  | 0.01 | 0.00 | 0.02 | 0.06  | 0.02    | 0.11  | 0.06  | 0.02    | 0.12  | 0.19  | 0.07        | 0.36  | 0.29  | 0.11        | 0.57   | 1.09   | 0.40        | 2.11   | 0.46  | 0.17      | 0.88   | 1.27   | 0.47       | 2.45   | 0.21  | 0.08     | 0.41  |
| 2011  | 0.02 | 0.01 | 0.04 | 0.14  | 0.06    | 0.26  | 0.15  | 0.06    | 0.28  | 0.46  | 0.19        | 0.84  | 0.73  | 0.30        | 1.32   | 2.69   | 1.11        | 4.90   | 1.13  | 0.46      | 2.05   | 3.12   | 1.29       | 5.69   | 0.52  | 0.21     | 0.95  |
| 2012  | 0.03 | 0.01 | 0.06 | 0.25  | 0.11    | 0.43  | 0.26  | 0.12    | 0.46  | 0.79  | 0.35        | 1.39  | 1.25  | 0.55        | 2.19   | 4.65   | 2.05        | 8.14   | 1.95  | 0.86      | 3.41   | 5.39   | 2.38       | 9.44   | 0.90  | 0.40     | 1.57  |
| 2013  | 0.05 | 0.02 | 0.08 | 0.36  | 0.17    | 0.62  | 0.39  | 0.18    | 0.66  | 1.17  | 0.54        | 1.99  | 1.85  | 0.85        | 3.15   | 6.87   | 3.16        | 11.69  | 2.88  | 1.32      | 4.90   | 7.98   | 3.67       | 13.57  | 1.33  | 0.61     | 2.26  |
| 2014  | 0.07 | 0.03 | 0.11 | 0.49  | 0.23    | 0.82  | 0.53  | 0.25    | 0.88  | 1.59  | 0.75        | 2.64  | 2.51  | 1.18        | 4.18   | 9.31   | 4.38        | 15.50  | 3.67  | 1.75      | 6.05   | 9.54   | 4.62       | 15.54  | 1.59  | 0.77     | 2.59  |
| 2015  | 0.09 | 0.04 | 0.14 | 0.63  | 0.30    | 1.04  | 0.67  | 0.32    | 1.10  | 2.03  | 0.97        | 3.33  | 3.21  | 1.53        | 5.26   | 11.36  | 5.49        | 18.46  | 4.19  | 2.06      | 6.70   | 10.70  | 5.31       | 16.96  | 1.78  | 0.88     | 2.82  |
| 2016  | 0.10 | 0.05 | 0.16 | 0.75  | 0.36    | 1.20  | 0.80  | 0.39    | 1.28  | 2.40  | 1.17        | 3.86  | 3.80  | 1.85        | 6.11   | 12.74  | 6.31        | 20.20  | 4.59  | 2.29      | 7.19   | 11.59  | 5.81       | 18.07  | 1.93  | 0.97     | 3.01  |
| 2017  | 0.11 | 0.06 | 0.18 | 0.83  | 0.41    | 1.30  | 0.88  | 0.44    | 1.38  | 2.65  | 1.32        | 4.18  | 4.20  | 2.09        | 6.61   | 13.80  | 6.92        | 21.51  | 4.90  | 2.47      | 7.58   | 12.30  | 6.19       | 18.96  | 2.05  | 1.03     | 3.16  |
| 2018  | 0.12 | 0.06 | 0.19 | 0.89  | 0.45    | 1.38  | 0.94  | 0.47    | 1.46  | 2.85  | 1.43        | 4.42  | 4.50  | 2.26        | 6.99   | 14.62  | 7.37        | 22.55  | 5.15  | 2.60      | 7.90   | 12.86  | 6.50       | 19.69  | 2.14  | 1.08     | 3.28  |
| 2019  | 0.13 | 0.06 | 0.19 | 0.93  | 0.47    | 1.44  | 0.99  | 0.50    | 1.53  | 3.00  | 1.51        | 4.62  | 4.75  | 2.39        | 7.30   | 15.28  | 7.72        | 23.41  | 5.34  | 2.70      | 8.16   | 13.30  | 6.74       | 20.30  | 2.22  | 1.12     | 3.38  |
| 2020  | 0.13 | 0.07 | 0.20 | 0.97  | 0.49    | 1.49  | 1.03  | 0.52    | 1.58  | 3.12  | 1.58        | 4.78  | 4.94  | 2.50        | 7.56   | 15.80  | 8.00        | 24.12  | 5.50  | 2.79      | 8.38   | 13.67  | 6.93       | 20.81  | 2.28  | 1.15     | 3.46  |
| 2021  | 0.14 | 0.07 | 0.21 | 1.00  | 0.51    | 1.53  | 1.07  | 0.54    | 1.63  | 3.22  | 1.63        | 4.91  | 5.09  | 2.58        | 7.77   | 16.23  | 8.23        | 24.72  | 5.63  | 2.86      | 8.57   | 13.97  | 7.09       | 21.24  | 2.33  | 1.18     | 3.54  |
| 2022  | 0.14 | 0.07 | 0.21 | 1.03  | 0.52    | 1.56  | 1.09  | 0.55    | 1.66  | 3.30  | 1.67        | 5.03  | 5.22  | 2.65        | 7.95   | 16.58  | 8.41        | 25.23  | 5.74  | 2.91      | 8.73   | 14.21  | 7.21       | 21.62  | 2.37  | 1.20     | 3.60  |
| 2023  | 0.14 | 0.07 | 0.22 | 1.05  | 0.53    | 1.59  | 1.11  | 0.57    | 1.70  | 3.36  | 1.71        | 5.12  | 5.32  | 2.70        | 8.10   | 16.86  | 8.56        | 25.67  | 5.82  | 2.96      | 8.87   | 14.41  | 7.32       | 21.95  | 2.40  | 1.22     | 3.66  |
| 2024  | 0.14 | 0.07 | 0.22 | 1.06  | 0.54    | 1.62  | 1.13  | 0.57    | 1.72  | 3.42  | 1.73        | 5.21  | 5.40  | 2.74        | 8.24   | 17.10  | 8.67        | 26.06  | 5.90  | 2.99      | 8.99   | 14.58  | 7.40       | 22.25  | 2.43  | 1.23     | 3.70  |
| 2025  | 0.15 | 0.07 | 0.22 | 1.08  | 0.55    | 1.64  | 1.15  | 0.58    | 1.75  | 3.46  | 1.75        | 5.28  | 5.47  | 2.77        | 8.35   | 17.30  | 8.77        | 26.40  | 5.96  | 3.02      | 9.10   | 14.73  | 7.46       | 22.51  | 2.45  | 1.24     | 3.75  |
| 2026  | 0.15 | 0.07 | 0.23 | 1.09  | 0.55    | 1.66  | 1.16  | 0.59    | 1.77  | 3.50  | 1.77        | 5.34  | 5.53  | 2.80        | 8.45   | 17.46  | 8.84        | 26.69  | 6.01  | 3.04      | 9.20   | 14.85  | 7.51       | 22.73  | 2.47  | 1.25     | 3.78  |
| 2027  | 0.15 | 0.08 | 0.23 | 1.10  | 0.56    | 1.68  | 1.17  | 0.59    | 1.79  | 3.53  | 1.79        | 5.40  | 5.58  | 2.82        | 8.54   | 17.61  | 8.90        | 26.95  | 6.06  | 3.06      | 9.28   | 14.95  | 7.55       | 22.92  | 2.49  | 1.26     | 3.82  |
| 2028  | 0.15 | 0.08 | 0.23 | 1.11  | 0.56    | 1.70  | 1.18  | 0.60    | 1.81  | 3.56  | 1.80        | 5.45  | 5.63  | 2.84        | 8.62   | 17.73  | 8.96        | 27.18  | 6.09  | 3.08      | 9.35   | 15.04  | 7.60       | 23.09  | 2.51  | 1.26     | 3.85  |
| 2029  | 0.15 | 0.08 | 0.23 | 1.11  | 0.56    | 1.71  | 1.19  | 0.60    | 1.82  | 3.58  | 1.81        | 5.49  | 5.66  | 2.86        | 8.69   | 17.83  | 9.01        | 27.39  | 6.13  | 3.09      | 9.42   | 15.12  | 7.63       | 23.25  | 2.52  | 1.27     | 3.87  |
| Total | 2.16 | 1.08 | 3.36 | 15.93 | 7.95    | 24.79 | 16.95 | 8.46    | 26.38 | 51.16 | 25.53       | 79.63 | 80.93 | 40.38       | 125.97 | 262.91 | 131.25      | 408.88 | 93.10 | 46.49     | 144.72 | 233.58 | 116.67     | 363.03 | 38.90 | 19.43    | 60.46 |
| Avg.  | 0.09 | 0.04 | 0.13 | 0.64  | 0.32    | 0.99  | 0.68  | 0.34    | 1.06  | 2.05  | 1.02        | 3.19  | 3.24  | 1.62        | 5.04   | 10.52  | 5.25        | 16.36  | 3.72  | 1.86      | 5.79   | 9.34   | 4.67       | 14.52  | 1.56  | 0.78     | 2.42  |

Avg. - All Size Categories 31.82 15.89 49.49

### Exhibit E.39I Yearly Cancer Cases Avoided by System Size

Arsenic/Bladder Cancer Model - All Water Systems

### HAA5 - Preferred Alternative

|       |      | <100 |      |       | 100-499 |       |       | 500-999 |       |        | 1,000-3,299 | r .    |        | 3,300-9,999 | )      | 10             | 0,000-49,99 | 99               | 50     | 0,000-99,99 | 9        | 10       | 0,000-999,9    | 99               |                  | ≥1,000,000     |                  |
|-------|------|------|------|-------|---------|-------|-------|---------|-------|--------|-------------|--------|--------|-------------|--------|----------------|-------------|------------------|--------|-------------|----------|----------|----------------|------------------|------------------|----------------|------------------|
| Year  | mean | 5th  | 95th | mean  | 5th     | 95th  | mean  | 5th     | 95th  | mean   | 5th         | 95th   | mean   | 5th         | 95th   | mean           | 5th         | 95th             | mean   | 5th         | 95th     | mean     | 5th            | 95th             | mean             | 5th            | 95th             |
| 2005  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -      |             | -      | -      |             |        | -              | -           | -                | -      |             | -        |          | -              | -                | -                | -              | -                |
| 2006  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -      | -           | -      | -      | -           |        | -              | -           | -                | -      | -           | -        | -        | -              | -                | -                | -              | -                |
| 2007  |      | -    | -    | -     | -       | -     | -     | -       | -     |        |             | -      |        | -           |        | -              |             | -                |        |             | -        | -        | -              | -                | -                | -              | -                |
| 2008  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -      | -           | -      | -      | -           | -      | -              | -           | -                | -      | -           | -        | -        | -              | -                | -                | -              | -                |
| 2009  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -      | -           | -      | -      | -           |        | -              | -           | -                | -      | -           | -        | -        | -              | -                | -                | -              | -                |
| 2010  | 0.01 | 0.00 | 0.02 | 0.08  | 0.03    | 0.16  | 0.10  | 0.04    | 0.20  | 0.44   | 0.16        | 0.85   | 1.03   | 0.38        | 1.98   | 6.36           | 1.67        | 13.83            | 5.04   | 1.27        | 11.10    | 21.56    | 5.34           | 47.63            | 17.48            | 4.23           | 38.86            |
| 2011  | 0.03 | 0.01 | 0.05 | 0.20  | 0.08    | 0.36  | 0.25  | 0.10    | 0.45  | 1.09   | 0.45        | 1.98   | 2.53   | 1.04        | 4.60   | 15.40          | 4.62        | 32.14            | 12.20  | 3.52        | 25.79    | 52.12    | 14.81          | 110.71           | 42.22            | 11.72          | 90.32            |
| 2012  | 0.04 | 0.02 | 0.08 | 0.34  | 0.15    | 0.60  | 0.43  | 0.19    | 0.75  | 1.88   | 0.83        | 3.29   | 4.36   | 1.93        | 7.64   | 26.31          | 8.56        | 53.34            | 20.83  | 6.53        | 42.80    | 88.91    | 27.47          | 183.71           | 71.98            | 21.74          | 149.89           |
| 2013  | 0.06 | 0.03 | 0.11 | 0.51  | 0.23    | 0.86  | 0.64  | 0.29    | 1.08  | 2.78   | 1.28        | 4.73   | 6.46   | 2.97        | 10.98  | 38.62          | 13.25       | 76.63            | 30.54  | 10.12       | 61.49    | 130.37   | 42.57          | 263.92           | 105.49           | 33.72          | 215.32           |
| 2014  | 0.09 | 0.04 | 0.15 | 0.69  | 0.32    | 1.14  | 0.86  | 0.41    | 1.44  | 3.77   | 1.77        | 6.27   | 8.74   | 4.11        | 14.56  | 52.01          | 18.51       | 101.55           | 38.58  | 13.51       | 75.92    | 153.85   | 54.21          | 302.06           | 124.41           | 42.98          | 246.43           |
| 2015  | 0.11 | 0.05 | 0.18 | 0.88  | 0.42    | 1.44  | 1.10  | 0.53    | 1.81  | 4.82   | 2.30        | 7.89   | 11.18  | 5.34        | 18.33  | 63.07          | 23.37       | 120.84           | 43.71  | 16.12       | 84.05    | 171.17   | 63.18          | 329.20           | 138.35           | 50.14          | 268.56           |
| 2016  | 0.13 | 0.06 | 0.21 | 1.04  | 0.51    | 1.67  | 1.31  | 0.64    | 2.10  | 5.70   | 2.78        | 9.16   | 13.23  | 6.44        | 21.27  | 70.28          | 27.10       | 132.04           | 47.58  | 18.13       | 90.07    | 184.51   | 70.09          | 350.06           | 149.10           | 55.67          | 285.55           |
| 2017  | 0.15 | 0.07 | 0.23 | 1.15  | 0.57    | 1.81  | 1.44  | 0.72    | 2.27  | 6.30   | 3.13        | 9.92   | 14.63  | 7.27        | 23.03  | 75.76          | 29.96       | 140.45           | 50.60  | 19.68       | 94.80    | 195.04   | 75.42          | 366.76           | 157.57           | 59.95          | 299.16           |
| 2018  | 0.16 | 0.08 | 0.24 | 1.23  | 0.62    | 1.91  | 1.55  | 0.78    | 2.41  | 6.76   | 3.40        | 10.50  | 15.70  | 7.89        | 24.37  | 80.06          | 32.15       | 147.12           | 53.01  | 20.87       | 98.65    | 203.47   | 79.56          | 380.49           | 164.36           | 63.26          | 310.34           |
| 2019  | 0.17 | 0.08 | 0.25 | 1.30  | 0.65    | 2.00  | 1.63  | 0.82    | 2.51  | 7.12   | 3.59        | 10.96  | 16.54  | 8.35        | 25.44  | 83.50          | 33.85       | 152.57           | 54.95  | 21.80       | 101.86   | 210.31   | 82.77          | 392.00           | 169.88           | 65.83          | 319.72           |
| 2020  | 0.17 | 0.09 | 0.26 | 1.35  | 0.68    | 2.06  | 1.70  | 0.86    | 2.60  | 7.41   | 3.75        | 11.34  | 17.21  | 8.70        | 26.33  | 86.27          | 35.17       | 157.13           | 56.53  | 22.52       | 104.56   | 215.93   | 85.26          | 401.78           | 174.41           | 67.81          | 327.69           |
| 2021  | 0.18 | 0.09 | 0.27 | 1.39  | 0.70    | 2.12  | 1.75  | 0.89    | 2.67  | 7.64   | 3.87        | 11.66  | 17.75  | 8.99        | 27.07  | 88.55          | 36.21       | 161.00           | 57.84  | 23.09       | 106.88   | 220.57   | 87.19          | 410.20           | 178.16           | 69.35          | 334.56           |
| 2022  | 0.18 | 0.09 | 0.28 | 1.43  | 0.72    | 2.17  | 1.80  | 0.91    | 2.73  | 7.83   | 3.97        | 11.93  | 18.18  | 9.22        | 27.69  | 90.42          | 37.02       | 164.32           | 58.92  | 23.52       | 108.88   | 224.46   | 88.69          | 417.51           | 181.30           | 70.54          | 340.52           |
| 2023  | 0.19 | 0.09 | 0.28 | 1.45  | 0.74    | 2.21  | 1.83  | 0.93    | 2.79  | 7.98   | 4.05        | 12.16  | 18.54  | 9.41        | 28.22  | 91.99          | 37.64       | 167.20           | 59.84  | 23.86       | 110.63   | 227.73   | 89.85          | 423.92           | 183.94           | 71.46          | 345.75           |
| 2024  | 0.19 | 0.10 | 0.29 | 1.48  | 0.75    | 2.25  | 1.86  | 0.94    | 2.83  | 8.11   | 4.11        | 12.36  | 18.83  | 9.55        | 28.69  | 93.31<br>94.42 | 38.13       | 169.73<br>171.95 | 60.61  | 24.13       | 112.18   | 230.51   | 90.76<br>91.46 | 429.57<br>434.58 | 186.20<br>188.12 | 72.18<br>72.73 | 350.36<br>354.45 |
| 2025  | 0.19 | 0.10 | 0.29 | 1.51  | 0.76    | 2.20  | 1.90  | 0.95    | 2.91  | 8.30   | 4.20        | 12.53  | 19.08  | 9.76        | 29.10  | 95.38          | 38.81       | 173.92           | 61.84  | 24.49       | 114.75   | 234.95   | 92.00          | 439.04           | 189.79           | 73.16          | 358.09           |
| 2027  | 0.19 | 0.10 | 0.30 | 1.53  | 0.77    | 2.33  | 1.92  | 0.97    | 2.94  | 8.38   | 4.24        | 12.82  | 19.46  | 9.84        | 29.76  | 96.20          | 39.05       | 175.67           | 62.33  | 24.61       | 115.83   | 236.74   | 92.42          | 443.04           | 191.24           | 73.49          | 361.36           |
| 2028  | 0.20 | 0.10 | 0.30 | 1.54  | 0.78    | 2.36  | 1.94  | 0.98    | 2.97  | 8.44   | 4.27        | 12.94  | 19.61  | 9.91        | 30.03  | 96.91          | 39.24       | 177.23           | 62.76  | 24.71       | 116.80   | 238.30   | 92.76          | 446.63           | 192.51           | 73.75          | 364.30           |
| 2029  | 0.20 | 0.10 | 0.30 | 1.55  | 0.78    | 2.37  | 1.95  | 0.98    | 2.99  | 8.50   | 4.29        | 13.04  | 19.73  | 9.97        | 30.28  | 97.54          | 39.39       | 178.64           | 63.14  | 24.79       | 117.68   | 239.68   | 93.03          | 449.86           | 193.63           | 73.95          | 366.95           |
| Total | 2.82 | 1.41 | 4.39 | 22.12 | 11.04   | 34.42 | 27.85 | 13.90   | 43.34 | 121.47 | 60.62       | 189.00 | 282.06 | 140.75      | 438.82 | 1,442.36       | 572.22      | 2,667.30         | 962.13 | 371.61      | 1,808.27 | 3,713.06 | 1,418.83       | 7,022.66         | 3,000.14         | 1,127.64       | 5,728.18         |
| Avg.  | 0.11 | 0.06 | 0.18 | 0.88  | 0.44    | 1.38  | 1.11  | 0.56    | 1.73  | 4.86   | 2.42        | 7.56   | 11.28  | 5.63        | 17.55  | 57.69          | 22.89       | 106.69           | 38.49  | 14.86       | 72.33    | 148.52   | 56.75          | 280.91           | 120.01           | 45.11          | 229.13           |

Avg. - All Size Categories 382.96 148.72 717.46

## Section E.7.3 Projection of Cases - Stage 2 Alternative 1 TTHM as Indicator Smoking/Lung Cancer Model

## Exhibit E.40a Cases avoided by Age Group per year following rule promulgation (Smoking/Lung Cancer model - TTHM - Alternative 1)

| ears After | Age G  |                  |                  |                  |                    |                    |                      |                      |                    |                    |                      |          |
|------------|--------|------------------|------------------|------------------|--------------------|--------------------|----------------------|----------------------|--------------------|--------------------|----------------------|----------|
| the Rule   | 1-10   | 11-20            | 21-30            | 31-40            | 41-50              | 51-60              | 61-70                | 71-80                | 81-90              | 91-100+            | Total                | %        |
| 1          | 0.0000 | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000             | 0.0000             | 0.0000               | 0%       |
| 2          | 0.0000 | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000             | 0.0000             | 0.0000               | 0%       |
| 3          | 0.0000 | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000             | 0.0000             | 0.0000               | 0%       |
| 4          | 0.0000 | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000             | 0.0000             | 0.0000               | 0%       |
| 5          | 0.0000 | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000             | 0.0000             | 0.0000               | 09       |
| 6          | 0.0104 | 0.0089           | 0.0550           | 0.2229           | 0.9617             | 2.6060             | 5.0247               | 7.9487               | 4.7128             | 0.8467             | 22.3978              | 49       |
| 7          | 0.0277 | 0.0235           | 0.1452           | 0.5880           | 2.5371             | 6.8749             | 13.2559              | 20.9697              | 12.4329            | 2.2337             | 59.0886              | 119      |
| 8          | 0.0502 | 0.0424           | 0.2624           | 1.0624           | 4.5838             | 12.4209            | 23.9492              | 37.8857              | 22.4624            | 4.0357             | 106.7550             | 201      |
| 9          | 0.0768 | 0.0649           | 0.4013           | 1.6248           | 7.0102             | 18.9959            | 36.6268              | 57.9405              | 34.3529            | 6.1720             | 163.2659             | 31       |
| 10         | 0.0985 | 0.0832           | 0.5147           | 2.0842           | 8.9925             | 24.3672            | 46.9835              | 74.3240              | 44.0667            | 7.9172             | 209.4316             | 40       |
| 11         | 0.1152 | 0.0986           | 0.6100           | 2.4698<br>2.7886 | 10.6565            | 28.8764            | 55.6777              | 88.0775              | 52.2211            | 9.3823             | 248.1851             | 47       |
| 12         | 0.1276 | 0.1113           | 0.6887           |                  | 12.0318            | 32.6030            | 62.8631              | 99.4442<br>108.9060  | 58.9605            | 10.5931            | 280.2118             | 53       |
| 13         | 0.1365 | 0.1219           | 0.7542           | 3.0539           | 13.1766            | 35.7050            | 68.8443<br>73.9154   |                      | 64.5703            | 11.6010            | 306.8697             | 58       |
| 14<br>15   | 0.1427 | 0.1309           | 0.8574           | 3.2789           | 14.1472<br>14.9795 | 38.3351<br>40.5905 | 78.2643              | 116.9282<br>123.8076 | 69.3266<br>73.4055 | 12.4555<br>13.1883 | 329.4702<br>348.8511 | 63<br>66 |
| 16         | 0.1509 | 0.1356           | 0.8986           | 3.6386           | 15.6995            | 42.5414            | 82.0258              | 129.7581             | 76.9335            | 13.8222            | 365.6144             | 70       |
| 17         | 0.1509 | 0.1524           | 0.8986           | 3.7840           | 16.3265            | 44 2405            | 82.0258<br>85.3020   | 134,9407             | 80.0063            | 14.3743            | 380.2142             | 70       |
| 18         | 0.1530 | 0.1524           | 0.9659           | 3.9113           | 16.8758            | 45.7290            | 88.1719              | 139.4807             | 82.6981            | 14.8579            | 393.0034             | 75       |
| 19         | 0.1544 | 0.1647           | 0.9936           | 4.0234           | 17.3594            | 47.0393            | 90.6985              | 143,4775             | 85.0678            | 15.2836            | 404.2622             | 77       |
| 20         | 0.1545 | 0.1700           | 1.0181           | 4.1225           | 17.7869            | 48.1979            | 92.9324              | 147.0115             | 87.1630            | 15.6601            | 414.2169             | 79       |
| 21         | 0.1545 | 0.1756           | 1.0398           | 4.2104           | 18.1665            | 49.2264            | 94.9154              | 150.1482             | 89.0229            | 15.9942            | 423.0538             | 81       |
| 22         | 0.1545 | 0.1815           | 1.0592           | 4.2888           | 18.5045            | 50.1424            | 96.6816              | 152.9423             | 90.6795            | 16.2918            | 430.9261             | 82       |
| 23         | 0.1545 | 0.1876           | 1.0764           | 4.3588           | 18.8066            | 50.9610            | 98.2599              | 155,4391             | 92.1598            | 16.5578            | 437.9615             | 83       |
| 24         | 0.1545 | 0.1938           | 1.0919           | 4.4215           | 19.0773            | 51.6946            | 99.6745              | 157.6767             | 93.4865            | 16.7962            | 444.2677             | 85       |
| 25         | 0.1545 | 0.1995           | 1.1059           | 4.4779           | 19.3207            | 52.3539            | 100.9457             | 159.6878             | 94.6789            | 17.0104            | 449.9352             | 86       |
| 26         | 0.1545 | 0.2037           | 1.1208           | 4.5287           | 19.5399            | 52.9480            | 102.0912             | 161.4997             | 95,7532            | 17.2034            | 455.0430             | 87       |
| 27         | 0.1545 | 0.2065           | 1.1364           | 4.5746           | 19.7379            | 53.4845            | 103.1257             | 163,1363             | 96 7235            | 17.3777            | 459.6576             | 88       |
| 28         | 0.1545 | 0.2080           | 1.1526           | 4.6162           | 19.7379            | 53.9703            | 104.0623             | 164.6178             | 97.6019            | 17.5356            | 463.8362             | 88       |
| 29         | 0.1545 | 0.2084           | 1.1692           | 4.6539           | 20.0798            | 54.4109            | 104.0623             | 165.9620             | 98.3989            | 17.6787            | 467.6284             | 89       |
| 30         | 0.1545 | 0.2084           | 1.1844           | 4.6881           | 20.0798            | 54.8116            | 105.6846             | 167.1842             | 99.1235            | 17.8089            | 471.0761             | 90       |
| 31         | 0.1545 | 0.2085           | 1.2001           | 4.7194           | 20.3624            | 55.1767            | 106.3885             | 168.2976             | 99.7836            | 17.9275            | 474.2188             | 90       |
| 32         | 0.1545 | 0.2085           | 1.2158           | 4.7479           | 20.4853            | 55.5099            | 107.0309             | 169.3140             | 100.3863           | 18.0358            | 477.0890             | 91       |
| 33         | 0.1545 | 0.2085           | 1.2319           | 4.7739           | 20.5978            | 55.8146            | 107.6185             | 170.2436             | 100.9374           | 18.1348            | 479.7156             | 91       |
| 34         | 0.1545 | 0.2085           | 1.2484           | 4.7978           | 20.7008            | 56.0938            | 108.1569             | 171.0953             | 101.4423           | 18.2255            | 482.1239             | 92       |
| 35         | 0.1545 | 0.2085           | 1.2641           | 4.8197           | 20.7954            | 56.3501            | 108.6510             | 171.8770             | 101.9057           | 18.3088            | 484.3349             | 92       |
| 36         | 0.1545 | 0.2085           | 1.2759           | 4.8445           | 20.8824            | 56.5858            | 109.1054             | 172.5957             | 102.3319           | 18.3854            | 486.3698             | 93       |
| 37         | 0.1545 | 0.2085           | 1.2839           | 4.8715           | 20.9625            | 56.8028            | 109.5238             | 173.2576             | 102.7243           | 18.4559            | 488.2453             | 93       |
| 38         | 0.1545 | 0.2085           | 1.2885           | 4.9006           | 21.0363            | 57.0030            | 109.9098             | 173.8682             | 103.0864           | 18.5209            | 489.9768             | 93       |
| 39         | 0.1545 | 0.2085           | 1.2896           | 4.9316           | 21.1046            | 57.1880            | 110.2665             | 174.4325             | 103.4209           | 18.5810            | 491.5779             | 94       |
| 40         | 0.1545 | 0.2085           | 1.2901           | 4.9610           | 21.1678            | 57.3592            | 110.5966             | 174.9547             | 103.7306           | 18.6366            | 493.0596             | 94       |
| 41         | 0.1545 | 0.2085           | 1.2902           | 4.9944           | 21.2264            | 57.5179            | 110.9026             | 175.4387             | 104.0175           | 18.6882            | 494.4390             | 94       |
| 42         | 0.1545 | 0.2085           | 1.2902           | 5.0314           | 21.2807            | 57.6652            | 111.1866             | 175.8880             | 104.2840           | 18.7361            | 495.7252             | 94       |
| 43         | 0.1545 | 0.2085           | 1.2902           | 5.0714           | 21.3313            | 57.8021            | 111.4507             | 176.3058             | 104.5316           | 18.7806            | 496.9267             | 95       |
| 44         | 0.1545 | 0.2085           | 1.2902           | 5.1144           | 21.3783            | 57.9296            | 111.6966             | 176.6947             | 104.7622           | 18.8220            | 498.0511             | 95       |
| 45         | 0.1545 | 0.2085           | 1.2902           | 5.1556           | 21.4222            | 58.0485            | 111.9258             | 177.0573             | 104.9772           | 18.8606            | 499.1005             | 95       |
| 46         | 0.1545 | 0.2085           | 1.2902           | 5.1867           | 21.4805            | 58.1595            | 112.1398             | 177.3959             | 105.1779           | 18.8967            | 500.0902             | 95       |
| 47         | 0.1545 | 0.2085           | 1.2902           | 5.2079           | 21.5513            | 58.2633            | 112.3399             | 177.7124             | 105.3656           | 18.9304            | 501.0240             | 95       |
| 48         | 0.1545 | 0.2085           | 1.2902           | 5.2197           | 21.6342            | 58.3605            | 112.5272             | 178.0087             | 105.5413           | 18.9620            | 501.9068             | 96       |
| 49         | 0.1545 | 0.2085           | 1.2902           | 5.2228           | 21.7281            | 58.4515            | 112.7028             | 178.2865             | 105.7060           | 18.9916            | 502.7425             | 96       |
| 50         | 0.1545 | 0.2085           | 1.2902           | 5.2240           | 21.8182            | 58.5370            | 112.8676             | 178.5472             | 105.8606           | 19.0193            | 503.5272             | 96       |
| 51         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 21.9181            | 58.6173            | 113.0225             | 178.7923             | 106.0059           | 19.0454            | 504.2790             | 96       |
| 52         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.0242            | 58.6929            | 113.1683             | 179.0229             | 106.1426           | 19.0700            | 504.9983             | 96       |
| 53         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.1357            | 58.7641            | 113.3056             | 179.2401             | 106.2713           | 19.0932            | 505.6875             | 96       |
| 54         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.2521            | 58.8313            | 113.4351             | 179.4449             | 106.3928           | 19.1150            | 506.3487             | 96       |
| 55         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.3615            | 58.8948            | 113.5574             | 179.6384             | 106.5075           | 19.1356            | 506.9726             | 97       |
| 56         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.4433            | 58.9961            | 113.6730             | 179.8213             | 106.6160           | 19.1551            | 507.5822             | 97       |
| 57         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.4986            | 59.1313            | 113.7824             | 179.9944             | 106.7187           | 19.1735            | 508.1764             | 97       |
| 58         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5291            | 59.2999            | 113.8861             | 180.1585             | 106.8159           | 19.1910            | 508.7580             | 97       |
| 59         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5371            | 59.4995            | 113.9844             | 180.3140             | 106.9081           | 19.2075            | 509.3282             | 97       |
| 60         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5401            | 59.6882            | 114.0778             | 180.4617             | 106.9957           | 19.2233            | 509.8642             | 97       |
| 61         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            | 59.8884            | 114.1665             | 180.6020             | 107.0789           | 19.2382            | 510.3923             | 97       |
| 62         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            | 60.0958            | 114.2510             | 180.7356             | 107.1581           | 19.2524            | 510.9110             | 97       |
| 63         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            | 60.3102            | 114.3314             | 180.8627             | 107.2334           | 19.2660            | 511.4218             | 97       |
| 64         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            | 60.5325            | 114.4080             | 180.9839             | 107.3053           | 19.2789            | 511.9267             | 98       |
| 65         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            | 60.7414            | 114.4810             | 181.0994             | 107.3739           | 19.2912            | 512.4051             | 98       |
| 66         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            | 60.8975            | 114.6153             | 181.2099             | 107.4393           | 19.3030            | 512.8831             | 98       |
| 67         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            |                    | 114.8057             | 181.3153             | 107.5019           |                    | 513.3563             | 98       |
| 68         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            | 61.0578            | 115.0488             | 181.4163             | 107.5617           | 19.3250            |                      | 98       |
| 69         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            |                    | 115.3396             | 181.5128             | 107.6189           | 19.3353            | 514.2973             | 98       |
| 70         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            |                    | 115.6252             |                      | 107.6738           |                    | 514.7458             | 98       |
| 71         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            |                    | 115.9299             | 181.6942             |                    |                    | 515.2024             | 98       |
| 72         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            | 61.0793            | 116.2429             | 181.7793             | 107.7768           | 19.3636            |                      | 98       |
| 73         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            |                    | 116.5665             | 181.8610             | 107.8253           |                    | 516.1226             | 98       |
| 74         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            |                    | 116.9002             | 181.9396             | 107.8719           |                    | 516.5897             | 98       |
| 75         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            |                    | 117.2224             | 182.0151             | 107.9167           |                    | 517.0403             | 99       |
| 76         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            | 61.0793            | 117.4682             | 182.1855             | 107.9598           | 19.3965            |                      | 99       |
| 77         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            |                    | 117.6374             |                      | 108.0013           |                    | 517.9836             | 99       |
| 78         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            |                    | 117.7333             |                      | 108.0412           |                    | 518.4696             | 99       |
| 79         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            |                    | 117.7581             | 183.2087             | 108.0798           |                    | 518.9620             | 99       |
| 80         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            | 61.0793            | 117.7677             | 183.6283             | 108.1169           | 19.4247            |                      | 99       |
| 81         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            |                    | 117.7696             | 184.0567             | 108.1528           |                    | 519.9077             | 99       |
| 82         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            | 61.0793            | 117.7696             | 184.4810             | 108.1875           |                    | 520.3728             | 99       |
| 83         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            | 61.0793            | 117.7696             | 184.8960             | 108.2210           |                    | 520.8273             | 99       |
| 84         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            | 61.0793            | 117.7696             | 185.3030             | 108.2533           |                    | 521.2725             | 99       |
| 85         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            |                    | 117.7696             | 185.6824             | 108.2847           |                    | 521.6889             | 99       |
| 86         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            |                    | 117.7696             | 185.9647             | 108.3919           |                    | 522.0839             | 99       |
| 87         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            |                    | 117.7696             |                      | 108.5644           |                    | 522.4533             | 100      |
| 88         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            | 61.0793            | 117.7696             | 186.2616             | 108.7951           | 19.4707            |                      | 100      |
| 89         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            | 61.0793            | 117.7696             | 186.2891             | 109.0763           | 19.4757            | 523.1080             | 10       |
| 90         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            | 61.0793            | 117.7696             | 186.2995             | 109.3413           | 19.4805            | 523.3882             | 10       |
| 91         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            | 61.0793            | 117.7696             | 186.3015             | 109.5825           | 19.4851            | 523.6361             | 10       |
| 92         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            | 61.0793            | 117.7696             | 186.3015             | 109.7942           | 19.4896            | 523.8523             | 100      |
| 93         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            | 61.0793            | 117.7696             | 186.3015             | 109.9770           | 19.4940            | 524.0396             | 100      |
|            | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            | 61.0793            | 117.7696             | 186.3015             | 110.1321           | 19.4983            | 524.1989             | 100      |
| 94         | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            | 61.0793            | 117.7696             | 186.3015             | 110.2634           |                    | 524.3343             | 100      |
| 94<br>95   |        |                  |                  |                  |                    |                    |                      |                      |                    |                    |                      |          |
|            | 0.1545 | 0.2085           | 1.2902           | 5.2242           | 22.5407            | 61.0793            | 117.7696             | 186.3015             | 110.3558           | 19.5238            | 524.4480             | 100      |
| 95         |        | 0.2085<br>0.2085 | 1.2902<br>1.2902 | 5.2242<br>5.2242 | 22.5407<br>22.5407 |                    | 117.7696<br>117.7696 |                      |                    | 19.5238<br>19.5587 |                      | 100      |
| 95<br>96   | 0.1545 |                  |                  |                  |                    |                    |                      |                      | 110.4148           |                    |                      |          |

### Exhibit E.40b Yearly Cancer Cases Avoided by System Size

Smoking/Lung Cancer Model - Surface Water Systems

### TTHM - Alternative 1

|       |      | <100 |      |      | 100-499 |      | ,     | 500-999 | )     | 1,           | ,000-3,2 | 99           | 3              | ,300-9,99    | 9      | 10             | ,000-49,9      | 99             | 50             | 0,000-99,9     | 99             | 100              | 0,000-999,9    | 99               |                  | ≥1,000,000     |                  |
|-------|------|------|------|------|---------|------|-------|---------|-------|--------------|----------|--------------|----------------|--------------|--------|----------------|----------------|----------------|----------------|----------------|----------------|------------------|----------------|------------------|------------------|----------------|------------------|
| Year  | mean | 5th  | 95th | mean | 5th     | 95th | mean  | 5th     | 95th  | mean         | 5th      | 95th         | mean           | 5th          | 95th   | mean           | 5th            | 95th           | mean           | 5th            | 95th           | mean             | 5th            | 95th             | mean             | 5th            | 95th             |
| 2005  | -    | -    | -    | -    | -       | -    | -     | -       | -     | -            | -        | -            | -              | -            | -      | -              | -              | -              | -              | -              | -              | -                | -              | -                | -                | -              | -                |
| 2006  | -    | -    | -    | -    | -       | -    | -     | -       | -     | -            | -        | -            | -              | -            | -      | -              | -              | -              | -              | -              | -              | -                | -              | -                | -                | -              | -                |
| 2007  | -    | -    | -    | -    | -       | -    | -     | -       | -     | -            | -        | -            | -              | -            | -      | -              | -              | -              | -              | -              | -              | -                | -              | -                | -                | -              | -                |
| 2008  | -    | -    | -    | -    | -       | -    | -     | -       | -     | -            | -        | -            | -              | -            | -      | -              | -              | -              | -              | -              | -              | -                | -              | -                | -                | -              | -                |
| 2009  | -    | -    | -    | -    | -       | -    | -     | -       | -     | -            | -        | -            | -              | -            | -      | -              | -              | -              | -              | -              | -              | -                | -              | -                | -                | -              | -                |
| 2010  | 0.00 | 0.00 | 0.00 | 0.01 | 0.01    | 0.04 | 0.03  | 0.01    | 0.06  | 0.17         | 0.06     | 0.41         | 0.49           | 0.18         | 1.18   | 2.29           | 0.85           | 5.53           | 1.99           | 0.74           | 4.82           | 8.82             | 3.27           | 21.32            | 7.51             | 2.78           | 18.15            |
| 2011  | 0.00 | 0.00 | 0.01 | 0.04 | 0.02    | 0.09 | 0.07  | 0.03    | 0.15  | 0.45         | 0.18     | 0.97         | 1.28           | 0.52         | 2.78   | 6.04           | 2.43           | 13.09          | 5.26           | 2.12           | 11.40          | 23.27            | 9.36           | 50.44            | 19.80            | 7.97           | 42.93            |
| 2012  | 0.01 | 0.00 | 0.02 | 0.07 | 0.03    | 0.14 | 0.13  | 0.05    | 0.25  | 0.81         | 0.35     | 1.63         | 2.32           | 0.99         | 4.66   | 10.91          | 4.65           | 21.93          | 9.50           | 4.05           | 19.11          | 42.04            | 17.92          | 84.52            | 35.78            | 15.25          | 71.93            |
| 2013  | 0.01 | 0.01 | 0.02 | 0.11 | 0.05    | 0.21 | 0.19  | 0.09    | 0.37  | 1.24         | 0.55     | 2.37         | 3.55           | 1.57         | 6.78   | 16.68          | 7.39           | 31.92          | 14.54          | 6.44           | 27.82          | 64.30            | 28.49          | 123.06           | 54.72            | 24.25          | 104.73           |
| 2014  | 0.02 | 0.01 | 0.03 | 0.15 | 0.07    | 0.28 | 0.27  | 0.12    | 0.49  | 1.72         | 0.79     | 3.17         | 4.93           | 2.25         | 9.06   | 23.20          | 10.58          | 42.61          | 19.22          | 8.85           | 34.72          | 80.62            | 37.52          | 142.95           | 68.61            | 31.93          | 121.66           |
| 2015  | 0.02 | 0.01 | 0.04 | 0.20 | 0.09    | 0.35 | 0.35  | 0.16    | 0.62  | 2.25         | 1.05     | 4.01         | 6.45           | 3.01         | 11.47  | 29.21          | 13.74          | 51.20          | 22.82          | 10.92          | 38.91          | 93.73            | 45.25          | 157.59           | 79.77            | 38.51          | 134.12           |
| 2016  | 0.03 | 0.01 | 0.04 | 0.24 | 0.12    | 0.41 | 0.43  | 0.20    | 0.73  | 2.74         | 1.31     | 4.70         | 7.84           | 3.75         | 13.46  | 33.87          | 16.42          | 56.77          | 25.76          | 12.65          | 42.33          | 104.58           | 51.68          | 170.23           | 89.00            | 43.98          | 144.87           |
| 2017  | 0.03 | 0.01 | 0.05 | 0.27 | 0.13    | 0.45 | 0.48  | 0.24    | 0.80  | 3.12         | 1.53     | 5.16         | 8.93           | 4.38         | 14.77  | 37.71          | 18.70          | 61.32          | 28.22          | 14.13          | 45.23          | 113.72           | 57.22          | 180.81           | 96.78            | 48.70          | 153.88           |
| 2018  | 0.03 | 0.02 | 0.05 | 0.30 | 0.15    | 0.49 | 0.53  | 0.27    | 0.86  | 3.44         | 1.72     | 5.54         | 9.83           | 4.91         | 15.84  | 40.93          | 20.61          | 65.13          | 30.31          | 15.37          | 47.74          | 121.52           | 61.86          | 190.60           | 103.42           | 52.65          | 162.21           |
| 2019  | 0.04 | 0.02 | 0.06 | 0.33 | 0.16    | 0.52 | 0.57  | 0.29    | 0.91  | 3.70         | 1.87     | 5.86         | 10.59          | 5.36         | 16.75  | 43.67          | 22.24          | 68.49          | 32.10          | 16.43          | 50.07          | 128.23           | 65.76          | 199.64           | 109.13           | 55.96          | 169.90           |
| 2020  | 0.04 | 0.02 | 0.06 | 0.35 | 0.18    | 0.54 | 0.61  | 0.31    | 0.95  | 3.93         | 2.01     | 6.14         | 11.24          | 5.74         | 17.55  | 46.03          | 23.64          | 71.56          | 33.65          | 17.34          | 52.13          | 134.05           | 69.23          | 207.26           | 114.09           | 58.92          | 176.39           |
| 2021  | 0.04 | 0.02 | 0.06 | 0.36 | 0.19    | 0.56 | 0.64  | 0.33    | 0.99  | 4.12         | 2.12     | 6.40         | 11.80          | 6.08         | 18.29  | 48.08          | 24.85          | 74.34          | 35.00          | 18.14          | 53.95          | 139.14           | 72.20          | 214.11           | 118.42           | 61.44          | 182.22           |
| 2022  | 0.04 | 0.02 | 0.06 | 0.38 | 0.20    | 0.58 | 0.67  | 0.34    | 1.03  | 4.29         | 2.22     | 6.63         | 12.28          | 6.36         | 18.97  | 49.87          | 25.90          | 76.83          | 36.18          | 18.84          | 55.63          | 143.60           | 74.86          | 220.62           | 122.21           | 63.71          | 187.76           |
| 2023  | 0.04 | 0.02 | 0.06 | 0.39 | 0.20    | 0.60 | 0.69  | 0.36    | 1.06  | 4.44         | 2.31     | 6.84<br>7.03 | 12.71          | 6.61         | 19.57  | 51.44<br>52.82 | 26.79<br>27.57 | 79.10          | 37.22<br>38.15 | 19.43<br>19.93 | 57.19<br>58.56 | 147.54<br>151.02 | 77.09<br>78.96 | 226.61<br>231.88 | 125.56<br>128.53 | 65.61<br>67.20 | 192.86<br>197.34 |
| 2024  | 0.04 |      | 0.07 |      | 0.21    | 0.62 | 0.71  | 0.37    | 1.09  | 4.57         | 2.38     | 7.03         | 13.08          | 6.81         | 20.10  |                | 28.22          | 81.10          |                |                |                |                  |                |                  | 131.17           | 68.50          | 201.04           |
| 2025  | 0.04 | 0.02 | 0.07 | 0.41 | 0.22    | 0.63 | 0.73  | 0.38    | 1.11  | 4.69<br>4.79 | 2.45     | 7.19         | 13.41<br>13.70 | 7.00<br>7.15 | 20.56  | 54.04<br>55.13 | 28.79          | 82.85<br>84.35 | 38.96<br>39.69 | 20.35          | 59.72<br>60.67 | 154.12<br>156.88 | 80.49<br>81.84 | 236.23<br>239.66 | 133.52           | 69.65          | 201.04           |
| 2026  | 0.05 | 0.02 | 0.07 | 0.42 | 0.22    | 0.66 | 0.74  | 0.39    | 1.14  | 4.79         | 2.50     | 7.46         | 13.70          | 7.15         | 21.33  | 56.10          | 29.27          | 85.65          | 40.34          | 21.03          | 61.49          | 159.36           | 83.08          | 242.64           | 135.62           | 70.70          | 203.96           |
| 2027  | 0.05 | 0.02 | 0.07 | 0.43 | 0.22    | 0.67 | 0.76  | 0.40    | 1.17  | 4.96         | 2.59     | 7.40         | 14.19          | 7.40         | 21.65  | 56.97          | 29.70          | 86.80          | 40.92          | 21.03          | 62.26          | 161.57           | 84.18          | 242.64           | 137.51           | 71.64          | 209.02           |
| 2029  | 0.05 | 0.02 | 0.07 | 0.44 | 0.23    | 0.67 | 0.77  | 0.40    | 1.17  | 5.03         | 2.62     | 7.67         | 14.19          | 7.51         | 21.03  | 57.75          | 30.11          | 87.83          | 41.45          | 21.61          | 62.98          | 163.57           | 85.28          | 248.46           | 139.21           | 72.58          | 211.45           |
| Total | 0.62 | 0.31 | 0.98 | 5.75 | 2.92    | 9.16 | 10.14 | 5.14    | 16.14 | 65.36        | 33.16    | 104.07       | 186.96         | 94.85        | 297.69 | 772.73         | 392.44         | 1,228.39       | 571.30         | 290.41         | 906.75         | 2,291.69         | 1.165.54       | 3,634.21         | 1,950.36         | 991.94         | 3,092.92         |
| Avg.  | 0.02 | 0.01 | 0.04 | 0.23 | 0.12    | 0.37 | 0.41  | 0.21    | 0.65  | 2.61         | 1.33     | 4.16         | 7.48           | 3.79         | 11.91  | 30.91          | 15.70          | 49.14          | 22.85          | 11.62          | 36.27          | 91.67            | 46.62          | 145.37           | 78.01            | 39.68          | 123.72           |

Avg. - All Size Categories 234.20 119.07 371.61

### Exhibit E.40c Yearly Cancer Cases Avoided by System Size

Smoking/Lung Cancer Model - Ground Water Systems

### TTHM - Alternative 1

|       |      | <100 |      |       | 100-499 |              |       | 500-999 |       | 1     | ,000-3,29 | 99           | 3,           | 300-9,99     | 9      | 10           | ,000-49,99 | 99           | 50    | ,000-99, | 999   | 100          | ,000-999, | 999    | ≥1    | ,000,00 | 0     |
|-------|------|------|------|-------|---------|--------------|-------|---------|-------|-------|-----------|--------------|--------------|--------------|--------|--------------|------------|--------------|-------|----------|-------|--------------|-----------|--------|-------|---------|-------|
| Year  | mean | 5th  | 95th | mean  | 5th     | 95th         | mean  | 5th     | 95th  | mean  | 5th       | 95th         | mean         | 5th          | 95th   | mean         | 5th        | 95th         | mean  | 5th      | 95th  | mean         | 5th       | 95th   | mean  | 5th     | 95th  |
| 2005  | -    | -    | -    |       | -       | -            | -     | -       |       | -     | -         |              | -            |              | -      | -            | -          |              | -     | -        |       | -            | -         | -      | -     | -       | -     |
| 2006  | -    | -    | -    | -     | -       | -            | -     | -       | -     | -     | -         | -            | -            | -            | -      | -            | -          | -            | -     | -        | -     | -            | -         | -      | -     | -       | -     |
| 2007  | -    | -    | -    | -     | -       | -            | -     | -       | -     | -     | -         | -            | -            | -            | -      | -            | -          | -            | -     | -        | -     | -            | -         | -      | -     | -       | -     |
| 2008  | -    | -    | -    | -     | -       | -            | -     | -       | -     | -     | -         | -            | -            | -            | -      | -            | -          | -            | -     | -        | -     | -            | -         | -      | -     | -       | -     |
| 2009  | -    | -    | -    | -     | -       | -            | -     | -       | -     | -     | -         | -            | -            | -            | -      | -            | -          | -            | -     | -        | -     | -            | -         | -      | -     | -       | -     |
| 2010  | 0.01 | 0.00 | 0.02 | 0.05  | 0.02    | 0.11         | 0.05  | 0.02    | 0.12  | 0.15  | 0.06      | 0.37         | 0.24         | 0.09         | 0.58   | 0.21         | 0.08       | 0.52         | 0.09  | 0.03     | 0.22  | 0.25         | 0.09      | 0.60   | 0.04  | 0.02    | 0.10  |
| 2011  | 0.02 | 0.01 | 0.04 | 0.12  | 0.05    | 0.27         | 0.13  | 0.05    | 0.29  | 0.40  | 0.16      | 0.87         | 0.63         | 0.25         | 1.37   | 0.57         | 0.23       | 1.23         | 0.24  | 0.10     | 0.51  | 0.66         | 0.26      | 1.42   | 0.11  | 0.04    | 0.24  |
| 2012  | 0.03 | 0.01 | 0.06 | 0.22  | 0.10    | 0.45         | 0.24  | 0.10    | 0.48  | 0.72  | 0.31      | 1.45         | 1.14         | 0.49         | 2.29   | 1.02         | 0.44       | 2.06         | 0.43  | 0.18     | 0.86  | 1.19         | 0.51      | 2.39   | 0.20  | 0.08    | 0.40  |
| 2013  | 0.05 | 0.02 | 0.09 | 0.34  | 0.15    | 0.66         | 0.37  | 0.16    | 0.70  | 1.10  | 0.49      | 2.11         | 1.74         | 0.77         | 3.34   | 1.56         | 0.69       | 2.99         | 0.65  | 0.29     | 1.25  | 1.81         | 0.80      | 3.47   | 0.30  | 0.13    | 0.58  |
| 2014  | 0.06 | 0.03 | 0.12 | 0.48  | 0.22    | 0.88         | 0.51  | 0.23    | 0.93  | 1.53  | 0.70      | 2.82         | 2.43         | 1.11         | 4.46   | 2.17         | 0.99       | 3.99         | 0.87  | 0.40     | 1.56  | 2.28         | 1.06      | 4.03   | 0.38  | 0.18    | 0.67  |
| 2015  | 0.08 | 0.04 | 0.15 | 0.62  | 0.29    | 1.11         | 0.66  | 0.31    | 1.18  | 2.01  | 0.94      | 3.57         | 3.17         | 1.48         | 5.64   | 2.74         | 1.29       | 4.80         | 1.03  | 0.49     | 1.75  | 2.65         | 1.28      | 4.45   | 0.44  | 0.21    | 0.74  |
| 2016  | 0.10 | 0.05 | 0.18 | 0.76  | 0.36    | 1.30         | 0.81  | 0.39    | 1.39  | 2.44  | 1.17      | 4.19         | 3.86         | 1.84         | 6.62   | 3.18         | 1.54       | 5.32         | 1.16  | 0.57     | 1.91  | 2.95         | 1.46      | 4.80   | 0.49  | 0.24    | 0.80  |
| 2017  | 0.12 | 0.06 | 0.19 | 0.86  | 0.42    | 1.43         | 0.92  | 0.45    | 1.52  | 2.78  | 1.36      | 4.60         | 4.39         | 2.15         | 7.27   | 3.53         | 1.75       | 5.75         | 1.27  | 0.64     | 2.04  | 3.21         | 1.62      | 5.10   | 0.53  | 0.27    | 0.85  |
| 2018  | 0.13 | 0.06 | 0.21 | 0.95  | 0.48    | 1.53         | 1.01  | 0.51    | 1.63  | 3.06  | 1.53      | 4.93         | 4.84         | 2.41         | 7.80   | 3.84         | 1.93       | 6.11         | 1.37  | 0.69     | 2.15  | 3.43         | 1.75      | 5.38   | 0.57  | 0.29    | 0.90  |
| 2019  | 0.14 | 0.07 | 0.22 | 1.03  | 0.52    | 1.62         | 1.09  | 0.55    | 1.73  | 3.29  | 1.67      | 5.21         | 5.21         | 2.64         | 8.24   | 4.09         | 2.08       | 6.42         | 1.45  | 0.74     | 2.26  | 3.62         | 1.86      | 5.63   | 0.60  | 0.31    | 0.94  |
| 2020  | 0.15 | 0.08 | 0.23 | 1.09  | 0.56    | 1.70         | 1.16  | 0.59    | 1.81  | 3.50  | 1.79      | 5.46         | 5.53         | 2.83         | 8.64   | 4.32         | 2.22       | 6.71         | 1.52  | 0.78     | 2.35  | 3.78         | 1.95      | 5.85   | 0.63  | 0.33    | 0.97  |
| 2021  | 0.15 | 0.08 | 0.24 | 1.14  | 0.59    | 1.77<br>1.84 | 1.22  | 0.63    | 1.89  | 3.67  | 1.89      | 5.69<br>5.90 | 5.80<br>6.04 | 2.99<br>3.13 | 9.00   | 4.51<br>4.67 | 2.33       | 6.97<br>7.20 | 1.58  | 0.82     | 2.43  | 3.93<br>4.05 | 2.04      | 6.04   | 0.65  | 0.34    | 1.01  |
| 2022  | 0.10 | 0.08 | 0.26 | 1.19  | 0.64    | 1.90         | 1.31  | 0.68    | 2.02  | 3.95  | 2.05      | 6.09         | 6.25         | 3.25         | 9.63   | 4.82         | 2.43       | 7.20         | 1.68  | 0.88     | 2.51  | 4.05         | 2.11      | 6.40   | 0.67  | 0.36    | 1.04  |
| 2023  | 0.17 | 0.09 | 0.26 | 1.23  | 0.66    | 1.95         | 1.35  | 0.70    | 2.02  | 4.07  | 2.03      | 6.25         | 6.43         | 3.35         | 9.89   | 4.02         | 2.51       | 7.60         | 1.72  | 0.90     | 2.64  | 4.16         | 2.16      | 6.54   | 0.09  | 0.30    | 1.07  |
| 2025  | 0.18 | 0.09 | 0.27 | 1.30  | 0.68    | 1.99         | 1.38  | 0.72    | 2.12  | 4.17  | 2.18      | 6.40         | 6.60         | 3.44         | 10.12  | 5.07         | 2.65       | 7.77         | 1.76  | 0.92     | 2.69  | 4.35         | 2.27      | 6.67   | 0.72  | 0.38    | 1.11  |
| 2026  | 0.18 | 0.09 | 0.27 | 1.33  | 0.69    | 2.03         | 1.41  | 0.74    | 2.16  | 4.26  | 2.23      | 6.52         | 6.74         | 3.52         | 10.32  | 5.17         | 2.70       | 7.91         | 1.79  | 0.93     | 2.73  | 4.43         | 2.31      | 6.76   | 0.74  | 0.38    | 1.13  |
| 2027  | 0.18 | 0.10 | 0.28 | 1.35  | 0.71    | 2.07         | 1.44  | 0.75    | 2.20  | 4.34  | 2.27      | 6.64         | 6.87         | 3.59         | 10.50  | 5.26         | 2.74       | 8.03         | 1.82  | 0.95     | 2.77  | 4.50         | 2.34      | 6.85   | 0.75  | 0.39    | 1.14  |
| 2028  | 0.19 | 0.10 | 0.28 | 1.37  | 0.72    | 2.10         | 1.46  | 0.76    | 2.23  | 4.41  | 2.30      | 6.74         | 6.98         | 3.64         | 10.65  | 5.34         | 2.78       | 8.14         | 1.84  | 0.96     | 2.80  | 4.56         | 2.38      | 6.93   | 0.76  | 0.40    | 1.15  |
| 2029  | 0.19 | 0.10 | 0.29 | 1.39  | 0.73    | 2.12         | 1.48  | 0.77    | 2.26  | 4.48  | 2.34      | 6.82         | 7.09         | 3.69         | 10.79  | 5.41         | 2.82       | 8.23         | 1.87  | 0.97     | 2.84  | 4.62         | 2.41      | 7.01   | 0.77  | 0.40    | 1.17  |
| Total | 2.45 | 1.24 | 3.90 | 18.11 | 9.19    | 28.83        | 19.26 | 9.77    | 30.67 | 58.15 | 29.50     | 92.60        | 91.99        | 46.67        | 146.47 | 72.44        | 36.79      | 115.15       | 25.73 | 13.08    | 40.84 | 64.68        | 32.90     | 102.58 | 10.77 | 5.48    | 17.08 |
| Avg.  | 0.10 | 0.05 | 0.16 | 0.72  | 0.37    | 1.15         | 0.77  | 0.39    | 1.23  | 2.33  | 1.18      | 3.70         | 3.68         | 1.87         | 5.86   | 2.90         | 1.47       | 4.61         | 1.03  | 0.52     | 1.63  | 2.59         | 1.32      | 4.10   | 0.43  | 0.22    | 0.68  |

Avg. - All Size Categories 14.54 7.38 23.12

### Exhibit E.40d Yearly Cancer Cases Avoided by System Size

Smoking/Lung Cancer Model - All Water Systems

### TTHM - Alternative 1

|               |      |              |              |       | 100-499       |               |       | 500-999       |       |        | 1,000-3,299   |                |                 | 3,300-9,999    |                 |                 | 10,000-49,99    | 99                | 5               | 0,000-99,999    | )               | 10                | 00,000-999,99     | 9        |                   | 1,000,000       |          |
|---------------|------|--------------|--------------|-------|---------------|---------------|-------|---------------|-------|--------|---------------|----------------|-----------------|----------------|-----------------|-----------------|-----------------|-------------------|-----------------|-----------------|-----------------|-------------------|-------------------|----------|-------------------|-----------------|----------|
| Year          | nean | 5th          | 95th         | mean  | 5th           | 95th          | mean  | 5th           | 95th  | mean   | 5th           | 95th           | mean            | 5th            | 95th            | mean            | 5th             | 95th              | mean            | 5th             | 95th            | mean              | 5th               | 95th     | mean              | 5th             | 95th     |
| 2005          | -    | -            | -            | -     | -             | -             | -     |               |       | -      | -             | -              | -               | -              | -               | -               | -               | -                 | -               | -               | -               | -                 | -                 | -        | -                 |                 | - 1      |
| 2006          | -    | -            | -            | -     | -             | -             | -     |               |       | -      | -             | -              | -               | -              | -               | -               | -               | -                 | -               | -               | -               | -                 | -                 | -        | -                 |                 | -        |
| 2007          | -    | -            | -            | -     | -             | -             | -     | -             | -     | -      | -             | -              | -               | -              | -               | -               | -               | -                 | -               | -               | -               | -                 | -                 | -        | -                 |                 | -        |
| 2008          | -    | -            | -            | -     | -             | -             | -     | -             | -     | -      |               | -              | -               | -              | -               | -               | -               | -                 | -               | -               | -               | -                 | -                 | -        | -                 |                 | -        |
| 2009          | -    | -            | -            | -     | -             | -             | -     | -             | -     | -      | -             | -              | -               | -              | -               | -               | -               | -                 | -               | -               | -               | -                 | -                 | -        | -                 | -               | -        |
| 2010          | 0.01 | 0.00         | 0.02         | 0.06  | 0.02          | 0.15          | 0.08  | 0.03          | 0.18  | 0.32   | 0.12          | 0.78           | 0.73            | 0.27           | 1.75            | 2.50            | 0.93            | 6.05              | 2.08            | 0.77            | 5.04            | 9.07              | 3.36              | 21.92    | 7.55              | 2.79            | 18.25    |
| 2011          | 0.02 | 0.01         | 0.05         | 0.16  | 0.07          | 0.35          | 0.20  | 0.08          | 0.44  | 0.85   | 0.34          | 1.84           | 1.91            | 0.77           | 4.15            | 6.60            | 2.66            | 14.31             | 5.50            | 2.21            | 11.92           | 23.93             | 9.63              | 51.87    | 19.91             | 8.01            | 43.17    |
| 2012          | 0.04 | 0.02         | 0.08         | 0.30  | 0.13          | 0.59          | 0.36  | 0.16          | 0.73  | 1.53   | 0.65          | 3.08           | 3.46            | 1.47           | 6.95            | 11.93           | 5.08            | 23.98             | 9.93            | 4.23            | 19.97           | 43.23             | 18.42             | 86.91    | 35.98             | 15.33           | 72.33    |
| 2013          | 0.06 | 0.03         | 0.11         | 0.45  | 0.20          | 0.87          | 0.56  | 0.25          | 1.07  | 2.34   | 1.04          | 4.48           | 5.29            | 2.34           | 10.12           | 18.24           | 8.08            | 34.91             | 15.19           | 6.73            | 29.07           | 66.12             | 29.30             | 126.53   | 55.03             | 24.38           | 105.31   |
| 2014          | 0.08 | 0.04         | 0.15         | 0.63  | 0.29          | 1.16          | 0.78  | 0.35          | 1.42  | 3.26   | 1.49          | 5.98           | 7.36            | 3.36           | 13.51           | 25.38           | 11.57           | 46.61             | 20.09           | 9.25            | 36.29           | 82.89             | 38.58             | 146.98   | 68.99             | 32.11           | 122.33   |
| 2015          | 0.11 | 0.05         | 0.19         | 0.82  | 0.38          | 1.46          | 1.01  | 0.47          | 1.80  | 4.26   | 1.99          | 7.58           | 9.62            | 4.49           | 17.11           | 31.94           | 15.03           | 56.00             | 23.85           | 11.41           | 40.67           | 96.37             | 46.53             | 162.04   | 80.21             | 38.72           | 134.86   |
| 2016          | 0.13 | 0.06         | 0.22         | 1.00  | 0.48          | 1.72          | 1.23  | 0.59          | 2.12  | 5.18   | 2.48          | 8.89           | 11.70           | 5.59           | 20.08           | 37.05           | 17.95           | 62.10             | 26.92           | 13.22           | 44.24           | 107.53            | 53.14             | 175.03   | 89.49             | 44.22           | 145.67   |
| 2017          | 0.15 | 0.07         | 0.24         | 1.14  | 0.56          | 1.89          | 1.40  | 0.69          | 2.32  | 5.90   | 2.89          | 9.76           | 13.32           | 6.53           | 22.04           | 41.24           | 20.45           | 67.07             | 29.49           | 14.77           | 47.26           | 116.93            | 58.84             | 185.91   | 97.32             | 48.97           | 154.73   |
| 2018          | 0.16 | 80.0         | 0.26         | 1.25  | 0.63          | 2.02          | 1.55  | 0.77          | 2.49  | 6.49   | 3.24          | 10.47          | 14.67           | 7.32           | 23.64           | 44.77           | 22.54           | 71.24             | 31.67           | 16.07           | 49.89           | 124.95            | 63.61             | 195.97   | 103.99            | 52.94           | 163.10   |
| 2019          | 0.17 | 0.09         | 0.28         | 1.35  | 0.68          | 2.14          | 1.67  | 0.84          | 2.63  | 7.00   | 3.54          | 11.07          | 15.80           | 7.99           | 25.00           | 47.77           | 24.32           | 74.91             | 33.55           | 17.17           | 52.33           | 131.85            | 67.61             | 205.27   | 109.73            | 56.27           | 170.84   |
| 2020          | 0.18 | 0.09         | 0.29         | 1.43  | 0.73          | 2.24          | 1.77  | 0.90          | 2.76  | 7.42   | 3.79          | 11.60          | 16.77           | 8.57           | 26.19           | 50.35           | 25.85           | 78.27             | 35.17           | 18.12           | 54.48           | 137.84            | 71.19             | 213.11   | 114.72            | 59.25           | 177.37   |
| 2021          | 0.19 | 0.10         | 0.30         | 1.51  | 0.78          | 2.33          | 1.85  | 0.96          | 2.88  | 7.79   | 4.01          | 12.09          | 17.60           | 9.07           | 27.30           | 52.59           | 27.18           | 81.31             | 36.58           | 18.96           | 56.38           | 143.07            | 74.23             | 220.16   | 119.07            | 61.78           | 183.23   |
| 2022          | 0.20 | 0.10         | 0.31         | 1.57  | 0.81          | 2.42          | 1.93  | 1.00          | 2.98  | 8.11   | 4.20          | 12.53          | 18.32           | 9.49           | 28.31           | 54.54           | 28.33           | 84.03             | 37.81           | 19.68           | 58.14           | 147.66            | 76.97             | 226.84   | 122.89            | 64.06           | 188.79   |
| 2023          | 0.21 | 0.11         | 0.32         | 1.62  | 0.84          | 2.50          | 2.00  | 1.04          | 3.08  | 8.39   | 4.36          | 12.93          | 18.96           | 9.86           | 29.20           | 56.26           | 29.30           | 86.51             | 38.90           | 20.30           | 59.77           | 151.70            | 79.26             | 233.00   | 126.26            | 65.97           | 193.92   |
| 2024          | 0.21 | 0.11         | 0.33         | 1.67  | 0.87          | 2.56          | 2.06  | 1.07          | 3.16  | 8.64   | 4.50          | 13.28          | 19.51           | 10.17          | 29.99           | 57.77           | 30.15           | 88.70             | 39.86           | 20.83           | 61.20           | 155.29            | 81.19             | 238.42   | 129.24            | 67.57           | 198.43   |
| 2025          | 0.22 | 0.11         | 0.34         | 1.71  | 0.89          | 2.62          | 2.11  | 1.10          | 3.23  | 8.86   | 4.62          | 13.58          | 20.00           | 10.44          | 30.68           | 59.11           | 30.87           | 90.61             | 40.72           | 21.27           | 62.41           | 158.47            | 82.76             | 242.89   | 131.89            | 68.88           | 202.15   |
| 2026          | 0.22 | 0.12         | 0.34         | 1.75  | 0.91          | 2.68          | 2.15  | 1.12          | 3.30  | 9.05   | 4.73          | 13.85          | 20.44           | 10.67          | 31.28           | 60.30           | 31.49           | 92.25             | 41.48           | 21.65           | 63.41           | 161.31            | 84.15             | 246.42   | 134.26            | 70.04           | 205.09   |
| 2027          | 0.23 | 0.12         | 0.35         | 1.78  | 0.93          | 2.72          | 2.20  | 1.15          | 3.35  | 9.22   | 4.81          | 14.09          | 20.83           | 10.87          | 31.83           | 61.36           | 32.01           | 93.68             | 42.16           | 21.98           | 64.26           | 163.85            | 85.42             | 249.49   | 136.37            | 71.09           | 207.64   |
| 2028          | 0.23 | 0.12         | 0.36         | 1.81  | 0.94          | 2.76          | 2.23  | 1.16          | 3.41  | 9.38   | 4.89          | 14.31          | 21.18           | 11.04          | 32.31           | 62.31           | 32.48           | 94.94             | 42.77           | 22.29           | 65.06           | 166.13            | 86.56             | 252.54   | 138.27<br>139.98  | 72.04           | 210.18   |
| 2029          | 0.24 | 0.12         | 0.36         | 1.84  | 0.96          | 2.80          | 2.26  | 1.18          | 3.45  | 9.51   | 4.96          | 14.49          | 21.49           | 11.20          | 32.72           | 63.16           | 32.93           | 96.06             | 43.32           | 22.58           | 65.82           | 168.19            | 87.68             | 255.47   |                   | 72.98           | 212.62   |
| Total<br>Avg. | 0.12 | 1.56<br>0.06 | 4.89<br>0.20 | 23.86 | 12.10<br>0.48 | 37.99<br>1.52 | 29.40 | 14.92<br>0.60 | 46.81 | 123.51 | 62.66<br>2.51 | 196.66<br>7.87 | 278.95<br>11.16 | 141.53<br>5.66 | 444.16<br>17.77 | 845.16<br>33.81 | 429.23<br>17.17 | 1,343.54<br>53.74 | 597.03<br>23.88 | 303.50<br>12.14 | 947.60<br>37.90 | 2,356.37<br>94.25 | 1,198.43<br>47.94 | 3,736.78 | 1,961.13<br>78.45 | 997.42<br>39.90 | 3,110.00 |

Avg. - All Size Categories 248.74 126.45 394.74

Section E.7.4
Projection of Cases - Stage 2
Alternative 2
TTHM as Indicator
Smoking/Lung Cancer Model

## Exhibit E.41a Cases avoided by Age Group per year following rule promulgation (Smoking/Lung Cancer model - TTHM - Alternative 2)

| Voore After             | Ago C            |                  | (0               | g, _ ug ,          | Jui 1001 1         |                      |                      | Iternativ            | · -,                 |                    |                        |            |
|-------------------------|------------------|------------------|------------------|--------------------|--------------------|----------------------|----------------------|----------------------|----------------------|--------------------|------------------------|------------|
| Years After<br>the Rule | Age G            | 11-20            | 21-30            | 31-40              | 41-50              | 51-60                | 61-70                | 71-80                | 81-90                | 91-100+            | Total                  | %          |
| 1                       | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000                 | 0%         |
| 2                       | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000                 | 0%         |
| 3                       | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000                 | 0%<br>0%   |
| 5                       | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000                 | 0%         |
| 6                       | 0.0389           | 0.0333           | 0.2062           | 0.8348             | 3.6018             | 9.7600               | 18.8186              | 29.7695              | 17.6503              | 3.1711             | 83.8845                | 4%         |
| 7                       | 0.1037           | 0.0879           | 0.5438           | 2.2018             | 9.5000             | 25.7426              | 49.6354              | 78.5191              | 46.5539              | 8.3641             | 221.2522               | 11%        |
| 8<br>9                  | 0.1879<br>0.2874 | 0.1588           | 0.9823           | 3.9775<br>6.0824   | 17.1613<br>26.2432 | 46.5027<br>71.1123   | 89.6638<br>137.1145  | 141.8406<br>216.9037 | 84.0973<br>128.6022  | 15.1093<br>23.1052 | 399.6814<br>611.1958   | 20%<br>31% |
| 10                      | 0.3684           | 0.3113           | 1.9260           | 7.7989             | 33.6493            | 91.1809              | 175.8096             | 278.1161             | 164.8950             | 29.6257            | 783.6812               | 40%        |
| 11                      | 0.4306           | 0.3685           | 2.2800           | 9.2321             | 39.8334            | 107.9382             | 208.1201             | 329.2288             | 195.1996             | 35.0704            | 927.7018               | 47%        |
| 12                      | 0.4764           | 0.4156           | 2.5714           | 10.4121            | 44.9245            | 121.7337             | 234.7198             | 371.3072             | 220.1479             | 39.5527            | 1046.2613              | 54%        |
| 13                      | 0.5093           | 0.4549           | 2.8143           | 11.3958            | 49.1687<br>52.7691 | 133.2343<br>142.9905 | 256.8945             | 406.3858             | 240.9460             | 43.2893            | 1145.0929              | 59%        |
| 14<br>15                | 0.5321<br>0.5501 | 0.4882           | 3.0204           | 12.2302            | 55.8577            | 151.3598             | 275.7057<br>291.8432 | 436.1437<br>461.6717 | 258.5895<br>273.7250 | 46.4593<br>49.1786 | 1228.9287<br>1300.8461 | 63%<br>67% |
| 16                      | 0.5624           | 0.5433           | 3.3501           | 13.5654            | 58.5299            | 158.6007             | 305.8047             | 483.7577             | 286.8196             |                    | 1363.0652              | 70%        |
| 17                      | 0.5701           | 0.5682           | 3.4834           | 14.1049            | 60.8577            | 164.9084             | 317.9669             | 502.9971             | 298.2267             | 53.5806            | 1417.2640              | 73%        |
| 18                      | 0.5742           | 0.5917           | 3.6001           | 14.5776            | 62.8971            | 170.4348             | 328.6224             | 519.8534             | 308.2208             |                    | 1464.7483              | 75%        |
| 19<br>20                | 0.5752<br>0.5756 | 0.6139           | 3.7029<br>3.7938 | 14.9938<br>15.3618 | 64.6928<br>66.2807 | 175.3005<br>179.6033 | 338.0043<br>346.3006 | 534.6946<br>547.8187 | 317.0203<br>324.8015 | 56.9572<br>58.3551 | 1506.5554<br>1543.5244 | 77%<br>79% |
| 21                      | 0.5756           | 0.6544           | 3.8744           | 15.6885            | 67.6902            | 183.4229             | 353.6652             | 559.4690             | 331.7090             | 59.5962            | 1576.3454              | 81%        |
| 22                      | 0.5756           | 0.6762           | 3.9463           | 15.9795            | 68.9459            | 186.8253             | 360.2258             | 569.8472             | 337.8623             | 60.7017            | 1605.5859              | 82%        |
| 23                      | 0.5756           | 0.6989           | 4.0105           | 16.2396            | 70.0680            | 189.8660             | 366.0886             | 579.1218             | 343.3611             | 61.6897            | 1631.7199              | 83%        |
| 24<br>25                | 0.5756<br>0.5756 | 0.7223           | 4.0681<br>4.1198 | 16.4727<br>16.6822 | 71.0738            | 192.5915<br>195.0409 | 371.3435<br>376.0663 | 587.4346<br>594.9058 | 348.2897<br>352.7195 | 62.5752<br>63.3710 | 1655.1470<br>1676.2024 | 85%<br>86% |
| 26                      | 0.5756           | 0.7435           | 4.1752           | 16.8710            | 72.7923            | 197.2480             | 380.3220             | 601.6379             | 356.7109             | 64.0882            | 1676.2024              | 87%        |
| 27                      | 0.5756           | 0.7692           | 4.2334           | 17.0415            | 73.5280            | 199.2416             | 384.1660             | 607.7185             | 360.3163             | 64.7359            | 1712.3259              | 88%        |
| 28                      | 0.5756           | 0.7748           | 4.2937           | 17.1959            | 74.1941            | 201.0465             | 387.6461             | 613.2239             | 363.5803             |                    | 1727.8530              | 88%        |
| 29                      | 0.5756           | 0.7761           | 4.3558           | 17.3359            | 74.7984            | 202.6841             | 390.8036             | 618.2191             | 366.5419             |                    | 1741.9450              | 89%        |
| 30<br>31                | 0.5756<br>0.5756 | 0.7766           | 4.4124<br>4.4706 | 17.4633<br>17.5793 | 75.3479<br>75.8486 | 204.1731<br>205.5298 | 393.6746<br>396.2904 | 622.7607<br>626.8986 | 369.2348<br>371.6882 | 66.3382<br>66.7790 | 1754.7573<br>1766.4368 | 90%<br>90% |
| 31                      | 0.5756           | 0.7767           | 4.4706           | 17.5793            | 76.3056            | 205.5298             | 398.6782             | 630.6760             | 371.6882             |                    | 1777.1041              | 91%        |
| 33                      | 0.5756           | 0.7767           | 4.5892           | 17.7821            | 76.7236            | 207.9009             | 400.8622             | 634.1309             | 375.9762             | 67.5494            | 1786.8669              | 91%        |
| 34                      | 0.5756           | 0.7767           | 4.6507           | 17.8709            | 77.1066            | 208.9388             | 402.8633             | 637.2964             | 377.8530             | 67.8866            | 1795.8186              | 92%        |
| 35<br>36                | 0.5756<br>0.5756 | 0.7767           | 4.7091<br>4.7529 | 17.9524<br>18.0444 | 77.4582<br>77.7814 | 209.8914             | 404.7001<br>406.3891 | 640.2022<br>642.8740 | 379.5758<br>381.1598 | 68.1961<br>68.4807 | 1804.0375<br>1811.6020 | 92%<br>93% |
| 36<br>37                | 0.5756           | 0.7767           | 4.7529<br>4.7828 | 18.0444            | 78.0792            | 210.7673             | 406.3891             | 642.8740             | 381.1598             | 68.7428            | 1811.6020              | 93%        |
| 38                      | 0.5756           | 0.7767           | 4.7996           | 18.2537            | 78.3538            | 212.3184             | 409.3798             | 647.6051             | 383.9648             | 68.9847            | 1825.0121              | 93%        |
| 39                      | 0.5756           | 0.7767           | 4.8037           | 18.3695            | 78.6076            | 213.0061             | 410.7060             | 649.7029             | 385.2086             | 69.2081            | 1830.9649              | 94%        |
| 40                      | 0.5756           | 0.7767           | 4.8052           | 18.4790            | 78.8426            | 213.6427             | 411.9333             | 651.6446             | 386.3599             | 69.4149            | 1836.4745              | 94%        |
| 41<br>42                | 0.5756<br>0.5756 | 0.7767           | 4.8054<br>4.8054 | 18.6037<br>18.7413 | 79.0603<br>79.2625 | 214.2327<br>214.7805 | 413.0710<br>414.1273 | 653.4442<br>655.1149 | 387.4269<br>388.4174 | 69.6067<br>69.7846 | 1841.6031<br>1846.3863 | 94%<br>94% |
| 43                      | 0.5756           | 0.7767           | 4.8054           | 18.8908            | 79.4504            | 215.2898             | 415.1092             | 656.6685             | 389.3385             | 69.9501            | 1850.8551              | 95%        |
| 44                      | 0.5756           | 0.7767           | 4.8054           | 19.0512            | 79.6254            | 215.7640             | 416.0235             | 658.1149             | 390.1960             | 70.1042            | 1855.0370              | 95%        |
| 45                      | 0.5756           | 0.7767           | 4.8054           | 19.2051            | 79.7886            | 216.2061             | 416.8760             | 659.4633             | 390.9956             | 70.2478            | 1858.9403              | 95%        |
| 46<br>47                | 0.5756<br>0.5756 | 0.7767           | 4.8054<br>4.8054 | 19.3207<br>19.3993 | 80.0057<br>80.2701 | 216.6190<br>217.0049 | 417.6720<br>418.4162 | 660.7225<br>661.8999 | 391.7420<br>392.4401 | 70.3820<br>70.5074 | 1862.6216<br>1866.0955 | 95%<br>95% |
| 48                      | 0.5756           | 0.7767           | 4.8054           | 19.4429            | 80.5798            | 217.3663             | 419.1129             | 663.0021             | 393.0936             | 70.6248            | 1869.3800              | 96%        |
| 49                      | 0.5756           | 0.7767           | 4.8054           | 19.4537            | 80.9304            | 217.7050             | 419.7661             | 664.0352             | 393.7062             | 70.7348            | 1872.4891              | 96%        |
| 50                      | 0.5756           | 0.7767           | 4.8054           | 19.4575            | 81.2672            | 218.0230             | 420.3791             | 665.0052             | 394.2813             | 70.8382            | 1875.4091              | 96%        |
| 51<br>52                | 0.5756           | 0.7767           | 4.8054<br>4.8054 | 19.4582<br>19.4582 | 81.6398<br>82.0352 | 218.3219<br>218.6031 | 420.9554<br>421.4976 | 665.9167<br>666.7745 | 394.8217<br>395.3302 | 70.9353<br>71.0266 | 1878.2066<br>1880.8831 | 96%        |
| 52                      | 0.5756<br>0.5756 | 0.7767           | 4.8054           | 19.4582            | 82.4513            | 218.8680             | 422.0084             | 667.5826             | 395.8093             | 71.0266            | 1883.4482              | 96%<br>96% |
| 54                      | 0.5756           | 0.7767           | 4.8054           | 19.4582            | 82.8858            | 219.1179             | 422.4903             | 668.3448             | 396.2613             | 71.1939            | 1885.9099              | 96%        |
| 55                      | 0.5756           | 0.7767           | 4.8054           | 19.4582            | 83.2937            | 219.3539             | 422.9453             | 669.0645             | 396.6882             | 71.2706            | 1888.2321              | 97%        |
| 56                      | 0.5756           | 0.7767           | 4.8054           | 19.4582            | 83.5984            | 219.7319             | 423.3756             | 669.7453             | 397.0917             | 71.3431            | 1890.5018              | 97%        |
| 57<br>58                | 0.5756<br>0.5756 | 0.7767           | 4.8054<br>4.8054 | 19.4582<br>19.4582 | 83.8032<br>83.9157 | 220.2373<br>220.8676 | 423.7827<br>424.1686 | 670.3893<br>670.9998 | 397.4735<br>397.8354 | 71.4117            | 1892.7137<br>1894.8796 | 97%<br>97% |
| 59                      | 0.5756           | 0.7767           | 4.8054           | 19.4582            | 83.9437            | 221.6143             | 424.5345             | 671.5786             | 398.1787             | 71.5384            | 1897.0041              | 97%        |
| 60                      | 0.5756           | 0.7767           | 4.8054           | 19.4582            | 83.9536            | 222.3195             | 424.8820             | 672.1282             | 398.5045             | 71.5969            | 1899.0006              | 97%        |
| 61                      | 0.5756           | 0.7767           | 4.8054           | 19.4582            | 83.9552            | 223.0668             | 425.2123             | 672.6505             | 398.8142             | 71.6526            | 1900.9674              | 97%        |
| 62<br>63                | 0.5756<br>0.5756 | 0.7767           | 4.8054<br>4.8054 | 19.4582<br>19.4582 | 83.9552<br>83.9552 | 223.8399<br>224.6396 | 425.5264<br>425.8255 | 673.1474<br>673.6207 | 399.1088<br>399.3894 | 71.7055<br>71.7559 | 1902.8990<br>1904.8021 | 97%<br>97% |
| 64                      | 0.5756           | 0.7767           | 4.8054           | 19.4582            |                    | 225.4694             | 426.1106             |                      | 399.6568             |                    | 1904.6021              | 98%        |
| 65                      | 0.5756           | 0.7767           | 4.8054           | 19.4582            |                    | 226.2491             | 426.3826             |                      | 399.9120             |                    | 1908.4665              | 98%        |
| 66                      | 0.5756           | 0.7767           | 4.8054           | 19.4582            |                    | 226.8305             | 426.8839             | 674.9129             | 400.1555             |                    | 1910.2475              | 98%        |
| 67                      | 0.5756           | 0.7767           | 4.8054           | 19.4582            | 83.9552            | 227.2143             | 427.5958             | 675.3056             | 400.3885             |                    | 1912.0107              | 98%        |
| 68<br>69                | 0.5756<br>0.5756 | 0.7767<br>0.7767 | 4.8054<br>4.8054 | 19.4582<br>19.4582 |                    | 227.4235<br>227.4754 | 428.5054<br>429.5937 | 675.6812<br>676.0407 | 400.6112<br>400.8244 |                    | 1913.7678<br>1915.5189 | 98%<br>98% |
| 70                      | 0.5756           | 0.7767           | 4.8054           | 19.4582            |                    | 227.4754             | 430.6621             | 676.3853             | 401.0287             |                    | 1917.1910              | 98%        |
| 71                      | 0.5756           | 0.7767           | 4.8054           | 19.4582            | 83.9552            | 227.4965             | 431.8001             | 676.7154             | 401.2244             |                    | 1918.8931              | 98%        |
| 72                      | 0.5756           | 0.7767           | 4.8054           | 19.4582            |                    | 227.4965             | 432.9674             | 677.0325             | 401.4123             |                    | 1920.5991              | 98%        |
| 73<br>74                | 0.5756<br>0.5756 | 0.7767           | 4.8054<br>4.8054 | 19.4582<br>19.4582 | 83.9552<br>83.9552 | 227.4965<br>227.4965 | 434.1750<br>435.4209 | 677.3367<br>677.6291 | 401.5927<br>401.7662 |                    | 1922.3239              | 98%<br>98% |
| 75                      | 0.5756           | 0.7767           | 4.8054           | 19.4582            | 83.9552            | 227.4965             | 435.4209             | 677.9102             | 401.7662             |                    | 1924.0666              | 98%        |
| 76                      | 0.5756           | 0.7767           | 4.8054           | 19.4582            |                    | 227.4965             | 437.5394             | 678.5475             | 402.0933             |                    | 1927.4894              | 99%        |
| 77                      | 0.5756           | 0.7767           | 4.8054           | 19.4582            |                    | 227.4965             | 438.1678             | 679.5130             | 402.2478             |                    | 1929.2655              | 99%        |
| 78                      | 0.5756           | 0.7767           | 4.8054           | 19.4582            |                    | 227.4965             | 438.5217             | 680.7971             | 402.3966             |                    | 1931.0792              | 99%        |
| 79<br>80                | 0.5756<br>0.5756 | 0.7767           | 4.8054<br>4.8054 | 19.4582<br>19.4582 | 83.9552<br>83.9552 | 227.4965<br>227.4965 | 438.6091<br>438.6406 | 682.3784<br>683.9485 | 402.5401<br>402.6786 |                    | 1932.9171<br>1934.6821 | 99%        |
| 81                      | 0.5756           | 0.7767           | 4.8054           | 19.4582            | 83.9552            | 227.4965             | 438.6458             | 685.5493             | 402.8122             |                    | 1934.6621              | 99%        |
| 82                      | 0.5756           | 0.7767           | 4.8054           | 19.4582            | 83.9552            | 227.4965             | 438.6458             | 687.1315             | 402.9413             | 72.3941            | 1938.1802              | 99%        |
| 83                      | 0.5756           | 0.7767           | 4.8054           | 19.4582            | 83.9552            | 227.4965             | 438.6458             | 688.6797             | 403.0660             |                    |                        | 99%        |
| 84<br>85                | 0.5756<br>0.5756 | 0.7767           | 4.8054<br>4.8054 | 19.4582<br>19.4582 |                    | 227.4965<br>227.4965 | 438.6458<br>438.6458 | 690.1986<br>691.6139 | 403.1867<br>403.3034 |                    | 1941.5367<br>1943.0897 | 99%<br>99% |
| 85<br>86                | 0.5756           | 0.7767           | 4.8054<br>4.8054 | 19.4582<br>19.4582 |                    | 227.4965             | 438.6458             | 691.6139<br>692.6648 | 403.7045             |                    | 1943.0897              | 99%        |
| 87                      | 0.5756           | 0.7767           | 4.8054           | 19.4582            | 83.9552            | 227.4965             | 438.6458             | 693.3760             | 404.3509             |                    | 1945.9392              | 100%       |
| 88                      | 0.5756           | 0.7767           | 4.8054           | 19.4582            | 83.9552            | 227.4965             | 438.6458             | 693.7640             | 405.2150             | 72.5181            | 1947.2103              | 100%       |
| 89                      | 0.5756           | 0.7767           | 4.8054           | 19.4582            |                    | 227.4965             | 438.6458             | 693.8607             | 406.2688             |                    | 1948.3793              | 100%       |
| 90                      | 0.5756           | 0.7767           | 4.8054           | 19.4582            | 83.9552            | 227.4965             | 438.6458             | 693.8948             | 407.2610             |                    | 1949.4236              | 100%       |
| 91<br>92                | 0.5756<br>0.5756 | 0.7767           | 4.8054<br>4.8054 | 19.4582<br>19.4582 | 83.9552<br>83.9552 | 227.4965<br>227.4965 | 438.6458<br>438.6458 | 693.9004<br>693.9004 | 408.1613<br>408.9496 |                    | 1950.3467<br>1951.1520 | 100%       |
| 92                      | 0.5756           | 0.7767           | 4.8054           | 19.4582            |                    | 227.4965             | 438.6458             | 693.9004             | 409.6303             |                    | 1951.1520              | 100%       |
| 94                      | 0.5756           | 0.7767           | 4.8054           | 19.4582            |                    | 227.4965             | 438.6458             | 693.9004             | 410.2074             |                    | 1952.4421              | 100%       |
| 95                      | 0.5756           | 0.7767           | 4.8054           | 19.4582            | 83.9552            | 227.4965             | 438.6458             | 693.9004             | 410.6959             |                    | 1952.9460              | 100%       |
| 96                      | 0.5756           | 0.7767           | 4.8054           | 19.4582            |                    | 227.4965             | 438.6458             | 693.9004             | 411.0391             |                    | 1953.3690              | 100%       |
| 97<br>98                | 0.5756<br>0.5756 | 0.7767           | 4.8054<br>4.8054 | 19.4582<br>19.4582 | 83.9552<br>83.9552 | 227.4965<br>227.4965 | 438.6458<br>438.6458 | 693.9004<br>693.9004 | 411.2577<br>411.3734 |                    | 1953.7184<br>1954.0052 | 100%       |
| 99                      | 0.5756           | 0.7767           | 4.8054           | 19.4582            | 83.9552            | 227.4965             | 438.6458             | 693.9004             | 411.4022             | 73.2196            | 1954.0052              | 100%       |
|                         |                  |                  | 4.8054           | 19.4582            | 83.9552            | 227.4965             | 438.6458             | 693.9004             | 411.4120             | 73.3921            | 1954.4178              | 100%       |

### Exhibit E.41b Yearly Cancer Cases Avoided by System Size

Smoking/Lung Cancer - Surface Water Systems

### TTHM - Alternative 2

|       | Aiternative |             |       |       |                |       |       |                | 1     |        |                    |        |        |                    |          |          |                      |          |          |                      |          |          |               |            |          |                   | $\overline{}$ |
|-------|-------------|-------------|-------|-------|----------------|-------|-------|----------------|-------|--------|--------------------|--------|--------|--------------------|----------|----------|----------------------|----------|----------|----------------------|----------|----------|---------------|------------|----------|-------------------|---------------|
| l     | mean        | <100<br>5th | 95th  | mean  | 100-499<br>5th | 95th  | mean  | 500-999<br>5th | 95th  | mean   | 1,000-3,299<br>5th | 95th   | mean   | 3,300-9,999<br>5th | 95th     | mean     | 10,000-49,999<br>5th | 95th     | mean     | 50,000-99,999<br>5th | 95th     | mean     | 100,000-999,9 | 99<br>95th | mean     | ≥1,000,000<br>5th | 95th          |
| Year  | illean      | Jul         | 33111 | mean  | Jui            | 33111 | mean  | 5111           | 33111 | mean   | Jill               | 35(11  | mean   | Jill               | 35111    | mean     | Jili                 | 35111    | mean     | Jili                 | 35(11    | mean     | Jill          | 35111      | mean     | Jui               | 33(11         |
| 2005  | -           | -           | -     | -     | -              | -     | -     |                | -     | -      | -                  | -      | -      | -                  | -        | -        | •                    | -        | -        | •                    | -        | -        | -             | •          | -        | -                 | -             |
| 2006  | -           | -           | -     | -     | -              | -     | -     |                | -     | -      | -                  | -      | -      | -                  | -        | -        | •                    | -        | -        | •                    | -        | -        | -             | •          | -        | -                 | · ·           |
| 2007  | -           | -           | -     | -     | -              | -     | -     | -              | •     | -      | -                  | -      | -      | -                  | -        |          | -                    | -        | -        | -                    | -        | -        | -             | -          | -        | -                 | · ·           |
| 2008  | -           | -           | -     | -     | -              | -     | -     | -              | •     | -      | -                  | -      | -      | -                  | -        |          | -                    | -        | -        | -                    | -        | -        | -             | -          | -        | -                 | · ·           |
| 2009  | •           | •           | -     | -     | -              | -     | -     | -              | -     | -      | -                  | -      | -      | -                  | -        | -        | -                    | -        | -        | -                    | -        | -        | -             | -          | -        | -                 | 1 -           |
| 2010  | 0.01        | 0.00        | 0.01  | 0.05  | 0.02           | 0.13  | 0.10  | 0.04           | 0.23  | 0.62   | 0.24               | 1.51   | 1.78   | 0.67               | 4.31     | 8.39     | 3.18                 | 20.28    | 7.31     | 2.77                 | 17.67    | 32.36    | 12.25         | 78.19      | 27.54    | 10.42             | 66.54         |
| 2011  | 0.02        | 0.01        | 0.03  | 0.14  | 0.06           | 0.31  | 0.25  | 0.10           | 0.55  | 1.64   | 0.67               | 3.55   | 4.70   | 1.92               | 10.16    | 22.14    | 9.04                 | 47.84    | 19.29    | 7.88                 | 41.69    | 85.35    | 34.85         | 184.43     | 72.63    | 29.66             | 156.96        |
| 2012  | 0.03        | 0.01        | 0.06  | 0.26  | 0.11           | 0.52  | 0.46  | 0.20           | 0.92  | 2.97   | 1.27               | 5.95   | 8.49   | 3.65               | 17.02    | 39.99    | 17.18                | 80.15    | 34.85    | 14.97                | 69.84    | 154.18   | 66.21         | 308.97     | 131.21   | 56.35             | 262.96        |
| 2013  | 0.04        | 0.02        | 0.08  | 0.40  | 0.18           | 0.76  | 0.70  | 0.31           | 1.34  | 4.54   | 2.03               | 8.62   | 12.99  | 5.80               | 24.67    | 61.16    | 27.33                | 116.18   | 53.30    | 23.81                | 101.24   | 235.77   | 105.35        | 447.88     | 200.65   | 89.66             | 381.17        |
| 2014  | 0.06        | 0.03        | 0.11  | 0.56  | 0.26           | 1.01  | 0.98  | 0.45           | 1.78  | 6.31   | 2.91               | 11.51  | 18.06  | 8.33               | 32.92    | 85.06    | 39.21                | 155.05   | 70.47    | 32.78                | 126.28   | 295.56   | 138.91        | 519.53     | 251.54   | 118.22            | 442.15        |
| 2015  | 0.08        | 0.04        | 0.14  | 0.73  | 0.34           | 1.28  | 1.28  | 0.60           | 2.26  | 8.26   | 3.90               | 14.56  | 23.63  | 11.15              | 41.66    | 107.07   | 50.94                | 186.06   | 83.66    | 40.45                | 141.29   | 343.59   | 167.65        | 571.93     | 292.42   | 142.68            | 486.75        |
| 2016  | 0.09        | 0.05        | 0.16  | 0.88  | 0.43           | 1.50  | 1.56  | 0.75           | 2.64  | 10.04  | 4.84               | 17.04  | 28.71  | 13.85              | 48.75    | 124.17   | 60.71                | 205.67   | 94.44    | 46.81                | 153.14   | 383.35   | 191.38        | 615.19     | 326.25   | 162.87            | 523.56        |
| 2017  | 0.11        | 0.05        | 0.18  | 1.01  | 0.50           | 1.64  | 1.77  | 0.88           | 2.90  | 11.43  | 5.65               | 18.68  | 32.70  | 16.15              | 53.43    | 138.22   | 69.06                | 221.72   | 103.45   | 52.21                | 163.43   | 416.84   | 211.42        | 653.54     | 354.75   | 179.93            | 556.20        |
| 2018  | 0.12        | 0.06        | 0.19  | 1.11  | 0.56           | 1.76  | 1.95  | 0.98           | 3.11  | 12.58  | 6.34               | 20.02  | 36.00  | 18.15              | 57.28    | 150.03   | 76.33                | 235.59   | 111.10   | 56.91                | 172.66   | 445.40   | 228.87        | 688.92     | 379.06   | 194.78            | 586.31        |
| 2019  | 0.13        | 0.07        | 0.20  | 1.19  | 0.61           | 1.86  | 2.10  | 1.08           | 3.28  | 13.55  | 6.93               | 21.13  | 38.77  | 19.83              | 60.46    | 160.08   | 82.40                | 247.29   | 117.66   | 60.82                | 180.62   | 469.99   | 243.39        | 719.72     | 399.99   | 207.14            | 612.53        |
| 2020  | 0.14        | 0.07        | 0.21  | 1.27  | 0.65           | 1.95  | 2.23  | 1.15           | 3.43  | 14.38  | 7.43               | 22.10  | 41.14  | 21.27              | 63.23    | 168.73   | 87.57                | 257.79   | 123.34   | 64.28                | 187.74   | 491.33   | 256.80        | 746.62     | 418.15   | 218.55            | 635.42        |
| 2021  | 0.14        | 0.07        | 0.22  | 1.33  | 0.69           | 2.03  | 2.34  | 1.22           | 3.57  | 15.10  | 7.86               | 23.01  | 43.19  | 22.47              | 65.81    | 176.22   | 92.05                | 267.61   | 128.28   | 67.29                | 194.19   | 509.96   | 268.11        | 770.44     | 434.01   | 228.18            | 655.69        |
| 2022  | 0.15        | 0.08        | 0.23  | 1.38  | 0.72           | 2.10  | 2.44  | 1.27           | 3.70  | 15.72  | 8.22               | 23.83  | 44.97  | 23.50              | 68.18    | 182.77   | 95.88                | 276.35   | 132.62   | 69.71                | 199.85   | 526.31   | 276.77        | 791.49     | 447.92   | 235.55            | 673.60        |
| 2023  | 0.15        | 0.08        | 0.23  | 1.43  | 0.75           | 2.16  | 2.52  | 1.32           | 3.81  | 16.26  | 8.53               | 24.57  | 46.52  | 24.40              | 70.29    | 188.51   | 99.06                | 284.04   | 136.43   | 71.73                | 205.17   | 540.73   | 284.38        | 812.90     | 460.19   | 242.03            | 691.83        |
| 2024  | 0.16        | 0.08        | 0.24  | 1.47  | 0.78           | 2.22  | 2.60  | 1.37           | 3.91  | 16.74  | 8.81               | 25.22  | 47.88  | 25.20              | 72.13    | 193.58   | 101.93               | 291.14   | 139.80   | 73.64                | 210.28   | 553.50   | 291.50        | 832.89     | 471.06   | 248.09            | 708.84        |
| 2025  | 0.16        | 0.09        | 0.24  | 1.51  | 0.80           | 2.27  | 2.66  | 1.40           | 4.00  | 17.16  | 9.05               | 25.80  | 49.09  | 25.88              | 73.79    | 198.06   | 104.47               | 297.73   | 142.80   | 75.33                | 214.71   | 564.84   | 297.99        | 849.32     | 480.71   | 253.61            | 722.82        |
| 2026  | 0.17        | 0.09        | 0.25  | 1.54  | 0.82           | 2.32  | 2.72  | 1.44           | 4.08  | 17.53  | 9.26               | 26.34  | 50.16  | 26.49              | 75.34    | 202.05   | 106.73               | 303.51   | 145.46   | 76.91                | 218.44   | 574.96   | 304.29        | 863.20     | 489.33   | 258.97            | 734.63        |
| 2027  | 0.17        | 0.09        | 0.25  | 1.57  | 0.83           | 2.36  | 2.77  | 1.47           | 4.16  | 17.87  | 9.45               | 26.82  | 51.11  | 27.02              | 76.72    | 205.60   | 108.81               | 308.53   | 147.84   | 78.39                | 221.71   | 584.02   | 310.03        | 875.36     | 497.03   | 263.85            | 744.98        |
| 2028  | 0.17        | 0.09        | 0.26  | 1.60  | 0.85           | 2.40  | 2.82  | 1.49           | 4.22  | 18.16  | 9.62               | 27.22  | 51.96  | 27.51              | 77.88    | 208.78   | 110.69               | 312.69   | 149.98   | 79.60                | 224.38   | 592.14   | 314.33        | 885.27     | 503.95   | 267.51            | 753.41        |
| 2029  | 0.17        | 0.09        | 0.26  | 1.62  | 0.86           | 2.43  | 2.86  | 1.51           | 4.27  | 18.43  | 9.77               | 27.56  | 52.72  | 27.94              | 78.84    | 211.64   | 112.25               | 316.13   | 151.90   | 80.57                | 226.63   | 599.45   | 317.93        | 893.79     | 510.17   | 270.58            | 760.67        |
| Total | 2.26        | 1.16        | 3.55  | 21.07 | 10.81          | 33.02 | 37.11 | 19.04          | 58.16 | 239.32 | 122.77             | 375.05 | 684.58 | 351.19             | 1,072.86 | 2,832.26 | 1,454.82             | 4,431.35 | 2,093.97 | 1,076.87             | 3,270.98 | 8,399.62 | 4,322.41      | 13,109.58  | 7,148.57 | 3,678.63          | 11,157.02     |
| Avg.  | 0.09        | 0.05        | 0.14  | 0.84  | 0.43           | 1.32  | 1.48  | 0.76           | 2.33  | 9.57   | 4.91               | 15.00  | 27.38  | 14.05              | 42.91    | 113.29   | 58.19                | 177.25   | 83.76    | 43.07                | 130.84   | 335.98   | 172.90        | 524.38     | 285.94   | 147.15            | 446.28        |

Avg. - All Size Categories 858.35 441.51 1,340.46

### Exhibit E.41c Yearly Cancer Cases Avoided by System Size

Smoking/Lung Cancer Model - Ground Water Systems

### TTHM - Alternative 2

|       |      | <100 |      |       | 100-499 |       |       | 500-999 |       |              | 1,000-3,299 |        | 3      | ,300-9,999 |        | 1      | 10,000-49,999  | 9              | 50     | ,000-99,999  |        | 100    | 0,000-999 | ,999           | 2            | 1,000,000 | D      |
|-------|------|------|------|-------|---------|-------|-------|---------|-------|--------------|-------------|--------|--------|------------|--------|--------|----------------|----------------|--------|--------------|--------|--------|-----------|----------------|--------------|-----------|--------|
| Year  | mean | 5th  | 95th | mean  | 5th     | 95th  | mean  | 5th     | 95th  | mean         | 5th         | 95th   | mean   | 5th        | 95th   | mean   | 5th            | 95th           | mean   | 5th          | 95th   | mean   | 5th       | 95th           | mean         | 5th       | 95th   |
| 2005  | -    | -    | -    | -     | -       |       | -     | -       | -     | -            | -           | -      | -      | -          | -      | -      | -              | -              | -      | -            | -      | -      | -         | -              | -            | -         | -      |
| 2006  | -    | -    | -    | -     | -       |       | -     | -       | -     | -            | -           | -      | -      | -          | -      | -      | -              | -              | -      | -            | -      | -      | -         | -              | -            | -         | -      |
| 2007  | -    | -    | -    | -     | -       |       |       | -       | -     | -            | -           | -      | -      | -          | -      | -      | -              | -              | -      | -            | -      | -      | -         | -              | -            | -         | -      |
| 2008  | -    | -    | -    | -     | -       |       | -     | -       | -     | -            | -           | -      | -      | -          | -      | -      | -              | -              | -      | -            | -      | -      | -         | -              | -            | - 1       | -      |
| 2009  | -    | -    | -    | -     |         |       | -     | -       | -     | -            | -           | -      | -      | -          |        | -      | -              | -              | -      | -            | -      | -      | -         | -              | -            | -         | -      |
| 2010  | 0.01 | 0.00 | 0.02 | 0.07  | 0.02    | 0.16  | 0.07  | 0.03    | 0.17  | 0.21         | 0.08        | 0.51   | 0.33   | 0.13       | 0.80   | 1.82   | 0.69           | 4.39           | 0.76   | 0.29         | 1.84   | 2.11   | 0.80      | 5.09           | 0.35         | 0.13      | 0.85   |
| 2011  | 0.02 | 0.01 | 0.05 | 0.17  | 0.07    | 0.37  | 0.18  | 0.08    | 0.40  | 0.55         | 0.23        | 1.20   | 0.88   | 0.36       | 1.90   | 4.79   | 1.95           | 10.35          | 2.00   | 0.82         | 4.33   | 5.56   | 2.27      | 12.01          | 0.93         | 0.38      | 2.00   |
| 2012  | 0.04 | 0.02 | 0.08 | 0.31  | 0.13    | 0.62  | 0.33  | 0.14    | 0.66  | 1.00         | 0.43        | 2.01   | 1.58   | 0.68       | 3.18   | 8.65   | 3.71           | 17.33          | 3.62   | 1.56         | 7.26   | 10.04  | 4.31      | 20.12          | 1.67         | 0.72      | 3.35   |
| 2013  | 0.06 | 0.03 | 0.12 | 0.48  | 0.21    | 0.91  | 0.51  | 0.23    | 0.96  | 1.53         | 0.68        | 2.91   | 2.42   | 1.08       | 4.60   | 13.23  | 5.91           | 25.12          | 5.54   | 2.47         | 10.52  | 15.35  | 6.86      | 29.16          | 2.56         | 1.14      | 4.86   |
| 2014  | 0.09 | 0.04 | 0.16 | 0.66  | 0.31    | 1.21  | 0.71  | 0.33    | 1.29  | 2.13         | 0.98        | 3.88   | 3.37   | 1.55       | 6.14   | 18.39  | 8.48           | 33.53          | 7.32   | 3.41         | 13.12  | 19.24  | 9.04      | 33.83          | 3.20         | 1.51      | 5.63   |
| 2015  | 0.12 | 0.06 | 0.21 | 0.87  | 0.41    | 1.53  | 0.92  | 0.44    | 1.63  | 2.79         | 1.32        | 4.91   | 4.41   | 2.08       | 7.77   | 23.15  | 11.02          | 40.23          | 8.69   | 4.20         | 14.68  | 22.37  | 10.92     | 37.24          | 3.73         | 1.82      | 6.20   |
| 2016  | 0.14 | 0.07 | 0.24 | 1.05  | 0.51    | 1.79  | 1.12  | 0.54    | 1.90  | 3.39         | 1.63        | 5.75   | 5.36   | 2.58       | 9.10   | 26.85  | 13.13          | 44.47          | 9.81   | 4.86         | 15.91  | 24.96  | 12.46     | 40.05          | 4.16         | 2.08      | 6.67   |
| 2017  | 0.16 | 0.08 | 0.27 | 1.20  | 0.59    | 1.96  | 1.28  | 0.63    | 2.09  | 3.86<br>4.25 | 1.90        | 6.30   | 6.10   | 3.01       | 9.97   | 29.89  | 14.93<br>16.51 | 47.94          | 10.75  | 5.43         | 16.98  | 27.14  | 13.77     | 42.55          | 4.52         | 2.29      | 7.09   |
| 2019  | 0.18 | 0.09 | 0.30 | 1.42  | 0.67    | 2.10  | 1.41  | 0.71    | 2.24  | 4.25         | 2.14        | 7.13   | 7.23   | 3.70       | 11.28  | 32.44  | 17.82          | 50.94<br>53.47 | 12.23  | 5.91<br>6.32 | 18.77  | 29.00  | 15.85     | 44.85<br>46.86 | 4.83<br>5.10 | 2.48      | 7.80   |
| 2020  | 0.10 | 0.10 | 0.31 | 1.51  | 0.78    | 2.32  | 1.61  | 0.83    | 2.47  | 4.85         | 2.54        | 7.46   | 7.68   | 3.97       | 11.80  | 36.48  | 18.94          | 55.74          | 12.82  | 6.68         | 19.51  | 31.99  | 16.72     | 48.61          | 5.33         | 2.78      | 8.10   |
| 2021  | 0.21 | 0.11 | 0.33 | 1.59  | 0.83    | 2.42  | 1.69  | 0.88    | 2.57  | 5.09         | 2.65        | 7.76   | 8.06   | 4.19       | 12.28  | 38.11  | 19.90          | 57.87          | 13.33  | 6.99         | 20.18  | 33.20  | 17.46     | 50.16          | 5.53         | 2.91      | 8.35   |
| 2022  | 0.22 | 0.12 | 0.34 | 1.65  | 0.86    | 2.50  | 1.76  | 0.92    | 2.66  | 5.30         | 2.77        | 8.04   | 8.39   | 4.39       | 12.72  | 39.52  | 20.73          | 59.76          | 13.78  | 7.24         | 20.77  | 34.27  | 18.02     | 51.53          | 5.71         | 3.00      | 8.58   |
| 2023  | 0.23 | 0.12 | 0.35 | 1.71  | 0.90    | 2.58  | 1.82  | 0.95    | 2.75  | 5.49         | 2.88        | 8.29   | 8.68   | 4.55       | 13.12  | 40.76  | 21.42          | 61.42          | 14.18  | 7.45         | 21.32  | 35.21  | 18.52     | 52.93          | 5.86         | 3.08      | 8.81   |
| 2024  | 0.24 | 0.13 | 0.36 | 1.76  | 0.93    | 2.65  | 1.87  | 0.98    | 2.82  | 5.65         | 2.97        | 8.51   | 8.93   | 4.70       | 13.46  | 41.86  | 22.04          | 62.96          | 14.53  | 7.65         | 21.85  | 36.04  | 18.98     | 54.23          | 6.00         | 3.16      | 9.03   |
| 2025  | 0.24 | 0.13 | 0.37 | 1.80  | 0.95    | 2.71  | 1.92  | 1.01    | 2.88  | 5.79         | 3.05        | 8.70   | 9.16   | 4.83       | 13.77  | 42.83  | 22.59          | 64.38          | 14.84  | 7.83         | 22.31  | 36.78  | 19.40     | 55.30          | 6.12         | 3.23      | 9.21   |
| 2026  | 0.25 | 0.13 | 0.37 | 1.84  | 0.97    | 2.77  | 1.96  | 1.04    | 2.94  | 5.92         | 3.12        | 8.89   | 9.36   | 4.94       | 14.06  | 43.69  | 23.08          | 65.63          | 15.11  | 7.99         | 22.70  | 37.44  | 19.81     | 56.20          | 6.23         | 3.30      | 9.36   |
| 2027  | 0.25 | 0.13 | 0.38 | 1.88  | 0.99    | 2.82  | 2.00  | 1.06    | 3.00  | 6.03         | 3.19        | 9.05   | 9.54   | 5.04       | 14.32  | 44.46  | 23.53          | 66.72          | 15.36  | 8.14         | 23.04  | 38.02  | 20.19     | 56.99          | 6.33         | 3.36      | 9.49   |
| 2028  | 0.26 | 0.14 | 0.39 | 1.91  | 1.01    | 2.86  | 2.03  | 1.07    | 3.04  | 6.13         | 3.24        | 9.19   | 9.70   | 5.13       | 14.53  | 45.15  | 23.93          | 67.61          | 15.58  | 8.27         | 23.31  | 38.55  | 20.47     | 57.64          | 6.42         | 3.41      | 9.60   |
| 2029  | 0.26 | 0.14 | 0.39 | 1.94  | 1.03    | 2.90  | 2.06  | 1.09    | 3.08  | 6.22         | 3.30        | 9.30   | 9.84   | 5.21       | 14.71  | 45.76  | 24.27          | 68.36          | 15.78  | 8.37         | 23.55  | 39.03  | 20.70     | 58.19          | 6.50         | 3.45      | 9.69   |
| Total | 3.40 | 1.75 | 5.33 | 25.14 | 12.90   | 39.40 | 26.75 | 13.72   | 41.92 | 80.75        | 41.43       | 126.55 | 127.73 | 65.53      | 200.18 | 612.44 | 314.59         | 958.22         | 217.58 | 111.89       | 339.87 | 546.89 | 281.43    | 853.55         | 91.07        | 46.87     | 142.14 |
| Avg.  | 0.14 | 0.07 | 0.21 | 1.01  | 0.52    | 1.58  | 1.07  | 0.55    | 1.68  | 3.23         | 1.66        | 5.06   | 5.11   | 2.62       | 8.01   | 24.50  | 12.58          | 38.33          | 8.70   | 4.48         | 13.59  | 21.88  | 11.26     | 34.14          | 3.64         | 1.87      | 5.69   |

Avg. - All Size Categories 69.27 35.60 108.29

### Exhibit E.41d Yearly Cancer Cases Avoided by System Size

Smoking/Lung Cancer Model - All Water Systems

TTHM - Alternative 2

|       |      | <100 |      |              | 100-499 |       |       | 500-999 |        |        | 1,000-3,29 | 19     | ;              | 3,300-9,999    |                | 1        | 0,000-49,99 | 19               | 5        | 0,000-99,99    | 19       | 10               | 0,000-999,9      | 99               |                  | ≥1,000,000 |                  |
|-------|------|------|------|--------------|---------|-------|-------|---------|--------|--------|------------|--------|----------------|----------------|----------------|----------|-------------|------------------|----------|----------------|----------|------------------|------------------|------------------|------------------|------------|------------------|
| Year  | mean | 5th  | 95th | mean         | 5th     | 95th  | mean  | 5th     | 95th   | mean   | 5th        | 95th   | mean           | 5th            | 95th           | mean     | 5th         | 95th             | mean     | 5th            | 95th     | mean             | 5th              | 95th             | mean             | 5th        | 95th             |
| 2005  | -    | -    | -    | -            | -       | -     | -     | -       | -      | -      | -          | -      | -              | -              | -              | -        | -           | -                | -        | -              | -        | -                | -                | -                | -                | -          | -                |
| 2006  | -    | -    | -    | -            |         | -     | -     | -       | -      | -      |            | -      | -              | -              | -              |          |             | -                |          |                |          | -                | -                | -                | -                | -          | -                |
| 2007  | -    | -    | -    | -            |         | -     | -     | -       | -      | -      |            |        | -              | -              | -              | -        | -           | -                |          | -              | -        | -                | -                | -                |                  | -          | -                |
| 2008  | -    | -    | -    | -            | -       | -     | -     | -       | -      | -      | -          | -      | -              | -              | -              | -        | -           | -                | -        | -              | -        | -                | -                | -                | -                | -          | -                |
| 2009  | -    | -    | -    | -            | -       | -     | -     | -       | -      | -      | -          | -      | -              | -              | -              | -        | -           | -                | -        | -              | -        | -                | -                | -                |                  | -          | -                |
| 2010  | 0.01 | 0.01 | 0.04 | 0.12         | 0.05    | 0.29  | 0.17  | 0.06    | 0.40   | 0.83   | 0.32       | 2.01   | 2.11           | 0.80           | 5.11           | 10.21    | 3.86        | 24.67            | 8.07     | 3.06           | 19.51    | 34.46            | 13.05            | 83.28            | 27.89            | 10.56      | 67.39            |
| 2011  | 0.04 | 0.02 | 0.08 | 0.32         | 0.13    | 0.69  | 0.44  | 0.18    | 0.95   | 2.20   | 0.90       | 4.75   | 5.58           | 2.28           | 12.05          | 26.93    | 11.00       | 58.19            | 21.30    | 8.70           | 46.02    | 90.90            | 37.12            | 196.43           | 73.56            | 30.04      | 158.96           |
| 2012  | 0.07 | 0.03 | 0.14 | 0.57         | 0.25    | 1.15  | 0.79  | 0.34    | 1.59   | 3.97   | 1.71       | 7.96   | 10.08          | 4.33           | 20.19          | 48.64    | 20.89       | 97.48            | 38.47    | 16.52          | 77.10    | 164.21           | 70.53            | 329.09           | 132.88           | 57.07      | 266.31           |
| 2013  | 0.11 | 0.05 | 0.20 | 0.88         | 0.39    | 1.67  | 1.21  | 0.54    | 2.30   | 6.07   | 2.71       | 11.53  | 15.41          | 6.89           | 29.27          | 74.39    | 33.24       | 141.31           | 58.83    | 26.29          | 111.76   | 251.12           | 112.21           | 477.04           | 203.21           | 90.80      | 386.03           |
| 2014  | 0.15 | 0.07 | 0.27 | 1.22         | 0.56    | 2.22  | 1.68  | 0.78    | 3.07   | 8.44   | 3.89       | 15.39  | 21.43          | 9.88           | 39.06          | 103.46   | 47.69       | 188.58           | 77.79    | 36.19          | 139.40   | 314.80           | 147.95           | 553.35           | 254.74           | 119.73     | 447.78           |
| 2015  | 0.20 | 0.09 | 0.34 | 1.59         | 0.75    | 2.81  | 2.20  | 1.04    | 3.89   | 11.05  | 5.21       | 19.48  | 28.03          | 13.23          | 49.43          | 130.23   | 61.96       | 226.30           | 92.35    | 44.65          | 155.97   | 365.97           | 178.56           | 609.17           | 296.14           | 144.50     | 492.95           |
| 2016  | 0.24 | 0.11 | 0.40 | 1.94         | 0.93    | 3.29  | 2.68  | 1.29    | 4.55   | 13.43  | 6.48       | 22.79  | 34.07          | 16.43          | 57.84          | 151.02   | 73.84       | 250.15           | 104.25   | 51.67          | 169.05   | 408.31           | 203.84           | 655.25           | 330.41           | 164.95     | 530.23           |
| 2017  | 0.27 | 0.13 | 0.44 | 2.21         | 1.09    | 3.61  | 3.05  | 1.51    | 4.98   | 15.29  | 7.55       | 24.98  | 38.80          | 19.16          | 63.40          | 168.11   | 84.00       | 269.67           | 114.20   | 57.64          | 180.42   | 443.98           | 225.19           | 696.10           | 359.27           | 182.22     | 563.29           |
| 2018  | 0.30 | 0.15 | 0.47 | 2.43         | 1.22    | 3.87  | 3.36  | 1.69    | 5.34   | 16.83  | 8.48       | 26.78  | 42.71          | 21.53          | 67.96          | 182.47   | 92.83       | 286.54           | 122.64   | 62.83          | 190.60   | 474.40           | 243.77           | 733.77           | 383.89           | 197.26     | 593.78           |
| 2019  | 0.32 | 0.16 | 0.50 | 2.62         | 1.34    | 4.08  | 3.62  | 1.85    | 5.64   | 18.13  | 9.27       | 28.27  | 46.01          | 23.53          | 71.74          | 194.69   | 100.21      | 300.76           | 129.89   | 67.14          | 199.39   | 500.59           | 259.24           | 766.58           | 405.09           | 209.78     | 620.33           |
| 2020  | 0.34 | 0.18 | 0.52 | 2.78         | 1.44    | 4.27  | 3.84  | 1.98    | 5.90   | 19.24  | 9.94       | 29.56  | 48.82          | 25.24          | 75.03          | 205.21   | 106.50      | 313.53           | 136.15   | 70.96          | 207.25   | 523.32           | 273.52           | 795.23           | 423.48           | 221.34     | 643.51           |
| 2021  | 0.36 | 0.19 | 0.54 | 2.92<br>3.04 | 1.52    | 4.44  | 4.03  | 2.10    | 6.14   | 20.19  | 10.51      | 30.77  | 51.25          | 26.67          | 78.09          | 214.33   | 111.95      | 325.47           | 141.61   | 74.29          | 214.37   | 543.16<br>560.58 | 285.56<br>294.79 | 820.60<br>843.02 | 439.54<br>453.63 | 231.08     | 664.04<br>682.19 |
| 2022  | 0.37 | 0.19 | 0.56 | 3.14         | 1.65    | 4.60  | 4.19  | 2.19    | 6.36   | 21.02  | 10.99      | 31.88  | 53.36<br>55.20 | 27.89<br>28.96 | 80.90<br>83.40 | 222.29   | 120.48      | 336.11<br>345.46 | 150.61   | 76.96<br>79.18 | 220.61   | 575.94           | 302.90           | 865.83           | 466.05           | 238.55     | 700.64           |
| 2024  | 0.40 | 0.21 | 0.60 | 3.23         | 1.70    | 4.87  | 4.47  | 2.35    | 6.73   | 22.39  | 11.78      | 33.72  | 56.82          | 29.90          | 85.59          | 235.43   | 123.97      | 354.09           | 154.33   | 81.29          | 232.13   | 589.53           | 310.48           | 887.12           | 477.06           | 251.25     | 717.87           |
| 2025  | 0.41 | 0.21 | 0.61 | 3.31         | 1.75    | 4.98  | 4.58  | 2.41    | 6.88   | 22.95  | 12.10      | 34.50  | 58.25          | 30.71          | 87.56          | 240.89   | 127.06      | 362.12           | 157.63   | 83.15          | 237.02   | 601.62           | 317.40           | 904.62           | 486.84           | 256.84     | 732.03           |
| 2026  | 0.42 | 0.22 | 0.62 | 3.39         | 1.79    | 5.09  | 4.68  | 2.47    | 7.03   | 23.45  | 12.38      | 35.22  | 59.52          | 31.43          | 89.40          | 245.74   | 129.81      | 369.13           | 160.58   | 84.90          | 241.14   | 612.40           | 324.10           | 919.40           | 495.56           | 262.27     | 743.99           |
| 2027  | 0.42 | 0.22 | 0.64 | 3.45         | 1.82    | 5.18  | 4.77  | 2.52    | 7.16   | 23.90  | 12.64      | 35.87  | 60.65          | 32.07          | 91.04          | 250.06   | 132.34      | 375.24           | 163.21   | 86.53          | 244.74   | 622.04           | 330.21           | 932.36           | 503.37           | 267.21     | 754.48           |
| 2028  | 0.43 | 0.23 | 0.64 | 3.51         | 1.86    | 5.26  | 4.85  | 2.57    | 7.27   | 24.29  | 12.86      | 36.41  | 61.66          | 32.64          | 92.41          | 253.93   | 134.62      | 380.30           | 165.56   | 87.87          | 247.69   | 630.70           | 334.80           | 942.90           | 510.37           | 270.92     | 763.01           |
| 2029  | 0.44 | 0.23 | 0.65 | 3.56         | 1.89    | 5.32  | 4.92  | 2.61    | 7.35   | 24.65  | 13.06      | 36.86  | 62.56          | 33.15          | 93.55          | 257.40   | 136.52      | 384.48           | 167.68   | 88.94          | 250.17   | 638.48           | 338.63           | 951.99           | 516.67           | 274.03     | 770.36           |
| Total | 5.67 | 2.91 | 8.88 | 46.21        | 23.70   | 72.42 | 63.86 | 32.76   | 100.09 | 320.07 | 164.20     | 501.60 | 812.31         | 416.72         | 1,273.04       | 3,444.71 | 1,769.40    | 5,389.58         | 2,311.55 | 1,188.76       | 3,610.85 | 8,946.52         | 4,603.84         | 13,963.14        | 7,239.65         | 3,725.49   | 11,299.16        |
| Avg.  | 0.23 | 0.12 | 0.36 | 1.85         | 0.95    | 2.90  | 2.55  | 1.31    | 4.00   | 12.80  | 6.57       | 20.06  | 32.49          | 16.67          | 50.92          | 137.79   | 70.78       | 215.58           | 92.46    | 47.55          | 144.43   | 357.86           | 184.15           | 558.53           | 289.59           | 149.02     | 451.97           |

Avg. - All Size Categories 927.62 477.11 1,448.75

Section E.7.5
Projection of Cases - Stage 2
Alternative 3
TTHM as Indicator
Smoking/Lung Cancer Model

| Years After | Age G            |                  | 21.20            | 21 40              | 41 50                | E4 60                | 64.70                | 74.00                | 94.00                | 01.400  | Tota'                  | 61         |
|-------------|------------------|------------------|------------------|--------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------|------------------------|------------|
| the Rule    | 1-10<br>0.0000   | 0.0000           | 21-30<br>0.0000  | 31-40<br>0.0000    | 41-50<br>0.0000      | 51-60<br>0.0000      | 61-70<br>0.0000      | 71-80                | 81-90<br>0.0000      | 91-100+ | Total<br>0.0000        | %<br>0%    |
| 2           | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000               | 0.0000               | 0.0000  | 0.0000                 | 0%         |
| 3           | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000               | 0.0000               | 0.0000  | 0.0000                 | 0%         |
| 4           | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000               | 0.0000               | 0.0000  | 0.0000                 | 0%         |
| 5           | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000               | 0.0000               | 0.0000  | 0.0000                 | 0%         |
| 6           | 0.0535           | 0.0459           | 0.2837           | 1.1487             | 4.9561               | 13.4298              | 25.8945              | 40.9630              | 24.2870              | 4.3635  | 115.4256               | 4%         |
| 7           | 0.1425           | 0.1209           | 0.7479           | 3.0284             | 13.0665              | 35.4067              | 68.2691              | 107.9961             | 64.0308              | 11.5040 | 304.3129               | 119        |
| 8           | 0.2583           | 0.2183           | 1.3507           | 5.4691             | 23.5975<br>36.0785   | 63.9429<br>97.7633   | 123.2910<br>188.5014 | 195.0361<br>298.1937 | 115.6369<br>176.7989 | 20.7758 | 549.5765               | 209        |
| 9<br>10     | 0.3949<br>0.5062 | 0.3338           | 2.0651<br>2.6473 | 8.3619<br>10.7196  | 46.2513              | 125.3290             | 241.6520             | 382.2735             | 226.6498             |         | 840.2559<br>1077.1773  | 409        |
| 11          | 0.5915           | 0.5063           | 3.1327           | 12.6851            | 54.7317              | 148.3085             | 285.9599             | 452.3649             | 268.2070             |         | 1274.6749              | 489        |
| 12          | 0.6541           | 0.5708           | 3.5317           | 14.3008            | 61.7029              | 167.1987             | 322.3828             | 509.9830             | 302.3686             |         | 1437.0184              | 549        |
| 13          | 0.6991           | 0.6246           | 3.8645           | 15.6481            | 67.5162              | 182.9512             | 352.7558             | 558.0306             | 330.8559             | 59.4430 | 1572.3889              | 599        |
| 14          | 0.7303           | 0.6702           | 4.1468           | 16.7912            | 72.4481              | 196.3153             | 378.5237             | 598.7933             | 355.0241             | 63.7851 | 1687.2282              | 639        |
| 15          | 0.7550           | 0.7094           | 4.3889           | 17.7718            | 76.6791              | 207.7802             | 400.6297             | 633.7631             | 375.7577             | 67.5102 | 1785.7451              | 679        |
| 16          | 0.7717           | 0.7458           | 4.5985           | 18.6202            | 80.3397              | 217.6995             | 419.7555             | 664.0185             | 393.6961             |         | 1870.9785              | 709        |
| 17          | 0.7823           | 0.7799           | 4.7810           | 19.3593            | 83.5286              | 226.3405             | 436.4165             | 690.3748             | 409.3229             | 73.5406 | 1945.2265              | 739        |
| 18<br>19    | 0.7879<br>0.7892 | 0.8121<br>0.8425 | 4.9409<br>5.0817 | 20.0068            | 86.3225<br>88.7824   | 233.9113             | 451.0140<br>463.8667 | 713.4669<br>733.7988 | 423.0141<br>435.0690 |         | 2010.2769<br>2067.5507 | 759        |
| 20          | 0.7897           | 0.8693           | 5.2062           | 21.0812            | 90.9578              | 246.4717             | 475.2323             | 751.7784             | 445.7289             |         | 2118.1971              | 799        |
| 21          | 0.7898           | 0.8980           | 5.3168           | 21.5287            | 92.8889              | 251.7045             | 485.3218             | 767.7391             | 455.1920             |         | 2163.1612              | 819        |
| 22          | 0.7898           | 0.9279           | 5.4152           | 21.9274            | 94.6091              | 256.3659             | 494.3098             | 781.9573             | 463.6220             | 83.2962 | 2203.2208              | 829        |
| 23          | 0.7898           | 0.9590           | 5.5032           | 22.2837            | 96.1465              | 260.5318             | 502.3422             | 794.6638             | 471.1557             | 84.6498 | 2239.0256              | 839        |
| 24          | 0.7898           | 0.9912           | 5.5821           | 22.6031            | 97.5244              | 264.2657             | 509.5415             | 806.0526             | 477.9082             | 85.8630 | 2271.1215              | 859        |
| 25          | 0.7898           | 1.0203           | 5.6530           | 22.8901            | 98.7629              | 267.6216             | 516.0123             | 816.2885             | 483.9771             | 86.9533 | 2299.9689              | 869        |
| 26          | 0.7898           | 1.0416           | 5.7289           | 23.1488            | 99.8788              | 270.6456             | 521.8430             | 825.5122             | 489.4458             | 87.9358 | 2325.9703              | 879        |
| 27          | 0.7898           | 1.0555           | 5.8086           | 23.3824            | 100.8869             | 273.3770             | 527.1096             | 833.8435             | 494.3856             |         | 2349.4622              | 889        |
| 28          | 0.7898           | 1.0631           | 5.8913           | 23.5939            | 101.7995             | 275.8500             | 531.8779             | 841.3865             | 498.8579             |         | 2370.7368              | 889        |
| 29          | 0.7898           | 1.0650           | 5.9765<br>6.0542 | 23.7858            | 102.6276             | 278.0939             | 536.2043             | 848.2308             | 502.9158             |         | 2390.0454              | 899        |
| 30<br>31    | 0.7898<br>0.7898 | 1.0656           | 6.0542<br>6.1341 | 23.9604            | 103.3806<br>104.0666 | 280.1343<br>281.9932 | 540.1384<br>543.7227 | 854.4540<br>860.1242 | 506.6055<br>509.9673 |         | 2407.6015<br>2423.6057 | 909        |
| 31          | 0.7898           | 1.0657           | 6.2147           | 24.1194            | 104.6928             | 283.6902             | 546.9948             | 865.3004             | 513.0363             |         | 2423.6057              | 919        |
| 33          | 0.7898           | 1.0657           | 6.2968           | 24.3973            | 104.6926             | 285.2423             | 549.9875             | 870.0349             | 515.8432             | 92.1742 | 2450.2252              | 919        |
| 34          | 0.7898           | 1.0657           | 6.3813           | 24.5189            | 105.7905             | 286.6645             | 552.7297             | 874.3728             | 518.4151             |         | 2463.8688              | 929        |
| 35          | 0.7898           | 1.0657           | 6.4614           | 24.6306            | 106.2723             | 287.9700             | 555.2468             | 878.3546             | 520.7761             |         | 2475.1319              | 929        |
| 36          | 0.7898           | 1.0657           | 6.5216           | 24.7568            | 106.7153             | 289.1705             | 557.5614             | 882.0162             | 522.9470             | 93.9548 | 2485.4990              | 939        |
| 37          | 0.7898           | 1.0657           | 6.5626           | 24.8950            | 107.1233             | 290.2762             | 559.6934             | 885.3887             | 524.9466             | 94.3140 | 2495.0552              | 939        |
| 38          | 0.7898           | 1.0657           | 6.5855           | 25.0439            | 107.4998             | 291.2963             | 561.6604             | 888.5002             | 526.7914             |         | 2503.8785              | 939        |
| 39          | 0.7898           | 1.0657           | 6.5911           | 25.2029            | 107.8477             | 292.2390             | 563.4781             | 891.3756             | 528.4963             |         | 2512.0379              | 949        |
| 40          | 0.7898           | 1.0657           | 6.5931           | 25.3533            | 108.1697             | 293.1115             | 565.1603             | 894.0369             | 530.0742             |         | 2519.5897              | 949        |
| 41          | 0.7898           | 1.0657           | 6.5934           | 25.5245            | 108.4682             | 293.9203             | 566.7198             | 896.5038             | 531.5370             | 95.4980 | 2526.6206              | 949        |
| 42          | 0.7898           | 1.0657           | 6.5934           | 25.7136<br>25.9190 | 108.7453             | 294.6712<br>295.3694 | 568.1677<br>569.5139 | 898.7943             | 532.8950             |         | 2533.1778<br>2539.3040 | 949        |
| 43<br>44    | 0.7898<br>0.7898 | 1.0657           | 6.5934<br>6.5934 | 26.1395            | 109.0029             | 295.3694             | 570.7673             | 900.9236<br>902.9064 | 534.1575<br>535.3329 |         | 2539.3040              | 959<br>959 |
| 45          | 0.7898           | 1.0657           | 6.5934           | 26.3509            | 109.4665             | 296.6255             | 571.9360             | 904.7554             | 536.4292             | 96.3770 | 2550.3895              | 959        |
| 46          | 0.7898           | 1.0657           | 6.5934           | 26.5098            | 109.7645             | 297.1915             | 573.0273             | 906.4820             | 537.4528             |         | 2555.4377              | 959        |
| 47          | 0.7898           | 1.0657           | 6.5934           | 26.6177            | 110.1276             | 297.7207             | 574.0477             | 908.0961             | 538.4097             | 96.7329 | 2560.2012              | 959        |
| 48          | 0.7898           | 1.0657           | 6.5934           | 26.6775            | 110.5532             | 298.2162             | 575.0031             | 909.6075             | 539.3058             | 96.8939 | 2564.7059              | 969        |
| 49          | 0.7898           | 1.0657           | 6.5934           | 26.6921            | 111.0352             | 298.6807             | 575.8987             | 911.0242             | 540.1459             | 97.0448 | 2568.9704              | 969        |
| 50          | 0.7898           | 1.0657           | 6.5934           | 26.6972            | 111.4981             | 299.1167             | 576.7395             | 912.3541             | 540.9346             | 97.1864 | 2572.9755              | 969        |
| 51          | 0.7898           | 1.0657           | 6.5934           | 26.6980            | 112.0103             | 299.5266             | 577.5295             | 913.6044             | 541.6755             | 97.3196 | 2576.8127              | 969        |
| 52          | 0.7898           | 1.0657           | 6.5934           | 26.6980            | 112.5538             | 299.9123             | 578.2734             | 914.7806             | 542.3730             |         | 2580.4849              | 969        |
| 53          | 0.7898           | 1.0657           | 6.5934           | 26.6980            | 113.1261             | 300.2757             | 578.9740             | 915.8888             | 543.0301             |         | 2584.0045              | 969        |
| 54<br>55    | 0.7898<br>0.7898 | 1.0657           | 6.5934<br>6.5934 | 26.6980<br>26.6980 | 113.7236<br>114.2848 | 300.6185<br>300.9422 | 579.6351<br>580.2592 | 916.9344<br>917.9218 | 543.6500<br>544.2355 |         | 2587.3828<br>2590.5700 | 969        |
| 56          | 0.7898           | 1.0657           | 6.5934           | 26.6980            | 114.2040             | 301.4614             | 580.8492             | 918.8555             | 544.7890             | 97.7795 | 2593.6846              | 979        |
| 57          | 0.7898           | 1.0657           | 6.5934           | 26.6980            | 114.9850             | 302.1563             | 581.4077             | 919.7390             | 545.3129             | 97.9731 | 2596.7208              | 979        |
| 58          | 0.7898           | 1.0657           | 6.5934           | 26.6980            | 115.1394             | 303.0232             | 581.9367             | 920.5761             | 545.8094             | 98.0623 | 2599.6940              | 979        |
| 59          | 0.7898           | 1.0657           | 6.5934           | 26.6980            | 115.1773             | 304.0506             | 582.4388             | 921.3703             | 546.2802             | 98.1469 | 2602.6109              | 979        |
| 60          | 0.7898           | 1.0657           | 6.5934           | 26.6980            | 115.1904             | 305.0212             | 582.9155             | 922.1244             | 546.7272             |         | 2605.3528              | 979        |
| 61          | 0.7898           | 1.0657           | 6.5934           | 26.6980            | 115.1924             | 306.0493             | 583.3687             | 922.8411             | 547.1521             | 98.3036 | 2608.0540              | 979        |
| 62          | 0.7898           | 1.0657           | 6.5934           |                    | 115.1924             |                      | 583.7997             |                      | 547.5564             |         | 2610.7072              | 979        |
| 63          | 0.7898           | 1.0657           | 6.5934           | 26.6980            | 115.1924             | 308.2133             | 584.2103             | 924.1721             | 547.9414             |         | 2613.3216              | 979        |
| 64          | 0.7898           | 1.0657           | 6.5934           |                    |                      |                      |                      | 924.7910             |                      |         | 2615.9065              | 989        |
| 65          | 0.7898           | 1.0657           | 6.5934           |                    | 115.1924             |                      | 584.9749             |                      | 548.6585             |         | 2618.3568              | 989        |
| 66<br>67    | 0.7898<br>0.7898 | 1.0657           | 6.5934<br>6.5934 |                    |                      |                      | 585.6644<br>586.6439 |                      | 548.9928<br>549.3123 |         | 2620.8046<br>2623.2278 | 989        |
| 68          | 0.7898           | 1.0657           | 6.5934           |                    |                      | 311.7563             |                      |                      | 549.3123<br>549.6180 |         | 2623.2278              | 989        |
| 69          | 0.7898           | 1.0657           | 6.5934           | 26.6980            | 115.1924             | 312.1137             | 589.3950             | 927.4936             | 549.9105             |         | 2628.0512              | 989        |
| 70          | 0.7898           | 1.0657           | 6.5934           |                    |                      | 312.1380             |                      |                      | 550.1909             |         | 2630.3503              | 989        |
| 71          | 0.7898           | 1.0657           | 6.5934           | 26.6980            | 115.1924             | 312.1415             | 592.4332             | 928.4199             | 550.4597             |         | 2632.6913              | 989        |
| 72          | 0.7898           | 1.0657           | 6.5934           | 26.6980            | 115.1924             | 312.1415             | 594.0400             | 928.8548             | 550.7177             |         | 2635.0374              | 989        |
| 73          | 0.7898           | 1.0657           | 6.5934           |                    |                      | 312.1415             | 595.7025             | 929.2723             | 550.9655             | 98.9887 | 2637.4097              | 989        |
| 74          | 0.7898           | 1.0657           | 6.5934           |                    |                      | 312.1415             |                      |                      | 551.2035             |         | 2639.8075              | 989        |
| 75          | 0.7898           | 1.0657           | 6.5934           |                    |                      | 312.1415             |                      | 930.0600             | 551.4324             |         | 2642.1204              | 999        |
| 76          | 0.7898           | 1.0657           | 6.5934           |                    | 115.1924             |                      | 600.3352             |                      | 551.6526             |         | 2644.5178              | 999        |
| 77<br>78    | 0.7898<br>0.7898 | 1.0657           | 6.5934           | 26.6980            | 115.1924             | 312.1415             | 601.1995<br>601.6859 | 932.2667             | 551.8647<br>552.0693 |         | 2646.9618              | 999        |
| 78<br>79    | 0.7898           | 1.0657           | 6.5934<br>6.5934 |                    | 115.1924<br>115.1924 |                      | 601.6859             | 934.0361<br>936.2149 | 552.0693<br>552.2663 |         | 2649.4589<br>2651.9890 | 999        |
| 80          | 0.7898           | 1.0657           | 6.5934           |                    | 115.1924             |                      | 601.8465             | 938.3788             | 552.4565             |         | 2654.4190              | 999        |
| 81          | 0.7898           | 1.0657           | 6.5934           |                    |                      | 312.1415             | 601.8527             | 940.5839             | 552.6398             |         | 2656.8466              | 999        |
| 82          | 0.7898           | 1.0657           | 6.5934           |                    |                      | 312.1415             |                      |                      | 552.8171             |         | 2659.2348              | 999        |
| 83          | 0.7898           | 1.0657           | 6.5934           |                    |                      | 312.1415             |                      | 944.8954             | 552.9884             |         | 2661.5694              | 999        |
| 84          | 0.7898           | 1.0657           | 6.5934           | 26.6980            | 115.1924             | 312.1415             | 601.8527             | 946.9879             | 553.1539             | 99.3819 | 2663.8571              | 999        |
| 85          | 0.7898           | 1.0657           | 6.5934           | 26.6980            | 115.1924             | 312.1415             | 601.8527             | 948.9378             | 553.3143             | 99.4107 | 2665.9961              | 999        |
| 86          | 0.7898           | 1.0657           | 6.5934           |                    |                      | 312.1415             |                      |                      | 553.8669             |         | 2668.0242              | 999        |
| 87          | 0.7898           | 1.0657           | 6.5934           |                    |                      |                      | 601.8527             | 951.3641             | 554.7578             |         | 2669.9208              | 100        |
| 88          | 0.7898           | 1.0657           | 6.5934           |                    | 115.1924             |                      | 601.8527             |                      | 555.9492             |         | 2671.6718              | 100        |
| 89          | 0.7898           | 1.0657           | 6.5934           |                    |                      | 312.1415             | 601.8527             | 952.0292             | 557.4022             |         | 2673.2819              | 100        |
| 90          | 0.7898           | 1.0657           | 6.5934           |                    |                      | 312.1415             |                      |                      | 558.7705             |         | 2674.7200              | 100        |
| 91          | 0.7898           | 1.0657           | 6.5934           |                    |                      | 312.1415             |                      | 952.0811             | 560.0114             |         | 2675.9913              | 100        |
| 92          | 0.7898           | 1.0657           | 6.5934           |                    |                      | 312.1415             |                      | 952.0811             | 561.0969             |         | 2677.1000              | 100        |
| 93          | 0.7898           | 1.0657           | 6.5934           | 26.6980            | 115.1924             | 312.1415             | 601.8527             | 952.0811             | 562.0344             |         | 2678.0600              | 100        |
| 94<br>95    | 0.7898           | 1.0657           | 6.5934           |                    |                      | 312.1415<br>312.1415 |                      | 952.0811<br>952.0811 | 562.8295<br>563.5023 |         | 2678.8770<br>2679.5709 | 100        |
| 95<br>96    | 0.7898<br>0.7898 | 1.0657           | 6.5934<br>6.5934 |                    |                      | 312.1415             |                      | 952.0811<br>952.0811 | 563.5023<br>563.9747 |         | 2679.5709<br>2680.1534 | 100        |
| 96<br>97    | 0.7898           | 1.0657           | 6.5934<br>6.5934 |                    | 115.1924             |                      | 601.8527<br>601.8527 | 952.0811<br>952.0811 | 563.9747<br>564.2756 |         | 2680.1534<br>2680.6346 | 100        |
| 97          | 0.7898           | 1.0657           | 6.5934           |                    |                      | 312.1415             |                      |                      | 564.4344             |         | 2680.6346              | 100        |
| 30          | 0.7898           | 1.0657           | 6.5934           |                    |                      | 312.1415             |                      |                      | 564.4737             |         | 2681.3468              | 100        |
| 99          |                  |                  |                  |                    |                      | U1413                | 001.002/             | UU2.UO11             | 004.413/             |         |                        |            |

### Exhibit E.42b Yearly Cancer Cases Avoided by System Size

Smoking/Lung Cancer Model - Surface Water Systems

### TTHM - Alternative 3

|       |      | <100 |      |       | 100-499 |       |       | 500-999 |              |                | 1,000-3,299 |                |        | 3,300-9,999    |          |                  | 10,000-49,999     |                  | 5        | 0,000-99,999 |                  | 1                | 00,000-999,99    | 9                    |                  | ≥1,000,000       |                     |
|-------|------|------|------|-------|---------|-------|-------|---------|--------------|----------------|-------------|----------------|--------|----------------|----------|------------------|-------------------|------------------|----------|--------------|------------------|------------------|------------------|----------------------|------------------|------------------|---------------------|
| Year  | mean | 5th  | 95th | mean  | 5th     | 95th  | mean  | 5th     | 95th         | mean           | 5th         | 95th           | mean   | 5th            | 95th     | mean             | 5th               | 95th             | mean     | 5th          | 95th             | mean             | 5th              | 95th                 | mean             | 5th              | 95th                |
| 2005  |      | -    | -    | -     | -       | -     | -     |         |              | -              | -           | -              | -      | -              | -        | -                | -                 |                  | -        | -            |                  |                  | -                | -                    | -                | -                | -                   |
| 2006  | -    | -    | -    | -     | -       |       | -     |         |              | -              | -           | -              | -      | -              | -        | -                | -                 |                  | -        | -            | -                | -                | -                | -                    | -                | -                | -                   |
| 2007  | -    | -    | -    | -     | -       | -     | -     | -       | -            | -              | -           | -              | -      | -              | -        | -                | -                 | -                | -        | -            | -                | -                | -                | -                    | -                | -                | -                   |
| 2008  | -    | -    | -    | -     | -       | -     | -     | -       | -            | -              | -           | -              | -      | -              | -        | -                | -                 | -                | -        | -            | -                | -                | -                | -                    | -                | -                | -                   |
| 2009  | -    | -    | -    | -     | -       | -     | -     | -       |              | -              | -           | -              | -      | -              | -        | -                | -                 | -                | -        | -            | -                |                  | -                | -                    | -                | -                | -                   |
| 2010  | 0.01 | 0.00 | 0.02 | 0.07  | 0.03    | 0.18  | 0.13  | 0.05    | 0.32         | 0.85           | 0.32        | 2.06           | 2.43   | 0.91           | 5.89     | 11.42            | 4.26              | 27.71            | 9.95     | 3.71         | 24.15            | 44.03            | 16.43            | 106.83               | 37.47            | 13.99            | 90.91               |
| 2011  | 0.02 | 0.01 | 0.05 | 0.20  | 0.08    | 0.43  | 0.35  | 0.14    | 0.75         | 2.24           | 0.90        | 4.85           | 6.40   | 2.59           | 13.86    | 30.11            | 12.17             | 65.18            | 26.24    | 10.60        | 56.80            | 116.08           | 46.90            | 251.27               | 98.79            | 39.92            | 213.85              |
| 2012  | 0.04 | 0.02 | 0.08 | 0.36  | 0.15    | 0.72  | 0.63  | 0.27    | 1.26         | 4.04           | 1.73        | 8.14           | 11.56  | 4.94           | 23.28    | 54.38            | 23.26             | 109.48           | 47.39    | 20.27        | 95.40            | 209.63           | 89.65            | 422.02               | 178.41           | 76.30            | 359.17              |
| 2013  | 0.06 | 0.03 | 0.11 | 0.54  | 0.24    | 1.03  | 0.96  | 0.43    | 1.82         | 6.18           | 2.76        | 11.75          | 17.68  | 7.90           | 33.62    | 83.14            | 37.13             | 158.12           | 72.45    | 32.36        | 137.79           | 320.51           | 143.14           | 609.54               | 272.77           | 121.82           | 518.76              |
| 2014  | 0.08 | 0.04 | 0.15 | 0.76  | 0.35    | 1.38  | 1.33  | 0.61    | 2.43         | 8.59           | 3.95        | 15.66          | 24.58  | 11.30          | 44.79    | 115.62           | 53.16             | 210.67           | 95.78    | 44.47        | 171.51           | 401.69           | 188.50           | 705.30               | 341.86           | 160.42           | 600.25              |
| 2015  | 0.11 | 0.05 | 0.19 | 0.99  | 0.47    | 1.74  | 1.74  | 0.82    | 3.07         | 11.24          | 5.31        | 19.81          | 32.15  | 15.18          | 56.67    | 145.51           | 69.25             | 252.65           | 113.68   | 55.04        | 191.76           | 466.89           | 228.26           | 776.08               | 397.35           | 194.26           | 660.49              |
| 2016  | 0.13 | 0.06 | 0.22 | 1.20  | 0.58    | 2.04  | 2.12  | 1.03    | 3.59         | 13.66          | 6.63        | 23.14          | 39.08  | 18.96          | 66.21    | 168.72           | 83.10             | 278.78           | 128.31   | 64.14        | 207.30           | 520.84           | 262.36           | 831.69               | 443.26           | 223.28           | 707.82              |
| 2017  | 0.15 | 0.07 | 0.24 | 1.37  | 0.68    | 2.23  | 2.41  | 1.20    | 3.92         | 15.56          | 7.76        | 25.29          | 44.50  | 22.20          | 72.33    | 187.80           | 94.93             | 299.29           | 140.54   | 71.85        | 220.31           | 566.28           | 291.10           | 880.84               | 481.94           | 247.74           | 749.65              |
| 2018  | 0.16 | 0.08 | 0.26 | 1.51  | 0.77    | 2.37  | 2.66  | 1.36    | 4.18         | 17.12          | 8.74        | 26.98          | 48.97  | 25.01          | 77.17    | 203.81           | 105.16            | 316.47           | 150.92   | 78.61        | 231.68           | 605.04           | 316.85           | 923.64               | 514.93           | 269.66           | 786.07              |
| 2019  | 0.17 | 0.09 | 0.27 | 1.62  | 0.84    | 2.50  | 2.86  | 1.48    | 4.40         | 18.44          | 9.56        | 28.40          | 52.75  | 27.35          | 81.25    | 217.45           | 113.67            | 331.52           | 159.83   | 84.13        | 241.67           | 638.42           | 337.05           | 961.49               | 543.33           | 286.85           | 818.29              |
| 2020  | 0.19 | 0.10 | 0.28 | 1.72  | 0.90    | 2.61  | 3.03  | 1.59    | 4.60         | 19.57          | 10.26       | 29.67          | 55.97  | 29.34          | 84.88    | 229.19           | 120.84            | 345.02           | 167.53   | 88.68        | 250.74           | 667.37           | 353.88           | 996.05               | 567.97           | 301.18           | 847.69              |
| 2021  | 0.19 | 0.10 | 0.29 | 1.81  | 0.95    | 2.71  | 3.18  | 1.68    | 4.78         | 20.54          | 10.84       | 30.79          | 58.75  | 31.01          | 88.09    | 239.36           | 126.78            | 357.01           | 174.24   | 92.50        | 258.77           | 692.64           | 368.07           | 1,026.41             | 589.48           | 313.25           | 873.54              |
| 2022  | 0.20 | 0.11 | 0.30 | 1.88  | 1.00    | 2.80  | 3.32  | 1.76    | 4.93         | 21.38          | 11.33       | 31.79          | 61.16  | 32.41          | 90.93    | 248.24           | 131.77            | 367.61           | 180.12   | 95.64        | 265.85           | 714.83           | 379.32           | 1,053.39             | 608.36           | 322.82           | 896.50              |
| 2023  | 0.21 | 0.11 | 0.31 | 1.95  | 1.03    | 2.88  | 3.43  | 1.82    | 5.07         | 22.12          | 11.76       | 32.68          | 63.27  | 33.63          | 93.48    | 256.03           | 136.14            | 377.10           | 185.29   | 98.52        | 272.27           | 734.39           | 390.62           | 1,077.91             | 625.01           | 332.44           | 917.37              |
| 2024  | 0.22 | 0.11 | 0.32 | 2.00  | 1.07    | 2.95  | 3.53  | 1.88    | 5.19         | 22.77          | 12.13       | 33.50          | 65.13  | 34.70          | 95.81    | 262.90           | 140.12            | 385.97           | 189.87   | 101.29       | 278.24           | 751.71           | 401.25           | 1,100.43             | 639.75           | 341.49           | 936.53              |
| 2025  | 0.22 | 0.12 | 0.32 | 2.05  | 1.10    | 3.01  | 3.62  | 1.93    | 5.31         | 23.34          | 12.46       | 34.22          | 66.77  | 35.65          | 97.90    | 268.99           | 143.80            | 393.75           | 193.93   | 103.82       | 283.44           | 767.10           | 411.08           | 1,120.37             | 652.85           | 349.85           | 953.50              |
| 2026  | 0.23 | 0.12 | 0.33 | 2.10  | 1.12    | 3.07  | 3.70  | 1.98    | 5.41         | 23.85          | 12.77       | 34.88          | 68.22  | 36.54          | 99.76    | 274.40           | 147.20            | 400.71           | 197.55   | 106.21       | 288.22           | 780.84           | 420.44           | 1,138.85             | 664.54           | 357.82           | 969.23              |
| 2027  | 0.23 | 0.12 | 0.34 | 2.14  | 1.15    | 3.12  | 3.77  | 2.02    | 5.50         | 24.30          | 13.06       | 35.46          | 69.51  | 37.35          | 101.44   | 279.22           | 150.32            | 407.13           | 200.78   | 108.32       | 292.62           | 793.12           | 428.34           | 1,155.67             | 674.99           | 364.54           | 983.55              |
| 2028  | 0.23 | 0.13 | 0.34 | 2.17  | 1.17    | 3.17  | 3.83  | 2.06    | 5.58<br>5.66 | 24.70<br>25.07 | 13.30       | 36.01<br>36.52 | 70.67  | 38.05<br>38.69 | 103.01   | 283.54<br>287.41 | 152.96<br>155.22  | 413.13<br>418.51 | 203.68   | 110.00       | 296.59<br>300.22 | 804.14<br>814.05 | 434.46<br>439.97 | 1,170.35<br>1,184.64 | 684.37<br>692.81 | 369.75<br>374.44 | 996.04              |
| Total | 3.08 | 1.60 | 4.75 | 28.66 | 14.89   | 44.16 | 50.49 | 26.22   | 77.79        | 325.55         | 169.10      | 501.59         | 931,25 | 483.71         | 1,434.84 | 3.847.25         | 2.001.23          | 5.915.80         | 2.844.35 | 1,481.61     | 4,365,33         | 11,409.59        | 5.947.68         | 17,492.80            | 9.710.23         | 5.061.82         | 14,887.40           |
| Avg.  | 0.12 | 0.06 | 0.19 | 1.15  | 0.60    | 1.77  | 2.02  | 1.05    | 3.11         | 13.02          | 6.76        | 20.06          | 37.25  | 19.35          | 57.39    | 153.89           | 2,001.23<br>80.05 | 236.63           | 2,844.35 | 59.26        | 174.61           | 456.38           | 237.91           | 699.71               | 388.41           | 202.47           | 14,887.40<br>595.50 |

Avg. - All Size Categories 1,166.02 607.51 1,788.98

### Exhibit E.42c Yearly Cancer Cases Avoided by System Size

Smoking/Lung Cancer Model - Ground Water Systems

### TTHM - Alternative 3

|               |      | <100 |              |               | 100-499 |               |       | 500-999 |       | 1             | ,000-3,299 |               |               | 3,300-9,999   | )            | 1                 | 0,000-49,999    |                | 50,             | ,000-99,999    |                 | 100             | ,000-999,       | 999               | 2              | ≥1,000,000    | 0              |
|---------------|------|------|--------------|---------------|---------|---------------|-------|---------|-------|---------------|------------|---------------|---------------|---------------|--------------|-------------------|-----------------|----------------|-----------------|----------------|-----------------|-----------------|-----------------|-------------------|----------------|---------------|----------------|
| Year          | mean | 5th  | 95th         | mean          | 5th     | 95th          | mean  | 5th     | 95th  | mean          | 5th        | 95th          | mean          | 5th           | 95th         | mean              | 5th             | 95th           | mean            | 5th            | 95th            | mean            | 5th             | 95th              | mean           | 5th           | 95th           |
| 2005          | -    | -    | -            | -             | -       |               | -     | -       | -     | -             | -          | -             | -             | -             | -            |                   | -               | -              | -               | -              | -               | -               | -               | -                 | -              | - '           | -              |
| 2006          | -    | -    | -            | -             | -       |               | -     | -       | -     | -             |            | -             | -             |               | -            | -                 | -               | -              | -               | -              | -               | -               | -               | -                 | -              | -             | -              |
| 2007          | -    | -    | -            | -             | -       |               | -     | -       | -     | -             | -          | -             | -             | -             |              | -                 | -               | -              | -               | -              | -               | -               | -               | -                 | -              | - '           | -              |
| 2008          | -    | -    | -            | -             | -       |               | -     | -       | -     | -             |            | -             | -             |               | -            | -                 | -               | -              | -               | -              | -               | -               | -               | -                 | -              | -             | -              |
| 2009          | -    | -    | -            | -             | -       |               | -     | -       | -     | -             | -          | -             | -             |               | -            | -                 | -               | -              | -               | -              | -               | -               | -               | -                 | -              | -             | -              |
| 2010          | 0.01 | 0.00 | 0.02         | 0.05          | 0.02    | 0.11          | 0.05  | 0.02    | 0.12  | 0.15          | 0.06       | 0.36          | 0.23          | 0.09          | 0.57         | 3.10              | 1.16            | 7.51           | 1.30            | 0.48           | 3.14            | 3.59            | 1.34            | 8.72              | 0.60           | 0.22          | 1.45           |
| 2011          | 0.02 | 0.01 | 0.04         | 0.12          | 0.05    | 0.26          | 0.13  | 0.05    | 0.28  | 0.39          | 0.16       | 0.84          | 0.62          | 0.25          | 1.34         | 8.16              | 3.30            | 17.67          | 3.42            | 1.38           | 7.40            | 9.47            | 3.83            | 20.50             | 1.58           | 0.64          | 3.41           |
| 2012          | 0.03 | 0.01 | 0.06         | 0.22          | 0.09    | 0.44          | 0.23  | 0.10    | 0.47  | 0.70          | 0.30       | 1.42          | 1.11          | 0.48          | 2.24         | 14.74             | 6.30            | 29.67          | 6.17            | 2.64           | 12.42           | 17.11           | 7.32            | 34.44             | 2.85           | 1.22          | 5.74           |
| 2013          | 0.05 | 0.02 | 0.09         | 0.34          | 0.15    | 0.64          | 0.36  | 0.16    | 0.68  | 1.08          | 0.48       | 2.05          | 1.70          | 0.76          | 3.24         | 22.53             | 10.06           | 42.85          | 9.44            | 4.21           | 17.94           | 26.15           | 11.68           | 49.74             | 4.36           | 1.95          | 8.28           |
| 2014          | 0.06 | 0.03 | 0.12         | 0.47          | 0.21    | 0.85          | 0.50  | 0.23    | 0.90  | 1.50          | 0.69       | 2.73          | 2.37          | 1.09          | 4.32         | 31.34             | 14.41           | 57.10          | 12.47           | 5.79           | 22.34           | 32.78           | 15.38           | 57.56             | 5.46           | 2.56          | 9.58           |
| 2015          | 0.08 | 0.04 | 0.15         | 0.61          | 0.29    | 1.08          | 0.65  | 0.31    | 1.14  | 1.96          | 0.93       | 3.45<br>4.04  | 3.10          | 1.46          | 5.46<br>6.38 | 39.44<br>45.73    | 18.77<br>22.52  | 68.47<br>75.55 | 14.80           | 7.17<br>8.35   | 24.97           | 38.10<br>42.50  | 18.63           | 63.33<br>67.87    | 7.08           | 3.10          | 10.55          |
| 2017          | 0.10 | 0.05 | 0.17         | 0.84          | 0.42    | 1.37          | 0.90  | 0.45    | 1.46  | 2.71          | 1.35       | 4.41          | 4.29          | 2.14          | 6.97         | 50.90             | 25.73           | 81.11          | 18.30           | 9.36           | 28.69           | 46.21           | 23.75           | 71.88             | 7.70           | 3.96          | 11.97          |
| 2018          | 0.13 | 0.06 | 0.20         | 0.93          | 0.47    | 1.46          | 0.99  | 0.51    | 1.56  | 2.98          | 1.52       | 4.70          | 4.72          | 2.41          | 7.44         | 55.24             | 28.50           | 85.77          | 19.65           | 10.24          | 30.17           | 49.37           | 25.86           | 75.37             | 8.22           | 4.31          | 12.55          |
| 2019          | 0.14 | 0.07 | 0.21         | 1.00          | 0.52    | 1.54          | 1.06  | 0.55    | 1.64  | 3.21          | 1.67       | 4.95          | 5.09          | 2.64          | 7.83         | 58.93             | 30.81           | 89.85          | 20.81           | 10.96          | 31.47           | 52.10           | 27.50           | 78.46             | 8.68           | 4.58          | 13.07          |
| 2020          | 0.14 | 0.08 | 0.22         | 1.06          | 0.56    | 1.61          | 1.13  | 0.59    | 1.71  | 3.41          | 1.79       | 5.17          | 5.40          | 2.83          | 8.18         | 62.11             | 32.75           | 93.51          | 21.82           | 11.55          | 32.65           | 54.46           | 28.88           | 81.28             | 9.07           | 4.81          | 13.54          |
| 2021          | 0.15 | 0.08 | 0.23         | 1.11          | 0.59    | 1.67          | 1.19  | 0.63    | 1.78  | 3.58          | 1.89       | 5.37          | 5.66          | 2.99          | 8.49         | 64.87             | 34.36           | 96.76          | 22.69           | 12.05          | 33.70           | 56.52           | 30.04           | 83.76             | 9.41           | 5.00          | 13.95          |
| 2022          | 0.16 | 0.08 | 0.23         | 1.16          | 0.61    | 1.73          | 1.23  | 0.65    | 1.84  | 3.73          | 1.98       | 5.54          | 5.90          | 3.12          | 8.77         | 67.28             | 35.71           | 99.63          | 23.46           | 12.46          | 34.62           | 58.33           | 30.95           | 85.96             | 9.71           | 5.15          | 14.31          |
| 2023          | 0.16 | 0.09 | 0.24         | 1.20          | 0.64    | 1.77          | 1.28  | 0.68    | 1.89  | 3.86          | 2.05       | 5.70          | 6.10          | 3.24          | 9.01         | 69.39             | 36.90           | 102.20         | 24.13           | 12.83          | 35.46           | 59.93           | 31.88           | 87.96             | 9.98           | 5.31          | 14.65          |
| 2024          | 0.17 | 0.09 | 0.25         | 1.24          | 0.66    | 1.82          | 1.31  | 0.70    | 1.93  | 3.97          | 2.11       | 5.84          | 6.28          | 3.35          | 9.24         | 71.25             | 37.97           | 104.60         | 24.73           | 13.19          | 36.24           | 61.34           | 32.74           | 89.80             | 10.22          | 5.45          | 14.95          |
| 2025          | 0.17 | 0.09 | 0.25         | 1.27          | 0.68    | 1.86          | 1.35  | 0.72    | 1.98  | 4.07          | 2.17       | 5.97          | 6.44          | 3.44          | 9.44         | 72.90             | 38.97           | 106.71         | 25.26           | 13.52          | 36.91           | 62.60           | 33.55           | 91.43             | 10.42          | 5.59          | 15.23          |
| 2026          | 0.18 | 0.09 | 0.26         | 1.29          | 0.69    | 1.89          | 1.38  | 0.74    | 2.01  | 4.16          | 2.23       | 6.08          | 6.58          | 3.52          | 9.62         | 74.37             | 39.89           | 108.60         | 25.73           | 13.83          | 37.53           | 63.72           | 34.31           | 92.93             | 10.61          | 5.71          | 15.48          |
| 2027          | 0.18 | 0.10 | 0.26         | 1.32          | 0.71    | 1.92          | 1.40  | 0.75    | 2.05  | 4.24          | 2.28       | 6.18          | 6.70          | 3.60          | 9.78         | 75.67             | 40.74           | 110.34         | 26.15           | 14.11          | 38.11           | 64.72           | 34.95           | 94.31             | 10.78          | 5.82          | 15.70          |
| 2028          | 0.18 | 0.10 | 0.26         | 1.34          | 0.72    | 1.95          | 1.43  | 0.77    | 2.08  | 4.31          | 2.32       | 6.28          | 6.81          | 3.67          | 9.93         | 76.84             | 41.45           | 111.97         | 26.52           | 14.33          | 38.63           | 65.62           | 35.45           | 95.50             | 10.93          | 5.90          | 15.90          |
| 2029          | 0.18 | 0.10 | 0.27         | 1.36          | 0.73    | 1.98          | 1.45  | 0.78    | 2.11  | 4.37          | 2.36       | 6.37          | 6.91          | 3.73          | 10.07        | 77.89             | 42.07           | 113.42         | 26.86           | 14.52          | 39.10           | 66.43           | 35.90           | 96.67             | 11.06          | 5.98          | 16.10          |
| Total<br>Avg. | 0.10 | 0.05 | 3.69<br>0.15 | 17.67<br>0.71 | 9.18    | 27.23<br>1.09 | 18.80 | 9.77    | 28.97 | 56.76<br>2.27 | 29.48      | 87.45<br>3.50 | 89.78<br>3.59 | 46.63<br>1.87 | 138.33       | 1,042.67<br>41.71 | 542.37<br>21.69 | 1,603.29       | 370.42<br>14.82 | 192.95<br>7.72 | 568.49<br>22.74 | 931.06<br>37.24 | 485.35<br>19.41 | 1,427.47<br>57.10 | 155.05<br>6.20 | 80.82<br>3.23 | 237.72<br>9.51 |

Avg. - All Size Categories 107.38 55.91 164.91

### Exhibit E.42d Yearly Cancer Cases Avoided by System Size

Smoking/Lung Cancer Model - All Water Systems

### TTHM - Alternative 3

|       |      | <100 |      |       | 100-499 |       |       | 500-999 |        |        | 1,000-3,299 |        |          | 3,300-9,999 | )        |          | 10,000-49,999 |          |          | 50,000-99,999 |          | 10        | 0,000-999,99 | 9         |          | ≥1,000,000 |           |
|-------|------|------|------|-------|---------|-------|-------|---------|--------|--------|-------------|--------|----------|-------------|----------|----------|---------------|----------|----------|---------------|----------|-----------|--------------|-----------|----------|------------|-----------|
| Year  | mean | 5th  | 95th | mean  | 5th     | 95th  | mean  | 5th     | 95th   | mean   | 5th         | 95th   | mean     | 5th         | 95th     | mean     | 5th           | 95th     | mean     | 5th           | 95th     | mean      | 5th          | 95th      | mean     | 5th        | 95th      |
| 2005  | -    | -    | -    | -     |         | -     | -     | -       |        |        |             | -      | -        | -           | -        | -        |               | -        | -        | -             | -        | -         | -            | -         | -        | -          | -         |
| 2006  | -    | -    | -    | -     | -       | -     | -     | -       | -      |        |             |        | -        | -           | -        | -        | -             | -        | -        | -             | -        | -         | -            | -         | -        | -          | -         |
| 2007  | -    | -    | -    | -     |         | -     | -     | -       |        | -      | -           | -      | -        | -           | -        | -        | -             | -        | -        | -             | •        | -         | -            | -         | -        | -          | -         |
| 2008  | -    | -    | -    | -     | -       | -     | -     | -       | -      |        |             |        | -        | -           | -        | -        | -             | -        | -        | -             | -        | -         | -            | -         | -        | -          | -         |
| 2009  | -    | -    | -    | -     | -       | -     | -     | -       | -      |        |             |        | -        | -           | -        | -        | -             | -        | -        | -             | -        | -         | -            | -         | -        | -          | -         |
| 2010  | 0.01 | 0.01 | 0.03 | 0.12  | 0.05    | 0.29  | 0.18  | 0.07    | 0.44   | 1.00   | 0.37        | 2.42   | 2.66     | 0.99        | 6.46     | 14.52    | 5.42          | 35.22    | 11.25    | 4.20          | 27.29    | 47.62     | 17.77        | 115.54    | 38.07    | 14.21      | 92.37     |
| 2011  | 0.04 | 0.02 | 0.08 | 0.32  | 0.13    | 0.69  | 0.48  | 0.19    | 1.03   | 2.63   | 1.06        | 5.69   | 7.02     | 2.84        | 15.20    | 38.27    | 15.46         | 82.85    | 29.66    | 11.98         | 64.20    | 125.55    | 50.73        | 271.77    | 100.36   | 40.55      | 217.26    |
| 2012  | 0.07 | 0.03 | 0.14 | 0.58  | 0.25    | 1.16  | 0.86  | 0.37    | 1.73   | 4.75   | 2.03        | 9.56   | 12.68    | 5.42        | 25.52    | 69.12    | 29.56         | 139.15   | 53.56    | 22.91         | 107.82   | 226.74    | 96.97        | 456.46    | 181.26   | 77.52      | 364.90    |
| 2013  | 0.10 | 0.05 | 0.20 | 0.88  | 0.39    | 1.67  | 1.32  | 0.59    | 2.50   | 7.26   | 3.24        | 13.80  | 19.38    | 8.66        | 36.86    | 105.68   | 47.19         | 200.97   | 81.89    | 36.57         | 155.73   | 346.66    | 154.82       | 659.28    | 277.13   | 123.77     | 527.04    |
| 2014  | 0.14 | 0.07 | 0.26 | 1.22  | 0.56    | 2.23  | 1.83  | 0.84    | 3.33   | 10.09  | 4.64        | 18.39  | 26.95    | 12.39       | 49.11    | 146.96   | 67.57         | 267.77   | 108.25   | 50.26         | 193.84   | 434.47    | 203.88       | 762.86    | 347.32   | 162.98     | 609.84    |
| 2015  | 0.19 | 0.09 | 0.33 | 1.60  | 0.76    | 2.82  | 2.39  | 1.13    | 4.22   | 13.20  | 6.23        | 23.26  | 35.25    | 16.64       | 62.13    | 184.95   | 88.01         | 321.12   | 128.49   | 62.21         | 216.73   | 504.99    | 246.88       | 839.41    | 403.69   | 197.36     | 671.04    |
| 2016  | 0.23 | 0.11 | 0.39 | 1.94  | 0.94    | 3.29  | 2.91  | 1.41    | 4.93   | 16.04  | 7.78        | 27.18  | 42.84    | 20.79       | 72.59    | 214.45   | 105.62        | 354.33   | 145.02   | 72.49         | 234.30   | 563.34    | 283.77       | 899.56    | 450.34   | 226.85     | 719.12    |
| 2017  | 0.26 | 0.13 | 0.43 | 2.21  | 1.10    | 3.60  | 3.31  | 1.65    | 5.38   | 18.27  | 9.12        | 29.69  | 48.79    | 24.35       | 79.30    | 238.69   | 120.66        | 380.40   | 158.84   | 81.20         | 249.00   | 612.50    | 314.85       | 952.72    | 489.64   | 251.70     | 761.62    |
| 2018  | 0.29 | 0.15 | 0.45 | 2.44  | 1.24    | 3.84  | 3.64  | 1.86    | 5.74   | 20.11  | 10.27       | 31.68  | 53.70    | 27.43       | 84.61    | 259.05   | 133.66        | 402.24   | 170.58   | 88.84         | 261.86   | 654.42    | 342.71       | 999.01    | 523.15   | 273.97     | 798.62    |
| 2019  | 0.31 | 0.16 | 0.48 | 2.62  | 1.36    | 4.04  | 3.92  | 2.03    | 6.05   | 21.65  | 11.23       | 33.36  | 57.83    | 29.98       | 89.08    | 276.39   | 144.47        | 421.37   | 180.64   | 95.08         | 273.14   | 690.51    | 364.56       | 1,039.95  | 552.00   | 291.43     | 831.35    |
| 2020  | 0.33 | 0.17 | 0.50 | 2.78  | 1.46    | 4.22  | 4.16  | 2.18    | 6.32   | 22.98  | 12.04       | 34.85  | 61.37    | 32.16       | 93.07    | 291.30   | 153.60        | 438.52   | 189.35   | 100.23        | 283.39   | 721.83    | 382.76       | 1,077.33  | 577.04   | 305.98     | 861.23    |
| 2021  | 0.35 | 0.18 | 0.52 | 2.92  | 1.54    | 4.38  | 4.37  | 2.31    | 6.55   | 24.12  | 12.73       | 36.16  | 64.41    | 34.00       | 96.58    | 304.23   | 161.14        | 453.77   | 196.93   | 104.54        | 292.47   | 749.16    | 398.10       | 1,110.17  | 598.89   | 318.25     | 887.49    |
| 2022  | 0.36 | 0.19 | 0.53 | 3.04  | 1.61    | 4.52  | 4.55  | 2.41    | 6.77   | 25.11  | 13.30       | 37.33  | 67.06    | 35.53       | 99.70    | 315.52   | 167.49        | 467.24   | 203.57   | 108.09        | 300.47   | 773.16    | 410.27       | 1,139.35  | 618.07   | 327.98     | 910.81    |
| 2023  | 0.37 | 0.20 | 0.55 | 3.15  | 1.67    | 4.65  | 4.71  | 2.50    | 6.95   | 25.98  | 13.81       | 38.37  | 69.37    | 36.87       | 102.49   | 325.42   | 173.04        | 479.30   | 209.42   | 111.35        | 307.72   | 794.32    | 422.50       | 1,165.88  | 634.99   | 337.75     | 932.02    |
| 2024  | 0.38 | 0.20 | 0.56 | 3.24  | 1.73    | 4.77  | 4.85  | 2.58    | 7.13   | 26.74  | 14.25       | 39.33  | 71.41    | 38.05       | 105.05   | 334.16   | 178.09        | 490.57   | 214.59   | 114.48        | 314.48   | 813.05    | 434.00       | 1,190.23  | 649.96   | 346.94     | 951.48    |
| 2025  | 0.39 | 0.21 | 0.58 | 3.32  | 1.77    | 4.87  | 4.97  | 2.65    | 7.28   | 27.41  | 14.64       | 40.19  | 73.20    | 39.09       | 107.33   | 341.89   | 182.77        | 500.46   | 219.18   | 117.34        | 320.35   | 829.70    | 444.63       | 1,211.80  | 663.28   | 355.44     | 968.73    |
| 2026  | 0.40 | 0.21 | 0.59 | 3.39  | 1.82    | 4.96  | 5.08  | 2.72    | 7.42   | 28.01  | 15.00       | 40.96  | 74.80    | 40.06       | 109.38   | 348.76   | 187.09        | 509.31   | 223.27   | 120.04        | 325.76   | 844.55    | 454.75       | 1,231.79  | 675.15   | 363.53     | 984.71    |
| 2027  | 0.41 | 0.22 | 0.60 | 3.46  | 1.86    | 5.05  | 5.17  | 2.78    | 7.55   | 28.54  | 15.33       | 41.65  | 76.21    | 40.95       | 111.22   | 354.89   | 191.06        | 517.47   | 226.93   | 122.43        | 330.72   | 857.84    | 463.30       | 1,249.98  | 685.77   | 370.36     | 999.25    |
| 2028  | 0.42 | 0.22 | 0.61 | 3.52  | 1.89    | 5.12  | 5.26  | 2.83    | 7.66   | 29.01  | 15.62       | 42.29  | 77.48    | 41.72       | 112.94   | 360.38   | 194.41        | 525.10   | 230.20   | 124.33        | 335.22   | 869.76    | 469.92       | 1,265.86  | 695.30   | 375.66     | 1,011.94  |
| 2029  | 0.42 | 0.23 | 0.61 | 3.57  | 1.92    | 5.20  | 5.33  | 2.88    | 7.77   | 29.44  | 15.88       | 42.88  | 78.61    | 42.42       | 114.53   | 365.30   | 197.29        | 531.94   | 233.15   | 125.98        | 339.32   | 880.48    | 475.87       | 1,281.32  | 703.87   | 380.42     | 1,024.30  |
| Total |      | 2.84 | 8.43 | 46.33 | 24.06   | 71.38 | 69.29 | 35.99   | 106.76 | 382.31 | 198.58      | 589.04 | 1,021.03 | 530.34      | 1,573.17 | 4,889.92 | 2,543.60      | 7,519.09 | 3,214.77 | 1,674.56      | 4,933.82 | 12,340.65 | 6,433.03     | 18,920.27 | 9,865.28 | 5,142.65   | 15,125.11 |
| Avg.  | 0.22 | 0.11 | 0.34 | 1.85  | 0.96    | 2.86  | 2.77  | 1.44    | 4.27   | 15.29  | 7.94        | 23.56  | 40.84    | 21.21       | 62.93    | 195.60   | 101.74        | 300.76   | 128.59   | 66.98         | 197.35   | 493.63    | 257.32       | 756.81    | 394.61   | 205.71     | 605.00    |

Avg. - All Size Categories 1,273.40 663.43 1,953.88

# Section E.7.6 Projection of Cases - Stage 2 Colorectal Cancer Sensitivity Analysis TTHM as Indicator Smoking/Lung Cancer Model

Exhibit E.43a Cases avoided by Age Group per year following rule promulgation (Smoking/Lung Cancer model - TTHM - Sensitivity Analysis)

| Vacra After             | 4 0              |                  | moking/L         | ung Car            | cer mod              | el - TTHM            | l - Sensiti          | ivity Anal             | ysis)                |                      |                        |              |
|-------------------------|------------------|------------------|------------------|--------------------|----------------------|----------------------|----------------------|------------------------|----------------------|----------------------|------------------------|--------------|
| Years After<br>the Rule | Age G<br>1-10    | 11-20            | 21-30            | 31-40              | 41-50                | 51-60                | 61-70                | 71-80                  | 81-90                | 91-100+              | Total                  | %            |
| 1                       | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000                 | 0.0000               | 0.0000               | 0.0000                 | 0%           |
| 2                       | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000                 | 0.0000               | 0.0000               | 0.0000                 | 0%           |
| 3<br>4                  | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000                 | 0.0000               | 0.0000               | 0.0000                 | 0%<br>0%     |
| 5                       | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000                 | 0.0000               | 0.0000               | 0.0000                 | 0%           |
| 6<br>7                  | 0.0000<br>0.0024 | 0.0000<br>0.0629 | 0.0000<br>0.4157 | 0.0000<br>2.1062   | 0.0000<br>7.5240     | 0.0000<br>17.6191    | 0.0000<br>29.5448    | 0.0000<br>43.3817      | 0.0000<br>29.5270    | 0.0000<br>5.9469     | 0.0000<br>136.1308     | 0%<br>4%     |
| 8                       | 0.0024           | 0.1595           | 1.0532           | 5.3362             | 19.0624              | 44.6389              | 74.8535              | 109.9101               | 74.8083              | 15.0669              | 344.8953               | 11%          |
| 9                       | 0.0115           | 0.2844           | 1.8780           | 9.5148             | 33.9893              | 79.5937              | 133.4681             | 195.9759               | 133.3875             | 26.8651              | 614.9682               | 19%          |
| 10<br>11                | 0.0176<br>0.0226 | 0.4350<br>0.5617 | 2.8730<br>3.7097 | 14.5559<br>18.7953 | 51.9977<br>67.1417   | 121.7647<br>157.2278 | 204.1832<br>263.6501 | 299.8093<br>387.1267   | 204.0598<br>263.4908 |                      | 940.7953<br>1214.7954  | 29%<br>38%   |
| 12                      | 0.0261           | 0.6772           | 4.4721           | 22.6576            | 80.9392              | 189.5378             | 317.8297             | 466.6805               | 317.6376             | 63.9743              | 1464.4322              | 46%          |
| 13<br>14                | 0.0283<br>0.0294 | 0.7795<br>0.8694 | 5.1480<br>5.7418 | 26.0822<br>29.0909 | 93.1727<br>103.9205  | 218.1855<br>243.3539 | 365.8681<br>408.0722 | 537.2169<br>599.1867   | 365.6469<br>407.8256 |                      | 1685.7718<br>1880.2292 | 53%<br>59%   |
| 15                      | 0.0296           | 0.9460           | 6.2475           | 31.6528            | 113.0724             | 264.7851             | 444.0094             | 651.9546               | 443.7411             |                      | 2045.8108              | 64%          |
| 16                      | 0.0297           | 1.0092           | 6.6652<br>7.0130 | 33.7692            | 120.6326             | 282.4891<br>297.2296 | 473.6966<br>498.4144 | 695.5453               | 473.4103             |                      | 2182.5952              | 68%          |
| 17<br>18                | 0.0297<br>0.0297 | 1.0663<br>1.1182 | 7.0130           | 35.5313<br>37.0119 | 126.9273<br>132.2163 | 309.6152             | 498.4144<br>519.1835 | 731.8394<br>762.3353   | 498.1133<br>518.8698 |                      | 2296.4874<br>2392.1888 | 72%<br>75%   |
| 19                      | 0.0297           | 1.1660           | 7.5535           | 38.2698            | 136.7101             | 320.1383             | 536.8295             | 788.2454               | 536.5049             | 108.0556             | 2473.5029              | 77%          |
| 20<br>21                | 0.0297<br>0.0297 | 1.2106<br>1.2491 | 7.7665<br>7.9506 | 39.3488<br>40.2818 | 140.5644<br>143.8973 | 329.1639<br>336.9688 | 551.9642<br>565.0519 | 810.4683<br>829.6854   | 551.6306<br>564.7103 | 111.1020<br>113.7364 |                        | 79%<br>81%   |
| 22                      | 0.0297           | 1.2873           | 8.1111           | 41.0947            | 146.8013             | 343.7691             | 576.4551             | 846.4293               | 576.1068             | 116.0317             |                        | 83%          |
| 23                      | 0.0297           | 1.3248           | 8.2518           | 41.8079            | 149.3491             | 349.7355             | 586.4598             | 861.1196               | 586.1055             |                      | 2702.2293              | 84%          |
| 24<br>25                | 0.0297<br>0.0297 | 1.3619<br>1.3987 | 8.3761<br>8.4864 | 42.4375<br>42.9961 | 151.5981<br>153.5937 | 355.0020<br>359.6752 | 595.2912<br>603.1276 | 874.0869<br>885.5934   | 594.9315<br>602.7632 | 119.8231<br>121.4005 | 2742.9381              | 86%<br>87%   |
| 26                      | 0.0297           | 1.4314           | 8.5847           | 43.4941            | 155.3727             | 363.8411             | 610.1132             | 895.8505               | 609.7444             | 122.8065             | 2811.2684              | 88%          |
| 27<br>28                | 0.0297<br>0.0297 | 1.4549<br>1.4701 | 8.6874<br>8.7927 | 43.9399<br>44.3403 | 156.9650<br>158.3956 | 367.5699<br>370.9199 | 616.3658<br>621.9832 | 905.0316<br>913.2798   | 615.9934<br>621.6075 |                      | 2840.1026<br>2866.0147 | 89%<br>90%   |
| 29                      | 0.0297           | 1.4782           | 8.9000           | 44.7013            | 159.6852             | 373.9398             | 627.0471             | 920.7153               | 626.6683             | 126.2151             | 2889.3800              | 90%          |
| 30                      | 0.0297           | 1.4800           | 9.0088           | 45.0277            | 160.8512             | 376.6703             | 631.6259             | 927.4385               | 631.2443             | 127.1367             |                        | 91%          |
| 31<br>32                | 0.0297<br>0.0297 | 1.4806<br>1.4807 | 9.1070<br>9.2082 | 45.3237<br>45.5928 | 161.9085<br>162.8697 | 379.1463<br>381.3972 | 635.7778<br>639.5521 | 933.5349<br>939.0770   | 635.3936<br>639.1658 | 127.9724<br>128.7322 |                        | 92%<br>92%   |
| 33                      | 0.0297           | 1.4807           | 9.3101           | 45.8380            | 163.7456             | 383.4483             | 642.9916             | 944.1273               | 642.6031             | 129.4245             | 2962.9989              | 93%          |
| 34<br>35                | 0.0297<br>0.0297 | 1.4807<br>1.4807 | 9.4136<br>9.5199 | 46.0619<br>46.2668 | 164.5456<br>165.2776 | 385.3215<br>387.0357 | 646.1328<br>649.0074 | 948.7396<br>952.9605   | 645.7424<br>648.6154 | 130.0567<br>130.6353 | 2977.5245<br>2990.8291 | 93%<br>93%   |
| 36                      | 0.0297           | 1.4807           | 9.6194           | 46.4548            | 165.9488             | 388.6077             | 651.6433             | 956.8307               | 651.2496             | 131.1659             | 3003.0306              | 94%          |
| 37                      | 0.0297           | 1.4807           | 9.6932           | 46.6685            | 166.5655             | 390.0516             | 654.0647             | 960.3861<br>963.6578   | 653.6696             | 131.6533             |                        | 94%          |
| 38<br>39                | 0.0297<br>0.0297 | 1.4807<br>1.4807 | 9.7429<br>9.7702 | 46.9015<br>47.1517 | 167.1329<br>167.6560 | 391.3804<br>392.6053 | 656.2928<br>658.3468 | 966.6736               | 655.8964<br>657.9491 |                      | 3024.6170<br>3034.1783 | 94%<br>95%   |
| 40                      | 0.0297           | 1.4807           | 9.7764           | 47.4174            | 168.1389             | 393.7361             | 660.2430             | 969.4579               | 659.8442             | 132.8969             |                        | 95%          |
| 41<br>42                | 0.0297<br>0.0297 | 1.4807<br>1.4807 | 9.7785<br>9.7787 | 47.6663<br>47.9335 | 168.5854<br>168.9990 | 394.7818<br>395.7502 | 661.9965<br>663.6202 | 972.0325<br>974.4169   | 661.5966<br>663.2193 | 133.2499             | 3051.1978<br>3058.8049 | 95%<br>96%   |
| 43                      | 0.0297           | 1.4807           | 9.7787           | 48.2138            | 169.3824             | 396.6483             | 665.1261             | 976.6281               | 664.7243             | 133.8798             | 3065.8919              | 96%          |
| 44<br>45                | 0.0297<br>0.0297 | 1.4807<br>1.4807 | 9.7787<br>9.7787 | 48.5059<br>48.8083 | 169.7386<br>170.0698 | 397.4822<br>398.2578 | 666.5248<br>667.8252 | 978.6815<br>980.5911   | 666.1219<br>667.4218 | 134.1613<br>134.4231 |                        | 96%<br>96%   |
| 46                      | 0.0297           | 1.4807           | 9.7787           | 49.0928            | 170.3782             | 398.9800             | 669.0363             | 982.3694               | 668.6321             |                      | 3084.4448              | 96%          |
| 47<br>48                | 0.0297<br>0.0297 | 1.4807<br>1.4807 | 9.7787           | 49.3027<br>49.4434 | 170.7709<br>171.2326 | 399.6533<br>400.2820 | 670.1654<br>671.2196 | 984.0274<br>985.5753   | 669.7605<br>670.8140 |                      | 3089.8634<br>3094.9623 | 97%<br>97%   |
| 49                      | 0.0297           | 1.4807           | 9.7787<br>9.7787 | 49.5200            | 171.7597             | 400.2620             | 672.2048             | 987.0220               | 671.7987             | 135.3047             |                        | 97%          |
| 50                      | 0.0297           | 1.4807           | 9.7787           | 49.5374            | 172.3443             | 401.4194             | 673.1268             | 988.3758               | 672.7201             | 135.4902             | 3104.3032              | 97%          |
| 51<br>52                | 0.0297<br>0.0297 | 1.4807<br>1.4807 | 9.7787<br>9.7787 | 49.5431<br>49.5438 | 172.8979<br>173.4966 | 401.9345<br>402.4177 | 673.9907<br>674.8010 | 989.6444<br>990.8340   | 673.5834<br>674.3932 | 135.6641             | 3108.5473<br>3112.6027 | 97%<br>97%   |
| 53                      | 0.0297           | 1.4807           | 9.7787           | 49.5438            | 174.1181             | 402.8715             | 675.5618             | 991.9512               | 675.1536             | 135.9803             | 3116.4695              | 97%          |
| 54<br>55                | 0.0297<br>0.0297 | 1.4807<br>1.4807 | 9.7787<br>9.7787 | 49.5438<br>49.5438 | 174.7603<br>175.4197 | 403.2980<br>403.6994 | 676.2770<br>676.9501 | 993.0013<br>993.9896   | 675.8683<br>676.5409 |                      | 3120.1621<br>3123.6924 | 97%<br>98%   |
| 56                      | 0.0297           | 1.4807           | 9.7787           | 49.5438            | 176.0295             | 404.0775             | 677.5841             | 994.9205               | 677.1746             |                      | 3127.0065              | 98%          |
| 57                      | 0.0297           | 1.4807           | 9.7787           | 49.5438<br>49.5438 | 176.4769             | 404.6493             | 678.1819             | 995.7983               | 677.7721<br>678.3361 |                      | 3130.2193              | 98%          |
| 58<br>59                | 0.0297<br>0.0297 | 1.4807<br>1.4807 | 9.7787<br>9.7787 | 49.5438            | 176.7739<br>176.9341 | 405.3856<br>406.2811 | 678.7462<br>679.2794 | 996.6270<br>997.4098   | 678.8690             |                      | 3133.3229<br>3136.3348 | 98%<br>98%   |
| 60                      | 0.0297           | 1.4807           | 9.7787           | 49.5438            | 176.9705             | 407.3223             | 679.7836             | 998.1503               | 679.3729             | 136.8302             | 3139.2626              | 98%          |
| 61<br>62                | 0.0297<br>0.0297 | 1.4807<br>1.4807 | 9.7787<br>9.7787 | 49.5438<br>49.5438 | 176.9823<br>176.9838 | 408.2916<br>409.2720 | 680.2610<br>680.7133 | 998.8511<br>999.5151   | 679.8500<br>680.3019 | 136.9262<br>137.0173 | 3141.9952<br>3144.6362 | 98%<br>98%   |
| 63                      | 0.0297           | 1.4807           | 9.7787           | 49.5438            | 176.9838             | 410.2423             | 681.1422             | 1000.1447              | 680.7306             | 137.1036             | 3147.1800              | 98%          |
| 64<br>65                | 0.0297<br>0.0297 | 1.4807<br>1.4807 | 9.7787<br>9.7787 | 49.5438<br>49.5438 | 176.9838<br>176.9838 | 411.2066             |                      | 1000.7424<br>1001.3101 |                      | 137.1855<br>137.2633 |                        | 98%<br>98%   |
| 66                      | 0.0297           | 1.4807           | 9.7787           | 49.5438            | 176.9838             | 413.0685             |                      | 1001.8499              |                      |                      | 3154.2670              | 99%          |
| 67                      | 0.0297           | 1.4807           | 9.7787           |                    |                      |                      |                      | 1002.3635<br>1002.8525 |                      |                      |                        | 99%          |
| 68<br>69                | 0.0297<br>0.0297 | 1.4807<br>1.4807 | 9.7787<br>9.7787 |                    | 176.9838<br>176.9838 |                      |                      | 1002.8323              |                      | 137.5387             |                        | 99%<br>99%   |
| 70                      | 0.0297           | 1.4807           | 9.7787           |                    | 176.9838             |                      |                      | 1003.7632              |                      |                      |                        | 99%          |
| 71<br>72                | 0.0297<br>0.0297 | 1.4807<br>1.4807 | 9.7787<br>9.7787 | 49.5438<br>49.5438 | 176.9838<br>176.9838 | 414.4464<br>414.4484 |                      | 1004.1873<br>1004.5925 | 683.4820<br>683.7578 | 137.6577<br>137.7133 |                        | 99%<br>99%   |
| 73                      | 0.0297           | 1.4807           | 9.7787           | 49.5438            | 176.9838             | 414.4484             | 689.5099             | 1004.9797              | 684.0213             | 137.7664             | 3168.5424              | 99%          |
| 74<br>75                | 0.0297<br>0.0297 | 1.4807<br>1.4807 | 9.7787<br>9.7787 | 49.5438<br>49.5438 | 176.9838<br>176.9838 | 414.4484<br>414.4484 |                      | 1005.3502<br>1005.7048 | 684.2734<br>684.5148 | 137.8172<br>137.8657 |                        | 99%<br>99%   |
| 76                      | 0.0297           | 1.4807           | 9.7787           | 49.5438            | 176.9838             | 414.4484             | 693.0919             | 1006.0443              | 684.7458             | 137.9123             | 3174.0594              | 99%          |
| 77<br>79                | 0.0297           | 1.4807           | 9.7787           | 49.5438            | 176.9838             | 414.4484             |                      | 1006.6992              | 684.9672             | 137.9569             |                        | 99%          |
| 78<br>79                | 0.0297<br>0.0297 | 1.4807<br>1.4807 | 9.7787<br>9.7787 | 49.5438<br>49.5438 |                      | 414.4484<br>414.4484 |                      | 1007.6312<br>1008.8299 | 685.1796<br>685.3833 | 137.9997<br>138.0407 | 3177.6230              | 99%<br>99%   |
| 80                      | 0.0297           | 1.4807           | 9.7787           | 49.5438            | 176.9838             | 414.4484             | 694.9472             | 1010.2734              | 685.5789             | 138.0801             | 3181.1447              | 99%          |
| 81<br>82                | 0.0297<br>0.0297 | 1.4807<br>1.4807 | 9.7787<br>9.7787 |                    | 176.9838<br>176.9838 |                      |                      | 1011.6873<br>1013.1213 | 685.7668<br>685.9476 | 138.1179<br>138.1543 |                        | 99%<br>99%   |
| 83                      | 0.0297           | 1.4807           | 9.7787           | 49.5438            | 176.9838             | 414.4484             | 694.9745             | 1014.5322              | 686.1212             | 138.1893             | 3186.0823              | 100%         |
| 84<br>85                | 0.0297<br>0.0297 | 1.4807<br>1.4807 | 9.7787<br>9.7787 | 49.5438<br>49.5438 |                      | 414.4484<br>414.4484 |                      | 1015.9095<br>1017.2575 | 686.2885<br>686.4494 |                      | 3187.6605<br>3189.2019 | 100%<br>100% |
| 86                      | 0.0297           | 1.4807           | 9.7787           | 49.5438            | 176.9838             | 414.4484             | 694.9745             | 1018.5027              | 686.6046             | 138.2866             | 3190.6334              | 100%         |
| 87                      | 0.0297           | 1.4807           | 9.7787           | 49.5438            |                      | 414.4484             |                      | 1019.4148              | 687.0235             | 138.3167             |                        | 100%         |
| 88<br>89                | 0.0297<br>0.0297 | 1.4807<br>1.4807 | 9.7787<br>9.7787 | 49.5438<br>49.5438 | 176.9838<br>176.9838 | 414.4484<br>414.4484 |                      | 1020.0256<br>1020.3536 | 687.6591<br>688.4853 | 138.3458<br>138.3738 | 3193.2701 3194.4522    | 100%<br>100% |
| 90                      | 0.0297           | 1.4807           | 9.7787           | 49.5438            | 176.9838             | 414.4484             | 694.9745             | 1020.4283              | 689.4753             | 138.4008             | 3195.5439              | 100%         |
| 91<br>92                | 0.0297<br>0.0297 | 1.4807<br>1.4807 | 9.7787<br>9.7787 | 49.5438<br>49.5438 | 176.9838<br>176.9838 | 414.4484<br>414.4484 |                      | 1020.4526<br>1020.4555 | 690.3965<br>691.2507 |                      | 3196.5156<br>3197.3979 | 100%<br>100% |
| 93                      | 0.0297           | 1.4807           | 9.7787           | 49.5438            | 176.9838             | 414.4484             | 694.9745             | 1020.4555              | 692.0184             | 138.4765             | 3198.1900              | 100%         |
| 94<br>95                | 0.0297           | 1.4807           | 9.7787           |                    | 176.9838             |                      |                      | 1020.4555              | 692.7033             |                      | 3198.8985              | 100%         |
| 95<br>96                | 0.0297<br>0.0297 | 1.4807<br>1.4807 | 9.7787<br>9.7787 | 49.5438            | 176.9838<br>176.9838 |                      |                      | 1020.4555<br>1020.4555 | 693.3065<br>693.8185 | 138.5229<br>138.5450 |                        | 100%<br>100% |
| 97                      | 0.0297           | 1.4807           | 9.7787           | 49.5438            | 176.9838             | 414.4484             | 694.9745             | 1020.4555              | 694.1755             | 138.6358             | 3200.5064              | 100%         |
| 98                      | 0.0297<br>0.0297 | 1.4807<br>1.4807 | 9.7787<br>9.7787 | 49.5438<br>49.5438 | 176.9838<br>176.9838 |                      |                      | 1020.4555<br>1020.4555 | 694.4012<br>694.5184 | 138.7783<br>138.9614 |                        | 100%<br>100% |
| 99                      |                  |                  |                  |                    |                      | 414.4484             |                      | 1020.4555              | 694.5451             | 139.1743             |                        |              |

### Exhibit E.43b Yearly Cancer Cases Avoided by System Size

Smoking/Lung Cancer Model - Surface Water Systems

TTHM - Sensitivity Analysis

|      |      | <100         |      |       | 100-499 |       |              | 500-999 |                |                | 1,000-3,299    |                |                   | 3,300-9,999    |                   |                  | 10,000-49,999     |                  | 50               | ,000-99,999      |                  | 10                  | 0,000-999,9      | 99                   |                     | ≥1,000,000       |                     |
|------|------|--------------|------|-------|---------|-------|--------------|---------|----------------|----------------|----------------|----------------|-------------------|----------------|-------------------|------------------|-------------------|------------------|------------------|------------------|------------------|---------------------|------------------|----------------------|---------------------|------------------|---------------------|
| Year | mean | 5th          | 95th | mean  | 5th     | 95th  | mean         | 5th     | 95th           | mean           | 5th            | 95th           | mean              | 5th            | 95th              | mean             | 5th               | 95th             | mean             | 5th              | 95th             | mean                | 5th              | 95th                 | mean                | 5th              | 95th                |
| 2005 |      |              | -    | -     | -       | -     |              |         | -              | -              | -              | -              | -                 | -              | -                 |                  | -                 | -                |                  |                  | -                |                     | -                |                      | -                   |                  | -                   |
| 2006 | -    | -            |      | -     | -       | -     | -            | -       | -              | -              | -              | -              | -                 | -              | -                 | -                | -                 | -                | -                |                  | -                | -                   |                  | -                    | -                   |                  | - 1                 |
| 2007 | -    | -            | -    | -     | -       | -     | -            | -       | -              | -              | -              | -              | -                 | -              | -                 | -                | -                 | -                | -                | -                | -                | -                   | -                | -                    | -                   | -                | - 1                 |
| 2008 | -    | -            | -    | -     | -       | -     | -            | -       | -              | -              | -              | -              |                   | -              | -                 | -                | -                 | -                | -                | -                | -                | -                   | -                | -                    | -                   | -                | -                   |
| 2009 | -    | -            | -    | -     | -       | -     | -            | -       | -              | -              | -              | -              | -                 | -              | -                 | -                | -                 | -                | -                | -                | -                | -                   | -                |                      | -                   | -                | -                   |
| 2010 | 0.01 | 0.00         | 0.03 | 0.09  | 0.01    | 0.24  | 0.16         | 0.01    | 0.42           | 1.00           | 0.07           | 2.68           | 2.86              | 0.20           | 7.66              | 13.50            | 0.93              | 36.23            | 11.77            | 0.81             | 31.58            | 52.06               | 3.59             | 139.69               | 44.30               | 3.06             | 118.88              |
| 2011 | 0.02 | 0.00         | 0.06 | 0.23  | 0.04    | 0.54  | 0.40         | 0.06    | 0.96           | 2.56           | 0.41           | 6.15           | 7.32              | 1.18           | 17.60             | 34.61            | 5.56              | 83.23            | 30.17            | 4.85             | 72.55            | 133.47              | 21.45            | 320.90               | 113.58              | 18.26            | 273.08              |
| 2012 | 0.04 | 0.01         | 0.10 | 0.40  | 0.11    | 0.89  | 0.71         | 0.19    | 1.58           | 4.59           | 1.22           | 10.15          | 13.12             | 3.50           | 29.04             | 62.04            | 16.56             | 137.31           | 54.08            | 14.43            | 119.69           | 239.21              | 63.84            | 529.44               | 203.56              | 54.33            | 450.54              |
| 2013 | 0.07 | 0.02         | 0.14 | 0.62  | 0.21    | 1.28  | 1.09         | 0.37    | 2.26           | 7.04           | 2.39           | 14.54          | 20.13             | 6.85           | 41.60             | 95.18            | 32.37             | 196.68           | 82.97            | 28.21            | 171.44           | 367.00              | 124.80           | 758.36               | 312.31              | 106.20           | 645.35              |
| 2014 | 0.10 | 0.04         | 0.19 | 0.87  | 0.34    | 1.71  | 1.54         | 0.60    | 3.02           | 9.90           | 3.84           | 19.43          | 28.32             | 10.99          | 55.58             | 133.90           | 51.98             | 262.78           | 110.83           | 44.90            | 213.27           | 464.23              | 196.82           | 873.53               | 395.05              | 167.49           | 743.36              |
| 2015 | 0.13 | 0.05         | 0.24 | 1.16  | 0.48    | 2.19  | 2.04         | 0.85    | 3.86           | 13.14          | 5.49           | 24.83          | 37.60             | 15.70          | 71.04             | 171.00           | 73.75             | 317.74           | 133.97           | 61.87            | 240.69           | 551.90              | 264.73           | 974.07               | 469.66              | 225.28           | 828.92              |
| 2016 | 0.16 | 0.07         | 0.28 | 1.43  | 0.64    | 2.58  | 2.51         | 1.13    | 4.55           | 16.18          | 7.26           | 29.31          | 46.30             | 20.77          | 83.84             | 201.59           | 95.39             | 354.78           | 154.56           | 76.34            | 265.20           | 630.83              | 316.49           | 1,068.81             | 536.82              | 269.32           | 909.54              |
| 2017 | 0.18 | 0.09         | 0.31 | 1.65  | 0.79    | 2.86  | 2.90         | 1.40    | 5.04           | 18.69          | 9.00           | 32.45          | 53.47             | 25.76          | 92.84             | 228.50           | 113.96            | 388.40           | 172.78           | 87.65            | 289.11           | 700.39              | 357.25           | 1,164.38             | 596.02              | 304.02           | 990.87              |
| 2018 | 0.20 | 0.10         | 0.34 | 1.84  | 0.92    | 3.12  | 3.24         | 1.63    | 5.49           | 20.88          | 10.49          | 35.36          | 59.74             | 30.02          | 101.16            | 252.14           | 128.53            | 421.52           | 188.46           | 96.59            | 312.74           | 758.99              | 389.47           | 1,255.95             | 645.89              | 331.43           | 1,068.79            |
| 2019 | 0.22 | 0.11         | 0.37 | 2.01  | 1.03    | 3.35  | 3.54         | 1.81    | 5.90           | 22.80          | 11.67          | 38.00          | 65.22             | 33.39          | 108.72            | 272.43           | 140.13            | 451.24           | 201.48           | 103.91           | 332.68           | 806.70              | 416.75           | 1,330.70             | 686.49              | 354.65           | 1,132.40            |
| 2020 | 0.24 | 0.12         | 0.39 | 2.15  | 1.11    | 3.56  | 3.80         | 1.96    | 6.28           | 24.44          | 12.62          | 40.42          | 69.93             | 36.11          | 115.64            | 289.33           | 149.78            | 477.12           | 212.22           | 110.23           | 349.76           | 846.39              | 440.50           | 1,395.50             | 720.27              | 374.86           | 1,187.55            |
| 2021 | 0.25 | 0.13         | 0.41 | 2.28  | 1.18    | 3.74  | 4.01         | 2.08    | 6.59           | 25.82          | 13.41          | 42.45          | 73.86             | 38.36          | 121.45            | 303.33           | 158.02            | 498.31           | 221.22           | 115.60           | 363.40           | 879.89              | 460.50           | 1,445.25             | 748.77              | 391.88           | 1,229.88            |
| 2022 | 0.26 | 0.14         | 0.43 | 2.38  | 1.24    | 3.89  | 4.19         | 2.19    | 6.85           | 26.96          | 14.07          | 44.10          | 77.13             | 40.27          | 126.16            | 315.12           | 164.97            | 515.03           | 228.87           | 120.11           | 373.10           | 908.46              | 477.38           | 1,477.15             | 773.08              | 406.24           | 1,257.03            |
| 2023 | 0.27 | 0.14         | 0.44 | 2.46  | 1.29    | 4.00  | 4.34         | 2.27    | 7.05           | 27.93          | 14.64          | 45.42          | 79.89             | 41.89          | 129.95            | 325.16           | 170.85            | 527.36           | 235.43           | 123.96           | 380.23           | 933.02              | 491.81           | 1,503.67             | 793.99              | 418.52           | 1,279.60            |
| 2024 | 0.28 | 0.15         | 0.45 | 2.53  | 1.33    | 4.09  | 4.46         | 2.35    | 7.21           | 28.75          | 15.13          | 46.42          | 82.25             | 43.27          | 132.79            | 333.80           | 175.94            | 536.64           | 241.10           | 127.26           | 385.88           | 954.31              | 503.96           | 1,522.85             | 812.10              | 428.86           | 1,295.92            |
| 2025 | 0.28 | 0.15         | 0.46 | 2.60  | 1.37    | 4.16  | 4.58         | 2.41    | 7.33           | 29.46          | 15.54          | 47.18          | 84.29             | 44.46          | 134.97            | 341.29           | 180.27            | 544.16           | 246.04           | 130.05           | 390.42           | 972.90              | 514.41           | 1,539.87             | 827.92              | 437.75           | 1,310.40            |
| 2026 | 0.29 | 0.15         | 0.46 | 2.65  | 1.40    | 4.21  | 4.67         | 2.47    | 7.43           | 30.08          | 15.89          | 47.82          | 86.06             | 45.47          | 136.80            | 347.82           | 183.89            | 550.49           | 250.36           | 132.44           | 394.78           | 989.24              | 523.48           | 1,557.12             | 841.83              | 445.47           | 1,325.09            |
| 2027 | 0.30 | 0.16         | 0.47 | 2.70  | 1.43    | 4.26  | 4.75         | 2.51    | 7.51           | 30.62          | 16.18          | 48.36          | 87.60             | 46.30          | 138.36            | 353.57           | 186.91            | 556.51           | 254.18           | 134.42           | 399.04           | 1,003.69            | 530.87           | 1,573.61             | 854.12              | 451.76           | 1,339.12            |
| 2028 | 0.30 | 0.16         | 0.47 | 2.74  | 1.45    | 4.30  | 4.83<br>4.89 | 2.55    | 7.58<br>7.65   | 31.10<br>31.52 | 16.43<br>16.65 | 48.84<br>49.27 | 88.97<br>90.17    | 47.00<br>47.63 | 139.73<br>140.97  | 358.64<br>363.16 | 189.48<br>191.80  | 561.86<br>566.58 | 257.57<br>260.59 | 136.06<br>137.54 | 402.69<br>405.87 | 1,016.53            | 536.82<br>542.33 | 1,587.65<br>1,599.72 | 865.05<br>874.80    | 456.83<br>461.51 | 1,351.07            |
|      | 3.90 |              | 6.50 | 35.56 | 17.84   | 59.33 | 62.65        | 31.43   | 104.54         | 403.45         | 202.42         | 673.18         | 1,154,24          | 579.10         | 1,925,91          | 4.796.10         | 2.411.08          | 7,983,96         | 3,548,67         | 1,787,24         | 5.894.11         | 14.237.20           | 7.177.24         | 23.618.24            | 12.115.61           |                  | 20,098.72           |
| Avg. | 0.16 | 1.95<br>0.08 | 0.26 | 1.42  | 0.71    | 2.37  | 2.51         | 1.26    | 104.54<br>4.18 | 16.14          | 8.10           | 26.93          | 1,154.24<br>46.17 | 23.16          | 1,925.91<br>77.04 | 4,796.10         | 2,411.08<br>96.44 | 7,983.96         | 3,548.67         | 71.49            | 235.76           | 14,237.20<br>569.49 | 287.09           | 944.73               | 12,115.61<br>484.62 | 6,107.71         | 20,098.72<br>803.95 |

Avg. - All Size Categories 1,454.29 732.64 2,414.58

### Exhibit E.43c Yearly Cancer Cases Avoided by System Size

Smoking/Lung Cancer Model - Ground Water Systems

TTHM - Sensitivity Analysis

| <100 Year mean 5th 95th |       |      | 100-499 |        |       | 500-999 |              |       | 1,000-3,299    |                |                | 3,300-9,999    | )              |                | 10,000-49,99   | 9              | 50             | ,000-99,999 |        | 10     | 0,000-999      | ,999           | 2      | 1,000,000 | 0      |       |                |
|-------------------------|-------|------|---------|--------|-------|---------|--------------|-------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-------------|--------|--------|----------------|----------------|--------|-----------|--------|-------|----------------|
| Year                    | mean  | 5th  | 95th    | mean   | 5th   | 95th    | mean         | 5th   | 95th           | mean           | 5th            | 95th           | mean           | 5th            | 95th           | mean           | 5th            | 95th        | mean   | 5th    | 95th           | mean           | 5th    | 95th      | mean   | 5th   | 95th           |
| 2005                    |       |      | -       | -      |       | -       |              | -     | -              |                | -              |                | -              | -              |                | -              | -              | -           | -      |        |                |                |        |           |        | -     | -              |
| 2006                    | -     | -    | -       | -      | -     | -       |              | -     | -              | -              | -              | -              | -              | -              | -              | -              | -              | -           | -      |        | -              | -              | -      | -         | -      | -     | -              |
| 2007                    | -     | -    | -       | -      | -     | -       |              | -     | -              | -              | -              | -              | -              | -              | -              | -              | -              | -           | -      | -      | -              | -              | -      | -         | -      | -     | -              |
| 2008                    | -     | -    | -       | -      | -     | -       |              | -     | -              | -              | -              | -              | -              | -              | -              | -              | -              | -           | -      | -      | -              | -              | -      | -         | -      | -     | -              |
| 2009                    | -     | -    | -       | -      | -     | -       |              | -     | -              | -              | -              | -              | -              | -              | -              | -              | -              | -           | -      |        | -              | -              | -      | -         | -      | -     | -              |
| 2010                    | 0.04  | 0.00 | 0.11    | 0.30   | 0.02  | 0.82    | 0.32         | 0.02  | 0.87           | 0.98           | 0.07           | 2.62           | 1.55           | 0.11           | 4.15           | 2.60           | 0.18           | 6.97        | 1.09   | 0.08   | 2.92           | 3.01           | 0.21   | 8.08      | 0.50   | 0.03  | 1.35           |
| 2011                    | 0.11  | 0.02 | 0.25    | 0.78   | 0.13  | 1.88    | 0.83         | 0.13  | 2.00           | 2.51           | 0.40           | 6.03           | 3.97           | 0.64           | 9.53           | 6.66           | 1.07           | 16.00       | 2.79   | 0.45   | 6.70           | 7.72           | 1.24   | 18.57     | 1.29   | 0.21  | 3.09           |
| 2012                    | 0.19  | 0.05 | 0.42    | 1.40   | 0.37  | 3.10    | 1.49         | 0.40  | 3.30           | 4.49           | 1.20           | 9.94           | 7.11           | 1.90           | 15.73          | 11.93          | 3.18           | 26.40       | 5.00   | 1.33   | 11.06          | 13.84          | 3.69   | 30.64     | 2.30   | 0.62  | 5.10           |
| 2013                    | 0.29  | 0.10 | 0.60    | 2.15   | 0.73  | 4.43    | 2.28         | 0.78  | 4.72           | 6.89           | 2.34           | 14.24          | 10.90          | 3.71           | 22.53          | 18.30          | 6.22           | 37.82       | 7.66   | 2.61   | 15.84          | 21.24          | 7.22   | 43.89     | 3.54   | 1.20  | 7.31           |
| 2014                    | 0.41  | 0.16 | 0.80    | 3.02   | 1.17  | 5.93    | 3.21         | 1.25  | 6.31           | 9.70           | 3.76           | 19.03          | 15.34          | 5.95           | 30.10          | 25.75          | 9.99           | 50.53       | 10.24  | 4.15   | 19.70          | 26.86          | 11.39  | 50.55     | 4.47   | 1.90  | 8.42           |
| 2015                    | 0.54  | 0.23 | 1.02    | 4.01   | 1.67  | 7.57    | 4.27         | 1.78  | 8.06           | 12.87          | 5.38           | 24.32          | 20.36          | 8.50           | 38.47          | 32.88          | 14.18          | 61.09       | 12.38  | 5.72   | 22.24          | 31.94          | 15.32  | 56.37     | 5.32   | 2.55  | 9.38           |
| 2016                    | 0.67  | 0.30 | 1.21    | 4.94   | 2.21  | 8.94    | 5.25         | 2.36  | 9.51           | 15.85          | 7.11           | 28.71          | 25.07          | 11.25          | 45.41          | 38.76          | 18.34          | 68.21       | 14.28  | 7.05   | 24.50          | 36.51          | 18.31  | 61.85     | 6.08   | 3.05  | 10.30          |
| 2017                    | 0.77  | 0.37 | 1.34    | 5.70   | 2.75  | 9.90    | 6.07         | 2.92  | 10.53          | 18.31          | 8.82           | 31.79          | 28.96          | 13.95          | 50.28          | 43.93          | 21.91          | 74.68       | 15.96  | 8.10   | 26.71          | 40.53          | 20.67  | 67.38     | 6.75   | 3.44  | 11.22          |
| 2018                    | 0.86  | 0.43 | 1.46    | 6.37   | 3.20  | 10.78   | 6.78         | 3.41  | 11.48          | 20.45          | 10.28          | 34.64          | 32.35          | 16.26          | 54.78          | 48.48          | 24.71          | 81.05       | 17.41  | 8.92   | 28.89          | 43.92          | 22.54  | 72.68     | 7.31   | 3.75  | 12.10          |
| 2019                    | 0.94  | 0.48 | 1.57    | 6.95   | 3.56  | 11.59   | 7.40         | 3.79  | 12.33          | 22.33          | 11.43          | 37.23          | 35.32          | 18.08          | 58.88          | 52.38          | 26.94          | 86.76       | 18.61  | 9.60   | 30.73          | 46.68          | 24.12  | 77.01     | 7.77   | 4.01  | 12.82          |
| 2020                    | 1.01  | 0.52 | 1.67    | 7.45   | 3.85  | 12.33   | 7.93         | 4.10  | 13.12          | 23.95          | 12.36          | 39.60          | 37.87          | 19.56          | 62.63          | 55.63          | 28.80          | 91.74       | 19.61  | 10.18  | 32.31          | 48.98          | 25.49  | 80.76     | 8.15   | 4.24  | 13.44          |
| 2021                    | 1.06  | 0.55 | 1.75    | 7.87   | 4.09  | 12.95   | 8.38         | 4.35  | 13.78          | 25.29          | 13.13          | 41.59          | 40.00          | 20.77          | 65.77          | 58.32          | 30.38          | 95.81       | 20.44  | 10.68  | 33.57          | 50.92          | 26.65  | 83.63     | 8.48   | 4.44  | 13.92          |
| 2022                    | 1.11  | 0.58 | 1.82    | 8.22   | 4.29  | 13.45   | 8.75         | 4.57  | 14.31          | 26.41          | 13.79          | 43.20          | 41.77          | 21.81          | 68.32          | 60.59          | 31.72          | 99.02       | 21.14  | 11.10  | 34.47          | 52.57          | 27.63  | 85.48     | 8.75   | 4.60  | 14.23          |
| 2023                    | 1.15  | 0.60 | 1.87    | 8.52   | 4.47  | 13.85   | 9.06         | 4.75  | 14.74          | 27.36          | 14.34          | 44.50          | 43.27          | 22.68          | 70.38          | 62.52          | 32.85          | 101.40      | 21.75  | 11.45  | 35.13          | 53.99          | 28.46  | 87.02     | 8.99   | 4.74  | 14.49          |
| 2024                    | 1.18  | 0.62 | 1.91    | 8.77   | 4.61  | 14.16   | 9.33         | 4.91  | 15.07          | 28.16          | 14.82          | 45.47          | 44.55          | 23.44          | 71.92          | 64.18          | 33.83          | 103.18      | 22.27  | 11.76  | 35.65          | 55.22          | 29.16  | 88.13     | 9.19   | 4.86  | 14.67          |
| 2025                    | 1.21  | 0.64 | 1.94    | 8.99   | 4.74  | 14.39   | 9.56         | 5.04  | 15.31          | 28.86          | 15.23          | 46.22          | 45.65          | 24.08          | 73.10          | 65.62          | 34.66          | 104.63      | 22.73  | 12.01  | 36.07          | 56.30          | 29.77  | 89.11     | 9.37   | 4.96  | 14.84          |
| 2026                    | 1.24  | 0.65 | 1.97    | 9.17   | 4.85  | 14.58   | 9.76<br>9.94 | 5.16  | 15.52<br>15.70 | 29.47<br>30.00 | 15.57<br>15.85 | 46.84<br>47.37 | 46.61<br>47.44 | 24.63<br>25.07 | 74.09<br>74.93 | 66.88<br>67.98 | 35.36<br>35.94 | 105.84      | 23.13  | 12.24  | 36.47<br>36.86 | 57.25<br>58.08 | 30.29  | 90.11     | 9.53   | 5.04  | 15.00<br>15.16 |
| 2027                    | 1.28  | 0.67 | 2.01    | 9.48   | 5.01  | 14.75   | 10.09        | 5.25  | 15.70          | 30.46          | 16.09          | 47.84          | 48.18          | 25.07          | 74.93          | 68.96          | 36.43          | 107.00      | 23.48  | 12.42  | 37.20          | 58.08          | 31.07  | 91.06     | 9.67   | 5.11  | 15.16          |
| 2029                    | 1.30  | 0.69 | 2.01    | 9.40   | 5.08  | 15.03   | 10.09        | 5.40  | 15.99          | 30.46          | 16.31          | 48.27          | 48.83          | 25.45          | 76.35          | 69.82          | 36.88          | 108.03      | 24.07  | 12.71  | 37.50          | 59.49          | 31.38  | 92.57     | 9.90   | 5.22  | 15.41          |
| Total                   | 16.63 | 8.34 | 27.74   | 123.04 | 61.73 | 205.30  | 130.95       | 65.70 | 218.50         | 395.22         | 198,29         | 659.45         | 625.10         | 313.62         | 1.043.02       | 922.15         | 463.58         | 1,535,08    | 327.84 | 165.11 | 544.53         | 823.89         | 415.34 | 1,366,76  | 137.16 | 69.15 | 227.54         |
| Avg.                    | 0.67  | 0.33 | 1.11    | 4.92   | 2.47  | 8.21    | 5.24         | 2.63  | 8.74           | 15.81          | 7.93           | 26.38          | 25.00          | 12.54          | 41.72          | 36.89          | 18.54          | 61.40       | 13.11  | 6.60   | 21.78          | 32.96          | 16.61  | 54.67     | 5.49   | 2.77  | 9.10           |

Avg. - All Size Categories 140.08 70.43 233.12

### Exhibit E.43d Yearly Cancer Cases Avoided by System Size

Smoking/Lung Cancer Model - All Water Systems

TTHM - Sensitivity Analysis

| TTHM - Sensitivity Analysis |       |              |       |        |       |         |        |       |             |                |        |                |                  |        |               |                  |                  |                  |                  |                  |                  |           |                  |            |                  |                  |           |
|-----------------------------|-------|--------------|-------|--------|-------|---------|--------|-------|-------------|----------------|--------|----------------|------------------|--------|---------------|------------------|------------------|------------------|------------------|------------------|------------------|-----------|------------------|------------|------------------|------------------|-----------|
|                             |       | <100 100-499 |       |        |       | 500-999 |        | -     | 1,000-3,299 | )              |        | 3,300-9,999    |                  |        | 10,000-49,999 | 9                |                  | 50,000-99,999    |                  | 10               | 00,000-999,99    | 9         |                  | ≥1,000,000 |                  |                  |           |
| Year                        | mean  | 5th          | 95th  | mean   | 5th   | 95th    | mean   | 5th   | 95th        | mean           | 5th    | 95th           | mean             | 5th    | 95th          | mean             | 5th              | 95th             | mean             | 5th              | 95th             | mean      | 5th              | 95th       | mean             | 5th              | 95th      |
| 2005                        | -     | -            | -     | -      | -     | -       |        | -     | -           | -              | -      | -              | -                | -      |               |                  | -                | -                | -                |                  | -                | -         | -                | -          |                  | -                | -         |
| 2006                        | -     |              | -     | -      |       | -       |        | -     |             |                | -      | -              | -                | -      |               |                  | -                | -                | -                |                  | -                |           | -                |            | -                | -                | -         |
| 2007                        | -     |              | -     | -      |       | -       |        | -     |             |                | -      | -              | -                | -      |               |                  | -                | -                | -                |                  | -                |           | -                |            | -                | -                | -         |
| 2008                        | -     | -            | -     | -      |       | -       | -      | -     | -           | -              | -      | -              | -                | -      | -             | -                | -                | -                | -                | -                | -                | -         | -                | -          | -                | -                | -         |
| 2009                        | -     | -            | -     | -      | -     | -       | -      | -     | -           | -              | -      | -              | -                | -      | -             | -                | -                | -                | -                | -                | -                | -         | -                | -          | -                | -                | -         |
| 2010                        | 0.05  | 0.00         | 0.14  | 0.39   | 0.03  | 1.05    | 0.48   | 0.03  | 1.29        | 1.98           | 0.14   | 5.30           | 4.40             | 0.30   | 11.81         | 16.10            | 1.11             | 43.20            | 12.86            | 0.89             | 34.50            | 55.07     | 3.80             | 147.78     | 44.80            | 3.09             | 120.22    |
| 2011                        | 0.13  | 0.02         | 0.31  | 1.01   | 0.16  | 2.42    | 1.23   | 0.20  | 2.95        | 5.07           | 0.81   | 12.18          | 11.29            | 1.81   | 27.14         | 41.27            | 6.63             | 99.23            | 32.96            | 5.30             | 79.25            | 141.19    | 22.69            | 339.47     | 114.86           | 18.46            | 276.17    |
| 2012                        | 0.23  | 0.06         | 0.52  | 1.80   | 0.48  | 3.99    | 2.20   | 0.59  | 4.87        | 9.08           | 2.42   | 20.10          | 20.23            | 5.40   | 44.77         | 73.97            | 19.74            | 163.71           | 59.07            | 15.77            | 130.75           | 253.05    | 67.54            | 560.08     | 205.86           | 54.94            | 455.65    |
| 2013                        | 0.36  | 0.12         | 0.74  | 2.77   | 0.94  | 5.72    | 3.38   | 1.15  | 6.98        | 13.93          | 4.74   | 28.79          | 31.04            | 10.55  | 64.13         | 113.48           | 38.59            | 234.50           | 90.63            | 30.82            | 187.28           | 388.24    | 132.02           | 802.25     | 315.85           | 107.40           | 652.66    |
| 2014                        | 0.50  | 0.20         | 0.99  | 3.89   | 1.51  | 7.64    | 4.75   | 1.84  | 9.32        | 19.60          | 7.61   | 38.46          | 43.66            | 16.95  | 85.69         | 159.65           | 61.97            | 313.31           | 121.07           | 49.05            | 232.97           | 491.10    | 208.21           | 924.08     | 399.53           | 169.39           | 751.77    |
| 2015                        | 0.67  | 0.28         | 1.26  | 5.17   | 2.16  | 9.76    | 6.31   | 2.63  | 11.92       | 26.02          | 10.86  | 49.16          | 57.96            | 24.20  | 109.51        | 203.88           | 87.94            | 378.83           | 146.35           | 67.58            | 262.93           | 583.84    | 280.05           | 1,030.44   | 474.98           | 227.83           | 838.30    |
| 2016                        | 0.82  | 0.37         | 1.49  | 6.36   | 2.85  | 11.52   | 7.77   | 3.48  | 14.06       | 32.04          | 14.37  | 58.02          | 71.37            | 32.01  | 129.25        | 240.34           | 113.73           | 422.99           | 168.84           | 83.39            | 289.70           | 667.33    | 334.80           | 1,130.67   | 542.90           | 272.37           | 919.84    |
| 2017                        | 0.95  | 0.46         | 1.65  | 7.35   | 3.54  | 12.76   | 8.97   | 4.32  | 15.57       | 37.00          | 17.82  | 64.24          | 82.42            | 39.71  | 143.13        | 272.44           | 135.87           | 463.07           | 188.74           | 95.75            | 315.82           | 740.92    | 377.93           | 1,231.77   | 602.77           | 307.46           | 1,002.09  |
| 2018                        | 1.06  | 0.53         | 1.80  | 8.21   | 4.13  | 13.90   | 10.02  | 5.04  | 16.97       | 41.34          | 20.77  | 70.00          | 92.09            | 46.28  | 155.94        | 300.61           | 153.24           | 502.56           | 205.87           | 105.52           | 341.63           | 802.91    | 412.01           | 1,328.63   | 653.20           | 335.18           | 1,080.89  |
| 2019                        | 1.16  | 0.59         | 1.93  | 8.96   | 4.59  | 14.94   | 10.94  | 5.60  | 18.23       | 45.13          | 23.10  | 75.23          | 100.55           | 51.47  | 167.59        | 324.81           | 167.08           | 538.00           | 220.10           | 113.51           | 363.41           | 853.38    | 440.87           | 1,407.70   | 694.26           | 358.66           | 1,145.22  |
| 2020                        | 1.24  | 0.64         | 2.06  | 9.61   | 4.96  | 15.89   | 11.73  | 6.06  | 19.40       | 48.39          | 24.99  | 80.02          | 107.80           | 55.66  | 178.26        | 344.96           | 178.58           | 568.85           | 231.82           | 120.41           | 382.07           | 895.37    | 465.99           | 1,476.25   | 728.42           | 379.10           | 1,200.99  |
| 2021                        | 1.31  | 0.68         | 2.16  | 10.15  | 5.27  | 16.69   | 12.39  | 6.43  | 20.37       | 51.11          | 26.54  | 84.04          | 113.86           | 59.13  | 187.22        | 361.65           | 188.40           | 594.12           | 241.66           | 126.28           | 396.98           | 930.81    | 487.15           | 1,528.88   | 757.25           | 396.32           | 1,243.80  |
| 2022                        | 1.37  | 0.72         | 2.24  | 10.60  | 5.53  | 17.33   | 12.94  | 6.75  | 21.16       | 53.37          | 27.86  | 87.29          | 118.90           | 62.07  | 194.48        | 375.71           | 196.69           | 614.05           | 250.02           | 131.21           | 407.57           | 961.03    | 505.01           | 1,562.63   | 781.83           | 410.84           | 1,271.26  |
| 2023                        | 1.42  | 0.74         | 2.31  | 10.98  | 5.76  | 17.86   | 13.40  | 7.03  | 21.80       | 55.28          | 28.98  | 89.92          | 123.16           | 64.57  | 200.33        | 387.68           | 203.70           | 628.75           | 257.18           | 135.41           | 415.36           | 987.01    | 520.27           | 1,590.69   | 802.97           | 423.26           | 1,294.09  |
| 2024                        | 1.46  | 0.77         | 2.36  | 11.30  | 5.95  | 18.25   | 13.80  | 7.26  | 22.27       | 56.92          | 29.94  | 91.88          | 126.80           | 66.71  | 204.71        | 397.98           | 209.77           | 639.82           | 263.37           | 139.01           | 421.52           | 1,009.54  | 533.12           | 1,610.98   | 821.30           | 433.71           | 1,310.59  |
| 2025                        | 1.50  | 0.79         | 2.40  | 11.58  | 6.11  | 18.55   | 14.14  | 7.46  | 22.64       | 58.32          | 30.77  | 93.40          | 129.94           | 68.55  | 208.07        | 406.91           | 214.93           | 648.78           | 268.77           | 142.06           | 426.49           | 1,029.20  | 544.17           | 1,628.98   | 837.29           | 442.71           | 1,325.24  |
| 2026                        | 1.53  | 0.81         | 2.43  | 11.82  | 6.25  | 18.80   | 14.43  | 7.63  | 22.95       | 59.55<br>60.62 | 31.46  | 94.66<br>95.73 | 132.66<br>135.05 | 70.09  | 210.89        | 414.70<br>421.55 | 219.25<br>222.85 | 656.34<br>663.51 | 273.49<br>277.67 | 144.67<br>146.84 | 431.25<br>435.90 | 1,046.49  | 553.77<br>561.59 | 1,647.23   | 851.36<br>863.79 | 450.51<br>456.87 | 1,340.09  |
| 2027                        | 1.58  | 0.82         | 2.48  | 12.04  | 6.36  | 19.01   | 14.69  | 7.77  | 23.44       | 61.56          | 32.03  | 96.68          | 135.05           | 71.37  | 215.40        | 427.60           | 222.85           | 669.89           | 281.37           | 148.63           | 435.90           | 1,061.77  | 567.89           | 1,679.53   | 874.84           | 462.00           | 1,354.28  |
| 2028                        | 1.58  | 0.84         | 2.48  | 12.22  | 6.55  | 19.20   | 15.12  | 7.88  | 23.44       | 62.39          | 32.52  | 97.54          | 137.15           | 73.43  | 217.32        | 427.60           | 225.92           | 675.52           | 281.37           | 150.25           | 439.90           | 1,075.36  | 573.71           | 1,679.53   | 884.71           | 462.00           | 1,366.36  |
| Total                       | 20.52 | 10.30        | 34.24 | 158.60 | 79.57 | 264.64  | 193.60 | 97.13 | 323.04      | 798.68         | 400.71 | 1,332.63       | 1,779.34         | 892.72 | 2,968.93      | 5,718.26         | 2,874.66         | 9,519.04         | 3,876.51         | 1,952.35         | 6,438.63         | 15,061.09 | 7,592.58         | 24,985.01  | 12,252.77        | 6,176.86         | 20,326.26 |
| Avg.                        | 0.82  | 0.41         | 1.37  | 6.34   | 3.18  | 10.59   | 7.74   | 3.89  | 12.92       | 31.95          | 16.03  | 53.31          | 71.17            | 35.71  | 118.76        | 228.73           | 114.99           | 380.76           | 155.06           | 78.09            | 257.55           | 602.44    | 303.70           | 999.40     | 490.11           | 247.07           | 813.05    |
| Avg.                        | 0.02  | 0.41         |       | 0.54   | 50    | .0.55   |        | 0.00  | .2.52       | 000            | . 0.03 | 55.51          |                  | 551    |               | 220.73           |                  | 555.76           | .00.00           | . 5.55           | 20,.00           | JUL.44    | 000.70           | 333.40     | 400.11           | 2-757            | 0.0.00    |

Avg. - All Size Categories 1,594.37 803.07 2,647.70

# Section E.7.7 Projection of Cases - Stage 2 Preferred Alternative, 20% Safety Margin TTHM as Indicator Smoking/Lung Cancer Model

| ears After | Age G            |                  | g Cance          |                  |                    |                    |                      | •                    |                    |                    | •                    |          |
|------------|------------------|------------------|------------------|------------------|--------------------|--------------------|----------------------|----------------------|--------------------|--------------------|----------------------|----------|
| the Rule   | 1-10             | 11-20            | 21-30            | 31-40            | 41-50              | 51-60              | 61-70                | 71-80                | 81-90              | 91-100+            | Total                | %        |
| 1          | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000             | 0.0000             | 0.0000               | 0%       |
| 2          | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000             | 0.0000             | 0.0000               | 0%       |
| 3          | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000             | 0.0000             | 0.0000               | 0%       |
| 5          | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000             | 0.0000             | 0.0000               | 09       |
| 6          | 0.0091           | 0.0078           | 0.0482           | 0.1951           | 0.8419             | 2.2814             | 4.3990               | 6.9588               | 4.1259             | 0.7413             | 19.6085              | 49       |
| 7          | 0.0243           | 0.0206           | 0.1272           | 0.5151           | 2.2227             | 6.0229             | 11.6129              | 18.3707              | 10.8920            | 1.9569             | 51.7652              | 119      |
| 8          | 0.0441           | 0.0372           | 0.2299           | 0.9311           | 4.0174             | 10.8861            | 20.9900              | 33.2044              | 19.6869            | 3.5370             | 93.5640              | 20       |
| 9          | 0.0674           | 0.0569           | 0.3518           | 1.4244           | 6.1459             | 16.6537            | 32.1107              | 50.7965              | 30.1172            | 5.4110             | 143.1354             | 31       |
| 10         | 0.0865           | 0.0730           | 0.4516           | 1.8285           | 7.8895             | 21.3786            | 41.2209              | 65.2081              | 38.6619            | 6.9461             | 183.7447             | 40       |
| 11         | 0.1012           | 0.0865           | 0.5355           | 2.1682           | 9.3549             | 25.3492            | 48.8769              | 77.3192              | 45.8425            | 8.2363             | 217.8703             | 47       |
| 12<br>13   | 0.1122<br>0.1200 | 0.0978           | 0.6048<br>0.6625 | 2.4489<br>2.6826 | 10.5661<br>11.5745 | 28.6314<br>31.3638 | 55.2054<br>60.4738   | 87.3303<br>95.6644   | 51.7781<br>56.7194 | 9.3027<br>10.1904  | 246.0775<br>269.5584 | 53°      |
| 14         | 0.1254           | 0.1071           | 0.7114           | 2.8808           | 12.4294            | 33.6805            | 64.9408              | 102.7310             | 60.9092            | 10.1904            | 289.4667             | 63       |
| 15         | 0.1298           | 0.1218           | 0.7534           | 3.0507           | 13.1627            | 35.6674            | 68.7717              | 108.7912             | 64.5023            | 11.5887            | 306.5396             | 66       |
| 16         | 0.1327           | 0.1281           | 0.7897           | 3.1977           | 13.7969            | 37.3860            | 72.0854              | 114.0332             | 67.6102            | 12.1471            | 321.3069             | 70       |
| 17         | 0.1345           | 0.1340           | 0.8213           | 3.3257           | 14.3493            | 38.8828            | 74.9715              | 118.5988             | 70.3172            | 12.6335            | 334.1686             | 72       |
| 18         | 0.1355           | 0.1395           | 0.8490           | 3.4379           | 14.8332            | 40.1941            | 77.4999              | 122.5983             | 72.6885            | 13.0595            | 345.4354             | 75       |
| 19         | 0.1358           | 0.1448           | 0.8734           | 3.5366           | 15.2592            | 41.3485            | 79.7257              | 126.1194             | 74.7761            | 13.4346            | 355.3540             | 77       |
| 20         | 0.1359           | 0.1494           | 0.8950           | 3.6239           | 15.6359            | 42.3692            | 81.6937              | 129.2327             | 76.6220            | 13.7662            | 364.1239             | 79       |
| 21         | 0.1359           | 0.1544           | 0.9141           | 3.7014           | 15.9702            | 43.2752            | 83.4406              | 131.9962             | 78.2605            | 14.0606            | 371.9090             | 81       |
| 22<br>23   | 0.1359<br>0.1359 | 0.1595<br>0.1649 | 0.9311           | 3.7704<br>3.8321 | 16.2681<br>16.5342 | 44.0822<br>44.8033 | 84.9966<br>86.3871   | 134.4577<br>136.6573 | 79.7199<br>81.0240 | 14.3228<br>14.5571 | 378.8442<br>385.0422 | 82<br>83 |
| 24         | 0.1359           | 0.1704           | 0.9600           | 3.8874           | 16.7727            | 45.4496            | 87.6332              | 138.6286             | 82.1928            | 14.7671            | 390.5977             | 85       |
| 25         | 0.1359           | 0.1754           | 0.9723           | 3.9371           | 16.9870            | 46.0304            | 88.7531              | 140.4002             | 83.2432            | 14.9558            | 395.5904             | 86       |
| 26         | 0.1359           | 0.1791           | 0.9854           | 3.9818           | 17.1802            | 46.5537            | 89.7622              | 141.9963             | 84.1896            | 15.1258            | 400.0901             | 87       |
| 27         | 0.1359           | 0.1815           | 0.9991           | 4.0222           | 17.3546            | 47.0264            | 90.6735              | 143.4380             | 85.0443            | 15.2794            | 404.1551             | 88       |
| 28         | 0.1359           | 0.1828           | 1.0134           | 4.0588           | 17.5125            | 47.4543            | 91.4986              | 144.7431             | 85.8182            | 15.4184            | 407.8360             | 88       |
| 29         | 0.1359           | 0.1832           | 1.0280           | 4.0920           | 17.6558            | 47.8425            | 92.2470              | 145.9272             | 86.5202            | 15.5446            | 411.1764             | 89       |
| 30<br>31   | 0.1359<br>0.1359 | 0.1833<br>0.1833 | 1.0414           | 4.1222<br>4.1497 | 17.7860<br>17.9047 | 48.1954<br>48.5169 | 92.9276<br>93.5475   | 147.0037<br>147.9844 | 87.1585<br>87.7400 | 15.6592<br>15.7637 | 414.2132<br>416.9813 | 90<br>90 |
| 31<br>32   | 0.1359           | 0.1833           | 1.0552           | 4.1497           | 17.9047            | 48.5169<br>48.8104 | 93.5475              | 147.9844             | 87.7400            | 15.7637            | 416.9813             | 90       |
| 33         | 0.1359           | 0.1833           | 1.0832           | 4.1978           | 18.1120            | 49.0788            | 94.6309              | 149.6982             | 88.7561            | 15.9463            | 421.8225             | 91       |
| 34         | 0.1359           | 0.1833           | 1.0977           | 4.2188           | 18.2028            | 49.3247            | 95.1051              | 150.4482             | 89.2008            | 16.0262            | 423.9435             | 92       |
| 35         | 0.1359           | 0.1833           | 1.1114           | 4.2381           | 18.2861            | 49.5504            | 95.5402              | 151.1367             | 89.6089            | 16.0995            | 425.8906             | 92       |
| 36         | 0.1359           | 0.1833           | 1.1218           | 4.2599           | 18.3626            | 49.7579            | 95.9403              | 151.7696             | 89.9842            | 16.1669            | 427.6825             | 93       |
| 37         | 0.1359           | 0.1833           | 1.1289           | 4.2837           | 18.4332            | 49.9490            | 96.3088              | 152.3525             | 90.3298            | 16.2290            | 429.3340             | 93       |
| 38         | 0.1359           | 0.1833           | 1.1329           | 4.3092           | 18.4982            | 50.1253            | 96.6487              | 152.8902             | 90.6486            | 16.2863            | 430.8587             | 93       |
| 39<br>40   | 0.1359<br>0.1359 | 0.1833           | 1.1339           | 4.3365<br>4.3623 | 18.5583<br>18.6140 | 50.2882<br>50.4389 | 96.9628<br>97.2534   | 153.3871<br>153.8468 | 90.9431<br>91.2157 | 16.3392<br>16.3882 | 432.2684<br>433.5729 | 94<br>94 |
| 41         | 0.1359           | 0.1833<br>0.1833 | 1.1343           | 4.3917           | 18.6655            | 50.5787            | 97.5228              | 154.2730             | 91.4684            | 16.4336            | 434.7872             | 94       |
| 42         | 0.1359           | 0.1833           | 1.1344           | 4.4241           | 18.7134            | 50.7083            | 97.7728              | 154.6686             | 91.7029            | 16.4757            | 435.9195             | 94       |
| 43         | 0.1359           | 0.1833           | 1.1344           | 4.4592           | 18.7579            | 50.8289            | 98.0053              | 155.0363             | 91.9209            | 16.5149            | 436.9770             | 95       |
| 44         | 0.1359           | 0.1833           | 1.1344           | 4.4969           | 18.7993            | 50.9411            | 98.2217              | 155.3786             | 92.1239            | 16.5514            | 437.9665             | 95       |
| 45         | 0.1359           | 0.1833           | 1.1344           | 4.5331           | 18.8379            | 51.0458            | 98.4235              | 155.6977             | 92.3131            | 16.5854            | 438.8900             | 95       |
| 46         | 0.1359           | 0.1833           | 1.1344           | 4.5604           | 18.8891            | 51.1435            | 98.6118              | 155.9957             | 92.4898            | 16.6171            | 439.7609             | 95       |
| 47         | 0.1359           | 0.1833           | 1.1344           | 4.5790           | 18.9513            | 51.2348            | 98.7879              | 156.2743             | 92.6550            | 16.6468            | 440.5826             | 95       |
| 48<br>49   | 0.1359<br>0.1359 | 0.1833<br>0.1833 | 1.1344           | 4.5894<br>4.5921 | 19.0240<br>19.1063 | 51.3203<br>51.4004 | 98.9528<br>99.1073   | 156.5350<br>156.7794 | 92.8096<br>92.9545 | 16.6745<br>16.7006 | 441.3592<br>442.0942 | 96<br>96 |
| 50         | 0.1359           | 0.1833           | 1.1344           | 4.5921           | 19.1063            | 51.4756            | 99.2523              | 157.0089             | 93.0905            | 16.7006            | 442.7845             | 96       |
| 51         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.2730            | 51.5463            | 99.3886              | 157.2244             | 93.2183            | 16.7480            | 443.4455             | 96       |
| 52         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.3660            | 51.6128            | 99.5168              | 157.4273             | 93.3386            | 16.7696            | 444.0779             | 96       |
| 53         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.4637            | 51.6754            | 99.6376              | 157.6184             | 93.4519            | 16.7899            | 444.6839             | 96       |
| 54         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.5657            | 51.7345            | 99.7515              | 157.7986             | 93.5587            | 16.8091            | 445.2651             | 97       |
| 55         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.6615            | 51.7903            | 99.8590              | 157.9688             | 93.6596            | 16.8273            | 445.8134             | 97       |
| 56         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.7332            | 51.8792            | 99.9607              | 158.1296             | 93.7550            | 16.8444            | 446.3491             | 97       |
| 57<br>58   | 0.1359<br>0.1359 | 0.1833<br>0.1833 | 1.1344           | 4.5934<br>4.5934 | 19.7817<br>19.8085 | 51.9978<br>52.1454 | 100.0570<br>100.1481 | 158.2818<br>158.4261 | 93.8453<br>93.9308 | 16.8606<br>16.8760 | 446.8711<br>447.3819 | 97<br>97 |
| 59         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8065            | 52.3202            | 100.1461             | 158.5629             | 94.0119            | 16.8906            | 447.8826             | 97       |
| 60         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8183            | 52.4854            | 100.2340             | 158.6927             | 94.0889            | 16.9044            | 448.3533             | 97       |
| 61         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8188            | 52.6608            | 100.3947             | 158.8161             | 94.1620            | 16.9175            | 448.8169             | 97       |
| 62         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8188            | 52.8424            | 100.4689             |                      | 94.2316            | 16.9300            | 449.2721             | 97       |
| 63         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8188            | 53.0300            | 100.5395             | 159.0453             | 94.2979            | 16.9419            | 449.7204             | 97       |
| 64         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8188            |                    |                      | 159.1518             | 94.3610            |                    | 450.1633             | 98       |
| 65         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8188            | 53.4073            | 100.6711             | 159.2534             | 94.4213            | 16.9641            | 450.5831             | 98       |
| 66         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8188            | 53.5441<br>53.6348 | 100.7888             | 159.3504<br>159.4431 | 94.4788            | 16.9744<br>16.9843 |                      | 98<br>98 |
| 67<br>68   | 0.1359<br>0.1359 | 0.1833<br>0.1833 | 1.1344           | 4.5934<br>4.5934 | 19.8188<br>19.8188 | 53.6348            | 100.9555<br>101.1681 | 159.4431             | 94.5338<br>94.5864 | 16.9843            | 451.41/3<br>451.8304 | 98       |
| 69         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8188            | 53.6978            | 101.4224             | 159.5318             | 94.5864            | 17.0028            | 451.8304             | 98       |
| 70         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8188            | 53.7027            | 101.6723             | 159.6979             | 94.6849            | 17.0115            |                      | 98       |
| 71         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8188            | 53.7037            | 101.9389             | 159.7758             | 94.7311            | 17.0198            | 453.0350             | 98       |
| 72         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8188            | 53.7037            | 102.2127             | 159.8507             | 94.7754            | 17.0277            | 453.4359             | 98       |
| 73         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8188            | 53.7037            | 102.4956             | 159.9225             | 94.8180            | 17.0354            | 453.8409             | 98       |
| 74         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8188            | 53.7037            | 102.7873             | 159.9915             | 94.8589            | 17.0427            | 454.2499             | 98       |
| 75<br>76   | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8188            | 53.7037<br>53.7037 | 103.0691             | 160.0578             | 94.8983            | 17.0498            |                      | 99       |
| 76<br>77   | 0.1359<br>0.1359 | 0.1833<br>0.1833 | 1.1344           | 4.5934<br>4.5934 | 19.8188<br>19.8188 | 53.7037            | 103.2840             | 160.2070<br>160.4325 | 94.9361<br>94.9725 | 17.0566<br>17.0631 | 455.0531<br>455.4697 | 99<br>99 |
| 78         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8188            | 53.7037            | 103.4321             | 160.7322             | 94.9725            | 17.0631            | 455.8949             | 99       |
| 79         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8188            | 53.7037            | 103.5382             | 161.1009             | 95.0415            | 17.0755            | 456.3255             | 99       |
| 80         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8188            | 53.7037            | 103.5466             | 161.4676             | 95.0741            | 17.0814            | 456.7391             | 99       |
| 81         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8188            | 53.7037            | 103.5483             | 161.8422             | 95.1056            | 17.0871            | 457.1525             | 99       |
| 82         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8188            | 53.7037            | 103.5483             | 162.2129             | 95.1360            | 17.0925            |                      | 99       |
| 83         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8188            | 53.7037            | 103.5483             | 162.5756             | 95.1655            | 17.0978            | 457.9566             | 99       |
| 84         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8188            | 53.7037            | 103.5483             | 162.9313             | 95.1939            | 17.1029            | 458.3458             | 99       |
| 85<br>86   | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8188            | 53.7037            | 103.5483             | 163.2628             | 95.2214            | 17.1079            | 458.7097             | 99<br>99 |
| 86<br>87   | 0.1359<br>0.1359 | 0.1833<br>0.1833 | 1.1344           | 4.5934<br>4.5934 | 19.8188<br>19.8188 | 53.7037<br>53.7037 | 103.5483             | 163.5095<br>163.6771 | 95.3150<br>95.4657 | 17.1126<br>17.1173 | 459.0549<br>459.3777 | 10       |
| 88         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8188            | 53.7037            | 103.5483             | 163.7694             | 95.6669            | 17.1173            | 459.6758             | 10       |
| 89         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8188            | 53.7037            | 103.5483             | 163.7937             | 95.9123            | 17.1216            | 459.9498             | 10       |
| 90         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8188            | 53.7037            | 103.5483             | 163.8029             | 96.1437            | 17.1303            |                      | 10       |
| 91         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8188            | 53.7037            | 103.5483             | 163.8047             | 96.3545            | 17.1344            | 460.4113             | 10       |
| 92         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8188            | 53.7037            | 103.5483             | 163.8047             | 96.5394            | 17.1384            | 460.6002             | 10       |
| 93         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8188            | 53.7037            | 103.5483             | 163.8047             | 96.6992            | 17.1422            | 460.7638             | 100      |
| 94         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8188            | 53.7037            | 103.5483             | 163.8047             | 96.8347            | 17.1460            | 460.9031             | 100      |
| 95         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8188            | 53.7037            | 103.5483             | 163.8047             | 96.9494            | 17.1496            | 461.0214             | 100      |
| 96         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8188            | 53.7037            | 103.5483             | 163.8047             | 97.0301            | 17.1682            | 461.1208             | 100      |
| 97         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8188            | 53.7037            | 103.5483             | 163.8047             | 97.0818            | 17.1987            | 461.2028             | 100      |
| 98         | 0.1359           | 0.1833           | 1.1344           | 4.5934           | 19.8188<br>19.8188 | 53.7037<br>53.7037 | 103.5483             | 163.8047<br>163.8047 | 97.1093<br>97.1166 | 17.2385<br>17.2853 |                      | 100      |
| 99         | 0.1359           | 0.1833           | 1.1344           | 4.5934           |                    |                    |                      |                      |                    |                    | 461.3243             | 100      |

## Exhibit E.44b Yearly Cancer Cases Avoided by System Size

Smoking/Lung Cancer Model - Surface Water Systems

TTHM - Preferred Alternative, 20% Safety Factor

|       |      | <100 |      |      | 100-499 |      |      | 500-99 | 9     | 1     | ,000-3,299 |       |        | 3,300-9,999  |                |                | 10,000-49,99 | 99             | 50,0           | 000-99,999     |                | 100              | ,000-999,99    | 19               |          | ≥1,000,000     |                  |
|-------|------|------|------|------|---------|------|------|--------|-------|-------|------------|-------|--------|--------------|----------------|----------------|--------------|----------------|----------------|----------------|----------------|------------------|----------------|------------------|----------|----------------|------------------|
| Year  | mean | 5th  | 95th | mean | 5th     | 95th | mean | 5th    | 95th  | mean  | 5th        | 95th  | mean   | 5th          | 95th           | mean           | 5th          | 95th           | mean           | 5th            | 95th           | mean             | 5th            | 95th             | mean     | 5th            | 95th             |
| 2005  | -    | -    | -    | -    | -       | -    |      | -      | -     | -     | -          | -     |        | -            | -              | -              | -            | -              | -              |                | -              | -                | -              | -                | -        | -              | -                |
| 2006  | -    | -    | -    | -    | -       | -    | -    | -      | -     | -     | -          |       | -      | -            | -              | -              | -            | -              | -              | -              | -              | -                |                | -                | -        | -              | -                |
| 2007  | -    | -    | -    | -    | -       | -    | -    | -      | -     | -     | -          | -     | -      | -            | -              | -              | -            | -              | -              | -              | -              | -                | -              | -                | -        | -              | -                |
| 2008  | -    | -    | -    | -    | -       | -    | -    | -      | -     | -     | -          | -     | -      | -            | -              | -              | -            | -              | -              | -              | -              | -                | -              | -                | -        | -              | -                |
| 2009  | -    | -    | -    | -    | -       | -    | -    | -      | -     | -     | -          | -     | -      | -            | -              | -              | -            | -              | -              | -              | -              | -                | -              | -                | -        | -              | -                |
| 2010  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00    | 0.03 | 0.02 | 0.01   | 0.05  | 0.15  | 0.05       | 0.35  | 0.42   | 0.15         | 0.99           | 1.98           | 0.70         | 4.65           | 1.72           | 0.61           | 4.05           | 7.62             | 2.68           | 17.92            | 6.49     | 2.28           | 15.25            |
| 2011  | 0.00 | 0.00 | 0.01 | 0.03 | 0.01    | 0.07 | 0.06 | 0.02   | 0.13  | 0.39  | 0.15       | 0.84  | 1.11   | 0.42         | 2.40           | 5.22           | 1.98         | 11.32          | 4.55           | 1.72           | 9.86           | 20.12            | 7.63           | 43.62            | 17.13    | 6.49           | 37.12            |
| 2012  | 0.01 | 0.00 | 0.01 | 0.06 | 0.02    | 0.13 | 0.11 | 0.04   | 0.22  | 0.70  | 0.28       | 1.43  | 2.00   | 0.80         | 4.10           | 9.43           | 3.77         | 19.29          | 8.22           | 3.28           | 16.81          | 36.37            | 14.52          | 74.34            | 30.95    | 12.35          | 63.27            |
| 2013  | 0.01 | 0.00 | 0.02 | 0.09 | 0.04    | 0.18 | 0.17 | 0.07   | 0.32  | 1.07  | 0.44       | 2.10  | 3.07   | 1.27         | 5.99           | 14.43          | 5.97         | 28.22          | 12.58          | 5.20           | 24.59          | 55.64            | 23.01          | 108.79           | 47.35    | 19.59          | 92.59            |
| 2014  | 0.01 | 0.01 | 0.03 | 0.13 | 0.06    | 0.25 | 0.23 | 0.10   | 0.44  | 1.49  | 0.63       | 2.82  | 4.26   | 1.80         | 8.07           | 20.08          | 8.49         | 37.99          | 16.64          | 7.10           | 31.08          | 69.79            | 30.06          | 128.53           | 59.39    | 25.58          | 109.39           |
| 2015  | 0.02 | 0.01 | 0.03 | 0.17 | 0.07    | 0.32 | 0.30 | 0.13   | 0.56  | 1.95  | 0.84       | 3.60  | 5.58   | 2.40         | 10.29          | 25.28          | 10.97        | 46.13          | 19.76          | 8.70           | 35.27          | 81.16            | 36.00          | 143.18           | 69.07    | 30.64          | 121.86           |
| 2016  | 0.02 | 0.01 | 0.04 | 0.21 | 0.09    | 0.37 | 0.37 | 0.16   | 0.66  | 2.37  | 1.05       | 4.24  | 6.78   | 2.99         | 12.14          | 29.33          | 13.09        | 51.49          | 22.31          | 10.07          | 38.49          | 90.57            | 41.11          | 154.91           | 77.08    | 34.99          | 131.84           |
| 2017  | 0.03 | 0.01 | 0.04 | 0.24 | 0.11    | 0.41 | 0.42 | 0.19   | 0.73  | 2.70  | 1.22       | 4.68  | 7.73   | 3.49         | 13.39          | 32.66          | 14.92        | 55.73          | 24.45          | 11.26          | 41.19          | 98.51            | 45.57          | 165.01           | 83.83    | 38.79          | 140.44           |
| 2018  | 0.03 | 0.01 | 0.05 | 0.26 | 0.12    | 0.44 | 0.46 | 0.21   | 0.78  | 2.97  | 1.37       | 5.04  | 8.51   | 3.92         | 14.41          | 35.45          | 16.46        | 59.38          | 26.26          | 12.29          | 43.59          | 105.27           | 49.49          | 174.02           | 89.59    | 42.12          | 148.10           |
| 2019  | 0.03 | 0.01 | 0.05 | 0.28 | 0.13    | 0.47 | 0.50 | 0.23   | 0.83  | 3.20  | 1.50       | 5.35  | 9.17   | 4.28         | 15.31          | 37.84          | 17.79        | 62.71          | 27.81          | 13.17          | 45.83          | 111.10           | 52.83          | 182.58           | 94.55    | 44.96          | 155.39           |
| 2020  | 0.03 | 0.02 | 0.05 | 0.30 | 0.14    | 0.50 | 0.53 | 0.25   | 0.87  | 3.40  | 1.61       | 5.63  | 9.73   | 4.59         | 16.12          | 39.88          | 18.96        | 65.77          | 29.16          | 13.93          | 47.95          | 116.15           | 55.65          | 190.90           | 98.85    | 47.36          | 162.47           |
| 2021  | 0.03 | 0.02 | 0.06 | 0.31 | 0.15    | 0.52 | 0.55 | 0.26   | 0.91  | 3.57  | 1.70       | 5.89  | 10.21  | 4.87         | 16.85          | 41.66          | 19.94        | 68.58          | 30.33          | 14.56          | 49.93          | 120.57           | 57.93          | 198.59           | 102.61   | 49.30          | 169.01           |
| 2022  | 0.04 | 0.02 | 0.06 | 0.33 | 0.16    | 0.54 | 0.58 | 0.28   | 0.95  | 3.72  | 1.78       | 6.12  | 10.63  | 5.10         | 17.51          | 43.21<br>44.57 | 20.78        | 71.17          | 31.36          | 15.10          | 51.71          | 124.44<br>127.86 | 59.99          | 205.41           | 105.91   | 51.05<br>52.64 | 174.82<br>179.62 |
| 2023  | 0.04 | 0.02 | 0.06 | 0.34 | 0.16    | 0.56 | 0.60 | 0.29   | 0.98  | 3.85  | 1.85       | 6.33  | 11.00  | 5.30<br>5.47 | 18.12<br>18.68 | 45.77          | 21.51        | 73.49<br>75.57 | 32.26<br>33.06 | 15.59<br>16.00 | 53.24<br>54.58 | 127.86           | 61.86<br>63.37 | 211.05<br>216.06 | 108.81   | 52.64          | 183.88           |
| 2025  | 0.04 | 0.02 | 0.06 | 0.36 | 0.17    | 0.59 | 0.63 | 0.30   | 1.04  | 4.06  | 1.96       | 6.70  | 11.61  | 5.61         | 19.17          | 46.83          | 22.65        | 77.33          | 33.77          | 16.34          | 55.74          | 133.57           | 64.67          | 220.49           | 113.68   | 55.04          | 187.65           |
| 2026  | 0.04 | 0.02 | 0.06 | 0.37 | 0.17    | 0.60 | 0.64 | 0.30   | 1.04  | 4.15  | 2.00       | 6.84  | 11.86  | 5.73         | 19.58          | 47.78          | 23.10        | 78.83          | 34.40          | 16.63          | 56.75          | 135.97           | 65.73          | 224.29           | 115.72   | 55.94          | 190.89           |
| 2027  | 0.04 | 0.02 | 0.00 | 0.37 | 0.18    | 0.61 | 0.66 | 0.32   | 1.08  | 4.13  | 2.00       | 6.97  | 12.09  | 5.84         | 19.95          | 48.62          | 23.48        | 80.23          | 34.96          | 16.87          | 57.71          | 138.12           | 66.56          | 228.00           | 117.54   | 56.65          | 194.04           |
| 2028  | 0.04 | 0.02 | 0.07 | 0.38 | 0.18    | 0.62 | 0.67 | 0.32   | 1.10  | 4.30  | 2.07       | 7.09  | 12.29  | 5.93         | 20.29          | 49.38          | 23.78        | 81.54          | 35.47          | 17.06          | 58.58          | 140.04           | 67.28          | 231.25           | 119.18   | 57.26          | 196.81           |
| 2029  | 0.04 | 0.02 | 0.07 | 0.38 | 0.18    | 0.63 | 0.68 | 0.33   | 1.12  | 4.36  | 2.10       | 7.20  | 12.47  | 6.00         | 20.60          | 50.05          | 24.05        | 82.70          | 35.92          | 17.24          | 59.36          | 141.77           | 67.98          | 234.25           | 120.66   | 57.86          | 199.36           |
| Total | 0.54 | 0.25 | 0.91 | 4.98 | 2.34    | 8.43 | 8.77 | 4.12   | 14.85 | 56.58 | 26.56      | 95.77 | 161.85 | 75.97        | 273.94         | 669.48         | 314.51       | 1,132.11       | 494.97         | 232.72         | 836.30         | 1,985.52         | 933.92         | 3,353.21         | 1,689.80 | 794.82         | 2,853.78         |
| Avg.  | 0.02 | 0.01 | 0.04 | 0.20 | 0.09    | 0.34 | 0.35 | 0.16   | 0.59  | 2.26  | 1.06       | 3.83  | 6.47   | 3.04         | 10.96          | 26.78          | 12.58        | 45.28          | 19.80          | 9.31           | 33.45          | 79.42            | 37.36          | 134.13           | 67.59    | 31.79          | 114.15           |

Avg. - All Size Categories 202.90 95.41 342.77

## Exhibit E.44c Yearly Cancer Cases Avoided by System Size

Smoking/Lung Cancer Model - Ground Water Systems

TTHM - Preferred Alternative, 20% Safety Factor

|       |      | <100 |      | o /a Gallety i | 100-499 | )     |       | 500-99 | 9     |       | 1,000-3,299 |       |       | 3,300-9,999 |        | 1     | 0,000-49,999 | 9      | 50,00 | 0-99,999 |       | 100   | 0,000-999,99 | 9      |       | ≥1,000,000 |       |
|-------|------|------|------|----------------|---------|-------|-------|--------|-------|-------|-------------|-------|-------|-------------|--------|-------|--------------|--------|-------|----------|-------|-------|--------------|--------|-------|------------|-------|
| Year  | mean | 5th  | 95th | mean           | 5th     | 95th  | mean  | 5th    | 95th  | mean  | 5th         | 95th  | mean  | 5th         | 95th   | mean  | 5th          | 95th   | mean  | 5th      | 95th  | mean  | 5th          | 95th   | mean  | 5th        | 95th  |
| 2005  |      |      |      |                |         |       |       |        |       |       | -           |       |       |             |        | -     | -            | -      |       |          |       | -     | -            | -      | -     |            | -     |
| 2006  | -    | -    | -    |                | -       |       | -     | -      |       |       | -           |       | -     | -           |        | -     | -            | -      |       | -        | -     | -     | -            | -      |       |            | -     |
| 2007  | -    | -    | -    | -              | -       |       |       | -      |       |       | -           |       |       |             |        | -     | -            | -      | -     |          | -     | -     | -            | -      | -     | -          | -     |
| 2008  | -    |      | -    | -              | -       |       |       | -      | -     |       | -           |       | -     | -           |        | -     | -            | -      | -     | -        | -     |       | -            |        | -     | -          | -     |
| 2009  | -    | -    | -    | -              | -       | -     | -     | -      |       | -     | -           | -     | -     | -           |        | -     | -            | -      | -     | -        | -     | -     | -            | -      | -     | -          | -     |
| 2010  | 0.01 | 0.00 | 0.01 | 0.04           | 0.02    | 0.10  | 0.05  | 0.02   | 0.11  | 0.14  | 0.05        | 0.32  | 0.22  | 0.08        | 0.51   | 0.27  | 0.09         | 0.63   | 0.11  | 0.04     | 0.27  | 0.31  | 0.11         | 0.73   | 0.05  | 0.02       | 0.12  |
| 2011  | 0.02 | 0.01 | 0.03 | 0.11           | 0.04    | 0.24  | 0.12  | 0.05   | 0.26  | 0.36  | 0.14        | 0.79  | 0.57  | 0.22        | 1.24   | 0.71  | 0.27         | 1.54   | 0.30  | 0.11     | 0.65  | 0.83  | 0.31         | 1.79   | 0.14  | 0.05       | 0.30  |
| 2012  | 0.03 | 0.01 | 0.06 | 0.20           | 0.08    | 0.42  | 0.22  | 0.09   | 0.44  | 0.66  | 0.26        | 1.34  | 1.04  | 0.41        | 2.12   | 1.29  | 0.51         | 2.63   | 0.54  | 0.21     | 1.10  | 1.49  | 0.60         | 3.05   | 0.25  | 0.10       | 0.51  |
| 2013  | 0.04 | 0.02 | 0.08 | 0.31           | 0.13    | 0.61  | 0.33  | 0.14   | 0.65  | 1.00  | 0.41        | 1.96  | 1.59  | 0.66        | 3.10   | 1.97  | 0.81         | 3.84   | 0.82  | 0.34     | 1.61  | 2.28  | 0.94         | 4.46   | 0.38  | 0.16       | 0.74  |
| 2014  | 0.06 | 0.02 | 0.11 | 0.43           | 0.18    | 0.82  | 0.46  | 0.20   | 0.87  | 1.40  | 0.59        | 2.64  | 2.21  | 0.93        | 4.18   | 2.74  | 1.16         | 5.18   | 1.09  | 0.46     | 2.03  | 2.86  | 1.23         | 5.27   | 0.48  | 0.21       | 0.88  |
| 2015  | 0.08 | 0.03 | 0.14 | 0.57           | 0.24    | 1.05  | 0.60  | 0.26   | 1.12  | 1.83  | 0.79        | 3.37  | 2.89  | 1.24        | 5.33   | 3.44  | 1.49         | 6.29   | 1.29  | 0.57     | 2.31  | 3.33  | 1.48         | 5.87   | 0.55  | 0.25       | 0.98  |
| 2016  | 0.09 | 0.04 | 0.17 | 0.69           | 0.30    | 1.24  | 0.74  | 0.32   | 1.32  | 2.22  | 0.98        | 3.97  | 3.51  | 1.55        | 6.28   | 4.00  | 1.78         | 7.01   | 1.46  | 0.66     | 2.52  | 3.72  | 1.69         | 6.35   | 0.62  | 0.28       | 1.06  |
| 2017  | 0.11 | 0.05 | 0.18 | 0.79           | 0.36    | 1.36  | 0.84  | 0.38   | 1.45  | 2.53  | 1.14        | 4.38  | 4.00  | 1.81        | 6.93   | 4.45  | 2.03         | 7.59   | 1.60  | 0.74     | 2.70  | 4.04  | 1.87         | 6.77   | 0.67  | 0.31       | 1.13  |
| 2018  | 0.12 | 0.05 | 0.20 | 0.87           | 0.40    | 1.47  | 0.92  | 0.42   | 1.56  | 2.78  | 1.28        | 4.71  | 4.40  | 2.03        | 7.46   | 4.83  | 2.24         | 8.09   | 1.72  | 0.80     | 2.85  | 4.32  | 2.03         | 7.14   | 0.72  | 0.34       | 1.19  |
| 2019  | 0.13 | 0.06 | 0.21 | 0.93           | 0.44    | 1.56  | 0.99  | 0.46   | 1.66  | 3.00  | 1.40        | 5.01  | 4.74  | 2.22        | 7.92   | 5.15  | 2.42         | 8.54   | 1.82  | 0.86     | 3.00  | 4.56  | 2.17         | 7.49   | 0.76  | 0.36       | 1.25  |
| 2020  | 0.13 | 0.06 | 0.22 | 0.99           | 0.47    | 1.64  | 1.05  | 0.50   | 1.75  | 3.18  | 1.50        | 5.27  | 5.04  | 2.38        | 8.34   | 5.43  | 2.58         | 8.96   | 1.91  | 0.91     | 3.14  | 4.76  | 2.28         | 7.83   | 0.79  | 0.38       | 1.30  |
| 2021  | 0.14 | 0.07 | 0.23 | 1.04           | 0.50    | 1.72  | 1.11  | 0.53   | 1.83  | 3.34  | 1.59        | 5.51  | 5.29  | 2.52        | 8.72   | 5.68  | 2.72         | 9.34   | 1.99  | 0.95     | 3.27  | 4.95  | 2.38         | 8.15   | 0.82  | 0.40       | 1.36  |
| 2022  | 0.15 | 0.07 | 0.24 | 1.08           | 0.52    | 1.78  | 1.15  | 0.55   | 1.90  | 3.48  | 1.67        | 5.73  | 5.50  | 2.64        | 9.06   | 5.89  | 2.83         | 9.70   | 2.05  | 0.99     | 3.38  | 5.10  | 2.46         | 8.43   | 0.85  | 0.41       | 1.40  |
| 2023  | 0.15 | 0.07 | 0.25 | 1.12           | 0.54    | 1.85  | 1.19  | 0.57   | 1.96  | 3.60  | 1.73        | 5.93  | 5.70  | 2.74        | 9.38   | 6.07  | 2.93         | 10.01  | 2.11  | 1.02     | 3.49  | 5.24  | 2.54         | 8.66   | 0.87  | 0.42       | 1.44  |
| 2024  | 0.16 | 0.08 | 0.26 | 1.15           | 0.56    | 1.90  | 1.23  | 0.59   | 2.03  | 3.71  | 1.79        | 6.11  | 5.86  | 2.83        | 9.67   | 6.24  | 3.01         | 10.29  | 2.16  | 1.05     | 3.57  | 5.37  | 2.60         | 8.86   | 0.89  | 0.43       | 1.48  |
| 2025  | 0.16 | 0.08 | 0.26 | 1.18           | 0.57    | 1.95  | 1.26  | 0.61   | 2.08  | 3.80  | 1.84        | 6.27  | 6.01  | 2.90        | 9.92   | 6.38  | 3.09         | 10.54  | 2.21  | 1.07     | 3.65  | 5.48  | 2.65         | 9.04   | 0.91  | 0.44       | 1.51  |
| 2026  | 0.16 | 0.08 | 0.27 | 1.21           | 0.58    | 1.99  | 1.29  | 0.62   | 2.12  | 3.88  | 1.88        | 6.41  | 6.14  | 2.97        | 10.14  | 6.51  | 3.15         | 10.74  | 2.25  | 1.09     | 3.71  | 5.58  | 2.70         | 9.20   | 0.93  | 0.45       | 1.53  |
| 2027  | 0.17 | 0.08 | 0.28 | 1.23           | 0.59    | 2.03  | 1.31  | 0.63   | 2.16  | 3.96  | 1.91        | 6.53  | 6.26  | 3.02        | 10.33  | 6.62  | 3.20         | 10.93  | 2.29  | 1.10     | 3.78  | 5.67  | 2.73         | 9.35   | 0.94  | 0.45       | 1.56  |
| 2028  | 0.17 | 0.08 | 0.28 | 1.25           | 0.60    | 2.07  | 1.33  | 0.64   | 2.20  | 4.02  | 1.94        | 6.64  | 6.36  | 3.07        | 10.50  | 6.73  | 3.24         | 11.11  | 2.32  | 1.12     | 3.83  | 5.74  | 2.76         | 9.49   | 0.96  | 0.46       | 1.58  |
| 2029  | 0.17 | 0.08 | 0.28 | 1.27           | 0.61    | 2.10  | 1.35  | 0.65   | 2.23  | 4.08  | 1.96        | 6.74  | 6.46  | 3.11        | 10.67  | 6.82  | 3.28         | 11.27  | 2.35  | 1.13     | 3.89  | 5.82  | 2.79         | 9.61   | 0.97  | 0.46       | 1.60  |
| Total | 2.23 | 1.05 | 3.78 | 16.49          | 7.74    | 27.91 | 17.55 | 8.24   | 29.70 | 52.97 | 24.86       | 89.65 | 83.79 | 39.33       | 141.81 | 91.21 | 42.85        | 154.23 | 32.40 | 15.23    | 54.75 | 81.45 | 38.31        | 137.55 | 13.56 | 6.38       | 22.91 |
| Avg.  | 0.09 | 0.04 | 0.15 | 0.66           | 0.31    | 1.12  | 0.70  | 0.33   | 1.19  | 2.12  | 0.99        | 3.59  | 3.35  | 1.57        | 5.67   | 3.65  | 1.71         | 6.17   | 1.30  | 0.61     | 2.19  | 3.26  | 1.53         | 5.50   | 0.54  | 0.26       | 0.92  |

Avg. - All Size Categories 15.67 7.36 26.49

## Exhibit E.44d Yearly Cancer Cases Avoided by System Size

Smoking/Lung Cancer Model - All Water Systems

TTHM - Preferred Alternative, 20% Safety Factor

|       |      | <100 |      |       | 100-499 |       |      | 500-99 | 19    |        | 1,000-3,299 |        | 3      | 3,300-9,999 |        |        | 10,000-49,9 | 99       | 50,0   | 00-99,999 |        | 100      | ,000-999,99 | 9        |          | ≥1,000,000 |          |
|-------|------|------|------|-------|---------|-------|------|--------|-------|--------|-------------|--------|--------|-------------|--------|--------|-------------|----------|--------|-----------|--------|----------|-------------|----------|----------|------------|----------|
| Year  | mean | 5th  | 95th | mean  | 5th     | 95th  | mean | 5th    | 95th  | mean   | 5th         | 95th   | mean   | 5th         | 95th   | mean   | 5th         | 95th     | mean   | 5th       | 95th   | mean     | 5th         | 95th     | mean     | 5th        | 95th     |
| 2005  | -    | -    | -    | -     | -       | -     | -    | -      | -     | -      | -           | -      | -      | -           | -      | -      | -           | -        | -      | -         | -      | -        | -           | -        | -        | -          | -        |
| 2006  | -    | -    | -    | -     | -       | -     | -    | -      | -     | -      | -           | -      | -      | -           | -      | -      | -           | -        | -      | -         | -      | -        | -           | -        | -        | -          | -        |
| 2007  | -    | -    | -    | -     | -       | -     | -    | -      | -     | -      | -           | -      | -      | -           | -      | -      | -           | -        | -      | -         | -      | -        | -           | -        | -        | -          | -        |
| 2008  | -    | -    | -    | -     | -       | -     | -    | -      | -     | -      | -           | -      | -      | -           | -      | -      | -           | -        | -      | -         | -      | -        | -           | -        | -        | -          | -        |
| 2009  | -    | -    | -    | -     | -       | -     | -    | -      | -     | -      | -           | -      | -      | -           | -      | -      | -           | -        | -      | -         | -      | -        | -           | -        | -        | -          | -        |
| 2010  | 0.01 | 0.00 | 0.02 | 0.06  | 0.02    | 0.13  | 0.07 | 0.02   | 0.16  | 0.28   | 0.10        | 0.67   | 0.64   | 0.22        | 1.50   | 2.25   | 0.79        | 5.28     | 1.84   | 0.65      | 4.32   | 7.93     | 2.79        | 18.65    | 6.54     | 2.30       | 15.37    |
| 2011  | 0.02 | 0.01 | 0.04 | 0.15  | 0.06    | 0.32  | 0.18 | 0.07   | 0.39  | 0.75   | 0.28        | 1.63   | 1.68   | 0.64        | 3.65   | 5.93   | 2.25        | 12.86    | 4.85   | 1.84      | 10.51  | 20.95    | 7.94        | 45.41    | 17.26    | 6.54       | 37.42    |
| 2012  | 0.03 | 0.01 | 0.07 | 0.27  | 0.11    | 0.54  | 0.33 | 0.13   | 0.67  | 1.36   | 0.54        | 2.77   | 3.04   | 1.21        | 6.22   | 10.72  | 4.28        | 21.91    | 8.76   | 3.50      | 17.91  | 37.86    | 15.11       | 77.39    | 31.20    | 12.45      | 63.78    |
| 2013  | 0.05 | 0.02 | 0.10 | 0.41  | 0.17    | 0.80  | 0.50 | 0.21   | 0.97  | 2.07   | 0.86        | 4.06   | 4.65   | 1.92        | 9.10   | 16.40  | 6.78        | 32.07    | 13.40  | 5.54      | 26.20  | 57.92    | 23.96       | 113.26   | 47.73    | 19.74      | 93.33    |
| 2014  | 0.07 | 0.03 | 0.14 | 0.57  | 0.24    | 1.07  | 0.69 | 0.29   | 1.31  | 2.89   | 1.22        | 5.46   | 6.47   | 2.74        | 12.24  | 22.82  | 9.65        | 43.16    | 17.73  | 7.56      | 33.11  | 72.65    | 31.29       | 133.80   | 59.87    | 25.79      | 110.26   |
| 2015  | 0.10 | 0.04 | 0.18 | 0.74  | 0.32    | 1.37  | 0.91 | 0.39   | 1.67  | 3.78   | 1.63        | 6.97   | 8.47   | 3.65        | 15.62  | 28.73  | 12.47       | 52.42    | 21.05  | 9.27      | 37.58  | 84.49    | 37.48       | 149.06   | 69.63    | 30.89      | 122.83   |
| 2016  | 0.12 | 0.05 | 0.21 | 0.90  | 0.40    | 1.61  | 1.10 | 0.49   | 1.97  | 4.59   | 2.02        | 8.21   | 10.30  | 4.54        | 18.42  | 33.33  | 14.88       | 58.50    | 23.77  | 10.73     | 41.01  | 94.29    | 42.80       | 161.27   | 77.70    | 35.27      | 132.90   |
| 2017  | 0.13 | 0.06 | 0.23 | 1.03  | 0.46    | 1.78  | 1.26 | 0.57   | 2.18  | 5.23   | 2.37        | 9.06   | 11.73  | 5.30        | 20.32  | 37.11  | 16.95       | 63.32    | 26.05  | 12.00     | 43.89  | 102.55   | 47.44       | 171.78   | 84.51    | 39.10      | 141.56   |
| 2018  | 0.15 | 0.07 | 0.25 | 1.13  | 0.52    | 1.91  | 1.38 | 0.64   | 2.34  | 5.76   | 2.65        | 9.75   | 12.91  | 5.95        | 21.86  | 40.28  | 18.71       | 67.47    | 27.98  | 13.09     | 46.45  | 109.59   | 51.52       | 181.16   | 90.31    | 42.45      | 149.29   |
| 2019  | 0.16 | 0.07 | 0.26 | 1.22  | 0.57    | 2.03  | 1.49 | 0.70   | 2.49  | 6.20   | 2.90        | 10.36  | 13.91  | 6.50        | 23.23  | 42.99  | 20.21       | 71.26    | 29.63  | 14.03     | 48.83  | 115.65   | 54.99       | 190.07   | 95.31    | 45.32      | 156.63   |
| 2020  | 0.17 | 0.08 | 0.28 | 1.29  | 0.61    | 2.14  | 1.58 | 0.75   | 2.62  | 6.58   | 3.11        | 10.91  | 14.76  | 6.97        | 24.46  | 45.32  | 21.54       | 74.73    | 31.07  | 14.85     | 51.09  | 120.92   | 57.93       | 198.73   | 99.65    | 47.74      | 163.77   |
| 2021  | 0.17 | 80.0 | 0.29 | 1.35  | 0.65    | 2.23  | 1.66 | 0.79   | 2.74  | 6.91   | 3.29        | 11.40  | 15.50  | 7.39        | 25.57  | 47.34  | 22.66       | 77.92    | 32.31  | 15.51     | 53.19  | 125.51   | 60.30       | 206.73   | 103.43   | 49.69      | 170.37   |
| 2022  | 0.18 | 0.09 | 0.30 | 1.41  | 0.68    | 2.32  | 1.73 | 0.83   | 2.85  | 7.20   | 3.45        | 11.85  | 16.14  | 7.74        | 26.58  | 49.10  | 23.61       | 80.86    | 33.41  | 16.09     | 55.09  | 129.55   | 62.45       | 213.84   | 106.76   | 51.46      | 176.22   |
| 2023  | 0.19 | 0.09 | 0.31 | 1.46  | 0.70    | 2.40  | 1.79 | 0.86   | 2.95  | 7.45   | 3.59        | 12.26  | 16.70  | 8.04        | 27.50  | 50.64  | 24.44       | 83.50    | 34.37  | 16.61     | 56.72  | 133.10   | 64.39       | 219.71   | 109.69   | 53.07      | 181.06   |
| 2024  | 0.19 | 0.09 | 0.32 | 1.50  | 0.73    | 2.48  | 1.84 | 0.89   | 3.04  | 7.67   | 3.70        | 12.64  | 17.19  | 8.30        | 28.35  | 52.01  | 25.14       | 85.86    | 35.22  | 17.05     | 58.15  | 136.25   | 65.97       | 224.93   | 112.28   | 54.36      | 185.36   |
| 2025  | 0.20 | 0.10 | 0.33 | 1.54  | 0.74    | 2.54  | 1.89 | 0.91   | 3.12  | 7.86   | 3.80        | 12.97  | 17.62  | 8.52        | 29.09  | 53.22  | 25.74       | 87.87    | 35.98  | 17.41     | 59.39  | 139.05   | 67.32       | 229.53   | 114.59   | 55.48      | 189.15   |
| 2026  | 0.20 | 0.10 | 0.33 | 1.57  | 0.76    | 2.60  | 1.93 | 0.93   | 3.18  | 8.03   | 3.88        | 13.25  | 18.01  | 8.70        | 29.72  | 54.29  | 26.25       | 89.57    | 36.65  | 17.72     | 60.46  | 141.55   | 68.43       | 233.49   | 116.65   | 56.39      | 192.42   |
| 2027  | 0.21 | 0.10 | 0.34 | 1.60  | 0.77    | 2.65  | 1.97 | 0.95   | 3.24  | 8.18   | 3.95        | 13.50  | 18.35  | 8.86        | 30.28  | 55.25  | 26.68       | 91.17    | 37.25  | 17.97     | 61.48  | 143.78   | 69.29       | 237.35   | 118.49   | 57.10      | 195.60   |
| 2028  | 0.21 | 0.10 | 0.35 | 1.63  | 0.79    | 2.69  | 2.00 | 0.96   | 3.30  | 8.32   | 4.01        | 13.73  | 18.65  | 8.99        | 30.80  | 56.10  | 27.02       | 92.64    | 37.79  | 18.17     | 62.41  | 145.79   | 70.04       | 240.74   | 120.14   | 57.72      | 198.39   |
| 2029  | 0.21 | 0.10 | 0.35 | 1.65  | 0.80    | 2.73  | 2.03 | 0.98   | 3.35  | 8.44   | 4.06        | 13.95  | 18.93  | 9.11        | 31.27  | 56.87  | 27.32       | 93.97    | 38.28  | 18.37     | 63.24  | 147.59   | 70.77       | 243.86   | 121.62   | 58.32      | 200.96   |
| Total | 2.77 | 1.30 | 4.68 | 21.47 | 10.08   | 36.34 |      |        | 44.55 | 109.55 | 51.42       | 185.42 | 245.64 | 115.29      | 415.76 | 760.68 | 357.36      | 1,286.34 | 527.38 | 247.96    | 891.05 | 2,066.97 | 972.23      | 3,490.76 | 1,703.36 | 801.20     | 2,876.68 |
| Avg.  | 0.11 | 0.05 | 0.19 | 0.86  | 0.40    | 1.45  | 1.05 | 0.49   | 1.78  | 4.38   | 2.06        | 7.42   | 9.83   | 4.61        | 16.63  | 30.43  | 14.29       | 51.45    | 21.10  | 9.92      | 35.64  | 82.68    | 38.89       | 139.63   | 68.13    | 32.05      | 115.07   |

Avg. - All Size Categories 218.57 102.77 369.26

# Section E.7.8 Projection of Cases - Stage 2 Preferred Alternative, 25% Safety Factor TTHM as Indicator Smoking/Lung Cancer Model

| г | Years After | Age G            |                  | ung Can          | cer mode         | I - TTHM ·         | - Preferre         | d Alterna            | tive, 25%            | Safety Ma            | argin)             |                      |              |
|---|-------------|------------------|------------------|------------------|------------------|--------------------|--------------------|----------------------|----------------------|----------------------|--------------------|----------------------|--------------|
|   | the Rule    | 1-10             | 11-20            | 21-30            | 31-40            | 41-50              | 51-60              | 61-70                | 71-80                | 81-90                | 91-100+            | Total                | %            |
| r | 1           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000               | 0%           |
| ı | 2           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000               | 0%<br>0%     |
| ı | 4           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000               | 0%           |
| ı | 5           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000               | 0%           |
| ı | 6           | 0.0132           | 0.0109           | 0.0675           | 0.2732           | 1.1786             | 3.1936             | 6.1578               | 9.7411               | 5.7755               | 1.0376             | 27.4489              | 4%<br>10%    |
| ı | 7<br>8      | 0.0347           | 0.0277           | 0.1712           | 0.6932<br>1.2413 | 2.9908<br>5.3558   | 8.1044<br>14.5129  | 15.6264<br>27.9828   | 24.7196<br>44.2665   | 14.6563<br>26.2456   | 2.6332<br>4.7154   | 69.6575<br>124.7395  | 18%          |
|   | 9           | 0.0971           | 0.0763           | 0.4723           | 1.9124           | 8.2511             | 22.3584            | 43.1102              | 68.1968              | 40.4339              | 7.2645             | 192.1731             | 28%          |
|   | 10          | 0.1255           | 0.0994           | 0.6152           | 2.4910           | 10.7477            | 29.1235            | 56.1542              | 88.8313              | 52.6681              | 9.4626             | 250.3186             | 37%<br>45%   |
|   | 11<br>12    | 0.1484<br>0.1657 | 0.1216<br>0.1419 | 0.7521<br>0.8778 | 3.0453<br>3.5543 | 13.1392<br>15.3357 | 35.6038<br>41.5558 | 68.6492<br>80.1255   | 108.5973<br>126.7518 | 64.3873<br>75.1511   | 11.5681<br>13.5020 | 306.0121<br>357.1616 | 45%<br>52%   |
|   | 13          | 0.1784           | 0.1600           | 0.9901           | 4.0092           | 17.2981            | 46.8733            | 90.3784              | 142.9711             | 84.7675              | 15.2297            | 402.8557             | 59%          |
|   | 14          | 0.1869<br>0.1933 | 0.1754           | 1.0854           | 4.3952           | 18.9636<br>20.3082 | 51.3865            | 99.0804              | 156.7369             | 92.9292              | 16.6960            | 441.6356<br>472.9417 | 64%          |
|   | 15<br>16    | 0.1933           | 0.1879<br>0.1986 | 1.1624           | 4.7068<br>4.9603 | 21.4018            | 55.0299<br>57.9934 | 106.1054<br>111.8195 | 167.8499<br>176.8891 | 99.5182<br>104.8775  | 17.8798<br>18.8427 | 498.4054             | 69%<br>73%   |
| ı | 17          | 0.2000           | 0.2079           | 1.2765           | 5.1690           | 22.3024            | 60.4336            | 116.5246             | 184.3323             | 109.2906             | 19.6356            | 519.3725             | 76%          |
| ı | 18<br>19    | 0.2013<br>0.2016 | 0.2162           | 1.3197           | 5.3437<br>5.4919 | 23.0561<br>23.6958 | 62.4761<br>64.2094 | 120.4627<br>123.8049 | 190.5621<br>195.8492 | 112.9842<br>116.1189 | 20.2992            | 536.9213<br>551.8143 | 78%<br>81%   |
| ı | 20          | 0.2016           | 0.2302           | 1.3877           | 5.6192           | 24.2447            | 65.6967            | 126.6726             | 200.3857             | 118.8086             | 21.3456            | 564.5927             | 82%          |
|   | 21          | 0.2017           | 0.2368           | 1.4149           | 5.7293           | 24.7201            | 66.9849            | 129.1564             | 204.3148             | 121.1382             |                    | 575.6613             | 84%          |
|   | 22<br>23    | 0.2017<br>0.2017 | 0.2435           | 1.4387<br>1.4596 | 5.8256<br>5.9102 | 25.1352<br>25.5003 | 68.1099<br>69.0993 | 131.3254<br>133.2331 | 207.7461<br>210.7638 | 123.1725<br>124.9617 | 22.1297            | 585.3282<br>593.8310 | 85%<br>87%   |
|   | 24          | 0.2017           | 0.2570           | 1.4781           | 5.9851           | 25.8234            | 69.9747            | 134.9209             | 213.4338             | 126.5448             | 22.7356            | 601.3550             | 88%          |
| L | 25          | 0.2017           | 0.2630           | 1.4945           | 6.0516           | 26.1107            | 70.7532            | 136.4221             | 215.8086             | 127.9528             | 22.9885            | 608.0468             | 89%          |
|   | 26<br>27    | 0.2017<br>0.2017 | 0.2674           | 1.5116<br>1.5291 | 6.1111<br>6.1645 | 26.3674<br>26.5977 | 71.4488            | 137.7634<br>138.9666 | 217.9304<br>219.8336 | 129.2108<br>130.3393 | 23.2145            | 614.0271<br>619.3929 | 90%<br>90%   |
| I | 28          | 0.2017           | 0.2702           | 1.5291           | 6.2126           | 26.8050            | 72.0729            | 138.9666             | 219.8336             | 130.3393             | 23.4173            | 624.2247             | 90%          |
| ı | 29          | 0.2017           | 0.2720           | 1.5647           | 6.2560           | 26.9923            | 73.1421            | 141.0283             | 223.0951             | 132.2730             | 23.7647            | 628.5899             | 92%          |
| I | 30<br>31    | 0.2017<br>0.2017 | 0.2721<br>0.2722 | 1.5809<br>1.5971 | 6.2953<br>6.3310 | 27.1620<br>27.3161 | 73.6018<br>74.0194 | 141.9147<br>142.7199 | 224.4973<br>225.7710 | 133.1043<br>133.8595 | 23.9141            | 632.5442<br>636.1374 | 92%<br>93%   |
| ı | 31<br>32    | 0.2017           | 0.2722           | 1.6130           | 6.3310           | 27.4564            | 74.0194            | 143.4530             | 226.9307             | 133.8595             | 24.0497            | 639.4106             | 93%          |
| 1 | 33          | 0.2017           | 0.2722           | 1.6290           | 6.3932           | 27.5845            | 74.7466            | 144.1221             | 227.9891             | 135.1747             | 24.2860            | 642.3992             | 94%          |
|   | 34<br>35    | 0.2017<br>0.2017 | 0.2722           | 1.6451<br>1.6600 | 6.4204           | 27.7016<br>27.8089 | 75.0640<br>75.3547 | 144.7340<br>145.2947 | 228.9571<br>229.8440 | 135.7486<br>136.2745 | 24.3891<br>24.4836 | 645.1336<br>647.6396 | 94%<br>95%   |
| 1 | 36          | 0.2017           | 0.2722           | 1.6711           | 6.4722           | 27.8089            | 75.6217            | 145.2947             | 230.6582             | 136.2745             | 24.4836            | 649.9414             | 95%<br>95%   |
| ı | 37          | 0.2017           | 0.2722           | 1.6785           | 6.5007           | 27.9980            | 75.8671            | 146.2827             | 231.4069             | 137.2012             | 24.6501            | 652.0591             | 95%          |
| ı | 38<br>39    | 0.2017<br>0.2017 | 0.2722           | 1.6826<br>1.6835 | 6.5306<br>6.5617 | 28.0814<br>28.1584 | 76.0932<br>76.3018 | 146.7186<br>147.1206 | 232.0965<br>232.7327 | 137.6100<br>137.9872 | 24.7236<br>24.7913 | 654.0104<br>655.8110 | 95%<br>96%   |
| ı | 40          | 0.2017           | 0.2722           | 1.6838           | 6.5906           | 28.2295            | 76.4945            | 147.4921             | 233.3203             | 138.3356             | 24.8539            | 657.4742             | 96%          |
| ı | 41          | 0.2017           | 0.2722           | 1.6839           | 6.6221           | 28.2952            | 76.6727            | 147.8358             | 233.8640             | 138.6579             | 24.9118            | 659.0174             | 96%          |
| ı | 42<br>43    | 0.2017<br>0.2017 | 0.2722           | 1.6839<br>1.6839 | 6.6558<br>6.6914 | 28.3562<br>28.4127 | 76.8378<br>76.9910 | 148.1542<br>148.4496 | 234.3677<br>234.8349 | 138.9566<br>139.2335 | 24.9655<br>25.0153 | 660.4515<br>661.7861 | 96%<br>97%   |
| ı | 44          | 0.2017           | 0.2722           | 1.6839           | 6.7286           | 28.4652            | 77.1333            | 148.7239             | 235.2688             | 139.4908             | 25.0615            | 663.0299             | 97%          |
|   | 45          | 0.2017           | 0.2722           | 1.6839           | 6.7633           | 28.5140            | 77.2656            | 148.9790             | 235.6723             | 139.7301             | 25.1045            | 664.1866             | 97%          |
| ı | 46<br>47    | 0.2017<br>0.2017 | 0.2722           | 1.6839<br>1.6839 | 6.7890<br>6.8061 | 28.5731<br>28.6408 | 77.3887<br>77.5036 | 149.2165<br>149.4379 | 236.0481<br>236.3983 | 139.9529<br>140.1605 | 25.1445<br>25.1818 | 665.2705<br>666.2868 | 97%<br>97%   |
| ı | 48          | 0.2017           | 0.2722           | 1.6839           | 6.8154           | 28.7163            | 77.6107            | 149.6445             | 236.7252             | 140.3543             | 25.2166            | 667.2408             | 97%          |
| ı | 49          | 0.2017           | 0.2722           | 1.6839           | 6.8175           | 28.7987            | 77.7108            | 149.8375             | 237.0305             | 140.5353             | 25.2491            | 668.1373             | 98%          |
| ı | 50<br>51    | 0.2017<br>0.2017 | 0.2722           | 1.6839<br>1.6839 | 6.8182<br>6.8184 | 28.8759<br>28.9579 | 77.8045<br>77.8921 | 150.0180<br>150.1870 | 237.3161<br>237.5835 | 140.7047<br>140.8632 | 25.2796<br>25.3080 | 668.9748<br>669.7679 | 98%<br>98%   |
| ı | 52          | 0.2017           | 0.2722           | 1.6839           | 6.8184           | 29.0420            | 77.9743            | 150.3454             | 237.8341             | 141.0118             | 25.3347            | 670.5184             | 98%          |
|   | 53          | 0.2017           | 0.2722           | 1.6839           | 6.8184           | 29.1279            | 78.0514            | 150.4940             | 238.0691             | 141.1512             | 25.3598            | 671.2294             | 98%          |
| ı | 54<br>55    | 0.2017<br>0.2017 | 0.2722           | 1.6839<br>1.6839 | 6.8184<br>6.8184 | 29.2150<br>29.2946 | 78.1237<br>78.1918 | 150.6336<br>150.7647 | 238.2899<br>238.4974 | 141.2820<br>141.4050 | 25.3833<br>25.4054 | 671.9037<br>672.5350 | 98%<br>98%   |
|   | 56          | 0.2017           | 0.2722           | 1.6839           | 6.8184           | 29.3530            | 78.2838            | 150.8881             | 238.6926             | 141.5208             | 25.4262            | 673.1405             | 98%          |
|   | 57<br>58    | 0.2017<br>0.2017 | 0.2722<br>0.2722 | 1.6839<br>1.6839 | 6.8184<br>6.8184 | 29.3915<br>29.4122 | 78.3966<br>78.5290 | 151.0043<br>151.1138 | 238.8763<br>239.0496 | 141.6298<br>141.7325 | 25.4458<br>25.4642 | 673.7203<br>674.2773 | 98%<br>98%   |
|   | 59          | 0.2017           | 0.2722           | 1.6839           | 6.8184           | 29.4169            | 78.6790            | 151.1136             | 239.0496             | 141.7325             |                    | 674.8131             | 99%          |
| ı | 60          | 0.2017           | 0.2722           | 1.6839           | 6.8184           | 29.4186            | 78.8173            | 151.3147             | 239.3673             | 141.9209             | 25.4981            | 675.3129             | 99%          |
| ı | 61<br>62    | 0.2017<br>0.2017 | 0.2722<br>0.2722 | 1.6839           | 6.8184<br>6.8184 | 29.4188<br>29.4188 | 78.9585<br>79.0999 | 151.4068<br>151.4940 | 239.5132<br>239.6510 | 142.0073<br>142.0890 |                    | 675.7943<br>676.2571 | 99%<br>99%   |
| ı | 63          | 0.2017           | 0.2722           | 1.6839           | 6.8184           | 29.4188            | 79.2417            |                      | 239.7815             |                      |                    | 676.7031             | 99%          |
| ı | 64          | 0.2017           | 0.2722           | 1.6839           | 6.8184           | 29.4188            | 79.3848            | 151.6546             | 239.9051             | 142.2396             |                    | 677.1344             | 99%          |
| ı | 65<br>66    | 0.2017<br>0.2017 | 0.2722<br>0.2722 | 1.6839<br>1.6839 | 6.8184<br>6.8184 | 29.4188<br>29.4188 | 79.5157<br>79.6116 | 151.7287<br>151.8367 | 240.0222<br>240.1334 | 142.3091<br>142.3750 |                    | 677.5384<br>677.9311 | 99%<br>99%   |
| ı | 67          | 0.2017           | 0.2722           | 1.6839           | 6.8184           | 29.4188            |                    |                      | 240.1334             |                      |                    | 678.3105             | 99%          |
| ı | 68          | 0.2017           | 0.2722           | 1.6839           | 6.8184           | 29.4188            |                    |                      | 240.3390             |                      |                    | 678.6790             | 99%          |
| ı | 69<br>70    | 0.2017<br>0.2017 | 0.2722<br>0.2722 | 1.6839<br>1.6839 | 6.8184<br>6.8184 | 29.4188<br>29.4188 | 79.7142<br>79.7168 |                      | 240.4343<br>240.5249 |                      |                    | 679.0373<br>679.3741 | 99%<br>99%   |
| ı | 70          | 0.2017           | 0.2722           | 1.6839           | 6.8184           | 29.4188            |                    |                      | 240.5249             |                      |                    | 679.7061             | 99%          |
| ı | 72          | 0.2017           | 0.2722           | 1.6839           | 6.8184           | 29.4188            |                    |                      | 240.6933             |                      |                    | 680.0298             | 99%          |
| ı | 73<br>74    | 0.2017<br>0.2017 | 0.2722<br>0.2722 | 1.6839<br>1.6839 | 6.8184<br>6.8184 | 29.4188<br>29.4188 | 79.7172<br>79.7172 |                      | 240.7716<br>240.8463 |                      |                    | 680.3480<br>680.6606 | 99%<br>99%   |
| ı | 75          | 0.2017           | 0.2722           | 1.6839           | 6.8184           | 29.4188            |                    |                      | 240.9176             |                      |                    | 680.9562             | 99%          |
| ı | 76          | 0.2017           | 0.2722           | 1.6839           | 6.8184           | 29.4188            |                    | 153.5539             |                      | 142.8803             |                    | 681.2521             | 99%          |
| ı | 77<br>78    | 0.2017<br>0.2017 | 0.2722           | 1.6839           | 6.8184<br>6.8184 | 29.4188<br>29.4188 |                    | 153.6420<br>153.6905 |                      | 142.9189<br>142.9557 |                    | 681.5449<br>681.8352 | 99%<br>100%  |
| ı | 79          | 0.2017           | 0.2722           | 1.6839           | 6.8184           | 29.4188            |                    |                      | 241.6266             |                      |                    | 682.1215             | 100%         |
| ı | 80          | 0.2017           | 0.2722           | 1.6839           | 6.8184           | 29.4188            | 79.7172            |                      | 241.8522             |                      |                    | 682.3908             | 100%         |
| ı | 81<br>82    | 0.2017<br>0.2017 | 0.2722           | 1.6839           | 6.8184<br>6.8184 | 29.4188<br>29.4188 | 79.7172<br>79.7172 | 153.7061<br>153.7061 | 242.0754<br>242.2903 |                      |                    | 682.6528<br>682.9042 | 100%<br>100% |
| I | 83          | 0.2017           | 0.2722           | 1.6839           | 6.8184           | 29.4188            |                    | 153.7061             | 242.4956             |                      |                    | 683.1445             | 100%         |
| I | 84          | 0.2017           | 0.2722           | 1.6839           | 6.8184           | 29.4188            | 79.7172            | 153.7061             |                      | 143.1461             |                    | 683.3748             | 100%         |
| I | 85<br>86    | 0.2017<br>0.2017 | 0.2722           | 1.6839           | 6.8184<br>6.8184 | 29.4188<br>29.4188 |                    | 153.7061<br>153.7061 | 242.8711<br>243.0019 | 143.1734<br>143.2339 |                    | 683.5858<br>683.7818 | 100%<br>100% |
| ı | 87          | 0.2017           | 0.2722           | 1.6839           | 6.8184           | 29.4188            |                    | 153.7061             | 243.0889             | 143.3221             | 25.7324            | 683.9615             | 100%         |
| I | 88          | 0.2017           | 0.2722           | 1.6839           | 6.8184           | 29.4188            | 79.7172            | 153.7061             |                      | 143.4342             |                    | 684.1244             | 100%         |
| I | 89<br>90    | 0.2017<br>0.2017 | 0.2722           | 1.6839           | 6.8184<br>6.8184 | 29.4188<br>29.4188 | 79.7172<br>79.7172 | 153.7061<br>153.7061 | 243.1461<br>243.1498 | 143.5663<br>143.6878 |                    | 684.2715<br>684.4006 | 100%<br>100% |
| I | 91          | 0.2017           | 0.2722           | 1.6839           | 6.8184           | 29.4188            |                    |                      | 243.1503             |                      |                    | 684.5128             | 100%         |
| I | 92          | 0.2017           | 0.2722           | 1.6839           | 6.8184           | 29.4188            |                    | 153.7061             | 243.1503             |                      |                    | 684.6092             | 100%         |
| I | 93<br>94    | 0.2017<br>0.2017 | 0.2722           | 1.6839           | 6.8184<br>6.8184 | 29.4188<br>29.4188 |                    | 153.7061<br>153.7061 | 243.1503<br>243.1503 | 143.9668<br>144.0322 | 25.7561<br>25.7596 | 684.6913<br>684.7601 | 100%<br>100% |
| ١ | 95          | 0.2017           | 0.2722           | 1.6839           | 6.8184           | 29.4188            |                    |                      | 243.1503             |                      |                    | 684.8177             | 100%         |
| l | 96          | 0.2017           | 0.2722           | 1.6839           | 6.8184           | 29.4188            | 79.7172            | 153.7061             | 243.1503             |                      |                    | 684.8653             | 100%         |
| I | 97<br>98    | 0.2017<br>0.2017 | 0.2722<br>0.2722 | 1.6839<br>1.6839 | 6.8184<br>6.8184 | 29.4188<br>29.4188 | 79.7172<br>79.7172 | 153.7061<br>153.7061 | 243.1503<br>243.1503 |                      | 25.7881<br>25.8073 | 684.9041<br>684.9354 | 100%<br>100% |
| I | 99          | 0.2017           | 0.2722           | 1.6839           | 6.8184           | 29.4188            |                    |                      | 243.1503             |                      |                    | 684.9602             | 100%         |
| 1 | 100         | 0.2017           | 0.2722           | 1.6839           | 6.8184           | 29.4188            | 79.7172            | 153.7061             | 243.1503             | 144.1635             | 25.8477            | 684.9797             | 100%         |

## Exhibit E.45b Yearly Cancer Cases Avoided by System Size

Smoking/Lung Cancer Model - Surface Water Systems

TTHM - Preferred Alternative, 25% Safety Margin

|       |      | <100 |      |      | 100-499 |      |      | 500-999 | )     |       | 1,000-3,299 |       | 3      | ,300-9,999   |        |                | 10,000-49,999  | )        |                | 50,000-99,99   | 99             | 10       | 0,000-999,9 | 199              |                  | ≥1,000,000     |                  |
|-------|------|------|------|------|---------|------|------|---------|-------|-------|-------------|-------|--------|--------------|--------|----------------|----------------|----------|----------------|----------------|----------------|----------|-------------|------------------|------------------|----------------|------------------|
| Year  | mean | 5th  | 95th | mean | 5th     | 95th | mean | 5th     | 95th  | mean  | 5th         | 95th  | mean   | 5th          | 95th   | mean           | 5th            | 95th     | mean           | 5th            | 95th           | mean     | 5th         | 95th             | mean             | 5th            | 95th             |
| 2005  |      |      |      | -    | -       |      | -    |         |       |       |             |       | -      |              |        | -              |                |          |                | -              |                |          |             |                  |                  |                |                  |
| 2006  |      |      |      | -    | -       | -    | -    |         |       | -     |             |       | -      |              |        |                | -              |          | -              | -              | -              |          |             |                  | -                | -              | -                |
| 2007  |      |      |      | -    | -       | -    | -    | -       |       |       | -           |       | -      |              |        | -              | -              | -        | -              | -              | -              |          | -           | -                | -                |                | -                |
| 2008  |      | -    |      | -    | -       | -    | -    | -       | -     | -     | -           | -     | -      | -            | -      | -              | -              | -        | -              | -              | -              | -        | -           | -                | -                | -              | -                |
| 2009  | -    |      | -    | -    | -       | -    | -    | -       | -     | -     | -           | -     | -      | -            |        |                | -              | -        | -              | -              | -              | -        | -           | -                | -                | -              | -                |
| 2010  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00    | 0.03 | 0.02 | 0.00    | 0.05  | 0.12  | 0.00        | 0.31  | 0.35   | 0.00         | 0.89   | 2.88           | 0.02           | 7.40     | 2.51           | 0.02           | 6.45           | 11.11    | 0.09        | 28.53            | 9.46             | 0.07           | 24.28            |
| 2011  | 0.00 | 0.00 | 0.01 | 0.03 | 0.00    | 0.06 | 0.05 | 0.00    | 0.11  | 0.31  | 0.01        | 0.72  | 0.88   | 0.03         | 2.06   | 7.32           | 0.29           | 17.15    | 6.38           | 0.25           | 14.95          | 28.21    | 1.11        | 66.13            | 24.00            | 0.95           | 56.28            |
| 2012  | 0.01 | 0.00 | 0.01 | 0.05 | 0.01    | 0.11 | 0.09 | 0.01    | 0.19  | 0.55  | 0.06        | 1.20  | 1.57   | 0.17         | 3.44   | 13.10          | 1.41           | 28.72    | 11.42          | 1.22           | 25.03          | 50.51    | 5.42        | 110.72           | 42.99            | 4.61           | 94.22            |
| 2013  | 0.01 | 0.00 | 0.02 | 0.07 | 0.01    | 0.15 | 0.13 | 0.02    | 0.27  | 0.85  | 0.16        | 1.75  | 2.42   | 0.46         | 5.01   | 20.19          | 3.81           | 41.79    | 17.59          | 3.32           | 36.42          | 77.82    | 14.68       | 161.11           | 66.23            | 12.49          | 137.11           |
| 2014  | 0.01 | 0.00 | 0.02 | 0.11 | 0.03    | 0.21 | 0.19 | 0.05    | 0.37  | 1.20  | 0.32        | 2.35  | 3.43   | 0.91         | 6.74   | 28.62          | 7.61           | 56.21    | 23.69          | 6.62           | 45.76          | 99.23    | 29.24       | 188.15           | 84.45            | 24.89          | 160.13           |
| 2015  | 0.02 | 0.00 | 0.03 | 0.14 | 0.04    | 0.27 | 0.25 | 0.08    | 0.47  | 1.61  | 0.51        | 3.04  | 4.60   | 1.46         | 8.68   | 36.91          | 12.15          | 68.76    | 28.98          | 10.46          | 52.45          | 119.65   | 45.78       | 213.21           | 101.83           | 38.96          | 181.45           |
| 2016  | 0.02 | 0.01 | 0.03 | 0.18 | 0.06    | 0.32 | 0.31 | 0.11    | 0.56  | 2.00  | 0.72        | 3.63  | 5.71   | 2.07         | 10.38  | 43.97          | 17.12          | 78.06    | 33.86          | 14.31          | 58.73          | 138.66   | 61.17       | 237.52           | 118.01           | 52.06          | 202.14           |
| 2017  | 0.02 | 0.01 | 0.04 | 0.20 | 0.08    | 0.36 | 0.36 | 0.15    | 0.63  | 2.32  | 0.95        | 4.07  | 6.65   | 2.72         | 11.63  | 50.35          | 21.98          | 86.42    | 38.27          | 17.62          | 64.57          | 155.65   | 73.30       | 260.45           | 132.47           | 62.38          | 221.66           |
| 2018  | 0.02 | 0.01 | 0.04 | 0.23 | 0.10    | 0.39 | 0.41 | 0.18    | 0.69  | 2.62  | 1.17        | 4.46  | 7.49   | 3.34         | 12.76  | 56.03          | 26.11          | 94.11    | 42.07          | 20.05          | 70.03          | 169.83   | 81.39       | 282.01           | 144.53           | 69.27          | 240.01           |
| 2019  | 0.03 | 0.01 | 0.05 | 0.25 | 0.12    | 0.42 | 0.45 | 0.21    | 0.74  | 2.88  | 1.35        | 4.80  | 8.23   | 3.86         | 13.74  | 60.90          | 29.12          | 100.91   | 45.16          | 21.73          | 74.57          | 181.01   | 87.36       | 298.56           | 154.05           | 74.35          | 254.09           |
| 2020  | 0.03 | 0.01 | 0.05 | 0.27 | 0.13    | 0.45 | 0.48 | 0.23    | 0.79  | 3.10  | 1.49        | 5.10  | 8.87   | 4.25         | 14.60  | 64.89          | 31.30          | 106.47   | 47.63          | 23.06          | 77.91          | 190.06   | 92.19       | 310.21           | 161.76           | 78.46          | 264.01           |
| 2021  | 0.03 | 0.02 | 0.05 | 0.29 | 0.14    | 0.47 | 0.51 | 0.25    | 0.83  | 3.28  | 1.59        | 5.35  | 9.39   | 4.54         | 15.31  | 68.10          | 33.05          | 110.66   | 49.67          | 24.15          | 80.36          | 197.57   | 96.15       | 318.82           | 168.14           | 81.83          | 271.33           |
| 2022  | 0.03 | 0.02 | 0.05 | 0.30 | 0.15    | 0.49 | 0.53 | 0.26    | 0.86  | 3.43  | 1.67        | 5.55  | 9.81   | 4.77         | 15.86  | 70.75          | 34.47          | 113.90   | 51.37          | 25.05          | 82.25          | 203.89   | 99.46       | 325.30           | 173.52           | 84.65          | 276.85           |
| 2023  | 0.03 | 0.02 | 0.05 | 0.31 | 0.15    | 0.50 | 0.55 | 0.27    | 0.88  | 3.55  | 1.74        | 5.69  | 10.16  | 4.96<br>5.13 | 16.28  | 72.98<br>74.87 | 35.69<br>36.80 | 116.33   | 52.81<br>54.05 | 25.87<br>26.63 | 83.70<br>85.12 | 209.28   | 102.68      | 330.67<br>336.26 | 178.11<br>182.06 | 87.39<br>89.84 | 281.42<br>286.18 |
| 2024  | 0.03 | 0.02 | 0.05 | 0.32 | 0.16    | 0.51 | 0.57 | 0.28    | 0.90  | 3.74  | 1.79        | 5.81  | 10.46  | 5.13         | 16.62  | 76.51          | 36.80          | 120.36   | 55.12          | 26.63          | 86.51          | 213.92   | 105.56      | 341.75           | 185.49           | 91.82          | 290.85           |
| 2026  | 0.04 | 0.02 | 0.06 | 0.34 | 0.10    | 0.52 | 0.59 | 0.29    | 0.93  | 3.82  | 1.89        | 6.00  | 10.93  | 5.40         | 17.17  | 77.92          | 38.57          | 122.22   | 56.06          | 27.80          | 87.80          | 221.47   | 109.96      | 346.60           | 188.49           | 93.58          | 294.98           |
| 2027  | 0.04 | 0.02 | 0.06 | 0.34 | 0.17    | 0.54 | 0.60 | 0.30    | 0.95  | 3.89  | 1.93        | 6.10  | 11.12  | 5.51         | 17.44  | 79.17          | 39.33          | 124.05   | 56.88          | 28.30          | 89.09          | 224.58   | 111.83      | 351.84           | 191.13           | 95.17          | 299.43           |
| 2028  | 0.04 | 0.02 | 0.06 | 0.35 | 0.17    | 0.54 | 0.61 | 0.30    | 0.96  | 3.94  | 1.96        | 6.18  | 11.28  | 5.62         | 17.68  | 80.26          | 40.02          | 125.71   | 57.61          | 28.75          | 90.25          | 227.34   | 113.48      | 356.17           | 193.48           | 96.58          | 303.12           |
| 2029  | 0.04 | 0.02 | 0.06 | 0.35 | 0.18    | 0.55 | 0.62 |         | 0.97  | 4.00  | 2.00        | 6.26  | 11.43  | 5.72         | 17.89  | 81.23          | 40.66          | 127.17   | 58.25          | 29.20          | 91.20          | 229.79   | 115.35      | 359.72           | 195.57           | 98.17          | 306.15           |
| Total | 0.48 | 0.22 | 0.80 | 4.48 | 2.04    | 7.42 | 7.89 | 3.59    | 13.07 | 50.85 | 23.14       | 84.28 | 145.46 | 66.19        | 241.10 | 1,066.96       | 487.24         | 1,764.81 | 789.37         | 361.70         | 1,303.13       | 3,167.52 | 1,454.08    | 5,223.74         | 2,695.74         | 1,237.51       | 4,445.71         |
| Avg.  | 0.02 | 0.01 | 0.03 | 0.18 | 0.08    | 0.30 | 0.32 | 0.14    | 0.52  | 2.03  | 0.93        | 3.37  | 5.82   | 2.65         | 9.64   | 42.68          | 19.49          | 70.59    | 31.57          | 14.47          | 52.13          | 126.70   | 58.16       | 208.95           | 107.83           | 49.50          | 177.83           |

Avg. - All Size Categories 317.15 145.43 523.36

## Exhibit E.45c Yearly Cancer Cases Avoided by System Size

Smoking/Lung Cancer Model - Ground Water Systems

TTHM - Preferred Alternative, 25% Safety Margin

|       |      | <100 |      |       | 100-499 |       |       | 500-999 |       | 1     | ,000-3,29 | 9            | 3     | ,300-9,99 | 9            | 10           | ,000-49,9 | 99     | 50    | ,000-99,9 | 99    | 100          | ,000-999, | 999          | 2     | 1,000,000 | J     |
|-------|------|------|------|-------|---------|-------|-------|---------|-------|-------|-----------|--------------|-------|-----------|--------------|--------------|-----------|--------|-------|-----------|-------|--------------|-----------|--------------|-------|-----------|-------|
| Year  | mean | 5th  | 95th | mean  | 5th     | 95th  | mean  | 5th     | 95th  | mean  | 5th       | 95th         | mean  | 5th       | 95th         | mean         | 5th       | 95th   | mean  | 5th       | 95th  | mean         | 5th       | 95th         | mean  | 5th       | 95th  |
| 2005  | -    |      | -    |       |         | -     | -     |         |       | -     | -         | -            | -     | -         |              | -            | -         | -      | -     |           |       | -            | -         | -            | -     | -         | -     |
| 2006  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -     | -         | -            | -     | -         | -            | -            | -         | -      | -     | -         | -     | -            | -         | -            | -     | -         | - 1   |
| 2007  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -     | -         | -            | -     | -         | -            | -            | -         | -      | -     | -         | -     | -            | -         | -            | -     | -         | -     |
| 2008  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -     | -         | -            | -     | -         | -            | -            | -         | -      | -     | -         | -     | -            | -         | -            | -     | -         | -     |
| 2009  | -    | -    | -    | -     | -       | -     | -     | -       | -     | -     | -         | -            | -     | -         | -            | -            | -         | -      | -     | -         | -     | -            | -         | -            | -     | -         | -     |
| 2010  | 0.00 | 0.00 | 0.01 | 0.04  | 0.00    | 0.09  | 0.04  | 0.00    | 0.10  | 0.11  | 0.00      | 0.29         | 0.18  | 0.00      | 0.46         | 0.22         | 0.00      | 0.57   | 0.09  | 0.00      | 0.24  | 0.26         | 0.00      | 0.66         | 0.04  | 0.00      | 0.11  |
| 2011  | 0.01 | 0.00 | 0.03 | 0.09  | 0.00    | 0.21  | 0.10  | 0.00    | 0.22  | 0.29  | 0.01      | 0.67         | 0.45  | 0.02      | 1.07         | 0.56         | 0.02      | 1.32   | 0.23  | 0.01      | 0.55  | 0.65         | 0.03      | 1.53         | 0.11  | 0.00      | 0.25  |
| 2012  | 0.02 | 0.00 | 0.05 | 0.16  | 0.02    | 0.35  | 0.17  | 0.02    | 0.37  | 0.51  | 0.06      | 1.13         | 0.81  | 0.09      | 1.78         | 1.00         | 0.11      | 2.20   | 0.42  | 0.05      | 0.92  | 1.17         | 0.13      | 2.56         | 0.19  | 0.02      | 0.43  |
| 2013  | 0.03 | 0.01 | 0.07 | 0.25  | 0.05    | 0.51  | 0.26  | 0.05    | 0.54  | 0.79  | 0.15      | 1.64         | 1.25  | 0.24      | 2.60         | 1.55         | 0.29      | 3.20   | 0.65  | 0.12      | 1.34  | 1.80         | 0.34      | 3.72         | 0.30  | 0.06      | 0.62  |
| 2014  | 0.05 | 0.01 | 0.09 | 0.35  | 0.09    | 0.69  | 0.37  | 0.10    | 0.73  | 1.12  | 0.30      | 2.21         | 1.78  | 0.47      | 3.49         | 2.19         | 0.58      | 4.31   | 0.87  | 0.24      | 1.69  | 2.29         | 0.68      | 4.34         | 0.38  | 0.11      | 0.72  |
| 2015  | 0.06 | 0.02 | 0.12 | 0.47  | 0.15    | 0.89  | 0.50  | 0.16    | 0.94  | 1.51  | 0.48      | 2.85         | 2.38  | 0.76      | 4.50         | 2.83         | 0.93      | 5.27   | 1.07  | 0.39      | 1.93  | 2.76         | 1.06      | 4.92         | 0.46  | 0.18      | 0.82  |
| 2016  | 0.08 | 0.03 | 0.14 | 0.58  | 0.21    | 1.06  | 0.62  | 0.22    | 1.13  | 1.87  | 0.68      | 3.40         | 2.96  | 1.07      | 5.38         | 3.37         | 1.31      | 5.99   | 1.25  | 0.53      | 2.16  | 3.20         | 1.41      | 5.48         | 0.53  | 0.24      | 0.91  |
| 2017  | 0.09 | 0.04 | 0.16 | 0.68  | 0.28    | 1.19  | 0.72  | 0.29    | 1.26  | 2.18  | 0.89      | 3.81         | 3.45  | 1.41      | 6.03         | 3.86         | 1.69      | 6.63   | 1.41  | 0.65      | 2.38  | 3.59         | 1.69      | 6.01         | 0.60  | 0.28      | 1.00  |
| 2018  | 0.10 | 0.05 | 0.18 | 0.76  | 0.34    | 1.30  | 0.81  | 0.36    | 1.38  | 2.45  | 1.09      | 4.18         | 3.88  | 1.73      | 6.61         | 4.30         | 2.00      | 7.22   | 1.55  | 0.74      | 2.58  | 3.92         | 1.88      | 6.51         | 0.65  | 0.31      | 1.08  |
| 2019  | 0.11 | 0.05 | 0.19 | 0.84  | 0.39    | 1.40  | 0.89  | 0.42    | 1.49  | 2.70  | 1.27      | 4.50         | 4.27  | 2.00      | 7.12         | 4.67         | 2.23      | 7.74   | 1.66  | 0.80      | 2.75  | 4.18         | 2.02      | 6.89         | 0.70  | 0.34      | 1.15  |
| 2020  | 0.12 | 0.06 | 0.20 | 0.90  | 0.43    | 1.49  | 0.96  | 0.46    | 1.58  | 2.91  | 1.39      | 4.78         | 4.60  | 2.20      | 7.57         | 4.98         | 2.40      | 8.16   | 1.76  | 0.85      | 2.87  | 4.39         | 2.13      | 7.16         | 0.73  | 0.35      | 1.19  |
| 2021  | 0.13 | 0.06 | 0.21 | 0.96  | 0.46    | 1.56  | 1.02  | 0.49    | 1.66  | 3.08  | 1.49      | 5.02         | 4.87  | 2.35      | 7.94         | 5.22         | 2.53      | 8.49   | 1.83  | 0.89      | 2.96  | 4.56         | 2.22      | 7.36         | 0.76  | 0.37      | 1.23  |
| 2022  | 0.14 | 0.07 | 0.22 | 1.00  | 0.49    | 1.62  | 1.07  | 0.52    | 1.72  | 3.22  | 1.56      | 5.20         | 5.09  | 2.47      | 8.22         | 5.42         | 2.64      | 8.73   | 1.89  | 0.92      | 3.03  | 4.71         | 2.30      | 7.51         | 0.78  | 0.38      | 1.25  |
| 2023  | 0.14 | 0.07 | 0.22 | 1.04  | 0.51    | 1.66  | 1.10  | 0.54    | 1.77  | 3.33  | 1.63      | 5.34         | 5.27  | 2.57      | 8.44         | 5.60         | 2.74      | 8.92   | 1.95  | 0.95      | 3.08  | 4.83         | 2.37      | 7.63         | 0.80  | 0.39      | 1.27  |
| 2024  | 0.14 | 0.07 | 0.23 | 1.07  | 0.52    | 1.70  | 1.14  | 0.56    | 1.80  | 3.43  | 1.68      | 5.45<br>5.54 | 5.42  | 2.66      | 8.62<br>8.77 | 5.74<br>5.87 | 2.82      | 9.08   | 1.99  | 0.98      | 3.14  | 4.94<br>5.03 | 2.44      | 7.76<br>7.89 | 0.82  | 0.41      | 1.29  |
| 2025  | 0.15 | 0.07 | 0.24 | 1.11  | 0.55    | 1.75  | 1.19  | 0.59    | 1.86  | 3.58  | 1.77      | 5.63         | 5.66  | 2.80      | 8.90         | 5.98         | 2.96      | 9.37   | 2.07  | 1.02      | 3.19  | 5.11         | 2.54      | 8.00         | 0.85  | 0.42      | 1.33  |
| 2027  | 0.15 | 0.08 | 0.24 | 1.13  | 0.56    | 1.78  | 1.21  | 0.60    | 1.89  | 3.64  | 1.81      | 5.72         | 5.76  | 2.86      | 9.04         | 6.07         | 3.02      | 9.51   | 2.10  | 1.04      | 3.28  | 5.19         | 2.58      | 8.12         | 0.86  | 0.43      | 1.35  |
| 2028  | 0.16 | 0.08 | 0.24 | 1.15  | 0.57    | 1.80  | 1.23  | 0.61    | 1.92  | 3.70  | 1.84      | 5.79         | 5.85  | 2.91      | 9.17         | 6.15         | 3.07      | 9.64   | 2.12  | 1.06      | 3.33  | 5.25         | 2.62      | 8.22         | 0.87  | 0.44      | 1.37  |
| 2029  | 0.16 | 0.08 | 0.25 | 1.17  | 0.58    | 1.83  | 1.24  | 0.62    | 1.94  | 3.75  | 1.87      | 5.86         | 5.93  | 2.96      | 9.28         | 6.23         | 3.12      | 9.75   | 2.15  | 1.08      | 3.36  | 5.31         | 2.66      | 8.31         | 0.88  | 0.44      | 1.38  |
| Total | 2.01 | 0.91 | 3.33 | 14.84 | 6.75    | 24.60 | 15.79 | 7.19    | 26.17 | 47.67 | 21.69     | 79.01        | 75.41 | 34.31     | 124.99       | 81.81        | 37.36     | 135.32 | 29.08 | 13.33     | 48.01 | 73.13        | 33.57     | 120.60       | 12.18 | 5.59      | 20.08 |
| Avg.  | 0.08 | 0.04 | 0.13 | 0.59  | 0.27    | 0.98  | 0.63  | 0.29    | 1.05  | 1.91  | 0.87      | 3.16         | 3.02  | 1.37      | 5.00         | 3.27         | 1.49      | 5.41   | 1.16  | 0.53      | 1.92  | 2.93         | 1.34      | 4.82         | 0.49  | 0.22      | 0.80  |

Avg. - All Size Categories 14.08 6.43 23.29

## Exhibit E.45d Yearly Cancer Cases Avoided by System Size

Smoking/Lung Cancer Model - All Water Systems

TTHM - Preferred Alternative, 25% Safety Margin

|       |              | <100 |      |       | 100-499 |       |       | 500-999 |       |              | 1,000-3,299 | (      |                | 3,300-9,999  |                | 1              | 0,000-49,99    | 9                | 50             | 0,000-99,99    | 9              | 10       | 0,000-999,9      | 999              |                  | ≥1,000,000     |                  |
|-------|--------------|------|------|-------|---------|-------|-------|---------|-------|--------------|-------------|--------|----------------|--------------|----------------|----------------|----------------|------------------|----------------|----------------|----------------|----------|------------------|------------------|------------------|----------------|------------------|
| Year  | mean         | 5th  | 95th | mean  | 5th     | 95th  | mean  | 5th     | 95th  | mean         | 5th         | 95th   | mean           | 5th          | 95th           | mean           | 5th            | 95th             | mean           | 5th            | 95th           | mean     | 5th              | 95th             | mean             | 5th            | 95th             |
| 2005  | -            |      |      |       |         |       | -     |         |       | -            |             |        |                |              | -              | -              | -              | -                | -              |                |                | -        | -                | -                | -                | -              | -                |
| 2006  | -            | -    | -    | -     | -       | -     | -     | -       | -     | -            | -           | -      | -              | -            | -              | -              | -              | -                | -              | -              | -              | -        | -                | -                |                  | -              | -                |
| 2007  | -            | -    | -    | -     | -       | -     | -     | -       | -     | -            | -           | -      | -              | -            | -              | -              | -              | -                | -              | -              | -              | -        | -                | -                | -                | -              | -                |
| 2008  | -            | -    | -    | -     | -       | -     | -     | -       | -     | -            | -           | -      | -              | -            | -              | -              | -              | -                | -              | -              | -              | -        | -                | -                | -                | -              | -                |
| 2009  | -            | -    | -    | -     | -       | -     | -     | -       | -     | -            | -           | -      | -              | -            | -              | -              | -              | -                | -              | -              | -              | -        | -                | -                |                  | -              | -                |
| 2010  | 0.01         | 0.00 | 0.02 | 0.05  | 0.00    | 0.12  | 0.06  | 0.00    | 0.14  | 0.23         | 0.00        | 0.60   | 0.52           | 0.00         | 1.35           | 3.10           | 0.02           | 7.97             | 2.60           | 0.02           | 6.69           | 11.37    | 0.09             | 29.19            | 9.50             | 0.07           | 24.39            |
| 2011  | 0.02         | 0.00 | 0.04 | 0.12  | 0.00    | 0.27  | 0.14  | 0.01    | 0.33  | 0.59         | 0.02        | 1.39   | 1.33           | 0.05         | 3.12           | 7.88           | 0.31           | 18.47            | 6.61           | 0.26           | 15.50          | 28.86    | 1.14             | 67.66            | 24.11            | 0.95           | 56.54            |
| 2012  | 0.03         | 0.00 | 0.06 | 0.21  | 0.02    | 0.46  | 0.26  | 0.03    | 0.56  | 1.06         | 0.11        | 2.33   | 2.38           | 0.26         | 5.23           | 14.11          | 1.51           | 30.92            | 11.84          | 1.27           | 25.95          | 51.68    | 5.54             | 113.27           | 43.18            | 4.63           | 94.65            |
| 2013  | 0.04         | 0.01 | 0.09 | 0.32  | 0.06    | 0.67  | 0.39  | 0.07    | 0.82  | 1.64         | 0.31        | 3.39   | 3.67           | 0.69         | 7.61           | 21.73          | 4.10           | 45.00            | 18.24          | 3.44           | 37.76          | 79.61    | 15.02            | 164.83           | 66.53            | 12.55          | 137.73           |
| 2014  | 0.06         | 0.02 | 0.12 | 0.46  | 0.12    | 0.89  | 0.56  | 0.15    | 1.10  | 2.32         | 0.62        | 4.56   | 5.21           | 1.38         | 10.23          | 30.82          | 8.19           | 60.52            | 24.56          | 6.86           | 47.44          | 101.52   | 29.92            | 192.49           | 84.83            | 25.00          | 160.85           |
| 2015  | 0.08         | 0.02 | 0.15 | 0.61  | 0.19    | 1.15  | 0.75  | 0.24    | 1.41  | 3.11         | 0.99        | 5.88   | 6.98           | 2.21         | 13.19          | 39.74          | 13.08          | 74.03            | 30.05          | 10.85          | 54.38          | 122.41   | 46.83            | 218.13           | 102.29           | 39.14          | 182.27           |
| 2016  | 0.10         | 0.04 | 0.18 | 0.76  | 0.27    | 1.38  | 0.93  | 0.34    | 1.69  | 3.87         | 1.40        | 7.03   | 8.67           | 3.14         | 15.77          | 47.34          | 18.43          | 84.04            | 35.11          | 14.84          | 60.89          | 141.86   | 62.58            | 243.00           | 118.54           | 52.29          | 203.06           |
| 2017  | 0.11         | 0.05 | 0.20 | 0.88  | 0.36    | 1.55  | 1.08  | 0.44    | 1.89  | 4.50         | 1.84        | 7.88   | 10.09          | 4.13         | 17.67          | 54.21          | 23.66          | 93.05            | 39.68          | 18.27          | 66.95          | 159.24   | 75.00            | 266.47           | 133.06           | 62.67          | 222.66           |
| 2018  | 0.13         | 0.06 | 0.22 | 0.99  | 0.44    | 1.69  | 1.22  | 0.54    | 2.08  | 5.07         | 2.26        | 8.64   | 11.37          | 5.07         | 19.37          | 60.33          | 28.12          | 101.32           | 43.62          | 20.79          | 72.61          | 173.75   | 83.27            | 288.52           | 145.18           | 69.58          | 241.09           |
| 2019  | 0.14         | 0.07 | 0.24 | 1.09  | 0.51    | 1.82  | 1.34  | 0.63    | 2.24  | 5.57         | 2.62        | 9.31   | 12.50          | 5.86         | 20.86          | 65.57          | 31.35          | 108.65           | 46.82          | 22.53          | 77.32          | 185.18   | 89.37            | 305.45           | 154.74           | 74.68          | 255.24           |
| 2020  | 0.15         | 0.07 | 0.25 | 1.18  | 0.56    | 1.94  | 1.44  | 0.69    | 2.38  | 6.00         | 2.88        | 9.89   | 13.46          | 6.46         | 22.17          | 69.86          | 33.70          | 114.63           | 49.39          | 23.91          | 80.78          | 194.45   | 94.31            | 317.38           | 162.49           | 78.81          | 265.20           |
| 2021  | 0.16         | 0.08 | 0.26 | 1.25  | 0.60    | 2.03  | 1.53  | 0.74    | 2.49  | 6.36         | 3.07        | 10.37  | 14.25          | 6.89         | 23.24          | 73.32          | 35.58          | 119.15           | 51.50          | 25.04          | 83.32          | 202.13   | 98.37            | 326.18           | 168.90           | 82.20          | 272.56           |
| 2022  | 0.17         | 0.08 | 0.27 | 1.30  | 0.63    | 2.11  | 1.60  | 0.78    | 2.58  | 6.64         | 3.23        | 10.74  | 14.90<br>15.43 | 7.24         | 24.08          | 76.18          | 37.12          | 122.64           | 53.26<br>54.76 | 25.98          | 85.28<br>86.78 | 208.60   | 101.76           | 332.81           | 174.31           | 85.03<br>87.79 | 278.10           |
| 2023  | 0.17<br>0.18 | 0.08 | 0.28 | 1.35  | 0.66    | 2.16  | 1.65  | 0.81    | 2.65  | 6.88<br>7.08 | 3.36        | 11.03  | 15.43          | 7.54<br>7.79 | 24.72<br>25.24 | 78.57<br>80.62 | 38.43<br>39.62 | 125.25<br>127.48 | 56.04          | 26.82<br>27.62 | 88.25          | 218.86   | 105.06<br>108.00 | 338.31<br>344.03 | 178.91<br>182.88 | 90.24          | 282.69<br>287.47 |
| 2025  | 0.18         | 0.09 | 0.29 | 1.42  | 0.70    | 2.25  | 1.74  | 0.86    | 2.75  | 7.06         | 3.57        | 11.45  | 16.26          | 8.00         | 25.67          | 82.37          | 40.64          | 129.58           | 57.15          | 28.26          | 89.70          | 222.98   | 110.39           | 349.65           | 186.32           | 92.24          | 292.17           |
| 2026  | 0.19         | 0.09 | 0.29 | 1.45  | 0.72    | 2.28  | 1.78  | 0.88    | 2.80  | 7.40         | 3.66        | 11.63  | 16.59          | 8.20         | 26.08          | 83.90          | 41.53          | 131.60           | 58.12          | 28.82          | 91.03          | 226.59   | 112.50           | 354.60           | 189.34           | 94.00          | 296.31           |
| 2027  | 0.19         | 0.09 | 0.30 | 1.48  | 0.73    | 2.32  | 1.81  | 0.90    | 2.84  | 7.53         | 3.73        | 11.81  | 16.88          | 8.37         | 26.48          | 85.24          | 42.34          | 133.57           | 58.98          | 29.34          | 92.38          | 229.77   | 114.41           | 359.96           | 192.00           | 95.60          | 300.79           |
| 2028  | 0.19         | 0.10 | 0.30 | 1.50  | 0.75    | 2.35  | 1.84  | 0.91    | 2.88  | 7.64         | 3.80        | 11.98  | 17.13          | 8.53         | 26.85          | 86.41          | 43.08          | 135.35           | 59.73          | 29.81          | 93.57          | 232.59   | 116.10           | 364.40           | 194.35           | 97.01          | 304.49           |
| 2029  | 0.20         | 0.10 | 0.31 | 1.52  | 0.76    | 2.38  | 1.86  | 0.93    | 2.91  | 7.74         | 3.87        | 12.12  | 17.36          | 8.68         | 27.17          | 87.46          | 43.78          | 136.92           | 60.40          | 30.28          | 94.56          | 235.10   | 118.01           | 368.03           | 196.45           | 98.61          | 307.53           |
| Total | 2.49         | 1.13 | 4.13 | 19.32 | 8.79    | 32.02 | 23.68 | 10.77   | 39.25 | 98.52        | 44.83       | 163.30 | 220.87         | 100.50       | 366.09         | 1,148.77       | 524.60         | 1,900.13         | 818.45         | 375.03         | 1,351.15       | 3,240.65 | 1,487.65         | 5,344.34         | 2,707.92         | 1,243.10       | 4,465.79         |
| Avg.  | 0.10         | 0.05 | 0.17 | 0.77  | 0.35    | 1.28  | 0.95  | 0.43    | 1.57  | 3.94         | 1.79        | 6.53   | 8.83           | 4.02         | 14.64          | 45.95          | 20.98          | 76.01            | 32.74          | 15.00          | 54.05          | 129.63   | 59.51            | 213.77           | 108.32           | 49.72          | 178.63           |

Avg. - All Size Categories 331.23 151.86 546.65

## Exhibit E.38a Mean Number of Cases Avoided by Age Group per year following rule promulgation (Smoking/Lung Cancer model - TTHM - Preferred Alternative)

| Years After | Age (            | Group  | (Smoki           | ng/Lung (        | Cancer mo        | odel - TTH         | M - Prefer         | red Alterna        | ative)             |                  |                      |            |
|-------------|------------------|--------|------------------|------------------|------------------|--------------------|--------------------|--------------------|--------------------|------------------|----------------------|------------|
| the Rule    | 1-10             | 11-20  | 21-30            | 31-40            | 41-50            | 51-60              | 61-70              | 71-80              | 81-90              | 91-100+          | Total                | %          |
| 1           | 0                | 0      | 0                | 0                | 0                | 0                  | 0                  | 0                  | 0                  | 0                | 0                    | 0%         |
| 2           | 0                | 0      | 0                | 0                | 0                | 0                  | 0                  | 0                  | 0                  | 0                | 0                    | 0%         |
| 3<br>4      | 0                | 0      | 0                | 0                | 0                | 0                  | 0                  | 0                  | 0                  | 0                | 0                    | 0%<br>0%   |
| 5           | 0                | 0      | 0                | 0                | 0                | 0                  | 0                  | 0                  | 0                  | 0                | 0                    | 0%         |
| 6           | 0.0024           | 0.0006 | 0.0039           | 0.0156           | 0.0673           | 0.1823             | 0.3515             | 0.5561             | 0.3297             | 0.0592           | 1.5687               | 1%         |
| 7           | 0.0081           | 0.0035 | 0.0216           | 0.0877           | 0.3782           | 1.0249             | 1.9762             | 3.1262             | 1.8535             | 0.3330           | 8.8129               | 4%         |
| 9           | 0.0167<br>0.0277 | 0.0091 | 0.0561           | 0.2271           | 0.9800           | 2.6556<br>5.0668   | 5.1204<br>9.7695   | 8.1000<br>15.4545  | 4.8025<br>9.1629   | 0.8628<br>1.6463 | 22.8304<br>43.5551   | 10%<br>19% |
| 10          | 0.0385           | 0.0269 | 0.1664           | 0.6736           | 2.9065           | 7.8757             | 15.1855            | 24.0222            | 14.2428            | 2.5589           | 67.6970              | 30%        |
| 11          | 0.0473           | 0.0359 | 0.2222           | 0.8998           | 3.8821           | 10.5195            | 20.2831            | 32.0862            | 19.0239            | 3.4179           | 90.4179              | 40%        |
| 12          | 0.0539           | 0.0435 | 0.2693           | 1.0905           | 4.7050           | 12.7493            | 24.5824            | 38.8874            | 23.0563            | 4.1424           | 109.5800<br>124.8308 | 48%        |
| 13          | 0.0585           | 0.0496 | 0.3068           | 1.2423           | 5.3599<br>5.8796 | 14.5240<br>15.9321 | 28.0043<br>30.7193 | 44.3006<br>48.5954 | 26.2658<br>28.8122 | 4.7190<br>5.1765 | 136.9303             | 55%<br>60% |
| 15          | 0.0639           | 0.0584 | 0.3611           | 1.4622           | 6.3088           | 17.0953            | 32.9622            | 52.1435            | 30.9159            | 5.5545           | 146.9257             | 64%        |
| 16          | 0.0655           | 0.0619 | 0.3815           | 1.5450           | 6.6659           | 18.0629            | 34.8278            | 55.0948            | 32.6657            | 5.8688           | 155.2398             | 68%        |
| 17          | 0.0664           | 0.0651 | 0.3989           | 1.6151<br>1.6773 | 6.9686<br>7.2368 | 18.8831<br>19.6097 | 36.4093<br>37.8104 | 57.5964<br>59.8129 | 34.1489<br>35.4630 | 6.1353<br>6.3714 | 162.2871<br>168.5308 | 71%<br>74% |
| 19          | 0.0671           | 0.0709 | 0.4271           | 1.7293           | 7.4614           | 20.2184            | 38.9840            | 61.6695            | 36.5638            | 6.5692           | 173.7607             | 76%        |
| 20          | 0.0671           | 0.0733 | 0.4380           | 1.7737           | 7.6529           | 20.7375            | 39.9848            | 63.2526            | 37.5024            | 6.7378           | 178.2202             | 78%        |
| 21          | 0.0671           | 0.0757 | 0.4472<br>0.4550 | 1.8108<br>1.8423 | 7.8129<br>7.9489 | 21.1709<br>21.5394 | 40.8206<br>41.5311 | 64.5748<br>65.6987 | 38.2863<br>38.9528 | 6.8787<br>6.9984 | 181.9451<br>185.1121 | 80%<br>81% |
| 23          | 0.0671           | 0.0783 | 0.4622           | 1.8717           | 8.0757           | 21.8830            | 42.1934            | 66.7465            | 39.5740            | 7.1100           | 188.0646             | 83%        |
| 24          | 0.0671           | 0.0838 | 0.4692           | 1.8997           | 8.1967           | 22.2110            | 42.8259            | 67.7471            | 40.1672            | 7.2166           | 190.8845             | 84%        |
| 25          | 0.0671           | 0.0865 | 0.4751           | 1.9237           | 8.2999           | 22.4905            | 43.3648            | 68.5996            | 40.6727            | 7.3074           | 193.2872             | 85%        |
| 26<br>27    | 0.0671           | 0.0884 | 0.4812<br>0.4875 | 1.9441           | 8.3880<br>8.4607 | 22.7293<br>22.9262 | 43.8252<br>44.2050 | 69.3279<br>69.9287 | 41.1045<br>41.4607 | 7.3850<br>7.4490 | 195.3406<br>197.0355 | 86%<br>86% |
| 28          | 0.0671           | 0.0903 | 0.4941           | 1.9754           | 8.5230           | 23.0951            | 44.5307            | 70.4439            | 41.7662            | 7.5039           | 198.4897             | 87%        |
| 29          | 0.0671           | 0.0905 | 0.5012           | 1.9889           | 8.5812           | 23.2528            | 44.8347            | 70.9248            | 42.0513            | 7.5551           | 199.8475             | 88%        |
| 30<br>31    | 0.0671<br>0.0671 | 0.0906 | 0.5078<br>0.5149 | 2.0012<br>2.0125 | 8.6345<br>8.6832 | 23.3972<br>23.5293 | 45.1131<br>45.3678 | 71.3651<br>71.7681 | 42.3124<br>42.5513 | 7.6020<br>7.6449 | 201.0909             | 88%<br>89% |
| 31          | 0.0671           | 0.0906 | 0.5149           | 2.0125           | 8.6832           | 23.5293            | 45.3678<br>45.6024 | 71.7681            | 42.5513            | 7.6449           | 202.2297             | 89%        |
| 33          | 0.0671           | 0.0906 | 0.5302           | 2.0326           | 8.7698           | 23.7640            | 45.8203            | 72.4839            | 42.9757            | 7.7212           | 204.2553             | 90%        |
| 34          | 0.0671           | 0.0906 | 0.5385           | 2.0415           | 8.8085           | 23.8689            | 46.0225            | 72.8039            | 43.1654            | 7.7553           | 205.1623             | 90%        |
| 35<br>36    | 0.0671           | 0.0906 | 0.5467<br>0.5529 | 2.0501<br>2.0607 | 8.8453<br>8.8798 | 23.9684<br>24.0619 | 46.2144<br>46.3947 | 73.1073<br>73.3926 | 43.3453<br>43.5145 | 7.7876<br>7.8180 | 206.0226<br>206.8327 | 90%<br>91% |
| 37          | 0.0671           | 0.0906 | 0.5572           | 2.0731           | 8.9123           | 24.1500            | 46.5646            | 73.6614            | 43.6738            | 7.8466           | 207.5968             | 91%        |
| 38          | 0.0671           | 0.0906 | 0.5596           | 2.0872           | 8.9429           | 24.2328            | 46.7243            | 73.9139            | 43.8235            | 7.8735           | 208.3154             | 91%        |
| 39<br>40    | 0.0671           | 0.0906 | 0.5602<br>0.5604 | 2.1028<br>2.1178 | 8.9714<br>8.9981 | 24.3100<br>24.3825 | 46.8732<br>47.0129 | 74.1495<br>74.3706 | 43.9632<br>44.0943 | 7.8986<br>7.9222 | 208.9866<br>209.6165 | 92%<br>92% |
| 41          | 0.0671           | 0.0906 | 0.5604           | 2.1357           | 9.0232           | 24.4506            | 47.1443            | 74.5784            | 44.2175            | 7.9443           | 210.2122             | 92%        |
| 42          | 0.0671           | 0.0906 | 0.5604           | 2.1562           | 9.0469           | 24.5146            | 47.2677            | 74.7736            | 44.3332            | 7.9651           | 210.7755             | 92%        |
| 43          | 0.0671           | 0.0906 | 0.5604           | 2.1791           | 9.0692           | 24.5752            | 47.3844            | 74.9582            | 44.4427            | 7.9848           | 211.3117             | 93%        |
| 44<br>45    | 0.0671           | 0.0906 | 0.5604<br>0.5604 | 2.2043<br>2.2288 | 9.0904           | 24.6325<br>24.6869 | 47.4949<br>47.5999 | 75.1330<br>75.2992 | 44.5464<br>44.6448 | 8.0034<br>8.0211 | 211.8230<br>212.3093 | 93%<br>93% |
| 46          | 0.0671           | 0.0906 | 0.5604           | 2.2474           | 9.1406           | 24.7391            | 47.7004            | 75.4581            | 44.7391            | 8.0380           | 212.7807             | 93%        |
| 47          | 0.0671           | 0.0906 | 0.5604           | 2.2600           | 9.1798           | 24.7893            | 47.7972            | 75.6112            | 44.8299            | 8.0543           | 213.2398             | 94%        |
| 48<br>49    | 0.0671           | 0.0906 | 0.5604<br>0.5604 | 2.2670<br>2.2686 | 9.2277<br>9.2836 | 24.8378<br>24.8847 | 47.8907<br>47.9812 | 75.7592<br>75.9023 | 44.9176<br>45.0024 | 8.0701<br>8.0853 | 213.6881<br>214.1263 | 94%<br>94% |
| 50          | 0.0671           | 0.0906 | 0.5604           | 2.2692           | 9.3380           | 24.9302            | 48.0689            | 76.0410            | 45.0846            | 8.1001           | 214.5501             | 94%        |
| 51          | 0.0671           | 0.0906 | 0.5604           | 2.2693           | 9.3994           | 24.9742            | 48.1537            | 76.1752            | 45.1642            | 8.1144           | 214.9684             | 94%        |
| 52<br>53    | 0.0671           | 0.0906 | 0.5604<br>0.5604 | 2.2693<br>2.2693 | 9.4655<br>9.5359 | 25.0164<br>25.0572 | 48.2351<br>48.3137 | 76.3039<br>76.4284 | 45.2406<br>45.3144 | 8.1281<br>8.1414 | 215.3769<br>215.7783 | 94%<br>95% |
| 54          | 0.0671           | 0.0906 | 0.5604           | 2.2693           | 9.6099           | 25.0966            | 48.3899            | 76.5488            | 45.3858            | 8.1542           | 216.1725             | 95%        |
| 55          | 0.0671           | 0.0906 | 0.5604           | 2.2693           | 9.6796           | 25.1349            | 48.4635            | 76.6653            | 45.4548            | 8.1666           | 216.5522             | 95%        |
| 56<br>57    | 0.0671<br>0.0671 | 0.0906 | 0.5604<br>0.5604 | 2.2693<br>2.2693 | 9.7316<br>9.7663 | 25.1986<br>25.2847 | 48.5347<br>48.6021 | 76.7779<br>76.8846 | 45.5216<br>45.5849 | 8.1786<br>8.1900 | 216.9303<br>217.3000 | 95%<br>95% |
| 58          | 0.0671           | 0.0906 | 0.5604           | 2.2693           | 9.7852           | 25.2647            | 48.6662            | 76.9859            | 45.6449            | 8.2008           | 217.6631             | 96%        |
| 59          | 0.0671           | 0.0906 | 0.5604           | 2.2693           | 9.7895           | 25.5212            | 48.7274            | 77.0827            | 45.7023            | 8.2111           | 218.0215             | 96%        |
| 60          | 0.0671           | 0.0906 | 0.5604           | 2.2693<br>2.2693 | 9.7909           | 25.6425            | 48.7859<br>48.8416 | 77.1752            | 45.7572<br>45.8094 | 8.2209           | 218.3600             | 96%<br>96% |
| 61          | 0.0671           | 0.0906 | 0.5604           | 2.2693           | 9.7911           | 25.7710<br>25.9041 | 48.8950            | 77.2634<br>77.3478 | 45.8595            | 8.2303<br>8.2393 | 218.6942<br>219.0242 | 96%        |
| 63          | 0.0671           | 0.0906 | 0.5604           | 2.2693           | 9.7911           | 26.0422            | 48.9467            | 77.4296            | 45.9080            | 8.2480           | 219.3531             | 96%        |
| 64          | 0.0671           | 0.0906 | 0.5604           | 2.2693           | 9.7911           | 26.1857            | 48.9971            | 77.5093            | 45.9553            | 8.2565           | 219.6824             | 96%        |
| 65<br>66    | 0.0671           | 0.0906 | 0.5604           | 2.2693<br>2.2693 | 9.7911           | 26.3204<br>26.4204 | 49.0462<br>49.1359 | 77.5870<br>77.6626 | 46.0013<br>46.0462 | 8.2648<br>8.2728 | 219.9981<br>220.3164 | 97%<br>97% |
| 67          | 0.0671           | 0.0906 | 0.5604           | 2.2693           | 9.7911           | 26.4857            | 49.2622            | 77.7356            | 46.0894            | 8.2806           | 220.6321             | 97%        |
| 68          | 0.0671           | 0.0906 | 0.5604           | 2.2693           | 9.7911           | 26.5208            | 49.4226            | 77.8060            | 46.1312            | 8.2881           | 220.9472             | 97%        |
| 69<br>70    | 0.0671           | 0.0906 | 0.5604           | 2.2693<br>2.2693 | 9.7911           | 26.5285<br>26.5311 | 49.6139<br>49.8002 | 77.8742<br>77.9401 | 46.1716<br>46.2107 | 8.2954<br>8.3024 | 221.2621<br>221.5630 | 97%<br>97% |
| 71          | 0.0671           | 0.0906 | 0.5604           | 2.2693           | 9.7911           | 26.5311            | 49.8002            | 78.0040            | 46.2486            | 8.3092           | 221.8689             | 97%        |
| 72          | 0.0671           | 0.0906 | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 50.1982            | 78.0664            | 46.2855            | 8.3158           | 222.1758             | 97%        |
| 73<br>74    | 0.0671<br>0.0671 | 0.0906 | 0.5604<br>0.5604 | 2.2693<br>2.2693 | 9.7911           | 26.5314<br>26.5314 | 50.4053            | 78.1275<br>78.1875 | 46.3218<br>46.3574 | 8.3224<br>8.3287 | 222.4869<br>222.8017 | 98%<br>98% |
| 75          | 0.0671           | 0.0906 | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 50.6181<br>50.8220 | 78.1875            | 46.3574            | 8.3287<br>8.3350 | 222.8017             | 98%        |
| 76          | 0.0671           | 0.0906 | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 50.9760            | 78.3655            | 46.4266            | 8.3412           | 223.4192             | 98%        |
| 77          | 0.0671           | 0.0906 | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.0807            | 78.5391            | 46.4600            | 8.3472           | 223.7370             | 98%        |
| 78<br>79    | 0.0671           | 0.0906 | 0.5604<br>0.5604 | 2.2693<br>2.2693 | 9.7911           | 26.5314<br>26.5314 | 51.1386<br>51.1514 | 78.7649<br>79.0381 | 46.4927<br>46.5242 | 8.3531<br>8.3587 | 224.0592<br>224.3824 | 98%<br>98% |
| 80          | 0.0671           | 0.0906 | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1557            | 79.3057            | 46.5545            | 8.3642           | 224.6900             | 99%        |
| 81          | 0.0671           | 0.0906 | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 79.5744            | 46.5836            | 8.3694           | 224.9937             | 99%        |
| 82<br>83    | 0.0671           | 0.0906 | 0.5604<br>0.5604 | 2.2693<br>2.2693 | 9.7911           | 26.5314<br>26.5314 | 51.1563<br>51.1563 | 79.8370<br>80.0915 | 46.6117<br>46.6389 | 8.3745<br>8.3793 | 225.2895<br>225.5760 | 99%<br>99% |
| 84          | 0.0671           | 0.0906 | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.3387            | 46.6652            | 8.3841           | 225.8543             | 99%        |
| 85          | 0.0671           | 0.0906 | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.5667            | 46.6908            | 8.3887           | 226.1124             | 99%        |
| 86<br>87    | 0.0671<br>0.0671 | 0.0906 | 0.5604<br>0.5604 | 2.2693<br>2.2693 | 9.7911           | 26.5314<br>26.5314 | 51.1563<br>51.1563 | 80.7344<br>80.8465 | 46.7615<br>46.8706 | 8.3932<br>8.3976 | 226.3553<br>226.5811 | 99%<br>99% |
| 88          | 0.0671           | 0.0906 | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.8465            | 46.8706            | 8.3976           | 226.5811             | 100%       |
| 89          | 0.0671           | 0.0906 | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.9200            | 47.1847            | 8.4064           | 226.9774             | 100%       |
| 90          | 0.0671           | 0.0906 | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.9244            | 47.3437            | 8.4107           | 227.1451             | 100%       |
| 91<br>92    | 0.0671           | 0.0906 | 0.5604<br>0.5604 | 2.2693<br>2.2693 | 9.7911           | 26.5314<br>26.5314 | 51.1563<br>51.1563 | 80.9250<br>80.9250 | 47.4860<br>47.6091 | 8.4149<br>8.4191 | 227.2923<br>227.4196 | 100%       |
| 93          | 0.0671           | 0.0906 | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.9250            | 47.7143            | 8.4233           | 227.5289             | 100%       |
| 94          | 0.0671           | 0.0906 | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.9250            | 47.8023            | 8.4273           | 227.6210             | 100%       |
| 95          | 0.0671           | 0.0906 | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.9250            | 47.8758            | 8.4313           | 227.6985             | 100%       |
| 96<br>97    | 0.0671           | 0.0906 | 0.5604<br>0.5604 | 2.2693<br>2.2693 | 9.7911           | 26.5314<br>26.5314 | 51.1563<br>51.1563 | 80.9250<br>80.9250 | 47.9269<br>47.9589 | 8.4446<br>8.4651 | 227.7628<br>227.8154 | 100%       |
| 98          | 0.0671           | 0.0906 | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.9250            | 47.9755            | 8.4913           | 227.8581             | 100%       |
| 99          | 0.0671           | 0.0906 | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.9250            | 47.9791            | 8.5215           | 227.8920             | 100%       |
| 100         | 0.0671           | 0.0906 | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.9250            | 47.9803            | 8.5469           | 227.9186             | 100%       |

## Exhibit E.38a Mean Number of Cases Avoided by Age Group per year following rule promulgation (Smoking/Lung Cancer model - TTHM - Preferred Alternative)

| Years After | A== (            | Group            | (Smok            | ing/Lung           | Cancer m           | odel - TTH           | M - Preter           | red Altern           | ative)               |                    |                          |            |
|-------------|------------------|------------------|------------------|--------------------|--------------------|----------------------|----------------------|----------------------|----------------------|--------------------|--------------------------|------------|
| the Rule    | 1-10             | 11-20            | 21-30            | 31-40              | 41-50              | 51-60                | 61-70                | 71-80                | 81-90                | 91-100+            | Total                    | %          |
| 1           | 0                | 0                | 0                | 0                  | 0                  | 0                    | 0                    | 0                    | 0                    | 0                  | 0                        | 0%         |
| 2           | 0                | 0                | 0                | 0                  | 0                  | 0                    | 0                    | 0                    | 0                    | 0                  | 0                        | 0%         |
| 3 4         | 0                | 0                | 0                | 0                  | 0                  | 0                    | 0                    | 0                    | 0                    | 0                  | 0                        | 0%         |
| 5           | 0                | 0                | 0                | 0                  | 0                  | 0                    | 0                    | 0                    | 0                    | 0                  | 0                        | 0%         |
| 6<br>7      | 0.0269           | 0.0267           | 0.1653           | 0.6692             | 2.8875             | 7.8244               | 15.0866<br>35.3740   | 23.8657<br>55.9588   | 14.1500              | 2.5422<br>5.9609   | 67.2445<br>157.6737      | 6%<br>15%  |
| 8           | 0.0660           | 0.0626<br>0.1053 | 0.3875<br>0.6518 | 1.5692<br>2.6393   | 6.7705<br>11.3874  | 18.3462<br>30.8570   | 59.4967              | 94.1188              | 33.1780<br>55.8030   | 10.0258            | 265.1994                 | 25%        |
| 9           | 0.1702           | 0.1537           | 0.9506           | 3.8494             | 16.6087            | 45.0052              | 86.7765              | 137.2731             | 81.3892              | 14.6227            | 386.7993                 | 36%        |
| 10          | 0.2110<br>0.2428 | 0.1862<br>0.2153 | 1.1518<br>1.3318 | 4.6640<br>5.3928   | 20.1234            | 54.5291<br>63.0504   | 105.1397<br>121.5700 | 166.3223<br>192.3136 | 98.6124<br>114.0227  | 17.7171<br>20.4858 | 468.6569<br>541.8931     | 43%<br>50% |
| 12          | 0.2666           | 0.2414           | 1.4937           | 6.0482             | 26.0960            | 70.7134              | 136.3453             | 215.6871             | 127.8808             | 22.9756            | 607.7480                 | 56%        |
| 13          | 0.2840           | 0.2648           | 1.6382           | 6.6336             | 28.6217            | 77.5574              | 149.5415             | 236.5624             | 140.2578             | 25.1993            | 666.5607                 | 62%        |
| 14<br>15    | 0.2961           | 0.2855           | 1.7661           | 7.1514<br>7.5702   | 30.8557<br>32.6627 | 83.6108<br>88.5073   | 161.2134<br>170.6545 | 255.0263<br>269.9612 | 151.2050<br>160.0600 | 27.1661<br>28.7570 | 718.5763<br>760.6500     | 67%<br>70% |
| 16          | 0.3115           | 0.3168           | 1.9549           | 7.9159             | 34.1544            | 92.5495              | 178.4485             | 282.2906             | 167.3702             | 30.0704            | 795.3827                 | 74%        |
| 17          | 0.3152           | 0.3294           | 2.0228           | 8.1908             | 35.3403            | 95.7630              | 184.6445             | 292.0922             | 173.1815             | 31.1145            | 822.9941                 | 76%        |
| 18<br>19    | 0.3172<br>0.3176 | 0.3412<br>0.3519 | 2.0818<br>2.1316 | 8.4297<br>8.6315   | 36.3713<br>37.2417 | 98.5565<br>100.9153  | 190.0309<br>194.5789 | 300.6131<br>307.8077 | 178.2335<br>182.4991 | 32.0222<br>32.7885 | 846.9974<br>867.2639     | 78%<br>80% |
| 20          | 0.3178           | 0.3611           | 2.1746           | 8.8053             | 37.9919            | 102.9480             | 198.4982             | 314.0078             | 186.1751             | 33.4490            | 884.7288                 | 82%        |
| 21          | 0.3178           | 0.3714           | 2.2160           | 8.9732             | 38.7161            | 104.9104             | 202.2821             | 319.9935             | 189.7240             | 34.0866            | 901.5911                 | 84%        |
| 22          | 0.3178           | 0.3819           | 2.2515<br>2.2868 | 9.1169<br>9.2596   | 39.3361<br>39.9519 | 106.5904<br>108.2591 | 205.5214             | 325.1179<br>330.2078 | 192.7623<br>195.7800 | 34.6324<br>35.1746 | 916.0286<br>930.3693     | 85%<br>86% |
| 24          | 0.3178           | 0.4040           | 2.3159           | 9.3778             | 40.4617            | 109.6407             | 211.4027             | 334.4217             | 198.2785             | 35.6235            | 942.2443                 | 87%        |
| 25          | 0.3178           | 0.4138           | 2.3401           | 9.4756             | 40.8839            | 110.7847             | 213.6085             | 337.9112             | 200.3474             | 35.9952            | 952.0782                 | 88%        |
| 26<br>27    | 0.3178           | 0.4210<br>0.4256 | 2.3683<br>2.3966 | 9.5740<br>9.6604   | 41.3083<br>41.6814 | 111.9348<br>112.9456 | 215.8261<br>217.7751 | 341.4192<br>344.5023 | 202.4273<br>204.2552 | 36.3689<br>36.6973 | 961.9658<br>970.6573     | 89%<br>90% |
| 28          | 0.3178           | 0.4280           | 2.4270           | 9.7453             | 42.0475            | 113.9378             | 219.6882             | 347.5288             | 206.0496             | 37.0197            | 979.1898                 | 91%        |
| 29<br>30    | 0.3178<br>0.3178 | 0.4286<br>0.4288 | 2.4596<br>2.4879 | 9.8311<br>9.9054   | 42.4179<br>42.7382 | 114.9413<br>115.8092 | 221.6230<br>223.2966 | 350.5894<br>353.2368 | 207.8643             | 37.3457<br>37.6277 | 987.8188<br>995.2822     | 92%<br>92% |
| 30          | 0.3178           | 0.4288           | 2.4879<br>2.5152 | 9.9054<br>9.9705   | 42.7382<br>43.0193 | 115.8092<br>116.5710 | 223.2966<br>224.7655 | 353.2368<br>355.5605 | 209.4339             | 37.6277<br>37.8753 | 995.2822<br>1,001.8357   | 92%        |
| 32          | 0.3178           | 0.4288           | 2.5417           | 10.0300            | 43.2759            | 117.2663             | 226.1060             | 357.6811             | 212.0690             | 38.1012            | 1,007.8179               | 93%        |
| 33<br>34    | 0.3178           | 0.4288<br>0.4288 | 2.5677<br>2.5930 | 10.0845<br>10.1250 | 43.5110<br>43.6860 | 117.9035<br>118.3775 | 227.3346<br>228.2486 | 359.6246<br>361.0704 | 213.2213<br>214.0786 | 38.3082<br>38.4622 | 1,013.3021               | 94%<br>94% |
| 35          | 0.3178           | 0.4288           | 2.6163           | 10.1250            | 43.8182            | 118.3775             | 228.2486             | 361.0704             | 214.0786             | 38.4622            | 1,017.3880               | 95%        |
| 36          | 0.3178           | 0.4288           | 2.6334           | 10.1851            | 43.9143            | 118.9964             | 229.4418             | 362.9579             | 215.1977             | 38.6633            | 1,022.7365               | 95%        |
| 37          | 0.3178           | 0.4288<br>0.4288 | 2.6447<br>2.6511 | 10.2124<br>10.2519 | 43.9748<br>44.0659 | 119.1601<br>119.4069 | 229.7575<br>230.2334 | 363.4573<br>364.2102 | 215.4938<br>215.9400 | 38.7165<br>38.7967 | 1,024.1637               | 95%<br>95% |
| 39          | 0.3178           | 0.4288           | 2.6526           | 10.2963            | 44.1550            | 119.6485             | 230.6993             | 364.9471             | 216.3770             | 38.8752            | 1,028.3977               | 95%        |
| 40          | 0.3178           | 0.4288           | 2.6531           | 10.3385            | 44.2360            | 119.8680             | 231.1225             | 365.6166             | 216.7740             | 38.9465            | 1,030.3019               | 95%        |
| 41          | 0.3178           | 0.4288<br>0.4288 | 2.6532<br>2.6532 | 10.3897<br>10.4449 | 44.3204<br>44.3938 | 120.0967<br>120.2956 | 231.5634<br>231.9468 | 366.3141<br>366.9207 | 217.1875<br>217.5471 | 39.0208<br>39.0854 | 1,032.2926               | 96%<br>96% |
| 43          | 0.3178           | 0.4288           | 2.6532           | 10.5073            | 44.4781            | 120.5241             | 232.3875             | 367.6178             | 217.9604             | 39.1597            | 1,036.0347               | 96%        |
| 44          | 0.3178           | 0.4288           | 2.6532           | 10.5758            | 44.5743            | 120.7846             | 232.8897             | 368.4124             | 218.4316             | 39.2443            | 1,038.3125               | 96%        |
| 45<br>46    | 0.3178           | 0.4288<br>0.4288 | 2.6532<br>2.6532 | 10.6409<br>10.6890 | 44.6757<br>44.7991 | 121.0595<br>121.3270 | 233.4197<br>233.9355 | 369.2508<br>370.0668 | 218.9287<br>219.4124 | 39.3336<br>39.4205 | 1,040.7088               | 96%<br>97% |
| 47          | 0.3178           | 0.4288           | 2.6532           | 10.7209            | 44.9385            | 121.5828             | 234.4288             | 370.8471             | 219.8751             | 39.5037            | 1,045.2967               | 97%        |
| 48          | 0.3178           | 0.4288           | 2.6532           | 10.7380            | 45.0917            | 121.8269             | 234.8996             | 371.5918             | 220.3166             | 39.5830            | 1,047.4475               | 97%        |
| 49<br>50    | 0.3178<br>0.3178 | 0.4288<br>0.4288 | 2.6532<br>2.6532 | 10.7419<br>10.7431 | 45.2558<br>45.4084 | 122.0601<br>122.2831 | 235.3491<br>235.7791 | 372.3029<br>372.9832 | 220.7382<br>221.1415 | 39.6587<br>39.7312 | 1,049.5066<br>1,051.4695 | 97%<br>97% |
| 51          | 0.3178           | 0.4288           | 2.6532           | 10.7433            | 45.5655            | 122.4969             | 236.1912             | 373.6349             | 221.5280             | 39.8006            | 1,053.3602               | 98%        |
| 52<br>53    | 0.3178           | 0.4288<br>0.4288 | 2.6532<br>2.6532 | 10.7433            | 45.7218<br>45.8760 | 122.7022<br>122.8996 | 236.5872<br>236.9678 | 374.2613<br>374.8636 | 221.8994<br>222.2564 | 39.8673<br>39.9315 | 1,055.1823<br>1,056.9380 | 98%<br>98% |
| 54          | 0.3178           | 0.4288           | 2.6532           | 10.7433            | 46.0253            | 123.0637             | 237.2842             | 375.3641             | 222.5531             | 39.9848            | 1,058.4183               | 98%        |
| 55          | 0.3178           | 0.4288           | 2.6532           | 10.7433            | 46.1568            | 123.1874             | 237.5228             | 375.7415             | 222.7769             | 40.0250            | 1,059.5536               | 98%        |
| 56<br>57    | 0.3178           | 0.4288<br>0.4288 | 2.6532<br>2.6532 | 10.7433            | 46.2508<br>46.3112 | 123.3190<br>123.4557 | 237.6862<br>237.7758 | 376.0001<br>376.1418 | 222.9302<br>223.0143 | 40.0526<br>40.0677 | 1,060.3820               | 98%<br>98% |
| 58          | 0.3178           | 0.4288           | 2.6532           | 10.7433            | 46.3435            | 123.6204             | 237.8349             | 376.2352             | 223.0697             | 40.0776            | 1,061.3244               | 98%        |
| 59          | 0.3178           | 0.4288           | 2.6532           | 10.7433            | 46.3508            | 123.8217             | 237.8828             | 376.3110             | 223.1146             | 40.0857            | 1,061.7096               | 98%        |
| 60          | 0.3178<br>0.3178 | 0.4288<br>0.4288 | 2.6532<br>2.6532 | 10.7433<br>10.7433 | 46.3532<br>46.3536 | 124.0139<br>124.2253 | 237.9246<br>237.9619 | 376.3771<br>376.4362 | 223.1538<br>223.1888 | 40.0927<br>40.0990 | 1,062.0585               | 98%<br>98% |
| 62          | 0.3178           | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 124.4533             | 238.0036             | 376.5021             | 223.2279             | 40.1060            | 1,062.7895               | 98%        |
| 63          | 0.3178           | 0.4288           | 2.6532<br>2.6532 | 10.7433            | 46.3536            | 124.7010             | 238.0766             | 376.6176             | 223.2964             | 40.1183            | 1,063.3067               | 99%<br>99% |
| 64<br>65    | 0.3178<br>0.3178 | 0.4288<br>0.4288 | 2.6532           | 10.7433            | 46.3536<br>46.3536 | 124.9638<br>125.2152 | 238.1439<br>238.2052 | 376.7241<br>376.8210 | 223.3596<br>223.4170 | 40.1297<br>40.1400 | 1,063.8177<br>1,064.2951 | 99%        |
| 66          | 0.3178           | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.4029             | 238.3366             | 376.8973             | 223.4623             | 40.1481            | 1,064.7440               | 99%        |
| 67<br>68    | 0.3178<br>0.3178 | 0.4288<br>0.4288 | 2.6532<br>2.6532 | 10.7433            | 46.3536<br>46.3536 | 125.5237<br>125.5885 | 238.5120<br>238.7755 | 376.9175<br>376.9634 | 223.4743<br>223.5016 | 40.1503<br>40.1552 | 1,065.0745               | 99%<br>99% |
| 69          | 0.3178           | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.5885             | 239.1511             | 376.9634             | 223.5016             | 40.1552            | 1,065.4808               | 99%        |
| 70          | 0.3178           | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6056             | 239.5613             | 377.3591             | 223.7362             | 40.1973            | 1,066.9562               | 99%        |
| 71<br>72    | 0.3178<br>0.3178 | 0.4288<br>0.4288 | 2.6532<br>2.6532 | 10.7433<br>10.7433 | 46.3536<br>46.3536 | 125.6060<br>125.6060 | 240.0194<br>240.4848 | 377.7078<br>378.1201 | 223.9429<br>224.1873 | 40.2345<br>40.2784 | 1,068.0072<br>1,069.1734 | 99%<br>99% |
| 73          | 0.3178           | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 240.9252             | 378.5305             | 224.4306             | 40.3221            | 1,070.3111               | 99%        |
| 74<br>75    | 0.3178<br>0.3178 | 0.4288<br>0.4288 | 2.6532<br>2.6532 | 10.7433<br>10.7433 | 46.3536<br>46.3536 | 125.6060<br>125.6060 | 241.3334<br>241.6819 | 378.9287<br>379.3055 | 224.6667<br>224.8901 | 40.3645<br>40.4047 | 1,071.3960<br>1,072.3848 | 99%<br>99% |
| 75          | 0.3178           | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 241.6819             | 379.7003             | 224.8901             | 40.4047            | 1,072.3848               | 99%        |
| 77          | 0.3178           | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 242.0834             | 380.1031             | 225.2377             | 40.4671            | 1,073.9940               | 100%       |
| 78<br>79    | 0.3178<br>0.3178 | 0.4288<br>0.4288 | 2.6532<br>2.6532 | 10.7433<br>10.7433 | 46.3536<br>46.3536 | 125.6060<br>125.6060 | 242.1633<br>242.1801 | 380.5096<br>380.9183 | 225.3642<br>225.4639 | 40.4898<br>40.5078 | 1,074.6295<br>1,075.1727 | 100%       |
| 80          | 0.3178           | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 242.1854             | 381.2934             | 225.4639             | 40.5243            | 1,075.6616               | 100%       |
| 81          | 0.3178           | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 242.1861             | 381.6463             | 225.6426             | 40.5399            | 1,076.1175               | 100%       |
| 82<br>83    | 0.3178           | 0.4288<br>0.4288 | 2.6532<br>2.6532 | 10.7433            | 46.3536<br>46.3536 | 125.6060<br>125.6060 | 242.1861<br>242.1861 | 381.9714<br>382.2681 | 225.7253<br>225.8036 | 40.5547<br>40.5688 | 1,076.5401               | 100%       |
| 84          | 0.3178           | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 242.1861             | 382.5392             | 225.8780             | 40.5822            | 1,077.2880               | 100%       |
| 85          | 0.3178           | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 242.1861             | 382.7738             | 225.9486             | 40.5948            | 1,077.6060               | 100%       |
| 86<br>87    | 0.3178<br>0.3178 | 0.4288<br>0.4288 | 2.6532<br>2.6532 | 10.7433            | 46.3536<br>46.3536 | 125.6060<br>125.6060 | 242.1861<br>242.1861 | 382.9402<br>383.0475 | 226.0542<br>226.1862 | 40.6069<br>40.6183 | 1,077.8900               | 100%       |
| 88          | 0.3178           | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 242.1861             | 383.1026             | 226.3386             | 40.6290            | 1,078.3589               | 100%       |
| 89<br>90    | 0.3178           | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 242.1861             | 383.1143             | 226.5062             | 40.6390            | 1,078.5483               | 100%       |
| 90          | 0.3178<br>0.3178 | 0.4288<br>0.4288 | 2.6532<br>2.6532 | 10.7433            | 46.3536<br>46.3536 | 125.6060<br>125.6060 | 242.1861<br>242.1861 | 383.1178<br>383.1183 | 226.6532<br>226.7776 | 40.6484<br>40.6572 | 1,078.7081               | 100%       |
| 92          | 0.3178           | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 242.1861             | 383.1183             | 226.8798             | 40.6655            | 1,078.9523               | 100%       |
| 93<br>94    | 0.3178<br>0.3178 | 0.4288<br>0.4288 | 2.6532<br>2.6532 | 10.7433            | 46.3536<br>46.3536 | 125.6060             | 242.1861             | 383.1183             | 226.9628             | 40.6736<br>40.6814 | 1,079.0434               | 100%       |
| 94          | 0.3178           | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060<br>125.6060 | 242.1861<br>242.1861 | 383.1183<br>383.1183 | 227.0288<br>227.0810 | 40.6888            | 1,079.1173<br>1,079.1768 | 100%       |
| 96          | 0.3178           | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 242.1861             | 383.1183             | 227.1160             | 40.7014            | 1,079.2244               | 100%       |
| 97<br>98    | 0.3178<br>0.3178 | 0.4288<br>0.4288 | 2.6532<br>2.6532 | 10.7433            | 46.3536<br>46.3536 | 125.6060<br>125.6060 | 242.1861<br>242.1861 | 383.1183<br>383.1183 | 227.1371<br>227.1477 | 40.7175<br>40.7359 | 1,079.2616               | 100%       |
| 99          | 0.3178           | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 242.1861             | 383.1183             | 227.1477             | 40.7359            | 1,079.2906               | 100%       |
| 100         | 0.3178           | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 242.1861             | 383.1183             | 227.1506             | 40.7713            | 1,079.3289               | 100%       |

## Exhibit E.38e Cases avoided by Age Group per year following rule promulgation (Smoking/Bladder Cancer model - TTHM - Preferred Alternative)

| 1 | Years After | Age (            | Group            | onioking/L       | olauuei C        | ancer mo         | del - TTHI         | VI - Freier        | reu Aiteri         | iative)            |                  |                      |              |
|---|-------------|------------------|------------------|------------------|------------------|------------------|--------------------|--------------------|--------------------|--------------------|------------------|----------------------|--------------|
| I | the Rule    | 1-10             | 11-20            | 21-30            | 31-40            | 41-50            | 51-60              | 61-70              | 71-80              | 81-90              | 91-100+          | Total                | %            |
|   | 1           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000           | 0.0000               | 0%           |
|   | 2           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000           | 0.0000               | 0%<br>0%     |
|   | 4           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000           | 0.0000               | 0%           |
|   | 5           | 0.0000           | 0.0000           | 0.0000           | 0.0000<br>0.0245 | 0.0000           | 0.0000             | 0.0000             | 0.0000             | 0.0000<br>0.5183   | 0.0000           | 0.0000               | 0%           |
|   | 6<br>7      | 0.0027<br>0.0078 | 0.0010<br>0.0029 | 0.0061           | 0.0245           | 0.1058<br>0.3143 | 0.2866<br>0.8517   | 0.5526<br>1.6421   | 0.8741<br>2.5977   | 1.5402             | 0.0931<br>0.2767 | 2.4645<br>7.3242     | 1%<br>3%     |
|   | 8           | 0.0151           | 0.0057           | 0.0355           | 0.1439           | 0.6207           | 1.6820             | 3.2430             | 5.1302             | 3.0417             | 0.5465           | 14.4644              | 6%           |
|   | 9<br>10     | 0.0246<br>0.0338 | 0.0095<br>0.0132 | 0.0585<br>0.0820 | 0.2369<br>0.3319 | 1.0221<br>1.4319 | 2.7695<br>3.8800   | 5.3400<br>7.4812   | 8.4474<br>11.8347  | 5.0085<br>7.0168   | 0.8998<br>1.2607 | 23.8167<br>33.3661   | 10%<br>15%   |
|   | 11          | 0.0336           | 0.0132           | 0.1052           | 0.4260           | 1.8382           | 4.9812             | 9.6044             | 15.1933            | 9.0081             | 1.6184           | 42.8338              | 19%          |
|   | 12          | 0.0485           | 0.0207           | 0.1278           | 0.5176           | 2.2334           | 6.0518             | 11.6687            | 18.4590            | 10.9443            | 1.9663           | 52.0381              | 23%          |
|   | 13<br>14    | 0.0538<br>0.0579 | 0.0241<br>0.0274 | 0.1494           | 0.6048<br>0.6869 | 2.6095<br>2.9636 | 7.0710<br>8.0306   | 13.6338<br>15.4841 | 21.5676<br>24.4946 | 12.7874<br>14.5228 | 2.2974<br>2.6092 | 60.7988<br>69.0468   | 27%<br>30%   |
|   | 15          | 0.0615           | 0.0305           | 0.1886           | 0.7637           | 3.2951           | 8.9288             | 17.2159            | 27.2342            | 16.1471            | 2.9011           | 76.7665              | 34%          |
|   | 16          | 0.0641           | 0.0338           | 0.2063           | 0.8353           | 3.6039           | 9.7657             | 18.8297            | 29.7871            | 17.6607            | 3.1730           | 83.9597              | 37%          |
|   | 17<br>18    | 0.0658<br>0.0668 | 0.0375<br>0.0413 | 0.2229           | 0.9026<br>0.9672 | 3.8942<br>4.1730 | 10.5524<br>11.3078 | 20.3465            | 32.1864<br>34.4907 | 19.0833<br>20.4495 | 3.4286<br>3.6740 | 90.7201<br>97.2124   | 40%<br>43%   |
|   | 19          | 0.0670           | 0.0455           | 0.2541           | 1.0290           | 4.4396           | 12.0301            | 23.1957            | 36.6937            | 21.7557            | 3.9087           | 103.4190             | 45%          |
|   | 20          | 0.0671           | 0.0494           | 0.2687           | 1.0880           | 4.6942           | 12.7201            | 24.5262            | 38.7984            | 23.0035            | 4.1329           | 109.3485             | 48%          |
|   | 21<br>22    | 0.0671<br>0.0671 | 0.0543<br>0.0599 | 0.2829           | 1.1453           | 4.9417<br>5.1787 | 13.3908<br>14.0329 | 25.8193<br>27.0575 | 40.8440<br>42.8027 | 24.2164<br>25.3777 | 4.3508<br>4.5595 | 115.1127<br>120.6327 | 51%<br>53%   |
|   | 23          | 0.0671           | 0.0662           | 0.3094           | 1.2529           | 5.4057           | 14.6481            | 28.2436            | 44.6791            | 26.4902            | 4.7593           | 125.9218             | 55%          |
|   | 24<br>25    | 0.0671           | 0.0732           | 0.3219           | 1.3034           | 5.6238           | 15.2390            | 29.3829            | 46.4814            | 27.5588            | 4.9513           | 131.0028<br>135.8408 | 57%          |
|   | 25<br>26    | 0.0671           | 0.0798           | 0.3338           | 1.3515           | 5.8314<br>6.0298 | 15.8016<br>16.3391 | 30.4677            | 48.1974<br>49.8368 | 28.5763<br>29.5482 | 5.1341<br>5.3088 | 140.4642             | 60%<br>62%   |
|   | 27          | 0.0671           | 0.0881           | 0.3646           | 1.4415           | 6.2197           | 16.8538            | 32.4965            | 51.4068            | 30.4791            | 5.4760           | 144.8933             | 64%          |
| I | 28          | 0.0671<br>0.0671 | 0.0899           | 0.3828           | 1.4831           | 6.3993           | 17.3403            | 33.4346            | 52.8908            | 31.3589            | 5.6341           | 149.0810             | 65%          |
| I | 29<br>30    | 0.0671           | 0.0904           | 0.4024           | 1.5226<br>1.5594 | 6.5693<br>6.7282 | 17.8011<br>18.2318 | 34.3230<br>35.1534 | 54.2961<br>55.6098 | 32.1922<br>32.9711 | 5.7838<br>5.9237 | 153.0478<br>156.7558 | 67%<br>69%   |
| I | 31          | 0.0671           | 0.0906           | 0.4402           | 1.5943           | 6.8787           | 18.6394            | 35.9393            | 56.8530            | 33.7082            | 6.0561           | 160.2668             | 70%          |
|   | 32<br>33    | 0.0671<br>0.0671 | 0.0906<br>0.0906 | 0.4604<br>0.4814 | 1.6262<br>1.6558 | 7.0166<br>7.1443 | 19.0132<br>19.3593 | 36.6602<br>37.3274 | 57.9934<br>59.0489 | 34.3843<br>35.0101 | 6.1776<br>6.2901 | 163.4896<br>166.4751 | 72%<br>73%   |
| I | 33<br>34    | 0.0671           | 0.0906           | 0.4814           | 1.6558<br>1.6828 | 7.1443<br>7.2608 | 19.3593<br>19.6749 | 37.3274<br>37.9361 | 59.0489<br>60.0117 | 35.0101<br>35.5809 | 6.2901<br>6.3926 | 166.4751<br>169.2010 | 73%<br>74%   |
|   | 35          | 0.0671           | 0.0906           | 0.5245           | 1.7083           | 7.3709           | 19.9731            | 38.5109            | 60.9211            | 36.1201            | 6.4895           | 171.7761             | 75%          |
|   | 36<br>37    | 0.0671<br>0.0671 | 0.0906<br>0.0906 | 0.5406<br>0.5517 | 1.7403           | 7.4812<br>7.5887 | 20.2720            | 39.0872<br>39.6491 | 61.8328<br>62.7215 | 36.6606<br>37.1876 | 6.5866<br>6.6813 | 174.3589<br>176.8778 | 77%<br>78%   |
|   | 38          | 0.0671           | 0.0906           | 0.5580           | 1.8184           | 7.6962           | 20.8547            | 40.2108            | 63.6101            | 37.7144            | 6.7759           | 179.3961             | 79%          |
|   | 39          | 0.0671           | 0.0906           | 0.5597           | 1.8634           | 7.8007           | 21.1379            | 40.7568            | 64.4739            | 38.2266            | 6.8679           | 181.8447             | 80%          |
|   | 40<br>41    | 0.0671<br>0.0671 | 0.0906           | 0.5603           | 1.9063<br>1.9541 | 7.8998<br>7.9909 | 21.4065<br>21.6533 | 41.2747<br>41.7506 | 65.2932<br>66.0460 | 38.7123<br>39.1586 | 6.9552<br>7.0354 | 184.1660<br>186.3069 | 81%<br>82%   |
|   | 42          | 0.0671           | 0.0906           | 0.5604           | 2.0058           | 8.0723           | 21.8739            | 42.1759            | 66.7188            | 39.5576            | 7.1071           | 188.2296             | 83%          |
|   | 43          | 0.0671           | 0.0906           | 0.5604           | 2.0612           | 8.1471           | 22.0765            | 42.5665            | 67.3368            | 39.9239            | 7.1729           | 190.0030             | 83%          |
|   | 44<br>45    | 0.0671<br>0.0671 | 0.0906           | 0.5604           | 2.1198<br>2.1758 | 8.2153<br>8.2803 | 22.2613            | 42.9228<br>43.2625 | 67.9004<br>68.4378 | 40.2581<br>40.5767 | 7.2329<br>7.2902 | 191.6288<br>193.1789 | 84%<br>85%   |
|   | 46          | 0.0671           | 0.0906           | 0.5604           | 2.2182           | 8.3676           | 22.6120            | 43.5991            | 68.9701            | 40.8923            | 7.3469           | 194.7243             | 85%          |
|   | 47          | 0.0671           | 0.0906           | 0.5604           | 2.2470           | 8.4715           | 22.7779            | 43.9189            | 69.4761            | 41.1924            | 7.4008           | 196.2027             | 86%          |
|   | 48<br>49    | 0.0671<br>0.0671 | 0.0906           | 0.5604           | 2.2631<br>2.2673 | 8.5910<br>8.7241 | 22.9364<br>23.0879 | 44.2246<br>44.5167 | 69.9596<br>70.4218 | 41.4790<br>41.7530 | 7.4523<br>7.5015 | 197.6241<br>198.9905 | 87%<br>87%   |
|   | 50          | 0.0671           | 0.0906           | 0.5604           | 2.2690           | 8.8516           | 23.2337            | 44.7979            | 70.8666            | 42.0168            | 7.5489           | 200.3026             | 88%          |
|   | 51<br>52    | 0.0671<br>0.0671 | 0.0906<br>0.0906 | 0.5604<br>0.5604 | 2.2693<br>2.2693 | 8.9888<br>9.1293 | 23.3699<br>23.4832 | 45.0605<br>45.2789 | 71.2820<br>71.6274 | 42.2631<br>42.4679 | 7.5932<br>7.6299 | 201.5449<br>202.6039 | 88%<br>89%   |
|   | 53          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.2733           | 23.5746            | 45.4551            | 71.9061            | 42.6331            | 7.6596           | 203.4893             | 89%          |
|   | 54          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.4213           | 23.6444            | 45.5898            | 72.1192            | 42.7595            | 7.6823           | 204.2039             | 90%          |
|   | 55<br>56    | 0.0671<br>0.0671 | 0.0906<br>0.0906 | 0.5604           | 2.2693<br>2.2693 | 9.5600<br>9.6646 | 23.7272            | 45.7494<br>45.9748 | 72.3717<br>72.7283 | 42.9092<br>43.1206 | 7.7092<br>7.7472 | 205.0140<br>206.1159 | 90%<br>90%   |
|   | 57          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7359           | 24.1047            | 46.2033            | 73.0898            | 43.3349            | 7.7857           | 207.2416             | 91%          |
|   | 58          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7758           | 24.3629            | 46.4392            | 73.4630            | 43.5562            | 7.8255           | 208.4099             | 91%          |
|   | 59<br>60    | 0.0671<br>0.0671 | 0.0906           | 0.5604           | 2.2693<br>2.2693 | 9.7863<br>9.7904 | 24.6509<br>24.8973 | 46.6681<br>46.8418 | 73.8250<br>74.0999 | 43.7708<br>43.9338 | 7.8640<br>7.8933 | 209.5526<br>210.4439 | 92%<br>92%   |
|   | 61          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 25.1502            | 47.0034            | 74.3555            | 44.0853            | 7.9206           | 211.2935             | 93%          |
|   | 62          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911<br>9.7911 | 25.4057<br>25.6557 | 47.1543<br>47.2686 | 74.5942            | 44.2268<br>44.3341 | 7.9460<br>7.9652 | 212.1056             | 93%<br>93%   |
|   | 64          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 25.9088            | 47.3645            | 74.9268            | 44.4240            | 7.9814           | 213.3841             | 94%          |
|   | 65          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.1449            | 47.4493            | 75.0609            | 44.5036            | 7.9957           | 213.9330             | 94%          |
|   | 66<br>67    | 0.0671<br>0.0671 | 0.0906           | 0.5604           | 2.2693<br>2.2693 | 9.7911<br>9.7911 | 26.3216<br>26.4393 | 47.6005<br>47.8133 | 75.1860<br>75.3037 | 44.5777<br>44.6475 | 8.0090<br>8.0216 | 214.4734<br>215.0040 | 94%<br>94%   |
|   | 68          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5047            | 48.0843            | 75.4146            | 44.7133            | 8.0334           | 215.5287             | 95%          |
|   | 69          | 0.0671           | 0.0906           | 0.5604           | 2.2693<br>2.2693 | 9.7911           | 26.5228            | 48.4080            | 75.5188<br>75.6160 | 44.7751            | 8.0445           | 216.0478             | 95%          |
| I | 70<br>71    | 0.0671<br>0.0671 | 0.0906<br>0.0906 | 0.5604<br>0.5604 | 2.2693           | 9.7911<br>9.7911 | 26.5300<br>26.5314 | 48.7264<br>49.0675 | 75.6160<br>75.7070 | 44.8327<br>44.8866 | 8.0548<br>8.0645 | 216.5385<br>217.0356 | 95%<br>95%   |
| I | 72          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 49.4186            | 75.7922            | 44.9372            | 8.0736           | 217.5315             | 95%          |
| I | 73<br>74    | 0.0671<br>0.0671 | 0.0906<br>0.0906 | 0.5604<br>0.5604 | 2.2693<br>2.2693 | 9.7911<br>9.7911 | 26.5314<br>26.5314 | 49.7849<br>50.1646 | 75.8913<br>76.0188 | 44.9959<br>45.0715 | 8.0842<br>8.0977 | 218.0662<br>218.6626 | 96%<br>96%   |
| I | 75          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 50.5301            | 76.0188            | 45.0715            | 8.0977           | 219.2942             | 96%          |
| I | 76          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 50.8107            | 76.4606            | 45.2742            | 8.1341           | 219.9896             | 97%          |
| I | 77<br>78    | 0.0671<br>0.0671 | 0.0906<br>0.0906 | 0.5604<br>0.5604 | 2.2693<br>2.2693 | 9.7911<br>9.7911 | 26.5314<br>26.5314 | 51.0032<br>51.1116 | 76.8433<br>77.3009 | 45.3906<br>45.5048 | 8.1551<br>8.1756 | 220.7020<br>221.4028 | 97%<br>97%   |
| I | 79          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1116            | 77.8197            | 45.6153            | 8.1954           | 222.0821             | 97%          |
|   | 80          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1538            | 78.3108            | 45.7188            | 8.2140           | 222.7074             | 98%          |
|   | 81<br>82    | 0.0671<br>0.0671 | 0.0906<br>0.0906 | 0.5604           | 2.2693<br>2.2693 | 9.7911<br>9.7911 | 26.5314<br>26.5314 | 51.1563<br>51.1563 | 78.7834<br>79.2233 | 45.8131<br>45.8930 | 8.2310<br>8.2453 | 223.2938<br>223.8279 | 98%<br>98%   |
| I | 83          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 79.6302            | 45.9587            | 8.2571           | 224.3124             | 98%          |
| I | 84          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.0121            | 46.0131            | 8.2669           | 224.7584             | 99%          |
| I | 85<br>86    | 0.0671           | 0.0906<br>0.0906 | 0.5604           | 2.2693<br>2.2693 | 9.7911<br>9.7911 | 26.5314<br>26.5314 | 51.1563<br>51.1563 | 80.3573<br>80.6128 | 46.0589<br>46.1661 | 8.2751<br>8.2826 | 225.1576<br>225.5278 | 99%<br>99%   |
| I | 87          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.7861            | 46.3250            | 8.2892           | 225.8666             | 99%          |
| I | 88          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.8827            | 46.5331            | 8.2961           | 226.1783             | 99%          |
|   | 89<br>90    | 0.0671<br>0.0671 | 0.0906<br>0.0906 | 0.5604           | 2.2693<br>2.2693 | 9.7911<br>9.7911 | 26.5314<br>26.5314 | 51.1563<br>51.1563 | 80.9111<br>80.9226 | 46.7813<br>47.0146 | 8.3027<br>8.3090 | 226.4613<br>226.7126 | 99%<br>99%   |
|   | 91          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.9250            | 47.2279            | 8.3156           | 226.9348             | 100%         |
|   | 92          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.9250            | 47.4128            | 8.3218           | 227.1260             | 100%         |
|   | 93<br>94    | 0.0671           | 0.0906<br>0.0906 | 0.5604           | 2.2693<br>2.2693 | 9.7911<br>9.7911 | 26.5314<br>26.5314 | 51.1563<br>51.1563 | 80.9250<br>80.9250 | 47.5710<br>47.7038 | 8.3282<br>8.3347 | 227.2905<br>227.4299 | 100%<br>100% |
|   | 95          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.9250            | 47.8149            | 8.3414           | 227.5477             | 100%         |
|   | 96          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.9250            | 47.8927            | 8.3614           | 227.6454             | 100%         |
|   | 97<br>98    | 0.0671<br>0.0671 | 0.0906           | 0.5604<br>0.5604 | 2.2693<br>2.2693 | 9.7911<br>9.7911 | 26.5314<br>26.5314 | 51.1563<br>51.1563 | 80.9250<br>80.9250 | 47.9423<br>47.9690 | 8.3916<br>8.4295 | 227.7252<br>227.7898 | 100%<br>100% |
|   | 99          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.9250            | 47.9767            | 8.4729           | 227.8410             | 100%         |
| J | 100         | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.9250            | 47.9798            | 8.5099           | 227.8811             | 100%         |

## Exhibit E.38e Cases avoided by Age Group per year following rule promulgation (Smoking/Bladder Cancer model - TTHM - Preferred Alternative)

| Years After | Age (                      | Group            | Smoking/l        |                    |                    |                      |                      |                      |                      |                    |                        |            |
|-------------|----------------------------|------------------|------------------|--------------------|--------------------|----------------------|----------------------|----------------------|----------------------|--------------------|------------------------|------------|
| the Rule    | 1-10                       | 11-20            | 21-30            | 31-40              | 41-50              | 51-60                | 61-70                | 71-80                | 81-90                | 91-100+            | Total                  | %          |
| 1           | 0.0000                     | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000                 | 0%         |
| 2           | 0.0000                     | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000                 | 0%         |
| 3           | 0.0000                     | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000                 | 0%<br>0%   |
| 5           | 0.0000                     | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000                 | 0%         |
| 6           | 0.0291                     | 0.0302           | 0.1867           | 0.7560             | 3.2618             | 8.8386               | 17.0420              | 26.9591              | 15.9840              | 2.8718             | 75.9592                | 7%         |
| 7           | 0.0681                     | 0.0658           | 0.4073           | 1.6493             | 7.1162             | 19.2830              | 37.1804              | 58.8164              | 34.8722              | 6.2653             | 165.7241               | 15%        |
| 8           | 0.1148                     | 0.1050           | 0.6499           | 2.6317             | 11.3549            | 30.7688              | 59.3266              | 93.8497              | 55.6435              | 9.9971             | 264.4421               | 25%        |
| 9           | 0.1682                     | 0.1463           | 0.9049           | 3.6643             | 15.8102            | 42.8415              | 82.6045              | 130.6734             | 77.4762              | 13.9197            | 368.2093               | 34%        |
| 10          | 0.2046                     | 0.1657           | 1.0253           | 4.1515             | 17.9124            | 48.5378              | 93.5877              | 148.0480             | 87.7776              | 15.7705            | 417.1810               | 39%        |
| 11          | 0.2332                     | 0.1799           | 1.1130           | 4.5069             | 19.4459            | 52.6932              | 101.6000             | 160.7227             | 95.2924              | 17.1206            | 452.9079               | 42%        |
| 12<br>13    | 0.2553<br>0.2729           | 0.1904<br>0.1995 | 1.1782           | 4.7707<br>4.9992   | 20.5837<br>21.5698 | 55.7765<br>58.4484   | 107.5450<br>112.6968 | 170.1273<br>178.2771 | 100.8684<br>105.7004 | 18.1224<br>18.9906 | 479.4179<br>502.3893   | 45%<br>47% |
| 14          | 0.2729                     | 0.1993           | 1.2830           | 5.1950             | 22.4145            | 60.7373              | 117.1102             | 185.2586             | 109.8397             | 19.7343            | 522.0661               | 48%        |
| 15          | 0.2985                     | 0.2141           | 1.3249           | 5.3647             | 23.1469            | 62.7221              | 120.9371             | 191.3125             | 113.4291             | 20.3791            | 539.1290               | 50%        |
| 16          | 0.3074                     | 0.2223           | 1.3638           | 5.5222             | 23.8265            | 64.5637              | 124.4879             | 196.9296             | 116.7595             | 20.9775            | 554.9604               | 52%        |
| 17          | 0.3134                     | 0.2320           | 1.4018           | 5.6763             | 24.4914            | 66.3653              | 127.9618             | 202.4250             | 120.0177             | 21.5629            | 570.4477               | 53%        |
| 18          | 0.3167                     | 0.2432           | 1.4391           | 5.8274             | 25.1432            | 68.1316              | 131.3674             | 207.8124             | 123.2119             | 22.1367            | 585.6297               | 54%        |
| 19          | 0.3175                     | 0.2556           | 1.4744           | 5.9700             | 25.7586            | 69.7989              | 134.5822             | 212.8979             | 126.2271             | 22.6785            | 599.9607               | 569        |
| 20          | 0.3178                     | 0.2674           | 1.5068           | 6.1012             | 26.3246            | 71.3328              | 137.5397             | 217.5765             | 129.0010             | 23.1768            | 613.1447               | 57%        |
| 21          | 0.3178                     | 0.2835           | 1.5369           | 6.2232             | 26.8509            | 72.7588              | 140.2892             | 221.9260             | 131.5798             | 23.6402            | 625.4062               | 58%        |
| 22<br>23    | 0.3178<br>0.3178           | 0.3038           | 1.5683<br>1.5977 | 6.3505<br>6.4696   | 27.4001<br>27.9142 | 74.2472<br>75.6401   | 143.1590<br>145.8448 | 226.4658<br>230.7145 | 134.2715<br>136.7906 | 24.1238<br>24.5763 | 638.2078<br>650.1936   | 59%<br>60% |
| 24          | 0.3178                     | 0.3557           | 1.6253           | 6.5813             | 28.3960            | 76.9457              | 148.3621             | 234.6966             | 139.1515             | 25.0005            | 661.4326               | 61%        |
| 25          | 0.3178                     | 0.3832           | 1.6535           | 6.6955             | 28.8887            | 78.2808              | 150.9363             | 238.7689             | 141.5660             | 25.4343            | 672.9250               | 62%        |
| 26          | 0.3178                     | 0.4040           | 1.6930           | 6.7965             | 29.3244            | 79.4613              | 153.2126             | 242.3697             | 143.7009             | 25.8179            | 683.0981               | 63%        |
| 27          | 0.3178                     | 0.4183           | 1.7475           | 6.9067             | 29.7998            | 80.7497              | 155.6967             | 246.2994             | 146.0308             | 26.2365            | 694.2032               | 64%        |
| 28          | 0.3178                     | 0.4263           | 1.8134           | 7.0136             | 30.2613            | 82.0003              | 158.1081             | 250.1139             | 148.2924             | 26.6428            | 704.9899               | 65%        |
| 29          | 0.3178                     | 0.4281           | 1.8898           | 7.1194             | 30.7178            | 83.2371              | 160.4929             | 253.8866             | 150.5292             | 27.0447            | 715.6634               | 66%        |
| 30          | 0.3178                     | 0.4287           | 1.9636           | 7.2197             | 31.1505            | 84.4097              | 162.7538             | 257.4631             | 152.6498             | 27.4257            | 725.7825               | 67%        |
| 31<br>32    | 0.3178<br>0.3178           | 0.4288<br>0.4288 | 2.0457<br>2.1369 | 7.3035<br>7.3835   | 31.5121<br>31.8573 | 85.3897<br>86.3251   | 164.6433<br>166.4469 | 260.4521<br>263.3053 | 154.4219<br>156.1135 | 27.7441<br>28.0480 | 734.2589<br>742.3632   | 689<br>699 |
| 32          | 0.3178                     | 0.4288           | 2.1369           | 7.4494             | 32.1415            | 87.0952              | 167.9318             | 265.6543             | 156.1135             | 28.0480            | 742.3632               | 70%        |
| 34          | 0.3178                     | 0.4288           | 2.3468           | 7.5071             | 32.3907            | 87.7703              | 169.2334             | 267.7134             | 158.7272             | 28.5176            | 754.9531               | 70%        |
| 35          | 0.3178                     | 0.4288           | 2.4591           | 7.5670             | 32.6491            | 88.4704              | 170.5835             | 269.8490             | 159.9933             | 28.7451            | 761.0631               | 71%        |
| 36          | 0.3178                     | 0.4288           | 2.5462           | 7.6650             | 32.9003            | 89.1512              | 171.8961             | 271.9254             | 161.2244             | 28.9662            | 767.0214               | 719        |
| 37          | 0.3178                     | 0.4288           | 2.6074           | 7.7995             | 33.1543            | 89.8395              | 173.2232             | 274.0247             | 162.4692             | 29.1899            | 773.0543               | 72%        |
| 38          | 0.3178                     | 0.4288           | 2.6422           | 7.9683             | 33.4080            | 90.5269              | 174.5486             | 276.1214             | 163.7123             | 29.4132            | 779.0876               | 72%        |
| 39          | 0.3178                     | 0.4288           | 2.6501           | 8.1615             | 33.6162            | 91.0910              | 175.6364             | 277.8422             | 164.7326             | 29.5965            | 784.0732               | 73%        |
| 40<br>41    | 0.3178<br>0.3178           | 0.4288<br>0.4288 | 2.6528<br>2.6532 | 8.3507<br>8.5980   | 33.7939<br>33.9724 | 91.5727<br>92.0562   | 176.5651<br>177.4973 | 279.3113<br>280.7861 | 165.6036<br>166.4780 | 29.7530<br>29.9101 | 788.3498<br>792.6979   | 73%        |
| 42          | 0.3178                     | 0.4288           | 2.6532           | 8.8992             | 34.1559            | 92.5535              | 178.4561             | 282.3028             | 167.3772             | 30.0717            | 797.2161               | 74%        |
| 43          | 0.3178                     | 0.4288           | 2.6532           | 9.2554             | 34.3680            | 93.1283              | 179.5646             | 284.0562             | 168.4169             | 30.2584            | 802.4477               | 74%        |
| 44          | 0.3178                     | 0.4288           | 2.6532           | 9.6626             | 34.6007            | 93.7589              | 180.7805             | 285.9797             | 169.5573             | 30.4633            | 808.2030               | 75%        |
| 45          | 0.3178                     | 0.4288           | 2.6532           | 10.0680            | 34.8306            | 94.3818              | 181.9816             | 287.8799             | 170.6839             | 30.6658            | 813.8914               | 76%        |
| 46          | 0.3178                     | 0.4288           | 2.6532           | 10.3772            | 35.2319            | 94.9516              | 183.0801             | 289.6177             | 171.7142             | 30.8509            | 819.2235               | 76%        |
| 47          | 0.3178                     | 0.4288           | 2.6532           | 10.5895            | 35.7868            | 95.4606              | 184.0614             | 291.1700             | 172.6346             | 31.0162            | 824.1189               | 77%        |
| 48          | 0.3178                     | 0.4288           | 2.6532           | 10.7074            | 36.5033            | 95.9382              | 184.9824             | 292.6268             | 173.4983             | 31.1714            | 828.8276               | 779<br>779 |
| 49<br>50    | 0.3178<br>0.3178           | 0.4288<br>0.4288 | 2.6532<br>2.6532 | 10.7334<br>10.7421 | 37.3810<br>38.2639 | 96.4248<br>96.9468   | 185.9206<br>186.9271 | 294.1111<br>295.7032 | 174.3783<br>175.3223 | 31.3295<br>31.4991 | 833.6785<br>838.8043   | 78%        |
| 51          | 0.3178                     | 0.4288           | 2.6532           | 10.7421            | 39.3032            | 97.4917              | 187.9777             | 297.3651             | 176.3077             | 31.6762            | 844.2645               | 78%        |
| 52          | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 40.4454            | 97.9812              | 188.9216             | 298.8583             | 177.1930             | 31.8352            | 849.3778               | 79%        |
| 53          | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 41.6790            | 98.3800              | 189.6905             | 300.0746             | 177.9142             | 31.9648            | 853.8462               | 79%        |
| 54          | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 43.0005            | 98.6878              | 190.2840             | 301.0136             | 178.4708             | 32.0648            | 857.6645               | 80%        |
| 55          | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 44.2710            | 98.9561              | 190.8013             | 301.8318             | 178.9560             | 32.1520            | 861.1112               | 80%        |
| 56          | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 45.2322            | 99.7926              | 191.3853             | 302.7557             | 179.5038             | 32.2504            | 865.0630               | 80%        |
| 57          | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 45.8857            | 101.1607             | 192.0491             | 303.8057             | 180.1263             | 32.3622            | 869.5328               | 81%        |
| 58<br>59    | 0.3178<br>0.3178           | 0.4288<br>0.4288 | 2.6532<br>2.6532 | 10.7433<br>10.7433 | 46.2450<br>46.3239 | 103.0596<br>105.4338 | 192.7977<br>193.5716 | 304.9899<br>306.2142 | 180.8284<br>181.5544 | 32.4884<br>32.6188 | 874.5522<br>879.8597   | 81%<br>82% |
| 60          | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 46.3501            | 107.7083             | 194.3363             | 307.4238             | 182.2715             | 32.7476            | 884.9808               | 82%        |
| 61          | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 110.1788             | 195.0848             | 308.6079             | 182.9736             | 32.8738            | 890.2155               | 83%        |
| 62          | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 112.7909             | 195.8143             | 309.7621             | 183.6578             | 32.9967            | 895.5185               | 83%        |
| 63          | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 115.5488             | 196.5252             | 310.8867             | 184.3246             | 33.1165            | 900.8985               | 84%        |
| 64          | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 118.4613             | 197.2187             | 311.9836             | 184.9750             | 33.2334            | 906.3685               | 84%        |
| 65          | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 121.2294             | 197.8943             | 313.0524             | 185.6086             | 33.3472            | 911.6287               | 85%        |
| 66          | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 123.2963<br>124.6564 | 199.4517             | 314.0938<br>315.1088 | 186.2261             | 33.4581            | 917.0227               | 85%        |
| 67<br>68    | 0.3178                     | 0.4288<br>0.4288 | 2.6532<br>2.6532 | 10.7433<br>10.7433 | 46.3536<br>46.3536 | 124.6564<br>125.3880 | 201.8278<br>204.9809 | 315.1088<br>316.0993 | 186.8279<br>187.4151 | 33.5663<br>33.6718 | 922.4838<br>928.0518   | 86%<br>86% |
| 69          | 0.3178<br>0.3178           | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.5476             | 208.8459             | 317.0675             | 187.4151             | 33.6718            | 928.0518               | 87%        |
| 70          | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.5994             | 212.6640             | 318.0135             | 188.5501             | 33.8757            | 939.1994               | 87%        |
| 71          | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 216.7799             | 318.9366             | 189.0975             | 33.9740            | 944.8907               | 88%        |
| 72          | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 221.0329             | 319.7598             | 189.5855             | 34.0617            | 950.5426               | 88%        |
| 73          | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 225.4800             | 320.4821             | 190.0138             | 34.1386            | 956.2173               | 89%        |
| 74          | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 230.1207             | 321.1000             | 190.3800             | 34.2044            | 961.9078               | 89%        |
| 75          | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 234.6451             | 321.6152             | 190.6856             | 34.2593            | 967.3079               | 90%        |
| 76<br>77    | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 238.0999             | 323.5576             | 190.9684             | 34.3102            | 973.0386               | 90%        |
| 77<br>78    | 0.3178<br>0.3178           | 0.4288<br>0.4288 | 2.6532<br>2.6532 | 10.7433<br>10.7433 | 46.3536<br>46.3536 | 125.6060<br>125.6060 | 240.4723<br>241.7958 | 326.8481<br>331.4795 | 191.2333<br>191.4848 | 34.3578<br>34.4029 | 979.0142<br>985.2657   | 919        |
| 79          | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 242.0804             | 337.3870             | 191.7247             | 34.4460            | 991.7407               | 929        |
| 80          | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 242.1742             | 343.3253             | 191.9552             | 34.4874            | 998.0448               | 939        |
| 81          | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 242.1861             | 349.4792             | 192.1760             | 34.5271            | 1004.4710              | 939        |
| 82          | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 242.1861             | 355.6659             | 192.3867             | 34.5650            | 1010.9062              | 94%        |
| 83          | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 242.1861             | 361.8300             | 192.5872             | 34.6010            | 1017.3070              | 94%        |
| 84          | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 242.1861             | 367.9858             | 192.7784             | 34.6353            | 1023.6883              | 95%        |
| 85          | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 242.1861             | 373.8075             | 193.0288             | 34.6804            | 1029.8054              | 96%        |
| 86<br>87    | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 242.1861             | 378.1447             | 194.5628             | 34.7325            | 1035.7288              | 96%<br>97% |
| 87<br>88    | 0.3178<br>0.3178           | 0.4288<br>0.4288 | 2.6532<br>2.6532 | 10.7433<br>10.7433 | 46.3536<br>46.3536 | 125.6060<br>125.6060 | 242.1861<br>242.1861 | 381.0788<br>382.6589 | 197.2145<br>200.8757 | 34.7915<br>34.8591 | 1041.3735<br>1046.6825 | 97%        |
| 88<br>89    | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 242.1861             | 382.6589             | 200.8757             | 34.8591            | 1046.6825              | 98%        |
| 90          | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 242.1861             | 383.1054             | 209.5892             | 34.9917            | 1055.9750              | 989        |
| 91          | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 242.1861             | 383.1183             | 213.4089             | 35.0590            | 1059.8748              | 989        |
| 92          | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 242.1861             | 383.1183             | 216.7507             | 35.1254            | 1063.2831              | 999        |
| 93          | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 242.1861             | 383.1183             | 219.6409             | 35.1906            | 1066.2385              | 99%        |
| 94          | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 242.1861             | 383.1183             | 222.0923             | 35.2546            | 1068.7540              | 99%        |
| 95          | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 242.1861             | 383.1183             | 224.1690             | 35.3174            | 1070.8934              | 999        |
|             | 0.3178                     | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 242.1861             | 383.1183             | 225.6220             | 35.6616            | 1072.6906              | 100        |
| 96          |                            | 0.4288           | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 242.1861             | 383.1183             | 226.5397             | 36.2285            | 1074.1752              | 100        |
| 97          | 0.3178                     |                  |                  |                    |                    |                      |                      |                      |                      |                    |                        | 400        |
|             | 0.3178<br>0.3178<br>0.3178 | 0.4288<br>0.4288 | 2.6532<br>2.6532 | 10.7433            | 46.3536<br>46.3536 | 125.6060<br>125.6060 | 242.1861<br>242.1861 | 383.1183<br>383.1183 | 227.0145             | 36.9726<br>37.8492 | 1075.3941              | 100        |

## Exhibit E.38i Cases avoided by Age Group per year following rule promulgation (Arsenic/Bladder Cancer model - TTHM - Preferred Alternative)

| Years After | Age G            |                  |                  |                  |                  |                    |                    |                    |                    |                  |                      |            |
|-------------|------------------|------------------|------------------|------------------|------------------|--------------------|--------------------|--------------------|--------------------|------------------|----------------------|------------|
| the Rule    | 1-10             | 11-20            | 21-30            | 31-40            | 41-50            | 51-60              | 61-70              | 71-80              | 81-90              | 91-100+          | Total                | %          |
| 1 2         | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000           | 0.0000               | 0%<br>0%   |
| 3           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000           | 0.0000               | 0%         |
| 4           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000           | 0.0000               | 0%         |
| 5           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000           | 0.0000               | 0%         |
| 6           | 0.0051           | 0.0047           | 0.0294           | 0.1190           | 0.5134           | 1.3912             | 2.6825             | 4.2435             | 2.5159             | 0.4520           | 11.9568              | 5%         |
| 7           | 0.0137           | 0.0132           | 0.0815           | 0.3298           | 1.4230           | 3.8560             | 7.4350             | 11.7615            | 6.9734             | 1.2529           | 33.1399              | 15%        |
| 8           | 0.0249           | 0.0244           | 0.1509           | 0.6112           | 2.6371           | 7.1459             | 13.7783            | 21.7962            | 12.9229            | 2.3218           | 61.4137              | 27%        |
| 9           | 0.0377           | 0.0378           | 0.2338           | 0.9466           | 4.0843           | 11.0673            | 21.3393            | 33.7571            | 20.0146            | 3.5959           | 95.1143              | 42%        |
| 10          | 0.0477           | 0.0491           | 0.3038           | 1.2303           | 5.3082           | 14.3839            | 27.7343            | 43.8733            | 26.0125            | 4.6735           | 123.6167             | 54%        |
| 11          | 0.0549           | 0.0584           | 0.3611           | 1.4620           | 6.3079           | 17.0928            | 32.9574            | 52.1358            | 30.9113            | 5.5537           | 146.8952             | 64%        |
| 12          | 0.0597           | 0.0656           | 0.4059           | 1.6436           | 7.0916           | 19.2165            | 37.0521            | 58.6134            | 34.7519            | 6.2437           | 165.1440             | 72%        |
| 13          | 0.0628           | 0.0712           | 0.4405           | 1.7837           | 7.6959           | 20.8538            | 40.2091            | 63.6075            | 37.7129            | 6.7757           | 179.2131             | 79%        |
| 14          | 0.0646           | 0.0755           | 0.4672           | 1.8918           | 8.1625           | 22.1183            | 42.6472            | 67.4644            | 39.9996            | 7.1865           | 190.0777             | 83%        |
| 15<br>16    | 0.0658<br>0.0665 | 0.0789           | 0.4879           | 1.9755<br>2.0406 | 8.5237<br>8.8043 | 23.0970            | 44.5344<br>46.0005 | 70.4496<br>72.7689 | 41.7696<br>43.1447 | 7.5045<br>7.7515 | 198.4868<br>205.0199 | 87%<br>90% |
| 17          | 0.0669           | 0.0836           | 0.5164           | 2.0406           | 9.0223           | 24.4482            | 47.1395            | 74.5708            | 44.2130            | 7.7515           | 210.0952             | 92%        |
| 18          | 0.0671           | 0.0853           | 0.5261           | 2.1303           | 9.1914           | 24.9062            | 48.0227            | 75.9679            | 45.0414            |                  | 214.0305             | 94%        |
| 19          | 0.0671           | 0.0866           | 0.5336           | 2.1606           | 9.3224           | 25.2612            | 48.7072            | 77.0507            | 45.6833            |                  | 217.0803             | 95%        |
| 20          | 0.0671           | 0.0876           | 0.5394           | 2.1842           | 9.4239           | 25.5362            | 49.2374            | 77.8895            | 46.1807            |                  | 219.4429             | 96%        |
| 21          | 0.0671           | 0.0884           | 0.5439           | 2.2024           | 9.5024           | 25.7491            | 49.6480            | 78.5390            | 46.5658            |                  | 221.2723             | 97%        |
| 22          | 0.0671           | 0.0890           | 0.5474           | 2.2165           | 9.5632           | 25.9139            | 49.9656            | 79.0414            | 46.8636            |                  | 222.6874             | 98%        |
| 23          | 0.0671           | 0.0895           | 0.5501           | 2.2273           | 9.6102           | 26.0412            | 50.2111            | 79.4299            | 47.0940            | 8.4611           | 223.7816             | 98%        |
| 24          | 0.0671           | 0.0899           | 0.5522           | 2.2358           | 9.6468           | 26.1403            | 50.4022            | 79.7320            | 47.2731            | 8.4933           | 224.6327             | 99%        |
| 25          | 0.0671           | 0.0902           | 0.5538           | 2.2424           | 9.6752           | 26.2172            | 50.5505            | 79.9668            | 47.4123            | 8.5183           | 225.2938             | 99%        |
| 26          | 0.0671           | 0.0904           | 0.5551           | 2.2475           | 9.6972           | 26.2770            | 50.6657            | 80.1490            | 47.5203            | 8.5377           | 225.8070             | 99%        |
| 27          | 0.0671           | 0.0905           | 0.5562           | 2.2515           | 9.7144           | 26.3234            | 50.7552            | 80.2906            | 47.6043            |                  | 226.2059             | 99%        |
| 28          | 0.0671           | 0.0905           | 0.5570           | 2.2546           | 9.7276           | 26.3594            | 50.8246            | 80.4003            | 47.6694            |                  | 226.5151             | 99%        |
| 29          | 0.0671           | 0.0906           | 0.5577           | 2.2569           | 9.7379           | 26.3872            | 50.8783            | 80.4853            | 47.7197            | 8.5735           | 226.7543             | 99%        |
| 30          | 0.0671           | 0.0906           | 0.5583           | 2.2588           | 9.7458           | 26.4086            | 50.9195            | 80.5504            | 47.7583            |                  | 226.9378             | 1009       |
| 31          | 0.0671           | 0.0906           | 0.5587           | 2.2602           | 9.7519           | 26.4250            | 50.9511            | 80.6004            | 47.7879            | 8.5858           | 227.0786             | 1009       |
| 32          | 0.0671           | 0.0906           | 0.5591           | 2.2613           | 9.7568           | 26.4383            | 50.9767            | 80.6409            | 47.8120            | 8.5901           | 227.1928             | 1009       |
| 33<br>34    | 0.0671<br>0.0671 | 0.0906           | 0.5594<br>0.5597 | 2.2623           | 9.7609<br>9.7644 | 26.4495<br>26.4589 | 50.9983<br>51.0165 | 80.6751<br>80.7039 | 47.8322<br>47.8493 | 8.5937           | 227.2892<br>227.3704 | 1009       |
| 35          | 0.0671           | 0.0906           | 0.5597           | 2.2637           | 9.7672           | 26.4589            | 51.0165            | 80.7039            | 47.8493            |                  | 227.4369             | 1009       |
| 36          | 0.0671           | 0.0906           | 0.5601           | 2.2643           | 9.7672           | 26.4730            | 51.0315            | 80.7275            | 47.8633            |                  | 227.4369             | 1009       |
| 37          | 0.0671           | 0.0906           | 0.5603           | 2.2649           | 9.7715           | 26.4782            | 51.0537            | 80.7628            | 47.8842            | 8.6031           | 227.5364             | 1009       |
| 38          | 0.0671           | 0.0906           | 0.5603           | 2.2653           | 9.7729           | 26.4820            | 51.0609            | 80.7742            | 47.8910            |                  | 227.5686             | 1009       |
| 39          | 0.0671           | 0.0906           | 0.5604           | 2.2656           | 9.7738           | 26.4844            | 51.0656            | 80.7816            | 47.8954            | 8.6051           | 227.5896             | 1009       |
| 40          | 0.0671           | 0.0906           | 0.5604           | 2.2659           | 9.7744           | 26.4860            | 51.0688            | 80.7866            | 47.8983            | 8.6056           | 227.6037             | 1009       |
| 41          | 0.0671           | 0.0906           | 0.5604           | 2.2663           | 9.7748           | 26.4873            | 51.0712            | 80.7904            | 47.9006            | 8.6060           | 227.6147             | 1009       |
| 42          | 0.0671           | 0.0906           | 0.5604           | 2.2667           | 9.7752           | 26.4882            | 51.0731            | 80.7934            | 47.9023            | 8.6063           | 227.6234             | 1009       |
| 43          | 0.0671           | 0.0906           | 0.5604           | 2.2671           | 9.7755           | 26.4890            | 51.0745            | 80.7957            | 47.9037            | 8.6066           | 227.6302             | 1009       |
| 44          | 0.0671           | 0.0906           | 0.5604           | 2.2675           | 9.7757           | 26.4896            | 51.0757            | 80.7974            | 47.9048            |                  | 227.6356             | 1009       |
| 45          | 0.0671           | 0.0906           | 0.5604           | 2.2680           | 9.7759           | 26.4900            | 51.0765            | 80.7988            | 47.9056            |                  | 227.6399             | 1009       |
| 46          | 0.0671           | 0.0906           | 0.5604           | 2.2684           | 9.7762           | 26.4904            | 51.0772            | 80.7999            | 47.9062            |                  | 227.6435             | 1009       |
| 47          | 0.0671           | 0.0906           | 0.5604           | 2.2688           | 9.7767           | 26.4907            | 51.0777            | 80.8007            | 47.9067            | 8.6071           | 227.6465             | 1009       |
| 48          | 0.0671           | 0.0906           | 0.5604           | 2.2690           | 9.7773           | 26.4909            | 51.0781            | 80.8013            | 47.9071            |                  | 227.6490             | 1009       |
| 49<br>50    | 0.0671<br>0.0671 | 0.0906           | 0.5604<br>0.5604 | 2.2692<br>2.2692 | 9.7781<br>9.7791 | 26.4911<br>26.4916 | 51.0787<br>51.0795 | 80.8022<br>80.8036 | 47.9076<br>47.9084 |                  | 227.6523<br>227.6570 | 1009       |
| 51          | 0.0671           | 0.0906           | 0.5604           | 2.2692           | 9.7804           | 26.4916            | 51.0793            | 80.8056            | 47.9096            |                  | 227.6637             | 1009       |
| 52          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7819           | 26.4930            | 51.0823            | 80.8079            | 47.9110            |                  | 227.6715             | 1009       |
| 53          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7835           | 26.4939            | 51.0840            | 80.8107            | 47.9126            | 8.6082           | 227.6803             | 1009       |
| 54          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7852           | 26.4949            | 51.0860            | 80.8138            | 47.9145            |                  | 227.6904             | 1009       |
| 55          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7869           | 26.4960            | 51.0881            | 80.8172            | 47.9165            | 8.6089           | 227.7011             | 1009       |
| 56          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7884           | 26.4976            | 51.0902            | 80.8205            | 47.9184            | 8.6092           | 227.7118             | 1009       |
| 57          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7895           | 26.4995            | 51.0921            | 80.8235            | 47.9202            | 8.6095           | 227.7218             | 1009       |
| 58          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7903           | 26.5017            | 51.0936            | 80.8258            | 47.9216            | 8.6098           | 227.7302             | 1009       |
| 59          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7908           | 26.5041            | 51.0948            | 80.8277            | 47.9228            | 8.6100           | 227.7377             | 1009       |
| 60          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5067            | 51.0960            | 80.8296            | 47.9239            |                  | 227.7448             | 1009       |
| 61          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5098            | 51.0972            | 80.8316            | 47.9250            | 8.6104           | 227.7526             | 1009       |
| 62          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5131            | 51.0987            | 80.8338            | 47.9264            |                  | 227.7611             | 1009       |
| 63          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5165            | 51.1002            | 80.8363            | 47.9278            | 8.6109           | 227.7704             | 1009       |
| 64          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5200            | 51.1019            | 80.8389            | 47.9294            |                  | 227.7800             | 1009       |
| 65          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5234            | 51.1037            | 80.8418            | 47.9311            |                  | 227.7901             | 1009       |
| 66          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5262            | 51.1064            | 80.8449            | 47.9329<br>47.9348 |                  | 227.8008             | 1009       |
| 67<br>68    | 0.0671<br>0.0671 | 0.0906           | 0.5604           | 2.2693<br>2.2693 | 9.7911<br>9.7911 | 26.5284<br>26.5299 | 51.1097<br>51.1137 | 80.8481<br>80.8513 | 47.9348<br>47.9367 |                  | 227.8117             | 1009       |
| 68          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5299            | 51.1137            | 80.8513<br>80.8546 | 47.9367<br>47.9387 |                  | 227.8228             | 1009       |
| 70          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5308            | 51.1101            | 80.8577            | 47.9405            |                  | 227.8336             | 1009       |
| 71          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1227            | 80.8607            | 47.9423            |                  | 227.8541             | 1009       |
| 72          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1326            | 80.8635            | 47.9440            |                  | 227.8639             | 1009       |
| 73          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1374            | 80.8662            | 47.9456            | 8.6141           | 227.8732             | 1009       |
| 74          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1419            | 80.8688            | 47.9471            | 8.6144           | 227.8821             | 1009       |
| 75          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1463            | 80.8713            | 47.9485            | 8.6146           | 227.8906             | 1009       |
| 76          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1498            | 80.8744            | 47.9499            | 8.6149           | 227.8990             | 1009       |
| 77          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1525            | 80.8782            | 47.9512            |                  | 227.9070             | 1009       |
| 78          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1544            | 80.8826            | 47.9525            |                  | 227.9147             | 1009       |
| 79          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1555            | 80.8874            | 47.9537            |                  | 227.9221             | 1009       |
| 80          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1561            | 80.8925            | 47.9548            |                  | 227.9292             | 1009       |
| 81          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.8978            | 47.9559            |                  | 227.9359             | 1009       |
| 82          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.9030            | 47.9570            |                  | 227.9423             | 1009       |
| 83          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.9078            | 47.9579            |                  | 227.9483             | 1009       |
| 84<br>85    | 0.0671           | 0.0906           | 0.5604<br>0.5604 | 2.2693<br>2.2693 | 9.7911<br>9.7911 | 26.5314<br>26.5314 | 51.1563<br>51.1563 | 80.9122<br>80.9162 | 47.9589<br>47.9598 |                  | 227.9539<br>227.9590 | 1009       |
| 86          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.9162            | 47.9598            |                  | 227.9590             | 1009       |
| 87          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.9218            | 47.9629            |                  | 227.9637             | 1009       |
| 88          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.9235            | 47.9649            |                  | 227.9079             | 1009       |
| 89          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.9244            | 47.9672            |                  | 227.9751             | 1009       |
| 90          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.9249            | 47.9696            |                  | 227.9781             | 1009       |
| 91          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.9250            | 47.9719            |                  | 227.9807             | 1009       |
| 92          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.9250            | 47.9739            |                  | 227.9829             | 1009       |
| 93          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.9250            | 47.9757            | 8.6177           | 227.9847             | 1009       |
|             | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.9250            | 47.9771            |                  | 227.9863             | 1009       |
| 94          | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.9250            | 47.9783            |                  | 227.9875             | 1009       |
| 94<br>95    |                  |                  |                  |                  |                  |                    |                    |                    |                    |                  |                      |            |
|             | 0.0671           | 0.0906           | 0.5604           | 2.2693           | 9.7911           | 26.5314            | 51.1563            | 80.9250            | 47.9791            | 8.6181           | 227.9886             | 1009       |
| 95          |                  | 0.0906<br>0.0906 | 0.5604<br>0.5604 | 2.2693<br>2.2693 | 9.7911<br>9.7911 | 26.5314<br>26.5314 | 51.1563<br>51.1563 | 80.9250<br>80.9250 | 47.9791<br>47.9797 | 8.6181<br>8.6184 | 227.9886<br>227.9894 |            |
| 95<br>96    | 0.0671           |                  |                  |                  |                  |                    |                    |                    |                    | 8.6184           |                      | 1009       |

## Exhibit E.38i Cases avoided by Age Group per year following rule promulgation (Arsenic/Bladder Cancer model - TTHM - Preferred Alternative)

| Years After | Age G            | roup   | (Arsenic/B       |                    |                    |                      |                      |                      |                      |                    |                        |            |
|-------------|------------------|--------|------------------|--------------------|--------------------|----------------------|----------------------|----------------------|----------------------|--------------------|------------------------|------------|
| the Rule    | 1-10             | 11-20  | 21-30            | 31-40              | 41-50              | 51-60                | 61-70                | 71-80                | 81-90                | 91-100+            | Total                  | %          |
| 1           | 0.0000           | 0.0000 | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000                 | 0%         |
| 2           | 0.0000           | 0.0000 | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000                 | 0%<br>0%   |
| 4           | 0.0000           | 0.0000 | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000                 | 0%         |
| 5           | 0.0000           | 0.0000 | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000                 | 0%         |
| 6           | 0.0346           | 0.0387 | 0.2394           | 0.9694             | 4.1825             | 11.3334              | 21.8525              | 34.5688              | 20.4958              | 3.6824             | 97.3974                | 9%         |
| 7           | 0.0821           | 0.0899 | 0.5564           | 2.2531             | 9.7215             | 26.3428              | 50.7927              | 80.3499              | 47.6394              | 8.5591             | 226.3870               | 21%        |
| 8           | 0.1378           | 0.1492 | 0.9234           | 3.7390             | 16.1324            | 43.7146              | 84.2880              | 133.3366             | 79.0552              | 14.2034            | 375.6797               | 35%        |
| 9<br>10     | 0.1997<br>0.2381 | 0.2144 | 1.3266           | 5.3719<br>6.3349   | 23.1778<br>27.3328 | 62.8058<br>74.0647   | 121.0984<br>142.8073 | 191.5676<br>225.9093 | 113.5804<br>133.9416 | 20.4063<br>24.0645 | 539.7488<br>636.5105   | 50%<br>59% |
| 11          | 0.2648           | 0.2808 | 1.7371           | 7.0340             | 30.3491            | 82.2380              | 158.5666             | 250.8392             | 148.7226             | 26.7201            | 706.7523               | 65%        |
| 12          | 0.2827           | 0.3010 | 1.8626           | 7.5419             | 32.5407            | 88.1767              | 170.0172             | 268.9530             | 159.4623             | 28.6496            | 757.7877               | 70%        |
| 13          | 0.2948           | 0.3167 | 1.9596           | 7.9350             | 34.2367            | 92.7725              | 178.8786             | 282.9710             | 167.7736             | 30.1429            | 797.2814               | 74%        |
| 14          | 0.3029           | 0.3295 | 2.0386           | 8.2546             | 35.6158            | 96.5095              | 186.0839             | 294.3693             | 174.5315             | 31.3570            | 829.3926               | 77%        |
| 15<br>16    | 0.3092<br>0.3134 | 0.3401 | 2.1043<br>2.1598 | 8.5206<br>8.7456   | 36.7635<br>37.7343 | 99.6196<br>102.2501  | 192.0806<br>197.1527 | 303.8556<br>311.8792 | 180.1559<br>184.9131 | 32.3675<br>33.2222 | 856.1169<br>878.7203   | 79%<br>81% |
| 17          | 0.3160           | 0.3586 | 2.2074           | 8.9383             | 38.5656            | 104.5027             | 201.4960             | 318.7499             | 188.9867             | 33.9541            | 898.0753               | 83%        |
| 18          | 0.3174           | 0.3667 | 2.2485           | 9.1049             | 39.2843            | 106.4503             | 205.2511             | 324.6903             | 192.5088             | 34.5869            | 914.8093               | 85%        |
| 19          | 0.3177           | 0.3744 | 2.2844           | 9.2501             | 39.9107            | 108.1477             | 208.5240             | 329.8676             | 195.5784             | 35.1384            | 929.3934               | 86%        |
| 20          | 0.3178           | 0.3811 | 2.3159           | 9.3776             | 40.4609            | 109.6383             | 211.3982             | 334.4145             | 198.2742             | 35.6227            | 942.2012               | 87%        |
| 21<br>22    | 0.3178<br>0.3178 | 0.3882 | 2.3437<br>2.3683 | 9.4900<br>9.5899   | 40.9460<br>41.3771 | 110.9531<br>112.1212 | 213.9333<br>216.1855 | 338.4246<br>341.9876 | 200.6518<br>202.7643 | 36.0499<br>36.4295 | 953.4984<br>963.5369   | 88%<br>89% |
| 23          | 0.3178           | 0.4032 | 2.3904           | 9.5699             | 41.7623            | 113.1649             | 218.1978             | 345.1710             | 204.6518             | 36.7686            | 972.5069               | 90%        |
| 24          | 0.3178           | 0.4111 | 2.4101           | 9.7591             | 42.1069            | 114.0988             | 219.9985             | 348.0194             | 206.3406             | 37.0720            | 980.5343               | 91%        |
| 25          | 0.3178           | 0.4181 | 2.4278           | 9.8308             | 42.4163            | 114.9370             | 221.6147             | 350.5762             | 207.8565             | 37.3443            | 987.7395               | 92%        |
| 26          | 0.3178           | 0.4232 | 2.4467           | 9.8954             | 42.6952            | 115.6929             | 223.0722             | 352.8817             | 209.2235             | 37.5899            | 994.2385               | 92%        |
| 27          | 0.3178           | 0.4265 | 2.4664           | 9.9541             | 42.9485            | 116.3793             | 224.3957             | 354.9753             | 210.4648             | 37.8130            | 1000.1415              | 93%        |
| 28<br>29    | 0.3178<br>0.3178 | 0.4283 | 2.4868           | 10.0074            | 43.1786<br>43.3881 | 117.0027<br>117.5705 | 225.5976<br>226.6925 | 356.8768<br>358.6087 | 211.5922<br>212.6190 | 38.0155<br>38.2000 | 1005.5037              | 93%<br>94% |
| 29<br>30    | 0.3178           | 0.4287 | 2.5268           | 10.0560            | 43.3881            | 117.5705             | 226.6925             | 358.6087             | 212.6190             | 38.2000            | 1010.3890              | 94%        |
| 31          | 0.3178           | 0.4288 | 2.5461           | 10.1412            | 43.7557            | 118.5665             | 228.6129             | 361.6468             | 214.4202             | 38.5236            | 1018.9595              | 94%        |
| 32          | 0.3178           | 0.4288 | 2.5655           | 10.1788            | 43.9181            | 119.0065             | 229.4613             | 362.9889             | 215.2159             | 38.6666            | 1022.7482              | 95%        |
| 33          | 0.3178           | 0.4288 | 2.5850           | 10.2136            | 44.0681            | 119.4131             | 230.2453             | 364.2291             | 215.9513             | 38.7987            | 1026.2509              | 95%        |
| 34<br>35    | 0.3178<br>0.3178 | 0.4288 | 2.6049           | 10.2458            | 44.2070<br>44.3358 | 119.7893<br>120.1385 | 230.9706<br>231.6440 | 365.3764<br>366.4416 | 216.6315<br>217.2631 | 38.9209            | 1029.4929<br>1032.5031 | 95%<br>96% |
| 36          | 0.3178           | 0.4288 | 2.6234           | 10.2757            | 44.4555            | 120.1385             | 231.6440             | 367.4309             | 217.2631             | 39.0344            | 1032.5031              | 96%        |
| 37          | 0.3178           | 0.4288 | 2.6465           | 10.3439            | 44.5668            | 120.7644             | 232.8508             | 368.3509             | 218.3950             | 39.2377            | 1037.9027              | 96%        |
| 38          | 0.3178           | 0.4288 | 2.6516           | 10.3812            | 44.6701            | 121.0443             | 233.3906             | 369.2047             | 218.9013             | 39.3287            | 1040.3191              | 96%        |
| 39          | 0.3178           | 0.4288 | 2.6527           | 10.4202            | 44.7662            | 121.3046             | 233.8925             | 369.9987             | 219.3720             | 39.4133            | 1042.5669              | 97%        |
| 40          | 0.3178           | 0.4288 | 2.6531           | 10.4565            | 44.8556            | 121.5470             | 234.3598             | 370.7379             | 219.8103             | 39.4920            | 1044.6589              | 97%        |
| 41<br>42    | 0.3178<br>0.3178 | 0.4288 | 2.6532<br>2.6532 | 10.4963<br>10.5389 | 44.9390<br>45.0167 | 121.7729<br>121.9836 | 234.7953<br>235.2016 | 371.4268<br>372.0695 | 220.2189<br>220.5999 | 39.5654<br>39.6339 | 1046.6144<br>1048.4440 | 97%<br>97% |
| 43          | 0.3178           | 0.4288 | 2.6532           | 10.5839            | 45.0894            | 122.1803             | 235.5810             | 372.6697             | 220.9557             | 39.6978            | 1050.1576              | 97%        |
| 44          | 0.3178           | 0.4288 | 2.6532           | 10.6308            | 45.1572            | 122.3643             | 235.9357             | 373.2307             | 221.2884             | 39.7576            | 1051.7646              | 97%        |
| 45          | 0.3178           | 0.4288 | 2.6532           | 10.6745            | 45.2208            | 122.5364             | 236.2675             | 373.7557             | 221.5997             | 39.8135            | 1053.2679              | 98%        |
| 46          | 0.3178           | 0.4288 | 2.6532           | 10.7067            | 45.2972            | 122.6977             | 236.5785             | 374.2474             | 221.8913             | 39.8659            | 1054.6845              | 98%        |
| 47          | 0.3178           | 0.4288 | 2.6532           | 10.7281            | 45.3844            | 122.8488             | 236.8699             | 374.7085             | 222.1646             | 39.9150            | 1056.0191              | 98%        |
| 48<br>49    | 0.3178           | 0.4288 | 2.6532<br>2.6532 | 10.7397            | 45.4813<br>45.5864 | 122.9907<br>123.1239 | 237.1434             | 375.1412<br>375.5474 | 222.4211             | 39.9611<br>40.0043 | 1057.2782<br>1058.4663 | 98%<br>98% |
| 50          | 0.3178           | 0.4288 | 2.6532           | 10.7432            | 45.6846            | 123.2487             | 237.6408             | 375.9282             | 222.8878             | 40.0449            | 1059.5779              | 98%        |
| 51          | 0.3178           | 0.4288 | 2.6532           | 10.7433            | 45.7878            | 123.3656             | 237.8662             | 376.2848             | 223.0991             | 40.0829            | 1060.6294              | 98%        |
| 52          | 0.3178           | 0.4288 | 2.6532           | 10.7433            | 45.8929            | 123.4748             | 238.0767             | 376.6180             | 223.2966             | 40.1184            | 1061.6205              | 98%        |
| 53          | 0.3178           | 0.4288 | 2.6532           | 10.7433            | 45.9994            | 123.5769             | 238.2737             | 376.9294             | 223.4813             | 40.1516            | 1062.5552              | 98%        |
| 54<br>55    | 0.3178<br>0.3178 | 0.4288 | 2.6532           | 10.7433            | 46.1066<br>46.2037 | 123.6727<br>123.7621 | 238.4583<br>238.6308 | 377.2214<br>377.4943 | 223.6545<br>223.8163 | 40.1827            | 1063.4393<br>1064.2620 | 99%<br>99% |
| 56          | 0.3178           | 0.4288 | 2.6532           | 10.7433            | 46.2745            | 123.8797             | 238.7928             | 377.7504             | 223.9682             | 40.2390            | 1065.0478              | 99%        |
| 57          | 0.3178           | 0.4288 | 2.6532           | 10.7433            | 46.3209            | 124.0215             | 238.9455             | 377.9920             | 224.1114             | 40.2648            | 1065.7992              | 99%        |
| 58          | 0.3178           | 0.4288 | 2.6532           | 10.7433            | 46.3457            | 124.1859             | 239.0900             | 378.2206             | 224.2469             | 40.2891            | 1066.5213              | 99%        |
| 59          | 0.3178           | 0.4288 | 2.6532           | 10.7433            | 46.3513            | 124.3708             | 239.2274             | 378.4380             | 224.3757             | 40.3123            | 1067.2187              | 99%        |
| 60<br>61    | 0.3178<br>0.3178 | 0.4288 | 2.6532<br>2.6532 | 10.7433            | 46.3533<br>46.3536 | 124.5408<br>124.7129 | 239.3584<br>239.4838 | 378.6454<br>378.8435 | 224.4987             | 40.3344<br>40.3555 | 1067.8741              | 99%<br>99% |
| 62          | 0.3178           | 0.4288 | 2.6532           | 10.7433            | 46.3536            | 124.7129             | 239.6034             | 379.0328             | 224.6162             | 40.3355            | 1069.1205              | 99%        |
| 63          | 0.3178           | 0.4288 | 2.6532           | 10.7433            | 46.3536            | 125.0528             | 239.7174             | 379.2130             | 224.8353             | 40.3948            | 1069.7100              | 99%        |
| 64          | 0.3178           | 0.4288 | 2.6532           | 10.7433            |                    | 125.2216             |                      | 379.3847             |                      |                    | 1070.2790              | 99%        |
| 65          | 0.3178           | 0.4288 | 2.6532           | 10.7433            |                    |                      |                      | 379.5479             |                      |                    | 1070.8120              | 99%        |
| 66<br>67    | 0.3178           | 0.4288 | 2.6532<br>2.6532 | 10.7433            | 46.3536<br>46.3536 | 125.4849<br>125.5562 | 240.0690             | 379.7029             | 225.1257             | 40.4470            | 1071.3262              | 99%<br>99% |
| 68          | 0.3178           | 0.4288 | 2.6532           | 10.7433            |                    | 125.5562             |                      | 379.8500             |                      |                    | 1071.8193              | 99%        |
| 69          | 0.3178           | 0.4288 | 2.6532           | 10.7433            |                    |                      | 240.6645             | 380.1225             |                      | 40.4917            | 1072.7526              | 99%        |
| 70          | 0.3178           | 0.4288 | 2.6532           | 10.7433            | 46.3536            | 125.6056             | 240.8753             | 380.2489             | 225.4495             | 40.5052            | 1073.1810              | 99%        |
| 71          | 0.3178           | 0.4288 | 2.6532           | 10.7433            |                    | 125.6060             |                      | 380.3690             |                      |                    | 1073.5980              | 99%        |
| 72<br>73    | 0.3178           | 0.4288 | 2.6532<br>2.6532 | 10.7433            |                    | 125.6060             | 241.2954<br>241.5004 | 380.4834<br>380.5923 |                      |                    | 1074.0002              | 100%       |
| 74          | 0.3178           | 0.4288 | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 241.7024             |                      | 225.7146             | 40.5528            | 1074.3902              | 100%       |
| 75          | 0.3178           | 0.4288 | 2.6532           | 10.7433            | 46.3536            | 125.6060             |                      | 380.7947             |                      |                    | 1075.1227              | 100%       |
| 76          | 0.3178           | 0.4288 | 2.6532           | 10.7433            |                    | 125.6060             |                      | 380.9391             |                      |                    | 1075.4711              | 100%       |
| 77          | 0.3178           | 0.4288 | 2.6532           | 10.7433            |                    | 125.6060             | 242.1195             | 381.1231             |                      |                    | 1075.8103              | 100%       |
| 78<br>79    | 0.3178           | 0.4288 | 2.6532<br>2.6532 | 10.7433            | 46.3536<br>46.3536 | 125.6060<br>125.6060 | 242.1699             | 381.3433<br>381.5954 |                      | 40.5920<br>40.6007 | 1076.1408              | 100%       |
| 79<br>80    | 0.3178           | 0.4288 | 2.6532           | 10.7433            |                    | 125.6060             |                      | 381.8347             |                      |                    | 1076.4616              | 100%       |
| 81          | 0.3178           | 0.4288 | 2.6532           | 10.7433            |                    | 125.6060             |                      | 382.0666             |                      |                    | 1077.0440              | 100%       |
| 82          | 0.3178           | 0.4288 | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 242.1861             | 382.2857             | 226.1138             | 40.6245            | 1077.3128              | 100%       |
| 83          | 0.3178           | 0.4288 | 2.6532           | 10.7433            |                    | 125.6060             |                      | 382.4909             |                      |                    | 1077.5655              | 100%       |
| 84<br>85    | 0.3178           | 0.4288 | 2.6532<br>2.6532 | 10.7433            |                    | 125.6060<br>125.6060 | 242.1861<br>242.1861 | 382.6836<br>382.8553 |                      | 40.6387<br>40.6453 | 1077.8036              | 100%       |
| 85<br>86    | 0.3178           | 0.4288 | 2.6532<br>2.6532 | 10.7433            | 46.3536<br>46.3536 | 125.6060<br>125.6060 | 242.1861<br>242.1861 | 382.8553<br>382.9794 |                      | 40.6453<br>40.6516 | 1078.0187              | 100%       |
| 87          | 0.3178           | 0.4288 | 2.6532           | 10.7433            |                    | 125.6060             |                      | 383.0612             |                      |                    | 1078.3925              | 100%       |
| 88          | 0.3178           | 0.4288 | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 242.1861             | 383.1043             | 226.4943             | 40.6634            | 1078.5507              | 100%       |
| 89          | 0.3178           | 0.4288 | 2.6532           | 10.7433            |                    | 125.6060             |                      | 383.1143             |                      | 40.6690            | 1078.6914              | 100%       |
| 90          | 0.3178           | 0.4288 | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 242.1861             | 383.1177             |                      | 40.6743            | 1078.8131              | 100%       |
| 91<br>92    | 0.3178<br>0.3178 | 0.4288 | 2.6532<br>2.6532 | 10.7433            |                    | 125.6060<br>125.6060 |                      | 383.1183<br>383.1183 |                      |                    | 1078.9174<br>1079.0056 | 100%       |
| 92<br>93    | 0.3178           | 0.4288 | 2.6532           | 10.7433            |                    | 125.6060             | 242.1861             | 383.1183             |                      | 40.6842            | 1079.0056              | 100%       |
| 94          | 0.3178           | 0.4288 | 2.6532           | 10.7433            | 46.3536            | 125.6060             | 242.1861             |                      | 227.0404             | 40.6933            | 1079.1407              | 100%       |
| 95          | 0.3178           | 0.4288 | 2.6532           | 10.7433            |                    | 125.6060             |                      | 383.1183             |                      |                    | 1079.1911              | 100%       |
| 96          | 0.3178           | 0.4288 | 2.6532           | 10.7433            |                    | 125.6060             |                      | 383.1183             |                      | 40.7071            | 1079.2321              | 100%       |
| 97          | 0.3178           | 0.4288 | 2.6532           | 10.7433            |                    | 125.6060             |                      | 383.1183             |                      | 40.7205            | 1079.2650              | 100%       |
|             |                  |        |                  |                    | 46.3536            | 125 6060             | 242.1861             | 383.1183             | 227.1475             | 40.7367            | 1079.2912              | 100%       |
| 98<br>99    | 0.3178<br>0.3178 | 0.4288 | 2.6532<br>2.6532 | 10.7433            |                    | 125.6060             |                      | 383.1183             |                      | 40.7547            | 1079.3116              | 100%       |

Exhibit E.39a Cases avoided (mean) by Age Group per year following rule promulgation
(Smoking/Lung Cancer model - HAA5 - Preferred Alternative)

|                         |                  |        | (Smoking         | /Lung Car        | ncer mod           | el - HAA5          |                    | d Alterna          | tive)              |                  |                      |              |
|-------------------------|------------------|--------|------------------|------------------|--------------------|--------------------|--------------------|--------------------|--------------------|------------------|----------------------|--------------|
| Years After<br>the Rule | 1-10             | 11-20  | 21-30            | 31-40            | 41-50              | Age Grou<br>51-60  | p (years)<br>61-70 | 71-80              | 81-90              | 91-100+          | Total                | %            |
| 1                       | 0.0000           | 0.0000 | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000           | 0.0000               | 0%           |
| 3                       | 0.0000           | 0.0000 | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000           | 0.0000               | 0%<br>0%     |
| 4                       | 0.0000           | 0.0000 | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000           | 0.0000               | 0%           |
| 5                       | 0.0000           | 0.0000 | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000           | 0.0000               | 0%           |
| 6<br>7                  | 0.0027<br>0.0089 | 0.0007 | 0.0046           | 0.0185           | 0.0799             | 0.2165<br>1.1715   | 0.4175<br>2.2587   | 0.6604<br>3.5731   | 0.3916<br>2.1185   | 0.0704           | 1.8628<br>10.0726    | 1%<br>4%     |
| 8                       | 0.0089           | 0.0103 | 0.0638           | 0.1002           | 1.1151             | 3.0217             | 5.8263             | 9.2167             | 5.4646             | 0.9818           | 25.9773              | 10%          |
| 9                       | 0.0306           | 0.0194 | 0.1202           | 0.4868           | 2.1005             | 5.6919             | 10.9748            | 17.3613            | 10.2935            | 1.8494           | 48.9285              | 20%          |
| 10<br>11                | 0.0425<br>0.0522 | 0.0300 | 0.1856           | 0.7515           | 3.2426<br>4.3011   | 8.7866<br>11.6548  | 16.9418<br>22.4721 | 26.8005<br>35.5490 | 15.8900<br>21.0770 | 2.8549<br>3.7868 | 75.5259<br>100.1756  | 30%<br>40%   |
| 12                      | 0.0593           | 0.0481 | 0.2973           | 1.2039           | 5.1945             | 14.0757            | 27.1400            | 42.9333            | 25.4551            | 4.5734           | 120.9806             | 48%          |
| 13                      | 0.0643           | 0.0547 | 0.3382           | 1.3694           | 5.9085             | 16.0104            | 30.8704            | 48.8343            | 28.9539            | 5.2020           | 137.6060             | 55%          |
| 14<br>15                | 0.0677<br>0.0703 | 0.0600 | 0.3715           | 1.5043           | 6.4903<br>6.9799   | 17.5871<br>18.9138 | 33.9105<br>36.4685 | 53.6436<br>57.6901 | 31.8053            | 5.7143<br>6.1453 | 151.1546<br>162.5541 | 60%<br>65%   |
| 16                      | 0.0720           | 0.0686 | 0.4229           | 1.7123           | 7.3882             | 20.0200            | 38.6013            | 61.0641            | 36.2049            | 6.5047           | 172.0590             | 69%          |
| 17                      | 0.0731           | 0.0723 | 0.4429           | 1.7935           | 7.7382             | 20.9685            | 40.4303            | 63.9573            | 37.9203            | 6.8129           | 180.2092             | 72%          |
| 18<br>19                | 0.0736<br>0.0738 | 0.0756 | 0.4599           | 1.8621           | 8.0343<br>8.2745   | 21.7709            | 41.9774<br>43.2322 | 66.4047<br>68.3898 | 39.3714<br>40.5483 | 7.0736<br>7.2851 | 187.1035<br>192.6952 | 75%<br>77%   |
| 20                      | 0.0738           | 0.0810 | 0.4846           | 1.9622           | 8.4663             | 22.9414            | 44.2342            | 69.9749            | 41.4881            | 7.4539           | 197.1605             | 79%          |
| 21                      | 0.0738           | 0.0835 | 0.4938           | 1.9997           | 8.6279             | 23.3792            | 45.0784            | 71.3103            | 42.2799            | 7.5962           | 200.9228             | 80%          |
| 22                      | 0.0738           | 0.0862 | 0.5018           | 2.0317           | 8.7663<br>8.9014   | 23.7543            | 45.8016<br>46.5076 | 72.4544<br>73.5712 | 42.9582<br>43.6203 | 7.7180<br>7.8370 | 204.1463             | 81%<br>83%   |
| 24                      | 0.0738           | 0.0923 | 0.5174           | 2.0952           | 9.0402             | 24.4966            | 47.2330            | 74.7186            | 44.3007            | 7.9592           | 210.5272             | 84%          |
| 25                      | 0.0738           | 0.0951 | 0.5244           | 2.1234           | 9.1615             | 24.8254            | 47.8668            | 75.7213            | 44.8952            | 8.0660           | 213.3530             | 85%          |
| 26<br>27                | 0.0738           | 0.0972 | 0.5314           | 2.1467           | 9.2624             | 25.0986<br>25.3376 | 48.3937<br>48.8545 | 76.5547<br>77.2837 | 45.3893<br>45.8215 | 8.1548<br>8.2325 | 215.7026<br>217.7586 | 86%<br>87%   |
| 28                      | 0.0738           | 0.0993 | 0.5461           | 2.1850           | 9.4277             | 25.5466            | 49.2574            | 77.9211            | 46.1994            | 8.3004           | 219.5569             | 88%          |
| 29                      | 0.0738           | 0.0995 | 0.5541           | 2.2023           | 9.5020             | 25.7479            | 49.6456            | 78.5352            | 46.5635            | 8.3658           | 221.2897             | 88%          |
| 30<br>31                | 0.0738<br>0.0738 | 0.0996 | 0.5619           | 2.2195           | 9.5763<br>9.6440   | 25.9492<br>26.1327 | 50.0338<br>50.3875 | 79.1493<br>79.7089 | 46.9276<br>47.2594 | 8.4312<br>8.4908 | 223.0222<br>224.6019 | 89%<br>90%   |
| 32                      | 0.0738           | 0.0996 | 0.5780           | 2.2491           | 9.7040             | 26.2953            | 50.7010            | 80.2047            | 47.5534            | 8.5436           | 226.0024             | 90%          |
| 33                      | 0.0738           | 0.0996 | 0.5862           | 2.2618           | 9.7589             | 26.4440            | 50.9878            | 80.6584            | 47.8223            | 8.5920           | 227.2847             | 91%          |
| 34<br>35                | 0.0738           | 0.0996 | 0.5947           | 2.2742           | 9.8125<br>9.8611   | 26.5892<br>26.7210 | 51.2678<br>51.5218 | 81.1014<br>81.5033 | 48.0850<br>48.3233 | 8.6391<br>8.6820 | 228.5373<br>229.6741 | 91%<br>92%   |
| 36                      | 0.0738           | 0.0996 | 0.6089           | 2.2982           | 9.9054             | 26.8409            | 51.7531            | 81.8691            | 48.5402            | 8.7209           | 230.7102             | 92%          |
| 37                      | 0.0738           | 0.0996 | 0.6131           | 2.3115           | 9.9433             | 26.9437            | 51.9514            | 82.1827            | 48.7261            | 8.7543           | 231.5996             | 92%          |
| 38<br>39                | 0.0738<br>0.0738 | 0.0996 | 0.6154           | 2.3249           | 9.9729             | 27.0240<br>27.0966 | 52.1061<br>52.2461 | 82.4275<br>82.6489 | 48.8712<br>49.0025 | 8.7804<br>8.8040 | 232.2959             | 93%<br>93%   |
| 40                      | 0.0738           | 0.0996 | 0.6162           | 2.3535           | 10.0246            | 27.1640            | 52.3761            | 82.8547            | 49.1245            | 8.8259           | 233.5130             | 93%          |
| 41                      | 0.0738           | 0.0996 | 0.6163           | 2.3704           | 10.0494            | 27.2311            | 52.5054            | 83.0592            | 49.2458            | 8.8477           | 234.0987             | 93%          |
| 42<br>43                | 0.0738           | 0.0996 | 0.6163           | 2.3898           | 10.0742            | 27.2983<br>27.3639 | 52.6350<br>52.7615 | 83.2642<br>83.4642 | 49.3673<br>49.4859 | 8.8695<br>8.8908 | 234.6881             | 94%<br>94%   |
| 44                      | 0.0738           | 0.0996 | 0.6163           | 2.4351           | 10.1221            | 27.4282            | 52.8855            | 83.6605            | 49.6023            | 8.9117           | 235.8351             | 94%          |
| 45                      | 0.0738           | 0.0996 | 0.6163           | 2.4579           | 10.1448            | 27.4897            | 53.0040            | 83.8480            | 49.7135            | 8.9317           | 236.3793             | 94%          |
| 46<br>47                | 0.0738<br>0.0738 | 0.0996 | 0.6163<br>0.6163 | 2.4751           | 10.1766            | 27.5496<br>27.6089 | 53.1194<br>53.2338 | 84.0306<br>84.2116 | 49.8217<br>49.9290 | 8.9512<br>8.9704 | 236.9138<br>237.4468 | 95%<br>95%   |
| 48                      | 0.0738           | 0.0996 | 0.6163           | 2.4932           | 10.2644            | 27.6677            | 53.3473            | 84.3911            | 50.0354            | 8.9896           | 237.9783             | 95%          |
| 49                      | 0.0738           | 0.0996 | 0.6163           | 2.4947           | 10.3190            | 27.7262            | 53.4600            | 84.5693            | 50.1411            | 9.0086           | 238.5086             | 95%          |
| 50<br>51                | 0.0738<br>0.0738 | 0.0996 | 0.6163<br>0.6163 | 2.4953<br>2.4953 | 10.3715<br>10.4286 | 27.7827<br>27.8362 | 53.5689<br>53.6722 | 84.7416<br>84.9049 | 50.2433<br>50.3401 | 9.0269           | 239.0198<br>239.5113 | 95%<br>96%   |
| 52                      | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.4882            | 27.8871            | 53.7702            | 85.0601            | 50.4321            | 9.0608           | 239.9836             | 96%          |
| 53                      | 0.0738           | 0.0996 | 0.6163           | 2.4953<br>2.4953 | 10.5501            | 27.9356            | 53.8637            | 85.2080            | 50.5198            | 9.0766           | 240.4387             | 96%          |
| 54<br>55                | 0.0738<br>0.0738 | 0.0996 | 0.6163           | 2.4953           | 10.6138<br>10.6727 | 27.9819<br>28.0263 | 53.9531<br>54.0386 | 85.3493<br>85.4846 | 50.6036<br>50.6838 | 9.0916<br>9.1060 | 240.8782<br>241.2970 | 96%<br>96%   |
| 56                      | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7163            | 28.0899            | 54.1202            | 85.6136            | 50.7603            | 9.1198           | 241.7051             | 96%          |
| 57<br>58                | 0.0738<br>0.0738 | 0.0996 | 0.6163           | 2.4953<br>2.4953 | 10.7454            | 28.1701<br>28.2658 | 54.1976<br>54.2702 | 85.7362<br>85.8510 | 50.8329<br>50.9010 | 9.1328<br>9.1451 | 242.1000<br>242.4792 | 97%<br>97%   |
| 59                      | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7611            | 28.3756            | 54.3378            | 85.9578            | 50.9644            | 9.1451           | 242.4792             | 97%          |
| 60                      | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7663            | 28.4775            | 54.4005            | 86.0570            | 51.0232            | 9.1670           | 243.1765             | 97%          |
| 61<br>62                | 0.0738<br>0.0738 | 0.0996 | 0.6163<br>0.6163 | 2.4953<br>2.4953 | 10.7665            | 28.5826<br>28.6893 | 54.4586<br>54.5129 | 86.1490<br>86.2349 | 51.0777<br>51.1286 | 9.1768<br>9.1860 | 243.4963<br>243.8032 | 97%<br>97%   |
| 63                      | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 28.7977            | 54.5639            | 86.3156            | 51.1765            | 9.1946           |                      | 97%          |
| 64                      | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 28.9087            | 54.6120            | 86.3916            | 51.2216            |                  | 244.3881             | 98%          |
| 65<br>66                | 0.0738<br>0.0738 | 0.0996 | 0.6163<br>0.6163 | 2.4953<br>2.4953 | 10.7665<br>10.7665 | 29.0118<br>29.0880 | 54.6575<br>54.7317 | 86.4637<br>86.5320 | 51.2643<br>51.3048 | 9.2103<br>9.2176 | 244.6590<br>244.9257 | 98%<br>98%   |
| 67                      | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1380            | 54.8318            | 86.5970            | 51.3433            |                  | 244.9257             | 98%          |
| 68                      | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1651            | 54.9559            | 86.6588            | 51.3799            |                  | 245.4423             | 98%          |
| 69<br>70                | 0.0738<br>0.0738 | 0.0996 | 0.6163<br>0.6163 | 2.4953<br>2.4953 | 10.7665<br>10.7665 | 29.1717<br>29.1740 | 55.1013<br>55.2428 | 86.7175<br>86.7742 | 51.4148<br>51.4484 | 9.2374           | 245.6942<br>245.9344 | 98%<br>98%   |
| 71                      | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 55.3915            | 86.8290            | 51.4809            |                  | 246.1765             | 98%          |
| 72                      | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 55.5421            | 86.8821            | 51.5124            |                  | 246.4173             | 98%          |
| 73<br>74                | 0.0738<br>0.0738 | 0.0996 | 0.6163<br>0.6163 | 2.4953<br>2.4953 | 10.7665<br>10.7665 | 29.1744<br>29.1744 | 55.6961<br>55.8531 | 86.9335<br>86.9850 | 51.5428<br>51.5734 | 9.2604<br>9.2659 | 246.6586<br>246.9032 | 98%<br>99%   |
| 75                      | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.0028            | 87.0384            | 51.6051            |                  | 247.1437             | 99%          |
| 76                      | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.1162            | 87.1367            | 51.6378            |                  | 247.3940             | 99%          |
| 77<br>78                | 0.0738<br>0.0738 | 0.0996 | 0.6163<br>0.6163 | 2.4953<br>2.4953 | 10.7665<br>10.7665 | 29.1744<br>29.1744 | 56.1935<br>56.2369 | 87.2751<br>87.4497 | 51.6717<br>51.7058 | 9.2836<br>9.2897 | 247.6497<br>247.9080 | 99%<br>99%   |
| 79                      | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2478            | 87.6552            | 51.7392            | 9.2957           | 248.1637             | 99%          |
| 80                      | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2517            | 87.8543            | 51.7717            |                  | 248.4052             | 99%          |
| 81<br>82                | 0.0738<br>0.0738 | 0.0996 | 0.6163<br>0.6163 | 2.4953<br>2.4953 | 10.7665<br>10.7665 | 29.1744<br>29.1744 | 56.2523<br>56.2523 | 88.0508<br>88.2381 | 51.8030<br>51.8307 | 9.3071<br>9.3121 | 248.6392<br>248.8591 | 99%<br>99%   |
| 83                      | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.4154            | 51.8548            |                  | 249.0649             | 99%          |
| 84                      | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.5844            | 51.8755            |                  | 249.2583             | 99%          |
| 85<br>86                | 0.0738<br>0.0738 | 0.0996 | 0.6163<br>0.6163 | 2.4953<br>2.4953 | 10.7665<br>10.7665 | 29.1744<br>29.1744 | 56.2523<br>56.2523 | 88.7383<br>88.8521 | 51.8931<br>51.9399 | 9.3233<br>9.3263 | 249.4330<br>249.5965 | 100%<br>100% |
| 87                      | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9288            | 52.0117            |                  | 249.7479             | 100%         |
| 88                      | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9708            | 52.1056            |                  | 249.8866             | 100%         |
| 89<br>90                | 0.0738<br>0.0738 | 0.0996 | 0.6163<br>0.6163 | 2.4953<br>2.4953 | 10.7665<br>10.7665 | 29.1744<br>29.1744 | 56.2523<br>56.2523 | 88.9819<br>88.9859 | 52.2186<br>52.3244 | 9.3345<br>9.3371 | 250.0132<br>250.1255 | 100%         |
| 91                      | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.4200            |                  | 250.2243             | 100%         |
| 92                      | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.5032            |                  | 250.3099             | 100%         |
| 93<br>94                | 0.0738<br>0.0738 | 0.0996 | 0.6163<br>0.6163 | 2.4953<br>2.4953 | 10.7665<br>10.7665 | 29.1744<br>29.1744 | 56.2523<br>56.2523 | 88.9866<br>88.9866 | 52.5746<br>52.6348 | 9.3442<br>9.3464 | 250.3836<br>250.4460 | 100%<br>100% |
| 95                      | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.6854            |                  | 250.4987             | 100%         |
| 96                      | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.7209            | 9.3571           | 250.5427             | 100%         |
| 97<br>98                | 0.0738<br>0.0738 | 0.0996 | 0.6163<br>0.6163 | 2.4953<br>2.4953 | 10.7665<br>10.7665 | 29.1744<br>29.1744 | 56.2523<br>56.2523 | 88.9866<br>88.9866 | 52.7435<br>52.7555 | 9.3706<br>9.3882 | 250.5789<br>250.6084 | 100%         |
| 99                      | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.7587            | 9.4086           | 250.6321             | 100%         |
| 100                     | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.7599            | 9.4261           | 250.6507             | 100%         |

Exhibit E.39a Cases avoided (mean) by Age Group per year following rule promulgation
(Smoking/Lung Cancer model - HAA5 - Preferred Alternative)

| Years After |        |                  |                  |                    |                    | Age Gro              | up (years)           |                      |                      |                    |                        |            |
|-------------|--------|------------------|------------------|--------------------|--------------------|----------------------|----------------------|----------------------|----------------------|--------------------|------------------------|------------|
| the Rule    | 1-10   | 11-20            | 21-30            | 31-40              | 41-50              | 51-60                | 61-70                | 71-80                | 81-90                | 91-100+            | Total                  | %          |
| 1 2         | 0.0000 | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000                 | 0%<br>0%   |
| 3           | 0.0000 | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000                 | 0%         |
| 4           | 0.0000 | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000                 | 0%         |
| 5           | 0.0000 | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000                 | 0%         |
| 6           | 0.0319 | 0.0318           | 0.1965           | 0.7955             | 3.4322             | 9.3004               | 17.9326              | 28.3678              | 16.8193              | 3.0218             | 79.9298                | 6%         |
| 7           | 0.0778 | 0.0739           | 0.4574           | 1.8520             | 7.9907             | 21.6526              | 41.7493              | 66.0439              | 39.1574              | 7.0352             | 186.0901               | 15%        |
| 8           | 0.1348 | 0.1245           | 0.7701           | 3.1181             | 13.4537            | 36.4559              | 70.2921              | 111.1963             | 65.9282              | 11.8449            | 313.3185               | 25%        |
| 9           | 0.2006 | 0.1816           | 1.1237           | 4.5500             | 19.6315            | 53.1961              | 102.5696             | 162.2566             | 96.2019              | 17.2840            | 457.1955               | 369        |
| 10<br>11    | 0.2486 | 0.2197           | 1.3595           | 5.5048<br>6.3634   | 23.7514            | 64.3600<br>74.3985   | 124.0951<br>143.4508 | 196.3082<br>226.9272 | 116.3911<br>134.5451 | 20.9113            | 553.1495<br>639.4255   | 44%<br>50% |
| 12          | 0.3138 | 0.2837           | 1.7551           | 7.1069             | 30.6637            | 83.0905              | 160.2102             | 253.4392             | 150.2640             | 26.9970            | 714.1241               | 56%        |
| 13          | 0.3342 | 0.3105           | 1.9210           | 7.7786             | 33.5619            | 90.9440              | 175.3528             | 277.3936             | 164.4665             | 29.5487            | 781.6118               | 62%        |
| 14          | 0.3484 | 0.3347           | 2.0708           | 8.3852             | 36.1791            | 98.0358              | 189.0269             | 299.0248             | 177.2918             | 31.8529            | 842.5505               | 66%        |
| 15          | 0.3594 | 0.3548           | 2.1953           | 8.8892             | 38.3536            | 103.9283             | 200.3885             | 316.9980             | 187.9480             | 33.7675            | 893.1826               | 70%        |
| 16          | 0.3666 | 0.3729           | 2.3009           | 9.3170             | 40.1994            | 108.9298             | 210.0321             | 332.2534             | 196.9930             | 35.3926            | 936.1577               | 74%        |
| 17          | 0.3711 | 0.3885           | 2.3857           | 9.6600             | 41.6796            | 112.9408             | 217.7659             | 344.4876             | 204.2467             | 36.6958            | 970.6217               | 76%        |
| 18          | 0.3734 | 0.4022           | 2.4542<br>2.5118 | 9.9378             | 42.8780<br>43.8844 | 116.1882<br>118.9152 | 224.0271<br>229.2853 | 354.3924<br>362.7104 | 210.1192<br>215.0508 | 37.7509<br>38.6369 | 998.5234<br>1021.9544  | 79%<br>80% |
| 19<br>20    | 0.3739 | 0.4146           | 2.5118           | 10.1710            | 43.8844            | 121.2492             | 233.7855             | 369.8294             | 219.2717             | 39.3953            | 1021.9544              | 82%        |
| 21          | 0.3741 | 0.4373           | 2.6092           | 10.5651            | 45.5846            | 123.5224             | 238.1686             | 376.7629             | 223.3826             | 40.1338            | 1061.5406              | 84%        |
| 22          | 0.3741 | 0.4499           | 2.6544           | 10.7481            | 46.3745            | 125.6627             | 242.2954             | 383.2913             | 227.2532             | 40.8292            | 1079.9328              | 85%        |
| 23          | 0.3741 | 0.4629           | 2.6959           | 10.9164            | 47.1005            | 127.6300             | 246.0887             | 389.2919             | 230.8110             | 41.4684            | 1096.8398              | 86%        |
| 24          | 0.3741 | 0.4760           | 2.7348           | 11.0737            | 47.7792            | 129.4692             | 249.6350             | 394.9019             | 234.1371             | 42.0660            | 1112.6470              | 88%        |
| 25          | 0.3741 | 0.4875           | 2.7679           | 11.2078            | 48.3578            | 131.0371             | 252.6580             | 399.6841             | 236.9725             | 42.5754            | 1126.1223              | 89%        |
| 26          | 0.3741 | 0.4958           | 2.8020           | 11.3279            | 48.8760            | 132.4411             | 255.3651             | 403.9665             | 239.5116             | 43.0316            | 1138.1918              | 90%        |
| 27          | 0.3741 | 0.5012           | 2.8365           | 11.4360<br>11.5163 | 49.3425            | 133.7052             | 257.8025             | 407.8223             | 241.7976             | 43.4423            | 1149.0603              | 90%        |
| 28<br>29    | 0.3741 | 0.5039           | 2.8677           | 11.5163            | 49.6889<br>49.9849 | 134.6439             | 259.6123<br>261.1589 | 410.6852<br>413.1318 | 243.4951<br>244.9457 | 43.7473<br>44.0079 | 1157.1347              | 91%        |
| 30          | 0.3741 | 0.5048           | 2.9272           | 11.6489            | 50.2610            | 136.1941             | 262.6014             | 415.4137             | 246.2987             | 44.2510            | 1170.4750              | 92%        |
| 31          | 0.3741 | 0.5048           | 2.9555           | 11.7039            | 50.4984            | 136.8375             | 263.8420             | 417.3762             | 247.4622             | 44.4601            | 1176.0149              | 93%        |
| 32          | 0.3741 | 0.5048           | 2.9856           | 11.7619            | 50.7484            | 137.5149             | 265.1483             | 419.4427             | 248.6874             | 44.6802            | 1181.8483              | 93%        |
| 33          | 0.3741 | 0.5048           | 3.0166           | 11.8182            | 50.9914            | 138.1734             | 266.4179             | 421.4510             | 249.8782             | 44.8941            | 1187.5198              | 93%        |
| 34          | 0.3741 | 0.5048           | 3.0477           | 11.8674            | 51.2038            | 138.7488             | 267.5274             | 423.2062             | 250.9189             | 45.0811            | 1192.4802              | 94%        |
| 35          | 0.3741 | 0.5048           | 3.0767           | 11.9144            | 51.4065            | 139.2983             | 268.5868             | 424.8821             | 251.9125             | 45.2596            | 1197.2161              | 94%        |
| 36<br>37    | 0.3741 | 0.5048           | 3.0983           | 11.9712<br>12.0261 | 51.6179<br>51.7899 | 139.8710<br>140.3371 | 269.6911<br>270.5898 | 426.6291<br>428.0509 | 252.9482<br>253.7912 | 45.4457<br>45.5971 | 1202.1516<br>1206.1741 | 95%<br>95% |
| 38          | 0.3741 | 0.5048           | 3.1129           | 12.0261            | 51.7699            | 140.8115             | 271.5045             | 429.4977             | 254.6490             | 45.7513            | 1210.2659              | 95%        |
| 39          | 0.3741 | 0.5048           | 3.1227           | 12.1476            | 52.1130            | 141.2126             | 272.2778             | 430.7209             | 255.3743             | 45.8816            | 1213.7295              | 96%        |
| 40          | 0.3741 | 0.5048           | 3.1234           | 12.2016            | 52.2420            | 141.5623             | 272.9521             | 431.7876             | 256.0067             | 45.9952            | 1216.7498              | 96%        |
| 41          | 0.3741 | 0.5048           | 3.1234           | 12.2668            | 52.3935            | 141.9727             | 273.7435             | 433.0396             | 256.7491             | 46.1286            | 1220.2962              | 96%        |
| 42          | 0.3741 | 0.5048           | 3.1234           | 12.3351            | 52.5392            | 142.3675             | 274.5046             | 434.2437             | 257.4630             | 46.2568            | 1223.7124              | 96%        |
| 43          | 0.3741 | 0.5048           | 3.1234           | 12.4083            | 52.6948            | 142.7890             | 275.3175             | 435.5296             | 258.2253             | 46.3938            | 1227.3608              | 97%        |
| 44          | 0.3741 | 0.5048           | 3.1234           | 12.4818<br>12.5477 | 52.8380<br>52.9526 | 143.1772<br>143.4877 | 276.0659<br>276.6646 | 436.7136<br>437.6605 | 258.9273<br>259.4888 | 46.5199<br>46.6208 | 1230.7263<br>1233.4250 | 97%        |
| 45<br>46    | 0.3741 | 0.5048           | 3.1234           | 12.5477            | 53.0764            | 143.7584             | 277.1866             | 437.6605             | 259.4888             | 46.7088            | 1233.4250              | 97%        |
| 47          | 0.3741 | 0.5048           | 3.1234           | 12.6259            | 53.2092            | 144.0019             | 277.6559             | 439.2289             | 260.4186             | 46.7879            | 1237.9306              | 97%        |
| 48          | 0.3741 | 0.5048           | 3.1234           | 12.6423            | 53.3536            | 144.2321             | 278.0998             | 439.9310             | 260.8349             | 46.8627            | 1239.9588              | 98%        |
| 49          | 0.3741 | 0.5048           | 3.1234           | 12.6461            | 53.5203            | 144.4880             | 278.5932             | 440.7114             | 261.2976             | 46.9458            | 1242.2047              | 98%        |
| 50          | 0.3741 | 0.5048           | 3.1234           | 12.6473            | 53.6744            | 144.7295             | 279.0588             | 441.4479             | 261.7343             | 47.0242            | 1244.3190              | 98%        |
| 51          | 0.3741 | 0.5048           | 3.1234           | 12.6475            | 53.8277            | 144.9466             | 279.4774             | 442.1102             | 262.1270             | 47.0948            | 1246.2338              | 98%        |
| 52<br>53    | 0.3741 | 0.5048           | 3.1234           | 12.6475<br>12.6475 | 53.9752<br>54.1172 | 145.1360<br>145.2987 | 279.8427<br>280.1563 | 442.6881<br>443.1840 | 262.4697<br>262.7636 | 47.1564<br>47.2092 | 1247.9180              | 98%        |
| 54          | 0.3741 | 0.5048           | 3.1234           | 12.6475            | 54.1172            | 145.4468             | 280.4419             | 443.6358             | 263.0316             | 47.2573            | 1249.3789              | 98%        |
| 55          | 0.3741 | 0.5048           | 3.1234           | 12.6475            | 54.3808            | 145.5829             | 280.7043             | 444.0510             | 263.2777             | 47.3015            | 1251.9483              | 99%        |
| 56          | 0.3741 | 0.5048           | 3.1234           | 12.6475            | 54.4706            | 145.7490             | 280.9464             | 444.4339             | 263.5048             | 47.3423            | 1253.0970              | 99%        |
| 57          | 0.3741 | 0.5048           | 3.1234           | 12.6475            | 54.5291            | 145.9395             | 281.1688             | 444.7856             | 263.7133             | 47.3798            | 1254.1660              | 99%        |
| 58          | 0.3741 | 0.5048           | 3.1234           | 12.6475            | 54.5601            | 146.1529             | 281.3729             | 445.1087             | 263.9048             | 47.4142            | 1255.1635              | 99%        |
| 59          | 0.3741 | 0.5048           | 3.1234           | 12.6475            | 54.5671            | 146.3861             | 281.5606             | 445.4056             | 264.0808             | 47.4458            | 1256.0960              | 99%        |
| 60          | 0.3741 | 0.5048           | 3.1234           | 12.6475            | 54.5693            | 146.5971             | 281.7328             | 445.6779             | 264.2423             | 47.4748            | 1256.9442              | 99%        |
| 61<br>62    | 0.3741 | 0.5048<br>0.5048 | 3.1234<br>3.1234 | 12.6475<br>12.6475 | 54.5696<br>54.5696 | 146.8056<br>147.0092 | 281.8862<br>282.0226 | 445.9208<br>446.1365 | 264.3864<br>264.5142 | 47.5007<br>47.5237 | 1257.7192<br>1258.4258 | 99%        |
| 62          | 0.3741 | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.0092             | 282.0226             |                      | 264.6587             | 47.5237<br>47.5496 | 1258.4258              | 99%        |
| 64          | 0.3741 | 0.5048           | 3.1234           | 12.6475            |                    | 147.4181             |                      |                      |                      |                    | 1260.0459              | 99%        |
| 65          | 0.3741 | 0.5048           | 3.1234           | 12.6475            |                    | 147.6008             |                      |                      | 265.0059             |                    | 1260.9510              | 99%        |
| 66          | 0.3741 | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.7337             | 282.8070             | 447.3105             | 265.2102             | 47.6487            | 1261.9298              | 99%        |
| 67          | 0.3741 | 0.5048           | 3.1234           | 12.6475            |                    | 147.8161             |                      |                      |                      |                    | 1262.8708              | 99%        |
| 68          | 0.3741 | 0.5048           | 3.1234           | 12.6475            |                    | 147.8576             |                      |                      | 265.6002             |                    | 1263.7597              | 99%        |
| 69          | 0.3741 | 0.5048           | 3.1234           | 12.6475            |                    | 147.8663             |                      |                      | 265.7804             |                    | 1264.5912              | 100        |
| 70<br>71    | 0.3741 | 0.5048           | 3.1234           | 12.6475<br>12.6475 | 54.5696<br>54.5696 | 147.8690<br>147.8692 | 283.9709<br>284.2017 | 448.5525<br>448.7653 | 265.9466<br>266.0728 | 47.7811<br>47.8037 | 1265.3395<br>1265.9322 | 100        |
| 71          | 0.3741 | 0.5048           | 3.1234           | 12.6475            |                    | 147.8692             |                      |                      | 266.1607             |                    | 1265.9322              | 100        |
| 73          | 0.3741 | 0.5048           | 3.1234           | 12.6475            |                    | 147.8692             |                      |                      | 266.2100             |                    | 1266.6904              | 100        |
| 74          | 0.3741 | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.8692             | 284.7203             | 449.0241             | 266.2264             | 47.8313            | 1266.8910              | 100        |
| 75          | 0.3741 | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.8692             | 284.8675             | 449.0399             | 266.2357             | 47.8330            | 1267.0649              | 100        |
| 76          | 0.3741 | 0.5048           | 3.1234           | 12.6475            |                    | 147.8692             |                      |                      | 266.2488             |                    | 1267.2609              | 100        |
| 77          | 0.3741 | 0.5048           | 3.1234           | 12.6475            |                    | 147.8692             |                      |                      | 266.3131             |                    | 1267.5943              | 100        |
| 78          | 0.3741 | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.8692<br>147.8692 |                      | 449.5105             | 266.3830             |                    | 1267.9413              | 100        |
| 79<br>80    | 0.3741 | 0.5048           | 3.1234           | 12.6475<br>12.6475 |                    | 147.8692             |                      |                      | 266.5264             |                    | 1268.2940<br>1268.6230 | 100        |
| 81          | 0.3741 | 0.5048           | 3.1234           | 12.6475            |                    | 147.8692             |                      |                      | 266.5515             |                    | 1268.8313              | 100        |
| 82          | 0.3741 | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.8692             |                      | 450.3521             | 266.5664             | 47.8924            |                        | 100        |
| 83          | 0.3741 | 0.5048           | 3.1234           | 12.6475            |                    | 147.8692             |                      |                      |                      |                    | 1269.1797              | 100        |
| 84          | 0.3741 | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.8692             | 285.1130             | 450.6600             | 266.5816             | 47.8951            | 1269.3386              | 100        |
| 85          | 0.3741 | 0.5048           | 3.1234           | 12.6475            |                    | 147.8692             |                      | 450.8021             | 266.5846             |                    | 1269.4841              | 100        |
| 86          | 0.3741 | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.8692             |                      | 450.9069             | 266.6165             |                    | 1269.6209              | 100        |
| 87          | 0.3741 | 0.5048           | 3.1234           | 12.6475            |                    | 147.8692             |                      |                      |                      |                    | 1269.7502              | 100        |
| 88<br>89    | 0.3741 | 0.5048           | 3.1234           | 12.6475<br>12.6475 |                    | 147.8692<br>147.8692 |                      |                      | 266.7623<br>266.8755 |                    | 1269.8761              | 100        |
| 90          | 0.3741 | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.8692             |                      | 451.0229<br>451.0252 | 266.9853             |                    | 1269.9997              | 100        |
| 91          | 0.3741 | 0.5048           | 3.1234           | 12.6475            |                    | 147.8692             |                      |                      | 267.0865             |                    | 1270.1160              | 100        |
| 92          | 0.3741 | 0.5048           | 3.1234           | 12.6475            |                    | 147.8692             |                      |                      | 267.1737             |                    | 1270.3164              | 100        |
| 93          | 0.3741 | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.8692             |                      |                      | 267.2456             |                    | 1270.3943              | 100        |
| 94          | 0.3741 | 0.5048           | 3.1234           | 12.6475            | 54.5696            |                      | 285.1130             |                      | 267.3036             | 47.9271            | 1270.4580              | 100        |
| 95          | 0.3741 | 0.5048           | 3.1234           | 12.6475            |                    | 147.8692             |                      |                      |                      |                    | 1270.5097              | 100        |
| 96          | 0.3741 | 0.5048           | 3.1234           | 12.6475            |                    | 147.8692             |                      |                      | 267.3813             |                    | 1270.5513              | 100        |
| 97          | 0.3741 | 0.5048           | 3.1234           | 12.6475            |                    | 147.8692             |                      |                      | 267.4005             |                    | 1270.5842              | 100        |
| 98          | 0.3741 | 0.5048           | 3.1234           | 12.6475<br>12.6475 | 54.5696            | 147.8692<br>147.8692 | 285.1130             | 451.0254<br>451.0254 | 267.4100<br>267.4120 |                    | 1270.6101<br>1270.6301 | 100        |
| 99          | 0.3741 |                  |                  |                    | 34.3096            | 147.8092             | ∠00.1130             | 401.UZ54             | 207.4120             |                    |                        |            |

## Exhibit E.39e Cases avoided by Age Group per year following rule promulgation (Smoking/Bladder Cancer model - HAA5 - Preferred Alternative)

| Years After | Age G            |        | Smoking/B        | nauuer Ca        | ince mo            | ici - HAA          | J - FIEIEII        | eu Allern          | ative)             |                  |                      |              |
|-------------|------------------|--------|------------------|------------------|--------------------|--------------------|--------------------|--------------------|--------------------|------------------|----------------------|--------------|
| the Rule    | 1-10             | 11-20  | 21-30            | 31-40            | 41-50              | 51-60              | 61-70              | 71-80              | 81-90              | 91-100+          | Total                | %            |
| 1           | 0.0000           | 0.0000 | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000           | 0.0000               | 0%           |
| 2           | 0.0000           | 0.0000 | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000           | 0.0000               | 0%<br>0%     |
| 4           | 0.0000           | 0.0000 | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000           | 0.0000               | 0%           |
| 5           | 0.0000           | 0.0000 | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000           | 0.0000               | 0%           |
| 6           | 0.0029           | 0.0011 | 0.0067           | 0.0272           | 0.1172             | 0.3176             | 0.6123             | 0.9686             | 0.5743             | 0.1032           | 2.7309               | 1%           |
| 7<br>8      | 0.0086<br>0.0167 | 0.0032 | 0.0200           | 0.0808           | 0.3486             | 1.8639             | 1.8212<br>3.5939   | 2.8809<br>5.6853   | 1.7081<br>3.3708   | 0.3069           | 8.1227<br>16.0293    | 3%<br>6%     |
| 9           | 0.0270           | 0.0105 | 0.0647           | 0.2619           | 1.1302             | 3.0625             | 5.9049             | 9.3411             | 5.5384             | 0.9950           | 26.3363              | 11%          |
| 10          | 0.0372           | 0.0146 | 0.0904           | 0.3661           | 1.5797             | 4.2806             | 8.2536             | 13.0565            | 7.7412             | 1.3908           | 36.8107              | 15%          |
| 11          | 0.0460           | 0.0187 | 0.1157           | 0.4687           | 2.0222             | 5.4797<br>6.6418   | 10.5657            | 16.7140            | 9.9097             | 1.7804           | 47.1210              | 19%          |
| 12<br>13    | 0.0533           | 0.0227 | 0.1403           | 0.6638           | 2.4511             | 7.7608             | 12.8063<br>14.9639 | 20.2585            | 12.0112            | 2.1580<br>2.5216 | 57.1112<br>66.7302   | 23%<br>27%   |
| 14          | 0.0637           | 0.0301 | 0.1865           | 0.7550           | 3.2576             | 8.8271             | 17.0200            | 26.9242            | 15.9633            | 2.8680           | 75.8954              | 30%          |
| 15          | 0.0676           | 0.0336 | 0.2078           | 0.8414           | 3.6303             | 9.8372             | 18.9675            | 30.0049            | 17.7899            | 3.1962           | 84.5764              | 34%          |
| 16<br>17    | 0.0705           | 0.0373 | 0.2277           | 0.9220           | 3.9783<br>4.3060   | 10.7801            | 20.7856            | 32.8810<br>35.5899 | 19.4951<br>21.1012 | 3.5026<br>3.7911 | 92.6803<br>100.3128  | 37%<br>40%   |
| 18          | 0.0724           | 0.0457 | 0.2644           | 1.0704           | 4.6186             | 12.5151            | 24.1308            | 38.1730            | 22.6327            | 4.0663           | 107.5903             | 43%          |
| 19          | 0.0737           | 0.0503 | 0.2815           | 1.1399           | 4.9183             | 13.3273            | 25.6968            | 40.6503            | 24.1015            | 4.3302           | 114.5697             | 46%          |
| 20          | 0.0738           | 0.0547 | 0.2981           | 1.2071           | 5.2083             | 14.1131            | 27.2120            | 43.0472            | 25.5226            | 4.5855           | 121.3223             | 48%          |
| 21<br>22    | 0.0738<br>0.0738 | 0.0600 | 0.3139           | 1.2712           | 5.4849<br>5.7495   | 14.8627<br>15.5796 | 28.6575<br>30.0396 | 45.3337<br>47.5202 | 26.8783<br>28.1747 | 4.8291<br>5.0620 | 127.7653<br>133.9272 | 51%<br>53%   |
| 23          | 0.0738           | 0.0731 | 0.3435           | 1.3907           | 6.0006             | 16.2599            | 31.3514            | 49.5954            | 29.4051            | 5.2830           | 139.7765             | 56%          |
| 24          | 0.0738           | 0.0807 | 0.3571           | 1.4461           | 6.2392             | 16.9067            | 32.5985            | 51.5681            | 30.5747            | 5.4932           | 145.3380             | 58%          |
| 25          | 0.0738           | 0.0878 | 0.3701           | 1.4987           | 6.4662             | 17.5217<br>18.0941 | 33.7844            | 53.4441            | 31.6870            | 5.6930           | 150.6269             | 60%          |
| 26<br>27    | 0.0738           | 0.0932 | 0.3855           | 1.5476           | 6.6774             | 18.6344            | 35.9298            | 55.1899<br>56.8380 | 33.6992            | 5.8790<br>6.0545 | 155.5508<br>160.2004 | 62%<br>64%   |
| 28          | 0.0738           | 0.0989 | 0.4226           | 1.6385           | 7.0694             | 19.1562            | 36.9359            | 58.4295            | 34.6428            | 6.2241           | 164.6915             | 66%          |
| 29          | 0.0738           | 0.0994 | 0.4437           | 1.6805           | 7.2509             | 19.6482            | 37.8845            | 59.9301            | 35.5325            | 6.3839           | 168.9275             | 67%          |
| 30<br>31    | 0.0738           | 0.0996 | 0.4638           | 1.7216           | 7.4281<br>7.5982   | 20.1283            | 38.8102<br>39.6986 | 61.3945<br>62.7999 | 36.4007<br>37.2340 | 6.5399<br>6.6896 | 173.0605<br>177.0291 | 69%<br>71%   |
| 31<br>32    | 0.0738           | 0.0996 | 0.4854           | 1.7610           | 7.5982<br>7.7540   | 20.5890            | 39.6986<br>40.5127 | 62.7999<br>64.0877 | 37.2340<br>37.9976 | 6.6896<br>6.8268 | 177.0291<br>180.6681 | 71%<br>72%   |
| 33          | 0.0738           | 0.0996 | 0.5305           | 1.8325           | 7.9066             | 21.4248            | 41.3100            | 65.3490            | 38.7454            | 6.9612           | 184.2334             | 74%          |
| 34          | 0.0738           | 0.0996 | 0.5545           | 1.8644           | 8.0444             | 21.7983            | 42.0301            | 66.4882            | 39.4208            | 7.0825           | 187.4567             | 75%          |
| 35<br>36    | 0.0738<br>0.0738 | 0.0996 | 0.5774           | 1.8932           | 8.1687<br>8.2948   | 22.1350            | 42.6793<br>43.3385 | 67.5151<br>68.5579 | 40.0297<br>40.6479 | 7.1919<br>7.3030 | 190.3638<br>193.3165 | 76%<br>77%   |
| 37          | 0.0738           | 0.0996 | 0.6068           | 1.9691           | 8.4132             | 22.7975            | 43.9569            | 69.5362            | 41.2280            | 7.4072           | 196.0884             | 78%          |
| 38          | 0.0738           | 0.0996 | 0.6136           | 2.0140           | 8.5312             | 23.1172            | 44.5733            | 70.5113            | 41.8061            | 7.5110           | 198.8511             | 79%          |
| 39<br>40    | 0.0738<br>0.0738 | 0.0996 | 0.6154<br>0.6161 | 2.0634<br>2.1085 | 8.6495<br>8.7521   | 23.4379<br>23.7159 | 45.1915<br>45.7276 | 71.4892<br>72.3374 | 42.3859<br>42.8888 | 7.6152<br>7.7056 | 201.6214<br>204.0255 | 80%<br>81%   |
| 41          | 0.0738           | 0.0996 | 0.6163           | 2.1592           | 8.8473             | 23.9739            | 46.2251            | 73.1242            | 43.3554            | 7.7894           | 206.2641             | 82%          |
| 42          | 0.0738           | 0.0996 | 0.6163           | 2.2145           | 8.9392             | 24.2229            | 46.7052            | 73.8838            | 43.8057            | 7.8703           | 208.4314             | 83%          |
| 43          | 0.0738           | 0.0996 | 0.6163           | 2.2735           | 9.0240             | 24.4528            | 47.1484            | 74.5849            | 44.2214            | 7.9450           | 210.4397             | 84%          |
| 44<br>45    | 0.0738           | 0.0996 | 0.6163           | 2.3365           | 9.1075<br>9.1869   | 24.6789            | 47.5845<br>47.9992 | 75.2747<br>75.9308 | 44.6304<br>45.0193 | 8.0185<br>8.0884 | 212.4206<br>214.3046 | 85%<br>86%   |
| 46          | 0.0738           | 0.0996 | 0.6163           | 2.4410           | 9.2830             | 25.0908            | 48.3785            | 76.5308            | 45.3751            | 8.1523           | 216.0411             | 86%          |
| 47          | 0.0738           | 0.0996 | 0.6163           | 2.4714           | 9.3901             | 25.2605            | 48.7057            | 77.0485            | 45.6820            | 8.2074           | 217.5553             | 87%          |
| 48<br>49    | 0.0738           | 0.0996 | 0.6163<br>0.6163 | 2.4884           | 9.5078<br>9.6348   | 25.4033<br>25.5198 | 48.9811<br>49.2057 | 77.4841<br>77.8394 | 45.9403<br>46.1509 | 8.2538<br>8.2917 | 218.8485<br>219.9251 | 87%<br>88%   |
| 50          | 0.0738           | 0.0996 | 0.6163           | 2.4950           | 9.7523             | 25.6104            | 49.2057            | 78.1158            | 46.3148            | 8.3211           | 220.7796             | 88%          |
| 51          | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 9.8848             | 25.6911            | 49.5361            | 78.3620            | 46.4608            | 8.3473           | 221.5671             | 88%          |
| 52          | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.0281            | 25.7643            | 49.6772            | 78.5851            | 46.5931            | 8.3711           | 222.3038             | 89%          |
| 53<br>54    | 0.0738<br>0.0738 | 0.0996 | 0.6163<br>0.6163 | 2.4953<br>2.4953 | 10.1851<br>10.3521 | 25.8689<br>26.0138 | 49.8788<br>50.1583 | 78.9042<br>79.3462 | 46.7823<br>47.0444 | 8.4051<br>8.4522 | 223.3093<br>224.6519 | 89%<br>90%   |
| 55          | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.5089            | 26.1842            | 50.4868            | 79.8660            | 47.3525            | 8.5075           | 226.1909             | 90%          |
| 56          | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.6279            | 26.4050            | 50.8118            | 80.3801            | 47.6573            | 8.5623           | 227.7296             | 91%          |
| 57<br>58    | 0.0738<br>0.0738 | 0.0996 | 0.6163<br>0.6163 | 2.4953<br>2.4953 | 10.7067<br>10.7492 | 26.6415<br>26.8818 | 51.0753<br>51.2555 | 80.7969<br>81.0821 | 47.9045<br>48.0735 | 8.6067<br>8.6371 | 229.0166<br>229.9643 | 91%<br>92%   |
| 59          | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7612            | 27.1323            | 51.3701            | 81.2632            | 48.1809            | 8.6564           | 230.6492             | 92%          |
| 60          | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7657            | 27.3753            | 51.4959            | 81.4623            | 48.2989            | 8.6776           | 231.3607             | 92%          |
| 61          | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 27.6372            | 51.6302            | 81.6747            | 48.4249            | 8.7002           | 232.1186             | 93%          |
| 62<br>63    | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 27.9094<br>28.1911 | 51.7659<br>51.9032 | 81.8894<br>82.1066 | 48.5522<br>48.6809 | 8.7231<br>8.7462 | 232.8914             | 93%<br>93%   |
| 64          | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 28.4753            | 52.0176            | 82.2876            | 48.7883            | 8.7655           | 234.3857             | 94%          |
| 65          | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 28.7394            | 52.1160            | 82.4432            | 48.8805            | 8.7821           | 235.0126             | 94%          |
| 66<br>67    | 0.0738           | 0.0996 | 0.6163<br>0.6163 | 2.4953<br>2.4953 | 10.7665            | 28.9373<br>29.0696 | 52.2865<br>52.5247 | 82.5865<br>82.7206 | 48.9655<br>49.0450 | 8.7973<br>8.8116 | 235.6248             | 94%<br>94%   |
| 68          | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1434            | 52.8269            | 82.8467            | 49.1198            | 8.8251           | 236.8134             | 94%          |
| 69          | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1647            | 53.1929            | 82.9786            | 49.1980            | 8.8391           | 237.4247             | 95%          |
| 70<br>71    | 0.0738           | 0.0996 | 0.6163<br>0.6163 | 2.4953<br>2.4953 | 10.7665            | 29.1728<br>29.1744 | 53.5638<br>53.9643 | 83.1313<br>83.3045 | 49.2885<br>49.3912 | 8.8554<br>8.8738 | 238.0634<br>238.7597 | 95%<br>95%   |
| 72          | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 54.3762            | 83.4975            | 49.5057            | 8.8944           | 239.4997             | 96%          |
| 73          | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 54.7938            | 83.6990            | 49.6251            | 8.9159           | 240.2597             | 96%          |
| 74<br>75    | 0.0738           | 0.0996 | 0.6163<br>0.6163 | 2.4953<br>2.4953 | 10.7665            | 29.1744<br>29.1744 | 55.2094<br>55.5976 | 83.8948<br>84.0960 | 49.7412<br>49.8605 | 8.9367<br>8.9581 | 241.0080<br>241.7381 | 96%<br>96%   |
| 76          | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 55.8897            | 84.4118            | 49.9884            | 8.9811           | 242.4969             | 97%          |
| 77          | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.0888            | 84.8255            | 50.1249            | 9.0056           | 243.2707             | 97%          |
| 78          | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2024            | 85.3258            | 50.2699            | 9.0317           | 244.0557             | 97%          |
| 79<br>80    | 0.0738<br>0.0738 | 0.0996 | 0.6163<br>0.6163 | 2.4953<br>2.4953 | 10.7665<br>10.7665 | 29.1744<br>29.1744 | 56.2362<br>56.2496 | 85.8887<br>86.4197 | 50.4170<br>50.5611 | 9.0581<br>9.0840 | 244.8259<br>245.5403 | 98%<br>98%   |
| 81          | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 86.9235            | 50.7011            |                  | 246.2120             | 98%          |
| 82          | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 87.3848            | 50.8363            | 9.1335           | 246.8328             | 98%          |
| 83<br>84    | 0.0738<br>0.0738 | 0.0996 | 0.6163<br>0.6163 | 2.4953<br>2.4953 | 10.7665<br>10.7665 | 29.1744<br>29.1744 | 56.2523<br>56.2523 | 87.7998<br>88.1701 | 50.9670<br>51.0849 | 9.1569<br>9.1781 | 247.4019<br>247.9112 | 99%<br>99%   |
| 84<br>85    | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.1701<br>88.4865 | 51.0849            | 9.1781           | 247.9112             | 99%          |
| 86          | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.7125            | 51.3150            | 9.2107           | 248.7164             | 99%          |
| 87          | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.8609            | 51.4653            | 9.2216           | 249.0259             | 99%          |
| 88<br>89    | 0.0738           | 0.0996 | 0.6163<br>0.6163 | 2.4953<br>2.4953 | 10.7665            | 29.1744<br>29.1744 | 56.2523<br>56.2523 | 88.9439<br>88.9723 | 51.6383<br>51.8352 | 9.2302<br>9.2378 | 249.2906<br>249.5236 | 99%<br>100%  |
| 90          | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9723<br>88.9840 | 51.8352            | 9.2378           | 249.5236             | 100%         |
| 91          | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.1838            | 9.2515           | 249.9000             | 100%         |
| 92          | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.3265            | 9.2578           | 250.0491             | 100%         |
| 93<br>94    | 0.0738<br>0.0738 | 0.0996 | 0.6163<br>0.6163 | 2.4953<br>2.4953 | 10.7665<br>10.7665 | 29.1744<br>29.1744 | 56.2523<br>56.2523 | 88.9866<br>88.9866 | 52.4474<br>52.5480 | 9.2640<br>9.2698 | 250.1761<br>250.2826 | 100%<br>100% |
| 95          | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.6314            | 9.2698           | 250.2826             | 100%         |
| 96          | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.6900            | 9.2930           | 250.4478             | 100%         |
| 97          | 0.0738           | 0.0996 | 0.6163<br>0.6163 | 2.4953<br>2.4953 | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.7279            | 9.3167           | 250.5094<br>250.5595 | 100%         |
| 0.0         |                  |        |                  |                  | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.7490            | 9.3457           | 200.0090             | 100%         |
| 98<br>99    | 0.0738<br>0.0738 | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.7564            | 9.3770           | 250.5982             | 100%         |

## Exhibit E.39e Cases avoided by Age Group per year following rule promulgation (Smoking/Bladder Cancer model - HAA5 - Preferred Alternative)

| Years After the<br>Rule | Age G            | 11-20            | 21-30            | 31-40              | 41-50              | 51-60                | 61-70                | 71-80                | 81-90                | 91-100+            | Total                  | %          |
|-------------------------|------------------|------------------|------------------|--------------------|--------------------|----------------------|----------------------|----------------------|----------------------|--------------------|------------------------|------------|
| 1                       | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000                 | 0%         |
| 2                       | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000                 | 0%         |
| 3                       | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000                 | 0%         |
| 4<br>5                  | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000                 | 0%         |
| 6                       | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 3.8310             | 10.3810              | 0.0000<br>20.0161    | 31.6638              | 0.0000<br>18.7735    | 3.3729             | 0.0000<br>89.2153      | 0%<br>7%   |
| 7                       | 0.0342           | 0.0354           | 0.2193           | 1.9394             | 8.3680             | 22.6750              | 43.7207              | 69.1625              | 41.0064              | 7.3674             | 194 8759               | 15%        |
| 8                       | 0.1351           | 0.1236           | 0.7645           | 3.0958             | 13.3571            | 36.1942              | 69.7876              | 110.3982             | 65.4550              | 11.7599            | 311.0709               | 25%        |
| 9                       | 0.1980           | 0.1725           | 1.0671           | 4.3210             | 18.6438            | 50.5197              | 97.4091              | 154.0932             | 91.3618              | 16.4144            | 434.2007               | 349        |
| 10                      | 0.2411           | 0.1957           | 1.2105           | 4.9017             | 21.1492            | 57.3087              | 110.4993             | 174.8007             | 103.6393             | 18.6203            | 492.5664               | 399        |
| 11                      | 0.2748           | 0.2125           | 1.3145           | 5.3227             | 22.9657            | 62.2310              | 119.9902             | 189.8145             | 112.5410             | 20.2196            | 534.8865               | 429        |
| 12                      | 0.3008           | 0.2250           | 1.3918           | 5.6357             | 24.3161            | 65.8903              | 127.0458             | 200.9759             | 119.1586             | 21.4085            | 566.3485               | 459        |
| 13                      | 0.3213           | 0.2355           | 1.4571           | 5.9000             | 25.4563            | 68.9800              | 133.0032             | 210.4000             | 124.7461             | 22.4124            | 592.9119               | 479        |
| 14<br>15                | 0.3372<br>0.3514 | 0.2446           | 1.5132           | 6.1274             | 26.4375<br>27.2910 | 71.6387<br>73.9516   | 138.1297<br>142.5891 | 218.5097<br>225.5642 | 129.5543             | 23.2763            | 615.7686<br>635.6519   | 499<br>509 |
| 16                      | 0.3619           | 0.2619           | 1.6069           | 6.5069             | 28.0748            | 76.0755              | 146.6843             | 232.0425             | 137.5778             | 24.7178            | 653.9104               | 529        |
| 17                      | 0.3689           | 0.2732           | 1.6507           | 6.6839             | 28.8385            | 78.1448              | 150.6743             | 238.3542             | 141.3202             | 25.3902            | 671.6989               | 539        |
| 18                      | 0.3729           | 0.2862           | 1.6928           | 6.8547             | 29.5756            | 80.1420              | 154.5252             | 244.4461             | 144.9320             | 26.0391            | 688.8664               | 549        |
| 19                      | 0.3738           | 0.3007           | 1.7342           | 7.0223             | 30.2990            | 82.1022              | 158.3047             | 250.4249             | 148.4769             | 26.6760            | 705.7147               | 569        |
| 20                      | 0.3741           | 0.3147           | 1.7730           | 7.1794             | 30.9767            | 83.9387              | 161.8457             | 256.0266             | 151.7981             | 27.2726            | 721.4997               | 579        |
| 21                      | 0.3741           | 0.3339           | 1.8104           | 7.3307             | 31.6293            | 85.7071              | 165.2553             | 261.4202             | 154.9960             | 27.8472            | 736.7040               | 589        |
| 22                      | 0.3741           | 0.3578           | 1.8471           | 7.4794             | 32.2710            | 87.4459              | 168.6081             | 266.7240             | 158.1407             | 28.4122            | 751.6603               | 599        |
| 23<br>24                | 0.3741           | 0.3861           | 1.8822           | 7.6215<br>7.7610   | 32.8841<br>33.4860 | 89.1074<br>90.7383   | 171.8117<br>174.9562 | 271.7918<br>276.7661 | 161.1454<br>164.0946 | 28.9520<br>29.4819 | 765.9565<br>779.9937   | 609        |
| 25                      | 0.3741           | 0.4511           | 1.9467           | 7.8828             | 34.0113            | 92.1618              | 177.7009             | 281.1081             | 166.6689             | 29.4619            | 792.2502               | 629        |
| 26                      | 0.3741           | 0.4757           | 1.9934           | 8.0024             | 34.5275            | 93.5604              | 180.3978             | 285.3743             | 169.1983             | 30.3989            | 804.3028               | 639        |
| 27                      | 0.3741           | 0.4925           | 2.0546           | 8.1183             | 35.0274            | 94.9152              | 183.0100             | 289.5066             | 171.6484             | 30.8390            | 815.9862               | 649        |
| 28                      | 0.3741           | 0.5019           | 2.1294           | 8.2325             | 35.5205            | 96.2514              | 185.5862             | 293.5821             | 174.0647             | 31.2732            | 827.5160               | 659        |
| 29                      | 0.3741           | 0.5040           | 2.2174           | 8.3455             | 36.0077            | 97.5716              | 188.1317             | 297.6089             | 176.4522             | 31.7021            | 838.9152               | 669        |
| 30                      | 0.3741           | 0.5047           | 2.3030           | 8.4542             | 36.4770            | 98.8432              | 190.5836             | 301.4874             | 178.7518             | 32.1153            | 849.8944               | 679        |
| 31                      | 0.3741           | 0.5048           | 2.4019           | 8.5623             | 36.9432            | 100.1064             | 193.0193             | 305.3404             | 181.0362             | 32.5257            | 860.8143               | 689        |
| 32                      | 0.3741           | 0.5048           | 2.5102           | 8.6623<br>8.7568   | 37.3748            | 101.2760             | 195.2745             | 308.9079             | 183.1515<br>185.1484 | 32.9057            | 870.9419               | 699        |
| 33<br>34                | 0.3741           | 0.5048<br>0.5048 | 2.6302<br>2.7625 | 8.7568<br>8.8474   | 37.7823<br>38.1734 | 102.3802<br>103.4398 | 197.4036<br>199.4467 | 312.2760<br>315.5080 | 185.1484<br>187.0647 | 33.2645<br>33.6088 | 880.5209<br>889.7302   | 699<br>709 |
| 35                      | 0.3741           | 0.5048           | 2.7625           | 8.9291             | 38.1734            | 103.4398             | 201.2880             | 318.4209             | 187.0647             | 33.6088            | 899.7302<br>898.0437   | 719        |
| 36                      | 0.3741           | 0.5048           | 2.9979           | 9.0561             | 38.8749            | 105.3408             | 203.1119             | 321.3062             | 190.5024             | 34.2264            | 906.2955               | 719        |
| 37                      | 0.3741           | 0.5048           | 3.0698           | 9.2255             | 39.2295            | 106.3018             | 204.9649             | 324.2375             | 192.2404             | 34.5387            | 914.6872               | 729        |
| 38                      | 0.3741           | 0.5048           | 3.1106           | 9.4242             | 39.5368            | 107.1344             | 206.5703             | 326.7772             | 193.7460             | 34.8092            | 921.9878               | 739        |
| 39                      | 0.3741           | 0.5048           | 3.1199           | 9.6522             | 39.7959            | 107.8364             | 207.9238             | 328.9182             | 195.0155             | 35.0373            | 928.1782               | 739        |
| 40                      | 0.3741           | 0.5048           | 3.1230           | 9.8739             | 40.0151            | 108.4305             | 209.0694             | 330.7303             | 196.0899             | 35.2303            | 933.4414               | 749        |
| 41<br>42                | 0.3741           | 0.5048<br>0.5048 | 3.1234           | 10.1602<br>10.5097 | 40.2244<br>40.4398 | 108.9976<br>109.5814 | 210.1627<br>211.2884 | 332.4599<br>334.2407 | 197.1154<br>198.1712 | 35.4145<br>35.6042 | 938.5370<br>943.8379   | 749        |
| 43                      | 0.3741           | 0.5048           | 3.1234           | 10.9209            | 40.4398            | 110.1654             | 212.4144             | 336.0220             | 199.2273             | 35.7940            | 949.2018               | 759        |
| 44                      | 0.3741           | 0.5048           | 3.1234           | 11.3899            | 40.8826            | 110.7813             | 213.6019             | 337.9006             | 200.3412             | 35.9941            | 954.8939               | 759        |
| 45                      | 0.3741           | 0.5048           | 3.1234           | 11.8580            | 41.1061            | 111.3867             | 214.7693             | 339.7472             | 201.4361             | 36.1908            | 960.4966               | 76         |
| 46                      | 0.3741           | 0.5048           | 3.1234           | 12.2167            | 41.5572            | 112.0079             | 215.9671             | 341.6420             | 202.5595             | 36.3926            | 966.3455               | 769        |
| 47                      | 0.3741           | 0.5048           | 3.1234           | 12.4653            | 42.2313            | 112.6854             | 217.2733             | 343.7083             | 203.7846             | 36.6128            | 972.7634               | 77         |
| 48                      | 0.3741           | 0.5048           | 3.1234           | 12.6040            | 43.0974            | 113.3435             | 218.5423             | 345.7158             | 204.9749             | 36.8266            | 979.1069               | 77         |
| 49                      | 0.3741           | 0.5048           | 3.1234           | 12.6356            | 44.1350            | 113.9566             | 219.7244             | 347.5858             | 206.0835             | 37.0258            | 985.1492               | 78         |
| 50<br>51                | 0.3741           | 0.5048           | 3.1234           | 12.6461<br>12.6475 | 45.1536<br>46.3364 | 114.5190<br>115.0266 | 220.8088<br>221.7875 | 349.3013<br>350.8495 | 207.1006<br>208.0186 | 37.2085<br>37.3734 | 990.7404<br>996.0419   | 789        |
| 52                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 47.6450            | 115.4968             | 222.6941             | 352.2835             | 208.8689             | 37.5262            | 1001.1643              | 79         |
| 53                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 49.0789            | 115.9491             | 223.5662             | 353.6633             | 209.6869             | 37.6732            | 1006.2676              | 79         |
| 54                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 50.6291            | 116.3879             | 224.4123             | 355.0018             | 210.4805             | 37.8158            | 1011.3774              | 809        |
| 55                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 52.1249            | 116.8325             | 225.2696             | 356.3578             | 211.2845             | 37.9602            | 1016.4795              | 809        |
| 56                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 53.2540            | 117.8962             | 226.1317             | 357.7215             | 212.0930             | 38.1055            | 1021.8519              | 819        |
| 57                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.0195            | 119.5287             | 226.9949             | 359.0872             | 212.9026             | 38.2510            | 1027.4338              | 819        |
| 58                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.4397            | 121.7235             | 227.8493             | 360.4387             | 213.7040             | 38.3950            | 1033.2002              | 819        |
| 59<br>60                | 0.3741           | 0.5048           | 3.1234           | 12.6475<br>12.6475 | 54.5345<br>54.5657 | 124.4402             | 228.6674<br>229.4480 | 361.7328<br>362.9676 | 214.4713<br>215.2034 | 38.5328<br>38.6643 | 1039.0288<br>1044.5407 | 82         |
| 61                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 129.8765             | 230.1919             | 364.1445             |                      | 38.7897            | 1050.1233              | 831        |
| 62                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 132.8853             | 230.9002             |                      | 216.5655             | 38.9090            | 1055.7445              | 839        |
| 63                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 136.0819             | 231.6184             | 366.4011             | 217.2391             | 39.0301            | 1061.5902              | 849        |
| 64                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 139.4751             | 232.3772             | 367.6015             | 217.9509             | 39.1579            | 1067.7822              | 849        |
| 65                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            |                    |                      | 233.1780             |                      |                      |                    | 1073.9744              | 859        |
| 66                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            |                    |                      | 235.0487             |                      |                      |                    | 1080.4835              | 859        |
| 67                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            |                    |                      | 237.8314             |                      |                      |                    | 1086.8836              | 869        |
| 68<br>69                | 0.3741           | 0.5048           | 3.1234           | 12.6475<br>12.6475 | 54.5696<br>54.5696 | 147.6059             | 241.4606<br>245.8660 | 372.3885             |                      | 39.6679            | 1093.1313              | 869        |
| 69<br>70                | 0.3741           | 0.5048           | 3.1234           | 12.6475            |                    |                      | 250.1998             |                      |                      |                    | 1104.9028              | 879        |
| 71                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            |                    |                      | 254.9257             |                      |                      |                    | 1110.8614              | 889        |
| 72                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            |                      | 259.8795             |                      |                      | 39.9930            | 1117.0015              | 88         |
| 73                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            |                    | 147.8692             | 265.1207             | 376.1220             | 223.0027             | 40.0655            | 1123.3998              | 89         |
| 74                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            |                    |                      | 270.6377             |                      |                      |                    | 1130.0455              | 89         |
| 75                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            |                    |                      | 276.0502             |                      |                      |                    | 1136.5598              | 90         |
| 76                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            |                      | 280.1890             |                      |                      |                    | 1143.5176              | 90         |
| 77<br>78                | 0.3741           | 0.5048           | 3.1234           | 12.6475<br>12.6475 |                    |                      | 283.0353<br>284.6282 |                      |                      |                    | 1150.7925<br>1158.4013 | 91         |
| 78<br>79                | 0.3741           | 0.5048           | 3.1234           | 12.6475            |                    |                      | 284.6282             |                      |                      |                    | 1158.4013              | 91'        |
| 80                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            |                      | 285.0986             |                      |                      |                    | 1173.9319              | 93         |
| 81                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            |                    |                      | 285.1130             |                      |                      |                    | 1181.7215              | 93         |
| 82                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.8692             | 285.1130             | 418.4290             | 226.2396             | 40.6471            | 1189.5175              | 94         |
| 83                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.8692             | 285.1130             | 425.7966             | 226.6232             | 40.7160            | 1197.3376              | 94         |
| 84                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.8692             | 285.1130             | 433.1246             | 227.0555             | 40.7937            | 1205.1756              | 95         |
| 85                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            |                    |                      | 285.1130             |                      |                      |                    | 1212.6337              | 96         |
| 86                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            |                    |                      | 285.1130             |                      |                      |                    | 1219.8146              | 96         |
| 87                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            |                    |                      | 285.1130             |                      |                      |                    | 1226.5101              | 97         |
| 88                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            |                      | 285.1130             |                      |                      |                    | 1232.6511              | 97         |
| 89                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            |                    |                      | 285.1130             |                      |                      |                    | 1238.2609              | 98         |
| 90<br>91                | 0.3741           | 0.5048           | 3.1234           | 12.6475<br>12.6475 |                    |                      | 285.1130<br>285.1130 |                      |                      |                    | 1243.2491              | 98         |
| 91<br>92                | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            |                      | 285.1130             |                      |                      |                    | 1247.7020              | 98         |
| 93                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            |                    |                      | 285.1130             |                      |                      |                    | 1251.6417              | 99         |
| 94                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            |                    |                      | 285.1130             |                      |                      |                    | 1258.0845              | 99         |
| 95                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            |                    |                      | 285.1130             |                      |                      |                    | 1260.6239              | 999        |
| 96                      | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.8692             | 285.1130             | 451.0254             | 265.5770             | 41.9548            | 1262.7590              | 100        |
|                         | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.8692             | 285.1130             | 451.0254             | 266.6698             | 42.6260            | 1264.5231              | 100        |
| 97                      |                  |                  |                  |                    |                    |                      |                      |                      |                      |                    |                        |            |
| 97<br>98                | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.8692             | 285.1130             | 451.0254             | 267.2391             | 43.5051            | 1265.9714              | 100        |

## Exhibit E.39i Cases avoided by Age Group per year following rule promulgation (Arsenic/Bladder Cancer model - HAA5 - Preferred Alternative)

| the Rule       | Age G            | 11-20  | 21-30            | 31-40            | 41-50              | 51-60              | 61-70              | 71-80              | 81-90              | 91-100+          | Total                | %   |
|----------------|------------------|--------|------------------|------------------|--------------------|--------------------|--------------------|--------------------|--------------------|------------------|----------------------|-----|
| 1              | 0.0000           | 0.0000 | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000           | 0.0000               | 0%  |
| 2              | 0.0000           | 0.0000 | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000           | 0.0000               | 0%  |
| 3              | 0.0000           | 0.0000 | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000           | 0.0000               | 0%  |
| 4              | 0.0000           | 0.0000 | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000           | 0.0000               | 09  |
| 5              | 0.0000           | 0.0000 | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000             | 0.0000           | 0.0000               | 09  |
| 6              | 0.0056           | 0.0052 | 0.0322           | 0.1305           | 0.5629             | 1.5252             | 2.9408             | 4.6521             | 2.7582             | 0.4956           | 13.1083              | 59  |
| 7              | 0.0151           | 0.0144 | 0.0893           | 0.3617           | 1.5608             | 4.2293             | 8.1546             | 12.9000            | 7.6484             | 1.3741           | 36.3478              | 149 |
| 8              | 0.0273           | 0.0268 | 0.1657           | 0.6709           | 2.8949             | 7.8444             | 15.1252            | 23.9268            | 14.1862            | 2.5487           | 67.4170              | 27  |
| 9              | 0.0414           | 0.0415 | 0.2567           | 1.0396           | 4.4856             | 12.1547            | 23.4360            | 37.0738            | 21.9811            | 3.9492           | 104.4596             | 429 |
| 10             | 0.0524           | 0.0540 | 0.3339           | 1.3521           | 5.8339             | 15.8084            | 30.4808            | 48.2181            | 28.5885            | 5.1363           | 135.8583             | 549 |
| 11             | 0.0604           | 0.0641 | 0.3968           | 1.6068           | 6.9328             | 18.7861            | 36.2222            | 57.3005            | 33.9735            | 6.1038           | 161.4470             | 649 |
| 12             | 0.0657           | 0.0721 | 0.4459           | 1.8054           | 7.7896             | 21.1079            | 40.6990            | 64.3824            | 38.1723            | 6.8582           | 181.3983             | 72  |
| 13             | 0.0690           | 0.0782 | 0.4836           | 1.9583           | 8.4494             | 22.8957            | 44.1462            | 69.8356            | 41.4055            | 7.4391           | 196.7607             | 78  |
| 14             | 0.0710           | 0.0829 | 0.5127           | 2.0762           | 8.9579             | 24.2735            | 46.8027            | 74.0380            | 43.8971            | 7.8867           | 208.5985             | 83  |
| 15             | 0.0723           | 0.0865 | 0.5352           | 2.1671           | 9.3503             | 25.3369            | 48.8532            | 77.2816            | 45.8203            | 8.2323           | 217.7357             | 87  |
| 16             | 0.0731           | 0.0894 | 0.5526           | 2.2377           | 9.6551             | 26.1628            | 50.4456            | 79.8007<br>81.7607 | 47.3138            | 8.5006           | 224.8315             | 90  |
| 17             | 0.0735           | 0.0917 | 0.5662           |                  | 9.8922             | 26.8054            | 51.6845<br>52.6521 |                    | 48.4759            | 8.7094           | 230.3522             | 92  |
| 18<br>19       | 0.0737           | 0.0935 | 0.5768<br>0.5851 | 2.3356           | 10.0774            | 27.3072<br>27.6978 | 53.4053            | 83.2912<br>84.4827 | 49.3833<br>50.0898 | 8.8724<br>8.9993 | 234.6632<br>238.0192 | 949 |
| 20             | 0.0738           | 0.0949 | 0.5915           | 2.3950           | 10.3336            | 28.0014            | 53.9907            | 85.4088            | 50.6389            | 9.0980           | 240.6278             | 96  |
| 21             | 0.0738           | 0.0960 | 0.5965           | 2.4152           | 10.3336            | 28.2375            | 54.4458            | 86.1288            | 51.0657            |                  | 242.6556             | 97  |
| 22             | 0.0738           | 0.0903 | 0.6003           | 2.4309           | 10.4883            | 28.4206            | 54.7990            | 86.6875            | 51.3970            |                  | 244.2293             | 97  |
| 23             | 0.0738           | 0.0983 | 0.6034           | 2.4433           | 10.5420            | 28.5660            | 55.0793            | 87.1309            | 51.6598            | 9.2814           | 245.4781             | 98  |
| 24             | 0.0738           | 0.0987 | 0.6059           | 2.4533           | 10.5849            | 28.6824            | 55.3037            | 87.4859            | 51.8704            | 9.3192           | 246.4783             | 98  |
| 25             | 0.0738           | 0.0991 | 0.6078           | 2.4611           | 10.6188            | 28.7741            | 55.4804            | 87.7655            | 52.0361            | 9.3490           | 247.2657             | 99  |
| 26             | 0.0738           | 0.0993 | 0.6094           | 2.4673           | 10.6455            | 28.8465            | 55.6202            | 87.9865            | 52.1672            | 9.3726           | 247.8882             | 99  |
| 27             | 0.0738           | 0.0995 | 0.6107           | 2.4721           | 10.6663            | 28.9029            | 55.7289            | 88.1584            | 52.2691            | 9.3909           | 248.3726             | 99  |
| 28             | 0.0738           | 0.0996 | 0.6118           | 2.4759           | 10.6825            | 28.9468            | 55.8135            | 88.2924            | 52.3485            | 9.4051           | 248.7499             | 99  |
| 29             | 0.0738           | 0.0996 | 0.6126           | 2.4787           | 10.6948            | 28.9802            | 55.8778            | 88.3941            | 52.4088            |                  | 249.0366             | 99  |
| 30             | 0.0738           | 0.0996 | 0.6133           | 2.4809           | 10.7040            | 29.0050            | 55.9258            | 88.4701            | 52.4539            | 9.4241           | 249.2505             | 99  |
| 31             | 0.0738           | 0.0996 | 0.6139           | 2.4825           | 10.7110            | 29.0241            | 55.9626            | 88.5283            | 52.4884            | 9.4303           | 249.4145             | 99  |
| 32             | 0.0738           | 0.0996 | 0.6144           | 2.4838           | 10.7168            | 29.0396            | 55.9925            | 88.5754            | 52.5163            | 9.4353           | 249.5474             | 100 |
| 33             | 0.0738           | 0.0996 | 0.6148           | 2.4849           | 10.7213            | 29.0518            | 56.0160            | 88.6128            | 52.5385            | 9.4393           |                      | 100 |
| 34             | 0.0738           | 0.0996 | 0.6152           | 2.4858           | 10.7254            | 29.0631            | 56.0377            | 88.6470            | 52.5588            | 9.4429           | 249.7494             | 100 |
| 35             | 0.0738           | 0.0996 | 0.6155           | 2.4868           | 10.7296            | 29.0743            | 56.0593            | 88.6812            | 52.5790            | 9.4466           | 249.8457             | 100 |
| 36             | 0.0738           | 0.0996 | 0.6158           | 2.4878           | 10.7337            | 29.0855            | 56.0810            | 88.7155            | 52.5994            | 9.4502           | 249.9423             | 100 |
| 37             | 0.0738           | 0.0996 | 0.6160           | 2.4889           | 10.7379            | 29.0969            | 56.1029            | 88.7502            | 52.6200            | 9.4539           | 250.0401             | 100 |
| 38             | 0.0738           | 0.0996 | 0.6161           | 2.4899           | 10.7420            | 29.1081            | 56.1246            | 88.7844            | 52.6403            | 9.4576           | 250.1364             | 100 |
| 39             | 0.0738           | 0.0996 | 0.6162           | 2.4910           | 10.7461            | 29.1190            | 56.1456            | 88.8177            | 52.6600            | 9.4611           | 250.2300             | 100 |
| 40             | 0.0738           | 0.0996 | 0.6162           | 2.4920           | 10.7498            | 29.1293            | 56.1654            | 88.8489            | 52.6785            | 9.4644           | 250.3180             | 100 |
| 41             | 0.0738           | 0.0996 | 0.6163           | 2.4928           | 10.7532            | 29.1382            | 56.1826            | 88.8763            | 52.6947            | 9.4673           | 250.3948             | 100 |
| 42             | 0.0738           | 0.0996 | 0.6163           | 2.4935           | 10.7557            | 29.1452            | 56.1960            | 88.8974            | 52.7072            | 9.4696           | 250.4543             | 100 |
| 43             | 0.0738           | 0.0996 | 0.6163           | 2.4940           | 10.7576            | 29.1503            | 56.2058            | 88.9130            | 52.7165            | 9.4713           | 250.4981             | 100 |
| 44             | 0.0738           | 0.0996 | 0.6163           | 2.4944           | 10.7588            | 29.1536            | 56.2123            | 88.9232            | 52.7226            | 9.4724           | 250.5271             | 100 |
| 45             | 0.0738           | 0.0996 | 0.6163           | 2.4948           | 10.7596            | 29.1556            | 56.2161            | 88.9292            | 52.7261            | 9.4730           |                      | 100 |
| 46             | 0.0738           | 0.0996 | 0.6163           | 2.4950           | 10.7600            | 29.1566            | 56.2181            | 88.9324            | 52.7280            | 9.4733           | 250.5531             | 100 |
| 47             | 0.0738           | 0.0996 | 0.6163           | 2.4952           | 10.7604            | 29.1571            | 56.2190            | 88.9338            | 52.7288            | 9.4735           | 250.5574             | 100 |
| 48             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7607            | 29.1573            | 56.2195            | 88.9345            | 52.7293            | 9.4736           | 250.5598<br>250.5617 | 100 |
| 49<br>50       | 0.0738           | 0.0996 | 0.6163<br>0.6163 | 2.4953<br>2.4953 | 10.7611<br>10.7616 | 29.1575<br>29.1577 | 56.2198<br>56.2201 | 88.9351<br>88.9355 | 52.7296<br>52.7299 | 9.4736<br>9.4737 | 250.5634             | 100 |
| 51             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7616            | 29.1577            | 56.2201            | 88.9362            | 52.7299            | 9.4737           | 250.5658             | 100 |
| 52             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7628            | 29.1575            | 56.2217            | 88.9382            | 52.7314            | 9.4739           | 250.5716             | 100 |
| 53             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7635            | 29.1595            | 56.2237            | 88.9412            | 52.7332            | 9,4743           | 250.5803             | 100 |
| 54             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7643            | 29.1606            | 56.2257            | 88.9444            | 52.7351            | 9.4746           | 250.5897             | 100 |
| 55             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7650            | 29.1616            | 56.2277            | 88.9476            | 52.7370            | 9,4749           | 250.5989             | 100 |
| 56             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7656            | 29.1626            | 56.2293            | 88.9500            | 52.7384            | 9.4752           | 250.6062             | 100 |
| 57             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7660            | 29.1635            | 56.2303            | 88.9515            | 52.7393            | 9.4754           | 250.6110             | 100 |
| 58             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7663            | 29.1643            | 56.2309            | 88.9526            | 52.7400            | 9.4755           | 250.6146             | 100 |
| 59             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7664            | 29.1653            | 56.2315            | 88.9535            | 52.7405            | 9.4756           | 250.6178             | 100 |
| 60             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1664            | 56.2325            | 88.9551            | 52.7415            | 9.4757           | 250.6227             | 100 |
| 61             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1677            | 56.2341            | 88.9576            | 52.7430            | 9.4760           | 250.6299             | 100 |
| 62             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1692            | 56.2364            | 88.9613            | 52.7451            | 9.4764           | 250.6400             | 100 |
| 63             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1707            | 56.2393            | 88.9660            | 52.7479            | 9.4769           | 250.6522             | 100 |
| 64             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1720            | 56.2425            | 88.9709            | 52.7508            | 9.4774           | 250.6651             | 100 |
| 65             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1729            | 56.2454            | 88.9755            | 52.7536            | 9.4779           | 250.6768             | 100 |
| 66             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1736            | 56.2478            | 88.9794            | 52.7558            | 9.4783           | 250.6863             | 100 |
| 67             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1740            | 56.2496            | 88.9823            | 52.7575            | 9.4786           | 250.6936             | 100 |
| 68             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1742            | 56.2508            | 88.9841            | 52.7586            | 9.4788           | 250.6981             | 100 |
| 69             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1743            | 56.2515            | 88.9852            | 52.7593            | 9.4789           |                      | 100 |
| 70             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2519            | 88.9859            | 52.7597            | 9.4790           |                      | 100 |
| 71             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2522            | 88.9863            | 52.7599            | 9.4791           | 250.7034             | 100 |
| 72             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9865            | 52.7601            | 9.4791           | 250.7038             | 100 |
| 73             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.7601            | 9.4791           | 250.7039             | 100 |
| 74             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.7601            | 9.4791           | 250.7039             | 100 |
| 75             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.7601            | 9.4791           | 250.7039             | 100 |
| 76             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.7601            | 9.4791           | 250.7039             | 100 |
| 77             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.7601            | 9.4791           | 250.7039             | 100 |
| 78             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.7601            | 9.4791           | 250.7039             | 100 |
| 79             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.7601            | 9.4791           | 250.7039             | 100 |
| 80             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.7601            | 9.4791           | 250.7039             | 100 |
| 81             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.7601            | 9.4791           | 250.7039             | 100 |
| 82             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.7601            | 9.4791           | 250.7039             | 100 |
| 83             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.7601            | 9.4791           | 250.7039             | 100 |
| 84             | 0.0738<br>0.0738 | 0.0996 | 0.6163<br>0.6163 | 2.4953<br>2.4953 | 10.7665<br>10.7665 | 29.1744            | 56.2523<br>56.2523 | 88.9866            | 52.7601<br>52.7601 | 9.4791           | 250.7039<br>250.7039 | 100 |
| 85<br>86       |                  |        |                  |                  |                    | 29.1744            |                    | 88.9866            |                    | 9.4791           |                      |     |
| 86             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.7601            | 9.4791           | 250.7039<br>250.7039 | 100 |
| 87             | 0.0738           |        | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.7601            | 9.4791           |                      |     |
| 88             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.7601            | 9.4791           | 250.7039             | 100 |
| 89             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.7601            | 9.4791           | 250.7039             | 100 |
| 90             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.7601            | 9.4791           | 250.7039             | 100 |
| 91             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.7601            | 9.4791           | 250.7039             | 100 |
| 92             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.7601            | 9.4791           | 250.7039             | 100 |
| 93             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.7601            | 9.4791           | 250.7039             | 100 |
| 94             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.7601            | 9.4791           | 250.7039             | 100 |
| 95             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.7601            | 9.4791           | 250.7039             | 100 |
| 96             | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.7601            | 9.4791           | 250.7039             | 100 |
|                | 0.0738           | 0.0996 | 0.6163           | 2.4953           | 10.7665            | 29.1744            | 56.2523            | 88.9866            | 52.7601            | 9.4791           | 250.7039             | 100 |
| 97             |                  |        |                  |                  |                    |                    | 50.0500            | 88.9866            |                    |                  |                      |     |
| 97<br>98<br>99 | 0.0738<br>0.0738 | 0.0996 | 0.6163<br>0.6163 | 2.4953<br>2.4953 | 10.7665<br>10.7665 | 29.1744<br>29.1744 | 56.2523<br>56.2523 | 88.9866            | 52.7601<br>52.7601 | 9.4791           | 250.7039<br>250.7039 | 100 |

## Exhibit E.39i Cases avoided by Age Group per year following rule promulgation (Arsenic/Bladder Cancer model - HAA5 - Preferred Alternative)

| Years After | Age G            |                  | 21 20            | 21 40              | 41 50              | E4 00                | 64 70                | 74.00                | 04.00                | 01-100             | Total                  | ~/       |
|-------------|------------------|------------------|------------------|--------------------|--------------------|----------------------|----------------------|----------------------|----------------------|--------------------|------------------------|----------|
| the Rule    | 1-10<br>0.0000   | 0.0000           | 21-30<br>0.0000  | 31-40<br>0.0000    | 41-50<br>0.0000    | 51-60<br>0.0000      | 61-70<br>0.0000      | 71-80                | 81-90<br>0.0000      | 91-100+            | Total<br>0.0000        | 0%       |
| 2           | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000                 | 0%       |
| 3           | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000                 | 09       |
| 4           | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000                 | 09       |
| 5           | 0.0000           | 0.0000           | 0.0000           | 0.0000             | 0.0000             | 0.0000               | 0.0000               | 0.0000               | 0.0000               | 0.0000             | 0.0000                 | 09       |
| 6           | 0.0407           | 0.0455           | 0.2817           | 1.1407             | 4.9219             | 13.3371              | 25.7159              | 40.6804              | 24.1194              | 4.3334             | 114.6170               | 99       |
| 7           | 0.0966           | 0.1058           | 0.6548           | 2.6515             | 11.4403            | 31.0002              | 59.7727              | 94.5555              | 56.0619              | 10.0723            | 266.4117               | 21       |
| 8<br>9      | 0.1622<br>0.2349 | 0.1756<br>0.2523 | 1.0866<br>1.5611 | 4.4000<br>6.3211   | 18.9845<br>27.2732 | 51.4430<br>73.9031   | 99.1894<br>142.4957  | 156.9094<br>225.4163 | 93.0315<br>133.6492  | 16.7144<br>24.0120 | 442.0967<br>635.1188   | 35°      |
| 10          | 0.2803           | 0.2977           | 1.8422           | 7.4593             | 32.1844            | 87.2113              | 168.1558             | 266.0085             | 157.7163             | 28.3360            | 749.4920               | 59       |
| 11          | 0.3118           | 0.3306           | 2.0456           | 8.2831             | 35.7387            | 96.8424              | 186.7259             | 295.3849             | 175.1336             | 31.4652            | 832.2618               | 65       |
| 12          | 0.3328           | 0.3544           | 2.1927           | 8.8786             | 38.3078            | 103.8043             | 200.1492             | 316.6196             | 187.7236             | 33.7272            | 892.0901               | 70       |
| 13          | 0.3470           | 0.3728           | 2.3064           | 9.3393             | 40.2957            | 109.1909             | 210.5355             | 333.0497             | 197.4650             | 35.4774            | 938.3798               | 74       |
| 14          | 0.3566           | 0.3877           | 2.3989           | 9.7136             | 41.9106            | 113.5667             | 218.9726             | 346.3966             | 205.3784             | 36.8991            | 975.9808               | 77       |
| 15          | 0.3640           | 0.4002           | 2.4758           | 10.0249            | 43.2539            | 117.2067             | 225.9911             | 357.4992             | 211.9612             | 38.0818            | 1007.2586              | 79       |
| 16          | 0.3689           | 0.4114           | 2.5408           | 10.2882            | 44.3899            | 120.2850             | 231.9264             | 366.8883             | 217.5280             | 39.0820            | 1033.7087              | 81       |
| 17<br>18    | 0.3720<br>0.3736 | 0.4218           | 2.5965<br>2.6447 | 10.5137<br>10.7090 | 45.3630<br>46.2055 | 122.9220<br>125.2048 | 237.0109<br>241.4125 | 374.9315<br>381.8945 | 222.2968<br>226.4251 | 39.9388<br>40.6805 | 1056.3670<br>1075.9815 | 83<br>85 |
| 19          | 0.3730           | 0.4404           | 2.6868           | 10.7090            | 46.2055            | 127.1986             | 245.2568             | 387.9760             | 230.0309             | 41.3283            | 1073.9815              | 86       |
| 20          | 0.3741           | 0.4483           | 2.7239           | 11.0296            | 47.5888            | 128.9533             | 248.6401             | 393.3279             | 233.2041             | 41.8984            | 1108.1885              | 87       |
| 21          | 0.3741           | 0.4567           | 2.7567           | 11.1625            | 48.1623            | 130.5073             | 251.6364             | 398.0680             | 236.0144             | 42.4033            | 1121.5417              | 88       |
| 22          | 0.3741           | 0.4654           | 2.7858           | 11.2805            | 48.6714            | 131.8868             | 254.2964             | 402.2758             | 238.5093             | 42.8515            | 1133.3971              | 89       |
| 23          | 0.3741           | 0.4744           | 2.8119           | 11.3859            | 49.1260            | 133.1186             | 256.6715             | 406.0330             | 240.7370             | 43.2518            | 1143.9842              | 90       |
| 24          | 0.3741           | 0.4837           | 2.8352           | 11.4805            | 49.5342            | 134.2248             | 258.8043             | 409.4070             | 242.7373             | 43.6112            | 1153.4922              | 91       |
| 25          | 0.3741           | 0.4921           | 2.8563           | 11.5657            | 49.9021            | 135.2217             | 260.7266             | 412.4479             | 244.5403             | 43.9351            | 1162.0620              | 91       |
| 26          | 0.3741           | 0.4981           | 2.8788           | 11.6430            | 50.2355            | 136.1250             | 262.4682             | 415.2031             | 246.1738             | 44.2286            | 1169.8283              | 92       |
| 27          | 0.3741           | 0.5021           | 2.9023           | 11.7132            | 50.5385            | 136.9460             | 264.0511<br>265.4945 | 417.7072             | 247.6585             | 44.4953            | 1176.8883              | 93       |
| 28<br>29    | 0.3741           | 0.5042<br>0.5047 | 2.9267<br>2.9516 | 11.7773<br>11.8358 | 50.8147<br>51.0673 | 137.6945<br>138.3790 | 265.4945<br>266.8144 | 419.9906<br>422.0784 | 249.0122<br>250.2502 | 44.7386<br>44.9609 | 1183.3274<br>1189.2165 | 93<br>94 |
| 30          | 0.3741           | 0.5047           | 2.9516           | 11.8358            | 51.0673            | 138.3790             | 268.0228             | 422.0784             | 250.2502<br>251.3835 | 44.9609<br>45.1646 | 1189.2165              | 94       |
| 31          | 0.3741           | 0.5048           | 2.9973           | 11.9385            | 51.5103            | 139.5792             | 269.1286             | 425.7392             | 252.4207             | 45.3509            | 1199.5436              | 94       |
| 32          | 0.3741           | 0.5048           | 3.0202           | 11.9833            | 51.7037            | 140.1034             | 270.1392             | 427.3379             | 253.3685             | 45.5212            | 1204.0564              | 95       |
| 33          | 0.3741           | 0.5048           | 3.0432           | 12.0245            | 51.8817            | 140.5857             | 271.0691             | 428.8091             | 254.2408             | 45.6779            | 1208.2110              | 95       |
| 34          | 0.3741           | 0.5048           | 3.0666           | 12.0624            | 52.0451            | 141.0285             | 271.9229             | 430.1597             | 255.0415             | 45.8218            | 1212.0275              | 95       |
| 35          | 0.3741           | 0.5048           | 3.0884           | 12.0974            | 52.1960            | 141.4375             | 272.7114             | 431.4070             | 255.7811             | 45.9547            | 1215.5525              | 96       |
| 36          | 0.3741           | 0.5048           | 3.1046           | 12.1360            | 52.3360            | 141.8168             | 273.4428             | 432.5640             | 256.4671             | 46.0779            | 1218.8243              | 96       |
| 37          | 0.3741           | 0.5048           | 3.1156           | 12.1773            | 52.4659            | 142.1689             | 274.1217             | 433.6381             | 257.1038             | 46.1923            | 1221.8626              | 96       |
| 38          | 0.3741           | 0.5048           | 3.1216           | 12.2210            | 52.5870            | 142.4971             | 274.7544             | 434.6389             | 257.6973             | 46.2989            | 1224.6952              | 96       |
| 39<br>40    | 0.3741           | 0.5048<br>0.5048 | 3.1229<br>3.1234 | 12.2666<br>12.3090 | 52.6987<br>52.8018 | 142.7998<br>143.0790 | 275.3380<br>275.8764 | 435.5622<br>436.4137 | 258.2446<br>258.7495 | 46.3973<br>46.4880 | 1227.3092<br>1229.7198 | 97<br>97 |
| 41          | 0.3741           | 0.5048           | 3.1234           | 12.3557            | 52.8018            | 143.3390             | 276.3776             | 437.2068             | 259.2197             | 46.4880            | 1229.7198              | 97       |
| 42          | 0.3741           | 0.5048           | 3.1234           | 12.4056            | 52.9871            |                      | 276.8446             | 437.9455             | 259.6577             | 46.6512            | 1234.0752              | 97       |
| 43          | 0.3741           | 0.5048           | 3.1234           | 12.4584            | 53.0708            | 143.8081             | 277.2823             | 438.6378             | 260.0680             | 46.7249            | 1236.0527              | 97       |
| 44          | 0.3741           | 0.5048           | 3.1234           | 12.5138            | 53.1496            | 144.0215             | 277.6938             | 439.2887             | 260.4540             | 46.7942            | 1237.9181              | 97       |
| 45          | 0.3741           | 0.5048           | 3.1234           | 12.5655            | 53.2237            | 144.2223             | 278.0810             | 439.9012             | 260.8172             | 46.8595            | 1239.6729              | 98       |
| 46          | 0.3741           | 0.5048           | 3.1234           | 12.6037            | 53.3137            | 144.4116             | 278.4459             | 440.4784             | 261.1595             | 46.9210            | 1241.3360              | 98       |
| 47          | 0.3741           | 0.5048           | 3.1234           | 12.6293            | 53.4166            | 144.5894             | 278.7889             | 441.0210             | 261.4812             | 46.9788            | 1242.9075              | 98       |
| 48          | 0.3741           | 0.5048           | 3.1234           | 12.6431            | 53.5311            | 144.7564             | 279.1108             | 441.5300             | 261.7831             | 47.0330            | 1244.3899              | 98       |
| 49          | 0.3741           | 0.5048           | 3.1234           | 12.6463            | 53.6554            | 144.9132             | 279.4131             | 442.0082             | 262.0666             | 47.0839            | 1245.7891              | 98       |
| 50          | 0.3741           | 0.5048           | 3.1234           | 12.6474            | 53.7718<br>53.8946 | 145.0605<br>145.1991 | 279.6971             | 442.4576             | 262.3331<br>262.5837 | 47.1318            | 1247.1018              | 98       |
| 51<br>52    | 0.3741           | 0.5048<br>0.5048 | 3.1234           | 12.6475<br>12.6475 | 53.8946            | 145.1991             | 279.9644<br>280.2160 | 442.8804<br>443.2785 | 262.5837<br>262.8196 | 47.1768<br>47.2192 | 1248.3491<br>1249.5325 | 98<br>98 |
| 53          | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.1465            | 145.4524             | 280.4529             | 443.6534             | 263.0420             | 47.2592            | 1250.6563              | 98       |
| 54          | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.2743            | 145.5683             | 280.6763             | 444.0067             | 263.2515             | 47.2968            | 1251.7239              | 99       |
| 55          | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.3902            | 145.6777             | 280.8871             | 444.3401             | 263.4491             | 47.3323            | 1252.7264              | 99       |
| 56          | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.4748            | 145.8205             | 281.0859             | 444.6548             | 263.6357             | 47.3658            | 1253.6875              | 99       |
| 57          | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5304            | 145.9917             | 281.2738             | 444.9520             | 263.8119             | 47.3975            | 1254.6073              | 99       |
| 58          | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5601            | 146.1893             | 281.4514             | 445.2329             | 263.9785             | 47.4274            | 1255.4897              | 99       |
| 59          | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5670            | 146.4101             | 281.6194             | 445.4986             | 264.1360             | 47.4557            | 1256.3368              | 99       |
| 60          | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5693            | 146.6127             | 281.7782             | 445.7499             | 264.2851             | 47.4825            | 1257.1276              | 99       |
| 61<br>62    | 0.3741           | 0.5048           | 3.1234           | 12.6475<br>12.6475 | 54.5696            | 146.8168             | 281.9287             | 445.9879             | 264.4261             | 47.5079            | 1257.8868              | 99       |
| 63          | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.0183<br>147.2178 | 282.2063             | 446.4270             | 264.5598<br>264.6864 | 47.5319<br>47.5546 | 1258.6141              | 99       |
| 64          | 0.3741           | 0.5048           | 3.1234           | 12.6475            |                    |                      |                      | 446.6295             |                      | 47.5762            | 1259.3117              | 99       |
| 65          | 0.3741           | 0.5048           | 3.1234           | 12.6475            |                    | 147.5961             |                      | 446.8217             | 264.9204             | 47.5762            | 1260.6103              | 99       |
| 66          | 0.3741           | 0.5048           | 3.1234           | 12.6475            |                    | 147.7267             | 282.6206             |                      | 265.0286             | 47.6161            | 1261.2157              | 99       |
| 67          | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.8107             |                      | 447.1773             | 265.1313             | 47.6346            | 1261.7963              | 99       |
| 68          | 0.3741           | 0.5048           | 3.1234           | 12.6475            |                    | 147.8551             | 283.0581             |                      | 265.2288             | 47.6521            | 1262.3557              | 99       |
| 69          | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.8654             | 283.3213             | 447.4983             | 265.3216             | 47.6688            | 1262.8949              | 99       |
| 70          | 0.3741           | 0.5048           | 3.1234           | 12.6475            |                    | 147.8688             |                      | 447.6469             | 265.4098             | 47.6846            | 1263.3993              | 99       |
| 71          | 0.3741           | 0.5048           | 3.1234           | 12.6475            |                    | 147.8692             | 283.8198             | 447.7884             | 265.4937             | 47.6997            | 1263.8903              | 99       |
| 72<br>73    | 0.3741           | 0.5048<br>0.5048 | 3.1234<br>3.1234 | 12.6475<br>12.6475 | 54.5696<br>54.5696 | 147.8692<br>147.8692 | 284.0642<br>284.3055 | 447.9231<br>448.0512 | 265.5735<br>265.6494 | 47.7140<br>47.7276 | 1264.3636<br>1264.8225 | 100      |
| 73<br>74    | 0.3741           | 0.5048           | 3.1234           | 12.6475            |                    | 147.8692             |                      |                      | 265.6494             | 47.7276            | 1264.8225              | 100      |
| 75          | 0.3741           | 0.5048           | 3.1234           | 12.6475            |                    |                      |                      | 448.2896             | 265.7218             | 47.7530            | 1265.6850              | 10       |
| 76          | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            |                      | 284.9257             | 448.4595             | 265.8564             | 47.7648            | 1266.0953              | 100      |
| 77          | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.8692             | 285.0345             | 448.6760             | 265.9191             | 47.7761            | 1266.4945              | 100      |
| 78          | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.8692             | 285.0939             | 448.9352             | 265.9788             | 47.7868            | 1266.8835              | 10       |
| 79          | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.8692             | 285.1077             | 449.2317             | 266.0358             | 47.7971            | 1267.2611              | 100      |
| 80          | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.8692             | 285.1124             | 449.5136             | 266.0902             | 47.8069            | 1267.6119              | 100      |
| 81          | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.8692             | 285.1130             | 449.7869             | 266.1422             | 47.8162            | 1267.9471              | 100      |
| 82          | 0.3741           | 0.5048           | 3.1234           | 12.6475            |                    | 147.8692             |                      | 450.0448             | 266.1919             | 47.8251            | 1268.2636              | 100      |
| 83          | 0.3741           | 0.5048           | 3.1234           | 12.6475            |                    | 147.8692             |                      | 450.2864             | 266.2393             | 47.8336            | 1268.5611              | 100      |
| 84<br>85    | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696<br>54.5696 | 147.8692             |                      | 450.5132             | 266.2846             | 47.8418            | 1268.8414              | 100      |
| 85<br>86    | 0.3741           | 0.5048<br>0.5048 | 3.1234           | 12.6475<br>12.6475 |                    | 147.8692<br>147.8692 | 285.1130<br>285.1130 | 450.7155<br>450.8618 | 266.3279<br>266.4055 | 47.8495<br>47.8570 | 1269.0947<br>1269.3261 | 100      |
| 87          | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.8692             | 285.1130             | 450.9581             | 266.5110             | 47.8641            | 1269.5350              | 100      |
| 88          | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            |                      | 285.1130             | 451.0091             | 266.6396             | 47.8709            | 1269.5350              | 100      |
| 89          | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.8692             | 285.1130             | 451.0210             | 266.7869             | 47.8774            | 1269.8871              | 10       |
| 90          | 0.3741           | 0.5048           | 3.1234           | 12.6475            |                    | 147.8692             |                      | 451.0249             | 266.9200             | 47.8837            | 1270.0304              | 100      |
| 91          | 0.3741           | 0.5048           | 3.1234           | 12.6475            |                    | 147.8692             |                      | 451.0254             | 267.0364             | 47.8896            | 1270.1532              | 100      |
| 92          | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            |                      | 285.1130             | 451.0254             | 267.1345             | 47.8954            | 1270.2571              | 100      |
| 93          | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.8692             | 285.1130             | 451.0254             | 267.2162             | 47.9009            | 1270.3442              | 100      |
| 94          | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.8692             | 285.1130             | 451.0254             | 267.2828             | 47.9061            | 1270.4162              | 100      |
| 95          | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.8692             | 285.1130             | 451.0254             | 267.3371             | 47.9112            | 1270.4754              | 100      |
| 96          | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.8692             | 285.1130             | 451.0254             | 267.3742             | 47.9223            | 1270.5237              | 100      |
| 97          | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.8692             | 285.1130             | 451.0254             | 267.3972             | 47.9381            | 1270.5625              | 100      |
|             | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.8692             | 285.1130             | 451.0254             | 267.4089             | 47.9571            | 1270.5933              | 100      |
| 98<br>99    | 0.3741           | 0.5048           | 3.1234           | 12.6475            | 54.5696            | 147.8692             |                      | 451.0254             | 267.4117             | 47.9784            | 1270.6173              | 100      |

## Appendix F Valuation of Stage 2 DBPR Benefits

## Matrix of Appendix F Contents

| Rule                                    |            |                       |                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                      |
|-----------------------------------------|------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • · · · · · · · · · · · · · · · · · · · | Applicable | Non-fatal Case        | E. H. W. Borneston                                                                                                                                                                                                                                                                                                                             | Applicable Source Water |                                                                                                                                                                                                                                                                                                                                                                                                                              | Exhibi                                                                                                                                                               |
| Alternative(s)                          | DBP(s)     | Valuation             | Exhibit Description                                                                                                                                                                                                                                                                                                                            | Type(s)                 | System Size                                                                                                                                                                                                                                                                                                                                                                                                                  | Numbe                                                                                                                                                                |
|                                         |            | All                   | Valuation Inputs                                                                                                                                                                                                                                                                                                                               | All                     | All                                                                                                                                                                                                                                                                                                                                                                                                                          | F.1a                                                                                                                                                                 |
| All                                     | TTHM       | All                   | CPI Projections                                                                                                                                                                                                                                                                                                                                | All                     | All                                                                                                                                                                                                                                                                                                                                                                                                                          | F.1b                                                                                                                                                                 |
| Alternatives                            | &          | All                   | Income Elasticity Inputs Population, GDP, & Income Projections                                                                                                                                                                                                                                                                                 | All                     | All                                                                                                                                                                                                                                                                                                                                                                                                                          | F.1c<br>F.1d                                                                                                                                                         |
| Alternatives                            | HAA5       | All                   | Income Elasticity Factors                                                                                                                                                                                                                                                                                                                      | All                     | All                                                                                                                                                                                                                                                                                                                                                                                                                          | F.1e                                                                                                                                                                 |
|                                         |            | All                   | Valuation Factors                                                                                                                                                                                                                                                                                                                              | All                     | All                                                                                                                                                                                                                                                                                                                                                                                                                          | F.1f                                                                                                                                                                 |
|                                         |            | 7-UI                  | valuation ractors                                                                                                                                                                                                                                                                                                                              | /All                    | <100                                                                                                                                                                                                                                                                                                                                                                                                                         | F.2a                                                                                                                                                                 |
|                                         |            |                       |                                                                                                                                                                                                                                                                                                                                                |                         | 101-500                                                                                                                                                                                                                                                                                                                                                                                                                      | F.2b                                                                                                                                                                 |
|                                         |            |                       |                                                                                                                                                                                                                                                                                                                                                |                         | 501-1,000                                                                                                                                                                                                                                                                                                                                                                                                                    | F.2c                                                                                                                                                                 |
|                                         |            |                       |                                                                                                                                                                                                                                                                                                                                                |                         | 1,001-3,300                                                                                                                                                                                                                                                                                                                                                                                                                  | F.2d                                                                                                                                                                 |
|                                         |            |                       |                                                                                                                                                                                                                                                                                                                                                | 0                       | 3,301-10K                                                                                                                                                                                                                                                                                                                                                                                                                    | F.2e                                                                                                                                                                 |
|                                         |            |                       |                                                                                                                                                                                                                                                                                                                                                | Surface                 | 10,001-50K                                                                                                                                                                                                                                                                                                                                                                                                                   | F.2f                                                                                                                                                                 |
|                                         |            |                       |                                                                                                                                                                                                                                                                                                                                                |                         | 50,001-100K                                                                                                                                                                                                                                                                                                                                                                                                                  | F.2g                                                                                                                                                                 |
|                                         |            |                       |                                                                                                                                                                                                                                                                                                                                                |                         | 100,001-1M                                                                                                                                                                                                                                                                                                                                                                                                                   | F.2h                                                                                                                                                                 |
|                                         |            |                       |                                                                                                                                                                                                                                                                                                                                                |                         | >1 Million                                                                                                                                                                                                                                                                                                                                                                                                                   | F.2i                                                                                                                                                                 |
|                                         |            |                       |                                                                                                                                                                                                                                                                                                                                                |                         | All                                                                                                                                                                                                                                                                                                                                                                                                                          | F.2j                                                                                                                                                                 |
|                                         |            |                       | Valuation of Cases Avoided                                                                                                                                                                                                                                                                                                                     |                         | <100                                                                                                                                                                                                                                                                                                                                                                                                                         | F.2k                                                                                                                                                                 |
|                                         |            |                       |                                                                                                                                                                                                                                                                                                                                                |                         | 101-500                                                                                                                                                                                                                                                                                                                                                                                                                      | F.2l                                                                                                                                                                 |
|                                         |            |                       |                                                                                                                                                                                                                                                                                                                                                |                         | 501-1,000                                                                                                                                                                                                                                                                                                                                                                                                                    | F.2m                                                                                                                                                                 |
|                                         |            |                       |                                                                                                                                                                                                                                                                                                                                                |                         | 1,001-3,300                                                                                                                                                                                                                                                                                                                                                                                                                  | F.2n                                                                                                                                                                 |
|                                         |            |                       |                                                                                                                                                                                                                                                                                                                                                | Ground                  | 3,301-10K                                                                                                                                                                                                                                                                                                                                                                                                                    | F.20                                                                                                                                                                 |
|                                         |            | Non-Fatal             |                                                                                                                                                                                                                                                                                                                                                |                         | 10,001-50K<br>50,001-100K                                                                                                                                                                                                                                                                                                                                                                                                    | F.2p<br>F.2q                                                                                                                                                         |
|                                         |            | Lymphoma              |                                                                                                                                                                                                                                                                                                                                                |                         | 100,001-100K                                                                                                                                                                                                                                                                                                                                                                                                                 | F.2q<br>F.2r                                                                                                                                                         |
|                                         |            |                       |                                                                                                                                                                                                                                                                                                                                                |                         | >1 Million                                                                                                                                                                                                                                                                                                                                                                                                                   | F.2s                                                                                                                                                                 |
|                                         |            |                       |                                                                                                                                                                                                                                                                                                                                                |                         | All                                                                                                                                                                                                                                                                                                                                                                                                                          | F.2t                                                                                                                                                                 |
|                                         |            |                       |                                                                                                                                                                                                                                                                                                                                                | All                     | All                                                                                                                                                                                                                                                                                                                                                                                                                          | F.2u                                                                                                                                                                 |
|                                         |            |                       | Present Value of Benefits at 3% Discount Rate                                                                                                                                                                                                                                                                                                  | All                     | All                                                                                                                                                                                                                                                                                                                                                                                                                          | F.2v                                                                                                                                                                 |
|                                         |            |                       | Present Value of Benefits at 7% Discount Rate                                                                                                                                                                                                                                                                                                  | All                     | All                                                                                                                                                                                                                                                                                                                                                                                                                          | F.2w                                                                                                                                                                 |
|                                         |            |                       | Present Value of Benefits at 3% Discount Rate by Small                                                                                                                                                                                                                                                                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                      |
|                                         |            |                       | and Large Size Categroies                                                                                                                                                                                                                                                                                                                      | 0                       | All                                                                                                                                                                                                                                                                                                                                                                                                                          | F.2x                                                                                                                                                                 |
|                                         |            |                       | Present Value of Benefits at 7% Discount Rate by Small and Large Size Categroies                                                                                                                                                                                                                                                               | Surface                 | All                                                                                                                                                                                                                                                                                                                                                                                                                          | F.2y                                                                                                                                                                 |
|                                         |            |                       | Present Value of Benefits at 3% Discount Rate by Small and Large Size Categroies                                                                                                                                                                                                                                                               |                         | All                                                                                                                                                                                                                                                                                                                                                                                                                          | F.2z                                                                                                                                                                 |
|                                         |            |                       | Present Value of Benefits at 7% Discount Rate by Small and Large Size Categroies                                                                                                                                                                                                                                                               | Ground                  | All                                                                                                                                                                                                                                                                                                                                                                                                                          | F.2aa                                                                                                                                                                |
|                                         |            |                       | Present Value of Benefits at 3% by System Size                                                                                                                                                                                                                                                                                                 | All                     | All                                                                                                                                                                                                                                                                                                                                                                                                                          | F.2ab                                                                                                                                                                |
|                                         |            |                       | Present Value of Benefits at 7% by System Size                                                                                                                                                                                                                                                                                                 | All                     | All                                                                                                                                                                                                                                                                                                                                                                                                                          | F.2ac                                                                                                                                                                |
| Preferred                               | TTHM       |                       | 1 resent value of Benefits at 1 70 by Gystem Gize                                                                                                                                                                                                                                                                                              | All                     | <100                                                                                                                                                                                                                                                                                                                                                                                                                         | F.3a                                                                                                                                                                 |
| Alternative                             |            |                       |                                                                                                                                                                                                                                                                                                                                                |                         | 101-500                                                                                                                                                                                                                                                                                                                                                                                                                      | F.3b                                                                                                                                                                 |
|                                         |            |                       |                                                                                                                                                                                                                                                                                                                                                |                         | 501-1,000                                                                                                                                                                                                                                                                                                                                                                                                                    | F.3c                                                                                                                                                                 |
|                                         |            |                       |                                                                                                                                                                                                                                                                                                                                                |                         | 1,001-3,300                                                                                                                                                                                                                                                                                                                                                                                                                  | F.3d                                                                                                                                                                 |
|                                         |            |                       |                                                                                                                                                                                                                                                                                                                                                | 0                       | 3,301-10K                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                      |
| l                                       |            |                       |                                                                                                                                                                                                                                                                                                                                                | Surface                 |                                                                                                                                                                                                                                                                                                                                                                                                                              | F.3e                                                                                                                                                                 |
|                                         |            |                       |                                                                                                                                                                                                                                                                                                                                                |                         | 10,001-50K                                                                                                                                                                                                                                                                                                                                                                                                                   | F.3f                                                                                                                                                                 |
|                                         |            |                       |                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                      |
|                                         |            |                       |                                                                                                                                                                                                                                                                                                                                                |                         | 10,001-50K                                                                                                                                                                                                                                                                                                                                                                                                                   | F.3f<br>F.3g<br>F.3h                                                                                                                                                 |
|                                         |            |                       |                                                                                                                                                                                                                                                                                                                                                |                         | 10,001-50K<br>50,001-100K<br>100,001-1M<br>>1 Million                                                                                                                                                                                                                                                                                                                                                                        | F.3f<br>F.3g<br>F.3h<br>F.3i                                                                                                                                         |
|                                         |            |                       |                                                                                                                                                                                                                                                                                                                                                |                         | 10,001-50K<br>50,001-100K<br>100,001-1M<br>>1 Million<br>All                                                                                                                                                                                                                                                                                                                                                                 | F.3f<br>F.3g<br>F.3h<br>F.3i<br>F.3j                                                                                                                                 |
|                                         |            |                       | Valuation of Cases Avoided                                                                                                                                                                                                                                                                                                                     |                         | 10,001-50K<br>50,001-100K<br>100,001-1M<br>>1 Million<br>All<br><100                                                                                                                                                                                                                                                                                                                                                         | F.3f<br>F.3g<br>F.3h<br>F.3i<br>F.3j<br>F.3k                                                                                                                         |
|                                         |            |                       | Valuation of Cases Avoided                                                                                                                                                                                                                                                                                                                     |                         | 10,001-50K<br>50,001-100K<br>100,001-1M<br>>1 Million<br>All<br><100<br>101-500                                                                                                                                                                                                                                                                                                                                              | F.3f<br>F.3g<br>F.3h<br>F.3i<br>F.3j<br>F.3k<br>F.3l                                                                                                                 |
|                                         |            |                       | Valuation of Cases Avoided                                                                                                                                                                                                                                                                                                                     |                         | 10,001-50K<br>50,001-100K<br>100,001-1M<br>>1 Million<br>All<br><100<br>101-500<br>501-1,000                                                                                                                                                                                                                                                                                                                                 | F.3f<br>F.3g<br>F.3h<br>F.3i<br>F.3j<br>F.3k<br>F.3l<br>F.3m                                                                                                         |
|                                         |            |                       | Valuation of Cases Avoided                                                                                                                                                                                                                                                                                                                     |                         | 10,001-50K<br>50,001-100K<br>100,001-1M<br>>1 Million<br>All<br><100<br>101-500<br>501-1,000<br>1,001-3,300                                                                                                                                                                                                                                                                                                                  | F.3f<br>F.3g<br>F.3h<br>F.3i<br>F.3j<br>F.3k<br>F.3l<br>F.3m<br>F.3n                                                                                                 |
|                                         |            |                       | Valuation of Cases Avoided                                                                                                                                                                                                                                                                                                                     | Ground                  | 10,001-50K<br>50,001-100K<br>100,001-1M<br>>1 Million<br>All<br><100<br>101-500<br>501-1,000<br>1,001-3,300<br>3,301-10K                                                                                                                                                                                                                                                                                                     | F.3f<br>F.3g<br>F.3h<br>F.3i<br>F.3j<br>F.3k<br>F.3l<br>F.3m<br>F.3n<br>F.3o                                                                                         |
|                                         |            | Chronic               | Valuation of Cases Avoided                                                                                                                                                                                                                                                                                                                     | Ground                  | 10,001-50K<br>50,001-100K<br>100,001-1M<br>>1 Million<br>All<br><100<br>101-500<br>501-1,000<br>1,001-3,300<br>3,301-10K<br>10,001-50K                                                                                                                                                                                                                                                                                       | F.3f<br>F.3g<br>F.3h<br>F.3i<br>F.3j<br>F.3k<br>F.3l<br>F.3m<br>F.3n<br>F.3o<br>F.3p                                                                                 |
|                                         |            | Chronic<br>Bronchitis | Valuation of Cases Avoided                                                                                                                                                                                                                                                                                                                     | Ground                  | 10,001-50K<br>50,001-100K<br>100,001-1M<br>>1 Million<br>All<br><100<br>101-500<br>501-1,000<br>1,001-3,300<br>3,301-10K<br>50,001-100K                                                                                                                                                                                                                                                                                      | F.3f<br>F.3g<br>F.3h<br>F.3i<br>F.3j<br>F.3k<br>F.3l<br>F.3m<br>F.3n<br>F.3o<br>F.3p<br>F.3q                                                                         |
|                                         |            |                       | Valuation of Cases Avoided                                                                                                                                                                                                                                                                                                                     | Ground                  | 10,001-50K<br>50,001-100K<br>100,001-1M<br>>1 Million<br>All<br><100<br>101-500<br>501-1,000<br>1,001-3,300<br>3,301-10K<br>10,001-50K<br>50,001-100K<br>100,001-1M                                                                                                                                                                                                                                                          | F.3f<br>F.3g<br>F.3h<br>F.3i<br>F.3j<br>F.3k<br>F.3l<br>F.3m<br>F.3n<br>F.3n<br>F.3o<br>F.3p<br>F.3q<br>F.3q                                                         |
|                                         |            |                       | Valuation of Cases Avoided                                                                                                                                                                                                                                                                                                                     | Ground                  | 10,001-50K<br>50,001-100K<br>100,001-1M<br>>1 Million<br>All<br><100<br>101-500<br>501-1,000<br>1,001-3,300<br>3,301-10K<br>10,001-50K<br>50,001-100K<br>100,001-1M<br>>1 Million                                                                                                                                                                                                                                            | F.3f<br>F.3g<br>F.3h<br>F.3i<br>F.3j<br>F.3k<br>F.3l<br>F.3n<br>F.3n<br>F.3n<br>F.3o<br>F.3p<br>F.3q<br>F.3q<br>F.3r                                                 |
|                                         |            |                       | Valuation of Cases Avoided                                                                                                                                                                                                                                                                                                                     |                         | 10,001-50K<br>50,001-100K<br>100,001-1M<br>All Million<br>All   <100<br>101-500<br>501-1,000<br>1,001-3,300<br>3,301-10K<br>10,001-50K<br>50,001-100K<br>100,001-1M<br>>1 Million<br>All   <100<br>101,001-50K<br>100,001-1M<br>>1 Million<br>All   <100<br>All   <100<br>101,001-50K<br>101,001-50K<br>101,001-50K<br>101,001-50K<br>101,001-50K<br>101,001-50K<br>101,001-50K<br>101,001-50K<br>101,001-50K<br>101,001-50K | F.3f<br>F.3g<br>F.3h<br>F.3i<br>F.3j<br>F.3k<br>F.3l<br>F.3m<br>F.3n<br>F.3n<br>F.3o<br>F.3o<br>F.3o<br>F.3q<br>F.3r<br>F.3r<br>F.3s<br>F.3r                         |
|                                         |            |                       |                                                                                                                                                                                                                                                                                                                                                | All                     | 10,001-50K<br>50,001-100K<br>100,001-1M<br>>1 Million<br>All<br><100<br>101-500<br>501-1,000<br>1,001-3,300<br>3,301-10K<br>10,001-50K<br>50,001-100K<br>100,001-1M<br>>1 Million<br>All                                                                                                                                                                                                                                     | F.3f<br>F.3g<br>F.3h<br>F.3i<br>F.3j<br>F.3k<br>F.3l<br>F.3m<br>F.3n<br>F.3n<br>F.3o<br>F.3o<br>F.3q<br>F.3q<br>F.3r<br>F.3s<br>F.3t                                 |
|                                         |            |                       | Present Value of Benefits at 3% Discount Rate                                                                                                                                                                                                                                                                                                  | All<br>All              | 10,001-50K<br>50,001-100K<br>100,001-1M<br>>1 Million<br>All<br><100<br>101-500<br>501-1,000<br>1,001-3,300<br>3,301-10K<br>10,001-50K<br>50,001-100K<br>100,001-1M<br>>1 Million<br>All<br>All                                                                                                                                                                                                                              | F.3f<br>F.3g<br>F.3h<br>F.3i<br>F.3j<br>F.3s<br>F.3l<br>F.3n<br>F.3n<br>F.3o<br>F.3p<br>F.3q<br>F.3q<br>F.3r<br>F.3s<br>F.3s<br>F.3s<br>F.3s                         |
|                                         |            |                       | Present Value of Benefits at 3% Discount Rate Present Value of Benefits at 7% Discount Rate Present Value of Benefits at 3% Discount Rate by Small                                                                                                                                                                                             | All                     | 10,001-50K<br>50,001-100K<br>100,001-1M<br>>1 Million<br>All<br><100<br>101-500<br>501-1,000<br>1,001-3,300<br>3,301-10K<br>10,001-50K<br>50,001-100K<br>100,001-1M<br>>1 Million<br>All<br>All                                                                                                                                                                                                                              | F.3f<br>F.3g<br>F.3h<br>F.3i<br>F.3j<br>F.3j<br>F.3k<br>F.3n<br>F.3n<br>F.3n<br>F.3o<br>F.3p<br>F.3p<br>F.3g<br>F.3g<br>F.3g<br>F.3g<br>F.3g<br>F.3g<br>F.3g<br>F.3g |
|                                         |            |                       | Present Value of Benefits at 3% Discount Rate Present Value of Benefits at 7% Discount Rate                                                                                                                                                                                                                                                    | All<br>All              | 10,001-50K<br>50,001-100K<br>100,001-1M<br>>1 Million<br>All<br><100<br>101-500<br>501-1,000<br>1,001-3,300<br>3,301-10K<br>10,001-50K<br>50,001-100K<br>100,001-1M<br>>1 Million<br>All<br>All                                                                                                                                                                                                                              | F.3f<br>F.3g<br>F.3h<br>F.3h<br>F.3j<br>F.3k<br>F.3l<br>F.3n<br>F.3n<br>F.3n<br>F.3o<br>F.3p<br>F.3q<br>F.3r<br>F.3s<br>F.3t<br>F.3s<br>F.3s                         |
|                                         |            |                       | Present Value of Benefits at 3% Discount Rate Present Value of Benefits at 7% Discount Rate Present Value of Benefits at 3% Discount Rate by Small and Large Size Categroies Present Value of Benefits at 7% Discount Rate by Small and Large Size Categroies                                                                                  | All<br>All<br>All       | 10,001-50K<br>50,001-100K<br>100,001-1M<br>>1 Million<br>All IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                             | F.3f<br>F.3g<br>F.3h<br>F.3h<br>F.3i<br>F.3i<br>F.3m<br>F.3n<br>F.3n<br>F.3o<br>F.3p<br>F.3q<br>F.3q<br>F.3s<br>F.3s<br>F.3s<br>F.3s<br>F.3s<br>F.3s                 |
|                                         |            |                       | Present Value of Benefits at 3% Discount Rate Present Value of Benefits at 7% Discount Rate Present Value of Benefits at 3% Discount Rate by Small and Large Size Categroies Present Value of Benefits at 7% Discount Rate by Small and Large Size Categroies Present Value of Benefits at 3% Discount Rate by Small and Large Size Categroies | All<br>All<br>All       | 10,001-50K<br>50,001-100K<br>100,001-1M<br>>1 Million<br>All<br><100<br>101-500<br>501-1,000<br>1,001-3,300<br>3,301-10K<br>10,001-50K<br>50,001-100K<br>100,001-1M<br>>1 Million<br>All<br>All                                                                                                                                                                                                                              | F.3f<br>F.3g<br>F.3h<br>F.3i<br>F.3j<br>F.3k<br>F.3l<br>F.3n<br>F.3n<br>F.3n<br>F.3o<br>F.3p<br>F.3q<br>F.3r<br>F.3s<br>F.3t<br>F.3s<br>F.3s<br>F.3s<br>F.3s         |
|                                         |            |                       | Present Value of Benefits at 3% Discount Rate Present Value of Benefits at 7% Discount Rate Present Value of Benefits at 3% Discount Rate by Small and Large Size Categroies Present Value of Benefits at 7% Discount Rate by Small and Large Size Categroies Present Value of Benefits at 3% Discount Rate by Small                           | All All Surface         | 10,001-50K<br>50,001-100K<br>100,001-1M<br>>1 Million<br>All IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                             | F.3f<br>F.3g<br>F.3h<br>F.3i<br>F.3i<br>F.3i<br>F.3m<br>F.3n<br>F.3n<br>F.3o<br>F.3p<br>F.3q<br>F.3r<br>F.3s<br>F.3s<br>F.3s<br>F.3s<br>F.3s<br>F.3s                 |

## Matrix of Appendix F Contents (cont.)

| Applicable<br>Rule<br>Alternative(s) | Applicable<br>DBP(s) | Non-fatal Case<br>Valuation | Exhibit Description                                                                                | Applicable Source Water Type(s) | System Size | Exhibit<br>Number |
|--------------------------------------|----------------------|-----------------------------|----------------------------------------------------------------------------------------------------|---------------------------------|-------------|-------------------|
|                                      |                      |                             | Valuation of Cases Avoided                                                                         | Surface<br>Ground               | All         | F.4a<br>F.4b      |
|                                      |                      | Non-Fatal                   |                                                                                                    | All                             | All         | F.4c              |
|                                      |                      | Lymphoma                    | Present Value of Benefits at 3% Discount Rate                                                      | All                             | All         | F.4d              |
|                                      |                      | Lymphoma                    | Present Value of Benefits at 7% Discount Rate                                                      | All                             | All         | F.4e              |
|                                      |                      |                             | Present Value of Benefits at 3% by System Size                                                     | All                             | All         | F.4f              |
| Preferred                            | HAA5                 |                             | Present Value of Benefits at 7% by System Size                                                     | All                             | All         | F.4g              |
| Alternative                          | TIAAS                |                             |                                                                                                    | Surface                         | All         | F.5a              |
| Alternative                          |                      |                             | Valuation of Cases Avoided                                                                         | Ground                          | All         | F.5b              |
|                                      |                      | Chronic                     |                                                                                                    | All                             | All         | F.5c              |
|                                      |                      | Bronchitis                  | Present Value of Benefits at 3% Discount Rate                                                      | All                             | All         | F.5d              |
|                                      |                      | Di di idi ilia              | Present Value of Benefits at 7% Discount Rate                                                      | All                             | All         | F.5e              |
|                                      |                      |                             | Present Value of Benefits at 3% by System Size                                                     | All                             | All         | F.5f              |
|                                      |                      |                             | Present Value of Benefits at 7% by System Size                                                     | All                             | All         | F.5g              |
|                                      |                      |                             | Valuation of Cases Avoided                                                                         | Surface, Ground, & All          | All         | F.6a              |
|                                      |                      | Non-Fatal                   | Present Value of Benefits at 3% & 7% Discount Rate                                                 | All                             | All         | F.6b              |
|                                      |                      | Lymphoma                    | Present Value of Benefits at 3% by System Size                                                     | All                             | All         | F.6c              |
| Alternative 1                        | TTHM                 |                             | Present Value of Benefits at 7% by System Size                                                     | All                             | All         | F.6d              |
|                                      |                      |                             | Valuation of Cases Avoided                                                                         | Surface, Ground, & All          | All         | F.7a              |
|                                      |                      | Chronic                     | Present Value of Benefits at 3% & 7% Discount Rate                                                 | All                             | All         | F.7b              |
|                                      |                      | Bronchitis                  | Present Value of Benefits at 3% by System Size                                                     | All                             | All         | F.7c              |
|                                      |                      |                             | Present Value of Benefits at 7% by System Size                                                     | All                             | All         | F.7d              |
|                                      |                      | No. Fatal                   | Valuation of Cases Avoided                                                                         | Surface, Ground, & All          | All         | F.8a              |
|                                      |                      | Non-Fatal                   | Present Value of Benefits at 3% & 7% Discount Rate                                                 | All                             | All         | F.8b              |
|                                      |                      | Lymphoma                    | Present Value of Benefits at 3% by System Size                                                     | All                             | All         | F.8c              |
| Alternative 2                        | TTHM                 |                             | Present Value of Benefits at 7% by System Size                                                     | All<br>Surface, Ground, & All   | All         | F.8d              |
|                                      |                      | Chronic                     | Valuation of Cases Avoided                                                                         |                                 | All         | F.9a<br>F.9b      |
|                                      |                      | Bronchitis                  | Present Value of Benefits at 3% & 7% Discount Rate Present Value of Benefits at 3% by System Size  | All                             |             |                   |
|                                      |                      | DIOTICIILIS                 | Present Value of Benefits at 3% by System Size  Present Value of Benefits at 7% by System Size     | All                             | All         | F.9c<br>F.9d      |
|                                      |                      |                             | Valuation of Cases Avoided                                                                         | Surface, Ground, & All          | All         | F.10a             |
|                                      |                      | Non-Fatal                   | Present Value of Benefits at 3% & 7% Discount Rate                                                 | All                             | All         | F.10a             |
|                                      |                      | Lymphoma                    | Present Value of Benefits at 3% & 7% Discount Rate  Present Value of Benefits at 3% by System Size | All                             | All         | F.10b             |
|                                      |                      | Буптрпотпа                  | Present Value of Benefits at 7% by System Size                                                     | All                             | All         | F.10d             |
| Alternative 3                        | TTHM                 |                             | Valuation of Cases Avoided                                                                         | Surface, Ground, & All          | All         | F.11a             |
|                                      |                      | Chronic                     | Present Value of Benefits at 3% & 7% Discount Rate                                                 | All                             | All         | F.11b             |
|                                      |                      | Bronchitis                  | Present Value of Benefits at 3% by System Size                                                     | All                             | All         | F.11c             |
|                                      |                      | Di di idinici               | Present Value of Benefits at 7% by System Size                                                     | All                             | All         | F.11d             |
|                                      |                      |                             | Valuation of Cases Avoided                                                                         | Surface, Ground, & All          | All         | F.12a             |
|                                      |                      | Non-Fatal                   | Present Value of Benefits at 3% & 7% Discount Rate                                                 | All                             | All         | F.12b             |
|                                      |                      | Lymphoma                    | Present Value of Benefits at 3% by System Size                                                     | All                             | All         | F.12c             |
| Colorectal                           |                      | , ,                         | Present Value of Benefits at 7% by System Size                                                     | All                             | All         | F.12d             |
| Cancer                               | TTHM                 |                             | Valuation of Cases Avoided                                                                         | Surface, Ground, & All          | All         | F.13a             |
| Sensitivity                          |                      | Chronic                     | Present Value of Benefits at 3% & 7% Discount Rate                                                 | All                             | All         | F.13b             |
| Analysis                             |                      | Bronchitis                  | Present Value of Benefits at 3% by System Size                                                     | All                             | All         | F.13c             |
|                                      |                      |                             | Present Value of Benefits at 7% by System Size                                                     | All                             | All         | F.13d             |
| _                                    |                      |                             | Valuation of Cases Avoided                                                                         | Surface, Ground, & All          | All         | F.14a             |
|                                      |                      | Non-Fatal                   | Present Value of Benefits at 3% & 7% Discount Rate                                                 | All                             | All         | F.14b             |
| Preferred                            |                      | Lymphoma                    | Present Value of Benefits at 3% by System Size                                                     | All                             | All         | F.14c             |
| Alternative,                         | TTHM                 |                             | Present Value of Benefits at 7% by System Size                                                     | All                             | All         | F.14d             |
| 20% Safety                           | 1 11 1101            |                             | Valuation of Cases Avoided                                                                         | Surface, Ground, & All          | All         | F.15a             |
| Factor                               |                      | Chronic                     | Present Value of Benefits at 3% & 7% Discount Rate                                                 | All                             | All         | F.15b             |
|                                      |                      | Bronchitis                  | Present Value of Benefits at 3% by System Size                                                     | All                             | All         | F.15c             |
|                                      |                      |                             | Present Value of Benefits at 7% by System Size                                                     | All                             | All         | F.15d             |
|                                      |                      |                             | Valuation of Cases Avoided                                                                         | Surface, Ground, & All          | All         | F.16a             |
|                                      |                      | Non-Fatal                   | Present Value of Benefits at 3% & 7% Discount Rate                                                 | All                             | All         | F.16b             |
| Preferred                            |                      | Lymphoma                    | Present Value of Benefits at 3% by System Size                                                     | All                             | All         | F.16c             |
| Alternative,                         | TTHM                 |                             | Present Value of Benefits at 7% by System Size                                                     | All                             | All         | F.16d             |
| 25% Safety                           |                      |                             | Valuation of Cases Avoided                                                                         | Surface, Ground, & All          | All         | F.17a             |
| Margin                               |                      | Chronic                     | Present Value of Benefits at 3% & 7% Discount Rate                                                 | All                             | All         | F.17b             |
|                                      |                      | Bronchitis                  | Present Value of Benefits at 3% by System Size                                                     | All                             | All         | F.17c             |
|                                      |                      | I                           | Present Value of Benefits at 7% by System Size                                                     | All                             | All         | F.17d             |

Note: To minimize the size of this appendix, only summary spreadsheets are presented to outline the computational approach used for the Stage 2 DBPR benefits analysis. More detailed spreadsheets (as presented for the preferred alternative - TTHM) are available from EPA for all alternatives and both TTHM and HAA5 as an indicator.

## Section F.1 Input Parameters

## **Exhibit F.1a Description of Valuation Parameters**

## **VSL**

Dist. Type Weibull
Parameters Loc: 0

Scale: 5.32

Shape: 1.509588

Simulation Mean \$ 4.80 Million (1990\$)

Source: Distribution adapted from *The Benefits and Costs of the Clean Air Act, 1970-1990* (USEPA, 1997b), as derived from Viscusi et al. (1991)

## WTP: Non-Fatal Cases - Non-Fatal Lymphoma

Percent of VSL 58.3%

Simulation Mean \$ 2.80 Million (1990\$)

Note: Value derived as a forecast based on the VSL distribution above.

Source: Percent of VSL derived as ratio of median risk tradeoff values reported in Magat et al. (1996)

## WTP: Non-Fatal Cases - Chronic Bronchitis

Dist. Type Lognormal

Parameters Mean: \$ 587,500

Median: \$ 535,600 Std Dev: \$ 264,826

Max: \$ 1,500,000

Simulation Mean \$ 0.58 Million (1998\$)

Note: Distribution correlated to the VSL distribution in the Monte Carlo analysis. Source: Stage 1 DBPR RIA (USEPA, 1998a), as derived from Viscusi et al. (1991)

## **Morbidity Increment**

Point Estimate \$ 93,927 (1996\$)

Source: Cost of Illness Handbook (USEPA, 1999a)

**Exhibit F.1b CPI Projections** 

|      |                            | CPI - A           | II Items                            |                                     | С                          | PI - Medical Ca   | re                                  |
|------|----------------------------|-------------------|-------------------------------------|-------------------------------------|----------------------------|-------------------|-------------------------------------|
| Year | CPI<br>(Annual<br>Average) | Percent<br>Change | Adjustment<br>Factor<br>(1990 base) | Adjustment<br>Factor<br>(1998 base) | CPI<br>(Annual<br>Average) | Percent<br>Change | Adjustment<br>Factor<br>(1996 base) |
| 1990 | 130.7                      | -                 | 1.00                                | 0.80                                | 162.8                      | -                 | 0.71                                |
| 1991 | 136.2                      | 4.2%              | 1.04                                | 0.84                                | 177.0                      | 8.7%              | 0.78                                |
| 1992 | 140.3                      | 3.0%              | 1.07                                | 0.86                                | 190.1                      | 7.4%              | 0.83                                |
| 1993 | 144.5                      | 3.0%              | 1.11                                | 0.89                                | 201.4                      | 5.9%              | 0.88                                |
| 1994 | 148.2                      | 2.6%              | 1.13                                | 0.91                                | 211.0                      | 4.8%              | 0.92                                |
| 1995 | 152.4                      | 2.8%              | 1.17                                | 0.93                                | 220.5                      | 4.5%              | 0.97                                |
| 1996 | 156.9                      | 3.0%              | 1.20                                | 0.96                                | 228.2                      | 3.5%              | 1.00                                |
| 1997 | 160.5                      | 2.3%              | 1.23                                | 0.98                                | 234.6                      | 2.8%              | 1.03                                |
| 1998 | 163.0                      | 1.6%              | 1.25                                | 1.00                                | 242.1                      | 3.2%              | 1.06                                |
| 1999 | 166.6                      | 2.2%              | 1.27                                | 1.02                                | 250.6                      | 3.5%              | 1.10                                |
| 2000 | 172.2                      | 3.4%              | 1.32                                | 1.06                                | 260.8                      | 4.1%              | 1.14                                |
| 2001 | 177.1                      | 2.9%              | 1.36                                | 1.09                                | 272.8                      | 4.6%              | 1.20                                |
| 2002 | 179.9                      | 1.6%              | 1.38                                | 1.11                                | 285.6                      | 4.7%              | 1.25                                |
| 2003 | 184.0                      | 2.3%              | 1.41                                | 1.13                                | 297.1                      | 4.0%              | 1.30                                |

Notes: 1990 base factors (all items) used to update VSL and non-fatal lymphoma WTP values.

1998 base factors (all items) used to update chronic bronchitis WTP values (used in sensitivity analysis only).

1996 base factors (medical care) used to update morbidity increment values.

Source: 1990-2003 CPI values from Bureau of Labor Statistics.

## **Exhibit F.1c Description of Elasticity Parameters**

## **Income Elasticity - Fatal Cancer Cases**

| Central Estimate  | 0.40       |
|-------------------|------------|
| Low End           | 0.08       |
| High End          | 1.00       |
| Dist. Type        | Triangular |
| Distribution Mean | 0.49       |

## **Income Elasticity - Non-Fatal Cancer Cases**

| Central Estimate  | 0.45       |
|-------------------|------------|
| Low End           | 0.25       |
| High End          | 0.60       |
| Dist. Type        | Triangular |
| Distribution Mean | 0.43       |

Note: Distributions are correlated in the Monte Carlo analysis.

Source: Kleckner and Neumann (2000)

Exhibit F.1d Population, GDP, and Per Capita Income Projections

|              | _                  |              |                        |              | Income<br>(Real GDP per Capita) |              |  |  |  |  |
|--------------|--------------------|--------------|------------------------|--------------|---------------------------------|--------------|--|--|--|--|
|              | Popul              | ation        | Real G                 | DP           | 1                               | per Capita)  |  |  |  |  |
|              | Estimates/         |              | Projection             |              | Projection                      |              |  |  |  |  |
|              | Projections        | Percent      | (Billions              | Percent      | (Thousands                      | Percent      |  |  |  |  |
| Year         | (Thousands)        | Change       | <b>Chained 2000\$)</b> | Change       | 2000\$)                         | Change       |  |  |  |  |
| 1990         | 249,439            | -            | 7,112.5                | -            | 28,514                          | -            |  |  |  |  |
| 1991         | 252,127            | 1.1%         | 7,100.5                | -0.2%        | 28,162                          | -1.2%        |  |  |  |  |
| 1992         | 254,995            | 1.1%         | 7,336.6                | 3.3%         | 28,772                          | 2.2%         |  |  |  |  |
| 1993         | 257,746            | 1.1%         | 7,532.7                | 2.7%         | 29,225                          | 1.6%         |  |  |  |  |
| 1994         | 260,289            | 1.0%         | 7,835.5                | 4.0%         | 30,103                          | 3.0%         |  |  |  |  |
| 1995         | 262,765            | 1.0%         | 8,031.7                | 2.5%         | 30,566                          | 1.5%         |  |  |  |  |
| 1996         | 265,190            | 0.9%         | 8,328.9                | 3.7%         | 31,407                          | 2.8%         |  |  |  |  |
| 1997         | 267,744            | 1.0%         | 8,703.5                | 4.5%         | 32,507                          | 3.5%         |  |  |  |  |
| 1998         | 270,299            | 1.0%         | 9,066.9                | 4.2%         | 33,544                          | 3.2%         |  |  |  |  |
| 1999         | 272,820            | 0.9%         | 9,470.3                | 4.4%         | 34,713                          | 3.5%         |  |  |  |  |
| 2000         | 275,306            | 0.9%         | 9,817.0                | 3.7%         | 35,659                          | 2.7%         |  |  |  |  |
| 2001         | 277,803            | 0.9%         | 9,866.6                | 0.5%         | 35,517                          | -0.4%        |  |  |  |  |
| 2002         | 280,306            | 0.9%         | 10,083.0               | 2.2%         | 35,971                          | 1.3%         |  |  |  |  |
| 2003         | 282,798            | 0.9%         | 10,398.0               | 3.1%         | 36,768                          | 2.2%         |  |  |  |  |
| 2004         | 285,266            | 0.9%         | 10,730.7               | 3.2%         | 37,617                          | 2.3%         |  |  |  |  |
| 2005         | 287,716            | 0.9%         | 11,245.8               | 4.8%         | 39,086                          | 3.9%         |  |  |  |  |
| 2006         | 290,153            | 0.8%         | 11,718.1               | 4.2%         | 40,386                          | 3.3%         |  |  |  |  |
| 2007         | 292,583            | 0.8%         | 12,093.1               | 3.2%         | 41,332                          | 2.3%         |  |  |  |  |
| 2008         | 295,009            | 0.8%         | 12,419.6               | 2.7%         | 42,099                          | 1.9%         |  |  |  |  |
| 2009         | 297,436            | 0.8%         | 12,767.4               | 2.8%         | 42,925                          | 2.0%         |  |  |  |  |
| 2010         | 299,862            | 0.8%         | 13,124.9               | 2.8%         | 43,770                          | 2.0%         |  |  |  |  |
| 2011         | 302,300            | 0.8%         | 13,466.1               | 2.6%         | 44,546                          | 1.8%         |  |  |  |  |
| 2012         | 304,764            | 0.8%         | 13,802.8               | 2.5%         | 45,290                          | 1.7%         |  |  |  |  |
| 2013         | 307,250            | 0.8%         | 14,147.8               | 2.5%         | 46,047                          | 1.7%         |  |  |  |  |
| 2014         | 309,753            | 0.8%         | 14,501.5               | 2.5%         | 46,816                          | 1.7%         |  |  |  |  |
| 2015         | 312,268            | 0.8%         | 14,864.1               | 2.5%         | 47,600                          | 1.7%         |  |  |  |  |
| 2016         | 314,793            | 0.8%         | 15,235.7               | 2.5%         | 48,399                          | 1.7%         |  |  |  |  |
| 2017         | 317,325            | 0.8%         | 15,616.6               | 2.5%         | 49,213                          | 1.7%         |  |  |  |  |
| 2018         | 319,860            | 0.8%         | 16,007.0               | 2.5%         | 50,044                          | 1.7%         |  |  |  |  |
| 2019         | 322,395            | 0.8%         | 16,407.2               | 2.5%         | 50,891                          | 1.7%         |  |  |  |  |
| 2020         | 324,927            | 0.8%         | 16,817.3               | 2.5%         | 51,757                          | 1.7%         |  |  |  |  |
| 2021         | 327,468            | 0.8%         | 17,237.8               | 2.5%         | 52,640                          | 1.7%         |  |  |  |  |
| 2022         | 330,028            | 0.8%         | 17,668.7               | 2.5%         | 53,537                          | 1.7%         |  |  |  |  |
| 2023         | 332,607            | 0.8%         | 18,110.4               | 2.5%         | 54,450<br>55,370                | 1.7%<br>1.7% |  |  |  |  |
| 2024         | 335,202            | 0.8%         | 18,563.2               | 2.5%         | 55,379<br>56,325                | 1.7%<br>1.7% |  |  |  |  |
| 2025         | 337,815<br>340,441 | 0.8%         | 19,027.3               | 2.5%         | 56,325<br>57,287                |              |  |  |  |  |
| 2026<br>2027 | 340,441            | 0.8%<br>0.8% | 19,502.9               | 2.5%         |                                 | 1.7%<br>1.7% |  |  |  |  |
| 2027         | 343,078<br>345,735 | 0.8%         | 19,990.5<br>20,490.3   | 2.5%<br>2.5% | 58,268<br>59,266                | 1.7%<br>1.7% |  |  |  |  |
| 2028         | 348,391            | 0.8%         |                        |              |                                 |              |  |  |  |  |
| 2029         | 348,39T            | 0.6%         | 21,002.5               | 2.5%         | 60,284                          | 1.7%         |  |  |  |  |

Source: Population projections from US Census Bureau (NP-T1: Middle Series).

1990-2000 real GDP from Bureau of Economic Analysis, all other years calculated based on percent change projections from Congressional Budget Office (January 23, 2002). Projections for years beyond 2012 based on percent change reported for 2012 due to lack of other data.

Income (Real GDP per Capita)=Real GDP/Population

Exhibit F.1e Factors for Incorporation of Income Elasticity into Yearly Benefits Estimates

|      | Factors f | or Fatal Canc | er Cases     | Factors for N | Non-Fatal Lym | phoma Cases  | Factors for Chronic Bronchitis Cases |                  |              |  |  |  |  |
|------|-----------|---------------|--------------|---------------|---------------|--------------|--------------------------------------|------------------|--------------|--|--|--|--|
|      |           | 90 Pe         | ercent       |               | 90 P          | ercent       |                                      | 90 Percent       |              |  |  |  |  |
|      |           | Confiden      | ce Bound     |               | Confider      | nce Bound    |                                      | Confidence Bound |              |  |  |  |  |
|      | Mean      | Lower         | Upper        | Mean          | Lower         | Upper        | Mean                                 | Lower            | Upper        |  |  |  |  |
| Year | Value     | (5th %tile)   | (95th %tile) | Value         | (5th %tile)   | (95th %tile) | Value                                | (5th %tile)      | (95th %tile) |  |  |  |  |
| 2005 | 1.160     | 1.062         | 1.280        | 1.138         | 1.096         | 1.177        | 1.063                                | 1.045            | 1.081        |  |  |  |  |
| 2006 | 1.174     | 1.067         | 1.306        | 1.149         | 1.104         | 1.193        | 1.074                                | 1.052            | 1.095        |  |  |  |  |
| 2007 | 1.188     | 1.072         | 1.332        | 1.161         | 1.112         | 1.208        | 1.085                                | 1.060            | 1.109        |  |  |  |  |
| 2008 | 1.202     | 1.076         | 1.356        | 1.172         | 1.120         | 1.223        | 1.096                                | 1.067            | 1.123        |  |  |  |  |
| 2009 | 1.215     | 1.081         | 1.381        | 1.183         | 1.127         | 1.238        | 1.106                                | 1.075            | 1.137        |  |  |  |  |
| 2010 | 1.229     | 1.086         | 1.407        | 1.194         | 1.135         | 1.253        | 1.117                                | 1.082            | 1.151        |  |  |  |  |
| 2011 | 1.242     | 1.090         | 1.433        | 1.206         | 1.142         | 1.268        | 1.128                                | 1.090            | 1.165        |  |  |  |  |
| 2012 | 1.256     | 1.095         | 1.459        | 1.217         | 1.150         | 1.283        | 1.139                                | 1.097            | 1.179        |  |  |  |  |
| 2013 | 1.270     | 1.100         | 1.486        | 1.229         | 1.158         | 1.298        | 1.150                                | 1.104            | 1.193        |  |  |  |  |
| 2014 | 1.284     | 1.104         | 1.513        | 1.240         | 1.165         | 1.313        | 1.161                                | 1.112            | 1.208        |  |  |  |  |
| 2015 | 1.299     | 1.109         | 1.541        | 1.252         | 1.173         | 1.329        | 1.172                                | 1.119            | 1.222        |  |  |  |  |
| 2016 | 1.313     | 1.114         | 1.570        | 1.263         | 1.180         | 1.345        | 1.183                                | 1.127            | 1.237        |  |  |  |  |
| 2017 | 1.328     | 1.119         | 1.598        | 1.275         | 1.188         | 1.361        | 1.194                                | 1.135            | 1.252        |  |  |  |  |
| 2018 | 1.342     | 1.123         | 1.628        | 1.287         | 1.196         | 1.376        | 1.206                                | 1.142            | 1.267        |  |  |  |  |
| 2019 | 1.357     | 1.128         | 1.658        | 1.299         | 1.204         | 1.393        | 1.217                                | 1.150            | 1.283        |  |  |  |  |
| 2020 | 1.372     | 1.133         | 1.688        | 1.311         | 1.211         | 1.409        | 1.229                                | 1.158            | 1.298        |  |  |  |  |
| 2021 | 1.388     | 1.137         | 1.719        | 1.323         | 1.219         | 1.425        | 1.240                                | 1.165            | 1.314        |  |  |  |  |
| 2022 | 1.403     | 1.142         | 1.751        | 1.335         | 1.227         | 1.442        | 1.252                                | 1.173            | 1.330        |  |  |  |  |
| 2023 | 1.419     | 1.147         | 1.783        | 1.347         | 1.235         | 1.459        | 1.264                                | 1.181            | 1.345        |  |  |  |  |
| 2024 | 1.434     | 1.151         | 1.815        | 1.359         | 1.242         | 1.475        | 1.276                                | 1.189            | 1.361        |  |  |  |  |
| 2025 | 1.450     | 1.156         | 1.848        | 1.371         | 1.250         | 1.492        | 1.288                                | 1.196            | 1.378        |  |  |  |  |
| 2026 | 1.466     | 1.161         | 1.882        | 1.383         | 1.258         | 1.509        | 1.300                                | 1.204            | 1.394        |  |  |  |  |
| 2027 | 1.482     | 1.165         | 1.916        | 1.396         | 1.266         | 1.526        | 1.312                                | 1.212            | 1.410        |  |  |  |  |
| 2028 | 1.476     | 1.164         | 1.904        | 1.391         | 1.263         | 1.520        | 1.307                                | 1.209            | 1.404        |  |  |  |  |
| 2029 | 1.488     | 1.167         | 1.930        | 1.400         | 1.269         | 1.533        | 1.316                                | 1.215            | 1.417        |  |  |  |  |

Note: Income elasticity factors calculated as [(el<sub>1</sub> - el<sub>2</sub> - l<sub>2</sub> - l<sub>1</sub>) / (el<sub>2</sub> - el<sub>1</sub> - l<sub>2</sub> - l<sub>1</sub>)]; where e=income elasticity of WTP estimate, and I=income.

Source: Derived using elasticity distributions and per capita GDP projections from preceeding Exhibits F.1c and F.1d.

Exhibit F.1f Value of VSL, WTP, and Morbidity Increment by Year

|      |                | Fatal Car                  | Non-Fatal Cancer Cases |                                |     |                       |      |                                                   |     |                      |                                |                       |      |               |     |                      |                                |    |                    |  |
|------|----------------|----------------------------|------------------------|--------------------------------|-----|-----------------------|------|---------------------------------------------------|-----|----------------------|--------------------------------|-----------------------|------|---------------|-----|----------------------|--------------------------------|----|--------------------|--|
|      | ,              | Morbidity<br>Increment VSL |                        |                                |     |                       |      | WTP - Non-Fatal Lymphoma WTP - Chronic Bronchitis |     |                      |                                |                       |      |               |     |                      |                                | is |                    |  |
|      |                |                            |                        | 90 Percent<br>Confidence Bound |     |                       |      |                                                   |     |                      | 90 Percent<br>Confidence Bound |                       |      |               |     |                      | 90 Percent<br>Confidence Bound |    |                    |  |
| Year | Point Estimate |                            | Mean<br>Value          | Lower<br>(5th %tile)           |     | Upper<br>(95th %tile) |      | Mean<br>Value                                     |     | Lower<br>(5th %tile) |                                | Upper<br>(95th %tile) |      | Mean<br>Value |     | Lower<br>(5th %tile) |                                |    | Upper<br>th %tile) |  |
| 2005 | \$ 0           | ).1                        | \$ 7.8                 | \$                             | 1.2 | \$                    | 17.9 | \$                                                | 4.4 | \$                   | 0.7                            | \$                    | 10.1 | \$            | 0.8 | \$                   | 0.4                            | \$ | 1.4                |  |
| 2006 | \$ 0           | ).1                        | \$ 7.9                 | \$                             | 1.2 | \$                    | 18.1 | \$                                                | 4.5 | \$                   | 0.7                            | \$                    | 10.2 | \$            | 0.8 | \$                   | 0.4                            | \$ | 1.5                |  |
| 2007 | \$ 0           | 0.1                        | \$ 7.9                 | \$                             | 1.2 | \$                    | 18.3 | \$                                                | 4.5 | \$                   | 0.7                            | \$                    | 10.4 | \$            | 0.8 | \$                   | 0.4                            | \$ | 1.5                |  |
| 2008 | \$ 0           | 0.1                        | \$ 8.0                 | \$                             | 1.2 | \$                    | 18.6 | \$                                                | 4.6 | \$                   | 0.7                            | \$                    | 10.5 | \$            | 0.8 | \$                   | 0.4                            | \$ | 1.5                |  |
| 2009 | \$ 0           | 0.1                        | \$ 8.1                 | \$                             | 1.2 | \$                    | 18.8 | \$                                                | 4.6 | \$                   | 0.7                            | \$                    | 10.6 | \$            | 0.8 | \$                   | 0.4                            | \$ | 1.5                |  |
| 2010 | \$ 0           | 0.1                        | \$ 8.2                 | \$                             | 1.3 | \$                    | 19.0 | \$                                                | 4.7 | \$                   | 0.7                            | \$                    | 10.7 | \$            | 0.8 | \$                   | 0.4                            | \$ | 1.5                |  |
| 2011 | \$ 0           | 0.1                        | \$ 8.3                 | \$                             | 1.3 | \$                    | 19.2 | \$                                                | 4.7 | \$                   | 0.7                            | \$                    | 10.8 | \$            | 0.8 | \$                   | 0.4                            | \$ | 1.5                |  |
| 2012 | \$ 0           | 0.1                        | \$ 8.4                 | \$                             | 1.3 | \$                    | 19.4 | \$                                                | 4.7 | \$                   | 0.7                            | \$                    | 10.8 | \$            | 0.9 | \$                   | 0.4                            | \$ | 1.6                |  |
| 2013 | \$ 0           | 0.1                        | \$ 8.5                 | \$                             | 1.3 | \$                    | 19.6 | \$                                                | 4.8 | \$                   | 0.7                            | \$                    | 11.0 | \$            | 0.9 | \$                   | 0.4                            | \$ | 1.6                |  |
| 2014 | \$ 0           | 0.1                        | \$ 8.6                 | \$                             | 1.3 | \$                    | 19.9 | \$                                                | 4.8 | \$                   | 0.7                            | \$                    | 11.1 | \$            | 0.9 | \$                   | 0.4                            | \$ | 1.6                |  |
| 2015 | \$ 0           | 0.1                        | \$ 8.7                 | \$                             | 1.3 | \$                    | 20.1 | \$                                                | 4.9 | \$                   | 0.8                            | \$                    | 11.2 | \$            | 0.9 | \$                   | 0.4                            | \$ | 1.6                |  |
| 2016 | \$ 0           | 0.1                        | \$ 8.8                 | \$                             | 1.3 | \$                    | 20.3 | \$                                                | 4.9 | \$                   | 0.8                            | \$                    | 11.3 | \$            | 0.9 | \$                   | 0.4                            | \$ | 1.6                |  |
| 2017 | \$ 0           | 0.1                        | \$ 8.9                 | \$                             | 1.3 | \$                    | 20.6 | \$                                                | 5.0 | \$                   | 0.8                            | \$                    | 11.4 | \$            | 0.9 | \$                   | 0.4                            | \$ | 1.6                |  |
| 2018 | \$ 0           | 0.1                        | \$ 9.0                 | \$                             | 1.3 | \$                    | 20.9 | \$                                                | 5.0 | \$                   | 0.8                            | \$                    | 11.5 | \$            | 0.9 | \$                   | 0.4                            | \$ | 1.6                |  |
| 2019 | \$ 0           | 0.1                        | \$ 9.1                 | \$                             | 1.4 | \$                    | 21.2 | \$                                                | 5.1 | \$                   | 0.8                            | \$                    | 11.6 | \$            | 0.9 | \$                   | 0.4                            | \$ | 1.7                |  |
| 2020 | \$ 0           | ).1                        | \$ 9.2                 | \$                             | 1.4 | \$                    | 21.4 | \$                                                | 5.1 | \$                   | 0.8                            | \$                    | 11.7 | \$            | 0.9 | \$                   | 0.4                            | \$ | 1.7                |  |
| 2021 | \$ 0           | ).1                        | \$ 9.3                 | \$                             | 1.4 | \$                    | 21.7 | \$                                                | 5.2 | \$                   | 0.8                            | \$                    | 11.8 | \$            | 0.9 | \$                   | 0.4                            | \$ | 1.7                |  |
| 2022 | \$ 0           | ).1                        | \$ 9.4                 | \$                             | 1.4 | \$                    | 22.0 | \$                                                | 5.2 | \$                   | 0.8                            | \$                    | 11.9 | \$            | 0.9 | \$                   | 0.4                            | \$ | 1.7                |  |
| 2023 | \$ 0           | ).1                        | \$ 9.5                 | \$                             | 1.4 | \$                    | 22.2 | \$                                                | 5.2 | \$                   | 0.8                            | \$                    | 12.1 | \$            | 0.9 | \$                   | 0.4                            | \$ | 1.7                |  |
| 2024 | \$ 0           | 0.1                        | \$ 9.6                 | \$                             | 1.4 | \$                    | 22.4 | \$                                                | 5.3 | \$                   | 0.8                            | \$                    | 12.2 | \$            | 1.0 | \$                   | 0.4                            | \$ | 1.7                |  |
| 2025 | \$ 0           | ).1                        | \$ 9.7                 | \$                             | 1.4 | \$                    | 22.7 | \$                                                | 5.3 | \$                   | 0.8                            | \$                    | 12.3 | \$            | 1.0 | \$                   | 0.4                            | \$ | 1.8                |  |
| 2026 | \$ 0           | ).1                        | \$ 9.8                 | \$                             | 1.4 | \$                    | 23.0 | \$                                                | 5.4 | \$                   | 0.8                            | \$                    | 12.4 | \$            | 1.0 | \$                   | 0.4                            | \$ | 1.8                |  |
| 2027 | \$ 0           | ).1                        | \$ 9.9                 | \$                             | 1.5 | \$                    | 23.3 | \$                                                | 5.4 | \$                   | 0.8                            | \$                    | 12.5 | \$            | 1.0 | \$                   | 0.4                            | \$ | 1.8                |  |
| 2028 | \$ 0           | ).1                        | \$ 9.9                 | \$                             | 1.5 | \$                    | 23.2 | \$                                                | 5.4 | \$                   | 0.8                            | \$                    | 12.5 | \$            | 1.0 | \$                   | 0.4                            | \$ | 1.8                |  |
| 2029 | \$ 0           | ).1                        | \$ 10.0                | \$                             | 1.5 | \$                    | 23.4 | \$                                                | 5.5 | \$                   | 0.8                            | \$                    | 12.6 | \$            | 1.0 | \$                   | 0.4                            | \$ | 1.8                |  |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

Source: Values derived based on valuation distributions and inflation (CPI) and income elasticity factors from Exhibits F.1a, F.1b, and F.1e.

## Section F.2 Model Outputs - Preferred Alternative TTHM as Indicator Lymphoma for Non-Fatal Cases

## Exhibit F.2a Projections of Yearly Benefits, WTP for Lymphoma as Basis for Non-Fatal Cases (Surface Water Systems Serving <100 People)

**TTHM - Preferred Alternative** 

|       | Smoking/Lung Cancer<br>Cessation Lag Model |                                 |    |                       |    |               |    |      | _                | Bladder<br>on Lag I |                    |      | Arsenic/Bladder Cancer<br>Cessation Lag Model |     |                                |                       |    |     |  |
|-------|--------------------------------------------|---------------------------------|----|-----------------------|----|---------------|----|------|------------------|---------------------|--------------------|------|-----------------------------------------------|-----|--------------------------------|-----------------------|----|-----|--|
|       |                                            | 90 Percent<br>Confidence Bound  |    |                       |    |               |    |      | (                | 90 Po<br>Confider   |                    |      |                                               |     | 90 Percent<br>Confidence Bound |                       |    |     |  |
| Year  |                                            | Mean Lower<br>Value (5th %tile) |    | Upper<br>(95th %tile) |    | Mean<br>Value |    |      | ower<br>h %tile) |                     | Upper<br>th %tile) |      | lean<br>alue                                  |     | ower<br>1 %tile)               | Upper<br>(95th %tile) |    |     |  |
| 2005  | \$                                         |                                 | \$ |                       | \$ | -             | \$ | \$ - |                  | \$ - \$             |                    | \$ - |                                               | -   | \$                             | -                     | \$ | -   |  |
| 2006  | \$                                         | -                               | \$ | -                     | \$ | -             | \$ | -    | \$               | -                   | \$                 | -    | \$                                            | -   | \$                             | -                     | \$ | -   |  |
| 2007  | \$                                         | -                               | \$ | -                     | \$ | -             | \$ | -    | \$               | -                   | \$                 | -    | \$                                            | -   | \$                             | -                     | \$ | -   |  |
| 2008  | \$                                         | -                               | \$ | -                     | \$ | -             | \$ | -    | \$               | -                   | \$                 | -    | \$                                            | -   | \$                             | -                     | \$ | -   |  |
| 2009  | \$                                         | -                               | \$ | -                     | \$ | -             | \$ | -    | \$               | -                   | \$                 | -    | \$                                            | -   | \$                             | -                     | \$ | -   |  |
| 2010  | \$                                         | 0.0                             | \$ | 0.0                   | \$ | 0.0           | \$ | 0.0  | \$               | 0.0                 | \$                 | 0.0  | \$                                            | 0.0 | \$                             | 0.0                   | \$ | 0.0 |  |
| 2011  | \$                                         | 0.0                             | \$ | 0.0                   | \$ | 0.0           | \$ | 0.0  | \$               | 0.0                 | \$                 | 0.0  | \$                                            | 0.0 | \$                             | 0.0                   | \$ | 0.1 |  |
| 2012  | \$                                         | 0.0                             | \$ | 0.0                   | \$ | 0.1           | \$ | 0.0  | \$               | 0.0                 | \$                 | 0.1  | \$                                            | 0.1 | \$                             | 0.0                   | \$ | 0.1 |  |
| 2013  | \$                                         | 0.1                             | \$ | 0.0                   | \$ | 0.1           | \$ | 0.0  | \$               | 0.0                 | \$                 | 0.1  | \$                                            | 0.1 | \$                             | 0.0                   | \$ | 0.2 |  |
| 2014  | \$                                         | 0.1                             | \$ | 0.0                   | \$ | 0.2           | \$ | 0.0  | \$               | 0.0                 | \$                 | 0.1  | \$                                            | 0.1 | \$                             | 0.0                   | \$ | 0.2 |  |
| 2015  | \$                                         | 0.1                             | \$ | 0.0                   | \$ | 0.2           | \$ | 0.1  | \$               | 0.0                 | \$                 | 0.1  | \$                                            | 0.1 | \$                             | 0.0                   | \$ | 0.3 |  |
| 2016  | \$                                         | 0.1                             | \$ | 0.0                   | \$ | 0.3           | \$ | 0.1  | \$               | 0.0                 | \$                 | 0.2  | \$                                            | 0.2 | \$                             | 0.0                   | \$ | 0.4 |  |
| 2017  | \$                                         | 0.1                             | \$ | 0.0                   | \$ | 0.3           | \$ | 0.1  | \$               | 0.0                 | \$                 | 0.2  | \$                                            | 0.2 | \$                             | 0.0                   | \$ | 0.4 |  |
| 2018  | \$                                         | 0.2                             | \$ | 0.0                   | \$ | 0.4           | \$ | 0.1  | \$               | 0.0                 | \$                 | 0.2  | \$                                            | 0.2 | \$                             | 0.0                   | \$ | 0.5 |  |
| 2019  | \$                                         | 0.2                             | \$ | 0.0                   | \$ | 0.4           | \$ | 0.1  | \$               | 0.0                 | \$                 | 0.2  | \$                                            | 0.2 | \$                             | 0.0                   | \$ | 0.5 |  |
| 2020  | \$                                         | 0.2                             | \$ | 0.0                   | \$ | 0.4           | \$ | 0.1  | \$               | 0.0                 | \$                 | 0.3  | \$                                            | 0.2 | \$                             | 0.0                   | \$ | 0.5 |  |
| 2021  | \$                                         | 0.2                             | \$ | 0.0                   | \$ | 0.5           | \$ | 0.1  | \$               | 0.0                 | \$                 | 0.3  | \$                                            | 0.2 | \$                             | 0.0                   | \$ | 0.5 |  |
| 2022  | \$                                         | 0.2                             | \$ | 0.0                   | \$ | 0.5           | \$ | 0.1  | \$               | 0.0                 | \$                 | 0.3  | \$                                            | 0.2 | \$                             | 0.0                   | \$ | 0.6 |  |
| 2023  | \$                                         | 0.2                             | \$ | 0.0                   | \$ | 0.5           | \$ | 0.1  | \$               | 0.0                 | \$                 | 0.3  | \$                                            | 0.3 | \$                             | 0.0                   | \$ | 0.6 |  |
| 2024  | \$                                         | 0.2                             | \$ | 0.0                   | \$ | 0.5           | \$ | 0.1  | \$               | 0.0                 | \$                 | 0.3  | \$                                            | 0.3 | \$                             | 0.0                   | \$ | 0.6 |  |
| 2025  | \$                                         | 0.2                             | \$ | 0.0                   | \$ | 0.5           | \$ | 0.2  | \$               | 0.0                 | \$                 | 0.4  | \$                                            | 0.3 | \$                             | 0.0                   | \$ | 0.6 |  |
| 2026  | \$                                         | 0.2                             | \$ | 0.0                   | \$ | 0.6           | \$ | 0.2  | \$               | 0.0                 | \$                 | 0.4  | \$                                            | 0.3 | \$                             | 0.0                   | \$ | 0.6 |  |
| 2027  | \$                                         | 0.2                             | \$ | 0.0                   | \$ | 0.6           | \$ | 0.2  | \$               | 0.0                 | \$                 | 0.4  | \$                                            | 0.3 | \$                             | 0.0                   | \$ | 0.6 |  |
| 2028  | \$                                         | 0.2                             | \$ | 0.0                   | \$ | 0.6           | \$ | 0.2  | \$               | 0.0                 | \$                 | 0.4  | \$                                            | 0.3 | \$                             | 0.0                   | \$ | 0.6 |  |
| 2029  | \$                                         | 0.3                             | \$ | 0.0                   | \$ | 0.6           | \$ | 0.2  | \$               | 0.0                 | \$                 | 0.4  | \$                                            | 0.3 | \$                             | 0.0                   | \$ | 0.6 |  |
| Total | \$                                         | 3.1                             | \$ | 0.5                   | \$ | 7.2           | \$ | 2.0  | \$               | 0.3                 | \$                 | 4.7  | \$                                            | 3.8 | \$                             | 0.6                   | \$ | 8.7 |  |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f, E.38b, E.38f, and E.17j.

## Exhibit F.2b Projections of Yearly Benefits, WTP for Lymphoma as Basis for Non-Fatal Cases (Surface Water Systems Serving 100-499 People)

**TTHM - Preferred Alternative** 

|       |               | _  | /Lung Ca<br>on Lag M |     |                     |                | _  | /Bladder<br>ion Lag I |     |                     |               |    | Bladder<br>on Lag | <br>                |
|-------|---------------|----|----------------------|-----|---------------------|----------------|----|-----------------------|-----|---------------------|---------------|----|-------------------|---------------------|
|       |               | (  | 90 Po<br>Confider    |     | -                   |                |    | 90 P                  |     | -                   |               | (  | 90 P<br>Confider  |                     |
| Year  | Mean<br>Value |    | ∟ower<br>h %tile)    | (95 | Upper<br>5th %tile) | /lean<br>/alue |    | Lower<br>h %tile)     | (95 | Upper<br>5th %tile) | Mean<br>/alue |    | ower<br>h %tile)  | Upper<br>ith %tile) |
| 2005  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-        | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                 | \$<br>-             |
| 2006  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-        | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                 | \$<br>-             |
| 2007  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-        | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                 | \$<br>-             |
| 2008  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-        | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                 | \$<br>-             |
| 2009  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-        | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                 | \$<br>-             |
| 2010  | \$<br>0.1     | \$ | 0.0                  | \$  | 0.1                 | \$<br>0.1      | \$ | 0.0                   | \$  | 0.1                 | \$<br>0.1     | \$ | 0.0               | \$<br>0.3           |
| 2011  | \$<br>0.2     | \$ | 0.0                  | \$  | 0.4                 | \$<br>0.1      | \$ | 0.0                   | \$  | 0.3                 | \$<br>0.3     | \$ | 0.0               | \$<br>0.6           |
| 2012  | \$<br>0.3     | \$ | 0.0                  | \$  | 0.7                 | \$<br>0.2      | \$ | 0.0                   | \$  | 0.5                 | \$<br>0.5     | \$ | 0.1               | \$<br>1.1           |
| 2013  | \$<br>0.5     | \$ | 0.1                  | \$  | 1.1                 | \$<br>0.3      | \$ | 0.0                   | \$  | 0.7                 | \$<br>0.7     | \$ | 0.1               | \$<br>1.7           |
| 2014  | \$<br>0.7     | \$ | 0.1                  | \$  | 1.5                 | \$<br>0.4      | \$ | 0.1                   | \$  | 1.0                 | \$<br>1.0     | \$ | 0.2               | \$<br>2.3           |
| 2015  | \$<br>0.9     | \$ | 0.1                  | \$  | 2.0                 | \$<br>0.6      | \$ | 0.1                   | \$  | 1.3                 | \$<br>1.3     | \$ | 0.2               | \$<br>3.0           |
| 2016  | \$<br>1.1     | \$ | 0.2                  | \$  | 2.5                 | \$<br>0.7      | \$ | 0.1                   | \$  | 1.6                 | \$<br>1.5     | \$ | 0.2               | \$<br>3.6           |
| 2017  | \$<br>1.3     | \$ | 0.2                  | \$  | 2.9                 | \$<br>0.8      | \$ | 0.1                   | \$  | 1.9                 | \$<br>1.7     | \$ | 0.3               | \$<br>4.0           |
| 2018  | \$<br>1.4     | \$ | 0.2                  | \$  | 3.3                 | \$<br>0.9      | \$ | 0.1                   | \$  | 2.1                 | \$<br>1.9     | \$ | 0.3               | \$<br>4.3           |
| 2019  | \$<br>1.6     | \$ | 0.2                  | \$  | 3.7                 | \$<br>1.0      | \$ | 0.1                   | \$  | 2.3                 | \$<br>2.0     | \$ | 0.3               | \$<br>4.6           |
| 2020  | \$<br>1.7     | \$ | 0.3                  | \$  | 4.0                 | \$<br>1.1      | \$ | 0.2                   | \$  | 2.4                 | \$<br>2.1     | \$ | 0.3               | \$<br>4.8           |
| 2021  | \$<br>1.8     | \$ | 0.3                  | \$  | 4.2                 | \$<br>1.1      | \$ | 0.2                   | \$  | 2.6                 | \$<br>2.2     | \$ | 0.3               | \$<br>5.0           |
| 2022  | \$<br>1.9     | \$ | 0.3                  | \$  | 4.4                 | \$<br>1.2      | \$ | 0.2                   | \$  | 2.8                 | \$<br>2.3     | \$ | 0.3               | \$<br>5.2           |
| 2023  | \$<br>2.0     | \$ | 0.3                  | \$  | 4.6                 | \$<br>1.3      | \$ | 0.2                   | \$  | 2.9                 | \$<br>2.3     | \$ | 0.4               | \$<br>5.4           |
| 2024  | \$<br>2.1     | \$ | 0.3                  | \$  | 4.8                 | \$<br>1.3      | \$ | 0.2                   | \$  | 3.1                 | \$<br>2.4     | \$ | 0.4               | \$<br>5.5           |
| 2025  | \$<br>2.2     | \$ | 0.3                  | \$  | 5.0                 | \$<br>1.4      | \$ | 0.2                   | \$  | 3.3                 | \$<br>2.4     | \$ | 0.4               | \$<br>5.7           |
| 2026  | \$<br>2.2     | \$ | 0.3                  | \$  | 5.2                 | \$<br>1.5      | \$ | 0.2                   | \$  | 3.4                 | \$<br>2.5     | \$ | 0.4               | \$<br>5.8           |
| 2027  | \$<br>2.3     | \$ | 0.3                  | \$  | 5.3                 | \$<br>1.5      | \$ | 0.2                   | \$  | 3.6                 | \$<br>2.5     | \$ | 0.4               | \$<br>5.9           |
| 2028  | \$<br>2.3     | \$ | 0.4                  | \$  | 5.4                 | \$<br>1.6      | \$ | 0.2                   | \$  | 3.6                 | \$<br>2.6     | \$ | 0.4               | \$<br>5.9           |
| 2029  | \$<br>2.4     | \$ | 0.4                  | \$  | 5.5                 | \$<br>1.6      | \$ | 0.2                   | \$  | 3.8                 | \$<br>2.6     | \$ | 0.4               | \$<br>6.0           |
| Total | \$<br>28.9    | \$ | 4.4                  | \$  | 66.7                | \$<br>18.8     | \$ | 2.9                   | \$  | 43.4                | \$<br>35.0    | \$ | 5.3               | \$<br>80.8          |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

## Exhibit F.2c Projections of Yearly Benefits, WTP for Lymphoma as Basis for Non-Fatal Cases (Surface Water Systems Serving 500-999 People)

**TTHM - Preferred Alternative** 

|       |               | _  | Lung Ca<br>n Lag M |                    |                | _  | /Bladder<br>ion Lag I |    |                     |               |    | Bladder<br>on Lag |     |                     |
|-------|---------------|----|--------------------|--------------------|----------------|----|-----------------------|----|---------------------|---------------|----|-------------------|-----|---------------------|
|       |               | (  | 90 Po<br>Confider  | <br>               |                | (  | 90 Po<br>Confider     |    |                     |               | (  | 90 P<br>Confide   |     |                     |
| Year  | Mean<br>Value |    | ower<br>h %tile)   | Upper<br>th %tile) | /lean<br>/alue |    | Lower<br>h %tile)     | (9 | Upper<br>5th %tile) | Mean<br>/alue |    | ₋ower<br>h %tile) | (95 | Upper<br>5th %tile) |
| 2005  | \$<br>-       | \$ | -                  | \$<br>-            | \$<br>-        | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                 | \$  | -                   |
| 2006  | \$<br>-       | \$ | -                  | \$<br>-            | \$<br>-        | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                 | \$  | -                   |
| 2007  | \$<br>-       | \$ | -                  | \$<br>-            | \$<br>-        | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                 | \$  | -                   |
| 2008  | \$<br>-       | \$ | -                  | \$<br>-            | \$<br>-        | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                 | \$  | -                   |
| 2009  | \$<br>-       | \$ | -                  | \$<br>-            | \$<br>-        | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                 | \$  | -                   |
| 2010  | \$<br>0.1     | \$ | 0.0                | \$<br>0.3          | \$<br>0.1      | \$ | 0.0                   | \$ | 0.2                 | \$<br>0.2     | \$ | 0.0               | \$  | 0.5                 |
| 2011  | \$<br>0.3     | \$ | 0.0                | \$<br>0.7          | \$<br>0.2      | \$ | 0.0                   | \$ | 0.5                 | \$<br>0.5     | \$ | 0.1               | \$  | 1.1                 |
| 2012  | \$<br>0.5     | \$ | 0.1                | \$<br>1.2          | \$<br>0.4      | \$ | 0.1                   | \$ | 0.9                 | \$<br>0.9     | \$ | 0.1               | \$  | 2.0                 |
| 2013  | \$<br>0.8     | \$ | 0.1                | \$<br>1.9          | \$<br>0.6      | \$ | 0.1                   | \$ | 1.3                 | \$<br>1.3     | \$ | 0.2               | \$  | 3.0                 |
| 2014  | \$<br>1.2     | \$ | 0.2                | \$<br>2.7          | \$<br>8.0      | \$ | 0.1                   | \$ | 1.8                 | \$<br>1.8     | \$ | 0.3               | \$  | 4.1                 |
| 2015  | \$<br>1.6     | \$ | 0.2                | \$<br>3.6          | \$<br>1.0      | \$ | 0.2                   | \$ | 2.4                 | \$<br>2.3     | \$ | 0.3               | \$  | 5.2                 |
| 2016  | \$<br>1.9     | \$ | 0.3                | \$<br>4.5          | \$<br>1.2      | \$ | 0.2                   | \$ | 2.9                 | \$<br>2.7     | \$ | 0.4               | \$  | 6.3                 |
| 2017  | \$<br>2.3     | \$ | 0.3                | \$<br>5.2          | \$<br>1.4      | \$ | 0.2                   | \$ | 3.3                 | \$<br>3.0     | \$ | 0.5               | \$  | 7.0                 |
| 2018  | \$<br>2.5     | \$ | 0.4                | \$<br>5.8          | \$<br>1.6      | \$ | 0.2                   | \$ | 3.6                 | \$<br>3.3     | \$ | 0.5               | \$  | 7.6                 |
| 2019  | \$<br>2.8     | \$ | 0.4                | \$<br>6.4          | \$<br>1.7      | \$ | 0.3                   | \$ | 4.0                 | \$<br>3.5     | \$ | 0.5               | \$  | 8.1                 |
| 2020  | \$<br>3.0     | \$ | 0.5                | \$<br>7.0          | \$<br>1.9      | \$ | 0.3                   | \$ | 4.3                 | \$<br>3.7     | \$ | 0.6               | \$  | 8.5                 |
| 2021  | \$<br>3.2     | \$ | 0.5                | \$<br>7.4          | \$<br>2.0      | \$ | 0.3                   | \$ | 4.6                 | \$<br>3.9     | \$ | 0.6               | \$  | 8.9                 |
| 2022  | \$<br>3.4     | \$ | 0.5                | \$<br>7.8          | \$<br>2.1      | \$ | 0.3                   | \$ | 4.9                 | \$<br>4.0     | \$ | 0.6               | \$  | 9.2                 |
| 2023  | \$<br>3.5     | \$ | 0.5                | \$<br>8.2          | \$<br>2.2      | \$ | 0.3                   | \$ | 5.2                 | \$<br>4.1     | \$ | 0.6               | \$  | 9.5                 |
| 2024  | \$<br>3.7     | \$ | 0.6                | \$<br>8.5          | \$<br>2.4      | \$ | 0.4                   | \$ | 5.5                 | \$<br>4.2     | \$ | 0.6               | \$  | 9.7                 |
| 2025  | \$<br>3.8     | \$ | 0.6                | \$<br>8.8          | \$<br>2.5      | \$ | 0.4                   | \$ | 5.7                 | \$<br>4.3     | \$ | 0.7               | \$  | 10.0                |
| 2026  | \$<br>3.9     | \$ | 0.6                | \$<br>9.1          | \$<br>2.6      | \$ | 0.4                   | \$ | 6.0                 | \$<br>4.4     | \$ | 0.7               | \$  | 10.2                |
| 2027  | \$<br>4.0     | \$ | 0.6                | \$<br>9.4          | \$<br>2.7      | \$ | 0.4                   | \$ | 6.3                 | \$<br>4.5     | \$ | 0.7               | \$  | 10.4                |
| 2028  | \$<br>4.1     | \$ | 0.6                | \$<br>9.5          | \$<br>2.8      | \$ | 0.4                   | \$ | 6.4                 | \$<br>4.5     | \$ | 0.7               | \$  | 10.4                |
| 2029  | \$<br>4.2     | \$ | 0.6                | \$<br>9.7          | \$<br>2.9      | \$ | 0.4                   | \$ | 6.7                 | \$<br>4.6     | \$ | 0.7               | \$  | 10.6                |
| Total | \$<br>50.9    | \$ | 7.7                | \$<br>117.6        | \$<br>33.0     | \$ | 5.0                   | \$ | 76.4                | \$<br>61.6    | \$ | 9.4               | \$  | 142.3               |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

## Exhibit F.2d Projections of Yearly Benefits, WTP for Lymphoma as Basis for Non-Fatal Cases (Surface Water Systems Serving 1,000-3,299 People)

**TTHM - Preferred Alternative** 

|       |               | _  | /Lung Ca<br>on Lag M |                     |               | _  | /Bladder<br>ion Lag l |     |                     |               |    | Bladder<br>ion Lag | -   |                     |
|-------|---------------|----|----------------------|---------------------|---------------|----|-----------------------|-----|---------------------|---------------|----|--------------------|-----|---------------------|
|       |               | (  | 90 Po<br>Confider    | <br>                |               |    | 90 Pe<br>Confider     |     |                     |               | (  | 90 P<br>Confide    |     |                     |
| Year  | Mean<br>Value |    | ₋ower<br>h %tile)    | Upper<br>oth %tile) | Mean<br>Value |    | Lower<br>h %tile)     | (95 | Upper<br>5th %tile) | Mean<br>Value |    | ₋ower<br>h %tile)  | (95 | Upper<br>5th %tile) |
| 2005  | \$<br>-       | \$ | -                    | \$<br>-             | \$<br>-       | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                  | \$  | -                   |
| 2006  | \$<br>-       | \$ | -                    | \$<br>-             | \$<br>-       | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                  | \$  | -                   |
| 2007  | \$<br>-       | \$ | -                    | \$<br>-             | \$<br>-       | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                  | \$  | -                   |
| 2008  | \$<br>-       | \$ | -                    | \$<br>-             | \$<br>-       | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                  | \$  | -                   |
| 2009  | \$<br>-       | \$ | -                    | \$<br>-             | \$<br>-       | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                  | \$  | -                   |
| 2010  | \$<br>0.7     | \$ | 0.1                  | \$<br>1.7           | \$<br>0.6     | \$ | 0.1                   | \$  | 1.4                 | \$<br>1.3     | \$ | 0.2                | \$  | 2.9                 |
| 2011  | \$<br>1.9     | \$ | 0.3                  | \$<br>4.4           | \$<br>1.4     | \$ | 0.2                   | \$  | 3.3                 | \$<br>3.2     | \$ | 0.5                | \$  | 7.3                 |
| 2012  | \$<br>3.4     | \$ | 0.5                  | \$<br>7.9           | \$<br>2.5     | \$ | 0.4                   | \$  | 5.7                 | \$<br>5.5     | \$ | 0.8                | \$  | 12.7                |
| 2013  | \$<br>5.3     | \$ | 0.8                  | \$<br>12.2          | \$<br>3.7     | \$ | 0.6                   | \$  | 8.5                 | \$<br>8.3     | \$ | 1.3                | \$  | 19.1                |
| 2014  | \$<br>7.5     | \$ | 1.2                  | \$<br>17.3          | \$<br>5.1     | \$ | 0.8                   | \$  | 11.7                | \$<br>11.4    | \$ | 1.7                | \$  | 26.1                |
| 2015  | \$<br>10.1    | \$ | 1.5                  | \$<br>23.2          | \$<br>6.6     | \$ | 1.0                   | \$  | 15.3                | \$<br>14.7    | \$ | 2.2                | \$  | 33.8                |
| 2016  | \$<br>12.5    | \$ | 1.9                  | \$<br>28.7          | \$<br>8.0     | \$ | 1.2                   | \$  | 18.5                | \$<br>17.6    | \$ | 2.7                | \$  | 40.4                |
| 2017  | \$<br>14.5    | \$ | 2.2                  | \$<br>33.5          | \$<br>9.1     | \$ | 1.4                   | \$  | 21.0                | \$<br>19.7    | \$ | 3.0                | \$  | 45.2                |
| 2018  | \$<br>16.4    | \$ | 2.5                  | \$<br>37.7          | \$<br>10.1    | \$ | 1.5                   | \$  | 23.4                | \$<br>21.3    | \$ | 3.3                | \$  | 49.1                |
| 2019  | \$<br>18.0    | \$ | 2.7                  | \$<br>41.5          | \$<br>11.1    | \$ | 1.7                   | \$  | 25.6                | \$<br>22.7    | \$ | 3.5                | \$  | 52.4                |
| 2020  | \$<br>19.4    | \$ | 3.0                  | \$<br>44.9          | \$<br>12.0    | \$ | 1.8                   | \$  | 27.7                | \$<br>23.9    | \$ | 3.6                | \$  | 55.1                |
| 2021  | \$<br>20.7    | \$ | 3.2                  | \$<br>47.8          | \$<br>12.9    | \$ | 2.0                   | \$  | 29.7                | \$<br>24.8    | \$ | 3.8                | \$  | 57.4                |
| 2022  | \$<br>21.8    | \$ | 3.3                  | \$<br>50.5          | \$<br>13.7    | \$ | 2.1                   | \$  | 31.6                | \$<br>25.7    | \$ | 3.9                | \$  | 59.5                |
| 2023  | \$<br>22.8    | \$ | 3.5                  | \$<br>52.8          | \$<br>14.5    | \$ | 2.2                   | \$  | 33.5                | \$<br>26.5    | \$ | 4.0                | \$  | 61.2                |
| 2024  | \$<br>23.7    | \$ | 3.6                  | \$<br>54.9          | \$<br>15.2    | \$ | 2.3                   | \$  | 35.3                | \$<br>27.2    | \$ | 4.1                | \$  | 62.8                |
| 2025  | \$<br>24.6    | \$ | 3.7                  | \$<br>56.8          | \$<br>16.0    | \$ | 2.4                   | \$  | 37.0                | \$<br>27.8    | \$ | 4.2                | \$  | 64.3                |
| 2026  | \$<br>25.3    | \$ | 3.8                  | \$<br>58.6          | \$<br>16.7    | \$ | 2.5                   | \$  | 38.7                | \$<br>28.3    | \$ | 4.3                | \$  | 65.7                |
| 2027  | \$<br>26.0    | \$ | 3.9                  | \$<br>60.4          | \$<br>17.4    | \$ | 2.6                   | \$  | 40.4                | \$<br>28.9    | \$ | 4.4                | \$  | 67.0                |
| 2028  | \$<br>26.3    | \$ | 4.0                  | \$<br>61.1          | \$<br>17.9    | \$ | 2.7                   | \$  | 41.5                | \$<br>29.0    | \$ | 4.4                | \$  | 67.2                |
| 2029  | \$<br>26.9    | \$ | 4.1                  | \$<br>62.4          | \$<br>18.5    | \$ | 2.8                   | \$  | 42.9                | \$<br>29.4    | \$ | 4.4                | \$  | 68.2                |
| Total | \$<br>328.0   | \$ | 49.9                 | \$<br>758.2         | \$<br>213.1   | \$ | 32.4                  | \$  | 492.6               | \$<br>397.0   | \$ | 60.4               | \$  | 917.5               |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

## Exhibit F.2e Projections of Yearly Benefits, WTP for Lymphoma as Basis for Non-Fatal Cases (Surface Water Systems Serving 3,300-9,999 People)

**TTHM - Preferred Alternative** 

|       |               | _  | /Lung Ca<br>on Lag M |    |                     |               |    | Bladder           |    |                     |                | Bladder<br>ion Lag | -  |                     |
|-------|---------------|----|----------------------|----|---------------------|---------------|----|-------------------|----|---------------------|----------------|--------------------|----|---------------------|
|       |               |    | 90 Pe<br>Confider    |    |                     |               | (  | 90 Pe<br>Confider |    |                     |                | 90 P<br>Confider   |    |                     |
| Year  | Mean<br>Value | _  | ∟ower<br>h %tile)    | (9 | Upper<br>5th %tile) | Mean<br>Value |    | ₋ower<br>h %tile) | (9 | Upper<br>5th %tile) | Vlean<br>∕alue | Lower<br>h %tile)  | (9 | Upper<br>5th %tile) |
| 2005  | \$<br>-       | \$ | -                    | \$ | -                   | \$<br>-       | \$ | -                 | \$ | -                   | \$<br>-        | \$<br>-            | \$ | -                   |
| 2006  | \$<br>-       | \$ | -                    | \$ | -                   | \$<br>-       | \$ | -                 | \$ | -                   | \$<br>-        | \$<br>-            | \$ | -                   |
| 2007  | \$<br>-       | \$ | -                    | \$ | -                   | \$<br>-       | \$ | -                 | \$ | -                   | \$<br>-        | \$<br>-            | \$ | -                   |
| 2008  | \$<br>-       | \$ | -                    | \$ | -                   | \$<br>-       | \$ | -                 | \$ | -                   | \$<br>-        | \$<br>-            | \$ | -                   |
| 2009  | \$<br>-       | \$ | -                    | \$ | -                   | \$<br>-       | \$ | -                 | \$ | -                   | \$<br>-        | \$<br>-            | \$ | -                   |
| 2010  | \$<br>2.1     | \$ | 0.3                  | \$ | 4.8                 | \$<br>1.7     | \$ | 0.3               | \$ | 3.9                 | \$<br>3.6      | \$<br>0.6          | \$ | 8.4                 |
| 2011  | \$<br>5.4     | \$ | 0.8                  | \$ | 12.4                | \$<br>4.1     | \$ | 0.6               | \$ | 9.4                 | \$<br>9.1      | \$<br>1.4          | \$ | 20.9                |
| 2012  | \$<br>9.8     | \$ | 1.5                  | \$ | 22.5                | \$<br>7.1     | \$ | 1.1               | \$ | 16.2                | \$<br>15.9     | \$<br>2.4          | \$ | 36.5                |
| 2013  | \$<br>15.2    | \$ | 2.3                  | \$ | 34.9                | \$<br>10.6    | \$ | 1.6               | \$ | 24.2                | \$<br>23.7     | \$<br>3.6          | \$ | 54.5                |
| 2014  | \$<br>21.5    | \$ | 3.3                  | \$ | 49.5                | \$<br>14.5    | \$ | 2.2               | \$ | 33.4                | \$<br>32.5     | \$<br>5.0          | \$ | 74.8                |
| 2015  | \$<br>28.8    | \$ | 4.4                  | \$ | 66.2                | \$<br>19.0    | \$ | 2.9               | \$ | 43.7                | \$<br>42.0     | \$<br>6.4          | \$ | 96.7                |
| 2016  | \$<br>35.7    | \$ | 5.5                  | \$ | 82.2                | \$<br>23.0    | \$ | 3.5               | \$ | 52.8                | \$<br>50.3     | \$<br>7.7          | \$ | 115.7               |
| 2017  | \$<br>41.6    | \$ | 6.3                  | \$ | 95.7                | \$<br>26.1    | \$ | 4.0               | \$ | 60.1                | \$<br>56.2     | \$<br>8.6          | \$ | 129.4               |
| 2018  | \$<br>46.8    | \$ | 7.1                  | \$ | 107.8               | \$<br>29.0    | \$ | 4.4               | \$ | 66.9                | \$<br>61.0     | \$<br>9.3          | \$ | 140.5               |
| 2019  | \$<br>51.5    | \$ | 7.8                  | \$ | 118.8               | \$<br>31.7    | \$ | 4.8               | \$ | 73.2                | \$<br>64.9     | \$<br>9.9          | \$ | 149.8               |
| 2020  | \$<br>55.6    | \$ | 8.5                  | \$ | 128.4               | \$<br>34.3    | \$ | 5.2               | \$ | 79.2                | \$<br>68.2     | \$<br>10.4         | \$ | 157.5               |
| 2021  | \$<br>59.3    | \$ | 9.0                  | \$ | 136.8               | \$<br>36.8    | \$ | 5.6               | \$ | 84.9                | \$<br>71.1     | \$<br>10.8         | \$ | 164.1               |
| 2022  | \$<br>62.5    | \$ | 9.5                  | \$ | 144.4               | \$<br>39.1    | \$ | 6.0               | \$ | 90.5                | \$<br>73.5     | \$<br>11.2         | \$ | 170.1               |
| 2023  | \$<br>65.3    | \$ | 9.9                  | \$ | 151.1               | \$<br>41.4    | \$ | 6.3               | \$ | 95.8                | \$<br>75.7     | \$<br>11.5         | \$ | 175.2               |
| 2024  | \$<br>67.9    | \$ | 10.3                 | \$ | 157.1               | \$<br>43.6    | \$ | 6.6               | \$ | 100.9               | \$<br>77.7     | \$<br>11.8         | \$ | 179.8               |
| 2025  | \$<br>70.2    | \$ | 10.7                 | \$ | 162.5               | \$<br>45.8    | \$ | 6.9               | \$ | 105.9               | \$<br>79.5     | \$<br>12.1         | \$ | 183.9               |
| 2026  | \$<br>72.4    | \$ | 11.0                 | \$ | 167.7               | \$<br>47.8    | \$ | 7.2               | \$ | 110.8               | \$<br>81.1     | \$<br>12.3         | \$ | 187.8               |
| 2027  | \$<br>74.4    | \$ | 11.3                 | \$ | 172.7               | \$<br>49.8    | \$ | 7.5               | \$ | 115.6               | \$<br>82.6     | \$<br>12.5         | \$ | 191.6               |
| 2028  | \$<br>75.3    | \$ | 11.4                 | \$ | 174.7               | \$<br>51.1    | \$ | 7.8               | \$ | 118.6               | \$<br>82.9     | \$<br>12.6         | \$ | 192.3               |
| 2029  | \$<br>76.9    | \$ | 11.6                 | \$ | 178.5               | \$<br>52.9    | \$ | 8.0               | \$ | 122.8               | \$<br>84.1     | \$<br>12.7         | \$ | 195.1               |
| Total | \$<br>938.2   | \$ | 142.6                | \$ | 2,168.8             | \$<br>609.5   | \$ | 92.7              | \$ | 1,409.0             | \$<br>1,135.7  | \$<br>172.7        | \$ | 2,624.5             |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

## Exhibit F.2f Projections of Yearly Benefits, WTP for Lymphoma as Basis for Non-Fatal Cases (Surface Water Systems Serving 10,000-49,999 People)

**TTHM - Preferred Alternative** 

|       |               | _  | /Lung Ca<br>on Lag M |     |                     |               | _  | Bladder<br>on Lag l |    |                     |               | /Bladder<br>tion Lag | -   |                     |
|-------|---------------|----|----------------------|-----|---------------------|---------------|----|---------------------|----|---------------------|---------------|----------------------|-----|---------------------|
|       |               | (  | 90 Po<br>Confider    |     |                     |               | (  | 90 P<br>Confider    |    |                     |               | 90 P<br>Confide      |     |                     |
| Year  | Mean<br>Value |    | ₋ower<br>h %tile)    | (9: | Upper<br>5th %tile) | Mean<br>Value |    | ower<br>n %tile)    | (9 | Upper<br>5th %tile) | Mean<br>Value | Lower<br>th %tile)   | (9: | Upper<br>5th %tile) |
| 2005  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-       | \$ | -                   | \$ | -                   | \$<br>-       | \$<br>-              | \$  | -                   |
| 2006  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-       | \$ | -                   | \$ | -                   | \$<br>-       | \$<br>-              | \$  | -                   |
| 2007  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-       | \$ | -                   | \$ | -                   | \$<br>-       | \$<br>-              | \$  | -                   |
| 2008  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-       | \$ | -                   | \$ | -                   | \$<br>-       | \$<br>-              | \$  | -                   |
| 2009  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-       | \$ | -                   | \$ | -                   | \$<br>-       | \$<br>-              | \$  | -                   |
| 2010  | \$<br>13.8    | \$ | 2.1                  | \$  | 31.8                | \$<br>13.2    | \$ | 2.0                 | \$ | 30.4                | \$<br>26.1    | \$<br>4.0            | \$  | 59.9                |
| 2011  | \$<br>35.8    | \$ | 5.5                  | \$  | 82.3                | \$<br>31.3    | \$ | 4.8                 | \$ | 72.0                | \$<br>63.7    | \$<br>9.8            | \$  | 146.5               |
| 2012  | \$<br>64.7    | \$ | 9.9                  | \$  | 148.6               | \$<br>53.3    | \$ | 8.2                 | \$ | 122.5               | \$<br>109.9   | \$<br>16.8           | \$  | 252.4               |
| 2013  | \$<br>100.2   | \$ | 15.3                 | \$  | 230.2               | \$<br>78.9    | \$ | 12.1                | \$ | 181.1               | \$<br>162.8   | \$<br>24.9           | \$  | 373.9               |
| 2014  | \$<br>142.5   | \$ | 21.8                 | \$  | 327.5               | \$<br>107.6   | \$ | 16.4                | \$ | 247.3               | \$<br>221.3   | \$<br>33.8           | \$  | 508.8               |
| 2015  | \$<br>183.9   | \$ | 28.1                 | \$  | 422.9               | \$<br>132.4   | \$ | 20.2                | \$ | 304.5               | \$<br>271.0   | \$<br>41.4           | \$  | 623.2               |
| 2016  | \$<br>219.1   | \$ | 33.5                 | \$  | 503.8               | \$<br>150.6   | \$ | 23.0                | \$ | 346.2               | \$<br>304.8   | \$<br>46.6           | \$  | 701.1               |
| 2017  | \$<br>250.9   | \$ | 38.3                 | \$  | 577.6               | \$<br>166.8   | \$ | 25.5                | \$ | 384.0               | \$<br>331.8   | \$<br>50.7           | \$  | 763.8               |
| 2018  | \$<br>279.8   | \$ | 42.7                 | \$  | 644.5               | \$<br>181.9   | \$ | 27.7                | \$ | 419.1               | \$<br>354.1   | \$<br>54.0           | \$  | 815.7               |
| 2019  | \$<br>305.4   | \$ | 46.5                 | \$  | 704.7               | \$<br>196.1   | \$ | 29.9                | \$ | 452.5               | \$<br>372.9   | \$<br>56.8           | \$  | 860.5               |
| 2020  | \$<br>327.5   | \$ | 49.9                 | \$  | 756.2               | \$<br>209.5   | \$ | 31.9                | \$ | 483.7               | \$<br>389.1   | \$<br>59.2           | \$  | 898.4               |
| 2021  | \$<br>346.7   | \$ | 52.7                 | \$  | 800.5               | \$<br>222.3   | \$ | 33.8                | \$ | 513.3               | \$<br>403.3   | \$<br>61.3           | \$  | 931.2               |
| 2022  | \$<br>363.7   | \$ | 55.3                 | \$  | 841.1               | \$<br>234.7   | \$ | 35.7                | \$ | 542.7               | \$<br>415.9   | \$<br>63.2           | \$  | 962.0               |
| 2023  | \$<br>378.9   | \$ | 57.6                 | \$  | 876.4               | \$<br>246.5   | \$ | 37.5                | \$ | 570.3               | \$<br>427.3   | \$<br>65.0           | \$  | 988.5               |
| 2024  | \$<br>392.7   | \$ | 59.7                 | \$  | 908.7               | \$<br>258.0   | \$ | 39.2                | \$ | 597.1               | \$<br>437.7   | \$<br>66.5           | \$  | 1,012.9             |
| 2025  | \$<br>405.3   | \$ | 61.5                 | \$  | 938.1               | \$<br>269.1   | \$ | 40.9                | \$ | 622.9               | \$<br>447.3   | \$<br>67.9           | \$  | 1,035.1             |
| 2026  | \$<br>417.0   | \$ | 63.2                 | \$  | 966.0               | \$<br>280.0   | \$ | 42.4                | \$ | 648.5               | \$<br>456.2   | \$<br>69.1           | \$  | 1,056.7             |
| 2027  | \$<br>428.0   | \$ | 64.8                 | \$  | 992.9               | \$<br>290.5   | \$ | 44.0                | \$ | 674.0               | \$<br>464.6   | \$<br>70.3           | \$  | 1,077.8             |
| 2028  | \$<br>432.6   | \$ | 65.6                 | \$  | 1,003.1             | \$<br>296.9   | \$ | 45.0                | \$ | 688.4               | \$<br>466.4   | \$<br>70.7           | \$  | 1,081.5             |
| 2029  | \$<br>441.2   | \$ | 66.8                 | \$  | 1,023.9             | \$<br>306.1   | \$ | 46.3                | \$ | 710.4               | \$<br>472.8   | \$<br>71.6           | \$  | 1,097.4             |
| Total | \$<br>5,529.5 | \$ | 840.8                | \$  | 12,780.7            | \$<br>3,725.7 | \$ | 566.5               | \$ | 8,611.1             | \$<br>6,599.0 | \$<br>1,003.8        | \$  | 15,247.3            |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

## Exhibit F.2g Projections of Yearly Benefits, WTP for Lymphoma as Basis for Non-Fatal Cases (Surface Water Systems Serving 50,000-99,999 People)

**TTHM - Preferred Alternative** 

|       |               | _  | /Lung Ca<br>on Lag M |     |                     |               | _  | Bladder<br>on Lag I |    |                     |    |               |    | Bladder<br>on Lag I | -  |                     |
|-------|---------------|----|----------------------|-----|---------------------|---------------|----|---------------------|----|---------------------|----|---------------|----|---------------------|----|---------------------|
|       |               | (  | 90 Pe<br>Confider    |     |                     |               |    | 90 Pe<br>Confider   |    |                     |    |               | (  | 90 P                |    |                     |
| Year  | Mean<br>Value |    | ₋ower<br>h %tile)    | (95 | Upper<br>5th %tile) | Mean<br>Value |    | ₋ower<br>h %tile)   | (9 | Upper<br>5th %tile) | 1  | Mean<br>Value |    | ₋ower<br>h %tile)   | (9 | Upper<br>5th %tile) |
| 2005  | \$<br>-       | \$ |                      | \$  |                     | \$<br>-       | \$ |                     | \$ | -                   | \$ | -             | \$ | -                   | \$ | -                   |
| 2006  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-       | \$ | -                   | \$ | -                   | \$ | -             | \$ | -                   | \$ | -                   |
| 2007  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-       | \$ | -                   | \$ | -                   | \$ | -             | \$ | -                   | \$ | -                   |
| 2008  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-       | \$ | -                   | \$ | -                   | \$ | -             | \$ | -                   | \$ | -                   |
| 2009  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-       | \$ | -                   | \$ | -                   | \$ | -             | \$ | -                   | \$ | -                   |
| 2010  | \$<br>12.0    | \$ | 1.8                  | \$  | 27.7                | \$<br>11.5    | \$ | 1.8                 | \$ | 26.5                | \$ | 22.7          | \$ | 3.5                 | \$ | 52.2                |
| 2011  | \$<br>31.2    | \$ | 4.8                  | \$  | 71.7                | \$<br>27.3    | \$ | 4.2                 | \$ | 62.8                | \$ | 55.5          | \$ | 8.5                 | \$ | 127.7               |
| 2012  | \$<br>56.4    | \$ | 8.6                  | \$  | 129.5               | \$<br>46.5    | \$ | 7.1                 | \$ | 106.8               | \$ | 95.7          | \$ | 14.7                | \$ | 219.9               |
| 2013  | \$<br>87.3    | \$ | 13.4                 | \$  | 200.6               | \$<br>68.7    | \$ | 10.5                | \$ | 157.8               | \$ | 141.9         | \$ | 21.7                | \$ | 325.8               |
| 2014  | \$<br>117.9   | \$ | 18.0                 | \$  | 271.0               | \$<br>87.8    | \$ | 13.4                | \$ | 201.7               | \$ | 181.1         | \$ | 27.7                | \$ | 416.2               |
| 2015  | \$<br>144.0   | \$ | 22.0                 | \$  | 331.2               | \$<br>101.2   | \$ | 15.5                | \$ | 232.7               | \$ | 207.2         | \$ | 31.7                | \$ | 476.6               |
| 2016  | \$<br>168.0   | \$ | 25.7                 | \$  | 386.2               | \$<br>113.1   | \$ | 17.3                | \$ | 260.2               | \$ | 227.9         | \$ | 34.8                | \$ | 524.1               |
| 2017  | \$<br>189.8   | \$ | 29.0                 | \$  | 436.8               | \$<br>124.1   | \$ | 19.0                | \$ | 285.7               | \$ | 244.8         | \$ | 37.4                | \$ | 563.5               |
| 2018  | \$<br>209.1   | \$ | 31.9                 | \$  | 481.8               | \$<br>134.4   | \$ | 20.5                | \$ | 309.6               | \$ | 259.0         | \$ | 39.5                | \$ | 596.7               |
| 2019  | \$<br>225.8   | \$ | 34.4                 | \$  | 521.1               | \$<br>144.1   | \$ | 22.0                | \$ | 332.6               | \$ | 271.2         | \$ | 41.3                | \$ | 625.8               |
| 2020  | \$<br>240.1   | \$ | 36.6                 | \$  | 554.4               | \$<br>153.4   | \$ | 23.4                | \$ | 354.2               | \$ | 281.8         | \$ | 42.9                | \$ | 650.6               |
| 2021  | \$<br>252.7   | \$ | 38.4                 | \$  | 583.6               | \$<br>162.3   | \$ | 24.7                | \$ | 374.8               | \$ | 291.2         | \$ | 44.3                | \$ | 672.3               |
| 2022  | \$<br>264.0   | \$ | 40.1                 | \$  | 610.6               | \$<br>170.9   | \$ | 26.0                | \$ | 395.2               | \$ | 299.6         | \$ | 45.6                | \$ | 692.8               |
| 2023  | \$<br>274.2   | \$ | 41.7                 | \$  | 634.3               | \$<br>179.1   | \$ | 27.2                | \$ | 414.4               | \$ | 307.2         | \$ | 46.7                | \$ | 710.7               |
| 2024  | \$<br>283.5   | \$ | 43.1                 | \$  | 656.1               | \$<br>187.2   | \$ | 28.5                | \$ | 433.1               | \$ | 314.2         | \$ | 47.8                | \$ | 727.2               |
| 2025  | \$<br>292.1   | \$ | 44.3                 | \$  | 676.0               | \$<br>194.9   | \$ | 29.6                | \$ | 451.2               | \$ | 320.7         | \$ | 48.7                | \$ | 742.3               |
| 2026  | \$<br>300.1   | \$ | 45.5                 | \$  | 695.1               | \$<br>202.5   | \$ | 30.7                | \$ | 469.1               | \$ | 326.9         | \$ | 49.5                | \$ | 757.1               |
| 2027  | \$<br>307.6   | \$ | 46.6                 | \$  | 713.6               | \$<br>209.9   | \$ | 31.8                | \$ | 486.9               | \$ | 332.6         | \$ | 50.4                | \$ | 771.7               |
| 2028  | \$<br>310.6   | \$ | 47.1                 | \$  | 720.1               | \$<br>214.3   | \$ | 32.5                | \$ | 496.9               | \$ | 333.8         | \$ | 50.6                | \$ | 773.9               |
| 2029  | \$<br>316.5   | \$ | 47.9                 | \$  | 734.5               | \$<br>220.7   | \$ | 33.4                | \$ | 512.3               | \$ | 338.2         | \$ | 51.2                | \$ | 784.9               |
| Total | \$<br>4,082.8 | \$ | 620.9                | \$  | 9,435.8             | \$<br>2,754.0 | \$ | 418.8               | \$ | 6,364.5             | \$ | 4,853.1       | \$ | 738.3               | \$ | 11,212.0            |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

## Exhibit F.2h Projections of Yearly Benefits, WTP for Lymphoma as Basis for Non-Fatal Cases (Surface Water Systems Serving 100,000-999,999 People)

**TTHM - Preferred Alternative** 

|       |                | _  | g/Lung Ca<br>on Lag M |    |                     |                | _  | /Bladder (<br>ion Lag N |    |                     |                |    | Bladder C          |     | -                   |
|-------|----------------|----|-----------------------|----|---------------------|----------------|----|-------------------------|----|---------------------|----------------|----|--------------------|-----|---------------------|
|       |                |    | 90 Po                 |    |                     |                |    | 90 P                    |    |                     |                |    | 90 P               |     |                     |
| Year  | Mean<br>Value  |    | Lower<br>th %tile)    | (9 | Upper<br>5th %tile) | Mean<br>Value  |    | Lower<br>th %tile)      | (9 | Upper<br>5th %tile) | Mean<br>Value  | (5 | Lower<br>th %tile) | (9: | Upper<br>5th %tile) |
| 2005  | \$<br>-        | \$ | -                     | \$ | -                   | \$<br>-        | \$ | -                       | \$ | -                   | \$<br>-        | \$ | -                  | \$  | -                   |
| 2006  | \$<br>-        | \$ | -                     | \$ | -                   | \$<br>-        | \$ | -                       | \$ | -                   | \$<br>-        | \$ | -                  | \$  | -                   |
| 2007  | \$<br>-        | \$ | -                     | \$ | -                   | \$<br>-        | \$ | -                       | \$ | -                   | \$<br>-        | \$ | -                  | \$  | -                   |
| 2008  | \$<br>-        | \$ | -                     | \$ | -                   | \$<br>-        | \$ | -                       | \$ | -                   | \$<br>-        | \$ | -                  | \$  | -                   |
| 2009  | \$<br>-        | \$ | -                     | \$ | -                   | \$<br>-        | \$ | -                       | \$ | -                   | \$<br>-        | \$ | -                  | \$  | -                   |
| 2010  | \$<br>53.3     | \$ | 8.2                   | \$ | 122.5               | \$<br>51.0     | \$ | 7.8                     | \$ | 117.3               | \$<br>100.4    | \$ | 15.4               | \$  | 230.9               |
| 2011  | \$<br>137.9    | \$ | 21.1                  | \$ | 317.1               | \$<br>120.7    | \$ | 18.5                    | \$ | 277.6               | \$<br>245.6    | \$ | 37.6               | \$  | 564.8               |
| 2012  | \$<br>249.4    | \$ | 38.2                  | \$ | 572.9               | \$<br>205.6    | \$ | 31.5                    | \$ | 472.3               | \$<br>423.5    | \$ | 64.8               | \$  | 972.9               |
| 2013  | \$<br>386.4    | \$ | 59.1                  | \$ | 887.5               | \$<br>304.0    | \$ | 46.5                    | \$ | 698.2               | \$<br>627.6    | \$ | 96.1               | \$  | 1,441.5             |
| 2014  | \$<br>493.7    | \$ | 75.5                  | \$ | 1,134.9             | \$<br>361.7    | \$ | 55.3                    | \$ | 831.4               | \$<br>748.7    | \$ | 114.5              | \$  | 1,721.1             |
| 2015  | \$<br>593.4    | \$ | 90.7                  | \$ | 1,364.7             | \$<br>411.6    | \$ | 62.9                    | \$ | 946.6               | \$<br>841.8    | \$ | 128.7              | \$  | 1,935.9             |
| 2016  | \$<br>685.7    | \$ | 104.7                 | \$ | 1,576.9             | \$<br>456.9    | \$ | 69.8                    | \$ | 1,050.8             | \$<br>916.8    | \$ | 140.1              | \$  | 2,108.4             |
| 2017  | \$<br>769.5    | \$ | 117.5                 | \$ | 1,771.3             | \$<br>499.0    | \$ | 76.2                    | \$ | 1,148.6             | \$<br>979.0    | \$ | 149.5              | \$  | 2,253.6             |
| 2018  | \$<br>842.5    | \$ | 128.5                 | \$ | 1,940.9             | \$<br>538.5    | \$ | 82.1                    | \$ | 1,240.6             | \$<br>1,031.7  | \$ | 157.3              | \$  | 2,376.8             |
| 2019  | \$<br>904.1    | \$ | 137.7                 | \$ | 2,086.4             | \$<br>576.1    | \$ | 87.8                    | \$ | 1,329.4             | \$<br>1,077.1  | \$ | 164.1              | \$  | 2,485.6             |
| 2020  | \$<br>957.8    | \$ | 145.8                 | \$ | 2,211.2             | \$<br>612.0    | \$ | 93.2                    | \$ | 1,412.8             | \$<br>1,116.9  | \$ | 170.1              | \$  | 2,578.6             |
| 2021  | \$<br>1,005.3  | \$ | 152.9                 | \$ | 2,321.1             | \$<br>646.4    | \$ | 98.3                    | \$ | 1,492.5             | \$<br>1,152.3  | \$ | 175.3              | \$  | 2,660.5             |
| 2022  | \$<br>1,047.9  | \$ | 159.4                 | \$ | 2,423.7             | \$<br>679.6    | \$ | 103.3                   | \$ | 1,571.8             | \$<br>1,184.2  | \$ | 180.1              | \$  | 2,738.7             |
| 2023  | \$<br>1,086.7  | \$ | 165.3                 | \$ | 2,513.9             | \$<br>711.7    | \$ | 108.3                   | \$ | 1,646.5             | \$<br>1,213.2  | \$ | 184.5              | \$  | 2,806.7             |
| 2024  | \$<br>1,122.2  | \$ | 170.6                 | \$ | 2,597.0             | \$<br>742.9    | \$ | 112.9                   | \$ | 1,719.2             | \$<br>1,240.1  | \$ | 188.5              | \$  | 2,869.8             |
| 2025  | \$<br>1,155.0  | \$ | 175.3                 | \$ | 2,673.2             | \$<br>773.1    | \$ | 117.4                   | \$ | 1,789.3             | \$<br>1,265.1  | \$ | 192.0              | \$  | 2,927.9             |
| 2026  | \$<br>1,185.7  | \$ | 179.7                 | \$ | 2,746.6             | \$<br>802.6    | \$ | 121.7                   | \$ | 1,859.1             | \$<br>1,288.6  | \$ | 195.3              | \$  | 2,984.9             |
| 2027  | \$<br>1,214.6  | \$ | 183.9                 | \$ | 2,817.8             | \$<br>831.3    | \$ | 125.9                   | \$ | 1,928.7             | \$<br>1,310.9  | \$ | 198.5              | \$  | 3,041.3             |
| 2028  | \$<br>1,225.8  | \$ | 185.8                 | \$ | 2,842.2             | \$<br>848.3    | \$ | 128.6                   | \$ | 1,966.9             | \$<br>1,315.0  | \$ | 199.3              | \$  | 3,049.1             |
| 2029  | \$<br>1,248.5  | \$ | 188.9                 | \$ | 2,897.5             | \$<br>873.3    | \$ | 132.2                   | \$ | 2,026.9             | \$<br>1,332.1  | \$ | 201.6              | \$  | 3,091.6             |
| Total | \$<br>16,365.2 | \$ | 2,488.8               | \$ | 37,819.2            | \$<br>11,046.4 | \$ | 1,680.0                 | \$ | 25,526.7            | \$<br>19,410.5 | \$ | 2,953.1            | \$  | 44,840.6            |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

## Exhibit F.2i Projections of Yearly Benefits, WTP for Lymphoma as Basis for Non-Fatal Cases (Surface Water Systems Serving ≥1,000,000 People)

**TTHM - Preferred Alternative** 

|       |                | _  | J/Lung Ca<br>on Lag M |    |                     |               | _  | /Bladder (<br>ion Lag N |    |                     |                |    | Bladder C          |    |                     |
|-------|----------------|----|-----------------------|----|---------------------|---------------|----|-------------------------|----|---------------------|----------------|----|--------------------|----|---------------------|
|       |                |    | 90 Po                 |    |                     |               |    | 90 P                    |    |                     |                |    | 90 P               |    |                     |
| Year  | Mean<br>Value  |    | Lower<br>th %tile)    | (9 | Upper<br>5th %tile) | Mean<br>Value |    | Lower<br>th %tile)      | (9 | Upper<br>5th %tile) | Mean<br>Value  | (5 | Lower<br>th %tile) | (9 | Upper<br>5th %tile) |
| 2005  | \$<br>-        | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                       | \$ | -                   | \$<br>-        | \$ | -                  | \$ | -                   |
| 2006  | \$<br>-        | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                       | \$ | -                   | \$<br>-        | \$ | -                  | \$ | -                   |
| 2007  | \$<br>-        | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                       | \$ | -                   | \$<br>-        | \$ | -                  | \$ | -                   |
| 2008  | \$<br>-        | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                       | \$ | -                   | \$<br>-        | \$ | -                  | \$ | -                   |
| 2009  | \$<br>-        | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                       | \$ | -                   | \$<br>-        | \$ | -                  | \$ | -                   |
| 2010  | \$<br>45.4     | \$ | 6.9                   | \$ | 104.3               | \$<br>43.4    | \$ | 6.6                     | \$ | 99.8                | \$<br>85.5     | \$ | 13.1               | \$ | 196.5               |
| 2011  | \$<br>117.3    | \$ | 18.0                  | \$ | 269.8               | \$<br>102.7   | \$ | 15.7                    | \$ | 236.3               | \$<br>209.0    | \$ | 32.0               | \$ | 480.7               |
| 2012  | \$<br>212.3    | \$ | 32.5                  | \$ | 487.6               | \$<br>175.0   | \$ | 26.8                    | \$ | 402.0               | \$<br>360.4    | \$ | 55.2               | \$ | 828.0               |
| 2013  | \$<br>328.8    | \$ | 50.3                  | \$ | 755.3               | \$<br>258.7   | \$ | 39.6                    | \$ | 594.2               | \$<br>534.1    | \$ | 81.8               | \$ | 1,226.8             |
| 2014  | \$<br>420.2    | \$ | 64.2                  | \$ | 965.9               | \$<br>307.8   | \$ | 47.1                    | \$ | 707.5               | \$<br>637.2    | \$ | 97.4               | \$ | 1,464.7             |
| 2015  | \$<br>505.0    | \$ | 77.2                  | \$ | 1,161.4             | \$<br>350.3   | \$ | 53.6                    | \$ | 805.6               | \$<br>716.4    | \$ | 109.5              | \$ | 1,647.6             |
| 2016  | \$<br>583.6    | \$ | 89.1                  | \$ | 1,342.0             | \$<br>388.9   | \$ | 59.4                    | \$ | 894.3               | \$<br>780.2    | \$ | 119.2              | \$ | 1,794.3             |
| 2017  | \$<br>654.9    | \$ | 100.0                 | \$ | 1,507.5             | \$<br>424.7   | \$ | 64.8                    | \$ | 977.5               | \$<br>833.2    | \$ | 127.2              | \$ | 1,917.9             |
| 2018  | \$<br>717.0    | \$ | 109.3                 | \$ | 1,651.8             | \$<br>458.3   | \$ | 69.9                    | \$ | 1,055.9             | \$<br>878.0    | \$ | 133.9              | \$ | 2,022.8             |
| 2019  | \$<br>769.5    | \$ | 117.2                 | \$ | 1,775.7             | \$<br>490.3   | \$ | 74.7                    | \$ | 1,131.4             | \$<br>916.7    | \$ | 139.6              | \$ | 2,115.4             |
| 2020  | \$<br>815.1    | \$ | 124.1                 | \$ | 1,881.9             | \$<br>520.8   | \$ | 79.3                    | \$ | 1,202.4             | \$<br>950.5    | \$ | 144.7              | \$ | 2,194.6             |
| 2021  | \$<br>855.6    | \$ | 130.1                 | \$ | 1,975.4             | \$<br>550.1   | \$ | 83.7                    | \$ | 1,270.2             | \$<br>980.7    | \$ | 149.2              | \$ | 2,264.3             |
| 2022  | \$<br>891.9    | \$ | 135.6                 | \$ | 2,062.7             | \$<br>578.4   | \$ | 88.0                    | \$ | 1,337.7             | \$<br>1,007.8  | \$ | 153.2              | \$ | 2,330.8             |
| 2023  | \$<br>924.8    | \$ | 140.7                 | \$ | 2,139.4             | \$<br>605.7   | \$ | 92.1                    | \$ | 1,401.3             | \$<br>1,032.5  | \$ | 157.0              | \$ | 2,388.7             |
| 2024  | \$<br>955.0    | \$ | 145.2                 | \$ | 2,210.2             | \$<br>632.2   | \$ | 96.1                    | \$ | 1,463.1             | \$<br>1,055.4  | \$ | 160.4              | \$ | 2,442.4             |
| 2025  | \$<br>983.0    | \$ | 149.2                 | \$ | 2,275.1             | \$<br>658.0   | \$ | 99.9                    | \$ | 1,522.8             | \$<br>1,076.7  | \$ | 163.4              | \$ | 2,491.8             |
| 2026  | \$<br>1,009.1  | \$ | 153.0                 | \$ | 2,337.5             | \$<br>683.1   | \$ | 103.5                   | \$ | 1,582.2             | \$<br>1,096.7  | \$ | 166.2              | \$ | 2,540.3             |
| 2027  | \$<br>1,033.7  | \$ | 156.5                 | \$ | 2,398.1             | \$<br>707.5   | \$ | 107.1                   | \$ | 1,641.4             | \$<br>1,115.7  | \$ | 168.9              | \$ | 2,588.3             |
| 2028  | \$<br>1,043.2  | \$ | 158.1                 | \$ | 2,418.9             | \$<br>722.0   | \$ | 109.4                   | \$ | 1,674.0             | \$<br>1,119.2  | \$ | 169.6              | \$ | 2,594.9             |
| 2029  | \$<br>1,062.5  | \$ | 160.8                 | \$ | 2,466.0             | \$<br>743.3   | \$ | 112.5                   | \$ | 1,725.0             | \$<br>1,133.7  | \$ | 171.6              | \$ | 2,631.1             |
| Total | \$<br>13,927.7 | \$ | 2,118.1               | \$ | 32,186.3            | \$<br>9,401.1 | \$ | 1,429.8                 | \$ | 21,724.7            | \$<br>16,519.5 | \$ | 2,513.3            | \$ | 38,162.0            |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

#### Exhibit F.2j Projections of Yearly Benefits, WTP for Lymphoma as Basis for Non-Fatal Cases (All Surface Water Systems)

**TTHM - Preferred Alternative** 

|       |                | g/Lung Ca<br>ion Lag M |    |                     |                |    | g/Bladder<br>tion Lag l |    |                      |                |    | Bladder 0          |    | -                    |
|-------|----------------|------------------------|----|---------------------|----------------|----|-------------------------|----|----------------------|----------------|----|--------------------|----|----------------------|
|       |                | 90 P<br>Confider       |    |                     |                |    | 90 F<br>Confide         |    | -                    |                |    | 90 F<br>Confide    |    |                      |
| Year  | Mean<br>Value  | Lower<br>th %tile)     | (9 | Upper<br>5th %tile) | Mean<br>Value  | (5 | Lower<br>th %tile)      | (: | Upper<br>95th %tile) | Mean<br>Value  | (5 | Lower<br>th %tile) | (9 | Upper<br>95th %tile) |
| 2005  | \$<br>-        | \$                     | \$ | -                   | \$<br>-        | \$ | -                       | \$ | -                    | \$<br>-        | \$ | -                  | \$ | -                    |
| 2006  | \$<br>-        | \$<br>-                | \$ | -                   | \$<br>-        | \$ | -                       | \$ | -                    | \$<br>-        | \$ | -                  | \$ | -                    |
| 2007  | \$<br>-        | \$<br>-                | \$ | -                   | \$<br>-        | \$ | -                       | \$ | -                    | \$<br>-        | \$ | -                  | \$ | -                    |
| 2008  | \$<br>-        | \$<br>-                | \$ | -                   | \$<br>-        | \$ | -                       | \$ | -                    | \$<br>-        | \$ | -                  | \$ | -                    |
| 2009  | \$<br>-        | \$<br>-                | \$ | -                   | \$<br>-        | \$ | -                       | \$ | -                    | \$<br>-        | \$ | -                  | \$ | -                    |
| 2010  | \$<br>127.5    | \$<br>19.5             | \$ | 293.1               | \$<br>121.6    | \$ | 18.6                    | \$ | 279.6                | \$<br>239.9    | \$ | 36.7               | \$ | 551.5                |
| 2011  | \$<br>329.9    | \$<br>50.5             | \$ | 758.7               | \$<br>287.9    | \$ | 44.1                    | \$ | 662.3                | \$<br>586.8    | \$ | 89.9               | \$ | 1,349.7              |
| 2012  | \$<br>596.8    | \$<br>91.3             | \$ | 1,371.1             | \$<br>490.5    | \$ | 75.1                    | \$ | 1,126.9              | \$<br>1,012.4  | \$ | 154.9              | \$ | 2,325.6              |
| 2013  | \$<br>924.6    | \$<br>141.5            | \$ | 2,123.7             | \$<br>725.4    | \$ | 111.0                   | \$ | 1,666.2              | \$<br>1,500.5  | \$ | 229.7              | \$ | 3,446.4              |
| 2014  | \$<br>1,205.1  | \$<br>184.2            | \$ | 2,770.3             | \$<br>885.7    | \$ | 135.4                   | \$ | 2,036.0              | \$<br>1,835.0  | \$ | 280.5              | \$ | 4,218.3              |
| 2015  | \$<br>1,467.7  | \$<br>224.4            | \$ | 3,375.5             | \$<br>1,022.8  | \$ | 156.4                   | \$ | 2,352.3              | \$<br>2,096.8  | \$ | 320.6              | \$ | 4,822.3              |
| 2016  | \$<br>1,707.6  | \$<br>260.9            | \$ | 3,927.1             | \$<br>1,142.5  | \$ | 174.5                   | \$ | 2,627.5              | \$<br>2,302.1  | \$ | 351.7              | \$ | 5,294.2              |
| 2017  | \$<br>1,924.8  | \$<br>293.9            | \$ | 4,430.8             | \$<br>1,252.2  | \$ | 191.2                   | \$ | 2,882.3              | \$<br>2,469.6  | \$ | 377.1              | \$ | 5,684.9              |
| 2018  | \$<br>2,115.6  | \$<br>322.6            | \$ | 4,874.0             | \$<br>1,354.9  | \$ | 206.6                   | \$ | 3,121.4              | \$<br>2,610.5  | \$ | 398.0              | \$ | 6,014.0              |
| 2019  | \$<br>2,278.8  | \$<br>347.1            | \$ | 5,258.7             | \$<br>1,452.2  | \$ | 221.2                   | \$ | 3,351.1              | \$<br>2,731.2  | \$ | 416.0              | \$ | 6,302.7              |
| 2020  | \$<br>2,420.6  | \$<br>368.6            | \$ | 5,588.4             | \$<br>1,545.0  | \$ | 235.3                   | \$ | 3,567.0              | \$<br>2,836.4  | \$ | 431.9              | \$ | 6,548.6              |
| 2021  | \$<br>2,545.5  | \$<br>387.2            | \$ | 5,877.3             | \$<br>1,634.1  | \$ | 248.5                   | \$ | 3,772.9              | \$<br>2,929.6  | \$ | 445.6              | \$ | 6,764.2              |
| 2022  | \$<br>2,657.3  | \$<br>404.1            | \$ | 6,145.7             | \$<br>1,719.8  | \$ | 261.5                   | \$ | 3,977.6              | \$<br>3,013.2  | \$ | 458.2              | \$ | 6,968.9              |
| 2023  | \$<br>2,758.4  | \$<br>419.5            | \$ | 6,381.3             | \$<br>1,802.7  | \$ | 274.2                   | \$ | 4,170.3              | \$<br>3,089.2  | \$ | 469.8              | \$ | 7,146.4              |
| 2024  | \$<br>2,851.0  | \$<br>433.4            | \$ | 6,597.8             | \$<br>1,883.0  | \$ | 286.2                   | \$ | 4,357.7              | \$<br>3,159.0  | \$ | 480.2              | \$ | 7,310.8              |
| 2025  | \$<br>2,936.4  | \$<br>445.7            | \$ | 6,796.0             | \$<br>1,961.0  | \$ | 297.7                   | \$ | 4,538.5              | \$<br>3,224.0  | \$ | 489.4              | \$ | 7,461.5              |
| 2026  | \$<br>3,016.1  | \$<br>457.2            | \$ | 6,986.4             | \$<br>2,036.9  | \$ | 308.8                   | \$ | 4,718.3              | \$<br>3,284.9  | \$ | 497.9              | \$ | 7,609.1              |
| 2027  | \$<br>3,090.8  | \$<br>468.0            | \$ | 7,170.6             | \$<br>2,110.9  | \$ | 319.6                   | \$ | 4,897.3              | \$<br>3,342.6  | \$ | 506.1              | \$ | 7,754.7              |
| 2028  | \$<br>3,120.5  | \$<br>472.9            | \$ | 7,235.5             | \$<br>2,155.0  | \$ | 326.6                   | \$ | 4,996.7              | \$<br>3,353.7  | \$ | 508.2              | \$ | 7,776.0              |
| 2029  | \$<br>3,179.2  | \$<br>481.1            | \$ | 7,378.5             | \$<br>2,219.5  | \$ | 335.9                   | \$ | 5,151.1              | \$<br>3,397.7  | \$ | 514.2              | \$ | 7,885.6              |
| Total | \$<br>41,254.3 | \$<br>6,273.7          | \$ | 95,340.5            | \$<br>27,803.6 | \$ | 4,228.4                 | \$ | 64,252.9             | \$<br>49,015.1 | \$ | 7,456.8            | \$ | 113,235.6            |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

## Exhibit F.2k Projections of Yearly Benefits, WTP for Lymphoma as Basis for Non-Fatal Cases (Ground Water Systems Serving <100 People)

**TTHM - Preferred Alternative** 

|       |               | _  | Lung Ca<br>n Lag M |                    |                | _  | /Bladder<br>ion Lag I |    |                     |               |    | Bladder<br>on Lag l |     |                     |
|-------|---------------|----|--------------------|--------------------|----------------|----|-----------------------|----|---------------------|---------------|----|---------------------|-----|---------------------|
|       |               | (  | 90 Po<br>Confider  | <br>               |                | (  | 90 Po<br>Confider     |    |                     |               | C  | 90 P<br>Confider    |     |                     |
| Year  | Mean<br>Value |    | ower<br>h %tile)   | Upper<br>th %tile) | Vlean<br>∕alue |    | Lower<br>h %tile)     | (9 | Upper<br>5th %tile) | Mean<br>/alue |    | ower<br>1 %tile)    | (95 | Upper<br>5th %tile) |
| 2005  | \$<br>-       | \$ | -                  | \$<br>-            | \$<br>-        | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                   | \$  | -                   |
| 2006  | \$<br>-       | \$ | -                  | \$<br>-            | \$<br>-        | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                   | \$  | -                   |
| 2007  | \$<br>-       | \$ | -                  | \$<br>-            | \$<br>-        | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                   | \$  | -                   |
| 2008  | \$<br>-       | \$ | -                  | \$<br>-            | \$<br>-        | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                   | \$  | -                   |
| 2009  | \$<br>-       | \$ | -                  | \$<br>-            | \$<br>-        | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                   | \$  | -                   |
| 2010  | \$<br>0.0     | \$ | 0.0                | \$<br>0.1          | \$<br>0.0      | \$ | 0.0                   | \$ | 0.1                 | \$<br>0.1     | \$ | 0.0                 | \$  | 0.1                 |
| 2011  | \$<br>0.1     | \$ | 0.0                | \$<br>0.2          | \$<br>0.1      | \$ | 0.0                   | \$ | 0.1                 | \$<br>0.1     | \$ | 0.0                 | \$  | 0.3                 |
| 2012  | \$<br>0.1     | \$ | 0.0                | \$<br>0.3          | \$<br>0.1      | \$ | 0.0                   | \$ | 0.2                 | \$<br>0.2     | \$ | 0.0                 | \$  | 0.5                 |
| 2013  | \$<br>0.2     | \$ | 0.0                | \$<br>0.5          | \$<br>0.1      | \$ | 0.0                   | \$ | 0.3                 | \$<br>0.3     | \$ | 0.1                 | \$  | 0.8                 |
| 2014  | \$<br>0.3     | \$ | 0.0                | \$<br>0.7          | \$<br>0.2      | \$ | 0.0                   | \$ | 0.5                 | \$<br>0.4     | \$ | 0.1                 | \$  | 1.0                 |
| 2015  | \$<br>0.4     | \$ | 0.1                | \$<br>0.9          | \$<br>0.3      | \$ | 0.0                   | \$ | 0.6                 | \$<br>0.6     | \$ | 0.1                 | \$  | 1.3                 |
| 2016  | \$<br>0.5     | \$ | 0.1                | \$<br>1.1          | \$<br>0.3      | \$ | 0.0                   | \$ | 0.7                 | \$<br>0.7     | \$ | 0.1                 | \$  | 1.6                 |
| 2017  | \$<br>0.6     | \$ | 0.1                | \$<br>1.3          | \$<br>0.4      | \$ | 0.1                   | \$ | 0.8                 | \$<br>0.8     | \$ | 0.1                 | \$  | 1.8                 |
| 2018  | \$<br>0.6     | \$ | 0.1                | \$<br>1.5          | \$<br>0.4      | \$ | 0.1                   | \$ | 0.9                 | \$<br>0.8     | \$ | 0.1                 | \$  | 1.9                 |
| 2019  | \$<br>0.7     | \$ | 0.1                | \$<br>1.6          | \$<br>0.4      | \$ | 0.1                   | \$ | 1.0                 | \$<br>0.9     | \$ | 0.1                 | \$  | 2.1                 |
| 2020  | \$<br>0.8     | \$ | 0.1                | \$<br>1.8          | \$<br>0.5      | \$ | 0.1                   | \$ | 1.1                 | \$<br>0.9     | \$ | 0.1                 | \$  | 2.2                 |
| 2021  | \$<br>0.8     | \$ | 0.1                | \$<br>1.9          | \$<br>0.5      | \$ | 0.1                   | \$ | 1.2                 | \$<br>1.0     | \$ | 0.1                 | \$  | 2.3                 |
| 2022  | \$<br>0.9     | \$ | 0.1                | \$<br>2.0          | \$<br>0.5      | \$ | 0.1                   | \$ | 1.2                 | \$<br>1.0     | \$ | 0.2                 | \$  | 2.3                 |
| 2023  | \$<br>0.9     | \$ | 0.1                | \$<br>2.1          | \$<br>0.6      | \$ | 0.1                   | \$ | 1.3                 | \$<br>1.0     | \$ | 0.2                 | \$  | 2.4                 |
| 2024  | \$<br>0.9     | \$ | 0.1                | \$<br>2.2          | \$<br>0.6      | \$ | 0.1                   | \$ | 1.4                 | \$<br>1.1     | \$ | 0.2                 | \$  | 2.5                 |
| 2025  | \$<br>1.0     | \$ | 0.1                | \$<br>2.2          | \$<br>0.6      | \$ | 0.1                   | \$ | 1.5                 | \$<br>1.1     | \$ | 0.2                 | \$  | 2.5                 |
| 2026  | \$<br>1.0     | \$ | 0.2                | \$<br>2.3          | \$<br>0.7      | \$ | 0.1                   | \$ | 1.5                 | \$<br>1.1     | \$ | 0.2                 | \$  | 2.6                 |
| 2027  | \$<br>1.0     | \$ | 0.2                | \$<br>2.4          | \$<br>0.7      | \$ | 0.1                   | \$ | 1.6                 | \$<br>1.1     | \$ | 0.2                 | \$  | 2.6                 |
| 2028  | \$<br>1.0     | \$ | 0.2                | \$<br>2.4          | \$<br>0.7      | \$ | 0.1                   | \$ | 1.6                 | \$<br>1.1     | \$ | 0.2                 | \$  | 2.7                 |
| 2029  | \$<br>1.1     | \$ | 0.2                | \$<br>2.5          | \$<br>0.7      | \$ | 0.1                   | \$ | 1.7                 | \$<br>1.2     | \$ | 0.2                 | \$  | 2.7                 |
| Total | \$<br>13.0    | \$ | 2.0                | \$<br>29.9         | \$<br>8.4      | \$ | 1.3                   | \$ | 19.4                | \$<br>15.7    | \$ | 2.4                 | \$  | 36.2                |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

## Exhibit F.2I Projections of Yearly Benefits, WTP for Lymphoma as Basis for Non-Fatal Cases (Ground Water Systems Serving 100-499 People)

**TTHM - Preferred Alternative** 

|       |               | _  | /Lung Ca<br>on Lag M |     |                     |    |                | _  | /Bladder<br>ion Lag I |     |                     |               |    | Bladder<br>on Lag |                    |
|-------|---------------|----|----------------------|-----|---------------------|----|----------------|----|-----------------------|-----|---------------------|---------------|----|-------------------|--------------------|
|       |               | (  | 90 Po<br>Confider    |     |                     |    |                |    | 90 Pe<br>Confider     |     |                     |               | (  | 90 P<br>Confide   |                    |
| Year  | Mean<br>Value |    | ₋ower<br>h %tile)    | (95 | Upper<br>5th %tile) | _  | Vlean<br>∕alue |    | Lower<br>h %tile)     | (95 | Upper<br>5th %tile) | Mean<br>Value |    | ₋ower<br>h %tile) | Upper<br>th %tile) |
| 2005  | \$            | \$ | 1                    | \$  |                     | \$ | 1              | \$ | 1                     | \$  | -                   | \$<br>-       | \$ | -                 | \$<br>-            |
| 2006  | \$<br>-       | \$ | -                    | \$  | -                   | \$ | -              | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                 | \$<br>-            |
| 2007  | \$<br>-       | \$ | -                    | \$  | -                   | \$ | -              | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                 | \$<br>-            |
| 2008  | \$<br>-       | \$ | -                    | \$  | -                   | \$ | -              | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                 | \$<br>-            |
| 2009  | \$<br>-       | \$ | -                    | \$  | -                   | \$ | -              | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                 | \$<br>-            |
| 2010  | \$<br>0.2     | \$ | 0.0                  | \$  | 0.5                 | \$ | 0.2            | \$ | 0.0                   | \$  | 0.4                 | \$<br>0.4     | \$ | 0.1               | \$<br>0.9          |
| 2011  | \$<br>0.6     | \$ | 0.1                  | \$  | 1.3                 | \$ | 0.4            | \$ | 0.1                   | \$  | 1.0                 | \$<br>0.9     | \$ | 0.1               | \$<br>2.1          |
| 2012  | \$<br>1.0     | \$ | 0.2                  | \$  | 2.3                 | \$ | 0.7            | \$ | 0.1                   | \$  | 1.7                 | \$<br>1.6     | \$ | 0.2               | \$<br>3.7          |
| 2013  | \$<br>1.5     | \$ | 0.2                  | \$  | 3.6                 | \$ | 1.1            | \$ | 0.2                   | \$  | 2.5                 | \$<br>2.4     | \$ | 0.4               | \$<br>5.6          |
| 2014  | \$<br>2.2     | \$ | 0.3                  | \$  | 5.0                 | \$ | 1.5            | \$ | 0.2                   | \$  | 3.4                 | \$<br>3.3     | \$ | 0.5               | \$<br>7.6          |
| 2015  | \$<br>2.9     | \$ | 0.4                  | \$  | 6.8                 | \$ | 1.9            | \$ | 0.3                   | \$  | 4.5                 | \$<br>4.3     | \$ | 0.7               | \$<br>9.9          |
| 2016  | \$<br>3.6     | \$ | 0.6                  | \$  | 8.4                 | \$ | 2.3            | \$ | 0.4                   | \$  | 5.4                 | \$<br>5.1     | \$ | 0.8               | \$<br>11.8         |
| 2017  | \$<br>4.2     | \$ | 0.6                  | \$  | 9.8                 | \$ | 2.7            | \$ | 0.4                   | \$  | 6.1                 | \$<br>5.7     | \$ | 0.9               | \$<br>13.2         |
| 2018  | \$<br>4.8     | \$ | 0.7                  | \$  | 11.0                | \$ | 3.0            | \$ | 0.5                   | \$  | 6.8                 | \$<br>6.2     | \$ | 0.9               | \$<br>14.3         |
| 2019  | \$<br>5.2     | \$ | 0.8                  | \$  | 12.1                | \$ | 3.2            | \$ | 0.5                   | \$  | 7.5                 | \$<br>6.6     | \$ | 1.0               | \$<br>15.3         |
| 2020  | \$<br>5.7     | \$ | 0.9                  | \$  | 13.1                | \$ | 3.5            | \$ | 0.5                   | \$  | 8.1                 | \$<br>7.0     | \$ | 1.1               | \$<br>16.1         |
| 2021  | \$<br>6.0     | \$ | 0.9                  | \$  | 14.0                | \$ | 3.7            | \$ | 0.6                   | \$  | 8.7                 | \$<br>7.2     | \$ | 1.1               | \$<br>16.7         |
| 2022  | \$<br>6.4     | \$ | 1.0                  | \$  | 14.7                | \$ | 4.0            | \$ | 0.6                   | \$  | 9.2                 | \$<br>7.5     | \$ | 1.1               | \$<br>17.3         |
| 2023  | \$<br>6.7     | \$ | 1.0                  | \$  | 15.4                | \$ | 4.2            | \$ | 0.6                   | \$  | 9.8                 | \$<br>7.7     | \$ | 1.2               | \$<br>17.9         |
| 2024  | \$<br>6.9     | \$ | 1.1                  | \$  | 16.0                | \$ | 4.4            | \$ | 0.7                   | \$  | 10.3                | \$<br>7.9     | \$ | 1.2               | \$<br>18.3         |
| 2025  | \$<br>7.2     | \$ | 1.1                  | \$  | 16.6                | \$ | 4.7            | \$ | 0.7                   | \$  | 10.8                | \$<br>8.1     | \$ | 1.2               | \$<br>18.8         |
| 2026  | \$<br>7.4     | \$ | 1.1                  | \$  | 17.1                | \$ | 4.9            | \$ | 0.7                   | \$  | 11.3                | \$<br>8.3     | \$ | 1.3               | \$<br>19.2         |
| 2027  | \$<br>7.6     | \$ | 1.1                  | \$  | 17.6                | \$ | 5.1            | \$ | 8.0                   | \$  | 11.8                | \$<br>8.4     | \$ | 1.3               | \$<br>19.5         |
| 2028  | \$<br>7.7     | \$ | 1.2                  | \$  | 17.8                | \$ | 5.2            | \$ | 8.0                   | \$  | 12.1                | \$<br>8.5     | \$ | 1.3               | \$<br>19.6         |
| 2029  | \$<br>7.8     | \$ | 1.2                  | \$  | 18.2                | \$ | 5.4            | \$ | 0.8                   | \$  | 12.5                | \$<br>8.6     | \$ | 1.3               | \$<br>19.9         |
| Total | \$<br>95.7    | \$ | 14.5                 | \$  | 221.2               | \$ | 62.2           | \$ | 9.4                   | \$  | 143.7               | \$<br>115.8   | \$ | 17.6              | \$<br>267.6        |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

## Exhibit F.2m Projections of Yearly Benefits, WTP for Lymphoma as Basis for Non-Fatal Cases (Ground Water Systems Serving 500-999 People)

**TTHM - Preferred Alternative** 

|       |               | _  | /Lung Ca<br>on Lag M |     |                     |                | _  | /Bladder<br>ion Lag I |     |                     |               |    | Bladder<br>on Lag | -   |                     |
|-------|---------------|----|----------------------|-----|---------------------|----------------|----|-----------------------|-----|---------------------|---------------|----|-------------------|-----|---------------------|
|       |               | (  | 90 Po<br>Confider    |     |                     |                |    | 90 Pe<br>Confider     |     |                     |               | (  | 90 P<br>Confide   |     |                     |
| Year  | Mean<br>Value |    | ∟ower<br>h %tile)    | (95 | Upper<br>5th %tile) | Vlean<br>∕alue |    | Lower<br>h %tile)     | (95 | Upper<br>5th %tile) | Mean<br>Value |    | ₋ower<br>h %tile) | (95 | Upper<br>5th %tile) |
| 2005  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-        | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                 | \$  | -                   |
| 2006  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-        | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                 | \$  | -                   |
| 2007  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-        | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                 | \$  | -                   |
| 2008  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-        | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                 | \$  | -                   |
| 2009  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-        | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                 | \$  | -                   |
| 2010  | \$<br>0.2     | \$ | 0.0                  | \$  | 0.5                 | \$<br>0.2      | \$ | 0.0                   | \$  | 0.4                 | \$<br>0.4     | \$ | 0.1               | \$  | 0.9                 |
| 2011  | \$<br>0.6     | \$ | 0.1                  | \$  | 1.4                 | \$<br>0.4      | \$ | 0.1                   | \$  | 1.0                 | \$<br>1.0     | \$ | 0.2               | \$  | 2.3                 |
| 2012  | \$<br>1.1     | \$ | 0.2                  | \$  | 2.4                 | \$<br>8.0      | \$ | 0.1                   | \$  | 1.8                 | \$<br>1.7     | \$ | 0.3               | \$  | 4.0                 |
| 2013  | \$<br>1.6     | \$ | 0.3                  | \$  | 3.8                 | \$<br>1.1      | \$ | 0.2                   | \$  | 2.6                 | \$<br>2.6     | \$ | 0.4               | \$  | 5.9                 |
| 2014  | \$<br>2.3     | \$ | 0.4                  | \$  | 5.4                 | \$<br>1.6      | \$ | 0.2                   | \$  | 3.6                 | \$<br>3.5     | \$ | 0.5               | \$  | 8.1                 |
| 2015  | \$<br>3.1     | \$ | 0.5                  | \$  | 7.2                 | \$<br>2.1      | \$ | 0.3                   | \$  | 4.7                 | \$<br>4.6     | \$ | 0.7               | \$  | 10.5                |
| 2016  | \$<br>3.9     | \$ | 0.6                  | \$  | 8.9                 | \$<br>2.5      | \$ | 0.4                   | \$  | 5.7                 | \$<br>5.5     | \$ | 0.8               | \$  | 12.6                |
| 2017  | \$<br>4.5     | \$ | 0.7                  | \$  | 10.4                | \$<br>2.8      | \$ | 0.4                   | \$  | 6.5                 | \$<br>6.1     | \$ | 0.9               | \$  | 14.0                |
| 2018  | \$<br>5.1     | \$ | 0.8                  | \$  | 11.7                | \$<br>3.1      | \$ | 0.5                   | \$  | 7.3                 | \$<br>6.6     | \$ | 1.0               | \$  | 15.2                |
| 2019  | \$<br>5.6     | \$ | 0.9                  | \$  | 12.9                | \$<br>3.4      | \$ | 0.5                   | \$  | 7.9                 | \$<br>7.0     | \$ | 1.1               | \$  | 16.3                |
| 2020  | \$<br>6.0     | \$ | 0.9                  | \$  | 13.9                | \$<br>3.7      | \$ | 0.6                   | \$  | 8.6                 | \$<br>7.4     | \$ | 1.1               | \$  | 17.1                |
| 2021  | \$<br>6.4     | \$ | 1.0                  | \$  | 14.8                | \$<br>4.0      | \$ | 0.6                   | \$  | 9.2                 | \$<br>7.7     | \$ | 1.2               | \$  | 17.8                |
| 2022  | \$<br>6.8     | \$ | 1.0                  | \$  | 15.7                | \$<br>4.2      | \$ | 0.6                   | \$  | 9.8                 | \$<br>8.0     | \$ | 1.2               | \$  | 18.5                |
| 2023  | \$<br>7.1     | \$ | 1.1                  | \$  | 16.4                | \$<br>4.5      | \$ | 0.7                   | \$  | 10.4                | \$<br>8.2     | \$ | 1.2               | \$  | 19.0                |
| 2024  | \$<br>7.4     | \$ | 1.1                  | \$  | 17.0                | \$<br>4.7      | \$ | 0.7                   | \$  | 11.0                | \$<br>8.4     | \$ | 1.3               | \$  | 19.5                |
| 2025  | \$<br>7.6     | \$ | 1.2                  | \$  | 17.6                | \$<br>5.0      | \$ | 0.8                   | \$  | 11.5                | \$<br>8.6     | \$ | 1.3               | \$  | 20.0                |
| 2026  | \$<br>7.9     | \$ | 1.2                  | \$  | 18.2                | \$<br>5.2      | \$ | 8.0                   | \$  | 12.0                | \$<br>8.8     | \$ | 1.3               | \$  | 20.4                |
| 2027  | \$<br>8.1     | \$ | 1.2                  | \$  | 18.7                | \$<br>5.4      | \$ | 0.8                   | \$  | 12.5                | \$<br>9.0     | \$ | 1.4               | \$  | 20.8                |
| 2028  | \$<br>8.2     | \$ | 1.2                  | \$  | 19.0                | \$<br>5.5      | \$ | 8.0                   | \$  | 12.9                | \$<br>9.0     | \$ | 1.4               | \$  | 20.9                |
| 2029  | \$<br>8.3     | \$ | 1.3                  | \$  | 19.4                | \$<br>5.7      | \$ | 0.9                   | \$  | 13.3                | \$<br>9.1     | \$ | 1.4               | \$  | 21.2                |
| Total | \$<br>101.8   | \$ | 15.5                 | \$  | 235.3               | \$<br>66.1     | \$ | 10.1                  | \$  | 152.9               | \$<br>123.2   | \$ | 18.7              | \$  | 284.7               |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

## Exhibit F.2n Projections of Yearly Benefits, WTP for Lymphoma as Basis for Non-Fatal Cases (Ground Water Systems Serving 1,000-3,299 People)

**TTHM - Preferred Alternative** 

|       |               | _  | Lung Ca<br>n Lag M |                     |               | _  | /Bladder<br>ion Lag l |     |                     |               |    | Bladder<br>ion Lag | -   |                     |
|-------|---------------|----|--------------------|---------------------|---------------|----|-----------------------|-----|---------------------|---------------|----|--------------------|-----|---------------------|
|       |               | (  | 90 Po<br>Confider  | <br>                |               |    | 90 Pe<br>Confider     |     |                     |               | (  | 90 P<br>Confide    |     |                     |
| Year  | Mean<br>Value |    | ower<br>h %tile)   | Upper<br>ith %tile) | Mean<br>/alue |    | Lower<br>h %tile)     | (95 | Upper<br>5th %tile) | Mean<br>Value |    | ₋ower<br>h %tile)  | (95 | Upper<br>oth %tile) |
| 2005  | \$<br>-       | \$ | -                  | \$<br>-             | \$<br>-       | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                  | \$  | -                   |
| 2006  | \$<br>-       | \$ | -                  | \$<br>-             | \$<br>-       | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                  | \$  | -                   |
| 2007  | \$<br>-       | \$ | -                  | \$<br>-             | \$<br>-       | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                  | \$  | -                   |
| 2008  | \$<br>-       | \$ | -                  | \$<br>-             | \$<br>-       | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                  | \$  | -                   |
| 2009  | \$<br>-       | \$ | -                  | \$<br>-             | \$<br>-       | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                  | \$  | -                   |
| 2010  | \$<br>0.7     | \$ | 0.1                | \$<br>1.6           | \$<br>0.6     | \$ | 0.1                   | \$  | 1.3                 | \$<br>1.2     | \$ | 0.2                | \$  | 2.7                 |
| 2011  | \$<br>1.8     | \$ | 0.3                | \$<br>4.1           | \$<br>1.3     | \$ | 0.2                   | \$  | 3.1                 | \$<br>3.0     | \$ | 0.5                | \$  | 6.8                 |
| 2012  | \$<br>3.2     | \$ | 0.5                | \$<br>7.4           | \$<br>2.3     | \$ | 0.4                   | \$  | 5.3                 | \$<br>5.2     | \$ | 0.8                | \$  | 11.9                |
| 2013  | \$<br>5.0     | \$ | 0.8                | \$<br>11.4          | \$<br>3.5     | \$ | 0.5                   | \$  | 7.9                 | \$<br>7.8     | \$ | 1.2                | \$  | 17.9                |
| 2014  | \$<br>7.1     | \$ | 1.1                | \$<br>16.2          | \$<br>4.8     | \$ | 0.7                   | \$  | 10.9                | \$<br>10.7    | \$ | 1.6                | \$  | 24.5                |
| 2015  | \$<br>9.4     | \$ | 1.4                | \$<br>21.7          | \$<br>6.2     | \$ | 1.0                   | \$  | 14.3                | \$<br>13.8    | \$ | 2.1                | \$  | 31.7                |
| 2016  | \$<br>11.7    | \$ | 1.8                | \$<br>26.9          | \$<br>7.5     | \$ | 1.2                   | \$  | 17.3                | \$<br>16.5    | \$ | 2.5                | \$  | 37.9                |
| 2017  | \$<br>13.6    | \$ | 2.1                | \$<br>31.3          | \$<br>8.6     | \$ | 1.3                   | \$  | 19.7                | \$<br>18.4    | \$ | 2.8                | \$  | 42.4                |
| 2018  | \$<br>15.3    | \$ | 2.3                | \$<br>35.3          | \$<br>9.5     | \$ | 1.4                   | \$  | 21.9                | \$<br>20.0    | \$ | 3.0                | \$  | 46.0                |
| 2019  | \$<br>16.9    | \$ | 2.6                | \$<br>38.9          | \$<br>10.4    | \$ | 1.6                   | \$  | 24.0                | \$<br>21.3    | \$ | 3.2                | \$  | 49.1                |
| 2020  | \$<br>18.2    | \$ | 2.8                | \$<br>42.1          | \$<br>11.2    | \$ | 1.7                   | \$  | 25.9                | \$<br>22.3    | \$ | 3.4                | \$  | 51.6                |
| 2021  | \$<br>19.4    | \$ | 3.0                | \$<br>44.8          | \$<br>12.0    | \$ | 1.8                   | \$  | 27.8                | \$<br>23.3    | \$ | 3.5                | \$  | 53.7                |
| 2022  | \$<br>20.5    | \$ | 3.1                | \$<br>47.3          | \$<br>12.8    | \$ | 1.9                   | \$  | 29.6                | \$<br>24.1    | \$ | 3.7                | \$  | 55.7                |
| 2023  | \$<br>21.4    | \$ | 3.3                | \$<br>49.5          | \$<br>13.6    | \$ | 2.1                   | \$  | 31.4                | \$<br>24.8    | \$ | 3.8                | \$  | 57.4                |
| 2024  | \$<br>22.2    | \$ | 3.4                | \$<br>51.4          | \$<br>14.3    | \$ | 2.2                   | \$  | 33.1                | \$<br>25.4    | \$ | 3.9                | \$  | 58.9                |
| 2025  | \$<br>23.0    | \$ | 3.5                | \$<br>53.2          | \$<br>15.0    | \$ | 2.3                   | \$  | 34.7                | \$<br>26.0    | \$ | 3.9                | \$  | 60.2                |
| 2026  | \$<br>23.7    | \$ | 3.6                | \$<br>54.9          | \$<br>15.7    | \$ | 2.4                   | \$  | 36.3                | \$<br>26.6    | \$ | 4.0                | \$  | 61.5                |
| 2027  | \$<br>24.4    | \$ | 3.7                | \$<br>56.6          | \$<br>16.3    | \$ | 2.5                   | \$  | 37.9                | \$<br>27.1    | \$ | 4.1                | \$  | 62.8                |
| 2028  | \$<br>24.7    | \$ | 3.7                | \$<br>57.2          | \$<br>16.8    | \$ | 2.5                   | \$  | 38.8                | \$<br>27.2    | \$ | 4.1                | \$  | 63.0                |
| 2029  | \$<br>25.2    | \$ | 3.8                | \$<br>58.5          | \$<br>17.3    | \$ | 2.6                   | \$  | 40.2                | \$<br>27.5    | \$ | 4.2                | \$  | 63.9                |
| Total | \$<br>307.3   | \$ | 46.7               | \$<br>710.3         | \$<br>199.6   | \$ | 30.4                  | \$  | 461.5               | \$<br>372.0   | \$ | 56.6               | \$  | 859.6               |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

## Exhibit F.2o Projections of Yearly Benefits, WTP for Lymphoma as Basis for Non-Fatal Cases (Ground Water Systems Serving 3,300-9,999 People)

**TTHM - Preferred Alternative** 

|       |               | _  | Lung Ca<br>n Lag M |    |                     |               | _  | /Bladder<br>ion Lag l |     |                     |               |    | Bladder<br>ion Lag | -  |                     |
|-------|---------------|----|--------------------|----|---------------------|---------------|----|-----------------------|-----|---------------------|---------------|----|--------------------|----|---------------------|
|       |               | (  | 90 Po<br>Confider  |    |                     |               |    | 90 Pe<br>Confider     |     |                     |               | (  | 90 P<br>Confide    |    |                     |
| Year  | Mean<br>Value |    | ower<br>h %tile)   | (9 | Upper<br>5th %tile) | Mean<br>Value |    | Lower<br>h %tile)     | (95 | Upper<br>5th %tile) | Mean<br>Value |    | ₋ower<br>h %tile)  | (9 | Upper<br>5th %tile) |
| 2005  | \$<br>1       | \$ | -                  | \$ | -                   | \$            | \$ |                       | \$  | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| 2006  | \$<br>-       | \$ | -                  | \$ | -                   | \$<br>-       | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| 2007  | \$<br>-       | \$ | -                  | \$ | -                   | \$<br>-       | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| 2008  | \$<br>-       | \$ | -                  | \$ | -                   | \$<br>-       | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| 2009  | \$<br>-       | \$ | -                  | \$ | -                   | \$<br>-       | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| 2010  | \$<br>1.1     | \$ | 0.2                | \$ | 2.5                 | \$<br>0.9     | \$ | 0.1                   | \$  | 2.0                 | \$<br>1.9     | \$ | 0.3                | \$ | 4.3                 |
| 2011  | \$<br>2.8     | \$ | 0.4                | \$ | 6.4                 | \$<br>2.1     | \$ | 0.3                   | \$  | 4.9                 | \$<br>4.7     | \$ | 0.7                | \$ | 10.8                |
| 2012  | \$<br>5.1     | \$ | 0.8                | \$ | 11.7                | \$<br>3.7     | \$ | 0.6                   | \$  | 8.4                 | \$<br>8.2     | \$ | 1.3                | \$ | 18.9                |
| 2013  | \$<br>7.9     | \$ | 1.2                | \$ | 18.1                | \$<br>5.5     | \$ | 0.8                   | \$  | 12.6                | \$<br>12.3    | \$ | 1.9                | \$ | 28.3                |
| 2014  | \$<br>11.2    | \$ | 1.7                | \$ | 25.6                | \$<br>7.5     | \$ | 1.2                   | \$  | 17.3                | \$<br>16.8    | \$ | 2.6                | \$ | 38.7                |
| 2015  | \$<br>14.9    | \$ | 2.3                | \$ | 34.3                | \$<br>9.8     | \$ | 1.5                   | \$  | 22.6                | \$<br>21.8    | \$ | 3.3                | \$ | 50.1                |
| 2016  | \$<br>18.5    | \$ | 2.8                | \$ | 42.6                | \$<br>11.9    | \$ | 1.8                   | \$  | 27.4                | \$<br>26.1    | \$ | 4.0                | \$ | 59.9                |
| 2017  | \$<br>21.5    | \$ | 3.3                | \$ | 49.6                | \$<br>13.5    | \$ | 2.1                   | \$  | 31.2                | \$<br>29.1    | \$ | 4.4                | \$ | 67.1                |
| 2018  | \$<br>24.2    | \$ | 3.7                | \$ | 55.8                | \$<br>15.0    | \$ | 2.3                   | \$  | 34.6                | \$<br>31.6    | \$ | 4.8                | \$ | 72.8                |
| 2019  | \$<br>26.7    | \$ | 4.1                | \$ | 61.5                | \$<br>16.4    | \$ | 2.5                   | \$  | 37.9                | \$<br>33.6    | \$ | 5.1                | \$ | 77.6                |
| 2020  | \$<br>28.8    | \$ | 4.4                | \$ | 66.5                | \$<br>17.8    | \$ | 2.7                   | \$  | 41.0                | \$<br>35.3    | \$ | 5.4                | \$ | 81.6                |
| 2021  | \$<br>30.7    | \$ | 4.7                | \$ | 70.9                | \$<br>19.1    | \$ | 2.9                   | \$  | 44.0                | \$<br>36.8    | \$ | 5.6                | \$ | 85.0                |
| 2022  | \$<br>32.4    | \$ | 4.9                | \$ | 74.8                | \$<br>20.3    | \$ | 3.1                   | \$  | 46.9                | \$<br>38.1    | \$ | 5.8                | \$ | 88.1                |
| 2023  | \$<br>33.8    | \$ | 5.1                | \$ | 78.3                | \$<br>21.5    | \$ | 3.3                   | \$  | 49.6                | \$<br>39.2    | \$ | 6.0                | \$ | 90.8                |
| 2024  | \$<br>35.2    | \$ | 5.3                | \$ | 81.4                | \$<br>22.6    | \$ | 3.4                   | \$  | 52.3                | \$<br>40.2    | \$ | 6.1                | \$ | 93.1                |
| 2025  | \$<br>36.4    | \$ | 5.5                | \$ | 84.2                | \$<br>23.7    | \$ | 3.6                   | \$  | 54.9                | \$<br>41.2    | \$ | 6.2                | \$ | 95.3                |
| 2026  | \$<br>37.5    | \$ | 5.7                | \$ | 86.9                | \$<br>24.8    | \$ | 3.8                   | \$  | 57.4                | \$<br>42.0    | \$ | 6.4                | \$ | 97.3                |
| 2027  | \$<br>38.6    | \$ | 5.8                | \$ | 89.5                | \$<br>25.8    | \$ | 3.9                   | \$  | 59.9                | \$<br>42.8    | \$ | 6.5                | \$ | 99.3                |
| 2028  | \$<br>39.0    | \$ | 5.9                | \$ | 90.5                | \$<br>26.5    | \$ | 4.0                   | \$  | 61.4                | \$<br>43.0    | \$ | 6.5                | \$ | 99.6                |
| 2029  | \$<br>39.8    | \$ | 6.0                | \$ | 92.5                | \$<br>27.4    | \$ | 4.1                   | \$  | 63.6                | \$<br>43.6    | \$ | 6.6                | \$ | 101.1               |
| Total | \$<br>486.1   | \$ | 73.9               | \$ | 1,123.6             | \$<br>315.8   | \$ | 48.0                  | \$  | 730.0               | \$<br>588.4   | \$ | 89.5               | \$ | 1,359.7             |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

## Exhibit F.2p Projections of Yearly Benefits, WTP for Lymphoma as Basis for Non-Fatal Cases (Ground Water Systems Serving 10,000-49,999 People)

**TTHM - Preferred Alternative** 

|       |               | _  | Lung Ca<br>n Lag M |    |                     |               | _  | /Bladder<br>ion Lag I |    |                     |               |    | Bladder<br>ion Lag | -  |                     |
|-------|---------------|----|--------------------|----|---------------------|---------------|----|-----------------------|----|---------------------|---------------|----|--------------------|----|---------------------|
|       |               | (  | 90 Po<br>Confider  |    |                     |               | (  | 90 Pe<br>Confider     |    |                     |               | (  | 90 P<br>Confide    |    |                     |
| Year  | Mean<br>Value |    | ower<br>h %tile)   | (9 | Upper<br>5th %tile) | Mean<br>Value |    | Lower<br>h %tile)     | (9 | Upper<br>5th %tile) | Mean<br>Value |    | ₋ower<br>h %tile)  | (9 | Upper<br>5th %tile) |
| 2005  | \$<br>-       | \$ | -                  | \$ | -                   | \$<br>-       | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| 2006  | \$<br>-       | \$ | -                  | \$ | -                   | \$<br>-       | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| 2007  | \$<br>-       | \$ | -                  | \$ | -                   | \$<br>-       | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| 2008  | \$<br>-       | \$ | -                  | \$ | -                   | \$<br>-       | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| 2009  | \$<br>-       | \$ | -                  | \$ | -                   | \$<br>-       | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| 2010  | \$<br>1.3     | \$ | 0.2                | \$ | 3.1                 | \$<br>1.1     | \$ | 0.2                   | \$ | 2.5                 | \$<br>2.3     | \$ | 0.4                | \$ | 5.4                 |
| 2011  | \$<br>3.5     | \$ | 0.5                | \$ | 8.0                 | \$<br>2.6     | \$ | 0.4                   | \$ | 6.0                 | \$<br>5.8     | \$ | 0.9                | \$ | 13.4                |
| 2012  | \$<br>6.3     | \$ | 1.0                | \$ | 14.4                | \$<br>4.5     | \$ | 0.7                   | \$ | 10.4                | \$<br>10.2    | \$ | 1.6                | \$ | 23.4                |
| 2013  | \$<br>9.7     | \$ | 1.5                | \$ | 22.3                | \$<br>6.8     | \$ | 1.0                   | \$ | 15.5                | \$<br>15.2    | \$ | 2.3                | \$ | 34.9                |
| 2014  | \$<br>13.8    | \$ | 2.1                | \$ | 31.7                | \$<br>9.3     | \$ | 1.4                   | \$ | 21.4                | \$<br>20.8    | \$ | 3.2                | \$ | 47.9                |
| 2015  | \$<br>17.7    | \$ | 2.7                | \$ | 40.8                | \$<br>11.6    | \$ | 1.8                   | \$ | 26.6                | \$<br>25.7    | \$ | 3.9                | \$ | 59.1                |
| 2016  | \$<br>21.1    | \$ | 3.2                | \$ | 48.5                | \$<br>13.3    | \$ | 2.0                   | \$ | 30.7                | \$<br>29.2    | \$ | 4.5                | \$ | 67.1                |
| 2017  | \$<br>24.0    | \$ | 3.7                | \$ | 55.3                | \$<br>14.9    | \$ | 2.3                   | \$ | 34.4                | \$<br>31.9    | \$ | 4.9                | \$ | 73.5                |
| 2018  | \$<br>26.7    | \$ | 4.1                | \$ | 61.6                | \$<br>16.4    | \$ | 2.5                   | \$ | 37.9                | \$<br>34.2    | \$ | 5.2                | \$ | 78.8                |
| 2019  | \$<br>29.1    | \$ | 4.4                | \$ | 67.1                | \$<br>17.9    | \$ | 2.7                   | \$ | 41.2                | \$<br>36.1    | \$ | 5.5                | \$ | 83.3                |
| 2020  | \$<br>31.2    | \$ | 4.7                | \$ | 71.9                | \$<br>19.2    | \$ | 2.9                   | \$ | 44.3                | \$<br>37.7    | \$ | 5.7                | \$ | 87.1                |
| 2021  | \$<br>33.0    | \$ | 5.0                | \$ | 76.1                | \$<br>20.5    | \$ | 3.1                   | \$ | 47.3                | \$<br>39.1    | \$ | 5.9                | \$ | 90.3                |
| 2022  | \$<br>34.6    | \$ | 5.3                | \$ | 79.9                | \$<br>21.8    | \$ | 3.3                   | \$ | 50.3                | \$<br>40.3    | \$ | 6.1                | \$ | 93.3                |
| 2023  | \$<br>36.0    | \$ | 5.5                | \$ | 83.3                | \$<br>23.0    | \$ | 3.5                   | \$ | 53.1                | \$<br>41.4    | \$ | 6.3                | \$ | 95.9                |
| 2024  | \$<br>37.3    | \$ | 5.7                | \$ | 86.4                | \$<br>24.1    | \$ | 3.7                   | \$ | 55.8                | \$<br>42.4    | \$ | 6.5                | \$ | 98.2                |
| 2025  | \$<br>38.5    | \$ | 5.8                | \$ | 89.2                | \$<br>25.3    | \$ | 3.8                   | \$ | 58.5                | \$<br>43.3    | \$ | 6.6                | \$ | 100.3               |
| 2026  | \$<br>39.6    | \$ | 6.0                | \$ | 91.8                | \$<br>26.4    | \$ | 4.0                   | \$ | 61.1                | \$<br>44.2    | \$ | 6.7                | \$ | 102.4               |
| 2027  | \$<br>40.7    | \$ | 6.2                | \$ | 94.4                | \$<br>27.4    | \$ | 4.2                   | \$ | 63.7                | \$<br>45.0    | \$ | 6.8                | \$ | 104.3               |
| 2028  | \$<br>41.1    | \$ | 6.2                | \$ | 95.4                | \$<br>28.1    | \$ | 4.3                   | \$ | 65.2                | \$<br>45.1    | \$ | 6.8                | \$ | 104.6               |
| 2029  | \$<br>42.0    | \$ | 6.4                | \$ | 97.4                | \$<br>29.1    | \$ | 4.4                   | \$ | 67.4                | \$<br>45.7    | \$ | 6.9                | \$ | 106.1               |
| Total | \$<br>527.3   | \$ | 80.2               | \$ | 1,218.7             | \$<br>343.2   | \$ | 52.2                  | \$ | 793.3               | \$<br>635.8   | \$ | 96.7               | \$ | 1,469.1             |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

## Exhibit F.2q Projections of Yearly Benefits, WTP for Lymphoma as Basis for Non-Fatal Cases (Ground Water Systems Serving 50,000-99,999 People)

**TTHM - Preferred Alternative** 

|       |               | _  | /Lung Ca<br>on Lag M |     |                     |                | _  | /Bladder<br>ion Lag l |     |                     |               |    | Bladder<br>ion Lag | -   |                     |
|-------|---------------|----|----------------------|-----|---------------------|----------------|----|-----------------------|-----|---------------------|---------------|----|--------------------|-----|---------------------|
|       |               | (  | 90 Pe<br>Confider    |     |                     |                |    | 90 Pe<br>Confider     |     |                     |               | (  | 90 P<br>Confide    |     |                     |
| Year  | Mean<br>Value |    | ∟ower<br>h %tile)    | (95 | Upper<br>5th %tile) | Vlean<br>∕alue |    | Lower<br>h %tile)     | (95 | Upper<br>5th %tile) | Mean<br>Value |    | ₋ower<br>h %tile)  | (95 | Upper<br>5th %tile) |
| 2005  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-        | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                  | \$  | -                   |
| 2006  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-        | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                  | \$  | -                   |
| 2007  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-        | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                  | \$  | -                   |
| 2008  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-        | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                  | \$  | -                   |
| 2009  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-        | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                  | \$  | -                   |
| 2010  | \$<br>0.6     | \$ | 0.1                  | \$  | 1.3                 | \$<br>0.5      | \$ | 0.1                   | \$  | 1.0                 | \$<br>1.0     | \$ | 0.1                | \$  | 2.2                 |
| 2011  | \$<br>1.5     | \$ | 0.2                  | \$  | 3.3                 | \$<br>1.1      | \$ | 0.2                   | \$  | 2.5                 | \$<br>2.4     | \$ | 0.4                | \$  | 5.6                 |
| 2012  | \$<br>2.6     | \$ | 0.4                  | \$  | 6.0                 | \$<br>1.9      | \$ | 0.3                   | \$  | 4.3                 | \$<br>4.3     | \$ | 0.7                | \$  | 9.8                 |
| 2013  | \$<br>4.1     | \$ | 0.6                  | \$  | 9.4                 | \$<br>2.8      | \$ | 0.4                   | \$  | 6.5                 | \$<br>6.4     | \$ | 1.0                | \$  | 14.6                |
| 2014  | \$<br>5.5     | \$ | 0.8                  | \$  | 12.6                | \$<br>3.7      | \$ | 0.6                   | \$  | 8.4                 | \$<br>8.2     | \$ | 1.3                | \$  | 18.9                |
| 2015  | \$<br>6.7     | \$ | 1.0                  | \$  | 15.4                | \$<br>4.3      | \$ | 0.7                   | \$  | 9.8                 | \$<br>9.5     | \$ | 1.5                | \$  | 21.8                |
| 2016  | \$<br>7.7     | \$ | 1.2                  | \$  | 17.8                | \$<br>4.8      | \$ | 0.7                   | \$  | 11.1                | \$<br>10.5    | \$ | 1.6                | \$  | 24.2                |
| 2017  | \$<br>8.7     | \$ | 1.3                  | \$  | 20.1                | \$<br>5.4      | \$ | 0.8                   | \$  | 12.4                | \$<br>11.3    | \$ | 1.7                | \$  | 26.1                |
| 2018  | \$<br>9.6     | \$ | 1.5                  | \$  | 22.1                | \$<br>5.9      | \$ | 0.9                   | \$  | 13.5                | \$<br>12.0    | \$ | 1.8                | \$  | 27.7                |
| 2019  | \$<br>10.3    | \$ | 1.6                  | \$  | 23.8                | \$<br>6.3      | \$ | 1.0                   | \$  | 14.6                | \$<br>12.6    | \$ | 1.9                | \$  | 29.1                |
| 2020  | \$<br>11.0    | \$ | 1.7                  | \$  | 25.3                | \$<br>6.8      | \$ | 1.0                   | \$  | 15.7                | \$<br>13.1    | \$ | 2.0                | \$  | 30.3                |
| 2021  | \$<br>11.5    | \$ | 1.8                  | \$  | 26.6                | \$<br>7.2      | \$ | 1.1                   | \$  | 16.7                | \$<br>13.6    | \$ | 2.1                | \$  | 31.3                |
| 2022  | \$<br>12.1    | \$ | 1.8                  | \$  | 27.9                | \$<br>7.6      | \$ | 1.2                   | \$  | 17.6                | \$<br>14.0    | \$ | 2.1                | \$  | 32.3                |
| 2023  | \$<br>12.5    | \$ | 1.9                  | \$  | 29.0                | \$<br>8.0      | \$ | 1.2                   | \$  | 18.6                | \$<br>14.3    | \$ | 2.2                | \$  | 33.1                |
| 2024  | \$<br>12.9    | \$ | 2.0                  | \$  | 30.0                | \$<br>8.4      | \$ | 1.3                   | \$  | 19.5                | \$<br>14.6    | \$ | 2.2                | \$  | 33.9                |
| 2025  | \$<br>13.3    | \$ | 2.0                  | \$  | 30.9                | \$<br>8.8      | \$ | 1.3                   | \$  | 20.4                | \$<br>14.9    | \$ | 2.3                | \$  | 34.6                |
| 2026  | \$<br>13.7    | \$ | 2.1                  | \$  | 31.8                | \$<br>9.2      | \$ | 1.4                   | \$  | 21.3                | \$<br>15.2    | \$ | 2.3                | \$  | 35.2                |
| 2027  | \$<br>14.1    | \$ | 2.1                  | \$  | 32.6                | \$<br>9.5      | \$ | 1.4                   | \$  | 22.1                | \$<br>15.5    | \$ | 2.3                | \$  | 35.9                |
| 2028  | \$<br>14.2    | \$ | 2.2                  | \$  | 32.9                | \$<br>9.8      | \$ | 1.5                   | \$  | 22.6                | \$<br>15.5    | \$ | 2.4                | \$  | 36.0                |
| 2029  | \$<br>14.5    | \$ | 2.2                  | \$  | 33.6                | \$<br>10.1     | \$ | 1.5                   | \$  | 23.4                | \$<br>15.7    | \$ | 2.4                | \$  | 36.5                |
| Total | \$<br>187.1   | \$ | 28.4                 | \$  | 432.3               | \$<br>122.1    | \$ | 18.6                  | \$  | 282.1               | \$<br>224.7   | \$ | 34.2               | \$  | 519.2               |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

Exhibit F.2r Projections of Yearly Benefits, WTP for Lymphoma as Basis for Non-Fatal Cases (Ground Water Systems Serving 100,000-999,999 People)

**TTHM - Preferred Alternative** 

|       |               | _  | Lung Ca<br>n Lag M |    |                     |               | _  | /Bladder<br>ion Lag l |    |                     |               |    | Bladder<br>ion Lag | -  |                     |
|-------|---------------|----|--------------------|----|---------------------|---------------|----|-----------------------|----|---------------------|---------------|----|--------------------|----|---------------------|
|       |               | Ć  | 90 Po<br>Confider  |    |                     |               |    | 90 Pe<br>Confider     |    |                     |               | (  | 90 P<br>Confide    |    |                     |
| Year  | Mean<br>Value |    | ower<br>h %tile)   | (9 | Upper<br>5th %tile) | Mean<br>Value |    | Lower<br>h %tile)     | (9 | Upper<br>5th %tile) | Mean<br>Value |    | ₋ower<br>h %tile)  | (9 | Upper<br>5th %tile) |
| 2005  | \$<br>-       | \$ | -                  | \$ | -                   | \$<br>-       | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| 2006  | \$<br>-       | \$ | -                  | \$ | -                   | \$<br>-       | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| 2007  | \$<br>-       | \$ | -                  | \$ | -                   | \$<br>-       | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| 2008  | \$<br>-       | \$ | -                  | \$ | -                   | \$<br>-       | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| 2009  | \$<br>-       | \$ | -                  | \$ | -                   | \$<br>-       | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| 2010  | \$<br>1.5     | \$ | 0.2                | \$ | 3.6                 | \$<br>1.3     | \$ | 0.2                   | \$ | 2.9                 | \$<br>2.7     | \$ | 0.4                | \$ | 6.2                 |
| 2011  | \$<br>4.0     | \$ | 0.6                | \$ | 9.3                 | \$<br>3.0     | \$ | 0.5                   | \$ | 7.0                 | \$<br>6.7     | \$ | 1.0                | \$ | 15.5                |
| 2012  | \$<br>7.3     | \$ | 1.1                | \$ | 16.8                | \$<br>5.2     | \$ | 0.8                   | \$ | 12.0                | \$<br>11.8    | \$ | 1.8                | \$ | 27.1                |
| 2013  | \$<br>11.3    | \$ | 1.7                | \$ | 25.9                | \$<br>7.8     | \$ | 1.2                   | \$ | 18.0                | \$<br>17.7    | \$ | 2.7                | \$ | 40.6                |
| 2014  | \$<br>14.4    | \$ | 2.2                | \$ | 33.1                | \$<br>9.5     | \$ | 1.5                   | \$ | 21.8                | \$<br>21.4    | \$ | 3.3                | \$ | 49.1                |
| 2015  | \$<br>17.2    | \$ | 2.6                | \$ | 39.6                | \$<br>10.9    | \$ | 1.7                   | \$ | 25.2                | \$<br>24.2    | \$ | 3.7                | \$ | 55.7                |
| 2016  | \$<br>19.8    | \$ | 3.0                | \$ | 45.5                | \$<br>12.3    | \$ | 1.9                   | \$ | 28.3                | \$<br>26.6    | \$ | 4.1                | \$ | 61.1                |
| 2017  | \$<br>22.1    | \$ | 3.4                | \$ | 50.9                | \$<br>13.5    | \$ | 2.1                   | \$ | 31.2                | \$<br>28.5    | \$ | 4.3                | \$ | 65.5                |
| 2018  | \$<br>24.2    | \$ | 3.7                | \$ | 55.7                | \$<br>14.7    | \$ | 2.2                   | \$ | 34.0                | \$<br>30.1    | \$ | 4.6                | \$ | 69.3                |
| 2019  | \$<br>25.9    | \$ | 3.9                | \$ | 59.7                | \$<br>15.9    | \$ | 2.4                   | \$ | 36.6                | \$<br>31.4    | \$ | 4.8                | \$ | 72.5                |
| 2020  | \$<br>27.4    | \$ | 4.2                | \$ | 63.3                | \$<br>17.0    | \$ | 2.6                   | \$ | 39.2                | \$<br>32.6    | \$ | 5.0                | \$ | 75.3                |
| 2021  | \$<br>28.8    | \$ | 4.4                | \$ | 66.4                | \$<br>18.0    | \$ | 2.7                   | \$ | 41.6                | \$<br>33.7    | \$ | 5.1                | \$ | 77.7                |
| 2022  | \$<br>30.0    | \$ | 4.6                | \$ | 69.3                | \$<br>19.0    | \$ | 2.9                   | \$ | 44.0                | \$<br>34.6    | \$ | 5.3                | \$ | 80.0                |
| 2023  | \$<br>31.1    | \$ | 4.7                | \$ | 71.9                | \$<br>20.0    | \$ | 3.0                   | \$ | 46.3                | \$<br>35.4    | \$ | 5.4                | \$ | 82.0                |
| 2024  | \$<br>32.1    | \$ | 4.9                | \$ | 74.3                | \$<br>21.0    | \$ | 3.2                   | \$ | 48.5                | \$<br>36.2    | \$ | 5.5                | \$ | 83.8                |
| 2025  | \$<br>33.1    | \$ | 5.0                | \$ | 76.5                | \$<br>21.9    | \$ | 3.3                   | \$ | 50.7                | \$<br>36.9    | \$ | 5.6                | \$ | 85.4                |
| 2026  | \$<br>33.9    | \$ | 5.1                | \$ | 78.6                | \$<br>22.8    | \$ | 3.5                   | \$ | 52.8                | \$<br>37.6    | \$ | 5.7                | \$ | 87.0                |
| 2027  | \$<br>34.8    | \$ | 5.3                | \$ | 80.7                | \$<br>23.7    | \$ | 3.6                   | \$ | 55.0                | \$<br>38.2    | \$ | 5.8                | \$ | 88.6                |
| 2028  | \$<br>35.1    | \$ | 5.3                | \$ | 81.4                | \$<br>24.2    | \$ | 3.7                   | \$ | 56.2                | \$<br>38.3    | \$ | 5.8                | \$ | 88.8                |
| 2029  | \$<br>35.8    | \$ | 5.4                | \$ | 83.0                | \$<br>25.0    | \$ | 3.8                   | \$ | 58.1                | \$<br>38.8    | \$ | 5.9                | \$ | 90.0                |
| Total | \$<br>469.8   | \$ | 71.4               | \$ | 1,085.7             | \$<br>307.0   | \$ | 46.7                  | \$ | 709.5               | \$<br>563.2   | \$ | 85.7               | \$ | 1,301.1             |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

Exhibit F.2s Projections of Yearly Benefits, WTP for Lymphoma as Basis for Non-Fatal Cases (Ground Water Systems Serving ≥1,000,000 People)

**TTHM - Preferred Alternative** 

|       |               | _  | /Lung Ca<br>on Lag M |     |                     |                | _  | /Bladder<br>ion Lag l |     |                     |               |    | Bladder<br>ion Lag | -   |                     |
|-------|---------------|----|----------------------|-----|---------------------|----------------|----|-----------------------|-----|---------------------|---------------|----|--------------------|-----|---------------------|
|       |               | •  | 90 Po<br>Confider    |     |                     |                |    | 90 Pe<br>Confider     |     |                     |               | (  | 90 P<br>Confide    |     |                     |
| Year  | Mean<br>Value |    | ∟ower<br>h %tile)    | (95 | Upper<br>5th %tile) | Vlean<br>∕alue |    | Lower<br>h %tile)     | (95 | Upper<br>5th %tile) | Mean<br>/alue |    | ₋ower<br>h %tile)  | (95 | Upper<br>oth %tile) |
| 2005  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-        | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                  | \$  | -                   |
| 2006  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-        | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                  | \$  | -                   |
| 2007  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-        | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                  | \$  | -                   |
| 2008  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-        | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                  | \$  | -                   |
| 2009  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-        | \$ | -                     | \$  | -                   | \$<br>-       | \$ | -                  | \$  | -                   |
| 2010  | \$<br>0.3     | \$ | 0.0                  | \$  | 0.6                 | \$<br>0.2      | \$ | 0.0                   | \$  | 0.5                 | \$<br>0.5     | \$ | 0.1                | \$  | 1.0                 |
| 2011  | \$<br>0.7     | \$ | 0.1                  | \$  | 1.5                 | \$<br>0.5      | \$ | 0.1                   | \$  | 1.2                 | \$<br>1.1     | \$ | 0.2                | \$  | 2.6                 |
| 2012  | \$<br>1.2     | \$ | 0.2                  | \$  | 2.8                 | \$<br>0.9      | \$ | 0.1                   | \$  | 2.0                 | \$<br>2.0     | \$ | 0.3                | \$  | 4.5                 |
| 2013  | \$<br>1.9     | \$ | 0.3                  | \$  | 4.3                 | \$<br>1.3      | \$ | 0.2                   | \$  | 3.0                 | \$<br>2.9     | \$ | 0.5                | \$  | 6.8                 |
| 2014  | \$<br>2.4     | \$ | 0.4                  | \$  | 5.5                 | \$<br>1.6      | \$ | 0.2                   | \$  | 3.6                 | \$<br>3.6     | \$ | 0.5                | \$  | 8.2                 |
| 2015  | \$<br>2.9     | \$ | 0.4                  | \$  | 6.6                 | \$<br>1.8      | \$ | 0.3                   | \$  | 4.2                 | \$<br>4.0     | \$ | 0.6                | \$  | 9.3                 |
| 2016  | \$<br>3.3     | \$ | 0.5                  | \$  | 7.6                 | \$<br>2.0      | \$ | 0.3                   | \$  | 4.7                 | \$<br>4.4     | \$ | 0.7                | \$  | 10.2                |
| 2017  | \$<br>3.7     | \$ | 0.6                  | \$  | 8.5                 | \$<br>2.3      | \$ | 0.3                   | \$  | 5.2                 | \$<br>4.7     | \$ | 0.7                | \$  | 10.9                |
| 2018  | \$<br>4.0     | \$ | 0.6                  | \$  | 9.3                 | \$<br>2.5      | \$ | 0.4                   | \$  | 5.7                 | \$<br>5.0     | \$ | 0.8                | \$  | 11.5                |
| 2019  | \$<br>4.3     | \$ | 0.7                  | \$  | 9.9                 | \$<br>2.6      | \$ | 0.4                   | \$  | 6.1                 | \$<br>5.2     | \$ | 0.8                | \$  | 12.1                |
| 2020  | \$<br>4.6     | \$ | 0.7                  | \$  | 10.5                | \$<br>2.8      | \$ | 0.4                   | \$  | 6.5                 | \$<br>5.4     | \$ | 0.8                | \$  | 12.5                |
| 2021  | \$<br>4.8     | \$ | 0.7                  | \$  | 11.1                | \$<br>3.0      | \$ | 0.5                   | \$  | 6.9                 | \$<br>5.6     | \$ | 0.9                | \$  | 12.9                |
| 2022  | \$<br>5.0     | \$ | 0.8                  | \$  | 11.5                | \$<br>3.2      | \$ | 0.5                   | \$  | 7.3                 | \$<br>5.8     | \$ | 0.9                | \$  | 13.3                |
| 2023  | \$<br>5.2     | \$ | 0.8                  | \$  | 12.0                | \$<br>3.3      | \$ | 0.5                   | \$  | 7.7                 | \$<br>5.9     | \$ | 0.9                | \$  | 13.6                |
| 2024  | \$<br>5.3     | \$ | 0.8                  | \$  | 12.4                | \$<br>3.5      | \$ | 0.5                   | \$  | 8.1                 | \$<br>6.0     | \$ | 0.9                | \$  | 13.9                |
| 2025  | \$<br>5.5     | \$ | 0.8                  | \$  | 12.7                | \$<br>3.6      | \$ | 0.6                   | \$  | 8.4                 | \$<br>6.1     | \$ | 0.9                | \$  | 14.2                |
| 2026  | \$<br>5.7     | \$ | 0.9                  | \$  | 13.1                | \$<br>3.8      | \$ | 0.6                   | \$  | 8.8                 | \$<br>6.3     | \$ | 0.9                | \$  | 14.5                |
| 2027  | \$<br>5.8     | \$ | 0.9                  | \$  | 13.4                | \$<br>3.9      | \$ | 0.6                   | \$  | 9.2                 | \$<br>6.4     | \$ | 1.0                | \$  | 14.8                |
| 2028  | \$<br>5.8     | \$ | 0.9                  | \$  | 13.6                | \$<br>4.0      | \$ | 0.6                   | \$  | 9.4                 | \$<br>6.4     | \$ | 1.0                | \$  | 14.8                |
| 2029  | \$<br>6.0     | \$ | 0.9                  | \$  | 13.8                | \$<br>4.2      | \$ | 0.6                   | \$  | 9.7                 | \$<br>6.5     | \$ | 1.0                | \$  | 15.0                |
| Total | \$<br>78.2    | \$ | 11.9                 | \$  | 180.8               | \$<br>51.1     | \$ | 7.8                   | \$  | 118.1               | \$<br>93.8    | \$ | 14.3               | \$  | 216.7               |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

## Exhibit F.2t Projections of Yearly Benefits, WTP for Lymphoma as Basis for Non-Fatal Cases (All Ground Water Systems)

**TTHM - Preferred Alternative** 

|       |               | _  | /Lung Ca          |    |                     |               | /Bladder<br>ion Lag N |     |                     |               | ladder C<br>on Lag M |    | er                  |
|-------|---------------|----|-------------------|----|---------------------|---------------|-----------------------|-----|---------------------|---------------|----------------------|----|---------------------|
|       |               |    | 90 P              |    | -                   |               | 90 P<br>Confide       |     |                     |               | 90 P<br>Confider     |    |                     |
| Year  | Mean<br>Value |    | Lower<br>h %tile) | (9 | Upper<br>5th %tile) | Mean<br>Value | Lower<br>th %tile)    | (9: | Upper<br>5th %tile) | Mean<br>Value | Lower<br>h %tile)    | (9 | Upper<br>5th %tile) |
| 2005  | \$<br>-       | \$ | -                 | \$ | -                   | \$<br>-       | \$<br>-               | \$  | -                   | \$<br>-       | \$<br>-              | \$ | -                   |
| 2006  | \$<br>-       | \$ | -                 | \$ | -                   | \$<br>-       | \$<br>-               | \$  | -                   | \$<br>-       | \$<br>-              | \$ | -                   |
| 2007  | \$<br>-       | \$ | -                 | \$ | -                   | \$<br>-       | \$<br>-               | \$  | -                   | \$<br>-       | \$<br>-              | \$ | -                   |
| 2008  | \$<br>-       | \$ | -                 | \$ | -                   | \$<br>-       | \$<br>-               | \$  | -                   | \$<br>-       | \$<br>-              | \$ | -                   |
| 2009  | \$<br>-       | \$ | -                 | \$ | -                   | \$<br>-       | \$<br>-               | \$  | -                   | \$<br>-       | \$<br>-              | \$ | -                   |
| 2010  | \$<br>5.9     | \$ | 0.9               | \$ | 13.6                | \$<br>4.8     | \$<br>0.7             | \$  | 11.1                | \$<br>10.4    | \$<br>1.6            | \$ | 23.8                |
| 2011  | \$<br>15.4    | \$ | 2.4               | \$ | 35.4                | \$<br>11.6    | \$<br>1.8             | \$  | 26.8                | \$<br>25.8    | \$<br>4.0            | \$ | 59.4                |
| 2012  | \$<br>27.9    | \$ | 4.3               | \$ | 64.1                | \$<br>20.1    | \$<br>3.1             | \$  | 46.1                | \$<br>45.2    | \$<br>6.9            | \$ | 103.8               |
| 2013  | \$<br>43.2    | \$ | 6.6               | \$ | 99.3                | \$<br>30.0    | \$<br>4.6             | \$  | 69.0                | \$<br>67.6    | \$<br>10.3           | \$ | 155.2               |
| 2014  | \$<br>59.1    | \$ | 9.0               | \$ | 135.9               | \$<br>39.6    | \$<br>6.1             | \$  | 91.0                | \$<br>88.8    | \$<br>13.6           | \$ | 204.0               |
| 2015  | \$<br>75.3    | \$ | 11.5              | \$ | 173.2               | \$<br>49.0    | \$<br>7.5             | \$  | 112.6               | \$<br>108.5   | \$<br>16.6           | \$ | 249.5               |
| 2016  | \$<br>90.2    | \$ | 13.8              | \$ | 207.3               | \$<br>57.1    | \$<br>8.7             | \$  | 131.3               | \$<br>124.5   | \$<br>19.0           | \$ | 286.3               |
| 2017  | \$<br>103.1   | \$ | 15.7              | \$ | 237.2               | \$<br>64.1    | \$<br>9.8             | \$  | 147.5               | \$<br>136.6   | \$<br>20.9           | \$ | 314.5               |
| 2018  | \$<br>114.5   | \$ | 17.5              | \$ | 263.9               | \$<br>70.5    | \$<br>10.8            | \$  | 162.5               | \$<br>146.5   | \$<br>22.3           | \$ | 337.6               |
| 2019  | \$<br>124.7   | \$ | 19.0              | \$ | 287.7               | \$<br>76.7    | \$<br>11.7            | \$  | 176.9               | \$<br>154.8   | \$<br>23.6           | \$ | 357.3               |
| 2020  | \$<br>133.6   | \$ | 20.3              | \$ | 308.5               | \$<br>82.5    | \$<br>12.6            | \$  | 190.4               | \$<br>161.9   | \$<br>24.6           | \$ | 373.7               |
| 2021  | \$<br>141.5   | \$ | 21.5              | \$ | 326.6               | \$<br>88.1    | \$<br>13.4            | \$  | 203.4               | \$<br>168.0   | \$<br>25.5           | \$ | 387.8               |
| 2022  | \$<br>148.4   | \$ | 22.6              | \$ | 343.2               | \$<br>93.5    | \$<br>14.2            | \$  | 216.2               | \$<br>173.3   | \$<br>26.4           | \$ | 400.9               |
| 2023  | \$<br>154.7   | \$ | 23.5              | \$ | 357.8               | \$<br>98.7    | \$<br>15.0            | \$  | 228.2               | \$<br>178.1   | \$<br>27.1           | \$ | 412.0               |
| 2024  | \$<br>160.3   | \$ | 24.4              | \$ | 371.1               | \$<br>103.7   | \$<br>15.8            | \$  | 240.0               | \$<br>182.4   | \$<br>27.7           | \$ | 422.1               |
| 2025  | \$<br>165.6   | \$ | 25.1              | \$ | 383.2               | \$<br>108.6   | \$<br>16.5            | \$  | 251.3               | \$<br>186.3   | \$<br>28.3           | \$ | 431.2               |
| 2026  | \$<br>170.4   | \$ | 25.8              | \$ | 394.8               | \$<br>113.3   | \$<br>17.2            | \$  | 262.5               | \$<br>190.0   | \$<br>28.8           | \$ | 440.0               |
| 2027  | \$<br>175.0   | \$ | 26.5              | \$ | 405.9               | \$<br>118.0   | \$<br>17.9            | \$  | 273.6               | \$<br>193.4   | \$<br>29.3           | \$ | 448.6               |
| 2028  | \$<br>176.9   | \$ | 26.8              | \$ | 410.2               | \$<br>120.9   | \$<br>18.3            | \$  | 280.3               | \$<br>194.0   | \$<br>29.4           | \$ | 449.9               |
| 2029  | \$<br>180.5   | \$ | 27.3              | \$ | 418.8               | \$<br>124.9   | \$<br>18.9            | \$  | 290.0               | \$<br>196.6   | \$<br>29.7           | \$ | 456.2               |
| Total | \$<br>2,266.1 | \$ | 344.6             | \$ | 5,237.8             | \$<br>1,475.5 | \$<br>224.3           | \$  | 3,410.6             | \$<br>2,732.6 | \$<br>415.6          | \$ | 6,313.9             |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

## Exhibit F.2u Projections of Yearly Benefits, WTP for Lymphoma as Basis for Non-Fatal Cases (All Water Systems)

**TTHM - Preferred Alternative** 

|       |                | g/Lung Ca<br>ion Lag M |    |                      |                | _  | Bladder C          |    |                     |                |    | Bladder C<br>on Lag M |    | -                    |
|-------|----------------|------------------------|----|----------------------|----------------|----|--------------------|----|---------------------|----------------|----|-----------------------|----|----------------------|
|       |                | 90 P<br>Confider       |    |                      |                |    | 90 P               |    |                     |                |    | 90 P<br>Confider      |    |                      |
| Year  | Mean<br>Value  | Lower<br>th %tile)     | (9 | Upper<br>95th %tile) | Mean<br>Value  | (5 | Lower<br>th %tile) | (9 | Upper<br>5th %tile) | Mean<br>Value  | (5 | Lower<br>th %tile)    | (9 | Upper<br>95th %tile) |
| 2005  | \$<br>-        | \$                     | \$ | -                    | \$<br>-        | \$ | -                  | \$ | -                   | \$<br>-        | \$ | -                     | \$ | -                    |
| 2006  | \$<br>-        | \$<br>-                | \$ | -                    | \$<br>-        | \$ | -                  | \$ | -                   | \$<br>-        | \$ | -                     | \$ | -                    |
| 2007  | \$<br>-        | \$<br>-                | \$ | -                    | \$<br>-        | \$ | -                  | \$ | -                   | \$<br>-        | \$ | -                     | \$ | -                    |
| 2008  | \$<br>-        | \$<br>-                | \$ | -                    | \$<br>-        | \$ | -                  | \$ | -                   | \$<br>-        | \$ | -                     | \$ | -                    |
| 2009  | \$<br>-        | \$<br>-                | \$ | -                    | \$<br>-        | \$ | -                  | \$ | -                   | \$<br>-        | \$ | -                     | \$ | -                    |
| 2010  | \$<br>133.4    | \$<br>20.4             | \$ | 306.7                | \$<br>126.5    | \$ | 19.4               | \$ | 290.7               | \$<br>250.3    | \$ | 38.3                  | \$ | 575.3                |
| 2011  | \$<br>345.3    | \$<br>52.9             | \$ | 794.2                | \$<br>299.6    | \$ | 45.9               | \$ | 689.0               | \$<br>612.6    | \$ | 93.8                  | \$ | 1,409.1              |
| 2012  | \$<br>624.7    | \$<br>95.6             | \$ | 1,435.2              | \$<br>510.6    | \$ | 78.1               | \$ | 1,173.0             | \$<br>1,057.5  | \$ | 161.8                 | \$ | 2,429.4              |
| 2013  | \$<br>967.8    | \$<br>148.1            | \$ | 2,223.0              | \$<br>755.4    | \$ | 115.6              | \$ | 1,735.2             | \$<br>1,568.0  | \$ | 240.0                 | \$ | 3,601.7              |
| 2014  | \$<br>1,264.2  | \$<br>193.3            | \$ | 2,906.2              | \$<br>925.3    | \$ | 141.5              | \$ | 2,127.1             | \$<br>1,923.8  | \$ | 294.1                 | \$ | 4,422.3              |
| 2015  | \$<br>1,543.0  | \$<br>236.0            | \$ | 3,548.7              | \$<br>1,071.8  | \$ | 163.9              | \$ | 2,464.9             | \$<br>2,205.3  | \$ | 337.2                 | \$ | 5,071.8              |
| 2016  | \$<br>1,797.8  | \$<br>274.6            | \$ | 4,134.4              | \$<br>1,199.6  | \$ | 183.3              | \$ | 2,758.8             | \$<br>2,426.6  | \$ | 370.7                 | \$ | 5,580.4              |
| 2017  | \$<br>2,027.9  | \$<br>309.6            | \$ | 4,668.0              | \$<br>1,316.2  | \$ | 201.0              | \$ | 3,029.8             | \$<br>2,606.3  | \$ | 398.0                 | \$ | 5,999.4              |
| 2018  | \$<br>2,230.2  | \$<br>340.1            | \$ | 5,137.9              | \$<br>1,425.4  | \$ | 217.3              | \$ | 3,283.9             | \$<br>2,757.0  | \$ | 420.4                 | \$ | 6,351.6              |
| 2019  | \$<br>2,403.5  | \$<br>366.1            | \$ | 5,546.5              | \$<br>1,528.8  | \$ | 232.9              | \$ | 3,528.0             | \$<br>2,886.0  | \$ | 439.6                 | \$ | 6,660.0              |
| 2020  | \$<br>2,554.2  | \$<br>388.9            | \$ | 5,896.9              | \$<br>1,627.5  | \$ | 247.8              | \$ | 3,757.4             | \$<br>2,998.3  | \$ | 456.6                 | \$ | 6,922.3              |
| 2021  | \$<br>2,687.0  | \$<br>408.7            | \$ | 6,204.0              | \$<br>1,722.1  | \$ | 261.9              | \$ | 3,976.2             | \$<br>3,097.6  | \$ | 471.1                 | \$ | 7,152.0              |
| 2022  | \$<br>2,805.7  | \$<br>426.6            | \$ | 6,489.0              | \$<br>1,813.3  | \$ | 275.7              | \$ | 4,193.8             | \$<br>3,186.5  | \$ | 484.6                 | \$ | 7,369.8              |
| 2023  | \$<br>2,913.1  | \$<br>443.1            | \$ | 6,739.0              | \$<br>1,901.4  | \$ | 289.2              | \$ | 4,398.5             | \$<br>3,267.3  | \$ | 496.9                 | \$ | 7,558.4              |
| 2024  | \$<br>3,011.3  | \$<br>457.8            | \$ | 6,968.9              | \$<br>1,986.7  | \$ | 302.0              | \$ | 4,597.7             | \$<br>3,341.4  | \$ | 508.0                 | \$ | 7,732.9              |
| 2025  | \$<br>3,102.0  | \$<br>470.9            | \$ | 7,179.3              | \$<br>2,069.6  | \$ | 314.1              | \$ | 4,789.8             | \$<br>3,410.3  | \$ | 517.6                 | \$ | 7,892.8              |
| 2026  | \$<br>3,186.5  | \$<br>483.0            | \$ | 7,381.1              | \$<br>2,150.2  | \$ | 325.9              | \$ | 4,980.8             | \$<br>3,474.9  | \$ | 526.7                 | \$ | 8,049.2              |
| 2027  | \$<br>3,265.8  | \$<br>494.5            | \$ | 7,576.4              | \$<br>2,228.9  | \$ | 337.5              | \$ | 5,170.9             | \$<br>3,536.0  | \$ | 535.4                 | \$ | 8,203.3              |
| 2028  | \$<br>3,297.4  | \$<br>499.7            | \$ | 7,645.6              | \$<br>2,275.9  | \$ | 344.9              | \$ | 5,277.0             | \$<br>3,547.7  | \$ | 537.6                 | \$ | 8,225.9              |
| 2029  | \$<br>3,359.7  | \$<br>508.4            | \$ | 7,797.3              | \$<br>2,344.4  | \$ | 354.8              | \$ | 5,441.0             | \$<br>3,594.3  | \$ | 543.9                 | \$ | 8,341.8              |
| Total | \$<br>43,520.5 | \$<br>6,618.3          | \$ | 100,578.3            | \$<br>29,279.2 | \$ | 4,452.7            | \$ | 67,663.6            | \$<br>51,747.7 | \$ | 7,872.4               | \$ | 119,549.5            |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.2j and F.2t.

Exhibit F.2v Present Value of Benefits Yearly Projections, WTP for Lymphoma as Basis for Non-Fatal Cases, at 3% Discount Rate

(All Water Systems)

**TTHM - Preferred Alternative** 

|       |                |    | g/Lung Can<br>ion Lag Mo |    |                      |                | •  | Bladder Ca<br>on Lag Mo |    | er                   |                |    | /Bladder (<br>tion Lag I |              | -                    |
|-------|----------------|----|--------------------------|----|----------------------|----------------|----|-------------------------|----|----------------------|----------------|----|--------------------------|--------------|----------------------|
|       |                |    | 90 Pe<br>Confider        |    |                      |                |    | 90 P<br>Confider        |    |                      |                |    | 90 l<br>Confide          | Perc<br>ence |                      |
| Year  | Mean<br>Value  | (5 | Lower<br>5th %tile)      | (9 | Upper<br>95th %tile) | Mean<br>Value  | (5 | Lower                   | (9 | Upper<br>95th %tile) | Mean<br>Value  | (5 | Lower<br>th %tile)       | (9           | Upper<br>95th %tile) |
| 2005  | \$<br>-        | \$ | -                        | \$ | -                    | \$<br>-        | \$ |                         | \$ | -                    | \$<br>-        | \$ | <u> </u>                 | \$           | -                    |
| 2006  | \$<br>-        | \$ | -                        | \$ | -                    | \$<br>-        | \$ | _                       | \$ | -                    | \$<br>_        | \$ | _                        | \$           | -                    |
| 2007  | \$<br>-        | \$ | -                        | \$ | -                    | \$<br>-        | \$ | -                       | \$ | -                    | \$<br>_        | \$ | -                        | \$           | -                    |
| 2008  | \$<br>-        | \$ | -                        | \$ | -                    | \$<br>-        | \$ | -                       | \$ | -                    | \$<br>-        | \$ | -                        | \$           | -                    |
| 2009  | \$<br>-        | \$ | -                        | \$ | -                    | \$<br>-        | \$ | -                       | \$ | -                    | \$<br>-        | \$ | -                        | \$           | -                    |
| 2010  | \$<br>115.1    | \$ | 17.6                     | \$ | 264.6                | \$<br>109.1    | \$ | 16.7                    | \$ | 250.8                | \$<br>215.9    | \$ | 33.0                     | \$           | 496.2                |
| 2011  | \$<br>289.2    | \$ | 44.3                     | \$ | 665.1                | \$<br>250.9    | \$ | 38.4                    | \$ | 577.0                | \$<br>513.1    | \$ | 78.6                     | \$           | 1,180.1              |
| 2012  | \$<br>508.0    | \$ | 77.7                     | \$ | 1,166.9              | \$<br>415.2    | \$ | 63.5                    | \$ | 953.8                | \$<br>859.9    | \$ | 131.6                    | \$           | 1,975.3              |
| 2013  | \$<br>764.0    | \$ | 116.9                    | \$ | 1,754.8              | \$<br>596.3    | \$ | 91.3                    | \$ | 1,369.8              | \$<br>1,237.8  | \$ | 189.5                    | \$           | 2,843.2              |
| 2014  | \$<br>968.9    | \$ | 148.1                    | \$ | 2,227.4              | \$<br>709.2    | \$ | 108.4                   | \$ | 1,630.2              | \$<br>1,474.4  | \$ | 225.4                    | \$           | 3,389.4              |
| 2015  | \$<br>1,148.2  | \$ | 175.6                    | \$ | 2,640.6              | \$<br>797.5    | \$ | 121.9                   | \$ | 1,834.1              | \$<br>1,640.9  | \$ | 250.9                    | \$           | 3,773.9              |
| 2016  | \$<br>1,298.8  | \$ | 198.4                    | \$ | 2,986.8              | \$<br>866.6    | \$ | 132.4                   | \$ | 1,993.0              | \$<br>1,753.0  | \$ | 267.8                    | \$           | 4,031.4              |
| 2017  | \$<br>1,422.3  | \$ | 217.2                    | \$ | 3,274.0              | \$<br>923.2    | \$ | 141.0                   | \$ | 2,125.0              | \$<br>1,828.0  | \$ | 279.1                    | \$           | 4,207.8              |
| 2018  | \$<br>1,518.6  | \$ | 231.6                    | \$ | 3,498.6              | \$<br>970.6    | \$ | 148.0                   | \$ | 2,236.2              | \$<br>1,877.4  | \$ | 286.3                    | \$           | 4,325.2              |
| 2019  | \$<br>1,589.0  | \$ | 242.0                    | \$ | 3,666.9              | \$<br>1,010.7  | \$ | 154.0                   | \$ | 2,332.5              | \$<br>1,908.0  | \$ | 290.6                    | \$           | 4,403.1              |
| 2020  | \$<br>1,639.4  | \$ | 249.6                    | \$ | 3,785.0              | \$<br>1,044.6  | \$ | 159.1                   | \$ | 2,411.8              | \$<br>1,924.5  | \$ | 293.0                    | \$           | 4,443.2              |
| 2021  | \$<br>1,674.4  | \$ | 254.7                    | \$ | 3,866.1              | \$<br>1,073.2  | \$ | 163.2                   | \$ | 2,477.9              | \$<br>1,930.3  | \$ | 293.6                    | \$           | 4,456.9              |
| 2022  | \$<br>1,697.5  | \$ | 258.1                    | \$ | 3,925.9              | \$<br>1,097.1  | \$ | 166.8                   | \$ | 2,537.3              | \$<br>1,927.9  | \$ | 293.2                    | \$           | 4,458.9              |
| 2023  | \$<br>1,711.1  | \$ | 260.3                    | \$ | 3,958.5              | \$<br>1,116.8  | \$ | 169.9                   | \$ | 2,583.7              | \$<br>1,919.2  | \$ | 291.9                    | \$           | 4,439.8              |
| 2024  | \$<br>1,717.3  | \$ | 261.1                    | \$ | 3,974.3              | \$<br>1,133.0  | \$ | 172.2                   | \$ | 2,622.0              | \$<br>1,905.6  | \$ | 289.7                    | \$           | 4,410.0              |
| 2025  | \$<br>1,717.5  | \$ | 260.7                    | \$ | 3,975.0              | \$<br>1,145.9  | \$ | 173.9                   | \$ | 2,652.0              | \$<br>1,888.2  | \$ | 286.6                    | \$           | 4,370.0              |
| 2026  | \$<br>1,712.9  | \$ | 259.6                    | \$ | 3,967.7              | \$<br>1,155.9  | \$ | 175.2                   | \$ | 2,677.4              | \$<br>1,867.9  | \$ | 283.1                    | \$           | 4,326.8              |
| 2027  | \$<br>1,704.4  | \$ | 258.1                    | \$ | 3,954.1              | \$<br>1,163.2  | \$ | 176.1                   | \$ | 2,698.7              | \$<br>1,845.4  | \$ | 279.4                    | \$           | 4,281.2              |
| 2028  | \$<br>1,670.8  | \$ | 253.2                    | \$ | 3,874.0              | \$<br>1,153.2  | \$ | 174.8                   | \$ | 2,673.8              | \$<br>1,797.6  | \$ | 272.4                    | \$           | 4,168.0              |
| 2029  | \$<br>1,652.7  | \$ | 250.1                    | \$ | 3,835.8              | \$<br>1,153.3  | \$ | 174.5                   | \$ | 2,676.6              | \$<br>1,768.2  | \$ | 267.6                    | \$           | 4,103.6              |
| Total | \$<br>26,520.1 | \$ | 4,034.9                  | \$ | 61,262.1             | \$<br>17,885.5 | \$ | 2,721.4                 | \$ | 41,313.4             | \$<br>32,083.1 | \$ | 4,883.3                  | \$           | 74,084.0             |
| Ann.  | \$<br>1,523.0  | \$ | 231.7                    | \$ | 3,518.2              | \$<br>1,027.1  | \$ | 156.3                   | \$ | 2,372.5              | \$<br>1,842.5  | \$ | 280.4                    | \$           | 4,254.5              |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibit F.2u.

## Exhibit F.2w Present Value of Benefits Yearly Projections, WTP for Lymphoma as Basis for Non-Fatal Cases, at 7% Discount Rate (All Water Systems)

**TTHM - Preferred Alternative** 

|       |                |    | ng/Lung Ca<br>ation Lag M |    |                     |               | _  | Bladder C          |    |                     |                |    | Bladder (          |      |                     |
|-------|----------------|----|---------------------------|----|---------------------|---------------|----|--------------------|----|---------------------|----------------|----|--------------------|------|---------------------|
|       |                |    | 90 Po<br>Confider         |    |                     |               |    | 90 P<br>Confider   |    |                     |                |    | 90 P<br>Confider   | erce | ent                 |
| Year  | Mean<br>Value  | (5 | Lower<br>oth %tile)       | (9 | Upper<br>5th %tile) | Mean<br>Value | (5 | Lower<br>th %tile) | (9 | Upper<br>5th %tile) | Mean<br>Value  | (5 | Lower<br>th %tile) | (9   | Upper<br>5th %tile) |
| 2005  | \$<br>-        | \$ | _                         | \$ | _                   | \$<br>-       | \$ | _                  | \$ | _                   | \$<br>-        | \$ | _                  | \$   | -                   |
| 2006  | \$<br>-        | \$ | -                         | \$ | -                   | \$<br>-       | \$ | -                  | \$ | _                   | \$<br>-        | \$ |                    | \$   | -                   |
| 2007  | \$<br>-        | \$ | -                         | \$ | -                   | \$<br>-       | \$ | -                  | \$ | -                   | \$<br>-        | \$ | _                  | \$   | -                   |
| 2008  | \$<br>-        | \$ | -                         | \$ | -                   | \$<br>-       | \$ | -                  | \$ | -                   | \$<br>-        | \$ | -                  | \$   | -                   |
| 2009  | \$<br>-        | \$ | -                         | \$ | -                   | \$<br>-       | \$ | -                  | \$ | -                   | \$<br>-        | \$ | -                  | \$   | -                   |
| 2010  | \$<br>95.1     | \$ | 14.6                      | \$ | 218.7               | \$<br>90.2    | \$ | 13.8               | \$ | 207.3               | \$<br>178.4    | \$ | 27.3               | \$   | 410.2               |
| 2011  | \$<br>230.1    | \$ | 35.2                      | \$ | 529.2               | \$<br>199.6   | \$ | 30.6               | \$ | 459.1               | \$<br>408.2    | \$ | 62.5               | \$   | 939.0               |
| 2012  | \$<br>389.1    | \$ | 59.5                      | \$ | 893.8               | \$<br>318.0   | \$ | 48.7               | \$ | 730.5               | \$<br>658.6    | \$ | 100.8              | \$   | 1,512.9             |
| 2013  | \$<br>563.3    | \$ | 86.2                      | \$ | 1,293.8             | \$<br>439.7   | \$ | 67.3               | \$ | 1,009.9             | \$<br>912.6    | \$ | 139.7              | \$   | 2,096.2             |
| 2014  | \$<br>687.7    | \$ | 105.1                     | \$ | 1,580.8             | \$<br>503.3   | \$ | 76.9               | \$ | 1,157.0             | \$<br>1,046.4  | \$ | 160.0              | \$   | 2,405.5             |
| 2015  | \$<br>784.4    | \$ | 119.9                     | \$ | 1,804.0             | \$<br>544.8   | \$ | 83.3               | \$ | 1,253.0             | \$<br>1,121.1  | \$ | 171.4              | \$   | 2,578.2             |
| 2016  | \$<br>854.1    | \$ | 130.5                     | \$ | 1,964.2             | \$<br>569.9   | \$ | 87.1               | \$ | 1,310.7             | \$<br>1,152.8  | \$ | 176.1              | \$   | 2,651.2             |
| 2017  | \$<br>900.4    | \$ | 137.5                     | \$ | 2,072.6             | \$<br>584.4   | \$ | 89.2               | \$ | 1,345.3             | \$<br>1,157.2  | \$ | 176.7              | \$   | 2,663.8             |
| 2018  | \$<br>925.4    | \$ | 141.1                     | \$ | 2,132.0             | \$<br>591.5   | \$ | 90.2               | \$ | 1,362.7             | \$<br>1,144.1  | \$ | 174.4              | \$   | 2,635.7             |
| 2019  | \$<br>932.1    | \$ | 142.0                     | \$ | 2,151.0             | \$<br>592.9   | \$ | 90.3               | \$ | 1,368.2             | \$<br>1,119.2  | \$ | 170.5              | \$   | 2,582.9             |
| 2020  | \$<br>925.8    | \$ | 141.0                     | \$ | 2,137.3             | \$<br>589.9   | \$ | 89.8               | \$ | 1,361.9             | \$<br>1,086.7  | \$ | 165.5              | \$   | 2,509.0             |
| 2021  | \$<br>910.2    | \$ | 138.4                     | \$ | 2,101.5             | \$<br>583.3   | \$ | 88.7               | \$ | 1,346.9             | \$<br>1,049.3  | \$ | 159.6              | \$   | 2,422.6             |
| 2022  | \$<br>888.2    | \$ | 135.1                     | \$ | 2,054.2             | \$<br>574.0   | \$ | 87.3               | \$ | 1,327.6             | \$<br>1,008.8  | \$ | 153.4              | \$   | 2,333.1             |
| 2023  | \$<br>861.9    | \$ | 131.1                     | \$ | 1,993.8             | \$<br>562.5   | \$ | 85.6               | \$ | 1,301.4             | \$<br>966.7    | \$ | 147.0              | \$   | 2,236.3             |
| 2024  | \$<br>832.7    | \$ | 126.6                     | \$ | 1,927.0             | \$<br>549.3   | \$ | 83.5               | \$ | 1,271.3             | \$<br>923.9    | \$ | 140.5              | \$   | 2,138.2             |
| 2025  | \$<br>801.6    | \$ | 121.7                     | \$ | 1,855.3             | \$<br>534.8   | \$ | 81.2               | \$ | 1,237.8             | \$<br>881.3    | \$ | 133.8              | \$   | 2,039.6             |
| 2026  | \$<br>769.6    | \$ | 116.7                     | \$ | 1,782.6             | \$<br>519.3   | \$ | 78.7               | \$ | 1,202.9             | \$<br>839.2    | \$ | 127.2              | \$   | 1,944.0             |
| 2027  | \$<br>737.1    | \$ | 111.6                     | \$ | 1,710.1             | \$<br>503.1   | \$ | 76.2               | \$ | 1,167.1             | \$<br>798.1    | \$ | 120.8              | \$   | 1,851.6             |
| 2028  | \$<br>695.6    | \$ | 105.4                     | \$ | 1,612.8             | \$<br>480.1   | \$ | 72.8               | \$ | 1,113.2             | \$<br>748.4    | \$ | 113.4              | \$   | 1,735.2             |
| 2029  | \$<br>662.3    | \$ | 100.2                     | \$ | 1,537.2             | \$<br>462.2   | \$ | 69.9               | \$ | 1,072.7             | \$<br>708.6    | \$ | 107.2              | \$   | 1,644.6             |
| Total | \$<br>14,446.6 | \$ | 2,199.4                   | \$ | 33,352.0            | \$<br>9,793.0 | \$ | 1,491.1            | \$ | 22,606.4            | \$<br>17,909.7 | \$ | 2,727.8            | \$   | 41,329.7            |
| Ann.  | \$<br>1,239.7  | \$ | 188.7                     | \$ | 2,862.0             | \$<br>840.3   | \$ | 127.9              | \$ | 1,939.9             | \$<br>1,536.8  | \$ | 234.1              | \$   | 3,546.5             |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibit F.2u.

Exhibit F.2x Present Value of Benefits Yearly Projections, WTP for Lymphoma as Basis for Non-Fatal Cases, at 3% Discount Rate, by Small & Large Size Categories (Surface Water Systems)

**TTHM - Preferred Alternative** 

|       |               |    |                   |                    |     | Sı            | mall \$ | Syste            | ms                  |     |               |    |                    |                     |      |    |                |    |                      |                     | La            | arge | Syste               | ms |                     |               |                        |               |                     |
|-------|---------------|----|-------------------|--------------------|-----|---------------|---------|------------------|---------------------|-----|---------------|----|--------------------|---------------------|------|----|----------------|----|----------------------|---------------------|---------------|------|---------------------|----|---------------------|---------------|------------------------|---------------|---------------------|
|       |               | •  | Lung Ca           |                    |     |               | •       | adder (<br>Lag M |                     |     |               |    | /Bladder C         |                     |      |    |                | -  | /Lung Ca<br>on Lag M |                     |               | •    | Bladder<br>on Lag N |    |                     |               | Bladder (<br>ion Lag N |               |                     |
|       |               | c  | 90 Po<br>Confider | -                  |     |               | Co      |                  | ercent<br>ice Bound |     |               |    |                    | ercent<br>ice Bound | i    |    |                |    | 90 Pe<br>Confiden    | -                   |               | c    | 90 P<br>Confide     |    |                     |               | 90 P<br>Confider       | erce<br>nce E |                     |
| Year  | Mean<br>/alue |    | ower<br>1 %tile)  | Upper<br>th %tile) |     | Mean<br>Value | _       | wer<br>%tile)    | Upper<br>(95th %ti  | e)  | Mean<br>Value | (5 | Lower<br>th %tile) | Uppe<br>(95th %t    |      |    | /lean<br>/alue | l  | ∟ower<br>h %tile)    | Upper<br>5th %tile) | lean<br>alue  |      | ower<br>%tile)      |    | Upper<br>5th %tile) | Mean<br>Value | Lower<br>th %tile)     |               | Upper<br>5th %tile) |
| 2005  | \$<br>-       | \$ | -                 | \$<br>-            | \$  | -             | \$      | -                | \$ -                | - ; | \$ -          | \$ | -                  | \$                  | -    | \$ | -              | \$ | -                    | \$<br>-             | \$<br>-       | \$   | -                   | \$ | -                   | \$<br>-       | \$<br>-                | \$            | -                   |
| 2006  | \$<br>-       | \$ | -                 | \$<br>-            | \$  | -             | \$      | -                | \$ -                | :   | \$ -          | \$ | -                  | \$                  | -    | \$ | -              | \$ | -                    | \$<br>-             | \$<br>-       | \$   | -                   | \$ | -                   | \$<br>-       | \$<br>-                | \$            | -                   |
| 2007  | \$<br>-       | \$ | -                 | \$<br>-            | \$  | -             | \$      | -                | \$ -                | :   | \$ -          | \$ | -                  | \$                  | -    | \$ | -              | \$ | -                    | \$<br>-             | \$<br>-       | \$   | -                   | \$ | -                   | \$<br>-       | \$<br>-                | \$            | -                   |
| 2008  | \$<br>-       | \$ | -                 | \$<br>-            | \$  | -             | \$      | -                | \$ -                | :   | \$ -          | \$ | -                  | \$                  | -    | \$ | -              | \$ | -                    | \$<br>-             | \$<br>-       | \$   | -                   | \$ | -                   | \$<br>-       | \$<br>-                | \$            | -                   |
| 2009  | \$<br>-       | \$ | -                 | \$<br>-            | \$  | -             | \$      | -                | \$ -                | :   | \$ -          | \$ | -                  | \$                  | -    | \$ | -              | \$ | -                    | \$<br>-             | \$<br>-       | \$   | -                   | \$ | -                   | \$<br>-       | \$<br>-                | \$            | -                   |
| 2010  | \$<br>2.6     | \$ | 0.4               | \$<br>5.9          | \$  | 2.1           | \$      | 0.3              | \$                  | .8  | \$ 4.5        | \$ | 0.7                | \$ 1                | 10.4 | \$ | 107.4          | \$ | 16.4                 | \$<br>246.9         | \$<br>102.8   | \$   | 15.7                | \$ | 236.4               | \$<br>202.4   | \$<br>31.0             | \$            | 465.3               |
| 2011  | \$<br>6.5     | \$ | 1.0               | \$<br>15.0         | \$  | 4.9           | \$      | 0.8              | \$ 1                | .3  | \$ 10.9       | \$ | 1.7                | \$ 2                | 25.1 | \$ | 269.7          | \$ | 41.3                 | \$<br>620.4         | \$<br>236.2   | \$   | 36.2                | \$ | 543.3               | \$<br>480.5   | \$<br>73.6             | \$            | 1,105.2             |
| 2012  | \$<br>11.5    | \$ | 1.8               | \$<br>26.3         | \$  | 8.3           | \$      | 1.3              | \$ 19               | .0  | \$ 18.6       | \$ | 2.8                | \$ 4                | 12.6 | \$ | 473.8          | \$ | 72.5                 | \$<br>1,088.5       | \$<br>390.6   | \$   | 59.8                | \$ | 897.3               | \$<br>804.6   | \$<br>123.1            | \$            | 1,848.3             |
| 2013  | \$<br>17.2    | \$ | 2.6               | \$<br>39.6         | \$  | 12.0          | \$      | 1.8              | \$ 2                | .5  | \$ 27.0       | \$ | 4.1                | \$ 6                | 31.9 | \$ | 712.6          | \$ | 109.1                | \$<br>1,636.9       | \$<br>560.7   | \$   | 85.8                | \$ | 1,287.8             | \$<br>1,157.5 | \$<br>177.2            | \$            | 2,658.7             |
| 2014  | \$<br>23.7    | \$ | 3.6               | \$<br>54.5         | \$  | 16.0          | \$      | 2.4              | \$ 36               | .8  | \$ 35.8       | \$ | 5.5                | \$ 8                | 32.4 | \$ | 899.9          | \$ | 137.6                | \$<br>2,068.7       | \$<br>662.8   | \$   | 101.3               | \$ | 1,523.6             | \$<br>1,370.6 | \$<br>209.5            | \$            | 3,150.6             |
| 2015  | \$<br>30.8    | \$ | 4.7               | \$<br>70.9         | \$  | 20.3          | \$      | 3.1              | \$ 46               | .7  | \$ 45.0       | \$ | 6.9                | \$ 10               | 03.5 | \$ | 1,061.3        | \$ | 162.3                | \$<br>2,440.8       | \$<br>740.8   | \$   | 113.3               | \$ | 1,703.6             | \$<br>1,515.2 | \$<br>231.7            | \$            | 3,484.8             |
| 2016  | \$<br>37.1    | \$ | 5.7               | \$<br>85.4         | \$  | 23.9          | \$      | 3.6              | \$ 54               | .9  | \$ 52.3       | \$ | 8.0                | \$ 12               | 20.2 | \$ | 1,196.5        | \$ | 182.8                | \$<br>2,751.6       | \$<br>801.5   | \$   | 122.4               | \$ | 1,843.2             | \$<br>1,610.8 | \$<br>246.1            | \$            | 3,704.5             |
| 2017  | \$<br>41.9    | \$ | 6.4               | \$<br>96.5         | \$  | 26.4          | \$      | 4.0              | \$ 60               | .7  | \$ 56.7       | \$ | 8.7                | \$ 13               | 30.5 | \$ | 1,308.1        | \$ | 199.7                | \$<br>3,011.1       | \$<br>851.9   | \$   | 130.1               | \$ | 1,960.9             | \$<br>1,675.5 | \$<br>255.8            | \$            | 3,856.7             |
| 2018  | \$<br>45.8    | \$ | 7.0               | \$<br>105.5        | \$  | 28.4          | \$      | 4.3              | \$ 69               | .5  | \$ 59.7       | \$ | 9.1                | \$ 13               | 37.6 | \$ | 1,394.8        | \$ | 212.7                | \$<br>3,213.4       | \$<br>894.2   | \$   | 136.3               | \$ | 2,060.0             | \$<br>1,717.9 | \$<br>261.9            | \$            | 3,957.7             |
| 2019  | \$<br>48.9    | \$ | 7.5               | \$<br>112.9        | \$  | 30.2          | \$      | 4.6              | \$ 69               | .6  | \$ 61.7       | \$ | 9.4                | \$ 14               | 12.4 | \$ | 1,457.6        | \$ | 222.0                | \$<br>3,363.7       | \$<br>929.9   | \$   | 141.6               | \$ | 2,145.9             | \$<br>1,743.9 | \$<br>265.7            | \$            | 4,024.4             |
| 2020  | \$<br>51.3    | \$ | 7.8               | \$<br>118.5        | \$  | 31.7          | \$      | 4.8              | \$ 73               | .1  | \$ 63.0       | \$ | 9.6                | \$ 14               | 15.4 | \$ | 1,502.3        | \$ | 228.8                | \$<br>3,468.5       | \$<br>960.0   | \$   | 146.2               | \$ | 2,216.4             | \$<br>1,757.6 | \$<br>267.6            | \$            | 4,057.9             |
| 2021  | \$<br>53.1    | \$ | 8.1               | \$<br>122.6        | \$  | 32.9          | \$      | 5.0              | \$ 76               | .1  | \$ 63.7       | \$ | 9.7                | \$ 14               | 17.0 | \$ | 1,533.2        | \$ | 233.2                | \$<br>3,539.9       | \$<br>985.3   | \$   | 149.9               | \$ | 2,275.1             | \$<br>1,762.0 | \$<br>268.0            | \$            | 4,068.2             |
| 2022  | \$<br>54.3    | \$ | 8.3               | \$<br>125.7        | \$  | 34.0          | \$      | 5.2              | \$ 78               | .7  | \$ 64.0       | \$ | 9.7                | \$ 14               | 18.0 | \$ | 1,553.4        | \$ | 236.2                | \$<br>3,592.6       | \$<br>1,006.5 | \$   | 153.0               | \$ | 2,327.8             | \$<br>1,759.1 | \$<br>267.5            | \$            | 4,068.4             |
| 2023  | \$<br>55.2    | \$ | 8.4               | \$<br>127.6        | \$  | 35.0          | \$      | 5.3              | \$ 80               | .9  | \$ 64.0       | \$ | 9.7                | \$ 14               | 18.0 | \$ | 1,565.1        | \$ | 238.0                | \$<br>3,620.7       | \$<br>1,023.9 | \$   | 155.7               | \$ | 2,368.7             | \$<br>1,750.6 | \$<br>266.3            | \$            | 4,049.8             |
| 2024  | \$<br>55.7    | \$ | 8.5               | \$<br>128.8        | · · |               | \$      | 5.4              |                     |     | \$ 63.7       | 1  | 9.7                |                     | 17.4 | \$ | 1,570.2        | \$ | 238.7                | \$<br>3,633.8       | 1,038.1       | \$   | 157.8               | \$ | 2,402.4             | \$<br>1,737.9 | \$<br>264.2            | \$            | 4,021.8             |
| 2025  | \$<br>55.9    | \$ | 8.5               | \$<br>129.4        | · · | 36.4          | \$      | 5.5              |                     |     | \$ 63.3       | \$ | 9.6                |                     | 16.4 | \$ | 1,569.9        | \$ | 238.3                | \$<br>3,633.4       | \$<br>1,049.3 | \$   | 159.3               | \$ | 2,428.6             | \$<br>1,721.8 | \$<br>261.3            | \$            | 3,984.9             |
| 2026  | \$<br>56.0    | \$ | 8.5               | \$<br>129.6        | · · |               | \$      | 5.6              |                     |     | \$ 62.7       | \$ | 9.5                | •                   |      |    | 1,565.3        | \$ | 237.3                | \$<br>3,625.9       | 1,058.0       | \$   | 160.4               | \$ | 2,450.7             | 1,703.1       | \$<br>258.2            | \$            | 3,945.1             |
| 2027  | \$<br>55.9    | \$ | 8.5               | \$<br>129.6        | · · |               | \$      |                  |                     | .8  |               |    | 9.4                |                     |      |    | 1,557.2        | \$ | 235.8                | \$<br>3,612.7       | 1,064.3       | \$   | 161.1               | \$ | 2,469.1             | 1,682.5       | \$<br>254.7            | \$            | 3,903.3             |
| 2028  | \$<br>54.9    | \$ | 8.3               | \$<br>127.3        | · · |               | \$      | 5.6              | \$ 86               |     | \$ 60.4       | \$ | 9.2                | •                   |      |    | 1,526.3        | \$ | 231.3                | \$<br>3,538.9       | 1,054.7       | \$   | 159.8               | \$ | 2,445.4             | 1,638.8       | \$<br>248.4            | \$            | 3,799.9             |
| 2029  | \$<br>54.4    | \$ | 8.2               | 126.3              | \$  | 37.4          | \$      | 5.7              | -                   | +   | \$ 59.5       | \$ | 9.0                |                     | _    |    | 1,509.6        | \$ | 228.4                | \$                  | 1,054.4       | \$   | 159.6               | \$ | 2,447.1             | 1,612.0       | \$<br>243.9            | \$            | 3,741.2             |
| Total | \$<br>812.8   | \$ | 123.6             | \$<br>1,878.0      | \$  | 527.3         | \$      | 80.2             | \$ 1,218            |     | \$ 998.2      | \$ | 151.9              | \$ 2,30             |      | _  | 24,334.4       | Ė  | 3,702.4              | 56,212.0            | 6,465.8       |      | 2,505.4             |    | 38,033.3            | 29,404.3      | \$<br>4,475.7          | 1             | 67,896.9            |
| Ann.  | \$<br>46.7    | \$ | 7.1               | \$<br>107.8        | \$  | 30.3          | \$      | 4.6              | \$ 70               | .0  | \$ 57.3       | \$ | 8.7                | \$ 13               | 32.4 | \$ | 1,397.5        | \$ | 212.6                | \$<br>3,228.1       | \$<br>945.6   | \$   | 143.9               | \$ | 2,184.2             | \$<br>1,688.6 | \$<br>257.0            | \$            | 3,899.2             |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.2a through F.2i.

#### Exhibit F.2y Present Value of Benefits Yearly Projections, WTP for Lymphoma as Basis for Non-Fatal Cases, at 7% Discount Rate, by Small & Large Size Categories (Surface Water Systems)

**TTHM - Preferred Alternative** 

|              |                    |    |                      |    |                     |    | Sı            | mall S        | Syste         | ms       |                  |                    |          |                      |                            |       |          |                |    |                      |    |                     |    | La             | arge | Syste            | ms             |                    |    |                |              |                        |     |                     |
|--------------|--------------------|----|----------------------|----|---------------------|----|---------------|---------------|---------------|----------|------------------|--------------------|----------|----------------------|----------------------------|-------|----------|----------------|----|----------------------|----|---------------------|----|----------------|------|------------------|----------------|--------------------|----|----------------|--------------|------------------------|-----|---------------------|
|              |                    | _  | /Lung Ca<br>on Lag M |    |                     |    |               | •             | adder (       |          | r                |                    |          | ladder C<br>on Lag M |                            |       |          |                | -  | /Lung Ca<br>on Lag M |    |                     |    |                | •    | Bladder on Lag M |                |                    |    |                |              | Bladder (<br>ion Lag N |     | -                   |
|              |                    |    | 90 Po<br>Confider    |    |                     |    |               | Co            | 90 Ponfiden   | ercent   |                  |                    | c        | 90 Pe<br>Confiden    | ercent<br>ce Bou           | nd    |          |                |    | 90 Po<br>Confiden    |    |                     |    |                | C    | 90 P<br>Confider | ercer<br>nce B |                    |    |                |              | 90 P<br>Confide        |     | -                   |
| Year         | Mean<br>Value      |    | Lower<br>h %tile)    |    | Upper<br>5th %tile) | -  | Mean<br>Value | Log<br>(5th 9 | wer<br>%tile) |          | pper<br>1 %tile) | <br>lean<br>alue   |          | ower<br>1 %tile)     | Up <sub> </sub><br>(95th ' |       |          | lean<br>alue   |    | Lower<br>h %tile)    |    | Upper<br>ith %tile) |    | lean<br>alue   |      | ower<br>%tile)   |                | Upper<br>th %tile) |    | Mean<br>Value  |              | Lower<br>th %tile)     | (95 | Upper<br>5th %tile) |
| 2005         | \$<br>-            | \$ | -                    | \$ | -                   | \$ | -             | \$            | -             | \$       | -                | \$<br>-            | \$       | -                    | \$                         | -     | \$       | -              | \$ | -                    | \$ | -                   | \$ | -              | \$   | -                | \$             | -                  | \$ | -              | \$           | -                      | \$  | -                   |
| 2006         | \$<br>-            | \$ | -                    | \$ | -                   | \$ | -             | \$            | -             | \$       | -                | \$<br>-            | \$       | -                    | \$                         | -     | \$       | -              | \$ | -                    | \$ | -                   | \$ | -              | \$   | -                | \$             | -                  | \$ | -              | \$           | -                      | \$  | -                   |
| 2007         | \$<br>-            | \$ | -                    | \$ | -                   | \$ | -             | \$            | -             | \$       | -                | \$<br>-            | \$       | -                    | \$                         | -     | \$       | -              | \$ | -                    | \$ | -                   | \$ | -              | \$   | -                | \$             | -                  | \$ | -              | \$           | -                      | \$  | -                   |
| 2008         | \$<br>-            | \$ | -                    | \$ | -                   | \$ | -             | \$            | -             | \$       | -                | \$<br>-            | \$       | -                    | \$                         | -     | \$       | -              | \$ | -                    | \$ | -                   | \$ | -              | \$   | -                | \$             | -                  | \$ | -              | \$           | -                      | \$  | -                   |
| 2009         | \$<br>-            | \$ | -                    | \$ | -                   | \$ | -             | \$            | -             | \$       | -                | \$<br>-            | \$       | -                    | \$                         | -     | \$       | -              | \$ | -                    | \$ | -                   | \$ | -              | \$   | -                | \$             | -                  | \$ | -              | \$           | -                      | \$  | -                   |
| 2010         | \$<br>2.1          | \$ | 0.3                  | \$ | 4.9                 | \$ | 1.7           | \$            | 0.3           | \$       | 4.0              | \$<br>3.7          | \$       | 0.6                  | \$                         | 8.6   | \$       | 88.8           | \$ | 13.6                 | \$ | 204.1               | \$ | 85.0           | \$   | 13.0             | \$             | 195.4              | \$ | 167.3          | \$           | 25.6                   | \$  | 384.6               |
| 2011         | \$<br>5.2          | \$ | 0.8                  | \$ | 11.9                | \$ | 3.9           | \$            | 0.6           | \$       | 9.0              | \$<br>8.7          | \$       | 1.3                  | \$                         | 20.0  | \$       | 214.6          | \$ | 32.9                 | \$ | 493.7               | \$ | 187.9          | \$   | 28.8             | \$             | 432.3              | \$ | 382.3          | \$           | 58.5                   | \$  | 879.4               |
| 2012         | \$<br>8.8          | \$ | 1.3                  | \$ | 20.2                | \$ | 6.3           | \$            | 1.0           | \$       | 14.5             | \$<br>14.2         | \$       | 2.2                  | \$                         | 32.6  | \$       | 362.9          | \$ | 55.5                 | \$ | 833.7               | \$ | 299.2          | \$   | 45.8             | \$             | 687.3              | \$ | 616.2          | \$           | 94.3                   | \$  | 1,415.6             |
| 2013         | \$<br>12.7         | \$ | 1.9                  | \$ | 29.2                | \$ | 8.8           | \$            | 1.4           | \$       | 20.3             | \$<br>19.9         | \$       | 3.0                  | \$                         | 45.6  | \$       | 525.4          | \$ | 80.4                 | \$ | 1,206.8             | \$ | 413.4          | \$   | 63.3             | \$             | 949.5              | \$ | 853.4          | \$           | 130.6                  | \$  | 1,960.2             |
| 2014         | \$<br>16.8         | \$ | 2.6                  | \$ | 38.7                | \$ | 11.4          | \$            | 1.7           | \$       | 26.1             | \$<br>25.4         | \$       | 3.9                  | \$                         | 58.5  | \$       | 638.7          | \$ | 97.6                 | \$ | 1,468.2             | \$ | 470.4          | \$   | 71.9             | \$             | 1,081.3            | \$ | 972.7          | \$           | 148.7                  | \$  | 2,236.0             |
| 2015         | \$<br>21.1         | \$ | 3.2                  | \$ | 48.4                | \$ | 13.9          | \$            | 2.1           | \$       | 31.9             | \$<br>30.7         | \$       | 4.7                  | \$                         | 70.7  | \$       | 725.1          | \$ | 110.9                | \$ | 1,667.5             | \$ | 506.1          | \$   | 77.4             | \$             | 1,163.9            | \$ | 1,035.2        | \$           | 158.3                  | \$  | 2,380.7             |
| 2016         | \$<br>24.4         | \$ | 3.7                  | \$ | 56.1                | \$ | 15.7          | \$            | 2.4           | \$       | 36.1             | \$<br>34.4         | \$       | 5.2                  | \$                         | 79.0  | \$       | 786.9          | \$ | 120.2                | \$ | 1,809.6             | \$ | 527.1          | \$   | 80.5             | \$             | 1,212.2            | \$ | 1,059.3        | \$           | 161.8                  | \$  | 2,436.2             |
| 2017         | \$<br>26.5         | \$ | 4.1                  | \$ | 61.1                | \$ | 16.7          | \$            | 2.5           | \$       | 38.4             | \$<br>35.9         | \$       | 5.5                  | \$                         | 82.6  | \$       | 828.1          | \$ | 126.4                | \$ | 1,906.2             | \$ | 539.3          | \$   | 82.3             | \$             | 1,241.4            | \$ | 1,060.7        | \$           | 162.0                  | \$  | 2,441.5             |
| 2018         | \$<br>27.9         | \$ | 4.3                  | \$ | 64.3                | \$ | 17.3          | \$            | 2.6           | \$       | 39.9             | \$<br>36.4         | \$       | 5.5                  | \$                         | 83.8  | \$       | 850.0          | \$ | 129.6                | \$ | 1,958.2             | \$ | 544.9          | \$   | 83.1             | \$             | 1,255.4            | \$ | 1,046.9        | \$           | 159.6                  | \$  | 2,411.8             |
| 2019         | \$<br>28.7         | \$ | 4.4                  | \$ | 66.2                |    |               | \$            | 2.7           | \$       | 40.8             | \$<br>36.2         | \$       | 5.5                  | \$                         |       | \$       | 855.0          | \$ | 130.2                | \$ | 1,973.2             | \$ | 545.5          | \$   | 83.1             | \$             | 1,258.8            | \$ | 1,023.0        | \$           | 155.8                  | \$  | 2,360.8             |
| 2020         | \$<br>29.0         | \$ | 4.4                  | \$ | 66.9                |    |               | \$            | 2.7           | \$       | 41.3             | \$                 | \$       | 5.4                  | \$                         |       | \$       | 848.3          | \$ | 129.2                | \$ | 1,958.6             | \$ | 542.1          | \$   | 82.5             | \$             | 1,251.6            | \$ | 992.5          | \$           | 151.1                  | \$  | 2,291.4             |
| 2021         | \$<br>28.9         | \$ | 4.4                  | \$ | 66.7                |    | 17.9          | \$            | 2.7           | \$       | 41.3             | \$<br>34.6         | \$       | 5.3                  | \$                         | 79.9  | \$       | 833.4          | \$ | 126.8                | \$ | 1,924.2             | \$ | 535.6          | \$   | 81.5             | \$             | 1,236.7            | \$ | 957.7          | \$           | 145.7                  | \$  | 2,211.3             |
| 2022         | \$<br>28.4         | \$ | 4.3                  | \$ |                     |    | 17.8          | \$            | 2.7           | \$       | 41.2             | \$<br>33.5         | \$       | 5.1                  | \$                         | 77.4  | \$       | 812.8          | \$ | 123.6                | \$ | 1,879.8             | \$ | 526.6          | \$   | 80.1             | \$             | 1,218.0            | \$ | 920.4          | \$           | 140.0                  | \$  | 2,128.8             |
| 2023         | \$<br>27.8         | \$ | 4.2                  | \$ | 64.3                |    | 17.6          | \$            | 2.7           | \$       | 40.8             | \$<br>32.2         | \$       | 4.9                  | \$                         |       | \$       | 788.3          | \$ | 119.9                | \$ | 1,823.7             | \$ | 515.7          | \$   | 78.4             | \$             | 1,193.1            | \$ | 881.8          |              | 134.1                  | \$  | 2,039.8             |
| 2024         | \$<br>27.0         | \$ | 4.1                  | \$ | 62.5                |    |               | \$            | 2.6           | \$       | 40.1             | \$                 | \$       | 4.7                  | \$                         |       | \$       | 761.3          | \$ | 115.7                | \$ | 1,761.9             | \$ | 503.3          | \$   | 76.5             | \$             |                    | \$ | 842.6          | \$           | 128.1                  | \$  | 1,950.0             |
| 2025         | \$<br>26.1         | \$ | 4.0                  | \$ | 60.4                |    | 17.0          | \$            | 2.6           | \$       | 39.3             | \$<br>29.5         | \$       | 4.5                  | \$                         | 68.3  | \$       | 732.7          | \$ | 111.2                | \$ | 1,695.8             | \$ | 489.8          | \$   | 74.3             | \$             | 1,133.5            | \$ | 803.6          | \$           | 122.0                  | \$  | 1,859.9             |
| 2026<br>2027 | \$<br>25.1         | \$ | 3.8                  | \$ | 58.2                |    | 16.6          | \$            | 2.5           | \$       | 38.5             | \$<br>28.2         | \$       | 4.3                  | \$                         | 65.2  | \$       | 703.3          | \$ | 106.6                | \$ | 1,629.1             | \$ | 475.3          | \$   | 72.1             | \$             | 1,101.1            | \$ | 765.2          | \$           | 116.0                  | \$  | 1,772.5             |
| 2027         | \$<br>24.2<br>22.8 | \$ | 3.7                  | \$ | 56.0<br>53.0        |    |               | \$            | 2.4           | \$       | 37.5<br>36.0     | \$<br>26.8         | \$       | 4.1                  | \$<br>\$                   |       | \$       | 673.5<br>635.4 | \$ | 102.0                | \$ | 1,562.5             | \$ | 460.3<br>439.1 | \$   | 69.7             | \$             | 1,067.9            | \$ | 727.7          | \$           | 110.2                  | \$  | 1,688.1             |
| 2028         | \$<br>22.8         | \$ | 3.5                  | \$ | 50.6                | \$ |               | \$            | 2.4           | \$<br>\$ | 36.0             | \$<br>25.2<br>23.8 | \$<br>\$ | 3.8<br>3.6           | \$                         | 55.3  | \$<br>\$ | 605.0          | \$ | 96.3<br>91.6         | \$ | 1,473.3<br>1,404.0  | \$ | 439.1          | \$   | 66.5<br>63.9     | \$             | 1,018.1<br>980.7   | \$ | 682.3<br>646.0 | \$           | 103.4<br>97.8          | \$  | 1,582.0<br>1,499.3  |
| Total        | \$<br>435.4        | \$ | 66.3                 | s  | 1.005.4             | \$ | 282.3         | \$            | 43.0          | \$       | 651.9            | \$<br>545.7        | \$       | 83.1                 | *                          | 259.9 | ÷        | 3.269.5        | Ė  | 2.020.2              | Ė  | 30.634.0            | ÷  | 9.029.1        | •    | 1.374.8          | Ė              | 20.842.6           | Ť  | 16.436.9       | \$           | 2.503.6                | Ė   | 37.930.1            |
| Ann.         | \$<br>37.4         | \$ | 5.7                  | \$ | 86.3                | \$ | 24.2          | \$            | 3.7           | \$       | 55.9             | \$<br>46.8         | \$       | 7.1                  |                            | 108.1 | •        | 1,138.7        | \$ | 173.4                | \$ | 2,628.7             | \$ | 774.8          | \$   | 118.0            | \$             | 1,788.5            | ·  | 1,410.5        | <del>-</del> | 214.8                  | s   | 3,254.8             |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.2a through F.2i.

Exhibit F.2z Present Value of Benefits Yearly Projections, WTP for Lymphoma as Basis for Non-Fatal Cases, at 3% Discount Rate, by Small & Large Size Categories (Ground Water Systems)

**TTHM - Preferred Alternative** 

|              |    |               |    |                   |    |                     |    | Sı            | mall : | Syste               | ms               |                |    |                |          |                      |                      |      |               |    |                       |         |                     |               | La         | rge Syst                | tem  | ıs                    |    |               |                                                  |                   |                      |
|--------------|----|---------------|----|-------------------|----|---------------------|----|---------------|--------|---------------------|------------------|----------------|----|----------------|----------|----------------------|----------------------|------|---------------|----|-----------------------|---------|---------------------|---------------|------------|-------------------------|------|-----------------------|----|---------------|--------------------------------------------------|-------------------|----------------------|
|              |    |               | •  | Lung Ca           |    |                     |    |               | •      | ladder (<br>n Lag N |                  | r              |    |                |          | ladder C<br>on Lag M |                      |      |               | •  | g/Lung Ca<br>on Lag M |         |                     | s             |            | ng/Bladde<br>sation Lag |      |                       |    |               |                                                  | Bladder C         |                      |
|              |    |               | ď  | 90 Po<br>Confider |    |                     |    |               | C      | 90 Po               | ercent<br>ice Bo |                |    |                | (        |                      | rcent<br>ce Bound    |      |               |    | 90 Po<br>Confiden     |         |                     |               |            |                         |      | cent<br>e Bound       |    |               |                                                  | 90 Po<br>Confiden |                      |
| Year         |    | Mean<br>/alue |    | ower<br>1 %tile)  |    | Upper<br>ith %tile) |    | Mean<br>Value |        | wer<br>%tile)       |                  | pper<br>%tile) |    | /lean<br>/alue |          | ower<br>1 %tile)     | Upper<br>(95th %tile | ,    | Mean<br>Value |    | Lower<br>th %tile)    |         | Upper<br>ith %tile) | Mear<br>Value |            | Lower<br>(5th %tile     | ) (  | Upper<br>(95th %tile) |    | Mean<br>Value |                                                  | Lower<br>h %tile) | Jpper<br>th %tile)   |
| 2005         | \$ | -             | \$ | -                 | \$ | -                   | \$ | -             | \$     | -                   | \$               | -              | \$ | -              | \$       | -                    | \$ -                 | \$   | -             | \$ | -                     | \$      | -                   | \$            | -          | \$ -                    | \$   | -                     | \$ | -             | \$                                               | -                 | \$<br>-              |
| 2006         | \$ | -             | \$ | -                 | \$ | -                   | \$ | -             | \$     | -                   | \$               | -              | \$ | -              | \$       | -                    | \$ -                 | \$   | -             | \$ | -                     | \$      | -                   | \$            | -          | \$ -                    | \$   | -                     | \$ | -             | \$                                               | -                 | \$<br>-              |
| 2007         | \$ | -             | \$ | -                 | \$ | -                   | \$ | -             | \$     | -                   | \$               | -              | \$ | -              | \$       | -                    | \$ -                 | \$   | -             | \$ | -                     | \$      | -                   | \$            | -          | \$ -                    | \$   | -                     | \$ | -             | \$                                               | -                 | \$<br>-              |
| 2008         | \$ | -             | \$ | -                 | \$ | -                   | \$ | -             | \$     | -                   | \$               | -              | \$ | -              | \$       | -                    | \$ -                 | \$   | -             | \$ | -                     | \$      | -                   | \$            | -          | \$ -                    | \$   | -                     | \$ | -             | \$                                               | -                 | \$<br>-              |
| 2009         | \$ | -             | \$ | -                 | \$ | -                   | \$ | -             | \$     | -                   | \$               | -              | \$ | -              | \$       | -                    | \$ -                 | \$   | -             | \$ | -                     | \$      | -                   | \$            | -          | \$ -                    | \$   | -                     | \$ | -             | \$                                               | -                 | \$<br>-              |
| 2010         | \$ | 1.9           | \$ | 0.3               | \$ | 4.4                 | \$ | 1.6           | \$     | 0.2                 | \$               | 3.6            | \$ | 3.4            | \$       | 0.5                  | \$ 7.                | 7 \$ | 3.2           | \$ | 0.5                   | \$      | 7.3                 | \$            | 2.6        | \$ 0.4                  | 4 \$ | 6.0                   | \$ | 5.6           | \$                                               | 0.9               | \$<br>12.8           |
| 2011         | \$ | 4.8           | \$ | 0.7               | \$ | 11.2                | \$ | 3.7           | \$     | 0.6                 | \$               | 8.4            | \$ | 8.1            | \$       | 1.2                  | \$ 18.               | 7 \$ | 8.1           | \$ | 1.2                   | \$      | 18.5                | \$            | 6.1        | \$ 0.9                  | 9 \$ | 14.0                  | \$ | 13.5          | \$                                               | 2.1               | \$<br>31.0           |
| 2012         | \$ | 8.5           | \$ | 1.3               | \$ | 19.6                | \$ | 6.1           | \$     | 0.9                 | \$               | 14.1           | \$ | 13.8           | \$       | 2.1                  | \$ 31.               | 7 \$ | 14.2          | \$ | 2.2                   | \$      | 32.5                | \$ 1          | 0.2        | \$ 1.6                  | 5 \$ | 23.4                  | \$ | 22.9          | \$                                               | 3.5               | \$<br>52.6           |
| 2013         | \$ | 12.8          | \$ | 2.0               | \$ | 29.5                | \$ | 8.9           | \$     | 1.4                 | \$               | 20.5           | \$ | 20.1           | \$       | 3.1                  | \$ 46.               | 1 \$ | 21.3          | \$ | 3.3                   | \$      | 48.9                | \$ 1          | 4.8        | \$ 2.3                  | 3 \$ | 34.0                  | \$ | 33.3          | \$                                               | 5.1               | \$<br>76.5           |
| 2014         | \$ | 17.7          | \$ | 2.7               | \$ | 40.6                | \$ | 11.9          | \$     | 1.8                 | \$               | 27.4           | \$ | 26.7           | \$       | 4.1                  | \$ 61.               | 3 \$ | 27.6          | \$ | 4.2                   | \$      | 63.6                | \$ 1          | 8.4        | \$ 2.8                  | 3 \$ | 42.3                  | \$ | 41.4          | \$                                               | 6.3               | \$<br>95.1           |
| 2015         | \$ | 22.9          | \$ | 3.5               | \$ | 52.7                | \$ | 15.1          | \$     | 2.3                 | \$               | 34.8           | \$ | 33.5           | \$       | 5.1                  | \$ 77.               | \$   | 33.1          | \$ | 5.1                   | \$      | 76.2                | \$ 2          | 1.3        | \$ 3.3                  | 3 \$ | 49.0                  | \$ | 47.2          | \$                                               | 7.2               | \$<br>108.6          |
| 2016         | \$ | 27.6          | \$ | 4.2               | \$ | 63.5                | \$ | 17.8          | \$     | 2.7                 | \$               | 40.9           | \$ | 38.9           | \$       | 5.9                  | \$ 89.               | 4 \$ | 37.5          | \$ | 5.7                   | \$      | 86.3                | \$ 2          | 3.5        | \$ 3.6                  | 5 \$ | 54.0                  | \$ | 51.0          | \$                                               | 7.8               | \$<br>117.4          |
| 2017         | \$ | 31.2          | \$ | 4.8               | \$ | 71.8                | \$ | 19.6          | \$     | 3.0                 | \$               | 45.1           | \$ | 42.2           | \$       | 6.4                  | \$ 97.               | 1 \$ | 41.1          | \$ | 6.3                   | \$      | 94.6                | \$ 2          | 5.3        | \$ 3.9                  | 9 \$ | 58.3                  | \$ | 53.6          | \$                                               | 8.2               | \$<br>123.5          |
| 2018         | \$ | 34.1          | \$ | 5.2               | \$ | 78.5                | \$ | 21.1          | \$     | 3.2                 | \$               | 48.7           | \$ | 44.4           | \$       | 6.8                  | \$ 102.              | 4 \$ | 43.9          | 1  | 6.7                   | \$      | 101.2               | \$ 2          | 6.9        | \$ 4.1                  | 1 \$ | 62.0                  | \$ | 55.4          | 1                                                | 8.4               | \$<br>127.5          |
| 2019         | \$ | 36.4          | \$ | 5.5               | 1  | 84.0                |    |               | \$     | 3.4                 | \$               | 51.8           | \$ | 45.9           | \$       | 7.0                  | \$ 106.              | \$   | 46.0          | 1  | 7.0                   | \$      | 106.2               |               |            | \$ 4.3                  |      |                       | \$ | 56.4          | 1                                                | 8.6               | 130.3                |
| 2020         | \$ | 38.2          | \$ | 5.8               |    | 88.2                |    |               | \$     | 3.6                 | \$               | 54.4           | \$ |                | \$       | 7.1                  | \$ 108.              |      | 47.6          | 1  | 7.2                   | \$      | 109.8               |               |            | \$ 4.5                  |      |                       | \$ | 57.1          | 1                                                | 8.7               | \$<br>131.7          |
| 2021         | \$ | 39.5          | \$ | 6.0               |    | 91.2                |    |               | \$     | 3.7                 | \$               | 56.6           | \$ | 47.4           | \$       | 7.2                  | \$ 109.              |      | 48.6          |    | 7.4                   | \$      | 112.3               |               |            | \$ 4.6                  |      |                       | \$ | 57.3          | 1                                                | 8.7               | \$<br>132.3          |
| 2022         | \$ | 40.4          | \$ | 6.1               |    |                     | \$ | 25.3          | \$     | 3.9                 | \$               | 58.6           | \$ | 47.6           | \$       | 7.2                  | \$ 110.              |      | 49.4          |    | 7.5                   | \$      | 114.2               |               |            | \$ 4.7                  |      |                       | \$ | 57.3          | 1                                                | 8.7               | \$<br>132.5          |
| 2023         | \$ | 41.0          | \$ | 6.2               | 1  | 94.9                |    |               | \$     | 4.0                 | \$               | 60.2           | \$ | 47.6           | \$       | 7.2                  | \$ 110.              |      | 49.8          | 1  | 7.6                   | \$      |                     |               |            | \$ 4.9                  |      |                       |    | 57.0          | 1                                                | 8.7               | 131.9                |
| 2024         | \$ | 41.4          | \$ | 6.3               |    | 95.8                |    |               | \$     | 4.0                 | \$               | 61.6           | \$ | 47.4           | \$       | 7.2                  | \$ 109.              |      | 50.0          | 1  |                       | \$      | 115.8               |               |            | \$ 4.9                  |      |                       |    | 56.6          | 1                                                | 8.6               | \$<br>131.0          |
| 2025         | \$ | 41.6          | \$ | 6.3               |    | 96.3                |    | 27.1          | \$     | 4.1                 | \$               | 62.7           | \$ | 47.1           | \$       | 7.1                  | \$ 108.              |      | 50.1          | \$ | 7.6                   | \$      | 115.9               |               |            | \$ 5.0                  |      |                       | \$ | 56.1          | 1                                                | 8.5               | \$<br>129.8          |
| 2026         | \$ | 41.6          | \$ | 6.3               |    |                     | \$ | 27.5          | \$     | 4.2                 | \$               | 63.7           | \$ | 46.6           | \$       | 7.1                  | \$ 108.              |      | 50.0          | 1  | 7.6                   | \$      | 115.8               |               | 3.4        | \$ 5.1                  |      |                       | \$ | 55.5          | 1                                                | 8.4               | \$<br>128.5          |
| 2027<br>2028 | \$ | 41.6          | \$ |                   |    | 96.4                |    |               | \$     | 4.2                 | \$               | 64.6           | 1  | 46.1           | \$       | 7.0                  | \$ 107.              | 1    | 49.8          | 1  | 7.5                   | \$      |                     |               |            | \$ 5.1                  |      |                       | \$ | 54.8          | 1                                                | 8.3               | 127.1                |
| 2028         | \$ | 40.8<br>40.5  | \$ | 6.2<br>6.1        | \$ | 94.7<br>94.0        | \$ | 27.7          | \$     | 4.2<br>4.2          | \$<br>\$         | 64.3<br>64.6   | \$ | 45.0<br>44.2   | \$<br>\$ | 6.8<br>6.7           | \$ 104.<br>\$ 102.   |      | 48.8<br>48.3  | 1  | 7.4<br>7.3            | \$      | 113.1<br>112.1      |               | 3.5<br>3.6 | \$ 5.1<br>\$ 5.1        |      |                       | \$ | 53.4<br>52.5  | 1                                                | 8.1<br>7.9        | \$<br>123.7<br>121.8 |
| Total        | ¢  | 604.7         | ¢  | 92.0              | \$ | 1.397.3             | ¢  | 392.4         | 4      | 59.7                | \$               | 906.6          | \$ | 742.7          | ¢        | 113.0                | \$ 1.715.            | Ť    | 768.3         | \$ | 116.9                 | ф<br>\$ | 1.774.8             |               | _          | \$ 76.1                 | Ť    |                       | ů  | 937.8         | Ė                                                | 142.7             | \$<br>2.165.7        |
| Ann.         | \$ | 34.7          | \$ | 5.3               | Ť  | 80.2                | \$ | 22.5          | \$     | 3.4                 | \$               | 52.1           | \$ | 42.7           | ф<br>\$  | 6.5                  | \$ 1,715.            | Ť    | 44.1          | \$ | 6.7                   | \$      | 1,774.8             | •             |            | \$ 4.4                  |      | ,                     | \$ | 53.9          | <del>                                     </del> | 8.2               | \$<br>124.4          |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.2k through F.2s.

#### Exhibit F.2aa Present Value of Benefits Yearly Projections, WTP for Lymphoma as Basis for Non-Fatal Cases, at 7% Discount Rate, by Small & Large Size Categories (Ground Water Systems)

**TTHM - Preferred Alternative** 

|       |               |    |                  |                |                   |    | Sı            | mall S                  | Syste         | ms     |                  |                  |    |                     |                       |     |               |    |                      |                    | L             | .arg | e Syste               | ms     |                  |                  |    |                      |                    |
|-------|---------------|----|------------------|----------------|-------------------|----|---------------|-------------------------|---------------|--------|------------------|------------------|----|---------------------|-----------------------|-----|---------------|----|----------------------|--------------------|---------------|------|-----------------------|--------|------------------|------------------|----|----------------------|--------------------|
|       |               | •  | /Lung Ca         |                | •                 |    |               | ing/Blassation          |               |        | r                |                  |    | ladder C<br>n Lag M |                       |     |               | •  | /Lung Ca<br>on Lag M |                    |               | _    | /Bladder<br>ion Lag N |        | er               |                  |    | ladder C<br>on Lag N |                    |
|       |               | C  | 90 P<br>Confider | ercen<br>nce B |                   |    |               | Co                      | 90 Ponfider   | ercent |                  |                  | С  |                     | ercent<br>ce Bound    |     |               | ď  | 90 Po<br>Confider    |                    |               |      | 90 P<br>Confide       | ercent |                  |                  | C  | 90 Po<br>Confider    |                    |
| Year  | Mean<br>/alue |    | ower<br>h %tile) |                | Jpper<br>h %tile) | -  | Mean<br>/alue | Lo<br>(5th <sup>9</sup> | wer<br>%tile) |        | pper<br>1 %tile) | <br>lean<br>alue |    | ower<br>%tile)      | Upper<br>(95th %tile) |     | Mean<br>Value |    | ower<br>1 %tile)     | Upper<br>th %tile) | Mean<br>Value | 1    | Lower<br>th %tile)    |        | pper<br>1 %tile) | <br>lean<br>alue |    | ower<br>1 %tile)     | Jpper<br>th %tile) |
| 2005  | \$<br>-       | \$ | -                | \$             | -                 | \$ | -             | \$                      | -             | \$     | -                | \$<br>-          | \$ | -                   | \$ -                  | \$  | -             | \$ | -                    | \$<br>-            | \$ -          | \$   | -                     | \$     | -                | \$<br>-          | \$ | -                    | \$<br>-            |
| 2006  | \$<br>-       | \$ | -                | \$             | -                 | \$ | -             | \$                      | -             | \$     | -                | \$<br>-          | \$ | -                   | \$ -                  | \$  | -             | \$ | -                    | \$<br>-            | \$ -          | \$   | -                     | \$     | -                | \$<br>-          | \$ | -                    | \$<br>-            |
| 2007  | \$<br>-       | \$ | -                | \$             | -                 | \$ | -             | \$                      | -             | \$     | -                | \$<br>-          | \$ | -                   | \$ -                  | \$  | -             | \$ | -                    | \$<br>-            | \$ -          | \$   | -                     | \$     | -                | \$<br>-          | \$ | -                    | \$<br>-            |
| 2008  | \$<br>-       | \$ | -                | \$             | -                 | \$ | -             | \$                      | -             | \$     | -                | \$<br>-          | \$ | -                   | \$ -                  | \$  | -             | \$ | -                    | \$<br>-            | \$ -          | \$   | -                     | \$     | -                | \$<br>-          | \$ | -                    | \$<br>-            |
| 2009  | \$<br>-       | \$ | -                | \$             | -                 | \$ | -             | \$                      | -             | \$     | -                | \$<br>-          | \$ | -                   | \$ -                  | \$  | -             | \$ | -                    | \$<br>-            | \$ -          | \$   | -                     | \$     | -                | \$<br>-          | \$ | -                    | \$<br>-            |
| 2010  | \$<br>1.6     | \$ | 0.2              | \$             | 3.6               | \$ | 1.3           | \$                      | 0.2           | \$     | 3.0              | \$<br>2.8        | \$ | 0.4                 | \$ 6.4                | \$  | 2.6           | \$ | 0.4                  | \$<br>6.1          | \$ 2.1        | \$   | 0.3                   | \$     | 4.9              | \$<br>4.6        | \$ | 0.7                  | \$<br>10.6         |
| 2011  | \$<br>3.9     | \$ | 0.6              | \$             | 8.9               | \$ | 2.9           | \$                      | 0.4           | \$     | 6.7              | \$<br>6.5        | \$ | 1.0                 | \$ 14.9               | \$  | 6.4           | \$ | 1.0                  | \$<br>14.7         | \$ 4.8        | \$   | 0.7                   | \$     | 11.1             | \$<br>10.7       | \$ | 1.6                  | \$<br>24.7         |
| 2012  | \$<br>6.5     | \$ | 1.0              | \$             | 15.0              | \$ | 4.7           | \$                      | 0.7           | \$     | 10.8             | \$<br>10.6       | \$ | 1.6                 | \$ 24.3               | \$  | 10.8          | \$ | 1.7                  | \$<br>24.9         | \$ 7.8        | \$   | 1.2                   | \$     | 17.9             | \$<br>17.6       | \$ | 2.7                  | \$<br>40.3         |
| 2013  | \$<br>9.5     | \$ | 1.4              | \$             | 21.7              | \$ | 6.6           | \$                      | 1.0           | \$     | 15.1             | \$<br>14.8       | \$ | 2.3                 | \$ 34.0               | \$  | 15.7          | \$ | 2.4                  | \$<br>36.1         | \$ 10.9       | \$   | 1.7                   | \$     | 25.0             | \$<br>24.5       | \$ | 3.8                  | \$<br>56.4         |
| 2014  | \$<br>12.5    | \$ | 1.9              | \$             | 28.8              | \$ | 8.5           | \$                      | 1.3           | \$     | 19.5             | \$<br>18.9       | \$ | 2.9                 | \$ 43.5               | \$  | 19.6          | \$ | 3.0                  | \$<br>45.1         | \$ 13.1       | \$   | 2.0                   | \$     | 30.1             | \$<br>29.4       | \$ | 4.5                  | \$<br>67.5         |
| 2015  | \$<br>15.7    | \$ | 2.4              | \$             | 36.0              | \$ | 10.3          | \$                      | 1.6           | \$     | 23.8             | \$<br>22.9       | \$ | 3.5                 | \$ 52.6               | \$  | 22.6          | \$ | 3.5                  | \$<br>52.0         | \$ 14.6       | \$   | 2.2                   | \$     | 33.5             | \$<br>32.3       | \$ | 4.9                  | \$<br>74.2         |
| 2016  | \$<br>18.2    | \$ | 2.8              | \$             | 41.8              | \$ | 11.7          | \$                      | 1.8           | \$     | 26.9             | \$<br>25.6       | \$ | 3.9                 | \$ 58.8               | \$  | 24.7          | \$ | 3.8                  | \$<br>56.7         | \$ 15.4       | \$   | 2.4                   | \$     | 35.5             | \$<br>33.6       | \$ | 5.1                  | \$<br>77.2         |
| 2017  | \$<br>19.7    | \$ | 3.0              | \$             | 45.5              | \$ | 12.4          | \$                      | 1.9           | \$     | 28.6             | \$<br>26.7       | \$ | 4.1                 | \$ 61.5               | \$  | 26.0          | \$ | 4.0                  | \$<br>59.9         | \$ 16.0       | \$   | 2.4                   | \$     | 36.9             | \$<br>34.0       | \$ | 5.2                  | \$<br>78.2         |
| 2018  | \$<br>20.8    | \$ | 3.2              | \$             | 47.9              | \$ | 12.9          | \$                      | 2.0           | \$     | 29.7             | \$<br>27.1       | \$ | 4.1                 | \$ 62.4               | \$  | 26.8          | \$ | 4.1                  | \$<br>61.6         | \$ 16.4       | \$   | 2.5                   | \$     | 37.8             | \$<br>33.7       | \$ | 5.1                  | \$<br>77.7         |
| 2019  | \$<br>21.4    | \$ | 3.3              | \$             | 49.3              | \$ | 13.2          | \$                      | 2.0           | \$     | 30.4             | \$<br>26.9       | \$ | 4.1                 | \$ 62.2               | \$  | 27.0          | \$ | 4.1                  | \$<br>62.3         | \$ 16.6       | \$   | 2.5                   | \$     | 38.2             | \$<br>33.1       | \$ | 5.0                  | \$<br>76.4         |
| 2020  | \$<br>21.6    | \$ | 3.3              | \$             | 49.8              | \$ | 13.3          | \$                      | 2.0           | \$     | 30.7             | \$<br>26.5       | \$ | 4.0                 | \$ 61.1               | \$  | 26.9          | \$ | 4.1                  | \$<br>62.0         | \$ 16.6       | \$   | 2.5                   | \$     | 38.3             | \$<br>32.2       | \$ | 4.9                  | \$<br>74.4         |
| 2021  | \$<br>21.5    | \$ | 3.3              | \$             | 49.6              | \$ | 13.3          | \$                      | 2.0           | \$     | 30.8             | \$<br>25.8       | \$ | 3.9                 | \$ 59.5               | \$  | 26.4          | \$ | 4.0                  | \$<br>61.0         | \$ 16.5       | \$   | 2.5                   | \$     | 38.1             | \$<br>31.1       | \$ | 4.7                  | \$<br>71.9         |
| 2022  | \$<br>21.2    | \$ | 3.2              | \$             | 48.9              | \$ | 13.3          | \$                      | 2.0           | \$     | 30.7             | \$<br>24.9       | \$ | 3.8                 | \$ 57.6               | \$  | 25.8          | \$ | 3.9                  | \$<br>59.7         | \$ 16.3       | \$   | 2.5                   | \$     | 37.8             | \$<br>30.0       | \$ | 4.6                  | \$<br>69.3         |
| 2023  | \$<br>20.7    | \$ | 3.1              | \$             | 47.8              | \$ | 13.1          | \$                      | 2.0           | \$     | 30.3             | \$<br>24.0       | \$ | 3.6                 | \$ 55.4               | \$  | 25.1          | \$ | 3.8                  | \$<br>58.0         | \$ 16.1       | \$   | 2.4                   | \$     | 37.2             | \$<br>28.7       | \$ | 4.4                  | 66.5               |
| 2024  | \$<br>20.1    | \$ | 3.1              | \$             | 46.5              | \$ | 12.9          | \$                      | 2.0           | \$     | 29.9             | \$<br>23.0       | \$ | 3.5                 | \$ 53.2               | \$  | 24.3          | \$ | 3.7                  | \$<br>56.1         | \$ 15.8       | \$   | 2.4                   | \$     | 36.5             | \$<br>27.5       | \$ | 4.2                  | \$<br>63.5         |
| 2025  | \$<br>19.4    | \$ | 2.9              | \$             | 44.9              |    | 12.6          | \$                      | 1.9           | \$     | 29.3             | \$<br>22.0       | \$ | 3.3                 | \$ 50.8               | \$  | 23.4          | \$ | 3.5                  | \$<br>54.1         | \$ 15.4       | \$   | 2.3                   | \$     | 35.7             | \$<br>26.2       | \$ | 4.0                  | \$<br>60.6         |
| 2026  | \$<br>18.7    | \$ | 2.8              | \$             | 43.3              |    | 12.4          | \$                      | 1.9           | \$     | 28.6             | \$<br>21.0       | \$ | 3.2                 | \$ 48.5               | \$  | 22.5          | \$ | 3.4                  | \$<br>52.0         | \$ 15.0       | \$   | 2.3                   | \$     | 34.8             | \$<br>24.9       | \$ | 3.8                  | \$<br>57.7         |
| 2027  | \$<br>18.0    | \$ | 2.7              | \$             | 41.7              |    | -             | \$                      | 1.8           | \$     | 27.9             | \$<br>19.9       | \$ | 3.0                 | \$ 46.3               | 1   | 21.5          | \$ | 3.3                  | \$<br>49.9         | \$ 14.6       | 1    | 2.2                   | \$     | 33.8             | \$<br>23.7       |    | 3.6                  | 55.0               |
| 2028  | \$<br>17.0    | \$ | 2.6              | \$             | 39.4              |    |               | \$                      | 1.7           | \$     | 26.8             | \$               | \$ | 2.8                 | \$ 43.4               | 1   | 20.3          | \$ | 3.1                  | \$<br>47.1         | \$ 14.0       | \$   | 2.1                   | \$     | 32.4             | \$<br>22.2       | 1  | 3.4                  | \$<br>51.5         |
| 2029  | \$<br>16.2    | \$ | 2.5              | \$             | 37.7              | \$ |               | \$                      | 1.7           | \$     | 25.9             | \$<br>17.7       | \$ | 2.7                 | \$ 41.2               | t   | 19.4          | \$ | 2.9                  | \$<br>44.9         | \$ 13.5       | Ť    | 2.0                   | \$     | 31.3             | \$<br>21.0       | \$ | 3.2                  | \$<br>48.8         |
| Total | \$<br>323.9   | \$ | 49.3             | \$             | 748.1             | \$ | 210.1         | \$                      | 32.0          | \$     | 485.1            | \$<br>406.1      | \$ | 61.8                | \$ 937.4              | + - | 417.7         | \$ | 63.6                 | \$<br>964.5        | \$ 271.5      | + -  | 41.3                  | \$     | 626.7            | \$<br>521.0      | \$ | 79.3                 | \$<br>1,202.4      |
| Ann.  | \$<br>27.8    | \$ | 4.2              | \$             | 64.2              | \$ | 18.0          | \$                      | 2.7           | \$     | 41.6             | \$<br>34.8       | \$ | 5.3                 | \$ 80.4               | \$  | 35.8          | \$ | 5.5                  | \$<br>82.8         | \$ 23.3       | \$   | 3.5                   | \$     | 53.8             | \$<br>44.7       | \$ | 6.8                  | \$<br>103.2        |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.2k through F.2s.

#### Exhibit F.2ab Mean Present Value of Benefits Yearly Projections, WTP for Lymphoma as Basis for Non-Fatal Cases, at 3% Discount Rate, by System Size (All Systems)

#### TTHM - Preferred Alternative

| TTHM  | - Pret | erred | l Alterna | tive  |        |          |           |         |            |               |                     |        |            |          |        |         |        |         |           |             |             |                   |                   |          |            |          |         |         |          |            |                 |                   |                   |                     |             |             |
|-------|--------|-------|-----------|-------|--------|----------|-----------|---------|------------|---------------|---------------------|--------|------------|----------|--------|---------|--------|---------|-----------|-------------|-------------|-------------------|-------------------|----------|------------|----------|---------|---------|----------|------------|-----------------|-------------------|-------------------|---------------------|-------------|-------------|
|       |        |       |           |       |        | Smoking  | g/Lung C  | ancer ( | Cessation  | n Lag Model   |                     |        |            |          |        |         |        | Smok    | ing/Blac  | der Cano    | er Cessati  | on Lag Mo         | del               |          |            |          |         |         |          | Arsenic    | Bladder C       | ancer Cess        | ation Lag M       | odel                |             |             |
| Year  | <10    | 00    | 100-499   | 500-9 | 99 1,0 | 00-3,299 | 3,300-9,5 | 99 10,  | 000-49,999 | 50,000-99,999 | 100,000-<br>999,999 | ≥1,00  | 00,000     | Total    | <100   | 100-499 | 500-99 | 1,000-3 | 3,299 3,3 | 00-9,999 10 | ,000-49,999 | 50,000-<br>99,999 | 100,000<br>999,99 |          | 00,000     | Total    | <100    | 100-499 | 500-999  | 1,000-3,29 | 3,300-<br>9,999 | 10,000-<br>49,999 | 50,000-<br>99,999 | 100,000-<br>999,999 | ≥1,000,000  | Total       |
| 2005  | \$     | - 5   | s -       | \$    | - \$   | -        | \$        | - s     | -          | \$ -          | s -                 | \$     | - \$       |          | s -    | s -     | s -    | \$      | - \$      | - s         |             | \$ -              | \$                | - \$     | - \$       | -        | \$ -    | \$ -    | s -      | s -        | \$ -            | s -               | s -               | s -                 | s -         | s -         |
| 2006  | \$     | - 1   | s -       | \$    | - \$   | -        | \$        | - \$    | -          | s -           | s -                 | s      | - \$       | -        | s -    | s -     | s -    | \$      | - \$      | - s         | -           | \$ -              | \$                | - \$     | - \$       |          | s -     | \$ -    | s -      | s -        | s -             | s -               | s -               | \$ -                | s -         | \$ -        |
| 2007  | \$     | - 1   | s -       | \$    | - \$   | -        | \$        | - \$    | -          | s -           | s -                 | s      | - \$       | -        | s -    | s -     | s -    | \$      | - \$      | - s         | -           | \$ -              | \$                | - \$     | - \$       |          | s -     | \$ -    | s -      | s -        | s -             | s -               | s -               | \$ -                | s -         | \$ -        |
| 2008  | \$     | - 1   | s -       | \$    | - \$   | -        | \$        | - \$    | -          | s -           | s -                 | s      | - \$       | -        | s -    | s -     | s -    | \$      | - \$      | - s         | -           | \$ -              | \$                | - \$     | - \$       |          | s -     | \$ -    | s -      | s -        | s -             | s -               | s -               | \$ -                | s -         | \$ -        |
| 2009  | \$     | - 1   | s -       | \$    | - \$   | -        | \$        | - \$    | -          | s -           | s -                 | s      | - \$       | -        | s -    | s -     | s -    | \$      | - \$      | - s         | -           | \$ -              | \$                | - \$     | - \$       |          | s -     | \$ -    | s -      | s -        | s -             | s -               | s -               | \$ -                | s -         | \$ -        |
| 2010  | \$     | 0.0   | \$ 0.2    | s     | 0.3 \$ | 1.2      | \$        | 2.7 \$  | 13.1       | \$ 10.9       | \$ 47.              | 3 \$   | 39.3 \$    | 115.1    | \$ 0.0 | \$ 0.2  | \$ 0   | .2 \$   | 1.0 \$    | 2.2 \$      | 12.4        | \$ 10.3           | \$ 4              | 5.1 \$   | 37.6 \$    | 109.1    | \$ 0.1  | \$ 0.4  | \$ 0.5   | \$ 2.1     | \$ 4.8          | \$ 24.5           | \$ 20.4           | \$ 89.0             | \$ 74.1     | \$ 215.9    |
| 2011  | \$     | 0.1   | \$ 0.6    | s     | 0.7 \$ | 3.1      | \$        | 6.9 \$  | 32.9       | \$ 27.3       | \$ 118.             | 8 \$   | 98.8 \$    | 289.2    | \$ 0.1 | \$ 0.5  | \$ 0   | .6 \$   | 2.3 \$    | 5.2 \$      | 28.4        | \$ 23.8           | \$ 10             | 3.6 \$   | 86.5 \$    | 250.9    | \$ 0.1  | \$ 1.0  | \$ 1.2   | \$ 5.1     | \$ 11.5         | \$ 58.2           | \$ 48.5           | \$ 211.3            | \$ 176.0    | \$ 513.1    |
| 2012  | \$     | 0.1   | \$ 1.1    | s     | 1.3 \$ | 5.4      | \$        | 2.1 \$  | 57.7       | \$ 48.0       | \$ 208.             | 7 \$   | 173.6 \$   | 508.0    | \$ 0.1 | \$ 0.8  | \$ 0   | .9 \$   | 3.9 \$    | 8.7 \$      | 47.0        | \$ 39.3           | \$ 17             | 1.4 \$   | 143.0 \$   | 415.2    | \$ 0.2  | \$ 1.7  | \$ 2.1   | \$ 8.7     | \$ 19.6         | \$ 97.6           | \$ 81.3           | \$ 353.9            | \$ 294.7    | \$ 859.9    |
| 2013  | \$     | 0.2   | \$ 1.6    | \$    | 2.0 \$ | 8.1      | \$        | 8.2 \$  | 86.8       | \$ 72.2       | \$ 313.             | 9 \$   | 261.1 \$   | 764.0    | \$ 0.1 | \$ 1.   | \$ 1   | .4 \$   | 5.6 \$    | 12.6 \$     | 67.6        | \$ 56.5           | \$ 24             | 6.1 \$   | 205.2 \$   | 596.3    | \$ 0.3  | \$ 2.5  | \$ 3.1   | \$ 12.7    | \$ 28.5         | \$ 140.5          | \$ 117.0          | \$ 509.3            | \$ 423.9    | \$ 1,237.8  |
| 2014  | \$     | 0.3   | \$ 2.2    | \$    | 2.7 \$ | 11.2     | \$ 2      | 5.1 \$  | 119.8      | \$ 94.5       | \$ 389.             | 4 \$   | 323.9 \$   | 968.9    | \$ 0.2 | \$ 1.5  | \$ 1   | .8 \$   | 7.5 \$    | 16.9 \$     | 89.6        | \$ 70.1           | \$ 28             | 4.5 \$   | 237.1 \$   | 709.2    | \$ 0.4  | \$ 3.3  | \$ 4.1   | \$ 16.9    | \$ 37.8         | \$ 185.6          | \$ 145.1          | \$ 590.2            | \$ 491.1    | \$ 1,474.4  |
| 2015  | \$     | 0.4   | \$ 2.8    | s     | 3.5 \$ | 14.5     | \$ 3      | 32.5 \$ | 150.0      | \$ 112.1      | \$ 454.             | 4 \$   | 377.9 \$   | 1,148.2  | \$ 0.2 | \$ 1.5  | \$ 2   | .3 \$   | 9.6 \$    | 21.4 \$     | 107.1       | \$ 78.5           | \$ 31             | 4.4 \$   | 262.0 \$   | 797.5    | \$ 0.5  | \$ 4.2  | \$ 5.1   | \$ 21.2    | \$ 47.5         | \$ 220.8          | \$ 161.3          | \$ 644.4            | \$ 536.1    | \$ 1,640.9  |
| 2016  | \$     | 0.4   | \$ 3.4    | \$    | 4.2 \$ | 17.5     | \$ 3      | 9.2 \$  | 173.5      | \$ 126.9      | \$ 509.             | 7 \$   | 424.0 \$   | 1,298.8  | \$ 0.3 | \$ 2.2  | \$ 2   | .7 \$   | 11.2 \$   | 25.2 \$     | 118.4       | \$ 85.2           | \$ 33             | 9.0 \$   | 282.4 \$   | 866.6    | \$ 0.6  | \$ 4.8  | \$ 5.9   | \$ 24.6    | \$ 55.2         | \$ 241.3          | \$ 172.2          | \$ 681.5            | \$ 566.9    | \$ 1,753.0  |
| 2017  | \$     | 0.5   | \$ 3.9    | \$    | 4.7 \$ | 19.7     | \$ 4      | 14.3 \$ | 192.9      | \$ 139.2      | \$ 555.             | 2 \$   | 461.9 \$   | 1,422.3  | \$ 0.3 | \$ 2.4  | \$ 3   | .0 \$   | 12.4 \$   | 27.8 \$     | 127.5       | \$ 90.8           | \$ 35             | 9.5 \$   | 299.4 \$   | 923.2    | \$ 0.7  | \$ 5.2  | \$ 6.4   | \$ 26.7    | \$ 59.9         | \$ 255.1          | \$ 179.7          | \$ 706.6            | \$ 587.7    | \$ 1,828.0  |
| 2018  | \$     | 0.5   | \$ 4.2    | \$    | 5.2 \$ | 21.6     | \$ 4      | 18.4 \$ | 208.7      | \$ 148.9      | \$ 590.             | 1 \$   | 491.0 \$   | 1,518.6  | \$ 0.3 | \$ 2.6  | \$ 3   | .2 \$   | 13.4 \$   | 30.0 \$     | 135.1       | \$ 95.5           | \$ 37             | 6.7 \$   | 313.8 \$   | 970.6    | \$ 0.7  | \$ 5.5  | \$ 6.8   | \$ 28.1    | \$ 63.0         | \$ 264.4          | \$ 184.6          | \$ 723.0            | \$ 601.3    | \$ 1,877.4  |
| 2019  | \$     | 0.6   | \$ 4.5    | \$    | 5.5 \$ | 23.0     | \$ 5      | 1.7 \$  | 221.1      | \$ 156.1      | \$ 614.             | 8 \$   | 511.6 \$   | 1,589.0  | \$ 0.4 | \$ 2.8  | \$ 3   | 4 \$    | 14.2 \$   | 31.8 \$     | 141.4       | \$ 99.5           | \$ 39             | 1.3 \$   | 325.9 \$   | 1,010.7  | \$ 0.7  | \$ 5.7  | \$ 7.0   | \$ 29.1    | \$ 65.2         | \$ 270.4          | \$ 187.6          | \$ 732.9            | \$ 609.5    | \$ 1,908.0  |
| 2020  | \$     | 0.6   | \$ 4.7    | \$    | 5.8 \$ | 24.2     | \$ 5      | 4.2 \$  | 230.2      | \$ 161.2      | \$ 632.             | 3 \$   | 526.1 \$   | 1,639.4  | \$ 0.4 | \$ 2.9  | \$ 3   | .6 \$   | 14.9 \$   | 33.4 \$     | 146.8       | \$ 102.8          | \$ 40             | 3.7 \$   | 336.1 \$   | 1,044.6  | \$ 0.7  | \$ 5.8  | \$ 7.1   | \$ 29.7    | \$ 66.5         | \$ 274.0          | \$ 189.3          | \$ 737.8            | \$ 613.6    | \$ 1,924.5  |
| 2021  | \$     | 0.6   | \$ 4.9    | \$    | 6.0 \$ | 25.0     | \$ 5      | 6.1 \$  | 236.6      | \$ 164.7      | \$ 644.             | 4 \$   | 536.1 \$   | 1,674.4  | \$ 0.4 | \$ 3.0  | \$ 3   | .7 \$   | 15.5 \$   | 34.8 \$     | 151.3       | \$ 105.6          | \$ 41             | 4.1 \$   | 344.7 \$   | 1,073.2  | \$ 0.8  | \$ 5.9  | \$ 7.2   | \$ 30.0    | \$ 67.2         | \$ 275.7          | \$ 189.9          | \$ 739.0            | \$ 614.6    | \$ 1,930.3  |
| 2022  | \$     | 0.6   | \$ 5.0    | \$    | 6.1 \$ | 25.6     | \$ 5      | 7.4 \$  | 240.9      | \$ 167.0      | \$ 652.             | 2 \$   | 542.6 \$   | 1,697.5  | \$ 0.4 | \$ 3.   | \$ 3   | .9 \$   | 16.0 \$   | 35.9 \$     | 155.1       | \$ 108.0          | \$ 42             | 2.7 \$   | 351.9 \$   | 1,097.1  | \$ 0.8  | \$ 5.9  | \$ 7.2   | \$ 30.1    | \$ 67.5         | \$ 276.1          | \$ 189.7          | \$ 737.4            | \$ 613.2    | \$ 1,927.9  |
| 2023  | \$     | 0.7   | \$ 5.1    | \$    | 6.2 \$ | 26.0     | \$ 5      | 8.2 \$  | 243.7      | \$ 168.4      | \$ 656.             | 6 \$   | 546.3 \$   | 1,711.1  | \$ 0.4 | \$ 3.2  | \$ 4   | .0 \$   | 16.5 \$   | 36.9 \$     | 158.3       | \$ 110.0          | \$ 42             | 9.8 \$   | 357.8 \$   | 1,116.8  | \$ 0.8  | \$ 5.9  | \$ 7.2   | \$ 30.1    | \$ 67.5         | \$ 275.3          | \$ 188.9          | \$ 733.5            | \$ 610.0    | \$ 1,919.2  |
| 2024  | \$     | 0.7   | \$ 5.1    | \$    | 6.3 \$ | 26.2     | \$ 5      | 8.8     | 245.2      | \$ 169.1      | \$ 658.             | 3 \$   | 547.7 \$   | 1,717.3  | \$ 0.4 | \$ 3.3  | \$ 4   | .0 \$   | 16.8 \$   | 37.8 \$     | 160.9       | \$ 111.5          | \$ 43             | 5.6 \$   | 362.5 \$   | 1,133.0  | \$ 0.8  | \$ 5.9  | \$ 7.2   | \$ 30.0    | \$ 67.2         | \$ 273.8          | \$ 187.5          | \$ 727.8            | \$ 605.3    | \$ 1,905.6  |
| 2025  | \$     | 0.7   | \$ 5.2    | \$    | 6.3 \$ | 26.3     | \$ 5      | 9.0 \$  | 245.7      | \$ 169.1      | \$ 657.             | 8 \$   | 547.3      | 1,717.5  | \$ 0.4 | \$ 3.4  | \$ 4   | .1 \$   | 17.2 \$   | 38.5 \$     | 163.0       | \$ 112.8          | \$ 44             | 0.2 \$   | 366.3 \$   | 1,145.9  | \$ 0.8  | \$ 5.8  | \$ 7.2   | \$ 29.8    | \$ 66.8         | \$ 271.6          | \$ 185.9          | \$ 720.9            | \$ 599.5    | \$ 1,888.2  |
| 2026  | \$     | 0.7   | \$ 5.2    | \$    | 6.3 \$ | 26.4     | \$ 5      | 9.1 \$  | 245.5      | \$ 168.7      | \$ 655.             | 6 \$   | 545.5 \$   | 1,712.9  | \$ 0.4 | \$ 3.4  | \$ 4   | .2 \$   | 17.4 \$   | 39.0 \$     | 164.7       | \$ 113.8          | \$ 44             | 3.7 \$   | 369.2 \$   | 1,155.9  | \$ 0.7  | \$ 5.8  | \$ 7.1   | \$ 29.5    | \$ 66.2         | \$ 269.0          | \$ 183.9          | \$ 712.9            | \$ 592.9    | \$ 1,867.9  |
| 2027  | \$     | 0.7   | \$ 5.2    | \$    | 6.3 \$ | 26.3     | \$ 5      | 9.0 \$  | 244.6      | \$ 167.9      | \$ 652.             | 0 \$   | 542.5 \$   | 1,704.4  | \$ 0.4 | \$ 3.5  | \$ 4   | .2 \$   | 17.6 \$   | 39.5 \$     | 165.9       | \$ 114.5          | \$ 44             | 6.2 \$   | 371.3 \$   | 1,163.2  | \$ 0.7  | \$ 5.7  | \$ 7.0   | \$ 29.2    | \$ 65.4         | \$ 265.9          | \$ 181.7          | \$ 704.1            | \$ 585.6    | \$ 1,845.4  |
| 2028  | \$     | 0.7   | \$ 5.1    | \$    | 6.2 \$ | 25.8     | \$ 5      | 7.9 \$  | 240.0      | \$ 164.6      | \$ 638.             | 9 \$   | 531.6 \$   | 1,670.8  | \$ 0.4 | \$ 3.4  | \$ 4   | .2 \$   | 17.5 \$   | 39.3 \$     | 164.7       | \$ 113.5          | \$ 44             | 2.1 \$   | 367.9      | 1,153.2  | \$ 0.7  | \$ 5.6  | \$ 6.8   | \$ 28.5    | \$ 63.8         | \$ 259.2          | \$ 177.0          | \$ 685.7            | \$ 570.3    | \$ 1,797.6  |
| 2029  | \$     | 0.6   | \$ 5.0    | \$    | 6.2 \$ | 25.6     | \$ 5      | 7.4 \$  | 237.7      | \$ 162.8      | \$ 631.             | 8 \$   | 525.6 \$   | 1,652.7  | \$ 0.4 | \$ 3.5  | \$ 4   | .2 \$   | 17.6 \$   | 39.5 \$     | 164.9       | \$ 113.5          | \$ 44             | 1.9 \$   | 367.7 \$   | 1,153.3  | \$ 0.7  | \$ 5.5  | \$ 6.7   | \$ 28.0    | \$ 62.8         | \$ 255.1          | \$ 174.1          | \$ 674.4            | \$ 560.9    | \$ 1,768.2  |
| Total | \$     | 9.7   | \$ 75.0   | \$ 9  | 2.0 \$ | 382.7    | \$ 85     | 8.1 \$  | 3,666.6    | \$ 2,599.5    | \$ 10,282.          | 2 \$ 8 | 8,554.3 \$ | 26,520.1 | \$ 6.3 | \$ 48.7 | \$ 59  | .7 \$ 2 | 48.3 \$   | 556.7 \$    | 2,470.1     | \$ 1,755.6        | \$ 6,95           | 1.8 \$ 5 | 5,788.3 \$ | 17,885.5 | \$ 11.9 | \$ 92.2 | \$ 113.0 | \$ 470.1   | \$ 1,053.9      | \$ 4,454.1        | \$ 3,145.4        | \$ 12,415.6         | \$ 10,327.1 | \$ 32,083.1 |
| Ann.  | \$     | 0.6   | \$ 4.3    | \$    | 5.3 \$ | 22.0     | \$ 4      | 9.3 \$  | 210.6      | \$ 149.3      | \$ 590.             | 5 \$   | 491.3 \$   | 1,523.0  | \$ 0.4 | \$ 2.8  | \$ 3   | .4 \$   | 14.3 \$   | 32.0 \$     | 141.9       | \$ 100.8          | \$ 39             | 9.2 \$   | 332.4 \$   | 1,027.1  | \$ 0.7  | \$ 5.3  | \$ 6.5   | \$ 27.0    | \$ 60.5         | \$ 255.8          | \$ 180.6          | \$ 713.0            | \$ 593.1    | \$ 1,842.5  |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.2a through F.2i and F.2k through F.2s.

#### Exhibit F.2ac Mean Present Value of Benefits Yearly Projections, WTP for Lymphoma as Basis for Non-Fatal Cases, at 7% Discount Rate, by System Size (All Systems)

#### TTHM - Preferred Alternative

| IIIIW | - Preter         | red Alte | ernat  |           | nokina/l    | una Ca | ncer  | Cessation            | Lag Mode   | ıl.      |                            |             |                  |         |                  | Smoking/F        | ladder C | ancer Ces  | sation Lag | Model      |                      |            | <u> </u>         |                  |         | ∆rsenic/R          | Sladder C | ancer Cess           | ation Lag M | lodel                |            |                          |
|-------|------------------|----------|--------|-----------|-------------|--------|-------|----------------------|------------|----------|----------------------------|-------------|------------------|---------|------------------|------------------|----------|------------|------------|------------|----------------------|------------|------------------|------------------|---------|--------------------|-----------|----------------------|-------------|----------------------|------------|--------------------------|
|       |                  |          |        |           | ioi.iiig/L  | ung oc |       | 10,000-              | 50,000-    | 100,000  | .                          |             |                  |         |                  | OO.u.i.g/L       | 3,300-   | 10,000-    | 50,000-    | 100,000-   |                      |            |                  |                  |         | 71100111072        | 3,300-    | 10,000-              | 50,000-     | 100,000-             |            |                          |
| Year  | <100             | 100-499  | 19 5   | 500-999 1 | 1,000-3,299 | 3,300- | 9,999 | 49,999               | 99,999     | 999,999  |                            | Total       | <100             | 100-499 | 500-999          | 1,000-3,299      | 9,999    | 49,999     | 99,999     | 999,999    | ≥1,000,000           | Total      | <100             | 100-499          | 500-999 | 1,000-3,299        |           | 49,999               | 99,999      | 999,999              | ≥1,000,000 | Total                    |
| 2005  | \$ -             | \$ -     | \$     | - 8       | -           | \$     | -     | \$ -                 | \$ -       | \$ -     | \$ -                       | \$ -        | \$ -             | \$ -    | \$ -             | \$ -             | \$ -     | \$ -       | \$ -       | \$ -       | \$ -                 | \$ -       | \$ -             | \$ -             | \$ -    | \$ -               | \$ -      | \$ -                 | \$ -        | \$ -                 | \$ -       | \$ -                     |
| 2006  | \$ -             | \$ -     | \$     | - \$      | -           | \$     | -     | \$ -                 | \$ -       | \$ -     | \$ -                       | \$ -        | \$ -             | \$ -    | \$ -             | \$ -             | \$ -     | \$ -       | \$ -       | \$ -       | \$ -                 | \$ -       | \$ -             | \$ -             | \$ -    | \$ -               | \$ -      | \$ -                 | \$ -        | \$ -                 | \$ -       | \$ -                     |
| 2007  | \$ -             | \$ -     | \$     | - \$      | -           | \$     | -     | \$ -                 | \$ -       | \$ -     | \$ -                       | \$ -        | \$ -             | \$ -    | \$ -             | \$ -             | \$ -     | \$ -       | \$ -       | \$ -       | \$ -                 | \$ -       | \$ -             | \$ -             | \$ -    | \$ -               | \$ -      | \$ -                 | \$ -        | \$ -                 | \$ -       | \$ -                     |
| 2008  | \$ -             | \$ -     | \$     | - \$      | -           | \$     | -     | \$ -                 | \$ -       | \$ -     | \$ -                       | \$ -        | \$ -             | \$ -    | s -              | \$ -             | \$ -     | \$ -       | \$ -       | \$ -       | \$ -                 | \$ -       | \$ -             | \$ -             | \$ -    | \$ -               | \$ -      | \$ -                 | \$ -        | \$ -                 | \$ -       | \$ -                     |
| 2009  | \$ -             | \$ -     | \$     | - \$      | -           | \$     | -     | \$ -                 | \$ -       | \$ -     | \$ -                       | \$ -        | \$ -             | \$ -    | \$ -             | \$ -             | \$ -     | \$ -       | \$ -       | \$ -       | \$ -                 | \$ -       | \$ -             | \$ -             | \$ -    | \$ -               | \$ -      | \$ -                 | \$ -        | \$ -                 | \$ -       | \$ -                     |
| 2010  | \$ 0.0           | \$ 0.    | 1.2 \$ | 0.2       | 1.0         | \$     | 2.3   | \$ 10.8              | \$ 9.0     | \$ 39    | .1 \$ 32.5                 | \$ 95.1     | \$ 0.0           | \$ 0.2  | \$ 0.2           | \$ 0.8           | \$ 1.8   | \$ 10.2    | \$ 8.5     | \$ 37.3    | \$ 31.1              | \$ 90.2    | \$ 0.0           | \$ 0.3           | \$ 0.4  | \$ 1.8             | \$ 3.9    | \$ 20.2              | \$ 16.9     | \$ 73.5              | \$ 61.3    | \$ 178.4                 |
| 2011  | \$ 0.1           | \$ 0.    | 1.5 \$ | 0.6       |             | \$     | 5.5   | \$ 26.1              | \$ 21.7    |          | .5 \$ 78.6                 |             | \$ 0.0           | \$ 0.4  | \$ 0.4           | \$ 1.8           | \$ 4.1   |            |            |            | \$ 68.8              |            | \$ 0.1           | \$ 0.8           | \$ 1.0  | \$ 4.1             | \$ 9.2    | \$ 46.3              |             | \$ 168.1             | \$ 140.0   |                          |
| 2012  | \$ 0.1           |          |        |           |             | \$     | 9.3   |                      |            |          | .9 \$ 132.9                |             | \$ 0.1           | \$ 0.6  | \$ 0.7           |                  |          |            | \$ 30.1    |            |                      |            | \$ 0.2           | \$ 1.3           | \$ 1.6  |                    |           |                      |             |                      |            |                          |
| 2013  | \$ 0.2           | 1        | .2 \$  | 1         |             | 1      | 13.4  | \$ 64.0              | \$ 53.2    |          |                            |             |                  | \$ 0.8  | \$ 1.0           |                  | \$ 9.3   |            | 1.         |            |                      |            | \$ 0.2           | \$ 1.8           | \$ 2.2  | \$ 9.4             |           |                      |             | \$ 375.5             |            |                          |
| 2014  | \$ 0.2           | 1        | .6 \$  |           |             | 1.     | 17.8  |                      |            |          | .4 \$ 229.8                |             |                  | \$ 1.0  | \$ 1.3           | \$ 5.4           |          |            |            |            |                      |            | \$ 0.3           |                  |         |                    |           |                      |             |                      |            | \$ 1,046.4               |
| 2015  | \$ 0.3           | 1        | .9 \$  | 2.4 \$    |             |        | 22.2  | \$ 102.5             |            |          |                            |             | \$ 0.2           | \$ 1.3  | \$ 1.6           | \$ 6.5           | \$ 14.7  |            |            |            |                      |            | \$ 0.4           | \$ 2.8           |         | \$ 14.5            |           |                      |             | \$ 440.2             |            | \$ 1,121.                |
| 2016  | \$ 0.3           |          | .3 \$  |           |             |        | 25.8  |                      |            |          | .2 \$ 278.8<br>.5 \$ 292.4 |             | \$ 0.2           | \$ 1.4  | \$ 1.8<br>\$ 1.9 | \$ 7.4           |          |            |            |            | \$ 185.7<br>\$ 189.6 |            | \$ 0.4           | \$ 3.2           |         | \$ 16.2<br>\$ 16.9 |           | \$ 158.7<br>\$ 161.5 |             | \$ 448.2<br>\$ 447.3 |            | \$ 1,152.3<br>\$ 1,157.3 |
| 2017  | \$ 0.3<br>\$ 0.3 | 1        |        |           |             |        | 28.0  | \$ 122.1<br>\$ 127.2 |            |          |                            |             | \$ 0.2<br>\$ 0.2 | \$ 1.5  | \$ 1.9           | \$ 7.9<br>\$ 8.2 | \$ 17.0  |            |            |            |                      |            | \$ 0.4<br>\$ 0.4 | \$ 3.3<br>\$ 3.4 |         |                    |           |                      |             |                      |            | \$ 1,157.                |
| 2019  | \$ 0.3           |          |        | 3.2 3     |             | 1      | 30.3  |                      |            |          | .7 \$ 300.1                | \$ 925.4    | \$ 0.2           | \$ 1.6  | \$ 2.0           | \$ 8.3           |          |            | 1          |            |                      |            |                  | \$ 3.4           |         | \$ 17.1            |           |                      |             |                      |            | \$ 1,144.                |
| 2020  | \$ 0.3           | 1        |        | 3.3       |             | 1.     | 30.6  |                      | \$ 91.0    |          |                            |             |                  | \$ 1.0  | \$ 2.0           | \$ 8.4           | \$ 18.9  |            |            |            |                      |            | \$ 0.4           | \$ 3.3           |         | \$ 16.7            |           |                      |             | \$ 416.6             |            | \$ 1,086.                |
| 2021  | \$ 0.3           | 1        | .7 \$  |           |             | 1.     | 30.5  |                      |            |          | .3 \$ 291.4                |             |                  | \$ 1.7  | \$ 2.0           |                  |          |            |            |            |                      |            | \$ 0.4           |                  |         |                    |           |                      |             |                      |            | \$ 1,049.                |
| 2022  | \$ 0.3           | 1        |        | 3.2       |             | 1.     | 30.0  |                      | \$ 87.4    |          | 2 \$ 283.9                 |             | \$ 0.2           | \$ 1.6  | \$ 2.0           | \$ 8.4           | \$ 18.8  | \$ 81.2    |            | \$ 221.2   |                      | \$ 574.0   |                  | \$ 3.1           |         | \$ 15.8            |           |                      |             | \$ 385.8             |            | \$ 1,008.8               |
| 2023  | \$ 0.3           | \$ 2.    | .6 \$  | 3.1 \$    | 13.1        | s      | 29.3  | \$ 122.7             | \$ 84.8    | \$ 330   | .7 \$ 275.2                | \$ 861.9    | \$ 0.2           | \$ 1.6  | \$ 2.0           | \$ 8.3           | \$ 18.6  | \$ 79.7    | \$ 55.4    | \$ 216.5   | \$ 180.2             | \$ 562.5   | \$ 0.4           | \$ 3.0           | \$ 3.6  | \$ 15.2            | \$ 34.0   | \$ 138.7             | \$ 95.1     | \$ 369.4             | \$ 307.2   | \$ 966.7                 |
| 2024  | \$ 0.3           | \$ 2.    | .5 \$  | 3.1       | 12.7        | \$     | 28.5  | \$ 118.9             | \$ 82.0    | \$ 319   | .2 \$ 265.6                | \$ 832.7    | \$ 0.2           | \$ 1.6  | \$ 2.0           | \$ 8.2           | \$ 18.3  | \$ 78.0    | \$ 54.1    | \$ 211.2   | \$ 175.8             | \$ 549.3   | \$ 0.4           | \$ 2.9           | \$ 3.5  | \$ 14.5            | \$ 32.6   | \$ 132.8             | \$ 90.9     | \$ 352.9             | \$ 293.5   | \$ 923.9                 |
| 2025  | \$ 0.3           | \$ 2.    | .4 \$  | 3.0       | 12.3        | \$     | 27.6  | \$ 114.7             | \$ 78.9    | \$ 307   | .0 \$ 255.5                | \$ 801.6    | \$ 0.2           | \$ 1.6  | \$ 1.9           | \$ 8.0           | \$ 17.9  | \$ 76.1    | \$ 52.7    | \$ 205.5   | \$ 171.0             | \$ 534.8   | \$ 0.4           | \$ 2.7           | \$ 3.3  | \$ 13.9            | \$ 31.2   | \$ 126.8             | \$ 86.7     | \$ 336.5             | \$ 279.8   | \$ 881.3                 |
| 2026  | \$ 0.3           | \$ 2.    | .3 \$  | 2.8       | 11.8        | \$     | 26.5  | \$ 110.3             | \$ 75.8    | \$ 294   | .6 \$ 245.1                | \$ 769.6    | \$ 0.2           | \$ 1.5  | \$ 1.9           | \$ 7.8           | \$ 17.5  | \$ 74.0    | \$ 51.1    | \$ 199.3   | \$ 165.9             | \$ 519.3   | \$ 0.3           | \$ 2.6           | \$ 3.2  | \$ 13.3            | \$ 29.7   | \$ 120.8             | \$ 82.6     | \$ 320.3             | \$ 266.4   | \$ 839.2                 |
| 2027  | \$ 0.3           | \$ 2.    | .2 \$  | 2.7       | 11.4        | \$     | 25.5  | \$ 105.8             | \$ 72.6    | \$ 282   | .0 \$ 234.6                | \$ 737.1    | \$ 0.2           | \$ 1.5  | \$ 1.8           | \$ 7.6           | \$ 17.1  | \$ 71.8    | \$ 49.5    | \$ 193.0   | \$ 160.6             | \$ 503.1   | \$ 0.3           | \$ 2.5           | \$ 3.0  | \$ 12.6            | \$ 28.3   | \$ 115.0             | \$ 78.6     | \$ 304.5             | \$ 253.3   | \$ 798.                  |
| 2028  | \$ 0.3           | \$ 2.    | .1 \$  | 2.6       | 10.8        | \$     | 24.1  | \$ 99.9              | \$ 68.5    | \$ 266   | .0 \$ 221.3                | \$ 695.6    | \$ 0.2           | \$ 1.4  | \$ 1.8           | \$ 7.3           | \$ 16.4  | \$ 68.6    | \$ 47.3    | \$ 184.1   | \$ 153.1             | \$ 480.1   | \$ 0.3           | \$ 2.3           | \$ 2.8  | \$ 11.8            | \$ 26.6   | \$ 107.9             | \$ 73.7     | \$ 285.5             | \$ 237.4   | \$ 748.4                 |
| 2029  | \$ 0.3           | \$ 2.    | .0 \$  | 2.5       | 10.3        | \$     | 23.0  | \$ 95.2              | \$ 65.2    | \$ 253   | .2 \$ 210.6                | \$ 662.3    | \$ 0.2           | \$ 1.4  | \$ 1.7           | \$ 7.1           | \$ 15.8  | \$ 66.1    | \$ 45.5    | \$ 177.1   | \$ 147.4             | \$ 462.2   | \$ 0.3           | \$ 2.2           | \$ 2.7  | \$ 11.2            | \$ 25.2   | \$ 102.2             | \$ 69.8     | \$ 270.3             | \$ 224.8   | \$ 708.6                 |
| Total | \$ 5.2           | \$ 40.   | .2 \$  | 49.3      | 205.0       | \$ 4   | 159.7 | \$ 1,978.0           | \$ 1,414.1 | \$ 5,619 | .9 \$ 4,675.3              | \$ 14,446.6 | \$ 3.4           | \$ 26.1 | \$ 31.9          | \$ 132.9         | \$ 298.1 | \$ 1,339.8 | \$ 960.2   | \$ 3,819.7 | \$ 3,180.9           | \$ 9,793.0 | \$ 6.5           | \$ 50.4          | \$ 61.8 | \$ 257.0           | \$ 576.2  | \$ 2,460.6           | \$ 1,753.5  | \$ 6,956.9           | \$ 5,786.9 | \$ 17,909.7              |
| Ann.  | \$ 0.4           | \$ 3.    | .4 \$  | 4.2 \$    | 17.6        | \$     | 39.4  | \$ 169.7             | \$ 121.3   | \$ 482   | .2 \$ 401.2                | \$ 1,239.7  | \$ 0.3           | \$ 2.2  | \$ 2.7           | \$ 11.4          | \$ 25.6  | \$ 115.0   | \$ 82.4    | \$ 327.8   | \$ 273.0             | \$ 840.3   | \$ 0.6           | \$ 4.3           | \$ 5.3  | \$ 22.1            | \$ 49.4   | \$ 211.1             | \$ 150.5    | \$ 597.0             | \$ 496.6   | \$ 1,536.8               |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.2a through F.2s and F.2k through F.2s.

# Section F.3 Model Outputs - Preferred Alternative TTHM as Indicator Bronchitis for Non-Fatal Cases

## Exhibit F.3a Projections of Yearly Benefits, WTP for Bronchitis as Basis for Non-Fatal Cases (Surface Water Systems Serving <100 People)

**TTHM - Preferred Alternative** 

|       |            | _  | /Lung C<br>on Lag I |                |                   |             |    | g/Bladde<br>tion Lag |                     |              |    | Bladder<br>ion Lag | <br>                |
|-------|------------|----|---------------------|----------------|-------------------|-------------|----|----------------------|---------------------|--------------|----|--------------------|---------------------|
|       |            | С  | 90 Pe<br>Confider   | ercen<br>nce B | -                 |             |    | 90 P<br>Confider     | <br>                |              | C  | 90 P<br>Confider   | <br>                |
| Year  | ean<br>lue |    | ower<br>%tile)      |                | Jpper<br>h %tile) | ean<br>alue | _  | Lower<br>h %tile)    | Upper<br>ith %tile) | lean<br>alue |    | ower<br>1 %tile)   | Upper<br>ith %tile) |
| 2005  | \$<br>-    | \$ | -                   | \$             | -                 | \$<br>-     | \$ | -                    | \$<br>-             | \$<br>-      | \$ | -                  | \$<br>-             |
| 2006  | \$<br>-    | \$ | -                   | \$             | -                 | \$<br>-     | \$ | -                    | \$<br>-             | \$<br>-      | \$ | -                  | \$<br>-             |
| 2007  | \$<br>-    | \$ | -                   | \$             | -                 | \$<br>-     | \$ | -                    | \$<br>-             | \$<br>-      | \$ | -                  | \$<br>-             |
| 2008  | \$<br>-    | \$ | -                   | \$             | -                 | \$<br>-     | \$ | -                    | \$<br>-             | \$<br>-      | \$ | -                  | \$<br>-             |
| 2009  | \$<br>-    | \$ | -                   | \$             | -                 | \$<br>-     | \$ | -                    | \$<br>-             | \$<br>-      | \$ | -                  | \$<br>-             |
| 2010  | \$<br>0.0  | \$ | 0.0                 | \$             | 0.0               | \$<br>0.0   | \$ | 0.0                  | \$<br>0.0           | \$<br>0.0    | \$ | 0.0                | \$<br>0.0           |
| 2011  | \$<br>0.0  | \$ | 0.0                 | \$             | 0.0               | \$<br>0.0   | \$ | 0.0                  | \$<br>0.0           | \$<br>0.0    | \$ | 0.0                | \$<br>0.0           |
| 2012  | \$<br>0.0  | \$ | 0.0                 | \$             | 0.0               | \$<br>0.0   | \$ | 0.0                  | \$<br>0.0           | \$<br>0.0    | \$ | 0.0                | \$<br>0.1           |
| 2013  | \$<br>0.0  | \$ | 0.0                 | \$             | 0.1               | \$<br>0.0   | \$ | 0.0                  | \$<br>0.0           | \$<br>0.0    | \$ | 0.0                | \$<br>0.1           |
| 2014  | \$<br>0.0  | \$ | 0.0                 | \$             | 0.1               | \$<br>0.0   | \$ | 0.0                  | \$<br>0.1           | \$<br>0.1    | \$ | 0.0                | \$<br>0.1           |
| 2015  | \$<br>0.0  | \$ | 0.0                 | \$             | 0.1               | \$<br>0.0   | \$ | 0.0                  | \$<br>0.1           | \$<br>0.1    | \$ | 0.0                | \$<br>0.2           |
| 2016  | \$<br>0.1  | \$ | 0.0                 | \$             | 0.1               | \$<br>0.0   | \$ | 0.0                  | \$<br>0.1           | \$<br>0.1    | \$ | 0.0                | \$<br>0.2           |
| 2017  | \$<br>0.1  | \$ | 0.0                 | \$             | 0.2               | \$<br>0.0   | \$ | 0.0                  | \$<br>0.1           | \$<br>0.1    | \$ | 0.0                | \$<br>0.2           |
| 2018  | \$<br>0.1  | \$ | 0.0                 | \$             | 0.2               | \$<br>0.0   | \$ | 0.0                  | \$<br>0.1           | \$<br>0.1    | \$ | 0.0                | \$<br>0.2           |
| 2019  | \$<br>0.1  | \$ | 0.0                 | \$             | 0.2               | \$<br>0.1   | \$ | 0.0                  | \$<br>0.1           | \$<br>0.1    | \$ | 0.0                | \$<br>0.2           |
| 2020  | \$<br>0.1  | \$ | 0.0                 | \$             | 0.2               | \$<br>0.1   | \$ | 0.0                  | \$<br>0.1           | \$<br>0.1    | \$ | 0.0                | \$<br>0.2           |
| 2021  | \$<br>0.1  | \$ | 0.0                 | \$             | 0.2               | \$<br>0.1   | \$ | 0.0                  | \$<br>0.1           | \$<br>0.1    | \$ | 0.0                | \$<br>0.3           |
| 2022  | \$<br>0.1  | \$ | 0.0                 | \$             | 0.2               | \$<br>0.1   | \$ | 0.0                  | \$<br>0.1           | \$<br>0.1    | \$ | 0.0                | \$<br>0.3           |
| 2023  | \$<br>0.1  | \$ | 0.0                 | \$             | 0.2               | \$<br>0.1   | \$ | 0.0                  | \$<br>0.2           | \$<br>0.1    | \$ | 0.0                | \$<br>0.3           |
| 2024  | \$<br>0.1  | \$ | 0.0                 | \$             | 0.2               | \$<br>0.1   | \$ | 0.0                  | \$<br>0.2           | \$<br>0.1    | \$ | 0.0                | \$<br>0.3           |
| 2025  | \$<br>0.1  | \$ | 0.0                 | \$             | 0.3               | \$<br>0.1   | \$ | 0.0                  | \$<br>0.2           | \$<br>0.1    | \$ | 0.0                | \$<br>0.3           |
| 2026  | \$<br>0.1  | \$ | 0.0                 | \$             | 0.3               | \$<br>0.1   | \$ | 0.0                  | \$<br>0.2           | \$<br>0.1    | \$ | 0.0                | \$<br>0.3           |
| 2027  | \$<br>0.1  | \$ | 0.0                 | \$             | 0.3               | \$<br>0.1   | \$ | 0.0                  | \$<br>0.2           | \$<br>0.1    | \$ | 0.0                | \$<br>0.3           |
| 2028  | \$<br>0.1  | \$ | 0.0                 | \$             | 0.3               | \$<br>0.1   | \$ | 0.0                  | \$<br>0.2           | \$<br>0.1    | \$ | 0.0                | \$<br>0.3           |
| 2029  | \$<br>0.1  | \$ | 0.0                 | \$             | 0.3               | \$<br>0.1   | \$ | 0.0                  | \$<br>0.2           | \$<br>0.1    | \$ | 0.0                | \$<br>0.3           |
| Total | \$<br>1.5  | \$ | 0.3                 | \$             | 3.4               | \$<br>1.0   | \$ | 0.2                  | \$<br>2.2           | \$<br>1.9    | \$ | 0.4                | \$<br>4.2           |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

#### Exhibit F.3b Projections of Yearly Benefits, WTP for Bronchitis as Basis for Non-Fatal Cases (Surface Water Systems Serving 100-499 People)

**TTHM - Preferred Alternative** 

|       |                |    | g/Lung C<br>on Lag I |                    |                | _  | /Bladder<br>tion Lag I |    |                     |               | Bladder (         | -  |                     |
|-------|----------------|----|----------------------|--------------------|----------------|----|------------------------|----|---------------------|---------------|-------------------|----|---------------------|
|       |                | C  | 90 Po<br>Confider    | -                  |                |    | 90 P<br>Confider       |    |                     |               | 90 Pe<br>Confider |    |                     |
| Year  | /lean<br>/alue |    | ower<br>1 %tile)     | Upper<br>th %tile) | /lean<br>/alue |    | Lower<br>th %tile)     | (9 | Upper<br>5th %tile) | Mean<br>/alue | Lower<br>h %tile) | (9 | Upper<br>5th %tile) |
| 2005  | \$<br>-        | \$ | -                    | \$<br>-            | \$<br>-        | \$ | -                      | \$ | -                   | \$<br>-       | \$                | \$ | -                   |
| 2006  | \$<br>-        | \$ | -                    | \$<br>-            | \$<br>-        | \$ | -                      | \$ | -                   | \$<br>-       | \$<br>-           | \$ | -                   |
| 2007  | \$<br>-        | \$ | -                    | \$<br>-            | \$<br>-        | \$ | -                      | \$ | -                   | \$<br>-       | \$<br>-           | \$ | -                   |
| 2008  | \$<br>-        | \$ | -                    | \$<br>-            | \$<br>-        | \$ | -                      | \$ | -                   | \$<br>-       | \$<br>-           | \$ | -                   |
| 2009  | \$<br>-        | \$ | -                    | \$<br>-            | \$<br>-        | \$ | -                      | \$ | -                   | \$<br>-       | \$<br>-           | \$ | -                   |
| 2010  | \$<br>0.0      | \$ | 0.0                  | \$<br>0.1          | \$<br>0.0      | \$ | 0.0                    | \$ | 0.1                 | \$<br>0.1     | \$<br>0.0         | \$ | 0.1                 |
| 2011  | \$<br>0.1      | \$ | 0.0                  | \$<br>0.2          | \$<br>0.1      | \$ | 0.0                    | \$ | 0.1                 | \$<br>0.1     | \$<br>0.0         | \$ | 0.3                 |
| 2012  | \$<br>0.1      | \$ | 0.0                  | \$<br>0.3          | \$<br>0.1      | \$ | 0.0                    | \$ | 0.2                 | \$<br>0.2     | \$<br>0.1         | \$ | 0.5                 |
| 2013  | \$<br>0.2      | \$ | 0.1                  | \$<br>0.5          | \$<br>0.2      | \$ | 0.0                    | \$ | 0.4                 | \$<br>0.4     | \$<br>0.1         | \$ | 0.8                 |
| 2014  | \$<br>0.3      | \$ | 0.1                  | \$<br>0.7          | \$<br>0.2      | \$ | 0.0                    | \$ | 0.5                 | \$<br>0.5     | \$<br>0.1         | \$ | 1.1                 |
| 2015  | \$<br>0.4      | \$ | 0.1                  | \$<br>1.0          | \$<br>0.3      | \$ | 0.1                    | \$ | 0.6                 | \$<br>0.6     | \$<br>0.1         | \$ | 1.4                 |
| 2016  | \$<br>0.5      | \$ | 0.1                  | \$<br>1.2          | \$<br>0.4      | \$ | 0.1                    | \$ | 0.8                 | \$<br>8.0     | \$<br>0.2         | \$ | 1.7                 |
| 2017  | \$<br>0.6      | \$ | 0.1                  | \$<br>1.4          | \$<br>0.4      | \$ | 0.1                    | \$ | 0.9                 | \$<br>0.9     | \$<br>0.2         | \$ | 1.9                 |
| 2018  | \$<br>0.7      | \$ | 0.2                  | \$<br>1.6          | \$<br>0.4      | \$ | 0.1                    | \$ | 1.0                 | \$<br>0.9     | \$<br>0.2         | \$ | 2.1                 |
| 2019  | \$<br>0.8      | \$ | 0.2                  | \$<br>1.7          | \$<br>0.5      | \$ | 0.1                    | \$ | 1.1                 | \$<br>1.0     | \$<br>0.2         | \$ | 2.2                 |
| 2020  | \$<br>0.9      | \$ | 0.2                  | \$<br>1.9          | \$<br>0.5      | \$ | 0.1                    | \$ | 1.2                 | \$<br>1.0     | \$<br>0.2         | \$ | 2.3                 |
| 2021  | \$<br>0.9      | \$ | 0.2                  | \$<br>2.0          | \$<br>0.6      | \$ | 0.1                    | \$ | 1.3                 | \$<br>1.1     | \$<br>0.2         | \$ | 2.4                 |
| 2022  | \$<br>1.0      | \$ | 0.2                  | \$<br>2.1          | \$<br>0.6      | \$ | 0.1                    | \$ | 1.3                 | \$<br>1.1     | \$<br>0.2         | \$ | 2.5                 |
| 2023  | \$<br>1.0      | \$ | 0.2                  | \$<br>2.2          | \$<br>0.6      | \$ | 0.1                    | \$ | 1.4                 | \$<br>1.2     | \$<br>0.3         | \$ | 2.6                 |
| 2024  | \$<br>1.0      | \$ | 0.2                  | \$<br>2.3          | \$<br>0.7      | \$ | 0.1                    | \$ | 1.5                 | \$<br>1.2     | \$<br>0.3         | \$ | 2.7                 |
| 2025  | \$<br>1.1      | \$ | 0.2                  | \$<br>2.4          | \$<br>0.7      | \$ | 0.2                    | \$ | 1.6                 | \$<br>1.2     | \$<br>0.3         | \$ | 2.7                 |
| 2026  | \$<br>1.1      | \$ | 0.2                  | \$<br>2.5          | \$<br>0.7      | \$ | 0.2                    | \$ | 1.6                 | \$<br>1.2     | \$<br>0.3         | \$ | 2.8                 |
| 2027  | \$<br>1.1      | \$ | 0.2                  | \$<br>2.6          | \$<br>0.8      | \$ | 0.2                    | \$ | 1.7                 | \$<br>1.3     | \$<br>0.3         | \$ | 2.8                 |
| 2028  | \$<br>1.2      | \$ | 0.2                  | \$<br>2.6          | \$<br>0.8      | \$ | 0.2                    | \$ | 1.8                 | \$<br>1.3     | \$<br>0.3         | \$ | 2.8                 |
| 2029  | \$<br>1.2      | \$ | 0.3                  | \$<br>2.6          | \$<br>8.0      | \$ | 0.2                    | \$ | 1.8                 | \$<br>1.3     | \$<br>0.3         | \$ | 2.9                 |
| Total | \$<br>14.4     | \$ | 3.1                  | \$<br>32.0         | \$<br>9.4      | \$ | 2.0                    | \$ | 20.8                | \$<br>17.4    | \$<br>3.8         | \$ | 38.7                |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

## Exhibit F.3c Projections of Yearly Benefits, WTP for Bronchitis as Basis for Non-Fatal Cases (Surface Water Systems Serving 500-999 People)

**TTHM - Preferred Alternative** 

|       |                    |    | g/Lung C<br>on Lag I |                    |                    | _  | /Bladder<br>tion Lag I |    |                     |    |               | Bladder (         | _  |                     |
|-------|--------------------|----|----------------------|--------------------|--------------------|----|------------------------|----|---------------------|----|---------------|-------------------|----|---------------------|
|       |                    | C  | 90 Po<br>Confider    |                    |                    |    | 90 P                   |    |                     |    |               | 90 Pe<br>Confider |    |                     |
| Year  | <br>/lean<br>/alue |    | ower<br>1 %tile)     | Upper<br>th %tile) | <br>/lean<br>/alue |    | Lower<br>th %tile)     | (9 | Upper<br>5th %tile) | -  | Mean<br>/alue | ₋ower<br>h %tile) | (9 | Upper<br>5th %tile) |
| 2005  | \$<br>-            | \$ | -                    | \$<br>-            | \$<br>-            | \$ | -                      | \$ | -                   | \$ | -             | \$<br>-           | \$ | -                   |
| 2006  | \$<br>-            | \$ | -                    | \$<br>-            | \$<br>-            | \$ | -                      | \$ | -                   | \$ | -             | \$<br>-           | \$ | -                   |
| 2007  | \$<br>-            | \$ | -                    | \$<br>-            | \$<br>-            | \$ | -                      | \$ | -                   | \$ | -             | \$<br>-           | \$ | -                   |
| 2008  | \$<br>-            | \$ | -                    | \$<br>-            | \$<br>-            | \$ | -                      | \$ | -                   | \$ | -             | \$<br>-           | \$ | -                   |
| 2009  | \$<br>-            | \$ | -                    | \$<br>-            | \$<br>-            | \$ | -                      | \$ | -                   | \$ | -             | \$<br>-           | \$ | -                   |
| 2010  | \$<br>0.1          | \$ | 0.0                  | \$<br>0.1          | \$<br>0.0          | \$ | 0.0                    | \$ | 0.1                 | \$ | 0.1           | \$<br>0.0         | \$ | 0.2                 |
| 2011  | \$<br>0.1          | \$ | 0.0                  | \$<br>0.3          | \$<br>0.1          | \$ | 0.0                    | \$ | 0.2                 | \$ | 0.2           | \$<br>0.1         | \$ | 0.5                 |
| 2012  | \$<br>0.3          | \$ | 0.1                  | \$<br>0.6          | \$<br>0.2          | \$ | 0.0                    | \$ | 0.4                 | \$ | 0.4           | \$<br>0.1         | \$ | 0.9                 |
| 2013  | \$<br>0.4          | \$ | 0.1                  | \$<br>0.9          | \$<br>0.3          | \$ | 0.1                    | \$ | 0.6                 | \$ | 0.6           | \$<br>0.1         | \$ | 1.4                 |
| 2014  | \$<br>0.6          | \$ | 0.1                  | \$<br>1.3          | \$<br>0.4          | \$ | 0.1                    | \$ | 0.9                 | \$ | 0.9           | \$<br>0.2         | \$ | 1.9                 |
| 2015  | \$<br>8.0          | \$ | 0.2                  | \$<br>1.7          | \$<br>0.5          | \$ | 0.1                    | \$ | 1.1                 | \$ | 1.1           | \$<br>0.2         | \$ | 2.5                 |
| 2016  | \$<br>1.0          | \$ | 0.2                  | \$<br>2.1          | \$<br>0.6          | \$ | 0.1                    | \$ | 1.4                 | \$ | 1.4           | \$<br>0.3         | \$ | 3.0                 |
| 2017  | \$<br>1.1          | \$ | 0.2                  | \$<br>2.5          | \$<br>0.7          | \$ | 0.2                    | \$ | 1.6                 | \$ | 1.5           | \$<br>0.3         | \$ | 3.3                 |
| 2018  | \$<br>1.3          | \$ | 0.3                  | \$<br>2.8          | \$<br>8.0          | \$ | 0.2                    | \$ | 1.7                 | \$ | 1.6           | \$<br>0.4         | \$ | 3.6                 |
| 2019  | \$<br>1.4          | \$ | 0.3                  | \$<br>3.1          | \$<br>0.9          | \$ | 0.2                    | \$ | 1.9                 | \$ | 1.8           | \$<br>0.4         | \$ | 3.9                 |
| 2020  | \$<br>1.5          | \$ | 0.3                  | \$<br>3.3          | \$<br>0.9          | \$ | 0.2                    | \$ | 2.1                 | \$ | 1.8           | \$<br>0.4         | \$ | 4.1                 |
| 2021  | \$<br>1.6          | \$ | 0.3                  | \$<br>3.6          | \$<br>1.0          | \$ | 0.2                    | \$ | 2.2                 | \$ | 1.9           | \$<br>0.4         | \$ | 4.3                 |
| 2022  | \$<br>1.7          | \$ | 0.4                  | \$<br>3.8          | \$<br>1.1          | \$ | 0.2                    | \$ | 2.4                 | \$ | 2.0           | \$<br>0.4         | \$ | 4.4                 |
| 2023  | \$<br>1.8          | \$ | 0.4                  | \$<br>3.9          | \$<br>1.1          | \$ | 0.2                    | \$ | 2.5                 | \$ | 2.0           | \$<br>0.4         | \$ | 4.6                 |
| 2024  | \$<br>1.8          | \$ | 0.4                  | \$<br>4.1          | \$<br>1.2          | \$ | 0.3                    | \$ | 2.6                 | \$ | 2.1           | \$<br>0.5         | \$ | 4.7                 |
| 2025  | \$<br>1.9          | \$ | 0.4                  | \$<br>4.2          | \$<br>1.2          | \$ | 0.3                    | \$ | 2.8                 | \$ | 2.2           | \$<br>0.5         | \$ | 4.8                 |
| 2026  | \$<br>2.0          | \$ | 0.4                  | \$<br>4.4          | \$<br>1.3          | \$ | 0.3                    | \$ | 2.9                 | \$ | 2.2           | \$<br>0.5         | \$ | 4.9                 |
| 2027  | \$<br>2.0          | \$ | 0.4                  | \$<br>4.5          | \$<br>1.4          | \$ | 0.3                    | \$ | 3.0                 | \$ | 2.2           | \$<br>0.5         | \$ | 5.0                 |
| 2028  | \$<br>2.0          | \$ | 0.4                  | \$<br>4.6          | \$<br>1.4          | \$ | 0.3                    | \$ | 3.1                 | \$ | 2.3           | \$<br>0.5         | \$ | 5.0                 |
| 2029  | \$<br>2.1          | \$ | 0.4                  | \$<br>4.7          | \$<br>1.4          | \$ | 0.3                    | \$ | 3.2                 | \$ | 2.3           | \$<br>0.5         | \$ | 5.1                 |
| Total | \$<br>25.4         | \$ | 5.5                  | \$<br>56.3         | \$<br>16.5         | \$ | 3.6                    | \$ | 36.6                | \$ | 30.7          | \$<br>6.6         | \$ | 68.1                |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

## Exhibit F.3d Projections of Yearly Benefits, WTP for Bronchitis as Basis for Non-Fatal Cases (Surface Water Systems Serving 1,000-3,299 People)

**TTHM - Preferred Alternative** 

|       |    |                | g/Lung C          |    |                     |               | _  | /Bladder (<br>ion Lag N |      |                     |               | Bladder Con Lag M |     | -                   |
|-------|----|----------------|-------------------|----|---------------------|---------------|----|-------------------------|------|---------------------|---------------|-------------------|-----|---------------------|
|       |    |                | 90 Po             |    |                     |               |    | 90 P                    | erce | ent                 |               | 90 P<br>Confider  |     |                     |
| Year  | _  | Vlean<br>∕alue | Lower<br>h %tile) | (9 | Upper<br>5th %tile) | Mean<br>Value |    | Lower<br>th %tile)      | (9:  | Upper<br>5th %tile) | Mean<br>Value | ₋ower<br>h %tile) | (9: | Upper<br>5th %tile) |
| 2005  | \$ | -              | \$                | \$ |                     | \$<br>-       | \$ | -                       | \$   | -                   | \$<br>-       | \$<br>-           | \$  | -                   |
| 2006  | \$ | -              | \$<br>-           | \$ | -                   | \$<br>-       | \$ | -                       | \$   | -                   | \$<br>-       | \$<br>-           | \$  | -                   |
| 2007  | \$ | -              | \$<br>-           | \$ | -                   | \$<br>-       | \$ | -                       | \$   | -                   | \$<br>-       | \$<br>-           | \$  | -                   |
| 2008  | \$ | -              | \$<br>-           | \$ | -                   | \$<br>-       | \$ | -                       | \$   | -                   | \$<br>-       | \$<br>-           | \$  | -                   |
| 2009  | \$ | -              | \$<br>-           | \$ | -                   | \$<br>-       | \$ | -                       | \$   | -                   | \$<br>-       | \$<br>-           | \$  | -                   |
| 2010  | \$ | 0.4            | \$<br>0.1         | \$ | 0.8                 | \$<br>0.3     | \$ | 0.1                     | \$   | 0.6                 | \$<br>0.6     | \$<br>0.1         | \$  | 1.4                 |
| 2011  | \$ | 0.9            | \$<br>0.2         | \$ | 2.1                 | \$<br>0.7     | \$ | 0.2                     | \$   | 1.6                 | \$<br>1.6     | \$<br>0.3         | \$  | 3.5                 |
| 2012  | \$ | 1.7            | \$<br>0.4         | \$ | 3.7                 | \$<br>1.2     | \$ | 0.3                     | \$   | 2.7                 | \$<br>2.7     | \$<br>0.6         | \$  | 6.0                 |
| 2013  | \$ | 2.6            | \$<br>0.6         | \$ | 5.8                 | \$<br>1.8     | \$ | 0.4                     | \$   | 4.0                 | \$<br>4.1     | \$<br>0.9         | \$  | 9.0                 |
| 2014  | \$ | 3.7            | \$<br>8.0         | \$ | 8.2                 | \$<br>2.5     | \$ | 0.6                     | \$   | 5.5                 | \$<br>5.6     | \$<br>1.2         | \$  | 12.4                |
| 2015  | \$ | 5.0            | \$<br>1.1         | \$ | 11.0                | \$<br>3.3     | \$ | 0.7                     | \$   | 7.3                 | \$<br>7.3     | \$<br>1.6         | \$  | 16.1                |
| 2016  | \$ | 6.2            | \$<br>1.4         | \$ | 13.7                | \$<br>4.0     | \$ | 0.9                     | \$   | 8.8                 | \$<br>8.7     | \$<br>1.9         | \$  | 19.2                |
| 2017  | \$ | 7.2            | \$<br>1.6         | \$ | 15.9                | \$<br>4.5     | \$ | 1.0                     | \$   | 10.0                | \$<br>9.8     | \$<br>2.1         | \$  | 21.6                |
| 2018  | \$ | 8.1            | \$<br>1.8         | \$ | 18.0                | \$<br>5.0     | \$ | 1.1                     | \$   | 11.1                | \$<br>10.6    | \$<br>2.3         | \$  | 23.4                |
| 2019  | \$ | 8.9            | \$<br>1.9         | \$ | 19.8                | \$<br>5.5     | \$ | 1.2                     | \$   | 12.2                | \$<br>11.3    | \$<br>2.5         | \$  | 25.0                |
| 2020  | \$ | 9.7            | \$<br>2.1         | \$ | 21.5                | \$<br>6.0     | \$ | 1.3                     | \$   | 13.2                | \$<br>11.9    | \$<br>2.6         | \$  | 26.3                |
| 2021  | \$ | 10.3           | \$<br>2.2         | \$ | 22.9                | \$<br>6.4     | \$ | 1.4                     | \$   | 14.2                | \$<br>12.4    | \$<br>2.7         | \$  | 27.5                |
| 2022  | \$ | 10.9           | \$<br>2.4         | \$ | 24.2                | \$<br>6.8     | \$ | 1.5                     | \$   | 15.2                | \$<br>12.8    | \$<br>2.8         | \$  | 28.5                |
| 2023  | \$ | 11.4           | \$<br>2.5         | \$ | 25.3                | \$<br>7.2     | \$ | 1.6                     | \$   | 16.1                | \$<br>13.2    | \$<br>2.8         | \$  | 29.4                |
| 2024  | \$ | 11.8           | \$<br>2.6         | \$ | 26.4                | \$<br>7.6     | \$ | 1.6                     | \$   | 16.9                | \$<br>13.6    | \$<br>2.9         | \$  | 30.2                |
| 2025  | \$ | 12.3           | \$<br>2.6         | \$ | 27.3                | \$<br>8.0     | \$ | 1.7                     | \$   | 17.8                | \$<br>13.9    | \$<br>3.0         | \$  | 30.9                |
| 2026  | \$ | 12.7           | \$<br>2.7         | \$ | 28.2                | \$<br>8.4     | \$ | 1.8                     | \$   | 18.6                | \$<br>14.2    | \$<br>3.0         | \$  | 31.6                |
| 2027  | \$ | 13.0           | \$<br>2.8         | \$ | 29.1                | \$<br>8.7     | \$ | 1.9                     | \$   | 19.5                | \$<br>14.5    | \$<br>3.1         | \$  | 32.3                |
| 2028  | \$ | 13.2           | \$<br>2.8         | \$ | 29.4                | \$<br>8.9     | \$ | 1.9                     | \$   | 20.0                | \$<br>14.5    | \$<br>3.1         | \$  | 32.4                |
| 2029  | \$ | 13.5           | \$<br>2.9         | \$ | 30.1                | \$<br>9.3     | \$ | 2.0                     | \$   | 20.7                | \$<br>14.7    | \$<br>3.2         | \$  | 32.9                |
| Total | \$ | 163.6          | \$<br>35.4        | \$ | 363.3               | \$<br>106.3   | \$ | 23.0                    | \$   | 236.0               | \$<br>197.9   | \$<br>42.8        | \$  | 439.4               |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

## Exhibit F.3e Projections of Yearly Benefits, WTP for Bronchitis as Basis for Non-Fatal Cases (Surface Water Systems Serving 3,300-9,999 People)

**TTHM - Preferred Alternative** 

|       |    |                | g/Lung C<br>ion Lag I |    |                     |               | _  | /Bladder (         |      |                     |               | Bladder C<br>on Lag N |    | -                   |
|-------|----|----------------|-----------------------|----|---------------------|---------------|----|--------------------|------|---------------------|---------------|-----------------------|----|---------------------|
|       |    |                | 90 Po<br>Confider     |    |                     |               |    | 90 P               | erce | ent                 |               | 90 P                  |    |                     |
| Year  | -  | Vlean<br>∕alue | Lower<br>h %tile)     | (9 | Upper<br>5th %tile) | Mean<br>Value |    | Lower<br>th %tile) | (9:  | Upper<br>5th %tile) | Mean<br>Value | Lower<br>h %tile)     | (9 | Upper<br>5th %tile) |
| 2005  | \$ | -              | \$<br>-               | \$ |                     | \$<br>-       | \$ | -                  | \$   | -                   | \$<br>-       | \$<br>-               | \$ | -                   |
| 2006  | \$ | -              | \$<br>-               | \$ | -                   | \$<br>-       | \$ | -                  | \$   | -                   | \$<br>-       | \$<br>-               | \$ | -                   |
| 2007  | \$ | -              | \$<br>-               | \$ | -                   | \$<br>-       | \$ | -                  | \$   | -                   | \$<br>-       | \$<br>-               | \$ | -                   |
| 2008  | \$ | -              | \$<br>-               | \$ | -                   | \$<br>-       | \$ | -                  | \$   | -                   | \$<br>-       | \$<br>-               | \$ | -                   |
| 2009  | \$ | -              | \$<br>-               | \$ | -                   | \$<br>-       | \$ | -                  | \$   | -                   | \$<br>-       | \$<br>-               | \$ | -                   |
| 2010  | \$ | 1.0            | \$<br>0.2             | \$ | 2.3                 | \$<br>0.8     | \$ | 0.2                | \$   | 1.8                 | \$<br>1.8     | \$<br>0.4             | \$ | 4.0                 |
| 2011  | \$ | 2.7            | \$<br>0.6             | \$ | 5.9                 | \$<br>2.0     | \$ | 0.4                | \$   | 4.5                 | \$<br>4.5     | \$<br>1.0             | \$ | 9.9                 |
| 2012  | \$ | 4.9            | \$<br>1.1             | \$ | 10.7                | \$<br>3.5     | \$ | 0.8                | \$   | 7.7                 | \$<br>7.9     | \$<br>1.7             | \$ | 17.3                |
| 2013  | \$ | 7.5            | \$<br>1.7             | \$ | 16.5                | \$<br>5.2     | \$ | 1.1                | \$   | 11.5                | \$<br>11.8    | \$<br>2.6             | \$ | 25.9                |
| 2014  | \$ | 10.7           | \$<br>2.3             | \$ | 23.5                | \$<br>7.2     | \$ | 1.6                | \$   | 15.9                | \$<br>16.1    | \$<br>3.5             | \$ | 35.5                |
| 2015  | \$ | 14.3           | \$<br>3.1             | \$ | 31.5                | \$<br>9.4     | \$ | 2.1                | \$   | 20.8                | \$<br>20.8    | \$<br>4.6             | \$ | 46.0                |
| 2016  | \$ | 17.7           | \$<br>3.9             | \$ | 39.1                | \$<br>11.4    | \$ | 2.5                | \$   | 25.1                | \$<br>25.0    | \$<br>5.5             | \$ | 55.0                |
| 2017  | \$ | 20.6           | \$<br>4.5             | \$ | 45.6                | \$<br>13.0    | \$ | 2.8                | \$   | 28.7                | \$<br>27.9    | \$<br>6.1             | \$ | 61.7                |
| 2018  | \$ | 23.3           | \$<br>5.1             | \$ | 51.4                | \$<br>14.4    | \$ | 3.1                | \$   | 31.9                | \$<br>30.3    | \$<br>6.6             | \$ | 67.0                |
| 2019  | \$ | 25.6           | \$<br>5.6             | \$ | 56.7                | \$<br>15.8    | \$ | 3.4                | \$   | 34.9                | \$<br>32.3    | \$<br>7.0             | \$ | 71.5                |
| 2020  | \$ | 27.7           | \$<br>6.0             | \$ | 61.4                | \$<br>17.1    | \$ | 3.7                | \$   | 37.8                | \$<br>34.0    | \$<br>7.4             | \$ | 75.3                |
| 2021  | \$ | 29.5           | \$<br>6.4             | \$ | 65.5                | \$<br>18.3    | \$ | 4.0                | \$   | 40.6                | \$<br>35.4    | \$<br>7.7             | \$ | 78.5                |
| 2022  | \$ | 31.1           | \$<br>6.7             | \$ | 69.2                | \$<br>19.5    | \$ | 4.2                | \$   | 43.4                | \$<br>36.7    | \$<br>7.9             | \$ | 81.5                |
| 2023  | \$ | 32.6           | \$<br>7.0             | \$ | 72.4                | \$<br>20.7    | \$ | 4.5                | \$   | 45.9                | \$<br>37.8    | \$<br>8.2             | \$ | 84.0                |
| 2024  | \$ | 33.9           | \$<br>7.3             | \$ | 75.4                | \$<br>21.8    | \$ | 4.7                | \$   | 48.5                | \$<br>38.8    | \$<br>8.4             | \$ | 86.3                |
| 2025  | \$ | 35.1           | \$<br>7.6             | \$ | 78.1                | \$<br>22.9    | \$ | 4.9                | \$   | 50.9                | \$<br>39.7    | \$<br>8.5             | \$ | 88.4                |
| 2026  | \$ | 36.2           | \$<br>7.8             | \$ | 80.6                | \$<br>23.9    | \$ | 5.1                | \$   | 53.3                | \$<br>40.6    | \$<br>8.7             | \$ | 90.3                |
| 2027  | \$ | 37.3           | \$<br>8.0             | \$ | 83.2                | \$<br>25.0    | \$ | 5.4                | \$   | 55.7                | \$<br>41.4    | \$<br>8.9             | \$ | 92.3                |
| 2028  | \$ | 37.7           | \$<br>8.1             | \$ | 84.1                | \$<br>25.6    | \$ | 5.5                | \$   | 57.1                | \$<br>41.5    | \$<br>8.9             | \$ | 92.6                |
| 2029  | \$ | 38.5           | \$<br>8.3             | \$ | 86.1                | \$<br>26.5    | \$ | 5.7                | \$   | 59.2                | \$<br>42.1    | \$<br>9.0             | \$ | 94.1                |
| Total | \$ | 467.9          | \$<br>101.2           | \$ | 1,039.2             | \$<br>304.0   | \$ | 65.7               | \$   | 675.1               | \$<br>566.2   | \$<br>122.5           | \$ | 1,256.9             |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

## Exhibit F.3f Projections of Yearly Benefits, WTP for Bronchitis as Basis for Non-Fatal Cases (Surface Water Systems Serving 10,000-49,999 People)

**TTHM - Preferred Alternative** 

|       |            |               |    | g/Lung (<br>ion Lag l |     |                     |               | /Bladder<br>tion Lag I |    |                     |    |               | Bladder (         | _  |                     |
|-------|------------|---------------|----|-----------------------|-----|---------------------|---------------|------------------------|----|---------------------|----|---------------|-------------------|----|---------------------|
|       |            |               |    | 90 P<br>Confider      |     |                     |               | 90 P<br>Confider       |    |                     |    |               | 90 P<br>Confider  |    |                     |
| Year  | _          | Mean<br>/alue |    | Lower<br>h %tile)     | (95 | Upper<br>5th %tile) | Mean<br>Value | Lower<br>th %tile)     | (9 | Upper<br>5th %tile) | -  | Mean<br>Value | Lower<br>h %tile) | (9 | Upper<br>5th %tile) |
| 2005  | \$         |               | \$ | -                     | \$  | -                   | \$<br>-       | \$<br>-                | \$ | -                   | \$ | -             | \$<br>-           | \$ | -                   |
| 2006  | \$         | -             | \$ | -                     | \$  | -                   | \$<br>-       | \$<br>-                | \$ | -                   | \$ | -             | \$<br>-           | \$ | -                   |
| 2007  | \$         | -             | \$ | -                     | \$  | -                   | \$<br>-       | \$<br>-                | \$ | -                   | \$ | -             | \$<br>-           | \$ | -                   |
| 2008  | \$         | -             | \$ | -                     | \$  | -                   | \$<br>-       | \$<br>-                | \$ | -                   | \$ | -             | \$<br>-           | \$ | -                   |
| 2009  | \$         | -             | \$ | -                     | \$  | -                   | \$<br>-       | \$<br>-                | \$ | -                   | \$ | -             | \$<br>-           | \$ | -                   |
| 2010  | \$         | 6.8           | \$ | 1.5                   | \$  | 15.0                | \$<br>6.5     | \$<br>1.4              | \$ | 14.4                | \$ | 12.9          | \$<br>2.8         | \$ | 28.3                |
| 2011  | \$         | 17.7          | \$ | 3.9                   | \$  | 38.9                | \$<br>15.5    | \$<br>3.4              | \$ | 34.1                | \$ | 31.5          | \$<br>6.9         | \$ | 69.4                |
| 2012  | \$         | 32.0          | \$ | 7.0                   | \$  | 70.4                | \$<br>26.4    | \$<br>5.8              | \$ | 58.1                | \$ | 54.3          | \$<br>11.9        | \$ | 119.6               |
| 2013  | \$         | 49.6          | \$ | 10.9                  | \$  | 109.2               | \$<br>39.0    | \$<br>8.6              | \$ | 85.9                | \$ | 80.6          | \$<br>17.7        | \$ | 177.3               |
| 2014  | \$         | 70.6          | \$ | 15.5                  | \$  | 155.4               | \$<br>53.3    | \$<br>11.7             | \$ | 117.3               | \$ | 109.7         | \$<br>24.0        | \$ | 241.4               |
| 2015  | \$         | 91.2          | \$ | 19.9                  | \$  | 201.0               | \$<br>65.6    | \$<br>14.4             | \$ | 144.8               | \$ | 134.3         | \$<br>29.4        | \$ | 296.2               |
| 2016  | \$         | 108.7         | \$ | 23.8                  | \$  | 239.6               | \$<br>74.7    | \$<br>16.3             | \$ | 164.7               | \$ | 151.3         | \$<br>33.1        | \$ | 333.4               |
| 2017  | \$         | 124.6         | \$ | 27.2                  | \$  | 275.2               | \$<br>82.8    | \$<br>18.1             | \$ | 183.0               | \$ | 164.8         | \$<br>36.0        | \$ | 363.9               |
| 2018  | \$         | 139.0         | \$ | 30.3                  | \$  | 307.1               | \$<br>90.4    | \$<br>19.7             | \$ | 199.7               | \$ | 176.0         | \$<br>38.3        | \$ | 388.7               |
| 2019  | \$         | 151.9         | \$ | 33.0                  | \$  | 336.3               | \$<br>97.5    | \$<br>21.2             | \$ | 215.9               | \$ | 185.5         | \$<br>40.3        | \$ | 410.7               |
| 2020  | \$         | 163.0         | \$ | 35.4                  | \$  | 361.3               | \$<br>104.3   | \$<br>22.6             | \$ | 231.1               | \$ | 193.7         | \$<br>42.0        | \$ | 429.2               |
| 2021  | \$         | 172.7         | \$ | 37.4                  | \$  | 383.2               | \$<br>110.8   | \$<br>24.0             | \$ | 245.7               | \$ | 200.9         | \$<br>43.5        | \$ | 445.8               |
| 2022  | \$         | 181.3         | \$ | 39.2                  | \$  | 403.1               | \$<br>117.0   | \$<br>25.3             | \$ | 260.1               | \$ | 207.4         | \$<br>44.9        | \$ | 461.0               |
| 2023  | \$         | 189.0         | \$ | 40.8                  | \$  | 420.3               | \$<br>123.0   | \$<br>26.5             | \$ | 273.5               | \$ | 213.2         | \$<br>46.0        | \$ | 474.1               |
| 2024  | \$         | 196.1         | \$ | 42.3                  | \$  | 436.2               | \$<br>128.8   | \$<br>27.8             | \$ | 286.6               | \$ | 218.6         | \$<br>47.1        | \$ | 486.2               |
| 2025  | \$         | 202.6         | \$ | 43.6                  | \$  | 450.9               | \$<br>134.5   | \$<br>28.9             | \$ | 299.4               | \$ | 223.5         | \$<br>48.1        | \$ | 497.6               |
| 2026  | \$         | 208.6         | \$ | 44.8                  | \$  | 464.5               | \$<br>140.1   | \$<br>30.1             | \$ | 311.9               | \$ | 228.2         | \$<br>49.0        | \$ | 508.1               |
| 2027  | \$         | 214.3         | \$ | 46.0                  | \$  | 478.3               | \$<br>145.5   | \$<br>31.2             | \$ | 324.7               | \$ | 232.6         | \$<br>49.9        | \$ | 519.2               |
| 2028  | \$         | 216.5         | \$ | 46.5                  | \$  | 482.9               | \$<br>148.6   | \$<br>31.9             | \$ | 331.4               | \$ | 233.5         | \$<br>50.1        | \$ | 520.7               |
| 2029  | \$         | \$ 221.0      |    | 47.4                  | \$  | 493.7               | \$<br>153.3   | \$<br>32.9             | \$ | 342.5               | \$ | 236.8         | \$<br>50.8        | \$ | 529.1               |
| Total | \$ 2,757.2 |               | \$ | 596.3                 | \$  | 6,122.7             | \$<br>1,857.6 | \$<br>401.8            | \$ | 4,124.7             | \$ | 3,289.1       | \$<br>711.9       | \$ | 7,299.9             |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

# Exhibit F.3g Projections of Yearly Benefits, WTP for Bronchitis as Basis for Non-Fatal Cases (Surface Water Systems Serving 50,000-99,999 People)

**TTHM - Preferred Alternative** 

|       |      |               | g/Lung (<br>ion Lag l |     |                     |               | _  | /Bladder<br>tion Lag I |    |                     |               | Bladder (         | _  |                     |
|-------|------|---------------|-----------------------|-----|---------------------|---------------|----|------------------------|----|---------------------|---------------|-------------------|----|---------------------|
|       |      |               | 90 Pe<br>Confider     |     |                     |               |    | 90 P                   |    |                     |               | 90 P<br>Confider  |    |                     |
| Year  | -    | Mean<br>/alue | _ower<br>h %tile)     | (95 | Upper<br>5th %tile) | Mean<br>Value |    | Lower<br>th %tile)     | (9 | Upper<br>5th %tile) | Mean<br>Value | Lower<br>h %tile) | (9 | Upper<br>5th %tile) |
| 2005  | \$   | -             | \$<br>-               | \$  | -                   | \$<br>-       | \$ | -                      | \$ | -                   | \$<br>-       | \$<br>-           | \$ | -                   |
| 2006  | \$   | -             | \$<br>-               | \$  | -                   | \$<br>-       | \$ | -                      | \$ | -                   | \$<br>-       | \$<br>-           | \$ | -                   |
| 2007  | \$   | -             | \$<br>-               | \$  | -                   | \$<br>-       | \$ | -                      | \$ | -                   | \$<br>-       | \$<br>-           | \$ | -                   |
| 2008  | \$   | -             | \$<br>-               | \$  | -                   | \$<br>-       | \$ | -                      | \$ | -                   | \$<br>-       | \$<br>-           | \$ | -                   |
| 2009  | \$   | -             | \$<br>-               | \$  | -                   | \$<br>-       | \$ | -                      | \$ | -                   | \$<br>-       | \$<br>-           | \$ | -                   |
| 2010  | \$   | 6.0           | \$<br>1.3             | \$  | 13.1                | \$<br>5.7     | \$ | 1.3                    | \$ | 12.5                | \$<br>11.2    | \$<br>2.5         | \$ | 24.7                |
| 2011  | \$   | 15.4          | \$<br>3.4             | \$  | 33.9                | \$<br>13.5    | \$ | 3.0                    | \$ | 29.7                | \$<br>27.4    | \$<br>6.0         | \$ | 60.4                |
| 2012  | \$   | 27.9          | \$<br>6.1             | \$  | 61.4                | \$<br>23.0    | \$ | 5.0                    | \$ | 50.6                | \$<br>47.4    | \$<br>10.4        | \$ | 104.2               |
| 2013  | \$   | 43.2          | \$<br>9.5             | \$  | 95.1                | \$<br>34.0    | \$ | 7.5                    | \$ | 74.8                | \$<br>70.2    | \$<br>15.4        | \$ | 154.5               |
| 2014  | \$   | 58.4          | \$<br>12.8            | \$  | 128.5               | \$<br>43.5    | \$ | 9.5                    | \$ | 95.7                | \$<br>89.7    | \$<br>19.7        | \$ | 197.5               |
| 2015  | \$   | 71.4          | \$<br>15.6            | \$  | 157.4               | \$<br>50.2    | \$ | 11.0                   | \$ | 110.6               | \$<br>102.7   | \$<br>22.5        | \$ | 226.6               |
| 2016  | \$   | 83.3          | \$<br>18.2            | \$  | 183.7               | \$<br>56.1    | \$ | 12.3                   | \$ | 123.7               | \$<br>113.1   | \$<br>24.7        | \$ | 249.3               |
| 2017  | \$   | 94.2          | \$<br>20.6            | \$  | 208.1               | \$<br>61.6    | \$ | 13.5                   | \$ | 136.1               | \$<br>121.6   | \$<br>26.5        | \$ | 268.5               |
| 2018  | \$   | 103.9         | \$<br>22.6            | \$  | 229.6               | \$<br>66.8    | \$ | 14.5                   | \$ | 147.6               | \$<br>128.7   | \$<br>28.0        | \$ | 284.4               |
| 2019  | \$   | 112.3         | \$<br>24.4            | \$  | 248.7               | \$<br>71.7    | \$ | 15.6                   | \$ | 158.7               | \$<br>134.9   | \$<br>29.3        | \$ | 298.6               |
| 2020  | \$   | 119.5         | \$<br>25.9            | \$  | 264.9               | \$<br>76.4    | \$ | 16.6                   | \$ | 169.2               | \$<br>140.3   | \$<br>30.4        | \$ | 310.8               |
| 2021  | \$   | 125.9         | \$<br>27.3            | \$  | 279.4               | \$<br>80.9    | \$ | 17.5                   | \$ | 179.4               | \$<br>145.0   | \$<br>31.4        | \$ | 321.8               |
| 2022  | \$   | 131.6         | \$<br>28.5            | \$  | 292.6               | \$<br>85.2    | \$ | 18.4                   | \$ | 189.4               | \$<br>149.3   | \$<br>32.3        | \$ | 332.0               |
| 2023  | \$   | 136.8         | \$<br>29.5            | \$  | 304.2               | \$<br>89.4    | \$ | 19.3                   | \$ | 198.8               | \$<br>153.3   | \$<br>33.1        | \$ | 340.8               |
| 2024  | \$   | 141.6         | \$<br>30.5            | \$  | 314.9               | \$<br>93.5    | \$ | 20.1                   | \$ | 207.9               | \$<br>156.9   | \$<br>33.8        | \$ | 349.1               |
| 2025  | \$   | 146.0         | \$<br>31.4            | \$  | 325.0               | \$<br>97.4    | \$ | 21.0                   | \$ | 216.9               | \$<br>160.3   | \$<br>34.5        | \$ | 356.8               |
| 2026  | \$   | 150.1         | \$<br>32.3            | \$  | 334.2               | \$<br>101.3   | \$ | 21.8                   | \$ | 225.6               | \$<br>163.5   | \$<br>35.1        | \$ | 364.1               |
| 2027  | \$   | 154.0         | \$<br>33.0            | \$  | 343.8               | \$<br>105.1   | \$ | 22.5                   | \$ | 234.6               | \$<br>166.5   | \$<br>35.7        | \$ | 371.8               |
| 2028  | \$   | 155.5         | \$<br>33.4            | \$  | 346.7               | \$<br>107.3   | \$ | 23.0                   | \$ | 239.2               | \$<br>167.1   | \$<br>35.9        | \$ | 372.6               |
| 2029  | \$   | 158.5         | \$<br>34.0            | \$  | 354.1               | \$<br>110.6   | \$ | 23.7                   | \$ | 247.0               | \$<br>169.4   | \$<br>36.3        | \$ | 378.4               |
| Total | \$ 2 | 2,035.5       | \$<br>440.3           | \$  | 4,519.4             | \$<br>1,373.0 | \$ | 297.0                  | \$ | 3,048.1             | \$<br>2,418.5 | \$<br>523.6       | \$ | 5,366.8             |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

# Exhibit F.3h Projections of Yearly Benefits, WTP for Bronchitis as Basis for Non-Fatal Cases (Surface Water Systems Serving 100,000-999,999 People)

**TTHM - Preferred Alternative** 

|       |      |               | ng/Lung (<br>tion Lag l |    |                     |               | _  | /Bladder (<br>ion Lag N |    |                     |               | Bladder C          |    | -                   |
|-------|------|---------------|-------------------------|----|---------------------|---------------|----|-------------------------|----|---------------------|---------------|--------------------|----|---------------------|
|       |      |               | 90 P                    |    |                     |               |    | 90 Po                   |    |                     |               | 90 P               |    |                     |
| Year  |      | Mean<br>/alue | Lower<br>th %tile)      | (9 | Upper<br>5th %tile) | Mean<br>Value |    | Lower<br>th %tile)      | (9 | Upper<br>5th %tile) | Mean<br>Value | Lower<br>th %tile) | (9 | Upper<br>5th %tile) |
| 2005  | \$   | -             | \$<br>-                 | \$ | -                   | \$<br>-       | \$ | -                       | \$ | -                   | \$<br>-       | \$<br>-            | \$ | -                   |
| 2006  | \$   | -             | \$<br>-                 | \$ | -                   | \$<br>-       | \$ | -                       | \$ | -                   | \$<br>-       | \$<br>-            | \$ | -                   |
| 2007  | \$   | -             | \$<br>-                 | \$ | -                   | \$<br>-       | \$ | -                       | \$ | -                   | \$<br>-       | \$<br>-            | \$ | -                   |
| 2008  | \$   | -             | \$<br>-                 | \$ | -                   | \$<br>-       | \$ | -                       | \$ | -                   | \$<br>-       | \$<br>-            | \$ | -                   |
| 2009  | \$   | -             | \$<br>-                 | \$ | -                   | \$<br>-       | \$ | -                       | \$ | -                   | \$<br>-       | \$<br>-            | \$ | -                   |
| 2010  | \$   | 26.3          | \$<br>5.8               | \$ | 57.9                | \$<br>25.2    | \$ | 5.5                     | \$ | 55.4                | \$<br>49.6    | \$<br>10.9         | \$ | 109.1               |
| 2011  | \$   | 68.1          | \$<br>15.0              | \$ | 150.1               | \$<br>59.7    | \$ | 13.1                    | \$ | 131.4               | \$<br>121.4   | \$<br>26.7         | \$ | 267.4               |
| 2012  | \$   | 123.4         | \$<br>27.1              | \$ | 271.6               | \$<br>101.7   | \$ | 22.3                    | \$ | 223.9               | \$<br>209.5   | \$<br>46.0         | \$ | 461.1               |
| 2013  | \$   | 191.3         | \$<br>42.0              | \$ | 420.8               | \$<br>150.5   | \$ | 33.0                    | \$ | 331.1               | \$<br>310.7   | \$<br>68.2         | \$ | 683.5               |
| 2014  | \$   | 244.6         | \$<br>53.6              | \$ | 538.4               | \$<br>179.2   | \$ | 39.3                    | \$ | 394.4               | \$<br>370.9   | \$<br>81.3         | \$ | 816.5               |
| 2015  | \$   | 294.2         | \$<br>64.4              | \$ | 648.7               | \$<br>204.1   | \$ | 44.6                    | \$ | 450.0               | \$<br>417.3   | \$<br>91.3         | \$ | 920.2               |
| 2016  | \$   | 340.2         | \$<br>74.4              | \$ | 750.0               | \$<br>226.7   | \$ | 49.5                    | \$ | 499.8               | \$<br>454.9   | \$<br>99.4         | \$ | 1,002.8             |
| 2017  | \$   | 382.1         | \$<br>83.4              | \$ | 843.8               | \$<br>247.8   | \$ | 54.1                    | \$ | 547.2               | \$<br>486.1   | \$<br>106.1        | \$ | 1,073.6             |
| 2018  | \$   | 418.6         | \$<br>91.2              | \$ | 924.9               | \$<br>267.6   | \$ | 58.3                    | \$ | 591.2               | \$<br>512.7   | \$<br>111.6        | \$ | 1,132.6             |
| 2019  | \$   | 449.6         | \$<br>97.8              | \$ | 995.7               | \$<br>286.5   | \$ | 62.3                    | \$ | 634.4               | \$<br>535.7   | \$<br>116.5        | \$ | 1,186.2             |
| 2020  | \$   | 476.7         | \$<br>103.5             | \$ | 1,056.5             | \$<br>304.6   | \$ | 66.1                    | \$ | 675.0               | \$<br>555.9   | \$<br>120.7        | \$ | 1,232.0             |
| 2021  | \$   | 500.8         | \$<br>108.5             | \$ | 1,111.1             | \$<br>322.0   | \$ | 69.8                    | \$ | 714.5               | \$<br>574.0   | \$<br>124.4        | \$ | 1,273.6             |
| 2022  | \$   | 522.4         | \$<br>113.0             | \$ | 1,161.5             | \$<br>338.8   | \$ | 73.3                    | \$ | 753.3               | \$<br>590.4   | \$<br>127.7        | \$ | 1,312.5             |
| 2023  | \$   | 542.2         | \$<br>117.0             | \$ | 1,205.6             | \$<br>355.1   | \$ | 76.6                    | \$ | 789.6               | \$<br>605.4   | \$<br>130.6        | \$ | 1,346.0             |
| 2024  | \$   | 560.4         | \$<br>120.8             | \$ | 1,246.7             | \$<br>371.0   | \$ | 80.0                    | \$ | 825.3               | \$<br>619.3   | \$<br>133.5        | \$ | 1,377.6             |
| 2025  | \$   | 577.3         | \$<br>124.2             | \$ | 1,285.1             | \$<br>386.4   | \$ | 83.1                    | \$ | 860.2               | \$<br>632.3   | \$<br>136.0        | \$ | 1,407.5             |
| 2026  | \$   | 593.2         | \$<br>127.4             | \$ | 1,320.7             | \$<br>401.5   | \$ | 86.3                    | \$ | 894.0               | \$<br>644.6   | \$<br>138.5        | \$ | 1,435.3             |
| 2027  | \$   | 608.1         | \$<br>130.4             | \$ | 1,357.5             | \$<br>416.2   | \$ | 89.3                    | \$ | 929.1               | \$<br>656.4   | \$<br>140.8        | \$ | 1,465.2             |
| 2028  | \$   | 613.6         | \$<br>131.7             | \$ | 1,368.4             | \$<br>424.6   | \$ | 91.1                    | \$ | 947.0               | \$<br>658.2   | \$<br>141.3        | \$ | 1,468.0             |
| 2029  | \$   | 625.3         | \$<br>134.0             | \$ | 1,397.0             | \$<br>437.4   | \$ | 93.8                    | \$ | 977.3               | \$<br>667.2   | \$<br>143.0        | \$ | 1,490.6             |
| Total | \$ : | 8,158.4       | \$<br>1,765.1           | \$ | 18,111.9            | \$<br>5,506.6 | \$ | 1,191.5                 | \$ | 12,224.0            | \$<br>9,672.4 | \$<br>2,094.5      | \$ | 21,461.3            |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

# Exhibit F.3i Projections of Yearly Benefits, WTP for Bronchitis as Basis for Non-Fatal Cases (Surface Water Systems Serving ≥1,000,000 People)

**TTHM - Preferred Alternative** 

|       |      |               | ng/Lung (<br>tion Lag l |    |                     |               | _  | /Bladder (<br>ion Lag N |    |                     |               | Bladder C          |    | -                   |
|-------|------|---------------|-------------------------|----|---------------------|---------------|----|-------------------------|----|---------------------|---------------|--------------------|----|---------------------|
|       |      |               | 90 P                    |    |                     |               |    | 90 Po                   |    |                     |               | 90 P               |    |                     |
| Year  |      | Mean<br>/alue | Lower<br>th %tile)      | (9 | Upper<br>5th %tile) | Mean<br>Value | (5 | Lower<br>th %tile)      | (9 | Upper<br>5th %tile) | Mean<br>Value | Lower<br>th %tile) | (9 | Upper<br>5th %tile) |
| 2005  | \$   | -             | \$<br>-                 | \$ | -                   | \$            | \$ | -                       | \$ | -                   | \$<br>-       | \$<br>-            | \$ | -                   |
| 2006  | \$   | -             | \$<br>-                 | \$ | -                   | \$<br>-       | \$ | -                       | \$ | -                   | \$<br>-       | \$<br>-            | \$ | -                   |
| 2007  | \$   | -             | \$<br>-                 | \$ | -                   | \$<br>-       | \$ | -                       | \$ | -                   | \$<br>-       | \$<br>-            | \$ | -                   |
| 2008  | \$   | -             | \$<br>-                 | \$ | -                   | \$<br>-       | \$ | -                       | \$ | -                   | \$<br>-       | \$<br>-            | \$ | -                   |
| 2009  | \$   | -             | \$<br>-                 | \$ | -                   | \$<br>-       | \$ | -                       | \$ | -                   | \$<br>-       | \$<br>-            | \$ | -                   |
| 2010  | \$   | 22.4          | \$<br>4.9               | \$ | 49.3                | \$<br>21.4    | \$ | 4.7                     | \$ | 47.2                | \$<br>42.2    | \$<br>9.3          | \$ | 92.8                |
| 2011  | \$   | 58.0          | \$<br>12.8              | \$ | 127.7               | \$<br>50.8    | \$ | 11.2                    | \$ | 111.9               | \$<br>103.3   | \$<br>22.7         | \$ | 227.5               |
| 2012  | \$   | 105.0         | \$<br>23.1              | \$ | 231.1               | \$<br>86.6    | \$ | 19.0                    | \$ | 190.5               | \$<br>178.3   | \$<br>39.2         | \$ | 392.5               |
| 2013  | \$   | 162.8         | \$<br>35.7              | \$ | 358.1               | \$<br>128.1   | \$ | 28.1                    | \$ | 281.8               | \$<br>264.4   | \$<br>58.0         | \$ | 581.7               |
| 2014  | \$   | 208.2         | \$<br>45.6              | \$ | 458.2               | \$<br>152.5   | \$ | 33.4                    | \$ | 335.7               | \$<br>315.7   | \$<br>69.2         | \$ | 694.9               |
| 2015  | \$   | 250.4         | \$<br>54.8              | \$ | 552.1               | \$<br>173.7   | \$ | 38.0                    | \$ | 383.0               | \$<br>355.2   | \$<br>77.7         | \$ | 783.2               |
| 2016  | \$   | 289.5         | \$<br>63.3              | \$ | 638.3               | \$<br>192.9   | \$ | 42.2                    | \$ | 425.3               | \$<br>387.1   | \$<br>84.6         | \$ | 853.4               |
| 2017  | \$   | 325.2         | \$<br>71.0              | \$ | 718.2               | \$<br>210.9   | \$ | 46.0                    | \$ | 465.7               | \$<br>413.7   | \$<br>90.3         | \$ | 913.7               |
| 2018  | \$   | 356.3         | \$<br>77.6              | \$ | 787.1               | \$<br>227.7   | \$ | 49.6                    | \$ | 503.2               | \$<br>436.3   | \$<br>95.0         | \$ | 963.9               |
| 2019  | \$   | 382.7         | \$<br>83.2              | \$ | 847.4               | \$<br>243.8   | \$ | 53.0                    | \$ | 539.9               | \$<br>455.9   | \$<br>99.1         | \$ | 1,009.5             |
| 2020  | \$   | 405.7         | \$<br>88.1              | \$ | 899.1               | \$<br>259.2   | \$ | 56.3                    | \$ | 574.5               | \$<br>473.1   | \$<br>102.7        | \$ | 1,048.5             |
| 2021  | \$   | 426.2         | \$<br>92.4              | \$ | 945.6               | \$<br>274.0   | \$ | 59.4                    | \$ | 608.0               | \$<br>488.5   | \$<br>105.9        | \$ | 1,083.9             |
| 2022  | \$   | 444.6         | \$<br>96.2              | \$ | 988.5               | \$<br>288.4   | \$ | 62.4                    | \$ | 641.1               | \$<br>502.4   | \$<br>108.7        | \$ | 1,117.0             |
| 2023  | \$   | 461.5         | \$<br>99.6              | \$ | 1,026.0             | \$<br>302.2   | \$ | 65.2                    | \$ | 672.0               | \$<br>515.2   | \$<br>111.2        | \$ | 1,145.5             |
| 2024  | \$   | 476.9         | \$<br>102.8             | \$ | 1,061.0             | \$<br>315.7   | \$ | 68.1                    | \$ | 702.4               | \$<br>527.0   | \$<br>113.6        | \$ | 1,172.4             |
| 2025  | \$   | 491.3         | \$<br>105.7             | \$ | 1,093.7             | \$<br>328.9   | \$ | 70.7                    | \$ | 732.1               | \$<br>538.1   | \$<br>115.8        | \$ | 1,197.9             |
| 2026  | \$   | 504.8         | \$<br>108.5             | \$ | 1,124.0             | \$<br>341.7   | \$ | 73.4                    | \$ | 760.8               | \$<br>548.6   | \$<br>117.9        | \$ | 1,221.6             |
| 2027  | \$   | 517.5         | \$<br>111.0             | \$ | 1,155.3             | \$<br>354.2   | \$ | 76.0                    | \$ | 790.8               | \$<br>558.6   | \$<br>119.8        | \$ | 1,246.9             |
| 2028  | \$   | 522.2         | \$<br>112.1             | \$ | 1,164.6             | \$<br>361.4   | \$ | 77.5                    | \$ | 805.9               | \$<br>560.2   | \$<br>120.2        | \$ | 1,249.3             |
| 2029  | \$   | 532.2         | \$<br>114.1             | \$ | 1,189.0             | \$<br>372.3   | \$ | 79.8                    | \$ | 831.7               | \$<br>567.8   | \$<br>121.7        | \$ | 1,268.6             |
| Total | \$ ( | 6,943.3       | \$<br>1,502.2           | \$ | 15,414.3            | \$<br>4,686.4 | \$ | 1,014.0                 | \$ | 10,403.3            | \$<br>8,231.7 | \$<br>1,782.5      | \$ | 18,264.9            |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

# Exhibit F.3j Projections of Yearly Benefits, WTP for Bronchitis as Basis for Non-Fatal Cases (All Surface Water Systems)

**TTHM - Preferred Alternative** 

|       |      |               | g/Lung C<br>ion Lag N |    |                     |                | •  | g/Bladder<br>tion Lag I |    |                     |                |    | Bladder (<br>ion Lag N |    |                     |
|-------|------|---------------|-----------------------|----|---------------------|----------------|----|-------------------------|----|---------------------|----------------|----|------------------------|----|---------------------|
|       |      |               | 90 P<br>Confide       |    |                     |                |    | 90 F<br>Confide         |    |                     |                |    | 90 F<br>Confide        |    |                     |
| Year  |      | Mean<br>Value | Lower<br>th %tile)    | (9 | Upper<br>5th %tile) | Mean<br>Value  | (5 | Lower<br>th %tile)      | (9 | Upper<br>5th %tile) | Mean<br>Value  | (5 | Lower<br>th %tile)     | (9 | Upper<br>5th %tile) |
| 2005  | \$   | -             | \$<br>-               | \$ | -                   | \$             | \$ |                         | \$ |                     | \$<br>-        | \$ | -                      | \$ | -                   |
| 2006  | \$   | -             | \$<br>-               | \$ | -                   | \$<br>-        | \$ | -                       | \$ | -                   | \$<br>-        | \$ | -                      | \$ | -                   |
| 2007  | \$   | -             | \$<br>-               | \$ | -                   | \$<br>-        | \$ | -                       | \$ | -                   | \$<br>-        | \$ | -                      | \$ | -                   |
| 2008  | \$   | -             | \$<br>-               | \$ | -                   | \$<br>-        | \$ | -                       | \$ | -                   | \$<br>-        | \$ | -                      | \$ | -                   |
| 2009  | \$   | -             | \$<br>-               | \$ | -                   | \$<br>-        | \$ | -                       | \$ | -                   | \$<br>-        | \$ | -                      | \$ | -                   |
| 2010  | \$   | 63.0          | \$<br>13.9            | \$ | 138.5               | \$<br>60.1     | \$ | 13.2                    | \$ | 132.1               | \$<br>118.5    | \$ | 26.1                   | \$ | 260.6               |
| 2011  | \$   | 163.1         | \$<br>35.9            | \$ | 359.2               | \$<br>142.3    | \$ | 31.3                    | \$ | 313.5               | \$<br>290.1    | \$ | 63.8                   | \$ | 638.9               |
| 2012  | \$   | 295.2         | \$<br>64.8            | \$ | 649.8               | \$<br>242.7    | \$ | 53.3                    | \$ | 534.1               | \$<br>500.8    | \$ | 110.0                  | \$ | 1,102.3             |
| 2013  | \$   | 457.7         | \$<br>100.5           | \$ | 1,007.0             | \$<br>359.1    | \$ | 78.8                    | \$ | 790.1               | \$<br>742.8    | \$ | 163.1                  | \$ | 1,634.3             |
| 2014  | \$   | 597.0         | \$<br>130.8           | \$ | 1,314.3             | \$<br>438.8    | \$ | 96.2                    | \$ | 965.9               | \$<br>909.1    | \$ | 199.2                  | \$ | 2,001.2             |
| 2015  | \$   | 727.7         | \$<br>159.2           | \$ | 1,604.6             | \$<br>507.1    | \$ | 110.9                   | \$ | 1,118.2             | \$<br>1,039.6  | \$ | 227.4                  | \$ | 2,292.3             |
| 2016  | \$   | 847.3         | \$<br>185.2           | \$ | 1,867.8             | \$<br>566.9    | \$ | 123.9                   | \$ | 1,249.7             | \$<br>1,142.2  | \$ | 249.6                  | \$ | 2,518.0             |
| 2017  | \$   | 955.8         | \$<br>208.6           | \$ | 2,110.8             | \$<br>621.7    | \$ | 135.7                   | \$ | 1,373.1             | \$<br>1,226.3  | \$ | 267.7                  | \$ | 2,708.3             |
| 2018  | \$   | 1,051.3       | \$<br>228.9           | \$ | 2,322.6             | \$<br>673.3    | \$ | 146.6                   | \$ | 1,487.4             | \$<br>1,297.2  | \$ | 282.5                  | \$ | 2,865.9             |
| 2019  | \$   | 1,133.3       | \$<br>246.4           | \$ | 2,509.6             | \$<br>722.2    | \$ | 157.0                   | \$ | 1,599.2             | \$<br>1,358.3  | \$ | 295.3                  | \$ | 3,007.8             |
| 2020  | \$   | 1,204.8       | \$<br>261.5           | \$ | 2,670.0             | \$<br>769.0    | \$ | 166.9                   | \$ | 1,704.2             | \$<br>1,411.8  | \$ | 306.4                  | \$ | 3,128.7             |
| 2021  | \$   | 1,268.0       | \$<br>274.9           | \$ | 2,813.5             | \$<br>814.0    | \$ | 176.4                   | \$ | 1,806.1             | \$<br>1,459.3  | \$ | 316.3                  | \$ | 3,238.0             |
| 2022  | \$   | 1,324.8       | \$<br>286.6           | \$ | 2,945.2             | \$<br>857.4    | \$ | 185.5                   | \$ | 1,906.2             | \$<br>1,502.2  | \$ | 325.0                  | \$ | 3,339.8             |
| 2023  | \$   | 1,376.4       | \$<br>297.0           | \$ | 3,060.3             | \$<br>899.5    | \$ | 194.1                   | \$ | 2,000.0             | \$<br>1,541.4  | \$ | 332.6                  | \$ | 3,427.3             |
| 2024  | \$   | 1,423.7       | \$<br>306.9           | \$ | 3,167.2             | \$<br>940.3    | \$ | 202.7                   | \$ | 2,091.9             | \$<br>1,577.6  | \$ | 340.1                  | \$ | 3,509.5             |
| 2025  | \$   | 1,467.7       | \$<br>315.7           | \$ | 3,267.0             | \$<br>980.1    | \$ | 210.8                   | \$ | 2,181.8             | \$<br>1,611.4  | \$ | 346.6                  | \$ | 3,586.9             |
| 2026  | \$   | 1,508.8       | \$<br>324.2           | \$ | 3,359.5             | \$<br>1,019.0  | \$ | 218.9                   | \$ | 2,268.9             | \$<br>1,643.3  | \$ | 353.0                  | \$ | 3,659.0             |
| 2027  | \$   | 1,547.5       | \$<br>331.9           | \$ | 3,454.4             | \$<br>1,056.9  | \$ | 226.7                   | \$ | 2,359.3             | \$<br>1,673.6  | \$ | 359.0                  | \$ | 3,735.8             |
| 2028  | \$   | 1,561.9       | \$<br>335.2           | \$ | 3,483.4             | \$<br>1,078.6  | \$ | 231.5                   | \$ | 2,405.6             | \$<br>1,678.6  | \$ | 360.2                  | \$ | 3,743.7             |
| 2029  | \$   | 1,592.3       | \$<br>341.3           | \$ | 3,557.5             | \$<br>1,111.7  | \$ | 238.3                   | \$ | 2,483.6             | \$<br>1,701.8  | \$ | 364.7                  | \$ | 3,802.0             |
| Total | \$ : | 20,567.3      | \$<br>4,449.3         | \$ | 45,662.3            | \$<br>13,860.7 | \$ | 2,998.8                 | \$ | 30,770.8            | \$<br>24,425.8 | \$ | 5,288.7                | \$ | 54,200.2            |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

# Exhibit F.3k Projections of Yearly Benefits, WTP for Bronchitis as Basis for Non-Fatal Cases (Ground Water Systems Serving <100 People)

**TTHM - Preferred Alternative** 

|       |             | _  | /Lung C<br>on Lag I |                |                   |             | g/Bladde<br>ition Lag |                     |             |    | Bladder<br>ion Lag | -   |                     |
|-------|-------------|----|---------------------|----------------|-------------------|-------------|-----------------------|---------------------|-------------|----|--------------------|-----|---------------------|
|       |             | C  | 90 Pe<br>Confider   | ercen<br>ice B | -                 |             | 90 P<br>Confider      | <br>                |             | (  | 90 P<br>Confider   |     |                     |
| Year  | ean<br>Ilue |    | ower<br>%tile)      |                | Jpper<br>h %tile) | ean<br>alue | Lower<br>h %tile)     | Upper<br>ith %tile) | ean<br>alue |    | ower<br>1 %tile)   | (95 | Upper<br>oth %tile) |
| 2005  | \$<br>-     | \$ | -                   | \$             | -                 | \$<br>-     | \$<br>-               | \$<br>-             | \$<br>-     | \$ | -                  | \$  | -                   |
| 2006  | \$<br>-     | \$ | -                   | \$             | -                 | \$<br>-     | \$<br>-               | \$<br>-             | \$<br>-     | \$ | -                  | \$  | -                   |
| 2007  | \$<br>-     | \$ | -                   | \$             | -                 | \$<br>-     | \$<br>-               | \$<br>-             | \$<br>-     | \$ | -                  | \$  | -                   |
| 2008  | \$<br>-     | \$ | -                   | \$             | -                 | \$<br>-     | \$<br>-               | \$<br>-             | \$<br>-     | \$ | -                  | \$  | -                   |
| 2009  | \$<br>-     | \$ | -                   | \$             | -                 | \$<br>-     | \$<br>-               | \$<br>-             | \$<br>-     | \$ | -                  | \$  | -                   |
| 2010  | \$<br>0.0   | \$ | 0.0                 | \$             | 0.0               | \$<br>0.0   | \$<br>0.0             | \$<br>0.0           | \$<br>0.0   | \$ | 0.0                | \$  | 0.1                 |
| 2011  | \$<br>0.0   | \$ | 0.0                 | \$             | 0.1               | \$<br>0.0   | \$<br>0.0             | \$<br>0.1           | \$<br>0.1   | \$ | 0.0                | \$  | 0.1                 |
| 2012  | \$<br>0.1   | \$ | 0.0                 | \$             | 0.1               | \$<br>0.0   | \$<br>0.0             | \$<br>0.1           | \$<br>0.1   | \$ | 0.0                | \$  | 0.2                 |
| 2013  | \$<br>0.1   | \$ | 0.0                 | \$             | 0.2               | \$<br>0.1   | \$<br>0.0             | \$<br>0.2           | \$<br>0.2   | \$ | 0.0                | \$  | 0.4                 |
| 2014  | \$<br>0.1   | \$ | 0.0                 | \$             | 0.3               | \$<br>0.1   | \$<br>0.0             | \$<br>0.2           | \$<br>0.2   | \$ | 0.0                | \$  | 0.5                 |
| 2015  | \$<br>0.2   | \$ | 0.0                 | \$             | 0.4               | \$<br>0.1   | \$<br>0.0             | \$<br>0.3           | \$<br>0.3   | \$ | 0.1                | \$  | 0.6                 |
| 2016  | \$<br>0.2   | \$ | 0.1                 | \$             | 0.5               | \$<br>0.2   | \$<br>0.0             | \$<br>0.3           | \$<br>0.3   | \$ | 0.1                | \$  | 0.8                 |
| 2017  | \$<br>0.3   | \$ | 0.1                 | \$             | 0.6               | \$<br>0.2   | \$<br>0.0             | \$<br>0.4           | \$<br>0.4   | \$ | 0.1                | \$  | 0.9                 |
| 2018  | \$<br>0.3   | \$ | 0.1                 | \$             | 0.7               | \$<br>0.2   | \$<br>0.0             | \$<br>0.4           | \$<br>0.4   | \$ | 0.1                | \$  | 0.9                 |
| 2019  | \$<br>0.4   | \$ | 0.1                 | \$             | 0.8               | \$<br>0.2   | \$<br>0.0             | \$<br>0.5           | \$<br>0.4   | \$ | 0.1                | \$  | 1.0                 |
| 2020  | \$<br>0.4   | \$ | 0.1                 | \$             | 0.8               | \$<br>0.2   | \$<br>0.1             | \$<br>0.5           | \$<br>0.5   | \$ | 0.1                | \$  | 1.0                 |
| 2021  | \$<br>0.4   | \$ | 0.1                 | \$             | 0.9               | \$<br>0.3   | \$<br>0.1             | \$<br>0.6           | \$<br>0.5   | \$ | 0.1                | \$  | 1.1                 |
| 2022  | \$<br>0.4   | \$ | 0.1                 | \$             | 1.0               | \$<br>0.3   | \$<br>0.1             | \$<br>0.6           | \$<br>0.5   | \$ | 0.1                | \$  | 1.1                 |
| 2023  | \$<br>0.4   | \$ | 0.1                 | \$             | 1.0               | \$<br>0.3   | \$<br>0.1             | \$<br>0.6           | \$<br>0.5   | \$ | 0.1                | \$  | 1.2                 |
| 2024  | \$<br>0.5   | \$ | 0.1                 | \$             | 1.0               | \$<br>0.3   | \$<br>0.1             | \$<br>0.7           | \$<br>0.5   | \$ | 0.1                | \$  | 1.2                 |
| 2025  | \$<br>0.5   | \$ | 0.1                 | \$             | 1.1               | \$<br>0.3   | \$<br>0.1             | \$<br>0.7           | \$<br>0.5   | \$ | 0.1                | \$  | 1.2                 |
| 2026  | \$<br>0.5   | \$ | 0.1                 | \$             | 1.1               | \$<br>0.3   | \$<br>0.1             | \$<br>0.7           | \$<br>0.6   | \$ | 0.1                | \$  | 1.2                 |
| 2027  | \$<br>0.5   | \$ | 0.1                 | \$             | 1.1               | \$<br>0.3   | \$<br>0.1             | \$<br>0.8           | \$<br>0.6   | \$ | 0.1                | \$  | 1.3                 |
| 2028  | \$<br>0.5   | \$ | 0.1                 | \$             | 1.2               | \$<br>0.4   | \$<br>0.1             | \$<br>0.8           | \$<br>0.6   | \$ | 0.1                | \$  | 1.3                 |
| 2029  | \$<br>0.5   | \$ | 0.1                 | \$             | 1.2               | \$<br>0.4   | \$<br>0.1             | \$<br>0.8           | \$<br>0.6   | \$ | 0.1                | \$  | 1.3                 |
| Total | \$<br>6.5   | \$ | 1.4                 | \$             | 14.3              | \$<br>4.2   | \$<br>0.9             | \$<br>9.3           | \$<br>7.8   | \$ | 1.7                | \$  | 17.3                |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

# Exhibit F.3I Projections of Yearly Benefits, WTP for Bronchitis as Basis for Non-Fatal Cases (Ground Water Systems Serving 100-499 People)

**TTHM - Preferred Alternative** 

|       |                    | •  | g/Lung C<br>on Lag I |                    |                   | _  | /Bladder<br>tion Lag I |    |                     |    |               | Bladder (         | _  |                     |
|-------|--------------------|----|----------------------|--------------------|-------------------|----|------------------------|----|---------------------|----|---------------|-------------------|----|---------------------|
|       |                    | (  | 90 Po<br>Confider    |                    |                   |    | 90 P<br>Confider       |    |                     |    |               | 90 Pe<br>Confider |    |                     |
| Year  | <br>/lean<br>/alue |    | ower<br>1 %tile)     | Upper<br>th %tile) | <br>lean<br>'alue |    | Lower<br>th %tile)     | (9 | Upper<br>5th %tile) | _  | Mean<br>∕alue | Lower<br>h %tile) | (9 | Upper<br>5th %tile) |
| 2005  | \$<br>-            | \$ |                      | \$<br>-            | \$<br>-           | \$ | -                      | \$ |                     | \$ | -             | \$<br>-           | \$ | -                   |
| 2006  | \$<br>-            | \$ | -                    | \$<br>-            | \$<br>-           | \$ | -                      | \$ | -                   | \$ | -             | \$<br>-           | \$ | -                   |
| 2007  | \$<br>-            | \$ | -                    | \$<br>-            | \$<br>-           | \$ | -                      | \$ | -                   | \$ | -             | \$<br>-           | \$ | -                   |
| 2008  | \$<br>-            | \$ | -                    | \$<br>-            | \$<br>-           | \$ | -                      | \$ | -                   | \$ | -             | \$<br>-           | \$ | -                   |
| 2009  | \$<br>-            | \$ | -                    | \$<br>-            | \$<br>-           | \$ | -                      | \$ | -                   | \$ | -             | \$<br>-           | \$ | -                   |
| 2010  | \$<br>0.1          | \$ | 0.0                  | \$<br>0.2          | \$<br>0.1         | \$ | 0.0                    | \$ | 0.2                 | \$ | 0.2           | \$<br>0.0         | \$ | 0.4                 |
| 2011  | \$<br>0.3          | \$ | 0.1                  | \$<br>0.6          | \$<br>0.2         | \$ | 0.0                    | \$ | 0.5                 | \$ | 0.5           | \$<br>0.1         | \$ | 1.0                 |
| 2012  | \$<br>0.5          | \$ | 0.1                  | \$<br>1.1          | \$<br>0.4         | \$ | 0.1                    | \$ | 0.8                 | \$ | 8.0           | \$<br>0.2         | \$ | 1.8                 |
| 2013  | \$<br>8.0          | \$ | 0.2                  | \$<br>1.7          | \$<br>0.5         | \$ | 0.1                    | \$ | 1.2                 | \$ | 1.2           | \$<br>0.3         | \$ | 2.6                 |
| 2014  | \$<br>1.1          | \$ | 0.2                  | \$<br>2.4          | \$<br>0.7         | \$ | 0.2                    | \$ | 1.6                 | \$ | 1.6           | \$<br>0.4         | \$ | 3.6                 |
| 2015  | \$<br>1.5          | \$ | 0.3                  | \$<br>3.2          | \$<br>1.0         | \$ | 0.2                    | \$ | 2.1                 | \$ | 2.1           | \$<br>0.5         | \$ | 4.7                 |
| 2016  | \$<br>1.8          | \$ | 0.4                  | \$<br>4.0          | \$<br>1.2         | \$ | 0.3                    | \$ | 2.6                 | \$ | 2.5           | \$<br>0.6         | \$ | 5.6                 |
| 2017  | \$<br>2.1          | \$ | 0.5                  | \$<br>4.6          | \$<br>1.3         | \$ | 0.3                    | \$ | 2.9                 | \$ | 2.8           | \$<br>0.6         | \$ | 6.3                 |
| 2018  | \$<br>2.4          | \$ | 0.5                  | \$<br>5.2          | \$<br>1.5         | \$ | 0.3                    | \$ | 3.2                 | \$ | 3.1           | \$<br>0.7         | \$ | 6.8                 |
| 2019  | \$<br>2.6          | \$ | 0.6                  | \$<br>5.8          | \$<br>1.6         | \$ | 0.3                    | \$ | 3.6                 | \$ | 3.3           | \$<br>0.7         | \$ | 7.3                 |
| 2020  | \$<br>2.8          | \$ | 0.6                  | \$<br>6.3          | \$<br>1.7         | \$ | 0.4                    | \$ | 3.9                 | \$ | 3.5           | \$<br>0.8         | \$ | 7.7                 |
| 2021  | \$<br>3.0          | \$ | 0.7                  | \$<br>6.7          | \$<br>1.9         | \$ | 0.4                    | \$ | 4.1                 | \$ | 3.6           | \$<br>0.8         | \$ | 8.0                 |
| 2022  | \$<br>3.2          | \$ | 0.7                  | \$<br>7.1          | \$<br>2.0         | \$ | 0.4                    | \$ | 4.4                 | \$ | 3.7           | \$<br>0.8         | \$ | 8.3                 |
| 2023  | \$<br>3.3          | \$ | 0.7                  | \$<br>7.4          | \$<br>2.1         | \$ | 0.5                    | \$ | 4.7                 | \$ | 3.9           | \$<br>0.8         | \$ | 8.6                 |
| 2024  | \$<br>3.5          | \$ | 0.7                  | \$<br>7.7          | \$<br>2.2         | \$ | 0.5                    | \$ | 4.9                 | \$ | 4.0           | \$<br>0.9         | \$ | 8.8                 |
| 2025  | \$<br>3.6          | \$ | 0.8                  | \$<br>8.0          | \$<br>2.3         | \$ | 0.5                    | \$ | 5.2                 | \$ | 4.0           | \$<br>0.9         | \$ | 9.0                 |
| 2026  | \$<br>3.7          | \$ | 0.8                  | \$<br>8.2          | \$<br>2.4         | \$ | 0.5                    | \$ | 5.4                 | \$ | 4.1           | \$<br>0.9         | \$ | 9.2                 |
| 2027  | \$<br>3.8          | \$ | 0.8                  | \$<br>8.5          | \$<br>2.5         | \$ | 0.5                    | \$ | 5.7                 | \$ | 4.2           | \$<br>0.9         | \$ | 9.4                 |
| 2028  | \$<br>3.8          | \$ | 0.8                  | \$<br>8.6          | \$<br>2.6         | \$ | 0.6                    | \$ | 5.8                 | \$ | 4.2           | \$<br>0.9         | \$ | 9.4                 |
| 2029  | \$<br>3.9          | \$ | 0.8                  | \$<br>8.8          | \$<br>2.7         | \$ | 0.6                    | \$ | 6.0                 | \$ | 4.3           | \$<br>0.9         | \$ | 9.6                 |
| Total | \$<br>47.7         | \$ | 10.3                 | \$<br>106.0        | \$<br>31.0        | \$ | 6.7                    | \$ | 68.8                | \$ | 57.7          | \$<br>12.5        | \$ | 128.2               |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

# Exhibit F.3m Projections of Yearly Benefits, WTP for Bronchitis as Basis for Non-Fatal Cases (Ground Water Systems Serving 500-999 People)

**TTHM - Preferred Alternative** 

|       |                    | •  | g/Lung C<br>ion Lag I |                     |                    | _  | /Bladder<br>tion Lag I |    |                     |    |               | Bladder (         | _  |                     |
|-------|--------------------|----|-----------------------|---------------------|--------------------|----|------------------------|----|---------------------|----|---------------|-------------------|----|---------------------|
|       |                    | ·  | 90 Po<br>Confider     |                     |                    |    | 90 P<br>Confider       |    |                     |    |               | 90 P<br>Confider  |    |                     |
| Year  | <br>/lean<br>/alue |    | ower<br>n %tile)      | Upper<br>ith %tile) | <br>/lean<br>/alue |    | Lower<br>th %tile)     | (9 | Upper<br>5th %tile) | _  | Mean<br>∕alue | Lower<br>h %tile) | (9 | Upper<br>5th %tile) |
| 2005  | \$<br>-            | \$ | -                     | \$<br>-             | \$<br>-            | \$ | -                      | \$ | -                   | \$ | -             | \$<br>-           | \$ | -                   |
| 2006  | \$<br>-            | \$ | -                     | \$<br>-             | \$<br>-            | \$ | -                      | \$ | -                   | \$ | -             | \$<br>-           | \$ | -                   |
| 2007  | \$<br>-            | \$ | -                     | \$<br>-             | \$<br>-            | \$ | -                      | \$ | -                   | \$ | -             | \$<br>-           | \$ | -                   |
| 2008  | \$<br>-            | \$ | -                     | \$<br>-             | \$<br>-            | \$ | -                      | \$ | -                   | \$ | -             | \$<br>-           | \$ | -                   |
| 2009  | \$<br>-            | \$ | -                     | \$<br>-             | \$<br>-            | \$ | -                      | \$ | -                   | \$ | -             | \$<br>-           | \$ | -                   |
| 2010  | \$<br>0.1          | \$ | 0.0                   | \$<br>0.2           | \$<br>0.1          | \$ | 0.0                    | \$ | 0.2                 | \$ | 0.2           | \$<br>0.0         | \$ | 0.4                 |
| 2011  | \$<br>0.3          | \$ | 0.1                   | \$<br>0.6           | \$<br>0.2          | \$ | 0.0                    | \$ | 0.5                 | \$ | 0.5           | \$<br>0.1         | \$ | 1.1                 |
| 2012  | \$<br>0.5          | \$ | 0.1                   | \$<br>1.2           | \$<br>0.4          | \$ | 0.1                    | \$ | 0.8                 | \$ | 0.9           | \$<br>0.2         | \$ | 1.9                 |
| 2013  | \$<br>8.0          | \$ | 0.2                   | \$<br>1.8           | \$<br>0.6          | \$ | 0.1                    | \$ | 1.2                 | \$ | 1.3           | \$<br>0.3         | \$ | 2.8                 |
| 2014  | \$<br>1.2          | \$ | 0.3                   | \$<br>2.5           | \$<br>8.0          | \$ | 0.2                    | \$ | 1.7                 | \$ | 1.7           | \$<br>0.4         | \$ | 3.8                 |
| 2015  | \$<br>1.5          | \$ | 0.3                   | \$<br>3.4           | \$<br>1.0          | \$ | 0.2                    | \$ | 2.3                 | \$ | 2.3           | \$<br>0.5         | \$ | 5.0                 |
| 2016  | \$<br>1.9          | \$ | 0.4                   | \$<br>4.2           | \$<br>1.2          | \$ | 0.3                    | \$ | 2.7                 | \$ | 2.7           | \$<br>0.6         | \$ | 6.0                 |
| 2017  | \$<br>2.2          | \$ | 0.5                   | \$<br>4.9           | \$<br>1.4          | \$ | 0.3                    | \$ | 3.1                 | \$ | 3.0           | \$<br>0.7         | \$ | 6.7                 |
| 2018  | \$<br>2.5          | \$ | 0.5                   | \$<br>5.6           | \$<br>1.6          | \$ | 0.3                    | \$ | 3.5                 | \$ | 3.3           | \$<br>0.7         | \$ | 7.3                 |
| 2019  | \$<br>2.8          | \$ | 0.6                   | \$<br>6.1           | \$<br>1.7          | \$ | 0.4                    | \$ | 3.8                 | \$ | 3.5           | \$<br>0.8         | \$ | 7.8                 |
| 2020  | \$<br>3.0          | \$ | 0.7                   | \$<br>6.7           | \$<br>1.9          | \$ | 0.4                    | \$ | 4.1                 | \$ | 3.7           | \$<br>0.8         | \$ | 8.2                 |
| 2021  | \$<br>3.2          | \$ | 0.7                   | \$<br>7.1           | \$<br>2.0          | \$ | 0.4                    | \$ | 4.4                 | \$ | 3.8           | \$<br>0.8         | \$ | 8.5                 |
| 2022  | \$<br>3.4          | \$ | 0.7                   | \$<br>7.5           | \$<br>2.1          | \$ | 0.5                    | \$ | 4.7                 | \$ | 4.0           | \$<br>0.9         | \$ | 8.8                 |
| 2023  | \$<br>3.5          | \$ | 0.8                   | \$<br>7.9           | \$<br>2.2          | \$ | 0.5                    | \$ | 5.0                 | \$ | 4.1           | \$<br>0.9         | \$ | 9.1                 |
| 2024  | \$<br>3.7          | \$ | 0.8                   | \$<br>8.2           | \$<br>2.4          | \$ | 0.5                    | \$ | 5.3                 | \$ | 4.2           | \$<br>0.9         | \$ | 9.4                 |
| 2025  | \$<br>3.8          | \$ | 0.8                   | \$<br>8.5           | \$<br>2.5          | \$ | 0.5                    | \$ | 5.5                 | \$ | 4.3           | \$<br>0.9         | \$ | 9.6                 |
| 2026  | \$<br>3.9          | \$ | 0.8                   | \$<br>8.8           | \$<br>2.6          | \$ | 0.6                    | \$ | 5.8                 | \$ | 4.4           | \$<br>0.9         | \$ | 9.8                 |
| 2027  | \$<br>4.0          | \$ | 0.9                   | \$<br>9.0           | \$<br>2.7          | \$ | 0.6                    | \$ | 6.0                 | \$ | 4.5           | \$<br>1.0         | \$ | 10.0                |
| 2028  | \$<br>4.1          | \$ | 0.9                   | \$<br>9.1           | \$<br>2.8          | \$ | 0.6                    | \$ | 6.2                 | \$ | 4.5           | \$<br>1.0         | \$ | 10.0                |
| 2029  | \$<br>4.2          | \$ | 0.9                   | \$<br>9.3           | \$<br>2.9          | \$ | 0.6                    | \$ | 6.4                 | \$ | 4.6           | \$<br>1.0         | \$ | 10.2                |
| Total | \$<br>50.8         | \$ | 11.0                  | \$<br>112.7         | \$<br>33.0         | \$ | 7.1                    | \$ | 73.3                | \$ | 61.4          | \$<br>13.3        | \$ | 136.4               |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

# Exhibit F.3n Projections of Yearly Benefits, WTP for Bronchitis as Basis for Non-Fatal Cases (Ground Water Systems Serving 1,000-3,299 People)

**TTHM - Preferred Alternative** 

|       |    |               | ng/Lung (<br>tion Lag l |    |                     |               | _  | /Bladder (         |      |                     |               |    | Bladder Con Lag M |    | -                   |
|-------|----|---------------|-------------------------|----|---------------------|---------------|----|--------------------|------|---------------------|---------------|----|-------------------|----|---------------------|
|       |    |               | 90 P                    |    |                     |               |    | 90 P               | erce | ent                 |               | (  | 90 P<br>Confider  |    |                     |
| Year  | -  | Mean<br>Value | Lower<br>th %tile)      | (9 | Upper<br>5th %tile) | Mean<br>Value |    | Lower<br>th %tile) | (9   | Upper<br>5th %tile) | Mean<br>Value |    | ₋ower<br>h %tile) | (9 | Upper<br>5th %tile) |
| 2005  | \$ | -             | \$<br>-                 | \$ |                     | \$<br>-       | \$ | -                  | \$   | -                   | \$<br>-       | \$ | -                 | \$ | -                   |
| 2006  | \$ | -             | \$<br>-                 | \$ | -                   | \$<br>-       | \$ | -                  | \$   | -                   | \$<br>-       | \$ | -                 | \$ | -                   |
| 2007  | \$ | -             | \$<br>-                 | \$ | -                   | \$<br>-       | \$ | -                  | \$   | -                   | \$<br>-       | \$ | -                 | \$ | -                   |
| 2008  | \$ | -             | \$<br>-                 | \$ | -                   | \$<br>-       | \$ | -                  | \$   | -                   | \$<br>-       | \$ | -                 | \$ | -                   |
| 2009  | \$ | -             | \$<br>-                 | \$ | -                   | \$<br>-       | \$ | -                  | \$   | -                   | \$<br>-       | \$ | -                 | \$ | -                   |
| 2010  | \$ | 0.3           | \$<br>0.1               | \$ | 0.7                 | \$<br>0.3     | \$ | 0.1                | \$   | 0.6                 | \$<br>0.6     | \$ | 0.1               | \$ | 1.3                 |
| 2011  | \$ | 0.9           | \$<br>0.2               | \$ | 1.9                 | \$<br>0.7     | \$ | 0.1                | \$   | 1.5                 | \$<br>1.5     | \$ | 0.3               | \$ | 3.2                 |
| 2012  | \$ | 1.6           | \$<br>0.3               | \$ | 3.5                 | \$<br>1.1     | \$ | 0.3                | \$   | 2.5                 | \$<br>2.6     | \$ | 0.6               | \$ | 5.7                 |
| 2013  | \$ | 2.5           | \$<br>0.5               | \$ | 5.4                 | \$<br>1.7     | \$ | 0.4                | \$   | 3.8                 | \$<br>3.9     | \$ | 0.8               | \$ | 8.5                 |
| 2014  | \$ | 3.5           | \$<br>8.0               | \$ | 7.7                 | \$<br>2.4     | \$ | 0.5                | \$   | 5.2                 | \$<br>5.3     | \$ | 1.2               | \$ | 11.6                |
| 2015  | \$ | 4.7           | \$<br>1.0               | \$ | 10.3                | \$<br>3.1     | \$ | 0.7                | \$   | 6.8                 | \$<br>6.8     | \$ | 1.5               | \$ | 15.1                |
| 2016  | \$ | 5.8           | \$<br>1.3               | \$ | 12.8                | \$<br>3.7     | \$ | 0.8                | \$   | 8.2                 | \$<br>8.2     | \$ | 1.8               | \$ | 18.0                |
| 2017  | \$ | 6.8           | \$<br>1.5               | \$ | 14.9                | \$<br>4.3     | \$ | 0.9                | \$   | 9.4                 | \$<br>9.1     | \$ | 2.0               | \$ | 20.2                |
| 2018  | \$ | 7.6           | \$<br>1.7               | \$ | 16.8                | \$<br>4.7     | \$ | 1.0                | \$   | 10.4                | \$<br>9.9     | \$ | 2.2               | \$ | 21.9                |
| 2019  | \$ | 8.4           | \$<br>1.8               | \$ | 18.6                | \$<br>5.2     | \$ | 1.1                | \$   | 11.4                | \$<br>10.6    | \$ | 2.3               | \$ | 23.4                |
| 2020  | \$ | 9.1           | \$<br>2.0               | \$ | 20.1                | \$<br>5.6     | \$ | 1.2                | \$   | 12.4                | \$<br>11.1    | \$ | 2.4               | \$ | 24.6                |
| 2021  | \$ | 9.7           | \$<br>2.1               | \$ | 21.5                | \$<br>6.0     | \$ | 1.3                | \$   | 13.3                | \$<br>11.6    | \$ | 2.5               | \$ | 25.7                |
| 2022  | \$ | 10.2          | \$<br>2.2               | \$ | 22.7                | \$<br>6.4     | \$ | 1.4                | \$   | 14.2                | \$<br>12.0    | \$ | 2.6               | \$ | 26.7                |
| 2023  | \$ | 10.7          | \$<br>2.3               | \$ | 23.7                | \$<br>6.8     | \$ | 1.5                | \$   | 15.0                | \$<br>12.4    | \$ | 2.7               | \$ | 27.5                |
| 2024  | \$ | 11.1          | \$<br>2.4               | \$ | 24.7                | \$<br>7.1     | \$ | 1.5                | \$   | 15.9                | \$<br>12.7    | \$ | 2.7               | \$ | 28.3                |
| 2025  | \$ | 11.5          | \$<br>2.5               | \$ | 25.6                | \$<br>7.5     | \$ | 1.6                | \$   | 16.7                | \$<br>13.0    | \$ | 2.8               | \$ | 29.0                |
| 2026  | \$ | 11.9          | \$<br>2.5               | \$ | 26.4                | \$<br>7.8     | \$ | 1.7                | \$   | 17.4                | \$<br>13.3    | \$ | 2.9               | \$ | 29.6                |
| 2027  | \$ | 12.2          | \$<br>2.6               | \$ | 27.2                | \$<br>8.2     | \$ | 1.8                | \$   | 18.2                | \$<br>13.5    | \$ | 2.9               | \$ | 30.2                |
| 2028  | \$ | 12.3          | \$<br>2.7               | \$ | 27.5                | \$<br>8.4     | \$ | 1.8                | \$   | 18.7                | \$<br>13.6    | \$ | 2.9               | \$ | 30.3                |
| 2029  | \$ | 12.6          | \$<br>2.7               | \$ | 28.2                | \$<br>8.7     | \$ | 1.9                | \$   | 19.4                | \$<br>13.8    | \$ | 3.0               | \$ | 30.8                |
| Total | \$ | 153.2         | \$<br>33.1              | \$ | 340.3               | \$<br>99.6    | \$ | 21.5               | \$   | 221.1               | \$<br>185.4   | \$ | 40.1              | \$ | 411.6               |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

# Exhibit F.3o Projections of Yearly Benefits, WTP for Bronchitis as Basis for Non-Fatal Cases (Ground Water Systems Serving 3,300-9,999 People)

**TTHM - Preferred Alternative** 

|       |    |               | ng/Lung C          |    |                     |               | _  | /Bladder (         |      |                     |               |    | Bladder Con Lag N |    | -                   |
|-------|----|---------------|--------------------|----|---------------------|---------------|----|--------------------|------|---------------------|---------------|----|-------------------|----|---------------------|
|       |    |               | 90 Po              |    |                     |               |    | 90 P               | erce | ent                 |               | (  | 90 P              |    |                     |
| Year  | -  | Mean<br>Value | Lower<br>th %tile) | (9 | Upper<br>5th %tile) | Mean<br>Value |    | Lower<br>th %tile) | (9:  | Upper<br>5th %tile) | Mean<br>Value |    | ₋ower<br>h %tile) | (9 | Upper<br>5th %tile) |
| 2005  | \$ | -             | \$<br>-            | \$ | -                   | \$<br>-       | \$ | -                  | \$   | -                   | \$<br>-       | \$ | -                 | \$ | -                   |
| 2006  | \$ | -             | \$<br>-            | \$ | -                   | \$<br>-       | \$ | -                  | \$   | -                   | \$<br>-       | \$ | -                 | \$ | -                   |
| 2007  | \$ | -             | \$<br>-            | \$ | -                   | \$<br>-       | \$ | -                  | \$   | -                   | \$<br>-       | \$ | -                 | \$ | -                   |
| 2008  | \$ | -             | \$<br>-            | \$ | -                   | \$<br>-       | \$ | -                  | \$   | -                   | \$<br>-       | \$ | -                 | \$ | -                   |
| 2009  | \$ | -             | \$<br>-            | \$ | -                   | \$<br>-       | \$ | -                  | \$   | -                   | \$<br>-       | \$ | -                 | \$ | -                   |
| 2010  | \$ | 0.5           | \$<br>0.1          | \$ | 1.2                 | \$<br>0.4     | \$ | 0.1                | \$   | 1.0                 | \$<br>0.9     | \$ | 0.2               | \$ | 2.0                 |
| 2011  | \$ | 1.4           | \$<br>0.3          | \$ | 3.1                 | \$<br>1.0     | \$ | 0.2                | \$   | 2.3                 | \$<br>2.3     | \$ | 0.5               | \$ | 5.1                 |
| 2012  | \$ | 2.5           | \$<br>0.6          | \$ | 5.5                 | \$<br>1.8     | \$ | 0.4                | \$   | 4.0                 | \$<br>4.1     | \$ | 0.9               | \$ | 9.0                 |
| 2013  | \$ | 3.9           | \$<br>0.9          | \$ | 8.6                 | \$<br>2.7     | \$ | 0.6                | \$   | 6.0                 | \$<br>6.1     | \$ | 1.3               | \$ | 13.4                |
| 2014  | \$ | 5.5           | \$<br>1.2          | \$ | 12.2                | \$<br>3.7     | \$ | 0.8                | \$   | 8.2                 | \$<br>8.3     | \$ | 1.8               | \$ | 18.4                |
| 2015  | \$ | 7.4           | \$<br>1.6          | \$ | 16.3                | \$<br>4.9     | \$ | 1.1                | \$   | 10.8                | \$<br>10.8    | \$ | 2.4               | \$ | 23.8                |
| 2016  | \$ | 9.2           | \$<br>2.0          | \$ | 20.3                | \$<br>5.9     | \$ | 1.3                | \$   | 13.0                | \$<br>12.9    | \$ | 2.8               | \$ | 28.5                |
| 2017  | \$ | 10.7          | \$<br>2.3          | \$ | 23.6                | \$<br>6.7     | \$ | 1.5                | \$   | 14.8                | \$<br>14.5    | \$ | 3.2               | \$ | 31.9                |
| 2018  | \$ | 12.0          | \$<br>2.6          | \$ | 26.6                | \$<br>7.5     | \$ | 1.6                | \$   | 16.5                | \$<br>15.7    | \$ | 3.4               | \$ | 34.7                |
| 2019  | \$ | 13.3          | \$<br>2.9          | \$ | 29.4                | \$<br>8.2     | \$ | 1.8                | \$   | 18.1                | \$<br>16.7    | \$ | 3.6               | \$ | 37.0                |
| 2020  | \$ | 14.3          | \$<br>3.1          | \$ | 31.8                | \$<br>8.8     | \$ | 1.9                | \$   | 19.6                | \$<br>17.6    | \$ | 3.8               | \$ | 39.0                |
| 2021  | \$ | 15.3          | \$<br>3.3          | \$ | 33.9                | \$<br>9.5     | \$ | 2.1                | \$   | 21.1                | \$<br>18.3    | \$ | 4.0               | \$ | 40.7                |
| 2022  | \$ | 16.1          | \$<br>3.5          | \$ | 35.9                | \$<br>10.1    | \$ | 2.2                | \$   | 22.5                | \$<br>19.0    | \$ | 4.1               | \$ | 42.2                |
| 2023  | \$ | 16.9          | \$<br>3.6          | \$ | 37.5                | \$<br>10.7    | \$ | 2.3                | \$   | 23.8                | \$<br>19.6    | \$ | 4.2               | \$ | 43.5                |
| 2024  | \$ | 17.6          | \$<br>3.8          | \$ | 39.1                | \$<br>11.3    | \$ | 2.4                | \$   | 25.1                | \$<br>20.1    | \$ | 4.3               | \$ | 44.7                |
| 2025  | \$ | 18.2          | \$<br>3.9          | \$ | 40.5                | \$<br>11.8    | \$ | 2.5                | \$   | 26.4                | \$<br>20.6    | \$ | 4.4               | \$ | 45.8                |
| 2026  | \$ | 18.8          | \$<br>4.0          | \$ | 41.8                | \$<br>12.4    | \$ | 2.7                | \$   | 27.6                | \$<br>21.0    | \$ | 4.5               | \$ | 46.8                |
| 2027  | \$ | 19.3          | \$<br>4.1          | \$ | 43.1                | \$<br>12.9    | \$ | 2.8                | \$   | 28.9                | \$<br>21.4    | \$ | 4.6               | \$ | 47.8                |
| 2028  | \$ | 19.5          | \$<br>4.2          | \$ | 43.6                | \$<br>13.3    | \$ | 2.8                | \$   | 29.6                | \$<br>21.5    | \$ | 4.6               | \$ | 48.0                |
| 2029  | \$ | 20.0          | \$<br>4.3          | \$ | 44.6                | \$<br>13.7    | \$ | 2.9                | \$   | 30.7                | \$<br>21.8    | \$ | 4.7               | \$ | 48.7                |
| Total | \$ | 242.4         | \$<br>52.4         | \$ | 538.4               | \$<br>157.5   | \$ | 34.0               | \$   | 349.8               | \$<br>293.3   | \$ | 63.5              | \$ | 651.1               |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

# Exhibit F.3p Projections of Yearly Benefits, WTP for Bronchitis as Basis for Non-Fatal Cases (Ground Water Systems Serving 10,000-49,999 People)

**TTHM - Preferred Alternative** 

|       |                | g/Lung C          |    |                     |               | _  | /Bladder (<br>ion Lag N |    |                     |               | Bladder Con Lag M |    | -                   |
|-------|----------------|-------------------|----|---------------------|---------------|----|-------------------------|----|---------------------|---------------|-------------------|----|---------------------|
|       |                | 90 Pe<br>Confider |    |                     |               |    | 90 P                    |    |                     |               | 90 P<br>Confider  |    |                     |
| Year  | Vlean<br>∕alue | Lower<br>h %tile) | (9 | Upper<br>5th %tile) | Mean<br>Value |    | Lower<br>th %tile)      | (9 | Upper<br>5th %tile) | Mean<br>Value | ₋ower<br>h %tile) | (9 | Upper<br>5th %tile) |
| 2005  | \$<br>-        | \$<br>-           | \$ | -                   | \$<br>-       | \$ | -                       | \$ | -                   | \$<br>-       | \$<br>-           | \$ | -                   |
| 2006  | \$<br>-        | \$<br>-           | \$ | -                   | \$<br>-       | \$ | -                       | \$ | -                   | \$<br>-       | \$<br>-           | \$ | -                   |
| 2007  | \$<br>-        | \$<br>-           | \$ | -                   | \$<br>-       | \$ | -                       | \$ | -                   | \$<br>-       | \$<br>-           | \$ | -                   |
| 2008  | \$<br>-        | \$<br>-           | \$ | -                   | \$<br>-       | \$ | -                       | \$ | -                   | \$<br>-       | \$<br>-           | \$ | -                   |
| 2009  | \$<br>-        | \$<br>-           | \$ | -                   | \$<br>-       | \$ | -                       | \$ | -                   | \$<br>-       | \$<br>-           | \$ | -                   |
| 2010  | \$<br>0.7      | \$<br>0.1         | \$ | 1.4                 | \$<br>0.5     | \$ | 0.1                     | \$ | 1.2                 | \$<br>1.2     | \$<br>0.3         | \$ | 2.5                 |
| 2011  | \$<br>1.7      | \$<br>0.4         | \$ | 3.8                 | \$<br>1.3     | \$ | 0.3                     | \$ | 2.8                 | \$<br>2.9     | \$<br>0.6         | \$ | 6.3                 |
| 2012  | \$<br>3.1      | \$<br>0.7         | \$ | 6.8                 | \$<br>2.2     | \$ | 0.5                     | \$ | 4.9                 | \$<br>5.0     | \$<br>1.1         | \$ | 11.1                |
| 2013  | \$<br>4.8      | \$<br>1.1         | \$ | 10.6                | \$<br>3.3     | \$ | 0.7                     | \$ | 7.4                 | \$<br>7.5     | \$<br>1.7         | \$ | 16.6                |
| 2014  | \$<br>6.8      | \$<br>1.5         | \$ | 15.0                | \$<br>4.6     | \$ | 1.0                     | \$ | 10.1                | \$<br>10.3    | \$<br>2.3         | \$ | 22.7                |
| 2015  | \$<br>8.8      | \$<br>1.9         | \$ | 19.4                | \$<br>5.7     | \$ | 1.3                     | \$ | 12.7                | \$<br>12.7    | \$<br>2.8         | \$ | 28.1                |
| 2016  | \$<br>10.5     | \$<br>2.3         | \$ | 23.0                | \$<br>6.6     | \$ | 1.4                     | \$ | 14.6                | \$<br>14.5    | \$<br>3.2         | \$ | 31.9                |
| 2017  | \$<br>11.9     | \$<br>2.6         | \$ | 26.4                | \$<br>7.4     | \$ | 1.6                     | \$ | 16.4                | \$<br>15.9    | \$<br>3.5         | \$ | 35.0                |
| 2018  | \$<br>13.3     | \$<br>2.9         | \$ | 29.3                | \$<br>8.2     | \$ | 1.8                     | \$ | 18.0                | \$<br>17.0    | \$<br>3.7         | \$ | 37.5                |
| 2019  | \$<br>14.5     | \$<br>3.1         | \$ | 32.0                | \$<br>8.9     | \$ | 1.9                     | \$ | 19.7                | \$<br>17.9    | \$<br>3.9         | \$ | 39.7                |
| 2020  | \$<br>15.5     | \$<br>3.4         | \$ | 34.4                | \$<br>9.6     | \$ | 2.1                     | \$ | 21.2                | \$<br>18.8    | \$<br>4.1         | \$ | 41.6                |
| 2021  | \$<br>16.4     | \$<br>3.6         | \$ | 36.4                | \$<br>10.2    | \$ | 2.2                     | \$ | 22.7                | \$<br>19.5    | \$<br>4.2         | \$ | 43.2                |
| 2022  | \$<br>17.2     | \$<br>3.7         | \$ | 38.3                | \$<br>10.8    | \$ | 2.3                     | \$ | 24.1                | \$<br>20.1    | \$<br>4.4         | \$ | 44.7                |
| 2023  | \$<br>18.0     | \$<br>3.9         | \$ | 39.9                | \$<br>11.5    | \$ | 2.5                     | \$ | 25.5                | \$<br>20.7    | \$<br>4.5         | \$ | 46.0                |
| 2024  | \$<br>18.6     | \$<br>4.0         | \$ | 41.5                | \$<br>12.0    | \$ | 2.6                     | \$ | 26.8                | \$<br>21.2    | \$<br>4.6         | \$ | 47.1                |
| 2025  | \$<br>19.3     | \$<br>4.1         | \$ | 42.9                | \$<br>12.6    | \$ | 2.7                     | \$ | 28.1                | \$<br>21.7    | \$<br>4.7         | \$ | 48.2                |
| 2026  | \$<br>19.8     | \$<br>4.3         | \$ | 44.2                | \$<br>13.2    | \$ | 2.8                     | \$ | 29.4                | \$<br>22.1    | \$<br>4.7         | \$ | 49.2                |
| 2027  | \$<br>20.4     | \$<br>4.4         | \$ | 45.5                | \$<br>13.7    | \$ | 2.9                     | \$ | 30.7                | \$<br>22.5    | \$<br>4.8         | \$ | 50.3                |
| 2028  | \$<br>20.6     | \$<br>4.4         | \$ | 45.9                | \$<br>14.1    | \$ | 3.0                     | \$ | 31.4                | \$<br>22.6    | \$<br>4.8         | \$ | 50.4                |
| 2029  | \$<br>21.0     | \$<br>4.5         | \$ | 47.0                | \$<br>14.6    | \$ | 3.1                     | \$ | 32.5                | \$<br>22.9    | \$<br>4.9         | \$ | 51.2                |
| Total | \$<br>262.9    | \$<br>56.9        | \$ | 583.8               | \$<br>171.1   | \$ | 37.0                    | \$ | 380.1               | \$<br>316.9   | \$<br>68.6        | \$ | 703.4               |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

# Exhibit F.3q Projections of Yearly Benefits, WTP for Bronchitis as Basis for Non-Fatal Cases (Ground Water Systems Serving 50,000-99,999 People)

**TTHM - Preferred Alternative** 

|       |                    |    | g/Lung C<br>ion Lag I |                     |                    | _  | /Bladder<br>tion Lag I |    |                     |    |               | Bladder (         | _  |                     |
|-------|--------------------|----|-----------------------|---------------------|--------------------|----|------------------------|----|---------------------|----|---------------|-------------------|----|---------------------|
|       |                    | (  | 90 Po<br>Confider     |                     |                    |    | 90 P<br>Confider       |    |                     |    |               | 90 Pe<br>Confider |    |                     |
| Year  | <br>/lean<br>/alue |    | _ower<br>h %tile)     | Upper<br>oth %tile) | <br>/lean<br>/alue |    | Lower<br>th %tile)     | (9 | Upper<br>5th %tile) | _  | Mean<br>∕alue | Lower<br>h %tile) | (9 | Upper<br>5th %tile) |
| 2005  | \$<br>-            | \$ |                       | \$                  | \$<br>-            | \$ | -                      | \$ | -                   | \$ | -             | \$<br>-           | \$ | -                   |
| 2006  | \$<br>-            | \$ | -                     | \$<br>-             | \$<br>-            | \$ | -                      | \$ | -                   | \$ | -             | \$<br>-           | \$ | -                   |
| 2007  | \$<br>-            | \$ | -                     | \$<br>-             | \$<br>-            | \$ | -                      | \$ | -                   | \$ | -             | \$<br>-           | \$ | -                   |
| 2008  | \$<br>-            | \$ | -                     | \$<br>-             | \$<br>-            | \$ | -                      | \$ | -                   | \$ | -             | \$<br>-           | \$ | -                   |
| 2009  | \$<br>-            | \$ | -                     | \$<br>-             | \$<br>-            | \$ | -                      | \$ | -                   | \$ | -             | \$<br>-           | \$ | -                   |
| 2010  | \$<br>0.3          | \$ | 0.1                   | \$<br>0.6           | \$<br>0.2          | \$ | 0.0                    | \$ | 0.5                 | \$ | 0.5           | \$<br>0.1         | \$ | 1.1                 |
| 2011  | \$<br>0.7          | \$ | 0.2                   | \$<br>1.6           | \$<br>0.5          | \$ | 0.1                    | \$ | 1.2                 | \$ | 1.2           | \$<br>0.3         | \$ | 2.7                 |
| 2012  | \$<br>1.3          | \$ | 0.3                   | \$<br>2.9           | \$<br>0.9          | \$ | 0.2                    | \$ | 2.1                 | \$ | 2.1           | \$<br>0.5         | \$ | 4.6                 |
| 2013  | \$<br>2.0          | \$ | 0.4                   | \$<br>4.4           | \$<br>1.4          | \$ | 0.3                    | \$ | 3.1                 | \$ | 3.2           | \$<br>0.7         | \$ | 6.9                 |
| 2014  | \$<br>2.7          | \$ | 0.6                   | \$<br>6.0           | \$<br>1.8          | \$ | 0.4                    | \$ | 4.0                 | \$ | 4.1           | \$<br>0.9         | \$ | 9.0                 |
| 2015  | \$<br>3.3          | \$ | 0.7                   | \$<br>7.3           | \$<br>2.1          | \$ | 0.5                    | \$ | 4.7                 | \$ | 4.7           | \$<br>1.0         | \$ | 10.4                |
| 2016  | \$<br>3.8          | \$ | 0.8                   | \$<br>8.5           | \$<br>2.4          | \$ | 0.5                    | \$ | 5.3                 | \$ | 5.2           | \$<br>1.1         | \$ | 11.5                |
| 2017  | \$<br>4.3          | \$ | 0.9                   | \$<br>9.6           | \$<br>2.7          | \$ | 0.6                    | \$ | 5.9                 | \$ | 5.6           | \$<br>1.2         | \$ | 12.4                |
| 2018  | \$<br>4.8          | \$ | 1.0                   | \$<br>10.5          | \$<br>2.9          | \$ | 0.6                    | \$ | 6.4                 | \$ | 6.0           | \$<br>1.3         | \$ | 13.2                |
| 2019  | \$<br>5.1          | \$ | 1.1                   | \$<br>11.4          | \$<br>3.1          | \$ | 0.7                    | \$ | 7.0                 | \$ | 6.3           | \$<br>1.4         | \$ | 13.9                |
| 2020  | \$<br>5.5          | \$ | 1.2                   | \$<br>12.1          | \$<br>3.4          | \$ | 0.7                    | \$ | 7.5                 | \$ | 6.5           | \$<br>1.4         | \$ | 14.5                |
| 2021  | \$<br>5.7          | \$ | 1.2                   | \$<br>12.8          | \$<br>3.6          | \$ | 0.8                    | \$ | 8.0                 | \$ | 6.8           | \$<br>1.5         | \$ | 15.0                |
| 2022  | \$<br>6.0          | \$ | 1.3                   | \$<br>13.4          | \$<br>3.8          | \$ | 0.8                    | \$ | 8.5                 | \$ | 7.0           | \$<br>1.5         | \$ | 15.5                |
| 2023  | \$<br>6.2          | \$ | 1.3                   | \$<br>13.9          | \$<br>4.0          | \$ | 0.9                    | \$ | 8.9                 | \$ | 7.1           | \$<br>1.5         | \$ | 15.9                |
| 2024  | \$<br>6.5          | \$ | 1.4                   | \$<br>14.4          | \$<br>4.2          | \$ | 0.9                    | \$ | 9.4                 | \$ | 7.3           | \$<br>1.6         | \$ | 16.3                |
| 2025  | \$<br>6.7          | \$ | 1.4                   | \$<br>14.8          | \$<br>4.4          | \$ | 0.9                    | \$ | 9.8                 | \$ | 7.5           | \$<br>1.6         | \$ | 16.6                |
| 2026  | \$<br>6.9          | \$ | 1.5                   | \$<br>15.3          | \$<br>4.6          | \$ | 1.0                    | \$ | 10.2                | \$ | 7.6           | \$<br>1.6         | \$ | 16.9                |
| 2027  | \$<br>7.0          | \$ | 1.5                   | \$<br>15.7          | \$<br>4.8          | \$ | 1.0                    | \$ | 10.7                | \$ | 7.7           | \$<br>1.7         | \$ | 17.3                |
| 2028  | \$<br>7.1          | \$ | 1.5                   | \$<br>15.8          | \$<br>4.9          | \$ | 1.0                    | \$ | 10.9                | \$ | 7.8           | \$<br>1.7         | \$ | 17.3                |
| 2029  | \$<br>7.2          | \$ | 1.6                   | \$<br>16.2          | \$<br>5.0          | \$ | 1.1                    | \$ | 11.3                | \$ | 7.9           | \$<br>1.7         | \$ | 17.6                |
| Total | \$<br>93.3         | \$ | 20.2                  | \$<br>207.0         | \$<br>60.9         | \$ | 13.2                   | \$ | 135.1               | \$ | 112.0         | \$<br>24.2        | \$ | 248.5               |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

# Exhibit F.3r Projections of Yearly Benefits, WTP for Bronchitis as Basis for Non-Fatal Cases (Ground Water Systems Serving 100,000-999,999 People)

**TTHM - Preferred Alternative** 

|       |                | g/Lung C          |    |                     |               | _  | /Bladder (<br>ion Lag N |      |                     |               |    | Bladder Con Lag M |    | -                   |
|-------|----------------|-------------------|----|---------------------|---------------|----|-------------------------|------|---------------------|---------------|----|-------------------|----|---------------------|
|       |                | 90 Po             |    |                     |               |    | 90 P                    | erce | ent                 |               | (  | 90 P<br>Confider  |    |                     |
| Year  | Vlean<br>∕alue | Lower<br>h %tile) | (9 | Upper<br>5th %tile) | Mean<br>Value |    | Lower<br>th %tile)      | (9   | Upper<br>5th %tile) | Mean<br>Value |    | ₋ower<br>h %tile) | (9 | Upper<br>5th %tile) |
| 2005  | \$<br>-        | \$<br>-           | \$ |                     | \$<br>-       | \$ | -                       | \$   | -                   | \$<br>-       | \$ | -                 | \$ | -                   |
| 2006  | \$<br>-        | \$<br>-           | \$ | -                   | \$<br>-       | \$ | -                       | \$   | -                   | \$<br>-       | \$ | -                 | \$ | -                   |
| 2007  | \$<br>-        | \$<br>-           | \$ | -                   | \$<br>-       | \$ | -                       | \$   | -                   | \$<br>-       | \$ | -                 | \$ | -                   |
| 2008  | \$<br>-        | \$<br>-           | \$ | -                   | \$<br>-       | \$ | -                       | \$   | -                   | \$<br>-       | \$ | -                 | \$ | -                   |
| 2009  | \$<br>-        | \$<br>-           | \$ | -                   | \$<br>-       | \$ | -                       | \$   | -                   | \$<br>-       | \$ | -                 | \$ | -                   |
| 2010  | \$<br>0.8      | \$<br>0.2         | \$ | 1.7                 | \$<br>0.6     | \$ | 0.1                     | \$   | 1.4                 | \$<br>1.3     | \$ | 0.3               | \$ | 2.9                 |
| 2011  | \$<br>2.0      | \$<br>0.4         | \$ | 4.4                 | \$<br>1.5     | \$ | 0.3                     | \$   | 3.3                 | \$<br>3.3     | \$ | 0.7               | \$ | 7.3                 |
| 2012  | \$<br>3.6      | \$<br>8.0         | \$ | 7.9                 | \$<br>2.6     | \$ | 0.6                     | \$   | 5.7                 | \$<br>5.8     | \$ | 1.3               | \$ | 12.8                |
| 2013  | \$<br>5.6      | \$<br>1.2         | \$ | 12.3                | \$<br>3.9     | \$ | 0.9                     | \$   | 8.5                 | \$<br>8.7     | \$ | 1.9               | \$ | 19.2                |
| 2014  | \$<br>7.1      | \$<br>1.6         | \$ | 15.7                | \$<br>4.7     | \$ | 1.0                     | \$   | 10.3                | \$<br>10.6    | \$ | 2.3               | \$ | 23.3                |
| 2015  | \$<br>8.5      | \$<br>1.9         | \$ | 18.8                | \$<br>5.4     | \$ | 1.2                     | \$   | 12.0                | \$<br>12.0    | \$ | 2.6               | \$ | 26.5                |
| 2016  | \$<br>9.8      | \$<br>2.1         | \$ | 21.7                | \$<br>6.1     | \$ | 1.3                     | \$   | 13.4                | \$<br>13.2    | \$ | 2.9               | \$ | 29.0                |
| 2017  | \$<br>11.0     | \$<br>2.4         | \$ | 24.3                | \$<br>6.7     | \$ | 1.5                     | \$   | 14.9                | \$<br>14.1    | \$ | 3.1               | \$ | 31.2                |
| 2018  | \$<br>12.0     | \$<br>2.6         | \$ | 26.5                | \$<br>7.3     | \$ | 1.6                     | \$   | 16.2                | \$<br>14.9    | \$ | 3.3               | \$ | 33.0                |
| 2019  | \$<br>12.9     | \$<br>2.8         | \$ | 28.5                | \$<br>7.9     | \$ | 1.7                     | \$   | 17.5                | \$<br>15.6    | \$ | 3.4               | \$ | 34.6                |
| 2020  | \$<br>13.6     | \$<br>3.0         | \$ | 30.2                | \$<br>8.4     | \$ | 1.8                     | \$   | 18.7                | \$<br>16.2    | \$ | 3.5               | \$ | 36.0                |
| 2021  | \$<br>14.3     | \$<br>3.1         | \$ | 31.8                | \$<br>9.0     | \$ | 1.9                     | \$   | 19.9                | \$<br>16.8    | \$ | 3.6               | \$ | 37.2                |
| 2022  | \$<br>14.9     | \$<br>3.2         | \$ | 33.2                | \$<br>9.5     | \$ | 2.1                     | \$   | 21.1                | \$<br>17.2    | \$ | 3.7               | \$ | 38.3                |
| 2023  | \$<br>15.5     | \$<br>3.3         | \$ | 34.5                | \$<br>10.0    | \$ | 2.2                     | \$   | 22.2                | \$<br>17.7    | \$ | 3.8               | \$ | 39.3                |
| 2024  | \$<br>16.0     | \$<br>3.5         | \$ | 35.7                | \$<br>10.5    | \$ | 2.3                     | \$   | 23.3                | \$<br>18.1    | \$ | 3.9               | \$ | 40.2                |
| 2025  | \$<br>16.5     | \$<br>3.6         | \$ | 36.8                | \$<br>10.9    | \$ | 2.4                     | \$   | 24.4                | \$<br>18.4    | \$ | 4.0               | \$ | 41.1                |
| 2026  | \$<br>17.0     | \$<br>3.6         | \$ | 37.8                | \$<br>11.4    | \$ | 2.5                     | \$   | 25.4                | \$<br>18.8    | \$ | 4.0               | \$ | 41.8                |
| 2027  | \$<br>17.4     | \$<br>3.7         | \$ | 38.9                | \$<br>11.9    | \$ | 2.5                     | \$   | 26.5                | \$<br>19.1    | \$ | 4.1               | \$ | 42.7                |
| 2028  | \$<br>17.6     | \$<br>3.8         | \$ | 39.2                | \$<br>12.1    | \$ | 2.6                     | \$   | 27.1                | \$<br>19.2    | \$ | 4.1               | \$ | 42.7                |
| 2029  | \$<br>17.9     | \$<br>3.8         | \$ | 40.0                | \$<br>12.5    | \$ | 2.7                     | \$   | 28.0                | \$<br>19.4    | \$ | 4.2               | \$ | 43.4                |
| Total | \$<br>234.2    | \$<br>50.7        | \$ | 519.9               | \$<br>153.0   | \$ | 33.1                    | \$   | 339.8               | \$<br>280.7   | \$ | 60.8              | \$ | 622.8               |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

# Exhibit F.3s Projections of Yearly Benefits, WTP for Bronchitis as Basis for Non-Fatal Cases (Ground Water Systems Serving ≥1,000,000 People)

**TTHM - Preferred Alternative** 

|       | Smoking/Lung Cancer<br>Cessation Lag Model |                |    |                   |    |                    | _                  | /Bladder<br>tion Lag I |                    |    |                     |    | Bladder (     | _                 |    |                     |
|-------|--------------------------------------------|----------------|----|-------------------|----|--------------------|--------------------|------------------------|--------------------|----|---------------------|----|---------------|-------------------|----|---------------------|
|       |                                            |                | C  | 90 Po<br>Confider |    |                    |                    |                        | 90 P<br>Confider   |    |                     |    |               | 90 P<br>Confider  |    |                     |
| Year  |                                            | /lean<br>/alue |    | ower<br>1 %tile)  |    | Upper<br>th %tile) | <br>/lean<br>/alue |                        | Lower<br>th %tile) | (9 | Upper<br>5th %tile) | _  | Mean<br>∕alue | ₋ower<br>h %tile) | (9 | Upper<br>5th %tile) |
| 2005  | \$                                         | -              | \$ | -                 | \$ | -                  | \$<br>-            | \$                     | -                  | \$ |                     | \$ | -             | \$<br>-           | \$ | -                   |
| 2006  | \$                                         | -              | \$ | -                 | \$ | -                  | \$<br>-            | \$                     | -                  | \$ | -                   | \$ | -             | \$<br>-           | \$ | -                   |
| 2007  | \$                                         | -              | \$ | -                 | \$ | -                  | \$<br>-            | \$                     | -                  | \$ | -                   | \$ | -             | \$<br>-           | \$ | -                   |
| 2008  | \$                                         | -              | \$ | -                 | \$ | -                  | \$<br>-            | \$                     | -                  | \$ | -                   | \$ | -             | \$<br>-           | \$ | -                   |
| 2009  | \$                                         | -              | \$ | -                 | \$ | -                  | \$<br>-            | \$                     | -                  | \$ | -                   | \$ | -             | \$<br>-           | \$ | -                   |
| 2010  | \$                                         | 0.1            | \$ | 0.0               | \$ | 0.3                | \$<br>0.1          | \$                     | 0.0                | \$ | 0.2                 | \$ | 0.2           | \$<br>0.0         | \$ | 0.5                 |
| 2011  | \$                                         | 0.3            | \$ | 0.1               | \$ | 0.7                | \$<br>0.3          | \$                     | 0.1                | \$ | 0.6                 | \$ | 0.6           | \$<br>0.1         | \$ | 1.2                 |
| 2012  | \$                                         | 0.6            | \$ | 0.1               | \$ | 1.3                | \$<br>0.4          | \$                     | 0.1                | \$ | 1.0                 | \$ | 1.0           | \$<br>0.2         | \$ | 2.1                 |
| 2013  | \$                                         | 0.9            | \$ | 0.2               | \$ | 2.0                | \$<br>0.6          | \$                     | 0.1                | \$ | 1.4                 | \$ | 1.5           | \$<br>0.3         | \$ | 3.2                 |
| 2014  | \$                                         | 1.2            | \$ | 0.3               | \$ | 2.6                | \$<br>8.0          | \$                     | 0.2                | \$ | 1.7                 | \$ | 1.8           | \$<br>0.4         | \$ | 3.9                 |
| 2015  | \$                                         | 1.4            | \$ | 0.3               | \$ | 3.1                | \$<br>0.9          | \$                     | 0.2                | \$ | 2.0                 | \$ | 2.0           | \$<br>0.4         | \$ | 4.4                 |
| 2016  | \$                                         | 1.6            | \$ | 0.4               | \$ | 3.6                | \$<br>1.0          | \$                     | 0.2                | \$ | 2.2                 | \$ | 2.2           | \$<br>0.5         | \$ | 4.8                 |
| 2017  | \$                                         | 1.8            | \$ | 0.4               | \$ | 4.0                | \$<br>1.1          | \$                     | 0.2                | \$ | 2.5                 | \$ | 2.4           | \$<br>0.5         | \$ | 5.2                 |
| 2018  | \$                                         | 2.0            | \$ | 0.4               | \$ | 4.4                | \$<br>1.2          | \$                     | 0.3                | \$ | 2.7                 | \$ | 2.5           | \$<br>0.5         | \$ | 5.5                 |
| 2019  | \$                                         | 2.1            | \$ | 0.5               | \$ | 4.7                | \$<br>1.3          | \$                     | 0.3                | \$ | 2.9                 | \$ | 2.6           | \$<br>0.6         | \$ | 5.8                 |
| 2020  | \$                                         | 2.3            | \$ | 0.5               | \$ | 5.0                | \$<br>1.4          | \$                     | 0.3                | \$ | 3.1                 | \$ | 2.7           | \$<br>0.6         | \$ | 6.0                 |
| 2021  | \$                                         | 2.4            | \$ | 0.5               | \$ | 5.3                | \$<br>1.5          | \$                     | 0.3                | \$ | 3.3                 | \$ | 2.8           | \$<br>0.6         | \$ | 6.2                 |
| 2022  | \$                                         | 2.5            | \$ | 0.5               | \$ | 5.5                | \$<br>1.6          | \$                     | 0.3                | \$ | 3.5                 | \$ | 2.9           | \$<br>0.6         | \$ | 6.4                 |
| 2023  | \$                                         | 2.6            | \$ | 0.6               | \$ | 5.7                | \$<br>1.7          | \$                     | 0.4                | \$ | 3.7                 | \$ | 2.9           | \$<br>0.6         | \$ | 6.5                 |
| 2024  | \$                                         | 2.7            | \$ | 0.6               | \$ | 5.9                | \$<br>1.7          | \$                     | 0.4                | \$ | 3.9                 | \$ | 3.0           | \$<br>0.6         | \$ | 6.7                 |
| 2025  | \$                                         | 2.8            | \$ | 0.6               | \$ | 6.1                | \$<br>1.8          | \$                     | 0.4                | \$ | 4.1                 | \$ | 3.1           | \$<br>0.7         | \$ | 6.8                 |
| 2026  | \$                                         | 2.8            | \$ | 0.6               | \$ | 6.3                | \$<br>1.9          | \$                     | 0.4                | \$ | 4.2                 | \$ | 3.1           | \$<br>0.7         | \$ | 7.0                 |
| 2027  | \$                                         | 2.9            | \$ | 0.6               | \$ | 6.5                | \$<br>2.0          | \$                     | 0.4                | \$ | 4.4                 | \$ | 3.2           | \$<br>0.7         | \$ | 7.1                 |
| 2028  | \$                                         | 2.9            | \$ | 0.6               | \$ | 6.5                | \$<br>2.0          | \$                     | 0.4                | \$ | 4.5                 | \$ | 3.2           | \$<br>0.7         | \$ | 7.1                 |
| 2029  | \$                                         | 3.0            | \$ | 0.6               | \$ | 6.7                | \$<br>2.1          | \$                     | 0.4                | \$ | 4.7                 | \$ | 3.2           | \$<br>0.7         | \$ | 7.2                 |
| Total | \$                                         | 39.0           | \$ | 8.4               | \$ | 86.6               | \$<br>25.5         | \$                     | 5.5                | \$ | 56.6                | \$ | 46.7          | \$<br>10.1        | \$ | 103.7               |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

Exhibit F.3t Projections of Yearly Benefits, WTP for Bronchitis as Basis for Non-Fatal Cases (All Ground Water Systems)

**TTHM - Preferred Alternative** 

|       |    |               |                   | ung Cancer<br>Lag Model |                     |    |               | ·  | /Bladder<br>ion Lag N |    |                      |               | ladder C<br>on Lag M |    |                     |
|-------|----|---------------|-------------------|-------------------------|---------------------|----|---------------|----|-----------------------|----|----------------------|---------------|----------------------|----|---------------------|
|       |    |               | 90 Pe<br>Confider |                         |                     |    |               |    | 90 P<br>Confide       |    |                      |               | 90 P<br>Confider     |    |                     |
| Year  | _  | Mean<br>Value | Lower<br>h %tile) | (9                      | Upper<br>5th %tile) |    | Mean<br>Value |    | Lower<br>th %tile)    | (9 | Upper<br>95th %tile) | Mean<br>Value | Lower<br>h %tile)    | (9 | Upper<br>5th %tile) |
| 2005  | \$ | -             | \$<br>-           | \$                      |                     | \$ | -             | \$ | -                     | \$ | -                    | \$<br>-       | \$<br>-              | \$ | 1                   |
| 2006  | \$ | -             | \$<br>-           | \$                      | -                   | \$ | -             | \$ | -                     | \$ | -                    | \$<br>-       | \$<br>-              | \$ | -                   |
| 2007  | \$ | -             | \$<br>-           | \$                      | -                   | \$ | -             | \$ | -                     | \$ | -                    | \$<br>-       | \$<br>-              | \$ | -                   |
| 2008  | \$ | -             | \$<br>-           | \$                      | -                   | \$ | -             | \$ | -                     | \$ | -                    | \$<br>-       | \$<br>-              | \$ | -                   |
| 2009  | \$ | -             | \$<br>-           | \$                      | -                   | \$ | -             | \$ | -                     | \$ | -                    | \$<br>-       | \$<br>-              | \$ | -                   |
| 2010  | \$ | 2.9           | \$<br>0.6         | \$                      | 6.4                 | \$ | 2.4           | \$ | 0.5                   | \$ | 5.2                  | \$<br>5.1     | \$<br>1.1            | \$ | 11.2                |
| 2011  | \$ | 7.6           | \$<br>1.7         | \$                      | 16.8                | \$ | 5.8           | \$ | 1.3                   | \$ | 12.7                 | \$<br>12.8    | \$<br>2.8            | \$ | 28.1                |
| 2012  | \$ | 13.8          | \$<br>3.0         | \$                      | 30.4                | \$ | 9.9           | \$ | 2.2                   | \$ | 21.9                 | \$<br>22.3    | \$<br>4.9            | \$ | 49.2                |
| 2013  | \$ | 21.4          | \$<br>4.7         | \$                      | 47.1                | \$ | 14.9          | \$ | 3.3                   | \$ | 32.7                 | \$<br>33.5    | \$<br>7.3            | \$ | 73.6                |
| 2014  | \$ | 29.3          | \$<br>6.4         | \$                      | 64.5                | \$ | 19.6          | \$ | 4.3                   | \$ | 43.2                 | \$<br>44.0    | \$<br>9.6            | \$ | 96.8                |
| 2015  | \$ | 37.3          | \$<br>8.2         | \$                      | 82.3                | \$ | 24.3          | \$ | 5.3                   | \$ | 53.5                 | \$<br>53.8    | \$<br>11.8           | \$ | 118.6               |
| 2016  | \$ | 44.7          | \$<br>9.8         | \$                      | 98.6                | \$ | 28.3          | \$ | 6.2                   | \$ | 62.5                 | \$<br>61.8    | \$<br>13.5           | \$ | 136.1               |
| 2017  | \$ | 51.2          | \$<br>11.2        | \$                      | 113.0               | \$ | 31.8          | \$ | 6.9                   | \$ | 70.3                 | \$<br>67.8    | \$<br>14.8           | \$ | 149.8               |
| 2018  | \$ | 56.9          | \$<br>12.4        | \$                      | 125.7               | \$ | 35.1          | \$ | 7.6                   | \$ | 77.4                 | \$<br>72.8    | \$<br>15.9           | \$ | 160.9               |
| 2019  | \$ | 62.0          | \$<br>13.5        | \$                      | 137.3               | \$ | 38.1          | \$ | 8.3                   | \$ | 84.4                 | \$<br>77.0    | \$<br>16.7           | \$ | 170.5               |
| 2020  | \$ | 66.5          | \$<br>14.4        | \$                      | 147.4               | \$ | 41.1          | \$ | 8.9                   | \$ | 91.0                 | \$<br>80.6    | \$<br>17.5           | \$ | 178.6               |
| 2021  | \$ | 70.5          | \$<br>15.3        | \$                      | 156.4               | \$ | 43.9          | \$ | 9.5                   | \$ | 97.3                 | \$<br>83.7    | \$<br>18.1           | \$ | 185.7               |
| 2022  | \$ | 74.0          | \$<br>16.0        | \$                      | 164.5               | \$ | 46.6          | \$ | 10.1                  | \$ | 103.6                | \$<br>86.4    | \$<br>18.7           | \$ | 192.1               |
| 2023  | \$ | 77.2          | \$<br>16.7        | \$                      | 171.6               | \$ | 49.2          | \$ | 10.6                  | \$ | 109.5                | \$<br>88.9    | \$<br>19.2           | \$ | 197.6               |
| 2024  | \$ | 80.1          | \$<br>17.3        | \$                      | 178.1               | \$ | 51.8          | \$ | 11.2                  | \$ | 115.2                | \$<br>91.1    | \$<br>19.6           | \$ | 202.6               |
| 2025  | \$ | 82.8          | \$<br>17.8        | \$                      | 184.2               | \$ | 54.3          | \$ | 11.7                  | \$ | 120.8                | \$<br>93.1    | \$<br>20.0           | \$ | 207.3               |
| 2026  | \$ | 85.3          | \$<br>18.3        | \$                      | 189.8               | \$ | 56.7          | \$ | 12.2                  | \$ | 126.2                | \$<br>95.0    | \$<br>20.4           | \$ | 211.6               |
| 2027  | \$ | 87.6          | \$<br>18.8        | \$                      | 195.5               | \$ | 59.1          | \$ | 12.7                  | \$ | 131.8                | \$<br>96.8    | \$<br>20.8           | \$ | 216.1               |
| 2028  | \$ | 88.5          | \$<br>19.0        | \$                      | 197.5               | \$ | 60.5          | \$ | 13.0                  | \$ | 134.9                | \$<br>97.1    | \$<br>20.8           | \$ | 216.6               |
| 2029  | \$ | 90.4          | \$<br>19.4        | \$                      | 201.9               | \$ | 62.6          | \$ | 13.4                  | \$ | 139.8                | \$<br>98.5    | \$<br>21.1           | \$ | 220.0               |
| Total | \$ | 1,129.9       | \$<br>244.4       | \$                      | 2,509.1             | \$ | 735.8         | \$ | 159.1                 | \$ | 1,633.9              | \$<br>1,362.0 | \$<br>294.8          | \$ | 3,023.0             |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

# Exhibit F.3u Projections of Yearly Benefits, WTP for Bronchitis as Basis for Non-Fatal Cases (All Water Systems)

**TTHM - Preferred Alternative** 

|       |                | g/Lung C<br>ion Lag N |    |                     |                | _  | Bladder C          |    |                     |                | Bladder C<br>on Lag M |    |                     |
|-------|----------------|-----------------------|----|---------------------|----------------|----|--------------------|----|---------------------|----------------|-----------------------|----|---------------------|
|       |                | 90 P<br>Confide       |    |                     |                |    | 90 P<br>Confider   |    |                     |                | 90 P<br>Confider      |    |                     |
| Year  | Mean<br>Value  | Lower<br>th %tile)    | (9 | Upper<br>5th %tile) | Mean<br>Value  | (5 | Lower<br>th %tile) | (9 | Upper<br>5th %tile) | Mean<br>Value  | Lower<br>th %tile)    | (9 | Upper<br>5th %tile) |
| 2005  | \$<br>-        | \$<br>-               | \$ | -                   | \$<br>-        | \$ | -                  | \$ | -                   | \$<br>-        | \$<br>-               | \$ | -                   |
| 2006  | \$<br>-        | \$<br>-               | \$ | -                   | \$<br>-        | \$ | -                  | \$ | -                   | \$<br>-        | \$<br>-               | \$ | -                   |
| 2007  | \$<br>-        | \$<br>-               | \$ | -                   | \$<br>-        | \$ | -                  | \$ | -                   | \$<br>-        | \$<br>-               | \$ | -                   |
| 2008  | \$<br>-        | \$<br>-               | \$ | -                   | \$<br>-        | \$ | -                  | \$ | -                   | \$<br>-        | \$<br>-               | \$ | -                   |
| 2009  | \$<br>-        | \$<br>-               | \$ | -                   | \$<br>-        | \$ | -                  | \$ | -                   | \$<br>-        | \$<br>-               | \$ | -                   |
| 2010  | \$<br>65.9     | \$<br>14.5            | \$ | 144.9               | \$<br>62.5     | \$ | 13.8               | \$ | 137.4               | \$<br>123.6    | \$<br>27.2            | \$ | 271.8               |
| 2011  | \$<br>170.7    | \$<br>37.5            | \$ | 375.9               | \$<br>148.1    | \$ | 32.6               | \$ | 326.2               | \$<br>302.8    | \$<br>66.6            | \$ | 667.1               |
| 2012  | \$<br>309.0    | \$<br>67.9            | \$ | 680.2               | \$<br>252.6    | \$ | 55.5               | \$ | 556.0               | \$<br>523.1    | \$<br>114.9           | \$ | 1,151.5             |
| 2013  | \$<br>479.1    | \$<br>105.2           | \$ | 1,054.1             | \$<br>374.0    | \$ | 82.1               | \$ | 822.8               | \$<br>776.2    | \$<br>170.4           | \$ | 1,707.9             |
| 2014  | \$<br>626.3    | \$<br>137.2           | \$ | 1,378.7             | \$<br>458.4    | \$ | 100.5              | \$ | 1,009.1             | \$<br>953.1    | \$<br>208.8           | \$ | 2,098.0             |
| 2015  | \$<br>765.0    | \$<br>167.3           | \$ | 1,686.9             | \$<br>531.4    | \$ | 116.2              | \$ | 1,171.7             | \$<br>1,093.3  | \$<br>239.2           | \$ | 2,410.9             |
| 2016  | \$<br>892.0    | \$<br>194.9           | \$ | 1,966.4             | \$<br>595.2    | \$ | 130.1              | \$ | 1,312.1             | \$<br>1,204.0  | \$<br>263.1           | \$ | 2,654.2             |
| 2017  | \$<br>1,006.9  | \$<br>219.8           | \$ | 2,223.9             | \$<br>653.6    | \$ | 142.7              | \$ | 1,443.4             | \$<br>1,294.1  | \$<br>282.5           | \$ | 2,858.1             |
| 2018  | \$<br>1,108.2  | \$<br>241.3           | \$ | 2,448.4             | \$<br>708.3    | \$ | 154.2              | \$ | 1,564.9             | \$<br>1,370.0  | \$<br>298.3           | \$ | 3,026.8             |
| 2019  | \$<br>1,195.3  | \$<br>259.9           | \$ | 2,646.9             | \$<br>760.3    | \$ | 165.3              | \$ | 1,683.6             | \$<br>1,435.3  | \$<br>312.0           | \$ | 3,178.3             |
| 2020  | \$<br>1,271.3  | \$<br>275.9           | \$ | 2,817.3             | \$<br>810.0    | \$ | 175.8              | \$ | 1,795.2             | \$<br>1,492.3  | \$<br>323.9           | \$ | 3,307.3             |
| 2021  | \$<br>1,338.5  | \$<br>290.1           | \$ | 2,969.8             | \$<br>857.9    | \$ | 186.0              | \$ | 1,903.4             | \$<br>1,543.0  | \$<br>334.5           | \$ | 3,423.7             |
| 2022  | \$<br>1,398.8  | \$<br>302.6           | \$ | 3,109.7             | \$<br>904.0    | \$ | 195.6              | \$ | 2,009.8             | \$<br>1,588.6  | \$<br>343.7           | \$ | 3,531.9             |
| 2023  | \$<br>1,453.5  | \$<br>313.6           | \$ | 3,231.9             | \$<br>948.7    | \$ | 204.7              | \$ | 2,109.4             | \$<br>1,630.3  | \$<br>351.7           | \$ | 3,624.9             |
| 2024  | \$<br>1,503.8  | \$<br>324.2           | \$ | 3,345.3             | \$<br>992.1    | \$ | 213.9              | \$ | 2,207.1             | \$<br>1,668.7  | \$<br>359.7           | \$ | 3,712.1             |
| 2025  | \$<br>1,550.4  | \$<br>333.5           | \$ | 3,451.2             | \$<br>1,034.4  | \$ | 222.5              | \$ | 2,302.6             | \$<br>1,704.5  | \$<br>366.7           | \$ | 3,794.2             |
| 2026  | \$<br>1,594.0  | \$<br>342.5           | \$ | 3,549.3             | \$<br>1,075.7  | \$ | 231.1              | \$ | 2,395.1             | \$<br>1,738.3  | \$<br>373.5           | \$ | 3,870.6             |
| 2027  | \$<br>1,635.1  | \$<br>350.7           | \$ | 3,650.0             | \$<br>1,116.0  | \$ | 239.4              | \$ | 2,491.1             | \$<br>1,770.4  | \$<br>379.7           | \$ | 3,952.0             |
| 2028  | \$<br>1,650.5  | \$<br>354.2           | \$ | 3,680.9             | \$<br>1,139.1  | \$ | 244.5              | \$ | 2,540.5             | \$<br>1,775.7  | \$<br>381.1           | \$ | 3,960.3             |
| 2029  | \$<br>1,682.7  | \$<br>360.7           | \$ | 3,759.5             | \$<br>1,174.2  | \$ | 251.7              | \$ | 2,623.4             | \$<br>1,800.2  | \$<br>385.8           | \$ | 4,022.0             |
| Total | \$<br>21,697.2 | \$<br>4,693.7         | \$ | 48,171.4            | \$<br>14,596.4 | \$ | 3,157.9            | \$ | 32,404.8            | \$<br>25,787.8 | \$<br>5,583.5         | \$ | 57,223.2            |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.3j and F.3t.

Exhibit F.3v Present Value of Benefits Yearly Projections, WTP for Bronchitis as Basis for Non-Fatal Cases, at 3% Discount Rate (All Water Systems)

**TTHM - Preferred Alternative** 

|       |                |    | ng/Lung Car<br>tion Lag Mo |    |                      |               | _  | Bladder C<br>on Lag Mo |    |                     |                | Bladder C<br>on Lag M |     | -                   |
|-------|----------------|----|----------------------------|----|----------------------|---------------|----|------------------------|----|---------------------|----------------|-----------------------|-----|---------------------|
|       |                |    | 90 Pe<br>Confider          |    | -                    |               |    | 90 Pe<br>Confider      |    |                     |                | 90 P<br>Confider      |     | -                   |
| Year  | Mean<br>Value  | (: | Lower<br>5th %tile)        | (9 | Upper<br>95th %tile) | Mean<br>Value | (5 | Lower<br>th %tile)     | (9 | Upper<br>5th %tile) | Mean<br>Value  | Lower<br>th %tile)    | (9: | Upper<br>5th %tile) |
| 2005  | \$<br>-        | \$ | -                          | \$ | -                    | \$<br>-       | \$ | -                      | \$ | -                   | \$<br>-        | \$<br>-               | \$  | -                   |
| 2006  | \$<br>-        | \$ | -                          | \$ | -                    | \$<br>-       | \$ | -                      | \$ | -                   | \$<br>-        | \$<br>-               | \$  | -                   |
| 2007  | \$<br>-        | \$ | -                          | \$ | -                    | \$<br>-       | \$ | -                      | \$ | -                   | \$<br>-        | \$<br>-               | \$  | -                   |
| 2008  | \$<br>-        | \$ | -                          | \$ | -                    | \$<br>-       | \$ | -                      | \$ | -                   | \$<br>-        | \$<br>-               | \$  | -                   |
| 2009  | \$<br>-        | \$ | -                          | \$ | -                    | \$<br>-       | \$ | -                      | \$ | -                   | \$<br>-        | \$<br>-               | \$  | -                   |
| 2010  | \$<br>56.9     | \$ | 12.5                       | \$ | 125.0                | \$<br>53.9    | \$ | 11.9                   | \$ | 118.5               | \$<br>106.6    | \$<br>23.5            | \$  | 234.5               |
| 2011  | \$<br>142.9    | \$ | 31.4                       | \$ | 314.8                | \$<br>124.0   | \$ | 27.3                   | \$ | 273.2               | \$<br>253.6    | \$<br>55.8            | \$  | 558.6               |
| 2012  | \$<br>251.3    | \$ | 55.2                       | \$ | 553.1                | \$<br>205.4   | \$ | 45.1                   | \$ | 452.1               | \$<br>425.4    | \$<br>93.4            | \$  | 936.2               |
| 2013  | \$<br>378.2    | \$ | 83.0                       | \$ | 832.1                | \$<br>295.2   | \$ | 64.8                   | \$ | 649.5               | \$<br>612.8    | \$<br>134.5           | \$  | 1,348.2             |
| 2014  | \$<br>480.0    | \$ | 105.2                      | \$ | 1,056.7              | \$<br>351.3   | \$ | 77.0                   | \$ | 773.4               | \$<br>730.4    | \$<br>160.1           | \$  | 1,607.9             |
| 2015  | \$<br>569.2    | \$ | 124.5                      | \$ | 1,255.2              | \$<br>395.4   | \$ | 86.5                   | \$ | 871.8               | \$<br>813.5    | \$<br>178.0           | \$  | 1,793.9             |
| 2016  | \$<br>644.4    | \$ | 140.8                      | \$ | 1,420.6              | \$<br>430.0   | \$ | 94.0                   | \$ | 947.9               | \$<br>869.8    | \$<br>190.1           | \$  | 1,917.4             |
| 2017  | \$<br>706.2    | \$ | 154.2                      | \$ | 1,559.8              | \$<br>458.4   | \$ | 100.1                  | \$ | 1,012.4             | \$<br>907.7    | \$<br>198.1           | \$  | 2,004.6             |
| 2018  | \$<br>754.7    | \$ | 164.3                      | \$ | 1,667.2              | \$<br>482.3   | \$ | 105.0                  | \$ | 1,065.6             | \$<br>932.9    | \$<br>203.2           | \$  | 2,061.1             |
| 2019  | \$<br>790.2    | \$ | 171.8                      | \$ | 1,749.9              | \$<br>502.7   | \$ | 109.3                  | \$ | 1,113.1             | \$<br>948.9    | \$<br>206.3           | \$  | 2,101.2             |
| 2020  | \$<br>816.0    | \$ | 177.1                      | \$ | 1,808.3              | \$<br>519.9   | \$ | 112.9                  | \$ | 1,152.3             | \$<br>957.9    | \$<br>207.9           | \$  | 2,122.8             |
| 2021  | \$<br>834.1    | \$ | 180.8                      | \$ | 1,850.7              | \$<br>534.6   | \$ | 115.9                  | \$ | 1,186.1             | \$<br>961.6    | \$<br>208.4           | \$  | 2,133.5             |
| 2022  | \$<br>846.3    | \$ | 183.1                      | \$ | 1,881.4              | \$<br>546.9   | \$ | 118.3                  | \$ | 1,216.0             | \$<br>961.2    | \$<br>207.9           | \$  | 2,136.8             |
| 2023  | \$<br>853.8    | \$ | 184.2                      | \$ | 1,898.4              | \$<br>557.3   | \$ | 120.2                  | \$ | 1,239.1             | \$<br>957.6    | \$<br>206.6           | \$  | 2,129.2             |
| 2024  | \$<br>857.6    | \$ | 184.9                      | \$ | 1,907.8              | \$<br>565.8   | \$ | 122.0                  | \$ | 1,258.7             | \$<br>951.6    | \$<br>205.1           | \$  | 2,117.0             |
| 2025  | \$<br>858.4    | \$ | 184.7                      | \$ | 1,910.9              | \$<br>572.7   | \$ | 123.2                  | \$ | 1,274.9             | \$<br>943.8    | \$<br>203.0           | \$  | 2,100.8             |
| 2026  | \$<br>856.9    | \$ | 184.1                      | \$ | 1,907.9              | \$<br>578.2   | \$ | 124.2                  | \$ | 1,287.5             | \$<br>934.4    | \$<br>200.8           | \$  | 2,080.6             |
| 2027  | \$<br>853.4    | \$ | 183.0                      | \$ | 1,904.9              | \$<br>582.4   | \$ | 124.9                  | \$ | 1,300.1             | \$<br>924.0    | \$<br>198.2           | \$  | 2,062.5             |
| 2028  | \$<br>836.3    | \$ | 179.5                      | \$ | 1,865.1              | \$<br>577.2   | \$ | 123.9                  | \$ | 1,287.3             | \$<br>899.7    | \$<br>193.1           | \$  | 2,006.6             |
| 2029  | \$<br>827.8    | \$ | 177.4                      | \$ | 1,849.4              | \$<br>577.6   | \$ | 123.8                  | \$ | 1,290.5             | \$<br>885.6    | \$<br>189.8           | \$  | 1,978.6             |
| Total | \$<br>13,214.6 | \$ | 2,861.8                    | \$ | 29,319.3             | \$<br>8,911.3 | \$ | 1,930.2                | \$ | 19,769.8            | \$<br>15,979.0 | \$<br>3,463.8         | \$  | 35,432.2            |
| Ann.  | \$<br>758.9    | \$ | 164.3                      | \$ | 1,683.7              | \$<br>511.8   | \$ | 110.8                  | \$ | 1,135.3             | \$<br>917.6    | \$<br>198.9           | \$  | 2,034.8             |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibit F.3u.

# Exhibit F.3w Present Value of Benefits Yearly Projections, WTP for Bronchitis as Basis for Non-Fatal Cases, at 7% Discount Rate (All Water Systems)

**TTHM - Preferred Alternative** 

|       |               |    | ing/Lung Ca<br>ation Lag M |    |                     |               | •  | Bladder C<br>on Lag M |    |                     |               |    | Bladder (<br>ion Lag N |    |                     |
|-------|---------------|----|----------------------------|----|---------------------|---------------|----|-----------------------|----|---------------------|---------------|----|------------------------|----|---------------------|
|       |               |    | 90 Po<br>Confider          |    | -                   |               |    | 90 P<br>Confide       |    |                     |               |    | 90 P<br>Confider       |    |                     |
| Year  | Mean<br>Value | (! | Lower<br>5th %tile)        | (9 | Upper<br>5th %tile) | Mean<br>Value | (5 | Lower<br>th %tile)    | (9 | Upper<br>5th %tile) | Mean<br>Value | (5 | Lower<br>th %tile)     | (9 | Upper<br>5th %tile) |
| 2005  | \$<br>-       | \$ | -                          | \$ | -                   | \$<br>-       | \$ | -                     | \$ | -                   | \$<br>-       | \$ |                        | \$ | -                   |
| 2006  | \$<br>-       | \$ | -                          | \$ | -                   | \$<br>-       | \$ | -                     | \$ | -                   | \$<br>_       | \$ | _                      | \$ | -                   |
| 2007  | \$<br>-       | \$ | -                          | \$ | -                   | \$<br>-       | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                      | \$ | -                   |
| 2008  | \$<br>-       | \$ | -                          | \$ | -                   | \$<br>-       | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                      | \$ | -                   |
| 2009  | \$<br>-       | \$ | -                          | \$ | -                   | \$<br>-       | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                      | \$ | -                   |
| 2010  | \$<br>47.0    | \$ | 10.3                       | \$ | 103.3               | \$<br>44.5    | \$ | 9.8                   | \$ | 98.0                | \$<br>88.1    | \$ | 19.4                   | \$ | 193.8               |
| 2011  | \$<br>113.7   | \$ | 25.0                       | \$ | 250.5               | \$<br>98.7    | \$ | 21.7                  | \$ | 217.3               | \$<br>201.8   | \$ | 44.4                   | \$ | 444.5               |
| 2012  | \$<br>192.5   | \$ | 42.3                       | \$ | 423.6               | \$<br>157.3   | \$ | 34.5                  | \$ | 346.2               | \$<br>325.8   | \$ | 71.6                   | \$ | 717.1               |
| 2013  | \$<br>278.8   | \$ | 61.2                       | \$ | 613.5               | \$<br>217.7   | \$ | 47.8                  | \$ | 478.9               | \$<br>451.8   | \$ | 99.2                   | \$ | 994.0               |
| 2014  | \$<br>340.7   | \$ | 74.7                       | \$ | 749.9               | \$<br>249.3   | \$ | 54.6                  | \$ | 548.9               | \$<br>518.4   | \$ | 113.6                  | \$ | 1,141.2             |
| 2015  | \$<br>388.9   | \$ | 85.1                       | \$ | 857.5               | \$<br>270.1   | \$ | 59.1                  | \$ | 595.6               | \$<br>555.8   | \$ | 121.6                  | \$ | 1,225.6             |
| 2016  | \$<br>423.8   | \$ | 92.6                       | \$ | 934.2               | \$<br>282.8   | \$ | 61.8                  | \$ | 623.4               | \$<br>572.0   | \$ | 125.0                  | \$ | 1,261.0             |
| 2017  | \$<br>447.1   | \$ | 97.6                       | \$ | 987.4               | \$<br>290.2   | \$ | 63.3                  | \$ | 640.9               | \$<br>574.6   | \$ | 125.4                  | \$ | 1,269.0             |
| 2018  | \$<br>459.9   | \$ | 100.1                      | \$ | 1,016.0             | \$<br>293.9   | \$ | 64.0                  | \$ | 649.4               | \$<br>568.5   | \$ | 123.8                  | \$ | 1,256.0             |
| 2019  | \$<br>463.6   | \$ | 100.8                      | \$ | 1,026.5             | \$<br>294.9   | \$ | 64.1                  | \$ | 652.9               | \$<br>556.6   | \$ | 121.0                  | \$ | 1,232.6             |
| 2020  | \$<br>460.8   | \$ | 100.0                      | \$ | 1,021.1             | \$<br>293.6   | \$ | 63.7                  | \$ | 650.7               | \$<br>540.9   | \$ | 117.4                  | \$ | 1,198.7             |
| 2021  | \$<br>453.4   | \$ | 98.3                       | \$ | 1,006.0             | \$<br>290.6   | \$ | 63.0                  | \$ | 644.8               | \$<br>522.7   | \$ | 113.3                  | \$ | 1,159.7             |
| 2022  | \$<br>442.8   | \$ | 95.8                       | \$ | 984.5               | \$<br>286.2   | \$ | 61.9                  | \$ | 636.3               | \$<br>502.9   | \$ | 108.8                  | \$ | 1,118.1             |
| 2023  | \$<br>430.0   | \$ | 92.8                       | \$ | 956.2               | \$<br>280.7   | \$ | 60.6                  | \$ | 624.1               | \$<br>482.3   | \$ | 104.1                  | \$ | 1,072.5             |
| 2024  | \$<br>415.8   | \$ | 89.6                       | \$ | 925.0               | \$<br>274.3   | \$ | 59.1                  | \$ | 610.3               | \$<br>461.4   | \$ | 99.5                   | \$ | 1,026.4             |
| 2025  | \$<br>400.7   | \$ | 86.2                       | \$ | 891.9               | \$<br>267.3   | \$ | 57.5                  | \$ | 595.0               | \$<br>440.5   | \$ | 94.8                   | \$ | 980.5               |
| 2026  | \$<br>385.0   | \$ | 82.7                       | \$ | 857.2               | \$<br>259.8   | \$ | 55.8                  | \$ | 578.4               | \$<br>419.8   | \$ | 90.2                   | \$ | 934.8               |
| 2027  | \$<br>369.1   | \$ | 79.2                       | \$ | 823.8               | \$<br>251.9   | \$ | 54.0                  | \$ | 562.3               | \$<br>399.6   | \$ | 85.7                   | \$ | 892.0               |
| 2028  | \$<br>348.2   | \$ | 74.7                       | \$ | 776.5               | \$<br>240.3   | \$ | 51.6                  | \$ | 535.9               | \$<br>374.6   | \$ | 80.4                   | \$ | 835.4               |
| 2029  | \$<br>331.7   | \$ | 71.1                       | \$ | 741.2               | \$<br>231.5   | \$ | 49.6                  | \$ | 517.2               | \$<br>354.9   | \$ | 76.1                   | \$ | 792.9               |
| Total | \$<br>7,193.3 | \$ | 1,560.1                    | \$ | 15,945.9            | \$<br>4,875.6 | \$ | 1,057.7               | \$ | 10,806.4            | \$<br>8,913.1 | \$ | 1,935.1                | \$ | 19,745.8            |
| Ann.  | \$<br>617.3   | \$ | 133.9                      | \$ | 1,368.3             | \$<br>418.4   | \$ | 90.8                  | \$ | 927.3               | \$<br>764.8   | \$ | 166.1                  | \$ | 1,694.4             |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibit F.3u.

Exhibit F.3x Present Value of Benefits Yearly Projections, WTP for Bronchitis as Basis for Non-Fatal Cases, at 3% Discount Rate, by Small & Large Size Categories (Surface Water Systems)

**TTHM - Preferred Alternative** 

|       |                |    |                    |       |                   | Sı            | mall S        | Syste            | ms               |                  |     |                |    |                       |                   |                |      |                |    |                      |                   |      | La           | arge | Syste              | ms |                    |      |                |                   | _              |                     |
|-------|----------------|----|--------------------|-------|-------------------|---------------|---------------|------------------|------------------|------------------|-----|----------------|----|-----------------------|-------------------|----------------|------|----------------|----|----------------------|-------------------|------|--------------|------|--------------------|----|--------------------|------|----------------|-------------------|----------------|---------------------|
|       |                | _  | Lung Ca<br>n Lag M |       |                   |               | •             | adder (<br>Lag M |                  | r                |     |                |    | Bladder C<br>on Lag M |                   |                |      |                | -  | /Lung Ca<br>on Lag M | •                 |      |              | •    | Bladder<br>n Lag N |    |                    |      |                | Bladder C         |                | -                   |
|       |                | c  | 90 Po<br>Confider  | ercen |                   |               | Co            | 90 Pe            | ercent<br>ice Bo |                  |     |                | C  | 90 Pe<br>Confiden     | ercent<br>ice Boi | und            |      |                |    | 90 Pe<br>Confiden    |                   |      |              | c    | 90 P<br>Confider   |    |                    |      |                | 90 Po<br>Confiden | ercer<br>nce B |                     |
| Year  | /lean<br>/alue |    | ower<br>%tile)     |       | lpper<br>h %tile) | Mean<br>Value | Lov<br>(5th % | wer<br>%tile)    |                  | pper<br>1 %tile) |     | /lean<br>/alue |    | ower<br>1 %tile)      |                   | oper<br>%tile) |      | /lean<br>/alue |    | Lower<br>h %tile)    | Jpper<br>h %tile) |      | lean<br>alue |      | ower<br>%tile)     |    | Upper<br>th %tile) |      | /lean<br>/alue | Lower<br>h %tile) |                | Upper<br>ith %tile) |
| 2005  | \$<br>-        | \$ | -                  | \$    | -                 | \$<br>-       | \$            | -                | \$               | -                | \$  | -              | \$ | -                     | \$                | -              | \$   | -              | \$ | -                    | \$<br>-           | \$   | -            | \$   | -                  | \$ | -                  | \$   | -              | \$<br>-           | \$             | -                   |
| 2006  | \$<br>-        | \$ | -                  | \$    | -                 | \$<br>-       | \$            | -                | \$               | -                | \$  | -              | \$ | -                     | \$                | -              | \$   | -              | \$ | -                    | \$<br>-           | \$   | -            | \$   | -                  | \$ | -                  | \$   | -              | \$<br>-           | \$             | -                   |
| 2007  | \$<br>-        | \$ | -                  | \$    | -                 | \$<br>-       | \$            | -                | \$               | -                | \$  | -              | \$ | -                     | \$                | -              | \$   | -              | \$ | -                    | \$<br>-           | \$   | -            | \$   | -                  | \$ | -                  | \$   | -              | \$<br>-           | \$             | -                   |
| 2008  | \$<br>-        | \$ | -                  | \$    | -                 | \$<br>-       | \$            | -                | \$               | -                | \$  | -              | \$ | -                     | \$                | -              | \$   | -              | \$ | -                    | \$<br>-           | \$   | -            | \$   | -                  | \$ | -                  | \$   | -              | \$<br>-           | \$             | -                   |
| 2009  | \$<br>-        | \$ | -                  | \$    | -                 | \$<br>-       | \$            | -                | \$               | -                | \$  | -              | \$ | -                     | \$                | -              | \$   | -              | \$ | -                    | \$<br>-           | \$   | -            | \$   | -                  | \$ | -                  | \$   | -              | \$<br>-           | \$             | -                   |
| 2010  | \$<br>1.3      | \$ | 0.3                | \$    | 2.8               | \$<br>1.0     | \$            | 0.2              | \$               | 2.3              | \$  | 2.2            | \$ | 0.5                   | \$                | 4.9            | \$   | 53.1           | \$ | 11.7                 | \$<br>116.7       | \$   | 50.8         | \$   | 11.2               | \$ | 111.7              | \$   | 100.0          | \$<br>22.0        | \$             | 219.9               |
| 2011  | \$<br>3.2      | \$ | 0.7                | \$    | 7.1               | \$<br>2.4     | \$            | 0.5              | \$               | 5.4              | \$  | 5.4            | \$ | 1.2                   | \$                | 11.9           | \$   | 133.3          | \$ | 29.3                 | \$<br>293.7       | \$   | 116.8        | \$   | 25.7               | \$ | 257.2              | \$   | 237.5          | \$<br>52.2        | \$             | 523.2               |
| 2012  | \$<br>5.7      | \$ | 1.2                | \$    | 12.5              | \$<br>4.1     | \$            | 0.9              | \$               | 9.0              | \$  | 9.2            | \$ | 2.0                   | \$                | 20.2           | \$   | 234.4          | \$ | 51.5                 | \$<br>515.9       | \$   | 193.2        | \$   | 42.4               | \$ | 425.3              | \$   | 398.0          | \$<br>87.4        | \$             | 876.1               |
| 2013  | \$<br>8.5      | \$ | 1.9                | \$    | 18.8              | \$<br>5.9     | \$            | 1.3              | \$               | 13.0             | \$  | 13.3           | \$ | 2.9                   | \$                | 29.4           | \$   | 352.8          | \$ | 77.5                 | \$<br>776.2       | \$   | 277.6        | \$   | 60.9               | \$ | 610.7              | \$   | 573.0          | \$<br>125.8       | \$             | 1,260.8             |
| 2014  | \$<br>11.8     | \$ | 2.6                | \$    | 25.9              | \$<br>7.9     | \$            | 1.7              | \$               | 17.5             | \$  | 17.8           | \$ | 3.9                   | \$                | 39.1           | \$   | 445.8          | \$ | 97.7                 | \$<br>981.4       | \$   | 328.4        | \$   | 72.0               | \$ | 722.8              | \$   | 679.0          | \$<br>148.8       | \$             | 1,494.7             |
| 2015  | \$<br>15.3     | \$ | 3.3                | \$    | 33.7              | \$<br>10.1    | \$            | 2.2              | \$               | 22.2             | \$  | 22.3           | \$ | 4.9                   | \$                | 49.2           | \$   | 526.2          | \$ | 115.1                | \$<br>1,160.3     | \$   | 367.2        | \$   | 80.3               | \$ | 809.8              | \$   | 751.2          | \$<br>164.3       | \$             | 1,656.5             |
| 2016  | \$<br>18.4     | \$ | 4.0                | \$    | 40.6              | \$<br>11.8    | \$            | 2.6              | \$               | 26.1             | \$  | 25.9           | \$ | 5.7                   | \$                | 57.2           | \$   | 593.7          | \$ | 129.7                | \$<br>1,308.7     | \$   | 397.7        | \$   | 86.9               | \$ | 876.7              | \$   | 799.2          | \$<br>174.7       | \$             | 1,761.9             |
| 2017  | \$<br>20.8     | \$ | 4.5                | \$    | 46.0              | \$<br>13.1    | \$            | 2.9              | \$               | 28.9             | \$  | 28.2           | \$ | 6.1                   | \$                | 62.2           | \$   | 649.5          | \$ | 141.8                | \$<br>1,434.5     | \$   | 423.0        | \$   | 92.3               | \$ | 934.2              | \$   | 831.9          | \$<br>181.6       | \$             | 1,837.4             |
| 2018  | \$<br>22.8     | \$ | 5.0                | \$    | 50.3              | \$<br>14.1    | \$            | 3.1              | \$               | 31.2             | \$  | 29.7           | \$ | 6.5                   | \$                | 65.6           | \$   | 693.1          | \$ | 150.9                | \$<br>1,531.3     | \$   | 444.3        | \$   | 96.8               | \$ | 981.7              | \$   | 853.7          | \$<br>185.9       | \$             | 1,886.0             |
| 2019  | \$<br>24.3     | \$ | 5.3                | \$    | 53.9              | \$<br>15.0    | \$            | 3.3              | \$               | 33.2             | \$  | 30.7           | \$ | 6.7                   | \$                | 68.0           | \$   | 724.9          | \$ | 157.6                | \$<br>1,605.2     | \$   | 462.5        | \$   | 100.5              | \$ | 1,024.1            | \$   | 867.3          | \$<br>188.6       | \$             | 1,920.5             |
| 2020  | \$<br>25.6     | \$ | 5.5                | \$    | 56.6              | \$<br>15.8    | \$            | 3.4              | \$               | 34.9             | \$  | 31.3           | \$ | 6.8                   | \$                | 69.5           | \$   | 747.7          | \$ | 162.3                | \$<br>1,657.1     | \$   | 477.8        | \$   | 103.7              | \$ | 1,058.9            | \$   | 874.8          | \$<br>189.9       | \$             | 1,938.7             |
| 2021  | \$<br>26.5     | \$ | 5.7                | \$    | 58.7              | \$<br>16.4    | \$            | 3.6              | \$               | 36.4             | \$  | 31.7           | \$ | 6.9                   | \$                | 70.4           | \$   | 763.7          | \$ | 165.6                | \$<br>1,694.6     | \$   | 490.8        | \$   | 106.4              | \$ | 1,089.1            | \$   | 877.7          | \$<br>190.3       | \$             | 1,947.4             |
| 2022  | \$<br>27.1     | \$ | 5.9                | \$    | 60.2              | \$<br>17.0    | \$            | 3.7              | \$               | 37.7             | \$  | 31.9           | \$ | 6.9                   | \$                | 70.9           | \$   | 774.4          | \$ | 167.5                | \$<br>1,721.7     | \$   | 501.8        | \$   | 108.6              | \$ | 1,115.6            | \$   | 877.0          | \$<br>189.7       | \$             | 1,949.7             |
| 2023  | \$<br>27.5     | \$ | 5.9                | \$    | 61.2              | \$<br>17.5    | \$            | 3.8              | \$               | 38.8             | \$  | 31.9           | \$ | 6.9                   | \$                | 71.0           | \$   | 780.9          | \$ | 168.5                | \$<br>1,736.4     | \$   | 510.9        | \$   | 110.2              | \$ | 1,136.0            | \$   | 873.5          | \$<br>188.5       | \$             | 1,942.2             |
| 2024  | \$<br>27.8     | \$ | 6.0                | \$    | 61.8              | \$<br>17.9    | \$            | 3.9              | \$               | 39.7             | \$  | 31.8           | \$ | 6.9                   | \$                | 70.8           | \$   | 784.1          | \$ | 169.0                | \$<br>1,744.4     | \$   | 518.4        | \$   | 111.8              | \$ | 1,153.2            | \$   | 867.9          | \$<br>187.1       | \$             | 1,930.6             |
| 2025  | \$<br>27.9     | \$ | 6.0                | \$    | 62.2              | \$<br>18.2    | \$            | 3.9              | \$               | 40.5             | \$  | 31.6           | \$ | 6.8                   | \$                | 70.4           | \$   | 784.7          | \$ | 168.8                | \$<br>1,746.7     | \$   | 524.5        | \$   | 112.8              | \$ | 1,167.5            | \$   | 860.6          | \$<br>185.1       | \$             | 1,915.6             |
| 2026  | \$<br>28.0     | \$ | 6.0                | \$    | 62.3              | \$<br>18.5    | \$            | 4.0              | \$               | 41.2             | \$  | 31.4           | \$ | 6.7                   | \$                | 69.8           | \$   | 783.0          | \$ | 168.2                | \$<br>1,743.6     | \$   | 529.3        | \$   | 113.7              | \$ | 1,178.4            | \$   | 852.0          | \$<br>183.0       | \$             | 1,897.1             |
| 2027  | \$<br>28.0     | \$ | 6.0                | \$    | 62.4              | \$<br>18.7    | \$            | 4.0              | \$               | 41.8             | \$  | 31.0           | \$ | 6.7                   | \$                | 69.3           | \$   | 779.7          | \$ | 167.2                | \$<br>1,740.4     | \$   | 532.9        | \$   | 114.3              | \$ | 1,189.5            | \$   | 842.4          | \$<br>180.7       | \$             | 1,880.4             |
| 2028  | \$<br>27.5     | \$ | 5.9                |       | 61.3              | -             | \$            | 4.0              | \$               | 41.6             | · . |                | \$ | 6.5                   | \$                | 67.5           | \$   | 763.9          | \$ | 163.9                | \$<br>1,703.8     | \$   | 527.9        | \$   | 113.3              | \$ | 1,177.3            | \$   | 820.3          | \$<br>176.0       | \$             | 1,829.4             |
| 2029  | \$<br>27.2     | \$ | 5.8                | \$    | 60.9              | \$<br>18.7    | \$            | 4.0              | \$               | 41.9             | \$  | 29.8           | \$ | 6.4                   | \$                | 66.5           | \$   | 756.1          | \$ | 162.1                | \$<br>1,689.2     | \$   | 528.1        | \$   | 113.2              | \$ | 1,179.9            | \$   | 807.4          | \$<br>173.0       | \$             | 1,803.8             |
| Total | \$<br>405.1    | \$ | 87.7               | \$    | 899.2             | \$<br>262.8   | \$            | 56.9             | \$               | 583.4            | \$  | 497.4          | \$ | 107.7                 |                   | 1,103.4        | \$ 1 | 2,125.2        | \$ | 2,626.0              | 26,901.7          | \$ 8 | 3,203.7      | \$ 1 | ,777.0             | \$ | 18,199.4           | \$ 1 | 4,644.4        | \$<br>3,174.7     | \$             | 32,471.9            |
| Ann.  | \$<br>23.3     | \$ | 5.0                | \$    | 51.6              | \$<br>15.1    | \$            | 3.3              | \$               | 33.5             | \$  | 28.6           | \$ | 6.2                   | \$                | 63.4           | \$   | 696.3          | \$ | 150.8                | \$<br>1,544.9     | \$   | 471.1        | \$   | 102.1              | \$ | 1,045.2            | \$   | 841.0          | \$<br>182.3       | \$             | 1,864.8             |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.3a through F.3i.

### Exhibit F.3y Present Value of Benefits Yearly Projections, WTP for Bronchitis as Basis for Non-Fatal Cases, at 7% Discount Rate, by Small & Large Size Categories (Surface Water Systems)

TTHM - Preferred Alternative

|       |               |    |                    |                |                    | Sı            | mall S            | Syste | ms                |               |                |    |                      |                      |      |               |         |                          |       |                   |      | La         | arge | Syste               | ms    |                    |      |              |    |                       |                    |
|-------|---------------|----|--------------------|----------------|--------------------|---------------|-------------------|-------|-------------------|---------------|----------------|----|----------------------|----------------------|------|---------------|---------|--------------------------|-------|-------------------|------|------------|------|---------------------|-------|--------------------|------|--------------|----|-----------------------|--------------------|
|       |               | _  | Lung Ca<br>n Lag M |                |                    |               | ing/Bla<br>sation |       | Cancer<br>Iodel   |               |                |    | ladder C<br>on Lag M |                      |      |               |         | ng/Lung Ca<br>tion Lag M |       |                   |      |            | •    | ladder (<br>n Lag N |       |                    |      |              |    | Bladder C<br>on Lag M |                    |
|       |               | С  | 90 Po              | ercer<br>nce B |                    |               | Co                |       | ercent<br>ice Boi | und           |                | C  |                      | ercent<br>ce Bound   |      |               |         | 90 P<br>Confider         | ercen |                   |      |            | С    | 90 P                | ercen |                    |      |              | (  | 90 Po<br>Confiden     |                    |
| Year  | Mean<br>/alue |    | ower<br>%tile)     | l              | Upper<br>th %tile) | Mean<br>Value | Lov<br>(5th %     |       | Up<br>(95th       | per<br>%tile) | /lean<br>/alue |    | ower<br>1 %tile)     | Upper<br>(95th %tile | )    | Mean<br>Value | (       | Lower<br>5th %tile)      |       | Jpper<br>h %tile) |      | ean<br>lue |      | ower<br>%tile)      |       | Upper<br>th %tile) |      | lean<br>alue | l  | ower<br>h %tile)      | Upper<br>th %tile) |
| 2005  | \$<br>-       | \$ | -                  | \$             | -                  | \$<br>-       | \$                | -     | \$                | -             | \$<br>-        | \$ | -                    | \$ -                 | 9    | \$ -          | 5       | -                        | \$    | -                 | \$   | -          | \$   | -                   | \$    | -                  | \$   | -            | \$ | -                     | \$<br>-            |
| 2006  | \$<br>-       | \$ | -                  | \$             | -                  | \$<br>-       | \$                | -     | \$                | -             | \$<br>-        | \$ | -                    | \$ -                 | \$   | -             | 5       | -                        | \$    | -                 | \$   | -          | \$   | -                   | \$    | -                  | \$   | -            | \$ | -                     | \$<br>-            |
| 2007  | \$<br>-       | \$ | -                  | \$             | -                  | \$<br>-       | \$                | -     | \$                | -             | \$<br>-        | \$ | -                    | \$ -                 | \$   | -             | 5       | -                        | \$    | -                 | \$   | -          | \$   | -                   | \$    | -                  | \$   | -            | \$ | -                     | \$<br>-            |
| 2008  | \$<br>-       | \$ | -                  | \$             | -                  | \$<br>-       | \$                | -     | \$                | -             | \$<br>-        | \$ | -                    | \$ -                 | \$   | ş -           | 5       | -                        | \$    | -                 | \$   | -          | \$   | -                   | \$    | -                  | \$   | -            | \$ | -                     | \$<br>-            |
| 2009  | \$<br>-       | \$ | -                  | \$             | -                  | \$<br>-       | \$                | -     | \$                | -             | \$<br>-        | \$ | -                    | \$ -                 | \$   | \$ -          | 5       | -                        | \$    | -                 | \$   | -          | \$   | -                   | \$    | -                  | \$   | -            | \$ | -                     | \$<br>-            |
| 2010  | \$<br>1.1     | \$ | 0.2                | \$             | 2.3                | \$<br>0.9     | \$                | 0.2   | \$                | 1.9           | \$<br>1.8      | \$ | 0.4                  | \$ 4                 | 1 \$ | \$ 43         | .9      | 9.7                      | \$    | 96.4              | \$   | 42.0       | \$   | 9.2                 | \$    | 92.3               | \$   | 82.6         | \$ | 18.2                  | \$<br>181.7        |
| 2011  | \$<br>2.6     | \$ | 0.6                | \$             | 5.6                | \$<br>1.9     | \$                | 0.4   | \$                | 4.3           | \$<br>4.3      | \$ | 0.9                  | \$ 9                 | 5 \$ | \$ 106        | .1 5    | \$ 23.3                  | \$    | 233.7             | \$   | 92.9       | \$   | 20.4                | \$    | 204.6              | \$   | 189.0        | \$ | 41.6                  | \$<br>416.3        |
| 2012  | \$<br>4.3     | \$ | 1.0                | \$             | 9.6                | \$<br>3.1     | \$                | 0.7   | \$                | 6.9           | \$<br>7.0      | \$ | 1.5                  | \$ 15                | 5 \$ | \$ 179        | .5      | \$ 39.4                  | \$    | 395.1             | \$   | 148.0      | \$   | 32.5                | \$    | 325.7              | \$   | 304.8        | \$ | 67.0                  | \$<br>671.0        |
| 2013  | \$<br>6.3     | \$ | 1.4                | \$             | 13.8               | \$<br>4.4     | \$                | 1.0   | \$                | 9.6           | \$<br>9.8      | \$ | 2.2                  | \$ 21                | 6 \$ | \$ 260        | .1 \$   | 57.1                     | \$    | 572.3             | \$   | 204.6      | \$   | 44.9                | \$    | 450.2              | \$   | 422.5        | \$ | 92.7                  | \$<br>929.5        |
| 2014  | \$<br>8.3     | \$ | 1.8                | \$             | 18.4               | \$<br>5.6     | \$                | 1.2   | \$                | 12.4          | \$<br>12.6     | \$ | 2.8                  | \$ 27                | 7 \$ | 316           | .4      | 69.3                     | \$    | 696.5             | \$   | 233.0      | \$   | 51.1                | \$    | 513.0              | \$   | 481.9        | \$ | 105.6                 | \$<br>1,060.8      |
| 2015  | \$<br>10.4    | \$ | 2.3                | \$             | 23.0               | \$<br>6.9     | \$                | 1.5   | \$                | 15.2          | \$<br>15.2     | \$ | 3.3                  | \$ 33                | 6 \$ | 359           | .5      | 78.6                     | \$    | 792.7             | \$   | 250.9      | \$   | 54.9                | \$    | 553.2              | \$   | 513.2        | \$ | 112.3                 | \$<br>1,131.7      |
| 2016  | \$<br>12.1    | \$ | 2.6                | \$             | 26.7               | \$<br>7.8     | \$                | 1.7   | \$                | 17.2          | \$<br>17.0     | \$ | 3.7                  | \$ 37                | 6 \$ | 390           | .4      | 85.3                     | \$    | 860.7             | \$   | 261.5      | \$   | 57.2                | \$    | 576.5              | \$   | 525.6        | \$ | 114.9                 | \$<br>1,158.7      |
| 2017  | \$<br>13.2    | \$ | 2.9                | \$             | 29.1               | \$<br>8.3     | \$                | 1.8   | \$                | 18.3          | \$<br>17.8     | \$ | 3.9                  | \$ 39                | 4 \$ | \$ 411        | .2      | 89.8                     | \$    | 908.1             | \$   | 267.8      | \$   | 58.5                | \$    | 591.4              | \$   | 526.7        | \$ | 115.0                 | \$<br>1,163.1      |
| 2018  | \$<br>13.9    | \$ | 3.0                | \$             | 30.6               | \$<br>8.6     | \$                | 1.9   | \$                | 19.0          | \$<br>18.1     | \$ | 3.9                  | \$ 39                | 9 \$ | \$ 422        | .4      | 92.0                     | \$    | 933.2             | \$   | 270.8      | \$   | 59.0                | \$    | 598.2              | \$   | 520.2        | \$ | 113.3                 | \$<br>1,149.3      |
| 2019  | \$<br>14.3    | \$ | 3.1                | \$             | 31.6               | \$<br>8.8     | \$                | 1.9   | \$                | 19.5          | \$<br>18.0     | \$ | 3.9                  | \$ 39                | 9 \$ | \$ 425        | .2      | 92.4                     | \$    | 941.6             | \$   | 271.3      | \$   | 59.0                | \$    | 600.7              | \$   | 508.8        | \$ | 110.6                 | \$<br>1,126.6      |
| 2020  | \$<br>14.4    | \$ | 3.1                | \$             | 32.0               | \$<br>8.9     | \$                | 1.9   | \$                | 19.7          | \$<br>17.7     | \$ | 3.8                  | \$ 39                | 2 \$ | \$ 422        | .2      | 91.6                     | \$    | 935.7             | \$   | 269.8      | \$   | 58.6                | \$    | 598.0              | \$   | 494.0        | \$ | 107.2                 | \$<br>1,094.8      |
| 2021  | \$<br>14.4    | \$ | 3.1                | \$             | 31.9               | \$<br>8.9     | \$                | 1.9   | \$                | 19.8          | \$<br>17.2     | \$ | 3.7                  | \$ 38                | 3 \$ | \$ 415        | .1 \$   | \$ 90.0                  | \$    | 921.1             | \$   | 266.8      | \$   | 57.8                | \$    | 592.0              | \$   | 477.1        | \$ | 103.4                 | \$<br>1,058.6      |
| 2022  | \$<br>14.2    | \$ | 3.1                | \$             | 31.5               | \$<br>8.9     | \$                | 1.9   | \$                | 19.7          | \$<br>16.7     | \$ | 3.6                  | \$ 37                | 1 \$ | \$ 405        | .2      | \$ 87.7                  | \$    | 900.9             | \$   | 262.6      | \$   | 56.8                | \$    | 583.7              | \$   | 458.9        | \$ | 99.3                  | \$<br>1,020.2      |
| 2023  | \$<br>13.9    | \$ | 3.0                | \$             | 30.8               | \$<br>8.8     | \$                | 1.9   | \$                | 19.5          | \$<br>16.1     | \$ | 3.5                  | \$ 35                | 7 \$ | \$ 393        | .4      | 84.9                     | \$    | 874.6             | \$   | 257.3      | \$   | 55.5                | \$    | 572.2              | \$   | 440.0        | \$ | 94.9                  | \$<br>978.3        |
| 2024  | \$<br>13.5    | \$ | 2.9                | \$             | 30.0               | \$<br>8.7     | \$                | 1.9   | \$                | 19.3          | \$<br>15.4     | \$ | 3.3                  | \$ 34                | 3 \$ | 380           | .2      | \$ 82.0                  | \$    | 845.8             | \$   | 251.4      | \$   | 54.2                | \$    | 559.2              | \$   | 420.8        | \$ | 90.7                  | \$<br>936.1        |
| 2025  | \$<br>13.0    | \$ | 2.8                | \$             | 29.0               | \$<br>8.5     | \$                | 1.8   | \$                | 18.9          | \$<br>14.8     | \$ | 3.2                  | \$ 32                | 8 \$ | 366           | .2      | 78.8                     | \$    | 815.2             | \$   | 244.8      | \$   | 52.7                | \$    | 544.9              | \$   | 401.7        | \$ | 86.4                  | \$<br>894.1        |
| 2026  | \$<br>12.6    | \$ | 2.7                | \$             | 28.0               | \$<br>8.3     | \$                | 1.8   | \$                | 18.5          | \$<br>14.1     | \$ | 3.0                  | \$ 31                | 4 \$ | \$ 351        | .8      | 75.6                     | \$    | 783.4             | \$   | 237.8      | \$   | 51.1                | \$    | 529.5              | \$   | 382.8        | \$ | 82.2                  | \$<br>852.3        |
| 2027  | \$<br>12.1    | \$ | 2.6                | \$             | 27.0               | \$<br>8.1     | \$                | 1.7   | \$                | 18.1          | \$<br>13.4     | \$ | 2.9                  | \$ 30                | 0 \$ | \$ 337        | .2      | 72.3                     | \$    | 752.7             | \$   | 230.5      | \$   | 49.4                | \$    | 514.4              | \$   | 364.3        | \$ | 78.1                  | \$<br>813.3        |
| 2028  | \$<br>11.4    | \$ | 2.5                | \$             | 25.5               | \$<br>7.8     | \$                | 1.7   | \$                | 17.3          | \$<br>12.6     | \$ | 2.7                  | \$ 28                | 1 \$ | \$ 318        | .0      | 68.3                     | \$    | 709.3             | \$   | 219.8      | \$   | 47.2                | \$    | 490.1              | \$   | 341.5        | \$ | 73.3                  | \$<br>761.6        |
| 2029  | \$<br>10.9    | \$ | 2.3                | \$             | 24.4               | \$<br>7.5     | \$                | 1.6   | \$                | 16.8          | \$<br>11.9     | \$ | 2.6                  | \$ 26                | 7 \$ | \$ 303        | .0 .    | 64.9                     | \$    | 677.0             | \$   | 211.6      | \$   | 45.4                | \$    | 472.8              | \$   | 323.6        | \$ | 69.3                  | \$<br>722.9        |
| Total | \$<br>216.9   | \$ | 47.0               | \$             | 481.0              | \$<br>140.6   | \$                | 30.5  | \$                | 311.9         | \$<br>271.7    | \$ | 58.9                 | \$ 602               | 3 \$ | \$ 6,607      | .1 \$   | 1,433.0                  | \$ 1  | 4,646.0           | \$ 4 | ,495.1     | \$   | 975.2               | \$    | 9,962.8            | \$ 1 | 3,179.9      | \$ | 1,776.0               | \$<br>18,120.8     |
| Ann.  | \$<br>18.6    | \$ | 4.0                | \$             | 41.3               | \$<br>12.1    | \$                | 2.6   | \$                | 26.8          | \$<br>23.3     | \$ | 5.1                  | \$ 51.               | 7 \$ | \$ 567        | .0   \$ | 123.0                    | \$    | 1,256.8           | \$   | 385.7      | \$   | 83.7                | \$    | 854.9              | \$   | 701.9        | \$ | 152.4                 | \$<br>1,555.0      |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.3a through F.3i.

Exhibit F.3z Present Value of Benefits Yearly Projections, WTP for Bronchitis as Basis for Non-Fatal Cases, at 3% Discount Rate, by Small & Large Size Categories (Ground Water Systems)

**TTHM - Preferred Alternative** 

|       |                |    |                    |       |                   | Sı            | mall S            | yste | ms               |                  |                |    |                      |                      |      |               |    |                      |       |                   | L             | arge | Syste            | ms                 |       |              |    |                    |        |                   |
|-------|----------------|----|--------------------|-------|-------------------|---------------|-------------------|------|------------------|------------------|----------------|----|----------------------|----------------------|------|---------------|----|----------------------|-------|-------------------|---------------|------|------------------|--------------------|-------|--------------|----|--------------------|--------|-------------------|
|       |                | _  | Lung Ca<br>n Lag M |       | •                 |               | ing/Bla<br>sation |      |                  | r                |                |    | ladder C<br>on Lag M |                      |      |               | _  | /Lung Ca<br>on Lag M |       |                   |               | •    | Bladder on Lag M |                    |       |              |    | adder C<br>n Lag M |        | r                 |
|       |                | С  | 90 Po<br>Confider  | ercen |                   |               | Coi               |      | ercent<br>ice Bo |                  |                | C  |                      | ercent<br>ce Bound   |      |               | (  | 90 Po<br>Confiden    | ercen |                   |               | (    |                  | ercent<br>nce Bour | nd    |              | Co | 90 Pe              | ercent |                   |
| Year  | /lean<br>/alue |    | ower<br>%tile)     | l     | Jpper<br>h %tile) | Mean<br>/alue | Low<br>(5th %     |      |                  | pper<br>1 %tile) | /lean<br>/alue |    | ower<br>%tile)       | Upper<br>(95th %tile |      | Mean<br>Value |    | Lower<br>h %tile)    |       | lpper<br>h %tile) | Mean<br>Value |      | ower<br>1 %tile) | Upp<br>(95th %     |       | lean<br>alue | _  | wer<br>%tile)      |        | lpper<br>h %tile) |
| 2005  | \$<br>-        | \$ | -                  | \$    | -                 | \$<br>-       | \$                | -    | \$               | -                | \$<br>-        | \$ | -                    | \$ -                 | \$   | -             | \$ | -                    | \$    | -                 | \$ -          | \$   | -                | \$                 | -     | \$<br>-      | \$ | -                  | \$     | -                 |
| 2006  | \$<br>-        | \$ | -                  | \$    | -                 | \$<br>-       | \$                | -    | \$               | -                | \$<br>-        | \$ | -                    | \$ -                 | \$   | -             | \$ | -                    | \$    | -                 | \$ -          | \$   | -                | \$                 | -     | \$<br>-      | \$ | -                  | \$     | -                 |
| 2007  | \$<br>-        | \$ | -                  | \$    | -                 | \$<br>-       | \$                | -    | \$               | -                | \$<br>-        | \$ | -                    | \$ -                 | \$   | -             | \$ | -                    | \$    | -                 | \$ -          | \$   | -                | \$                 | -     | \$<br>-      | \$ | -                  | \$     | -                 |
| 2008  | \$<br>-        | \$ | -                  | \$    | -                 | \$<br>-       | \$                | -    | \$               | -                | \$<br>-        | \$ | -                    | \$ -                 | \$   | -             | \$ | -                    | \$    | -                 | \$ -          | \$   | -                | \$                 | -     | \$<br>-      | \$ | -                  | \$     | -                 |
| 2009  | \$<br>-        | \$ | -                  | \$    | -                 | \$<br>-       | \$                | -    | \$               | -                | \$<br>-        | \$ | -                    | \$ -                 | \$   | -             | \$ | -                    | \$    | -                 | \$ -          | \$   | -                | \$                 | -     | \$<br>-      | \$ | -                  | \$     | -                 |
| 2010  | \$<br>0.9      | \$ | 0.2                | \$    | 2.1               | \$<br>0.8     | \$                | 0.2  | \$               | 1.7              | \$<br>1.7      | \$ | 0.4                  | \$ 3.                | \$   | 1.6           | \$ | 0.3                  | \$    | 3.5               | \$ 1.3        | \$   | 0.3              | \$                 | 2.8   | \$<br>2.8    | \$ | 0.6                | \$     | 6.1               |
| 2011  | \$<br>2.4      | \$ | 0.5                | \$    | 5.3               | \$<br>1.8     | \$                | 0.4  | \$               | 4.0              | \$<br>4.0      | \$ | 0.9                  | \$ 8.5               | \$   | 4.0           | \$ | 0.9                  | \$    | 8.8               | \$ 3.0        | \$   | 0.7              | \$                 | 6.6   | \$<br>6.7    | \$ | 1.5                | \$     | 14.7              |
| 2012  | \$<br>4.2      | \$ | 0.9                | \$    | 9.3               | \$<br>3.0     | \$                | 0.7  | \$               | 6.7              | \$<br>6.8      | \$ | 1.5                  | \$ 15.               | \$   | 7.0           | \$ | 1.5                  | \$    | 15.4              | \$ 5.0        | \$   | 1.1              | \$                 | 11.1  | \$<br>11.3   | \$ | 2.5                | \$     | 25.0              |
| 2013  | \$<br>6.3      | \$ | 1.4                | \$    | 14.0              | \$<br>4.4     | \$                | 1.0  | \$               | 9.7              | \$<br>9.9      | \$ | 2.2                  | \$ 21.               | 3 \$ | 10.5          | \$ | 2.3                  | \$    | 23.2              | \$ 7.3        | \$   | 1.6              | \$                 | 16.1  | \$<br>16.5   | \$ | 3.6                | \$     | 36.3              |
| 2014  | \$<br>8.7      | \$ | 1.9                | \$    | 19.3              | \$<br>5.9     | \$                | 1.3  | \$               | 13.0             | \$<br>13.2     | \$ | 2.9                  | \$ 29.               | \$   | 13.7          | \$ | 3.0                  | \$    | 30.2              | \$ 9.1        | \$   | 2.0              | \$                 | 20.1  | \$<br>20.5   | \$ | 4.5                | \$     | 45.1              |
| 2015  | \$<br>11.4     | \$ | 2.5                | \$    | 25.1              | \$<br>7.5     | \$                | 1.6  | \$               | 16.5             | \$<br>16.6     | \$ | 3.6                  | \$ 36.               | \$   | 16.4          | \$ | 3.6                  | \$    | 36.2              | \$ 10.6       | \$   | 2.3              | \$                 | 23.3  | \$<br>23.4   | \$ | 5.1                | \$     | 51.6              |
| 2016  | \$<br>13.7     | \$ | 3.0                | \$    | 30.2              | \$<br>8.8     | \$                | 1.9  | \$               | 19.4             | \$<br>19.3     | \$ | 4.2                  | \$ 42.               | 5 \$ | 18.6          | \$ | 4.1                  | \$    | 41.0              | \$ 11.7       | \$   | 2.5              | \$                 | 25.7  | \$<br>25.3   | \$ | 5.5                | \$     | 55.8              |
| 2017  | \$<br>15.5     | \$ | 3.4                | \$    | 34.2              | \$<br>9.7     | \$                | 2.1  | \$               | 21.5             | \$<br>20.9     | \$ | 4.6                  | \$ 46.3              | 3 \$ | 20.4          | \$ | 4.5                  | \$    | 45.1              | \$ 12.6       | \$   | 2.7              | \$                 | 27.8  | \$<br>26.6   | \$ | 5.8                | \$     | 58.8              |
| 2018  | \$<br>16.9     | \$ | 3.7                | \$    | 37.4              | \$<br>10.5    | \$                | 2.3  | \$               | 23.2             | \$<br>22.1     | \$ | 4.8                  | \$ 48.               | 3 \$ | 21.8          | \$ | 4.8                  | \$    | 48.2              | \$ 13.4       | \$   | 2.9              | \$                 | 29.5  | \$<br>27.5   | \$ | 6.0                | \$     | 60.8              |
| 2019  | \$<br>18.1     | \$ | 3.9                | \$    | 40.1              | \$<br>11.2    | \$                | 2.4  | \$               | 24.7             | \$<br>22.8     | \$ | 5.0                  | \$ 50.               | \$   | 22.9          | \$ | 5.0                  | \$    | 50.7              | \$ 14.0       | \$   | 3.1              | \$                 | 31.1  | \$<br>28.1   | \$ | 6.1                | \$     | 62.2              |
| 2020  | \$<br>19.0     | \$ | 4.1                | \$    | 42.1              | \$<br>11.7    | \$                | 2.5  | \$               | 26.0             | \$<br>23.3     | \$ | 5.1                  | \$ 51.               | \$   | 23.7          | \$ | 5.1                  | \$    | 52.5              | \$ 14.6       | \$   | 3.2              | \$                 | 32.4  | \$<br>28.4   | \$ | 6.2                | \$     | 62.9              |
| 2021  | \$<br>19.7     | \$ | 4.3                | \$    | 43.7              | \$<br>12.2    | \$                | 2.6  | \$               | 27.1             | \$<br>23.6     | \$ | 5.1                  | \$ 52.               | \$   | 24.2          | \$ | 5.3                  | \$    | 53.8              | \$ 15.1       | \$   | 3.3              | \$                 | 33.6  | \$<br>28.5   | \$ | 6.2                | \$     | 63.3              |
| 2022  | \$<br>20.2     | \$ | 4.4                | \$    | 44.8              | \$<br>12.6    | \$                | 2.7  | \$               | 28.1             | \$<br>23.7     | \$ | 5.1                  | \$ 52.               | 3 \$ | 24.6          | \$ | 5.3                  | \$    | 54.7              | \$ 15.6       | \$   | 3.4              | \$                 | 34.6  | \$<br>28.6   | \$ | 6.2                | \$     | 63.5              |
| 2023  | \$<br>20.5     | \$ | 4.4                | \$    | 45.5              | \$<br>13.0    | \$                | 2.8  | \$               | 28.9             | \$<br>23.7     | \$ | 5.1                  | \$ 52.               | 3 \$ | 24.9          | \$ | 5.4                  | \$    | 55.3              | \$ 15.9       | \$   | 3.4              | \$                 | 35.4  | \$<br>28.5   | \$ | 6.1                | \$     | 63.3              |
| 2024  | \$<br>20.7     | \$ | 4.5                | \$    | 46.0              | \$<br>13.3    | \$                | 2.9  | \$               | 29.6             | \$<br>23.7     | \$ | 5.1                  | \$ 52.               | \$   | 25.0          | \$ | 5.4                  | \$    | 55.6              | \$ 16.2       | \$   | 3.5              | \$                 | 36.1  | \$<br>28.3   | \$ | 6.1                | \$     | 62.9              |
| 2025  | \$<br>20.8     | \$ | 4.5                | \$    | 46.3              | \$<br>13.5    | \$                | 2.9  | \$               | 30.2             | \$<br>23.5     | \$ | 5.1                  | \$ 52.               | \$   | 25.0          | \$ | 5.4                  | \$    | 55.7              | \$ 16.5       | \$   | 3.5              | \$                 | 36.7  | \$<br>28.0   | \$ | 6.0                | \$     | 62.4              |
| 2026  | \$<br>20.8     | \$ | 4.5                | \$    | 46.4              | \$<br>13.8    | \$                | 3.0  | \$               | 30.6             | \$<br>23.3     | \$ | 5.0                  | \$ 51.               | \$   | 25.0          | \$ | 5.4                  | \$    | 55.7              | \$ 16.7       | \$   | 3.6              | \$                 | 37.2  | \$<br>27.8   | \$ | 6.0                | \$     | 61.8              |
| 2027  | \$<br>20.8     | \$ | 4.5                | \$    | 46.4              | 13.9          | \$                | 3.0  | \$               | 31.1             | \$<br>23.1     | \$ | 5.0                  | \$ 51.               | 5 \$ | 24.9          | \$ | 5.3                  | \$    | 55.6              | \$ 16.9       | \$   | 3.6              | \$                 | 37.7  | \$<br>27.4   | \$ | 5.9                | \$     | 61.2              |
| 2028  | \$<br>20.4     | \$ | 4.4                |       | 45.6              |               | \$                |      | \$               | 31.0             | \$<br>22.5     | \$ | 4.8                  | \$ 50.               |      |               | \$ | 5.2                  | \$    | 54.5              | \$ 16.8       | \$   | 3.6              | \$                 | 37.4  | \$<br>-      | \$ |                    | \$     | 59.6              |
| 2029  | \$<br>20.3     | \$ | 4.3                | \$    | 45.3              | \$<br>13.9    | \$                | 3.0  | \$               | 31.2             | \$<br>22.2     | \$ | 4.7                  | \$ 49.               | 5 \$ | 24.2          | \$ | 5.2                  | \$    | 54.0              | \$ 16.8       | \$   | 3.6              | \$                 | 37.6  | \$<br>26.3   | \$ | 5.6                | \$     | 58.7              |
| Total | \$<br>301.4    | \$ | 65.2               | \$    | 669.0             | \$<br>195.6   | \$                | 42.3 | \$               | 434.1            | \$<br>370.1    | \$ | 80.2                 | \$ 821.              | Ť    | 382.8         | \$ | 82.9                 | \$    | 849.4             | \$ 249.2      | \$   | 54.0             | \$ 5               | 552.9 | \$<br>467.1  |    | 101.2              | \$     | 1,035.9           |
| Ann.  | \$<br>17.3     | \$ | 3.7                | \$    | 38.4              | \$<br>11.2    | \$                | 2.4  | \$               | 24.9             | \$<br>21.3     | \$ | 4.6                  | \$ 47.               | \$   | 22.0          | \$ | 4.8                  | \$    | 48.8              | \$ 14.3       | \$   | 3.1              | \$                 | 31.8  | \$<br>26.8   | \$ | 5.8                | \$     | 59.5              |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.3k through F.3s.

### Exhibit F.3aa Present Value of Benefits Yearly Projections, WTP for Bronchitis as Basis for Non-Fatal Cases, at 7% Discount Rate, by Small & Large Size Categories (Surface Water Systems)

**TTHM - Preferred Alternative** 

|       |               |    |                  |                |                    | Sı               | mall S               | /ste | ms               |                |                    |    |                      |                       |    |               |    |                   |                    |               | _arg | e Syste               | ems      |                   |                  |    |                      |       |                   |
|-------|---------------|----|------------------|----------------|--------------------|------------------|----------------------|------|------------------|----------------|--------------------|----|----------------------|-----------------------|----|---------------|----|-------------------|--------------------|---------------|------|-----------------------|----------|-------------------|------------------|----|----------------------|-------|-------------------|
|       |               | •  | Lung Ca          |                |                    |                  | ing/Blad<br>sation I |      |                  | r              |                    |    | ladder C<br>on Lag M |                       |    |               | •  | /Lung Ca          |                    |               | _    | /Bladder<br>ion Lag N |          | er                |                  |    | ladder C<br>on Lag N |       | r                 |
|       |               | C  | 90 P<br>Confider | ercer<br>nce B |                    |                  |                      |      | ercent<br>nce Bo |                |                    | (  |                      | ercent<br>ce Bound    |    |               | ď  | 90 Po<br>Confider |                    |               |      | 90 P<br>Confide       | ercent   |                   |                  | c  | 90 Po<br>Confider    | ercen |                   |
| Year  | Mean<br>/alue |    | ower<br>1 %tile) |                | Upper<br>th %tile) | <br>lean<br>alue | Low<br>(5th %        |      |                  | oper<br>%tile) | <br>/lean<br>/alue |    | ower<br>1 %tile)     | Upper<br>(95th %tile) |    | Mean<br>Value |    | ower<br>1 %tile)  | Upper<br>th %tile) | Mean<br>Value | (5   | Lower<br>th %tile)    |          | Jpper<br>h %tile) | <br>lean<br>alue |    | ower<br>1 %tile)     |       | lpper<br>h %tile) |
| 2005  | \$<br>-       | \$ | -                | \$             | -                  | \$<br>-          | \$                   | -    | \$               | -              | \$<br>-            | \$ | -                    | \$ -                  | \$ | -             | \$ | -                 | \$<br>-            | \$ -          | \$   | -                     | \$       | -                 | \$<br>-          | \$ | -                    | \$    | -                 |
| 2006  | \$<br>-       | \$ | -                | \$             | -                  | \$<br>-          | \$                   | -    | \$               | -              | \$<br>-            | \$ | -                    | \$ -                  | \$ | -             | \$ | -                 | \$<br>-            | \$ -          | \$   | -                     | \$       | -                 | \$<br>-          | \$ | -                    | \$    | -                 |
| 2007  | \$<br>-       | \$ | -                | \$             | -                  | \$<br>-          | \$                   | -    | \$               | -              | \$<br>-            | \$ | -                    | \$ -                  | \$ | -             | \$ | -                 | \$<br>-            | \$ -          | \$   | -                     | \$       | -                 | \$<br>-          | \$ | -                    | \$    | -                 |
| 2008  | \$<br>-       | \$ | -                | \$             | -                  | \$<br>-          | \$                   | -    | \$               | -              | \$<br>-            | \$ | -                    | \$ -                  | \$ | -             | \$ | -                 | \$<br>-            | \$ -          | \$   | -                     | \$       | -                 | \$<br>-          | \$ | -                    | \$    | -                 |
| 2009  | \$<br>-       | \$ | -                | \$             | -                  | \$<br>-          | \$                   | -    | \$               | -              | \$<br>-            | \$ | -                    | \$ -                  | \$ | -             | \$ | -                 | \$<br>-            | \$ -          | \$   | -                     | \$       | -                 | \$<br>-          | \$ | -                    | \$    | -                 |
| 2010  | \$<br>0.8     | \$ | 0.2              | \$             | 1.7                | \$<br>0.6        | \$                   | 0.1  | \$               | 1.4            | \$<br>1.4          | \$ | 0.3                  | \$ 3.0                | \$ | 1.3           | \$ | 0.3               | \$<br>2.9          | \$ 1.1        | \$   | 0.2                   | \$       | 2.3               | \$<br>2.3        | \$ | 0.5                  | \$    | 5.0               |
| 2011  | \$<br>1.9     | \$ | 0.4              | \$             | 4.2                | \$<br>1.4        | \$                   | 0.3  | \$               | 3.2            | \$<br>3.2          | \$ | 0.7                  | \$ 7.0                | \$ | 3.2           | \$ | 0.7               | \$<br>7.0          | \$ 2.4        | \$   | 0.5                   | \$       | 5.3               | \$<br>5.3        | \$ | 1.2                  | \$    | 11.7              |
| 2012  | \$<br>3.2     | \$ | 0.7              | \$             | 7.1                | \$<br>2.3        | \$                   | 0.5  | \$               | 5.1            | \$<br>5.2          | \$ | 1.1                  | \$ 11.5               | \$ | 5.4           | \$ | 1.2               | \$<br>11.8         | \$ 3.9        | \$   | 0.8                   | \$       | 8.5               | \$<br>8.7        | \$ | 1.9                  | \$    | 19.1              |
| 2013  | \$<br>4.7     | \$ | 1.0              | \$             | 10.3               | \$<br>3.3        | \$                   | 0.7  | \$               | 7.2            | \$<br>7.3          | \$ | 1.6                  | \$ 16.1               | \$ | 7.8           | \$ | 1.7               | \$<br>17.1         | \$ 5.4        | \$   | 1.2                   | \$       | 11.9              | \$<br>12.2       | \$ | 2.7                  | \$    | 26.7              |
| 2014  | \$<br>6.2     | \$ | 1.4              | \$             | 13.7               | \$<br>4.2        | \$                   | 0.9  | \$               | 9.2            | \$<br>9.4          | \$ | 2.1                  | \$ 20.6               | \$ | 9.7           | \$ | 2.1               | \$<br>21.4         | \$ 6.5        | \$   | 1.4                   | \$       | 14.3              | \$<br>14.5       | \$ | 3.2                  | \$    | 32.0              |
| 2015  | \$<br>7.8     | \$ | 1.7              | \$             | 17.1               | \$<br>5.1        | \$                   | 1.1  | \$               | 11.3           | \$<br>11.3         | \$ | 2.5                  | \$ 25.0               | \$ | 11.2          | \$ | 2.5               | \$<br>24.7         | \$ 7.2        | \$   | 1.6                   | \$       | 15.9              | \$<br>16.0       | \$ | 3.5                  | \$    | 35.3              |
| 2016  | \$<br>9.0     | \$ | 2.0              | \$             | 19.9               | \$<br>5.8        | \$                   | 1.3  | \$               | 12.8           | \$<br>12.7         | \$ | 2.8                  | \$ 28.0               | \$ | 12.2          | \$ | 2.7               | \$<br>27.0         | \$ 7.7        | \$   | 1.7                   | \$       | 16.9              | \$<br>16.7       | \$ | 3.6                  | \$    | 36.7              |
| 2017  | \$<br>9.8     | \$ | 2.1              | \$             | 21.7               | \$<br>6.2        | \$                   | 1.3  | \$               | 13.6           | \$<br>13.3         | \$ | 2.9                  | \$ 29.3               | \$ | 12.9          | \$ | 2.8               | \$<br>28.5         | \$ 8.0        | \$   | 1.7                   | \$       | 17.6              | \$<br>16.9       | \$ | 3.7                  | \$    | 37.2              |
| 2018  | \$<br>10.3    | \$ | 2.2              | \$             | 22.8               | \$<br>6.4        | \$                   | 1.4  | \$               | 14.1           | \$<br>13.5         | \$ | 2.9                  | \$ 29.7               | \$ | 13.3          | \$ | 2.9               | \$<br>29.4         | \$ 8.1        | \$   | 1.8                   | \$       | 18.0              | \$<br>16.8       | \$ | 3.7                  | \$    | 37.0              |
| 2019  | \$<br>10.6    | \$ | 2.3              | \$             | 23.5               | \$<br>6.5        | \$                   | 1.4  | \$               | 14.5           | \$<br>13.4         | \$ | 2.9                  | \$ 29.7               | \$ | 13.4          | \$ | 2.9               | \$<br>29.7         | \$ 8.2        | \$   | 1.8                   | \$       | 18.2              | \$<br>16.5       | \$ | 3.6                  | \$    | 36.5              |
| 2020  | \$<br>10.7    | \$ | 2.3              | \$             | 23.8               | 6.6              | \$                   | 1.4  | \$               | 14.7           | \$<br>13.2         | \$ | 2.9                  | \$ 29.2               | \$ | 13.4          | \$ | 2.9               | \$<br>29.6         | \$ 8.3        | \$   | 1.8                   | \$       | 18.3              | \$<br>16.0       | \$ | 3.5                  | \$    | 35.5              |
| 2021  | \$<br>10.7    | \$ | 2.3              | \$             | 23.7               | \$<br>6.6        | \$                   | 1.4  | \$               | 14.7           | \$<br>12.8         | \$ | 2.8                  | \$ 28.5               | \$ | 13.2          | \$ | 2.9               | \$<br>29.2         | \$ 8.2        | \$   | 1.8                   | \$       | 18.2              | \$<br>15.5       | \$ | 3.4                  | \$    | 34.4              |
| 2022  | \$<br>10.5    | \$ | 2.3              | '              |                    | \$<br>6.6        | \$                   | 1.4  | \$               | 14.7           | \$<br>12.4         | \$ | 2.7                  | \$ 27.6               | \$ | 12.9          | \$ | 2.8               | \$<br>28.6         | \$ 8.1        | \$   | 1.8                   | \$       | 18.1              | \$<br>14.9       | \$ | 3.2                  | \$    | 33.2              |
| 2023  | \$<br>10.3    | \$ | 2.2              | '              | 22.9               |                  | \$                   | 1.4  | \$               | 14.5           | \$<br>12.0         | \$ | 2.6                  | \$ 26.6               | 1  | 12.5          | \$ |                   | \$<br>27.8         | \$ 8.0        | \$   | 1.7                   | \$       | 17.8              | \$<br>14.3       |    | 3.1                  | •     | 31.9              |
| 2024  | \$<br>10.0    | \$ | 2.2              | '              | 22.3               |                  | \$                   | 1.4  | \$               | 14.3           | \$                 | \$ | 2.5                  | \$ 25.5               | 1  | 12.1          | \$ |                   | \$                 | \$ 7.9        |      | 1.7                   | \$       |                   | \$<br>13.7       | \$ | 3.0                  |       | 30.5              |
| 2025  | \$<br>9.7     | \$ | 2.1              | \$             | 21.6               | 6.3              | \$                   | 1.4  | \$               | 14.1           | \$<br>11.0         | \$ | 2.4                  | \$ 24.4               | 1  | 11.7          | \$ | 2.5               | \$<br>26.0         | \$ 7.7        |      | 1.7                   | \$       | 17.1              | \$<br>13.1       | \$ | 2.8                  | \$    | 29.1              |
| 2026  | \$<br>9.4     | \$ | 2.0              | \$             |                    | \$<br>-          | \$                   | 1.3  | \$               | 13.8           | \$<br>10.5         | \$ | 2.3                  | \$ 23.3               |    | 11.2          | \$ | 2.4               | \$<br>25.0         | \$ 7.5        |      | 1.6                   |          | 16.7              | \$<br>12.5       | \$ | 2.7                  | \$    | 27.8              |
| 2027  | \$<br>9.0     | \$ | 1.9              | '              | 20.1               | 6.0              |                      |      | \$               |                | 10.0               | \$ | 2.1                  | \$ 22.3               |    | 10.8          | \$ |                   | \$                 | \$ 7.3        |      | 1.6                   |          | 16.3              | \$<br>11.9       | \$ | 2.5                  |       | 26.5              |
| 2028  | \$<br>8.5     | \$ | 1.8              | l .            | 19.0               |                  | \$                   |      | \$               | 12.9           | 9.4                | \$ | 2.0                  | \$ 20.9               |    | 10.2          | \$ | 2.2               | \$                 | \$ 7.0        |      | 1.5                   |          | 15.6              | \$<br>11.1       | 1  | 2.4                  | \$    | 24.8              |
| 2029  | \$<br>8.1     | \$ | 1.7              |                | 18.2               | \$               | \$                   | 1.2  | \$               | 12.5           | \$<br>8.9          | \$ | 1.9                  | \$ 19.8               | \$ | 9.7           | \$ | 2.1               | \$<br>21.7         | \$ 6.7        | ÷    | 1.4                   | <u> </u> | 15.1              | \$<br>10.5       | \$ | 2.3                  | \$    | 23.5              |
| Total | \$<br>161.4   | \$ | 35.0             | i i            | 357.9              | \$<br>104.6      | -                    | 22.7 | \$               | 232.1          | \$<br>202.2        | \$ | 43.9                 | \$ 448.1              | \$ | 208.0         | \$ | 45.1              | \$<br>461.1        | \$ 135.2      |      | 29.3                  | \$       | 299.7             | \$<br>259.3      | \$ | 56.3                 |       | 574.5             |
| Ann.  | \$<br>13.8    | \$ | 3.0              | \$             | 30.7               | \$<br>9.0        | \$                   | 1.9  | \$               | 19.9           | \$<br>17.3         | \$ | 3.8                  | \$ 38.5               | \$ | 17.8          | \$ | 3.9               | \$<br>39.6         | \$ 11.6       | \$   | 2.5                   | \$       | 25.7              | \$<br>22.3       | \$ | 4.8                  | \$    | 49.3              |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.3k through F.3s.

#### Exhibit F.3ab Mean Present Value of Benefits Yearly Projections, WTP for Bronchitis as Basis for Non-Fatal Cases, at 3% Discount Rate, by System Size (All Systems)

#### TTHM - Preferred Alternative

| IIIII | - Pre | terre | a Aiter | rnative |             |                 |                   |                |         |                     |            |             |        |         |         |             |             |                   |                   |                     |            |            |        |         |         |             |                 |                   |                   |                     |            |             |
|-------|-------|-------|---------|---------|-------------|-----------------|-------------------|----------------|---------|---------------------|------------|-------------|--------|---------|---------|-------------|-------------|-------------------|-------------------|---------------------|------------|------------|--------|---------|---------|-------------|-----------------|-------------------|-------------------|---------------------|------------|-------------|
|       |       |       |         |         | Smoking/L   | ung Can         | cer Cessa         | tion Lag       |         |                     |            |             |        |         |         | Smoking/    | Bladder C   | ncer Cess         | ation Lag M       |                     |            |            |        |         |         | Arsenic/l   | Bladder C       | ancer Cessa       | tion Lag M        | odel                |            |             |
| Year  | <100  | 0 10  | 0-499   | 500-999 | 1,000-3,299 | 3,300-<br>9,999 | 10,000-<br>49,999 | 50,00<br>99,99 |         | 100,000-<br>999,999 | ≥1,000,000 | Total       | <100   | 100-499 | 500-999 | 1,000-3,299 | 3,300-9,999 | 10,000-<br>49,999 | 50,000-<br>99,999 | 100,000-<br>999,999 | ≥1,000,000 | Total      | <100   | 100-499 | 500-999 | 1,000-3,299 | 3,300-<br>9,999 | 10,000-<br>49,999 | 50,000-<br>99,999 | 100,000-<br>999,999 | ≥1,000,000 | Total       |
| 2005  | s -   | s     | -       | s -     | s -         | s -             | s -               | s              | - s     | -                   | s -        | \$ -        | s -    | s -     | s -     | s -         | s -         | s -               | s -               | s -                 | s -        | s -        | s -    | s -     | s -     | s -         | s -             | s -               | s -               | s -                 | s -        | s -         |
| 2006  | s -   | s     |         | s -     | s -         | \$ -            | s -               | s              |         |                     | s -        | s -         | s -    | s -     | s -     | s -         | s -         | s -               | s -               | s -                 | s -        | s -        | s -    | s -     | s -     | s -         | s -             | s -               | s -               | s -                 | s -        | s -         |
| 2007  | \$ -  | s     |         | s -     | s -         | \$ -            | s -               | s              |         |                     | \$ -       | s -         | s -    | \$ -    | s -     | s -         | s -         | s -               | s .               | s -                 | s -        | s -        | s -    | s -     | s -     | s -         | s -             | \$ -              | s -               | s -                 | s -        | s .         |
| 2008  | \$ -  | s     | -       | s -     | s -         | s -             | s -               | s              | - s     |                     | s -        | s -         | s -    | s -     | s -     | s -         | s -         | s -               | s -               | s -                 | s -        | s -        | \$ -   | s -     | s -     | s -         | s -             | \$ -              | s -               | s -                 | s -        | s -         |
| 2009  | \$ -  | s     |         | s -     | s -         | s -             | s -               | s              | . s     |                     | s -        | s -         | s -    | s -     | s -     | s -         | s -         | s -               | s -               | s -                 | s -        | s -        | s -    | s -     | s -     | s -         | s -             | s -               | s -               | s -                 | s -        | s -         |
| 2010  | \$ 0. | 0 8   | 0.1     | \$ 0.1  | \$ 0.6      | \$ 1.3          | \$ 6.5            | s              | 5.4 \$  | 23.4                | \$ 19.4    | \$ 56.9     | \$ 0.0 | \$ 0.1  | \$ 0.1  | \$ 0.5      | \$ 1.1      | \$ 6.1            | \$ 5.1            | \$ 22.3             | \$ 18.6    | \$ 53.9    | \$ 0.0 | \$ 0.2  | \$ 0.3  | \$ 10       | \$ 24           | \$ 12.1           | \$ 10.1           | \$ 43.9             | \$ 36.6    | \$ 106.6    |
| 2011  | \$ 0. | .0 \$ | 0.3     | \$ 0.4  | \$ 1.5      | \$ 3.4          | \$ 16.2           | 2 8            | 13.5 \$ | 58.7                | \$ 48.8    | \$ 142.9    | \$ 0.0 | \$ 0.2  | \$ 0.3  | \$ 1.1      | \$ 2.6      | \$ 14.0           | \$ 11.8           | \$ 51.2             | \$ 42.7    | \$ 124.0   | \$ 0.1 | \$ 0.5  | \$ 0.6  | \$ 2.5      | \$ 5.7          | \$ 28.8           | \$ 24.0           | \$ 104.5            | \$ 87.0    | \$ 253.6    |
| 2012  | \$ 0. | .1 \$ | 0.5     | \$ 0.6  | \$ 2.7      | \$ 6.0          |                   | 1              | 23.7 \$ | 103.2               | \$ 85.9    | \$ 251.3    | \$ 0.0 | \$ 0.4  | \$ 0.5  | \$ 1.9      | \$ 4.3      | \$ 23.3           | \$ 19.5           | \$ 84.8             | \$ 70.7    | \$ 205.4   | \$ 0.1 | \$ 0.8  | \$ 1.0  | \$ 4.3      | \$ 9.7          |                   | \$ 40.2           | \$ 175.1            | \$ 145.8   | \$ 425.4    |
| 2013  | \$ 0. | .1 \$ | 0.8     | \$ 1.0  | \$ 4.0      | \$ 9.0          | \$ 43.0           | \$             | 35.7 \$ | 155.4               | \$ 129.2   | \$ 378.2    | \$ 0.1 | \$ 0.5  | \$ 0.7  | \$ 2.8      | \$ 6.3      | \$ 33.5           | \$ 28.0           | \$ 121.9            | \$ 101.6   | \$ 295.2   | \$ 0.2 | \$ 1.2  | \$ 1.5  | \$ 6.3      | \$ 14.1         | \$ 69.6           | \$ 57.9           | \$ 252.1            | \$ 209.9   | \$ 612.8    |
| 2014  | \$ 0. | .1 \$ | 1.1     | \$ 1.3  | \$ 5.5      | \$ 12.4         | \$ 59.3           | \$ \$          | 46.8 \$ | 192.9               | \$ 160.4   | \$ 480.0    | \$ 0.1 | \$ 0.7  | \$ 0.9  | \$ 3.7      | \$ 8.4      | \$ 44.4           | \$ 34.7           | \$ 140.9            | \$ 117.5   | \$ 351.3   | \$ 0.2 | \$ 1.6  | \$ 2.0  | \$ 8.4      | \$ 18.7         | \$ 91.9           | \$ 71.9           | \$ 292.4            | \$ 243.3   | \$ 730.4    |
| 2015  | \$ 0. | .2 \$ | 1.4     | \$ 1.7  | \$ 7.2      | \$ 16.1         | \$ 74.4           | \$             | 55.6 \$ | 225.3               | \$ 187.4   | \$ 569.2    | \$ 0.1 | \$ 0.9  | \$ 1.1  | \$ 4.7      | \$ 10.6     | \$ 53.1           | \$ 38.9           | \$ 155.9            | \$ 129.9   | \$ 395.4   | \$ 0.3 | \$ 2.1  | \$ 2.5  | \$ 10.5     | \$ 23.5         | \$ 109.4          | \$ 80.0           | \$ 319.5            | \$ 265.8   | \$ 813.5    |
| 2016  | \$ 0. | .2 \$ | 1.7     | \$ 2.1  | \$ 8.7      | \$ 19.4         | \$ 86.1           | \$             | 63.0 \$ | 252.9               | \$ 210.3   | \$ 644.4    | \$ 0.1 | \$ 1.1  | \$ 1.3  | \$ 5.6      | \$ 12.5     | \$ 58.7           | \$ 42.3           | \$ 168.2            | \$ 140.1   | \$ 430.0   | \$ 0.3 | \$ 2.4  | \$ 2.9  | \$ 12.2     | \$ 27.4         | \$ 119.7          | \$ 85.4           | \$ 338.1            | \$ 281.3   | \$ 869.8    |
| 2017  | \$ 0. | .2 \$ | 1.9     | \$ 2.4  | \$ 9.8      | \$ 22.0         | \$ 95.8           | \$             | 69.1 \$ | 275.7               | \$ 229.4   | \$ 706.2    | \$ 0.2 | \$ 1.2  | \$ 1.5  | \$ 6.2      | \$ 13.8     | \$ 63.3           | \$ 45.1           | \$ 178.5            | \$ 148.7   | \$ 458.4   | \$ 0.3 | \$ 2.6  | \$ 3.2  | \$ 13.3     | \$ 29.7         | \$ 126.7          | \$ 89.2           | \$ 350.9            | \$ 291.8   | \$ 907.7    |
| 2018  | \$ 0. | .3 \$ | 2.1     | \$ 2.6  | \$ 10.7     | \$ 24.0         | \$ 103.7          | \$             | 74.0 \$ | 293.3               | \$ 244.0   | \$ 754.7    | \$ 0.2 | \$ 1.3  | \$ 1.6  | \$ 6.6      | \$ 14.9     | \$ 67.1           | \$ 47.5           | \$ 187.2            | \$ 155.9   | \$ 482.3   | \$ 0.4 | \$ 2.7  | \$ 3.4  | \$ 14.0     | \$ 31.3         | \$ 131.4          | \$ 91.7           | \$ 359.3            | \$ 298.8   | \$ 932.9    |
| 2019  | \$ 0. | .3 \$ | 2.2     | \$ 2.8  | \$ 11.5     | \$ 25.7         | \$ 110.0          | \$             | 77.6 \$ | 305.8               | \$ 254.4   | \$ 790.2    | \$ 0.2 | \$ 1.4  | \$ 1.7  | \$ 7.1      | \$ 15.8     | \$ 70.3           | \$ 49.5           | \$ 194.6            | \$ 162.1   | \$ 502.7   | \$ 0.4 | \$ 2.8  | \$ 3.5  | \$ 14.5     | \$ 32.4         | \$ 134.5          | \$ 93.3           | \$ 364.5            | \$ 303.1   | \$ 948.9    |
| 2020  | \$ 0. | .3 \$ | 2.4     | \$ 2.9  | \$ 12.0     | \$ 27.0         | \$ 114.6          | \$             | 80.2 \$ | 314.7               | \$ 261.9   | \$ 816.0    | \$ 0.2 | \$ 1.5  | \$ 1.8  | \$ 7.4      | \$ 16.6     | \$ 73.1           | \$ 51.2           | \$ 200.9            | \$ 167.3   | \$ 519.9   | \$ 0.4 | \$ 2.9  | \$ 3.5  | \$ 14.8     | \$ 33.1         | \$ 136.4          | \$ 94.2           | \$ 367.2            | \$ 305.4   | \$ 957.9    |
| 2021  | \$ 0. | .3 \$ | 2.4     | \$ 3.0  | \$ 12.5     | \$ 27.9         | \$ 117.9          | \$             | 82.0 \$ | 321.0               | \$ 267.1   | \$ 834.1    | \$ 0.2 | \$ 1.5  | \$ 1.9  | \$ 7.7      | \$ 17.3     | \$ 75.4           | \$ 52.6           | \$ 206.3            | \$ 171.7   | \$ 534.6   | \$ 0.4 | \$ 2.9  | \$ 3.6  | \$ 14.9     | \$ 33.5         | \$ 137.3          | \$ 94.6           | \$ 368.1            | \$ 306.2   | \$ 961.6    |
| 2022  | \$ 0. | .3 \$ | 2.5     | \$ 3.1  | \$ 12.8     | \$ 28.6         | \$ 120.1          | \$             | 83.3 \$ | 325.1               | \$ 270.5   | \$ 846.3    | \$ 0.2 | \$ 1.6  | \$ 1.9  | \$ 8.0      | \$ 17.9     | \$ 77.3           | \$ 53.8           | \$ 210.7            | \$ 175.4   | \$ 546.9   | \$ 0.4 | \$ 2.9  | \$ 3.6  | \$ 15.0     | \$ 33.7         | \$ 137.6          | \$ 94.6           | \$ 367.6            | \$ 305.7   | \$ 961.2    |
| 2023  | \$ 0. | .3 \$ | 2.5     | \$ 3.1  | \$ 13.0     | \$ 29.1         | \$ 121.6          | \$             | 84.0 \$ | 327.6               | \$ 272.6   | \$ 853.8    | \$ 0.2 | \$ 1.6  | \$ 2.0  | \$ 8.2      | \$ 18.4     | \$ 79.0           | \$ 54.9           | \$ 214.5            | \$ 178.5   | \$ 557.3   | \$ 0.4 | \$ 2.9  | \$ 3.6  | \$ 15.0     | \$ 33.7         | \$ 137.4          | \$ 94.2           | \$ 366.0            | \$ 304.4   | \$ 957.6    |
| 2024  | \$ 0. | .3 \$ | 2.6     | \$ 3.1  | \$ 13.1     | \$ 29.3         | \$ 122.5          | \$             | 84.4 \$ | 328.7               | \$ 273.5   | \$ 857.6    | \$ 0.2 | \$ 1.6  | \$ 2.0  | \$ 8.4      | \$ 18.9     | \$ 80.4           | \$ 55.7           | \$ 217.5            | \$ 181.1   | \$ 565.8   | \$ 0.4 | \$ 2.9  | \$ 3.6  | \$ 15.0     | \$ 33.6         | \$ 136.7          | \$ 93.7           | \$ 363.5            | \$ 302.3   | \$ 951.6    |
| 2025  | \$ 0. | .3 \$ | 2.6     | \$ 3.2  | \$ 13.2     | \$ 29.5         | \$ 122.8          | \$             | 84.5 \$ | 328.8               | \$ 273.6   | \$ 858.4    | \$ 0.2 | \$ 1.7  | \$ 2.1  | \$ 8.6      | \$ 19.2     | \$ 81.5           | \$ 56.4           | \$ 220.0            | \$ 183.1   | \$ 572.7   | \$ 0.4 | \$ 2.9  | \$ 3.6  | \$ 14.9     | \$ 33.4         | \$ 135.8          | \$ 92.9           | \$ 360.3            | \$ 299.7   | \$ 943.8    |
| 2026  | \$ 0. | .3 \$ | 2.6     | \$ 3.2  | \$ 13.2     | \$ 29.6         | \$ 122.8          | \$             | 84.4 \$ | 328.0               | \$ 272.9   | \$ 856.9    | \$ 0.2 | \$ 1.7  | \$ 2.1  | \$ 8.7      | \$ 19.5     | \$ 82.4           | \$ 56.9           | \$ 222.0            | \$ 184.7   | \$ 578.2   | \$ 0.4 | \$ 2.9  | \$ 3.5  | \$ 14.8     | \$ 33.1         | \$ 134.6          | \$ 92.0           | \$ 356.6            | \$ 296.6   | \$ 934.4    |
| 2027  | \$ 0. | .3 \$ | 2.6     | \$ 3.2  | \$ 13.2     | \$ 29.5         | \$ 122.5          | \$             | 84.0 \$ | 326.5               | \$ 271.6   | \$ 853.4    | \$ 0.2 | \$ 1.7  | \$ 2.1  | \$ 8.8      | \$ 19.8     | \$ 83.1           | \$ 57.3           | \$ 223.4            | \$ 185.9   | \$ 582.4   | \$ 0.4 | \$ 2.9  | \$ 3.5  | \$ 14.6     | \$ 32.8         | \$ 133.1          | \$ 91.0           | \$ 352.5            | \$ 293.2   | \$ 924.0    |
| 2028  | \$ 0. | .3 \$ | 2.5     | \$ 3.1  | \$ 12.9     | \$ 29.0         | \$ 120.2          | \$             | 82.4 \$ | 319.8               | \$ 266.1   | \$ 836.3    | \$ 0.2 | \$ 1.7  | \$ 2.1  | \$ 8.8      | \$ 19.7     | \$ 82.4           | \$ 56.8           | \$ 221.3            | \$ 184.1   | \$ 577.2   | \$ 0.4 | \$ 2.8  | \$ 3.4  | \$ 14.2     | \$ 31.9         | \$ 129.7          | \$ 88.6           | \$ 343.2            | \$ 285.5   | \$ 899.7    |
| 2029  | \$ 0. | .3 \$ | 2.5     | \$ 3.1  | \$ 12.8     | \$ 28.8         | \$ 119.0          | \$             | 81.5 \$ | 316.4               | \$ 263.3   | \$ 827.8    | \$ 0.2 | \$ 1.7  | \$ 2.1  | \$ 8.8      | \$ 19.8     | \$ 82.6           | \$ 56.9           | \$ 221.3            | \$ 184.2   | \$ 577.6   | \$ 0.4 | \$ 2.7  | \$ 3.4  | \$ 14.0     | \$ 31.4         | \$ 127.8          | \$ 87.2           | \$ 337.8            | \$ 280.9   | \$ 885.6    |
| Total | \$ 4. | .8 \$ | 37.4    | \$ 45.8 | \$ 190.8    | \$ 427.7        | \$ 1,827.3        | \$ 1,2         | 95.3 \$ | 5,123.2             | \$ 4,262.2 | \$ 13,214.6 | \$ 3.1 | \$ 24.3 | \$ 29.7 | \$ 123.8    | \$ 277.5    | \$ 1,230.9        | \$ 874.7          | \$ 3,463.5          | \$ 2,883.8 | \$ 8,911.3 | \$ 5.9 | \$ 45.9 | \$ 56.3 | \$ 234.2    | \$ 525.1        | \$ 2,218.8        | \$ 1,566.6        | \$ 6,183.1          | \$ 5,143.0 | \$ 15,979.0 |
| Ann.  | \$ 0. | .3 \$ | 2.1     | \$ 2.6  | \$ 11.0     | \$ 24.6         | \$ 104.9          | \$             | 74.4 \$ | 294.2               | \$ 244.8   | \$ 758.9    | \$ 0.2 | \$ 1.4  | \$ 1.7  | \$ 7.1      | \$ 15.9     | \$ 70.7           | \$ 50.2           | \$ 198.9            | \$ 165.6   | \$ 511.8   | \$ 0.3 | \$ 2.6  | \$ 3.2  | \$ 13.5     | \$ 30.2         | \$ 127.4          | \$ 90.0           | \$ 355.1            | \$ 295.4   | \$ 917.6    |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detain any not add exactly to totals due to independent rounding.

Source: Derivery met Stribbis F.3a through F.3i and F.3k through F.3a.

#### Exhibit F.3ac Mean Present Value of Benefits Yearly Projections, WTP for Bronchitis as Basis for Non-Fatal Cases, at 7% Discount Rate, by System Size (All Systems)

#### TTHM - Preferred Alternative

| IIIII | - Pret | rerrec | Alterna |         |            |           |             |             |            |            |            |        |         |         |            |            |            |             |            |            |            |        |         |         |            |            |            |             |            |            |            |
|-------|--------|--------|---------|---------|------------|-----------|-------------|-------------|------------|------------|------------|--------|---------|---------|------------|------------|------------|-------------|------------|------------|------------|--------|---------|---------|------------|------------|------------|-------------|------------|------------|------------|
|       |        |        |         | Sr      | noking/Lur | ng Cancer | r Cessatior | Lag Model   |            |            |            |        |         |         | Smoking/   | Bladder Ca | ncer Cess  | ation Lag M | odel       |            |            |        | 1       |         | Arsenic/E  | Bladder Ca | ncer Cessa | tion Lag Me | odel       |            |            |
| Year  | <10    | 10 1   | 101-500 | 501-1K  | 1,001-3,3K | 3,301-10K | 10,001-50K  | 50,001-100K | 100,001-1M | >1M        | Total      | <100   | 101-500 | 501-1K  | 1,001-3,3K | 3,301-10K  | 10,001-50K | 50,001-100K | 100,001-1M | >1M        | Total      | <100   | 101-500 | 501-1K  | 1,001-3,3K | 3,301-10K  | 10,001-50K | 50,001-100K | 100,001-1M | >1M        | Total      |
| 2005  | \$ -   | - \$   | · -     | \$ -    | \$ -       | \$ -      | \$ -        | \$ -        | \$ -       | \$ -       | \$ -       | \$ -   | \$ -    | \$ -    | \$ -       | \$ -       | \$ -       | \$ -        | \$ -       | \$ -       | \$ -       | \$ -   | \$ -    | \$ -    | \$ -       | \$ -       | \$ -       | \$ -        | \$ -       | \$ -       | \$ -       |
| 2006  | \$ -   | - \$   | · -     | \$ -    | ş -        | \$ -      | \$ -        | \$ -        | \$ -       | \$ -       | \$ -       | \$ -   | \$ -    | \$ -    | \$ -       | \$ -       | \$ -       | \$ -        | \$ -       | \$ -       | \$ -       | s -    | \$ -    | \$ -    | \$ -       | \$ -       | \$ -       | \$ -        | \$ -       | \$ -       | \$ -       |
| 2007  | \$ -   | - \$   | · -     | \$ -    | ş -        | \$ -      | \$ -        | \$ -        | \$ -       | \$ -       | \$ -       | \$ -   | \$ -    | \$ -    | \$ -       | \$ -       | \$ -       | \$ -        | \$ -       | \$ -       | \$ -       | s -    | \$ -    | \$ -    | \$ -       | \$ -       | \$ -       | \$ -        | \$ -       | \$ -       | \$ -       |
| 2008  | \$ -   | - \$   | · -     | \$ -    | ş -        | \$ -      | \$ -        | \$ -        | \$ -       | \$ -       | \$ -       | \$ -   | \$ -    | \$ -    | \$ -       | \$ -       | \$ -       | \$ -        | \$ -       | \$ -       | \$ -       | s -    | \$ -    | \$ -    | \$ -       | \$ -       | \$ -       | \$ -        | \$ -       | \$ -       | \$ -       |
| 2009  | \$ -   | - \$   | · -     | \$ -    | s -        | s -       | s -         | s -         | \$ -       | s -        | \$ -       | \$ -   | \$ -    | s -     | s -        | \$ -       | s -        | \$ -        | s -        | s -        | \$ -       | s -    | s -     | s -     | s -        | s -        | \$ -       | s -         | \$ -       | s -        | \$ -       |
| 2010  | \$ (   | 0.0 \$ | 0.1     | \$ 0.1  | \$ 0.5     | \$ 1.1    | \$ 5.3      | \$ 4.4      | \$ 19.3    | \$ 16.1    | \$ 47.0    | \$ 0.0 | \$ 0.1  | \$ 0.1  | \$ 0.4     | \$ 0.9     | \$ 5.0     | \$ 4.2      | \$ 18.4    | \$ 15.4    | \$ 44.5    | \$ 0.0 | \$ 0.2  | \$ 0.2  | \$ 0.9     | \$ 1.9     | \$ 10.0    | \$ 8.3      | \$ 36.3    | \$ 30.3    | \$ 88.1    |
| 2011  | \$ (   | 0.0 \$ | 0.2     | \$ 0.3  | \$ 1.2     | \$ 2.7    | \$ 12.9     | \$ 10.7     | \$ 46.7    | \$ 38.9    | \$ 113.7   | \$ 0.0 | \$ 0.2  | \$ 0.2  | \$ 0.9     | \$ 2.0     | \$ 11.2    | \$ 9.3      | \$ 40.8    | \$ 34.0    | \$ 98.7    | \$ 0.1 | \$ 0.4  | \$ 0.5  | \$ 2.0     | \$ 4.5     | \$ 22.9    | \$ 19.1     | \$ 83.1    | \$ 69.2    | \$ 201.8   |
| 2012  | \$ (   | 0.1 \$ | 0.4     | \$ 0.5  | \$ 2.0     | \$ 4.6    | \$ 21.9     | \$ 18.2     | \$ 79.1    | \$ 65.8    | \$ 192.5   | \$ 0.0 | \$ 0.3  | \$ 0.4  | \$ 1.5     | \$ 3.3     | \$ 17.8    | \$ 14.9     | \$ 65.0    | \$ 54.2    | \$ 157.3   | \$ 0.1 | \$ 0.6  | \$ 0.8  | \$ 3.3     | \$ 7.4     | \$ 37.0    | \$ 30.8     | \$ 134.1   | \$ 111.6   | \$ 325.8   |
| 2013  | \$ (   | 0.1 \$ | 0.6     | \$ 0.7  | \$ 3.0     | \$ 6.6    | \$ 31.7     | \$ 26.3     | \$ 114.6   | \$ 95.3    | \$ 278.8   | \$ 0.1 | \$ 0.4  | \$ 0.5  | \$ 2.1     | \$ 4.6     | \$ 24.7    | \$ 20.6     | \$ 89.8    | \$ 74.9    | \$ 217.7   | \$ 0.1 | \$ 0.9  | \$ 1.1  | \$ 4.6     | \$ 10.4    | \$ 51.3    | \$ 42.7     | \$ 185.9   | \$ 154.7   | \$ 451.8   |
| 2014  | \$ (   | 0.1 \$ | 0.8     | \$ 0.9  | \$ 3.9     | \$ 8.8    | \$ 42.1     | \$ 33.2     | \$ 136.9   | \$ 113.9   | \$ 340.7   | \$ 0.1 | \$ 0.5  | \$ 0.6  | \$ 2.7     | \$ 5.9     | \$ 31.5    | \$ 24.6     | \$ 100.0   | \$ 83.4    | \$ 249.3   | \$ 0.1 | \$ 1.2  | \$ 1.4  | \$ 5.9     | \$ 13.3    | \$ 65.3    | \$ 51.0     | \$ 207.5   | \$ 172.7   | \$ 518.4   |
| 2015  | \$ (   | 0.1 \$ | 1.0     | \$ 1.2  | \$ 4.9     | \$ 11.0   | \$ 50.8     | \$ 38.0     | \$ 153.9   | \$ 128.0   | \$ 388.9   | \$ 0.1 | \$ 0.6  | \$ 0.8  | \$ 3.2     | \$ 7.3     | \$ 36.3    | \$ 26.6     | \$ 106.5   | \$ 88.7    | \$ 270.1   | \$ 0.2 | \$ 1.4  | \$ 1.7  | \$ 7.2     | \$ 16.1    | \$ 74.8    | \$ 54.6     | \$ 218.3   | \$ 181.6   | \$ 555.8   |
| 2016  | \$ (   | 0.1 \$ | 1.1     | \$ 1.4  | \$ 5.7     | \$ 12.8   | \$ 56.6     | \$ 41.4     | \$ 166.3   | \$ 138.3   | \$ 423.8   | \$ 0.1 | \$ 0.7  | \$ 0.9  | \$ 3.7     | \$ 8.2     | \$ 38.6    | \$ 27.8     | \$ 110.6   | \$ 92.1    | \$ 282.8   | \$ 0.2 | \$ 1.6  | \$ 1.9  | \$ 8.0     | \$ 18.0    | \$ 78.7    | \$ 56.2     | \$ 222.4   | \$ 185.0   | \$ 572.0   |
| 2017  | \$ (   | 0.2 \$ | 1.2     | \$ 1.5  | \$ 6.2     | \$ 13.9   | \$ 60.6     | \$ 43.8     | \$ 174.5   | \$ 145.2   | \$ 447.1   | \$ 0.1 | \$ 0.8  | \$ 0.9  | \$ 3.9     | \$ 8.7     | \$ 40.1    | \$ 28.5     | \$ 113.0   | \$ 94.1    | \$ 290.2   | \$ 0.2 | \$ 1.6  | \$ 2.0  | \$ 8.4     | \$ 18.8    | \$ 80.2    | \$ 56.5     | \$ 222.1   | \$ 184.7   | \$ 574.6   |
| 2018  | \$ (   | 0.2 \$ | 1.3     | \$ 1.6  | \$ 6.5     | \$ 14.6   | \$ 63.2     | \$ 45.1     | \$ 178.7   | \$ 148.7   | \$ 459.9   | \$ 0.1 | \$ 0.8  | \$ 1.0  | \$ 4.1     | \$ 9.1     | \$ 40.9    | \$ 28.9     | \$ 114.1   | \$ 95.0    | \$ 293.9   | \$ 0.2 | \$ 1.7  | \$ 2.0  | \$ 8.5     | \$ 19.1    | \$ 80.1    | \$ 55.9     | \$ 218.9   | \$ 182.1   | \$ 568.5   |
| 2019  | \$ (   | 0.2 \$ | 1.3     | \$ 1.6  | \$ 6.7     | \$ 15.1   | \$ 64.5     | \$ 45.5     | \$ 179.4   | \$ 149.2   | \$ 463.6   | \$ 0.1 | \$ 0.8  | \$ 1.0  | \$ 4.1     | \$ 9.3     | \$ 41.3    | \$ 29.0     | \$ 114.2   | \$ 95.1    | \$ 294.9   | \$ 0.2 | \$ 1.7  | \$ 2.0  | \$ 8.5     | \$ 19.0    | \$ 78.9    | \$ 54.7     | \$ 213.8   | \$ 177.8   | \$ 556.6   |
| 2020  | \$ (   | 0.2 \$ | 1.3     | \$ 1.6  | \$ 6.8     | \$ 15.2   | \$ 64.7     | \$ 45.3     | \$ 177.7   | \$ 147.9   | \$ 460.8   | \$ 0.1 | \$ 0.8  | \$ 1.0  | \$ 4.2     | \$ 9.4     | \$ 41.3    | \$ 28.9     | \$ 113.5   | \$ 94.5    | \$ 293.6   | \$ 0.2 | \$ 1.6  | \$ 2.0  | \$ 8.3     | \$ 18.7    | \$ 77.0    | \$ 53.2     | \$ 207.4   | \$ 172.5   | \$ 540.9   |
| 2021  | \$ (   | 0.2 \$ | 1.3     | \$ 1.6  | \$ 6.8     | \$ 15.2   | \$ 64.1     | \$ 44.6     | \$ 174.5   | \$ 145.2   | \$ 453.4   | \$ 0.1 | \$ 0.8  | \$ 1.0  | \$ 4.2     | \$ 9.4     | \$ 41.0    | \$ 28.6     | \$ 112.1   | \$ 93.3    | \$ 290.6   | \$ 0.2 | \$ 1.6  | \$ 2.0  | \$ 8.1     | \$ 18.2    | \$ 74.7    | \$ 51.4     | \$ 200.1   | \$ 166.4   | \$ 522.7   |
| 2022  | \$ (   | 0.2 \$ | 1.3     | \$ 1.6  | \$ 6.7     | \$ 15.0   | \$ 62.8     | \$ 43.6     | \$ 170.1   | \$ 141.5   | \$ 442.8   | \$ 0.1 | \$ 0.8  | \$ 1.0  | \$ 4.2     | \$ 9.4     | \$ 40.5    | \$ 28.2     | \$ 110.3   | \$ 91.8    | \$ 286.2   | \$ 0.2 | \$ 1.5  | \$ 1.9  | \$ 7.9     | \$ 17.6    | \$ 72.0    | \$ 49.5     | \$ 192.4   | \$ 160.0   | \$ 502.9   |
| 2023  | \$ (   | 0.2 \$ | 1.3     | \$ 1.6  | \$ 6.5     | \$ 14.6   | \$ 61.2     | \$ 42.3     | \$ 165.0   | \$ 137.3   | \$ 430.0   | \$ 0.1 | \$ 0.8  | \$ 1.0  | \$ 4.1     | \$ 9.3     | \$ 39.8    | \$ 27.6     | \$ 108.0   | \$ 89.9    | \$ 280.7   | \$ 0.2 | \$ 1.5  | \$ 1.8  | \$ 7.6     | \$ 17.0    | \$ 69.2    | \$ 47.5     | \$ 184.3   | \$ 153.3   | \$ 482.3   |
| 2024  | \$ (   | 0.2 \$ | 1.2     | \$ 1.5  | \$ 6.3     | \$ 14.2   | \$ 59.4     | \$ 40.9     | \$ 159.4   | \$ 132.6   | \$ 415.8   | \$ 0.1 | \$ 0.8  | \$ 1.0  | \$ 4.1     | \$ 9.1     | \$ 39.0    | \$ 27.0     | \$ 105.5   | \$ 87.8    | \$ 274.3   | \$ 0.2 | \$ 1.4  | \$ 1.7  | \$ 7.3     | \$ 16.3    | \$ 66.3    | \$ 45.4     | \$ 176.2   | \$ 146.6   | \$ 461.4   |
| 2025  | \$ (   | 0.2 \$ | 1.2     | \$ 1.5  | \$ 6.1     | \$ 13.8   | \$ 57.3     | \$ 39.4     | \$ 153.5   | \$ 127.7   | \$ 400.7   | \$ 0.1 | \$ 0.8  | \$ 1.0  | \$ 4.0     | \$ 9.0     | \$ 38.0    | \$ 26.3     | \$ 102.7   | \$ 85.5    | \$ 267.3   | \$ 0.2 | \$ 1.4  | \$ 1.7  | \$ 6.9     | \$ 15.6    | \$ 63.4    | \$ 43.4     | \$ 168.2   | \$ 139.9   | \$ 440.5   |
| 2026  | \$ (   | 0.1    | 1.2     | \$ 1.4  | \$ 5.9     | \$ 13.3   | \$ 55.2     | \$ 37.9     | \$ 147.4   | \$ 122.6   | \$ 385.0   | \$ 0.1 | \$ 0.8  | \$ 0.9  | \$ 3.9     | \$ 8.8     | \$ 37.0    | \$ 25.6     | \$ 99.7    | \$ 83.0    | \$ 259.8   | \$ 0.2 | \$ 1.3  | \$ 1.6  | \$ 6.6     | \$ 14.9    | \$ 60.5    | \$ 41.3     | \$ 160.2   | \$ 133.3   | \$ 419.8   |
| 2027  | \$ (   | 0.1 \$ | 1.1     | \$ 1.4  | \$ 5.7     | \$ 12.8   | \$ 53.0     | \$ 36.3     | \$ 141.2   | \$ 117.5   | \$ 369.1   | \$ 0.1 | \$ 0.7  | \$ 0.9  | \$ 3.8     | \$ 8.6     | \$ 35.9    | \$ 24.8     | \$ 96.6    | \$ 80.4    | \$ 251.9   | \$ 0.2 | \$ 1.2  | \$ 1.5  | \$ 6.3     | \$ 14.2    | \$ 57.6    | \$ 39.3     | \$ 152.5   | \$ 126.8   | \$ 399.6   |
| 2028  | \$ (   | 0.1 \$ | 1.1     | \$ 1.3  | \$ 5.4     | \$ 12.1   | \$ 50.0     | \$ 34.3     | \$ 133.1   | \$ 110.8   | \$ 348.2   | \$ 0.1 | \$ 0.7  | \$ 0.9  | \$ 3.7     | \$ 8.2     | \$ 34.3    | \$ 23.7     | \$ 92.1    | \$ 76.7    | \$ 240.3   | \$ 0.1 | \$ 1.2  | \$ 1.4  | \$ 5.9     | \$ 13.3    | \$ 54.0    | \$ 36.9     | \$ 142.9   | \$ 118.8   | \$ 374.6   |
| 2029  | \$ (   | 0.1 \$ | 1.0     | \$ 1.2  | \$ 5.1     | \$ 11.5   | \$ 47.7     | \$ 32.7     | \$ 126.8   | \$ 105.5   | \$ 331.7   | \$ 0.1 | \$ 0.7  | \$ 0.9  | \$ 3.5     | \$ 7.9     | \$ 33.1    | \$ 22.8     | \$ 88.7    | \$ 73.8    | \$ 231.5   | \$ 0.1 | \$ 1.1  | \$ 1.4  | \$ 5.6     | \$ 12.6    | \$ 51.2    | \$ 34.9     | \$ 135.4   | \$ 112.6   | \$ 354.9   |
| Total | \$ :   | 2.6 \$ | 20.0    | \$ 24.5 | \$ 102.1   | \$ 229.0  | \$ 985.1    | \$ 704.1    | \$ 2,798.1 | \$ 2,327.8 | \$ 7,193.3 | \$ 1.7 | \$ 13.0 | \$ 15.9 | \$ 66.2    | \$ 148.5   | \$ 667.2   | \$ 478.1    | \$ 1,901.6 | \$ 1,583.5 | \$ 4,875.6 | \$ 3.2 | \$ 25.1 | \$ 30.7 | \$ 128.0   | \$ 286.9   | \$ 1,224.8 | \$ 872.7    | \$ 3,461.9 | \$ 2,879.7 | \$ 8,913.1 |
| Ann.  | \$ (   | 0.2 \$ | 1.7     | \$ 2.1  | \$ 8.8     | \$ 19.6   | \$ 84.5     | \$ 60.4     | \$ 240.1   | \$ 199.7   | \$ 617.3   | \$ 0.1 | \$ 1.1  | \$ 1.4  | \$ 5.7     | \$ 12.7    | \$ 57.3    | \$ 41.0     | \$ 163.2   | \$ 135.9   | \$ 418.4   | \$ 0.3 | \$ 2.2  | \$ 2.6  | \$ 11.0    | \$ 24.6    | \$ 105.1   | \$ 74.9     | \$ 297.1   | \$ 247.1   | \$ 764.8   |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005. Ann. = value of total annualized at discount rate. Detail may not add exactly to totals due to independent rounding. Source: Derived from Exhibits F.3a through F.3t and F.3k through F.3s.

# Section F.4 Model Outputs - Preferred Alternative HAA5 as Indicator Lymphoma for Non-Fatal Cases

Exhibit F.4a Projections of Yearly Benefits, WTP for Lymphoma as Basis for Non-Fatal Cases (All Surface Water Systems)

**HAA5 - Preferred Alternative** 

|       | Smoking/Lung Cancer<br>Cessation Lag Model |               |                    |              | _                    | Bladder C<br>on Lag M |    |                    |    | Bladder C<br>on Lag M |                |                    |     |                     |
|-------|--------------------------------------------|---------------|--------------------|--------------|----------------------|-----------------------|----|--------------------|----|-----------------------|----------------|--------------------|-----|---------------------|
|       |                                            |               |                    | Perc<br>ence | ent<br>Bound         |                       |    | 90 Po              |    |                       |                | 90 P               |     | -                   |
| Year  |                                            | Mean<br>Value | Lower<br>th %tile) | (9           | Upper<br>95th %tile) | Mean<br>Value         |    | Lower<br>th %tile) | (9 | Upper<br>5th %tile)   | Mean<br>Value  | Lower<br>th %tile) | (9: | Upper<br>5th %tile) |
| 2005  | \$                                         | -             | \$<br>_            | \$           | -                    | \$<br>-               | \$ | -                  | \$ | -                     | \$<br>-        | \$<br>_            | \$  | -                   |
| 2006  | \$                                         | _             | \$<br>_            | \$           | _                    | \$<br>_               | \$ | _                  | \$ | _                     | \$<br>_        | \$<br>_            | \$  | _                   |
| 2007  | \$                                         | _             | \$<br>_            | \$           | -                    | \$<br>-               | \$ | _                  | \$ | _                     | \$<br>-        | \$<br>_            | \$  | _                   |
| 2008  | \$                                         | _             | \$<br>-            | \$           | -                    | \$<br>-               | \$ | -                  | \$ | -                     | \$<br>-        | \$<br>-            | \$  | -                   |
| 2009  | \$                                         | _             | \$<br>-            | \$           | -                    | \$<br>-               | \$ | -                  | \$ | -                     | \$<br>-        | \$<br>-            | \$  | -                   |
| 2010  | \$                                         | 142.4         | \$<br>21.8         | \$           | 327.4                | \$<br>138.4           | \$ | 21.2               | \$ | 318.1                 | \$<br>270.4    | \$<br>41.4         | \$  | 621.7               |
| 2011  | \$                                         | 368.2         | \$<br>56.4         | \$           | 846.9                | \$<br>327.0           | \$ | 50.1               | \$ | 752.1                 | \$<br>660.0    | \$<br>101.1        | \$  | 1,518.0             |
| 2012  | \$                                         | 666.1         | \$<br>101.9        | \$           | 1,530.2              | \$<br>556.3           | \$ | 85.1               | \$ | 1,278.0               | \$<br>1,136.8  | \$<br>174.0        | \$  | 2,611.4             |
| 2013  | \$                                         | 1,032.0       | \$<br>158.0        | \$           | 2,370.4              | \$<br>821.7           | \$ | 125.8              | \$ | 1,887.3               | \$<br>1,682.9  | \$<br>257.6        | \$  | 3,865.5             |
| 2014  | \$                                         | 1,345.5       | \$<br>205.7        | \$           | 3,093.1              | \$<br>1,001.6         | \$ | 153.1              | \$ | 2,302.4               | \$<br>2,055.0  | \$<br>314.2        | \$  | 4,724.0             |
| 2015  | \$                                         | 1,639.6       | \$<br>250.7        | \$           | 3,770.9              | \$<br>1,154.9         | \$ | 176.6              | \$ | 2,656.1               | \$<br>2,345.6  | \$<br>358.7        | \$  | 5,394.5             |
| 2016  | \$                                         | 1,908.8       | \$<br>291.6        | \$           | 4,389.7              | \$<br>1,288.4         | \$ | 196.8              | \$ | 2,963.0               | \$<br>2,573.2  | \$<br>393.1        | \$  | 5,917.7             |
| 2017  | \$                                         | 2,152.7       | \$<br>328.7        | \$           | 4,955.4              | \$<br>1,410.5         | \$ | 215.4              | \$ | 3,246.8               | \$<br>2,759.1  | \$<br>421.3        | \$  | 6,351.1             |
| 2018  | \$                                         | 2,367.0       | \$<br>360.9        | \$           | 5,453.1              | \$<br>1,524.7         | \$ | 232.5              | \$ | 3,512.7               | \$<br>2,915.4  | \$<br>444.5        | \$  | 6,716.6             |
| 2019  | \$                                         | 2,550.0       | \$<br>388.4        | \$           | 5,884.7              | \$<br>1,632.9         | \$ | 248.7              | \$ | 3,768.2               | \$<br>3,049.6  | \$<br>464.6        | \$  | 7,037.6             |
| 2020  | \$                                         | 2,709.0       | \$<br>412.5        | \$           | 6,254.3              | \$<br>1,736.0         | \$ | 264.3              | \$ | 4,008.0               | \$<br>3,166.8  | \$<br>482.2        | \$  | 7,311.4             |
| 2021  | \$                                         | 2,849.0       | \$<br>433.3        | \$           | 6,577.9              | \$<br>1,834.9         | \$ | 279.1              | \$ | 4,236.5               | \$<br>3,270.7  | \$<br>497.5        | \$  | 7,551.7             |
| 2022  | \$                                         | 2,974.1       | \$<br>452.2        | \$           | 6,878.4              | \$<br>1,930.1         | \$ | 293.5              | \$ | 4,463.9               | \$<br>3,364.0  | \$<br>511.5        | \$  | 7,780.3             |
| 2023  | \$                                         | 3,087.3       | \$<br>469.6        | \$           | 7,142.0              | \$<br>2,022.0         | \$ | 307.5              | \$ | 4,677.7               | \$<br>3,449.0  | \$<br>524.6        | \$  | 7,978.7             |
| 2024  | \$                                         | 3,190.8       | \$<br>485.0        | \$           | 7,384.3              | \$<br>2,111.1         | \$ | 320.9              | \$ | 4,885.7               | \$<br>3,527.1  | \$<br>536.2        | \$  | 8,162.7             |
| 2025  | \$                                         | 3,286.4       | \$<br>498.8        | \$           | 7,605.9              | \$<br>2,197.6         | \$ | 333.6              | \$ | 5,086.2               | \$<br>3,599.9  | \$<br>546.4        | \$  | 8,331.5             |
| 2026  | \$                                         | 3,375.4       | \$<br>511.7        | \$           | 7,818.7              | \$<br>2,281.9         | \$ | 345.9              | \$ | 5,285.7               | \$<br>3,668.2  | \$<br>556.0        | \$  | 8,496.9             |
| 2027  | \$                                         | 3,459.0       | \$<br>523.7        | \$           | 8,024.6              | \$<br>2,364.0         | \$ | 357.9              | \$ | 5,484.3               | \$<br>3,732.9  | \$<br>565.2        | \$  | 8,660.1             |
| 2028  | \$                                         | 3,492.1       | \$<br>529.2        | \$           | 8,097.1              | \$<br>2,412.5         | \$ | 365.6              | \$ | 5,593.9               | \$<br>3,745.5  | \$<br>567.6        | \$  | 8,684.5             |
| 2029  | \$                                         | 3,557.7       | \$<br>538.4        | \$           | 8,256.9              | \$<br>2,484.0         | \$ | 375.9              | \$ | 5,765.1               | \$<br>3,795.0  | \$<br>574.3        | \$  | 8,807.6             |
| Total | \$                                         | 46,153.1      | \$<br>7,018.6      | \$           | 106,661.9            | \$<br>31,230.6        | \$ | 4,749.6            | \$ | 72,171.6              | \$<br>54,767.0 | \$<br>8,331.8      | \$  | 126,523.4           |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

# Exhibit F.4b Projections of Yearly Benefits, WTP for Lymphoma as Basis for Non-Fatal Cases (All Ground Water Systems)

**HAA5 - Preferred Alternative** 

|       |               | g/Lung C<br>ion Lag I |    |                     |               | _  | Bladder C<br>on Lag M |    |                     |               | ladder C<br>on Lag M |    | _                   |
|-------|---------------|-----------------------|----|---------------------|---------------|----|-----------------------|----|---------------------|---------------|----------------------|----|---------------------|
|       |               | 90 P<br>Confider      |    | -                   |               |    | 90 P                  |    |                     |               | 90 P                 |    |                     |
| Year  | Mean<br>Value | Lower<br>th %tile)    | (9 | Upper<br>5th %tile) | Mean<br>Value |    | Lower<br>th %tile)    | (9 | Upper<br>5th %tile) | Mean<br>Value | Lower<br>h %tile)    | (9 | Upper<br>5th %tile) |
| 2005  | \$<br>-       | \$<br>-               | \$ | -                   | \$<br>-       | \$ | -                     | \$ | -                   | \$<br>-       | \$<br>-              | \$ | -                   |
| 2006  | \$<br>-       | \$<br>-               | \$ | -                   | \$<br>-       | \$ | -                     | \$ | -                   | \$<br>-       | \$<br>-              | \$ | -                   |
| 2007  | \$<br>-       | \$<br>-               | \$ | -                   | \$<br>-       | \$ | -                     | \$ | -                   | \$<br>-       | \$<br>-              | \$ | -                   |
| 2008  | \$<br>-       | \$<br>-               | \$ | -                   | \$<br>-       | \$ | -                     | \$ | -                   | \$<br>-       | \$<br>-              | \$ | -                   |
| 2009  | \$<br>-       | \$<br>-               | \$ | -                   | \$<br>-       | \$ | -                     | \$ | -                   | \$<br>-       | \$<br>-              | \$ | -                   |
| 2010  | \$<br>11.5    | \$<br>1.8             | \$ | 26.4                | \$<br>9.6     | \$ | 1.5                   | \$ | 22.1                | \$<br>20.3    | \$<br>3.1            | \$ | 46.7                |
| 2011  | \$<br>29.8    | \$<br>4.6             | \$ | 68.6                | \$<br>23.1    | \$ | 3.5                   | \$ | 53.1                | \$<br>50.5    | \$<br>7.7            | \$ | 116.1               |
| 2012  | \$<br>54.0    | \$<br>8.3             | \$ | 124.1               | \$<br>39.7    | \$ | 6.1                   | \$ | 91.3                | \$<br>88.1    | \$<br>13.5           | \$ | 202.4               |
| 2013  | \$<br>83.7    | \$<br>12.8            | \$ | 192.2               | \$<br>59.3    | \$ | 9.1                   | \$ | 136.2               | \$<br>131.6   | \$<br>20.1           | \$ | 302.3               |
| 2014  | \$<br>113.1   | \$<br>17.3            | \$ | 259.9               | \$<br>76.9    | \$ | 11.8                  | \$ | 176.7               | \$<br>170.1   | \$<br>26.0           | \$ | 391.0               |
| 2015  | \$<br>141.7   | \$<br>21.7            | \$ | 325.8               | \$<br>93.0    | \$ | 14.2                  | \$ | 213.8               | \$<br>203.4   | \$<br>31.1           | \$ | 467.7               |
| 2016  | \$<br>167.3   | \$<br>25.6            | \$ | 384.8               | \$<br>106.7   | \$ | 16.3                  | \$ | 245.3               | \$<br>229.4   | \$<br>35.0           | \$ | 527.5               |
| 2017  | \$<br>190.0   | \$<br>29.0            | \$ | 437.4               | \$<br>118.8   | \$ | 18.1                  | \$ | 273.5               | \$<br>249.7   | \$<br>38.1           | \$ | 574.8               |
| 2018  | \$<br>210.2   | \$<br>32.1            | \$ | 484.3               | \$<br>130.2   | \$ | 19.9                  | \$ | 299.9               | \$<br>266.4   | \$<br>40.6           | \$ | 613.8               |
| 2019  | \$<br>227.9   | \$<br>34.7            | \$ | 526.0               | \$<br>140.9   | \$ | 21.5                  | \$ | 325.3               | \$<br>280.5   | \$<br>42.7           | \$ | 647.4               |
| 2020  | \$<br>243.5   | \$<br>37.1            | \$ | 562.1               | \$<br>151.2   | \$ | 23.0                  | \$ | 349.1               | \$<br>292.6   | \$<br>44.6           | \$ | 675.5               |
| 2021  | \$<br>257.1   | \$<br>39.1            | \$ | 593.6               | \$<br>161.1   | \$ | 24.5                  | \$ | 371.9               | \$<br>303.1   | \$<br>46.1           | \$ | 699.8               |
| 2022  | \$<br>269.2   | \$<br>40.9            | \$ | 622.6               | \$<br>170.5   | \$ | 25.9                  | \$ | 394.4               | \$<br>312.4   | \$<br>47.5           | \$ | 722.4               |
| 2023  | \$<br>280.1   | \$<br>42.6            | \$ | 648.1               | \$<br>179.7   | \$ | 27.3                  | \$ | 415.7               | \$<br>320.7   | \$<br>48.8           | \$ | 741.8               |
| 2024  | \$<br>290.1   | \$<br>44.1            | \$ | 671.4               | \$<br>188.6   | \$ | 28.7                  | \$ | 436.4               | \$<br>328.2   | \$<br>49.9           | \$ | 759.5               |
| 2025  | \$<br>299.3   | \$<br>45.4            | \$ | 692.8               | \$<br>197.2   | \$ | 29.9                  | \$ | 456.4               | \$<br>335.1   | \$<br>50.9           | \$ | 775.5               |
| 2026  | \$<br>307.9   | \$<br>46.7            | \$ | 713.1               | \$<br>205.6   | \$ | 31.2                  | \$ | 476.2               | \$<br>341.5   | \$<br>51.8           | \$ | 791.1               |
| 2027  | \$<br>315.9   | \$<br>47.8            | \$ | 732.8               | \$<br>213.8   | \$ | 32.4                  | \$ | 495.9               | \$<br>347.5   | \$<br>52.6           | \$ | 806.3               |
| 2028  | \$<br>319.2   | \$<br>48.4            | \$ | 740.2               | \$<br>218.9   | \$ | 33.2                  | \$ | 507.5               | \$<br>348.7   | \$<br>52.8           | \$ | 808.4               |
| 2029  | \$<br>325.5   | \$<br>49.3            | \$ | 755.4               | \$<br>226.0   | \$ | 34.2                  | \$ | 524.6               | \$<br>353.2   | \$<br>53.5           | \$ | 819.7               |
| Total | \$<br>4,137.0 | \$<br>629.1           | \$ | 9,561.6             | \$<br>2,710.7 | \$ | 412.2                 | \$ | 6,265.3             | \$<br>4,972.9 | \$<br>756.4          | \$ | 11,489.7            |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

### Exhibit F.4c Projections of Yearly Benefits, WTP for Lymphoma as Basis for Non-Fatal Cases (All Water Systems)

HAA5 - Preferred Alternative

|       |                |    | king/Lung C<br>sation Lag N |                       |                | _  | Bladder C          |                       |                |    | /Bladder (<br>tion Lag N |    |                      |
|-------|----------------|----|-----------------------------|-----------------------|----------------|----|--------------------|-----------------------|----------------|----|--------------------------|----|----------------------|
|       |                |    | 90 F<br>Confide             |                       |                |    |                    | cent<br>e Bound       |                |    | 90 I<br>Confide          |    | ent<br>Bound         |
| Year  | Mean<br>Value  | (  | Lower<br>5th %tile)         | Upper<br>(95th %tile) | Mean<br>Value  | (5 | Lower<br>th %tile) | Upper<br>(95th %tile) | Mean<br>Value  | (5 | Lower<br>ith %tile)      | (  | Upper<br>95th %tile) |
| 2005  | \$<br>-        | \$ | -                           | \$<br>-               | \$<br>-        | \$ | -                  | \$<br>-               | \$<br>-        | \$ | -                        | \$ | -                    |
| 2006  | \$<br>-        | \$ | -                           | \$<br>-               | \$<br>-        | \$ | -                  | \$<br>-               | \$<br>-        | \$ | -                        | \$ | -                    |
| 2007  | \$<br>-        | \$ | -                           | \$<br>-               | \$<br>-        | \$ | -                  | \$<br>-               | \$<br>-        | \$ | -                        | \$ | -                    |
| 2008  | \$<br>-        | \$ | -                           | \$<br>-               | \$<br>-        | \$ | -                  | \$<br>-               | \$<br>-        | \$ | -                        | \$ | -                    |
| 2009  | \$<br>-        | \$ | -                           | \$<br>-               | \$<br>-        | \$ | -                  | \$<br>-               | \$<br>-        | \$ | -                        | \$ | -                    |
| 2010  | \$<br>153.9    | \$ | 23.6                        | \$<br>353.8           | \$<br>148.0    | \$ | 22.7               | \$<br>340.2           | \$<br>290.7    | \$ | 44.5                     | \$ | 668.4                |
| 2011  | \$<br>398.0    | \$ | 60.9                        | \$<br>915.5           | \$<br>350.1    | \$ | 53.6               | \$<br>805.2           | \$<br>710.5    | \$ | 108.8                    | \$ | 1,634.1              |
| 2012  | \$<br>720.1    | \$ | 110.2                       | \$<br>1,654.3         | \$<br>596.1    | \$ | 91.2               | \$<br>1,369.3         | \$<br>1,224.8  | \$ | 187.4                    | \$ | 2,813.8              |
| 2013  | \$<br>1,115.7  | \$ | 170.8                       | \$<br>2,562.6         | \$<br>881.0    | \$ | 134.8              | \$<br>2,023.6         | \$<br>1,814.5  | \$ | 277.7                    | \$ | 4,167.8              |
| 2014  | \$<br>1,458.6  | \$ | 223.0                       | \$<br>3,353.0         | \$<br>1,078.4  | \$ | 164.9              | \$<br>2,479.1         | \$<br>2,225.1  | \$ | 340.2                    | \$ | 5,115.0              |
| 2015  | \$<br>1,781.3  | \$ | 272.4                       | \$<br>4,096.7         | \$<br>1,247.9  | \$ | 190.8              | \$<br>2,869.9         | \$<br>2,549.0  | \$ | 389.8                    | \$ | 5,862.2              |
| 2016  | \$<br>2,076.1  | \$ | 317.2                       | \$<br>4,774.5         | \$<br>1,395.1  | \$ | 213.1              | \$<br>3,208.3         | \$<br>2,802.6  | \$ | 428.1                    | \$ | 6,445.2              |
| 2017  | \$<br>2,342.8  | \$ | 357.7                       | \$<br>5,392.8         | \$<br>1,529.3  | \$ | 233.5              | \$<br>3,520.4         | \$<br>3,008.8  | \$ | 459.4                    | \$ | 6,925.9              |
| 2018  | \$<br>2,577.2  | \$ | 393.0                       | \$<br>5,937.4         | \$<br>1,654.9  | \$ | 252.3              | \$<br>3,812.7         | \$<br>3,181.9  | \$ | 485.2                    | \$ | 7,330.4              |
| 2019  | \$<br>2,778.0  | \$ | 423.2                       | \$<br>6,410.7         | \$<br>1,773.8  | \$ | 270.2              | \$<br>4,093.4         | \$<br>3,330.1  | \$ | 507.3                    | \$ | 7,685.0              |
| 2020  | \$<br>2,952.4  | \$ | 449.6                       | \$<br>6,816.4         | \$<br>1,887.2  | \$ | 287.4              | \$<br>4,357.1         | \$<br>3,459.4  | \$ | 526.8                    | \$ | 7,986.9              |
| 2021  | \$<br>3,106.0  | \$ | 472.4                       | \$<br>7,171.5         | \$<br>1,995.9  | \$ | 303.6              | \$<br>4,608.4         | \$<br>3,573.8  | \$ | 543.6                    | \$ | 8,251.5              |
| 2022  | \$<br>3,243.3  | \$ | 493.2                       | \$<br>7,501.0         | \$<br>2,100.6  | \$ | 319.4              | \$<br>4,858.3         | \$<br>3,676.4  | \$ | 559.0                    | \$ | 8,502.7              |
| 2023  | \$<br>3,367.4  | \$ | 512.2                       | \$<br>7,790.1         | \$<br>2,201.7  | \$ | 334.9              | \$<br>5,093.4         | \$<br>3,769.6  | \$ | 573.3                    | \$ | 8,720.5              |
| 2024  | \$<br>3,480.9  | \$ | 529.2                       | \$<br>8,055.7         | \$<br>2,299.7  | \$ | 349.6              | \$<br>5,322.1         | \$<br>3,855.3  | \$ | 586.1                    | \$ | 8,922.2              |
| 2025  | \$<br>3,585.7  | \$ | 544.3                       | \$<br>8,298.7         | \$<br>2,394.8  | \$ | 363.5              | \$<br>5,542.6         | \$<br>3,935.0  | \$ | 597.3                    | \$ | 9,107.0              |
| 2026  | \$<br>3,683.3  | \$ | 558.3                       | \$<br>8,531.8         | \$<br>2,487.4  | \$ | 377.1              | \$<br>5,761.9         | \$<br>4,009.7  | \$ | 607.8                    | \$ | 9,287.9              |
| 2027  | \$<br>3,774.8  | \$ | 571.5                       | \$<br>8,757.4         | \$<br>2,577.7  | \$ | 390.3              | \$<br>5,980.2         | \$<br>4,080.4  | \$ | 617.8                    | \$ | 9,466.3              |
| 2028  | \$<br>3,811.4  | \$ | 577.6                       | \$<br>8,837.2         | \$<br>2,631.4  | \$ | 398.8              | \$<br>6,101.3         | \$<br>4,094.2  | \$ | 620.4                    | \$ | 9,493.0              |
| 2029  | \$<br>3,883.2  | \$ | 587.7                       | \$<br>9,012.4         | \$<br>2,710.1  | \$ | 410.1              | \$<br>6,289.6         | \$<br>4,148.2  | \$ | 627.8                    | \$ | 9,627.3              |
| Total | \$<br>50,290.1 | \$ | 7,647.7                     | \$<br>116,223.6       | \$<br>33,941.3 | \$ | 5,161.8            | \$<br>78,436.9        | \$<br>59,739.9 | \$ | 9,088.3                  | \$ | 138,013.0            |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.4a and F.4b.

# Exhibit F.4d Present Value of Benefits Yearly Projections, WTP for Lymphoma as Basis for Non-Fatal Cases, at 3% Discount Rate (All Water Systems)

**HAA5 - Preferred Alternative** 

|       |                  |    | g/Lung Ca          |    |                     |                | _  | Bladder C          |    |                     |                |    | Bladder C          |    |                     |
|-------|------------------|----|--------------------|----|---------------------|----------------|----|--------------------|----|---------------------|----------------|----|--------------------|----|---------------------|
|       |                  |    | 90 P               |    |                     |                |    | 90 P<br>Confider   |    |                     |                |    | 90 Po<br>Confider  |    | -                   |
| Year  | Mean<br>Value    | (5 | Lower<br>th %tile) | (9 | Upper<br>5th %tile) | Mean<br>Value  | (5 | Lower<br>th %tile) | (9 | Upper<br>5th %tile) | Mean<br>Value  | (5 | Lower<br>th %tile) | (9 | Upper<br>5th %tile) |
| 2005  | \$<br>value<br>- | \$ |                    | \$ |                     | \$<br>value -  | \$ |                    | \$ |                     | \$<br>value -  | \$ |                    | \$ |                     |
| 2006  | \$<br>_          | \$ |                    | \$ |                     | \$<br>_        | \$ |                    | \$ | _                   | \$             | \$ |                    | \$ | _                   |
| 2007  | \$<br>_          | \$ |                    | \$ |                     | \$<br>_        | \$ |                    | \$ | _                   | \$<br>_        | \$ |                    | \$ | _                   |
| 2008  | \$<br>_          | \$ | _                  | \$ | _                   | \$<br>_        | \$ | _                  | \$ | _                   | \$<br>_        | \$ | _                  | \$ | _                   |
| 2009  | \$<br>_          | \$ | _                  | \$ |                     | \$<br>_        | \$ | _                  | \$ |                     | \$             | \$ | _                  | \$ |                     |
| 2010  | \$<br>132.7      | \$ | 20.3               | \$ | 305.2               | \$<br>127.7    | \$ | 19.5               | \$ | 293.5               | \$<br>250.8    | \$ | 38.4               | \$ | 576.5               |
| 2010  | \$<br>333.4      | \$ | 51.0               | \$ | 766.7               | \$<br>293.2    | \$ | 44.9               | \$ | 674.3               | \$<br>595.0    | \$ | 91.1               | \$ | 1,368.5             |
| 2012  | \$<br>585.5      | \$ | 89.6               | \$ | 1.345.1             | \$<br>484.6    | \$ | 74.2               | \$ | 1,113.4             | \$<br>995.9    | \$ | 152.4              | \$ | 2,287.9             |
| 2013  | \$<br>880.7      | \$ | 134.8              | \$ | 2,022.9             | \$<br>695.5    | \$ | 106.5              | \$ | 1,597.4             | \$<br>1,432.4  | \$ | 219.3              | \$ | 3,290.1             |
| 2014  | \$<br>1,117.9    | \$ | 170.9              | \$ | 2,569.8             | \$<br>826.5    | \$ | 126.4              | \$ | 1,900.0             | \$<br>1,705.4  | \$ | 260.7              | \$ | 3,920.2             |
| 2015  | \$<br>1,325.5    | \$ | 202.7              | \$ | 3.048.3             | \$<br>928.5    | \$ | 142.0              | \$ | 2,135.4             | \$<br>1.896.7  | \$ | 290.0              | \$ | 4,362.0             |
| 2016  | \$<br>1,499.8    | \$ | 229.1              | \$ | 3,449.2             | \$<br>1.007.9  | \$ | 154.0              | \$ | 2,317.8             | \$<br>2,024.6  | \$ | 309.3              | \$ | 4,656.1             |
| 2017  | \$<br>1,643.2    | \$ | 250.9              | \$ | 3,782.4             | \$<br>1,072.6  | \$ | 163.8              | \$ | 2,469.1             | \$<br>2,110.3  | \$ | 322.2              | \$ | 4,857.7             |
| 2018  | \$<br>1,755.0    | \$ | 267.6              | \$ | 4,043.1             | \$<br>1,126.9  | \$ | 171.8              | \$ | 2,596.2             | \$<br>2,166.7  | \$ | 330.4              | \$ | 4,991.6             |
| 2019  | \$<br>1,836.6    | \$ | 279.8              | \$ | 4,238.2             | \$<br>1,172.7  | \$ | 178.6              | \$ | 2,706.2             | \$<br>2,201.6  | \$ | 335.4              | \$ | 5,080.7             |
| 2020  | \$<br>1.895.0    | \$ | 288.6              | \$ | 4,375.2             | \$<br>1,211.3  | \$ | 184.4              | \$ | 2.796.6             | \$<br>2,220.5  | \$ | 338.1              | \$ | 5,126.5             |
| 2021  | \$<br>1,935.6    | \$ | 294.4              | \$ | 4,469.1             | \$<br>1,243.8  | \$ | 189.2              | \$ | 2,871.8             | \$<br>2,227.1  | \$ | 338.7              | \$ | 5,142.1             |
| 2022  | \$<br>1,962.2    | \$ | 298.4              | \$ | 4,538.2             | \$<br>1,270.9  | \$ | 193.3              | \$ | 2,939.3             | \$<br>2,224.3  | \$ | 338.2              | \$ | 5,144.3             |
| 2023  | \$<br>1,978.0    | \$ | 300.8              | \$ | 4,575.8             | \$<br>1,293.3  | \$ | 196.7              | \$ | 2,991.9             | \$<br>2,214.2  | \$ | 336.8              | \$ | 5,122.4             |
| 2024  | \$<br>1,985.1    | \$ | 301.8              | \$ | 4,594.0             | \$<br>1,311.5  | \$ | 199.4              | \$ | 3,035.1             | \$<br>2,198.6  | \$ | 334.2              | \$ | 5,088.2             |
| 2025  | \$<br>1,985.3    | \$ | 301.3              | \$ | 4,594.8             | \$<br>1,326.0  | \$ | 201.3              | \$ | 3,068.8             | \$<br>2,178.7  | \$ | 330.7              | \$ | 5,042.3             |
| 2026  | \$<br>1,979.9    | \$ | 300.1              | \$ | 4,586.3             | \$<br>1,337.1  | \$ | 202.7              | \$ | 3,097.3             | \$<br>2,155.4  | \$ | 326.7              | \$ | 4,992.7             |
| 2027  | \$<br>1,970.1    | \$ | 298.3              | \$ | 4,570.4             | \$<br>1,345.3  | \$ | 203.7              | \$ | 3,121.0             | \$<br>2,129.5  | \$ | 322.4              | \$ | 4,940.4             |
| 2028  | \$<br>1,931.2    | \$ | 292.7              | \$ | 4,477.7             | \$<br>1,333.3  | \$ | 202.1              | \$ | 3,091.5             | \$<br>2,074.5  | \$ | 314.4              | \$ | 4,810.0             |
| 2029  | \$<br>1,910.3    | \$ | 289.1              | \$ | 4,433.5             | \$<br>1,333.2  | \$ | 201.8              | \$ | 3,094.1             | \$<br>2,040.6  | \$ | 308.8              | \$ | 4,736.0             |
| Total | \$<br>30,643.0   | \$ | 4,662.2            | \$ | 70,786.1            | \$<br>20,741.8 | \$ | 3,156.0            | \$ | 47,910.8            | \$<br>37,042.8 | \$ | 5,638.3            | \$ | 85,536.3            |
| Ann.  | \$<br>1,759.8    | \$ | 267.7              | \$ | 4,065.1             | \$<br>1,191.2  | \$ | 181.2              | \$ | 2,751.4             | \$<br>2,127.3  | \$ | 323.8              | \$ | 4,912.2             |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibit F.4c.

# Exhibit F.4e Present Value of Benefits Yearly Projections, WTP for Lymphoma as Basis for Non-Fatal Cases, at 7% Discount Rate (All Water Systems)

**HAA5 - Preferred Alternative** 

|       |                | g/Lung Ca<br>on Lag M |    |                     |                | _  | Bladder C<br>on Lag M |    |                     |                |    | Bladder C<br>ion Lag M |    |                     |
|-------|----------------|-----------------------|----|---------------------|----------------|----|-----------------------|----|---------------------|----------------|----|------------------------|----|---------------------|
|       |                | 90 P<br>Confide       |    |                     |                |    | 90 P                  |    |                     |                |    | 90 Po                  |    |                     |
| Year  | Mean<br>Value  | Lower<br>th %tile)    | (9 | Upper<br>5th %tile) | Mean<br>Value  | (5 | Lower<br>th %tile)    | (9 | Upper<br>5th %tile) | Mean<br>Value  | (5 | Lower (th %tile)       | (9 | Upper<br>5th %tile) |
| 2005  | \$<br>-        | \$<br>-               | \$ | -                   | \$<br>-        | \$ | -                     | \$ | -                   | \$<br>-        | \$ | -                      | \$ | -                   |
| 2006  | \$<br>-        | \$<br>-               | \$ | -                   | \$<br>-        | \$ | -                     | \$ | _                   | \$<br>_        | \$ | _                      | \$ | -                   |
| 2007  | \$<br>-        | \$<br>-               | \$ | -                   | \$<br>-        | \$ | -                     | \$ | -                   | \$<br>-        | \$ | -                      | \$ | -                   |
| 2008  | \$<br>-        | \$<br>-               | \$ | -                   | \$<br>-        | \$ | -                     | \$ | -                   | \$<br>-        | \$ | -                      | \$ | -                   |
| 2009  | \$<br>-        | \$<br>-               | \$ | -                   | \$<br>-        | \$ | -                     | \$ | -                   | \$<br>-        | \$ | -                      | \$ | -                   |
| 2010  | \$<br>109.7    | \$<br>16.8            | \$ | 252.2               | \$<br>105.5    | \$ | 16.2                  | \$ | 242.6               | \$<br>207.3    | \$ | 31.7                   | \$ | 476.5               |
| 2011  | \$<br>265.2    | \$<br>40.6            | \$ | 610.1               | \$<br>233.3    | \$ | 35.7                  | \$ | 536.5               | \$<br>473.4    | \$ | 72.5                   | \$ | 1,088.9             |
| 2012  | \$<br>448.5    | \$<br>68.6            | \$ | 1,030.2             | \$<br>371.2    | \$ | 56.8                  | \$ | 852.7               | \$<br>762.8    | \$ | 116.7                  | \$ | 1,752.3             |
| 2013  | \$<br>649.3    | \$<br>99.4            | \$ | 1,491.5             | \$<br>512.7    | \$ | 78.5                  | \$ | 1,177.7             | \$<br>1,056.1  | \$ | 161.6                  | \$ | 2,425.7             |
| 2014  | \$<br>793.4    | \$<br>121.3           | \$ | 1,823.8             | \$<br>586.6    | \$ | 89.7                  | \$ | 1,348.4             | \$<br>1,210.3  | \$ | 185.0                  | \$ | 2,782.2             |
| 2015  | \$<br>905.5    | \$<br>138.5           | \$ | 2,082.6             | \$<br>634.3    | \$ | 97.0                  | \$ | 1,458.9             | \$<br>1,295.8  | \$ | 198.1                  | \$ | 2,980.0             |
| 2016  | \$<br>986.4    | \$<br>150.7           | \$ | 2,268.3             | \$<br>662.8    | \$ | 101.3                 | \$ | 1,524.3             | \$<br>1,331.5  | \$ | 203.4                  | \$ | 3,062.0             |
| 2017  | \$<br>1,040.2  | \$<br>158.8           | \$ | 2,394.5             | \$<br>679.0    | \$ | 103.7                 | \$ | 1,563.1             | \$<br>1,335.9  | \$ | 204.0                  | \$ | 3,075.2             |
| 2018  | \$<br>1,069.5  | \$<br>163.1           | \$ | 2,463.8             | \$<br>686.7    | \$ | 104.7                 | \$ | 1,582.1             | \$<br>1,320.4  | \$ | 201.3                  | \$ | 3,041.9             |
| 2019  | \$<br>1,077.3  | \$<br>164.1           | \$ | 2,486.2             | \$<br>687.9    | \$ | 104.8                 | \$ | 1,587.5             | \$<br>1,291.5  | \$ | 196.7                  | \$ | 2,980.4             |
| 2020  | \$<br>1,070.1  | \$<br>162.9           | \$ | 2,470.6             | \$<br>684.0    | \$ | 104.2                 | \$ | 1,579.2             | \$<br>1,253.9  | \$ | 190.9                  | \$ | 2,894.8             |
| 2021  | \$<br>1,052.1  | \$<br>160.0           | \$ | 2,429.2             | \$<br>676.1    | \$ | 102.8                 | \$ | 1,561.0             | \$<br>1,210.6  | \$ | 184.1                  | \$ | 2,795.1             |
| 2022  | \$<br>1,026.7  | \$<br>156.1           | \$ | 2,374.6             | \$<br>665.0    | \$ | 101.1                 | \$ | 1,538.0             | \$<br>1,163.9  | \$ | 177.0                  | \$ | 2,691.7             |
| 2023  | \$<br>996.3    | \$<br>151.5           | \$ | 2,304.8             | \$<br>651.4    | \$ | 99.1                  | \$ | 1,507.0             | \$<br>1,115.3  | \$ | 169.6                  | \$ | 2,580.1             |
| 2024  | \$<br>962.5    | \$<br>146.3           | \$ | 2,227.5             | \$<br>635.9    | \$ | 96.7                  | \$ | 1,471.6             | \$<br>1,066.0  | \$ | 162.1                  | \$ | 2,467.0             |
| 2025  | \$<br>926.6    | \$<br>140.6           | \$ | 2,144.5             | \$<br>618.9    | \$ | 93.9                  | \$ | 1,432.3             | \$<br>1,016.9  | \$ | 154.3                  | \$ | 2,353.4             |
| 2026  | \$<br>889.6    | \$<br>134.8           | \$ | 2,060.6             | \$<br>600.8    | \$ | 91.1                  | \$ | 1,391.6             | \$<br>968.4    | \$ | 146.8                  | \$ | 2,243.2             |
| 2027  | \$<br>852.0    | \$<br>129.0           | \$ | 1,976.7             | \$<br>581.8    | \$ | 88.1                  | \$ | 1,349.8             | \$<br>921.0    | \$ | 139.4                  | \$ | 2,136.7             |
| 2028  | \$<br>804.0    | \$<br>121.8           | \$ | 1,864.2             | \$<br>555.1    | \$ | 84.1                  | \$ | 1,287.1             | \$<br>863.7    | \$ | 130.9                  | \$ | 2,002.5             |
| 2029  | \$<br>765.6    | \$<br>115.9           | \$ | 1,776.8             | \$<br>534.3    | \$ | 80.9                  | \$ | 1,240.0             | \$<br>817.8    | \$ | 123.8                  | \$ | 1,898.0             |
| Total | \$<br>16,690.5 | \$<br>2,541.0         | \$ | 38,532.5            | \$<br>11,363.4 | \$ | 1,730.2               | \$ | 26,231.4            | \$<br>20,682.2 | \$ | 3,150.1                | \$ | 47,727.6            |
| Ann.  | \$<br>1,432.2  | \$<br>218.0           | \$ | 3,306.5             | \$<br>975.1    | \$ | 148.5                 | \$ | 2,250.9             | \$<br>1,774.7  | \$ | 270.3                  | \$ | 4,095.5             |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibit F.4c.

#### Exhibit F.4f Mean Present Value of Benefits Yearly Projections, WTP for Lymphoma as Basis for Non-Fatal Cases, at 3% Discount Rate, by System Size (All Systems)

#### HAA5 - Preferred Alternative

| пааэ  | Prete  | rrea | Aiter | native  |            |           |        |                   |                   |                     |            |             |        |         |         |             |                 |                   |                   |                     |            |             |         |         |          |             |                 |                   |                   |                     |             |             |
|-------|--------|------|-------|---------|------------|-----------|--------|-------------------|-------------------|---------------------|------------|-------------|--------|---------|---------|-------------|-----------------|-------------------|-------------------|---------------------|------------|-------------|---------|---------|----------|-------------|-----------------|-------------------|-------------------|---------------------|-------------|-------------|
|       |        |      |       |         | Smoking/   | Lung Ca   | ancer  | Cessation         | n Lag Mo          | del                 |            |             |        |         |         | Smoking/l   | Bladder Ca      | ncer Ces          | ssation Lag       | Model               |            |             |         |         |          | Arsenic/B   | ladder Ca       | ncer Cessa        | tion Lag Mo       | odel                |             |             |
| Year  | <100   | 10   | 0-499 | 500-999 | 1,000-3,29 | 9 3,300-9 | ,999   | 10,000-<br>49,999 | 50,000-<br>99,999 | 100,000-<br>999,999 | ≥1,000,000 | Total       | <100   | 100-499 | 500-999 | 1,000-3,299 | 3,300-<br>9,999 | 10,000-<br>49,999 | 50,000-<br>99,999 | 100,000-<br>999,999 | ≥1,000,000 | Total       | <100    | 100-499 | 500-999  | 1,000-3,299 | 3,300-<br>9,999 | 10,000-<br>49,999 | 50,000-<br>99,999 | 100,000-<br>999,999 | ≥1,000,000  | Total       |
| 2005  | \$ -   | \$   | -     | s -     | s -        | s         | - 5    | s -               | s -               | s -                 | s -        | s -         | s -    | s -     | s -     | s -         | s -             | s -               | s -               | s -                 | s -        | s -         | \$ -    | s -     | s -      | s -         | s -             | s -               | s - :             | š -                 | s -         | s -         |
| 2006  | \$ -   | s    | -     | s -     | s -        | s         | - 5    | s -               | s -               | s -                 | s -        | s -         | s -    | s -     | s -     | s -         | s -             | s -               | s -               | s -                 | s -        | s -         | s -     | s -     | s -      | s -         | s -             | s -               | s -               |                     | s -         | s -         |
| 2007  | \$ -   | s    | -     | s -     | s -        | s         | - 5    | s -               | s -               | s -                 | s -        | s -         | s -    | s -     | s -     | s -         | s -             | s -               | s -               | s -                 | s -        | s -         | s -     | s -     | s -      | s -         | s -             | s -               | s -               |                     | s -         | s -         |
| 2008  | \$ -   | s    | -     | s -     | s -        | s         | - 5    | s -               | s -               | s -                 | s -        | s -         | s -    | s -     | s -     | s -         | s -             | s -               | s -               | s -                 | s -        | s -         | s -     | s -     | s -      | s -         | s -             | s -               | s -               |                     | s -         | s -         |
| 2009  | ٠.     | •    | _     | ς.      | ٠.         | \$        |        |                   | \$ .              | \$ .                | \$ .       | s .         | \$ .   | \$ .    | ٠.      | ς .         | \$ .            |                   | \$ .              | \$ .                | \$ .       | ٠.          | ٠.      | ς .     | \$ .     | · .         | \$ .            |                   | \$ .              |                     | \$ .        | s .         |
| 2010  | \$ 0.0 | s    | 0.2   | \$ 0.3  | \$ 1.2     | s         | 2.8 5  | \$ 16.3           | \$ 12.9           | \$ 54.8             | \$ 44.3    | \$ 132.7    | \$ 00  | \$ 0.2  | \$ 0.2  | \$ 10       | \$ 2.3          | \$ 15             | .5 \$ 12.4        | \$ 53.0             | \$ 43.1    | \$ 127.7    | \$ 0.0  | \$ 04   | \$ 0.5   | \$ 2.1      | \$ 49           | \$ 30.6           | \$ 24.3           | •                   | \$ 84.1     | \$ 250.8    |
| 2011  |        | 1 -  | 0.6   |         | \$ 3.0     | 1         | 7.0 \$ | \$ 40.9           |                   |                     |            |             | \$ 0.1 | \$ 0.4  | \$ 0.5  | \$ 2.3      |                 |                   | .6 \$ 28.4        | \$ 121.6            |            | \$ 293.2    | \$ 0.1  | \$ 0.9  | \$ 12    | \$ 5.1      | \$ 11.9         | \$ 72.7           |                   |                     |             |             |
| 2012  |        | 1 -  |       | \$ 1.2  |            |           | 12.4 5 |                   |                   |                     |            |             | \$ 0.1 | \$ 0.7  | \$ 0.9  |             |                 |                   | .9 \$ 46.9        |                     |            |             | \$ 0.2  | \$ 1.6  | \$ 2.0   | \$ 8.7      |                 |                   |                   |                     |             | \$ 995.9    |
| 2013  |        | 1 -  |       | \$ 1.8  | \$ 8.0     | 1 .       | 18.6   | \$ 108.2          |                   |                     |            |             | \$ 0.1 | \$ 1.0  | \$ 1.3  | \$ 5.7      |                 |                   | .6 \$ 67.3        | \$ 288.1            |            | \$ 695.5    | \$ 0.3  | \$ 2.3  | \$ 2.9   | \$ 12.6     | \$ 29.3         |                   | \$ 138.7          |                     |             | \$ 1,432,4  |
| 2014  | \$ 0.3 | s    | 2.0   | \$ 2.5  | S 11.1     | \$ 2      | 25.7   | \$ 149.2          | \$ 111.7          | \$ 451.0            | \$ 364.3   | \$ 1.117.9  | \$ 0.2 | \$ 1.4  | \$ 17   | \$ 7.6      |                 | \$ 112            | .1 \$ 83.5        | \$ 332.5            | \$ 269.9   | \$ 826.5    | \$ 0.4  | \$ 3.1  | \$ 3.8   | \$ 16.8     | \$ 38.9         | \$ 231.6          | \$ 171.8          | 685.0               | \$ 554.0    | \$ 1.705.4  |
| 2015  |        | 1 -  |       | \$ 3.3  | -          | 1.        | 33.3   | \$ 187.0          | -                 |                     |            | \$ 1,325.5  | \$ 0.2 | \$ 1.8  | \$ 2.2  | \$ 96       | \$ 22.3         |                   | .0 \$ 93.4        | \$ 367.2            |            | \$ 928.5    | \$ 0.5  | \$ 3.8  | \$ 48    | \$ 21.0     |                 |                   |                   |                     |             | \$ 1.896.7  |
| 2016  |        |      |       | \$ 4.0  |            | 1         | 40.2   |                   | \$ 150.1          |                     |            | \$ 1,499.8  | \$ 0.3 |         | •       | \$ 11.3     |                 |                   | .0 \$ 101.3       |                     |            | \$ 1.007.9  | \$ 0.6  | \$ 4.4  | \$ 5.6   | \$ 24.4     |                 |                   | \$ 203.7          |                     |             | \$ 2,024.6  |
| 2017  |        |      |       | \$ 4.5  |            |           |        | \$ 240.5          | \$ 164.7          | \$ 644.0            | \$ 520.6   | \$ 1.643.2  | \$ 0.3 | \$ 2.3  | \$ 2.9  | \$ 12.4     |                 |                   | .3 \$ 107.9       |                     |            | \$ 1.072.6  | \$ 0.6  | \$ 4.8  | \$ 6.1   | \$ 26.5     |                 |                   | \$ 212.5          |                     |             | \$ 2,110.3  |
| 2018  | \$ 0.5 | s    | 3.9   | \$ 4.9  | \$ 21.4    | s 4       | 49.6   | \$ 260.3          | \$ 176.3          | \$ 684.6            | \$ 553.5   | \$ 1.755.0  | \$ 0.3 | \$ 2.4  | \$ 3.1  | \$ 13.4     | \$ 31.1         | \$ 168            | .7 \$ 113.4       | \$ 438.9            | \$ 355.6   | \$ 1,126.9  | \$ 0.6  | \$ 5.1  | \$ 6.4   | \$ 27.8     | \$ 64.6         | \$ 329.6          | \$ 218.2          | 837.6               | \$ 676.7    | \$ 2.166.7  |
| 2019  | \$ 0.5 | s    | 4.2   | \$ 5.2  | \$ 22.8    | 8 8 5     | 53.0   | \$ 275.8          | \$ 184.8          | \$ 713.4            | \$ 576.8   | \$ 1.836.6  | \$ 0.3 | \$ 2.6  | \$ 3.3  | \$ 14.2     | \$ 33.0         | \$ 176            | .6 \$ 118.1       | \$ 455.6            | \$ 369.0   | \$ 1,172.7  | \$ 0.7  | \$ 5.2  | \$ 6.6   | \$ 28.8     | \$ 66.8         | \$ 337.1          | \$ 221.8          | \$ 849.0            | \$ 685.8    | \$ 2,201.6  |
| 2020  | \$ 0.6 | s    | 4.4   | \$ 5.5  |            |           | 55.7   | \$ 287.1          | \$ 190.8          | \$ 733.8            | \$ 593.3   | \$ 1.895.0  | \$ 0.3 | \$ 2.7  | \$ 3.4  | \$ 14.9     | \$ 34.6         |                   | .3 \$ 122.0       | \$ 469.7            | \$ 380.4   | \$ 1,211,3  | \$ 0.7  | \$ 5.3  | \$ 6.7   | \$ 29.3     | \$ 68.1         |                   | \$ 223.8          |                     | \$ 690.3    | \$ 2.220.5  |
| 2021  |        |      |       | \$ 5.7  |            | 3 \$ 5    | 57.6   | \$ 295.1          | \$ 195.0          | \$ 747.8            | \$ 604.6   | \$ 1,935.6  | \$ 0.4 | \$ 2.8  | \$ 3.5  | \$ 15.5     | \$ 35.9         |                   | .9 \$ 125.3       |                     | \$ 389.9   | \$ 1,243.8  | \$ 0.7  | \$ 5.4  | \$ 6.8   | \$ 29.7     |                 |                   | \$ 224.5          |                     | \$ 691.5    | \$ 2,227.1  |
| 2022  | \$ 0.6 | \$   | 4.6   | \$ 5.8  | \$ 25.4    | \$ 5      | 58.9   | \$ 300.5          | \$ 197.7          | \$ 756.8            | \$ 611.9   | \$ 1,962.2  | \$ 0.4 | \$ 2.9  | \$ 3.7  | \$ 16.0     | \$ 37.1         | \$ 193            | .7 \$ 128.1       | \$ 491.5            | \$ 397.7   | \$ 1,270.9  | \$ 0.7  | \$ 5.4  | \$ 6.8   | \$ 29.8     | \$ 69.2         | \$ 344.1          | \$ 224.2          | \$ 854.1            | \$ 689.9    | \$ 2,224.3  |
| 2023  | \$ 0.6 | \$   | 4.7   | \$ 5.9  | \$ 25.8    | 3 \$ 5    | 59.8   | \$ 303.9          | \$ 199.4          | \$ 761.9            | \$ 616.0   | \$ 1,978.0  | \$ 0.4 | \$ 3.0  | \$ 3.8  | \$ 16.4     | \$ 38.1         | \$ 197            | .6 \$ 130.3       | \$ 499.6            | \$ 404.2   | \$ 1,293.3  | \$ 0.7  | \$ 5.4  | \$ 6.8   | \$ 29.8     | \$ 69.2         | \$ 343.2          | \$ 223.2          | \$ 849.6            | \$ 686.3    | \$ 2,214.2  |
| 2024  | \$ 0.6 | \$   | 4.7   | \$ 6.0  | \$ 26.0    | \$ 6      | 60.4   | \$ 305.8          | \$ 200.1          | \$ 763.9            | \$ 617.6   | \$ 1,985.1  | \$ 0.4 | \$ 3.1  | \$ 3.8  | \$ 16.8     | \$ 38.9         | \$ 200            | .8 \$ 132.2       | \$ 506.1            | \$ 409.5   | \$ 1,311.5  | \$ 0.7  | \$ 5.4  | \$ 6.8   | \$ 29.7     | \$ 68.9         | \$ 341.3          | \$ 221.7          | \$ 843.1            | \$ 681.1    | \$ 2,198.6  |
| 2025  | \$ 0.6 | \$   | 4.8   | \$ 6.0  | \$ 26.1    | \$ 6      | 60.6   | \$ 306.5          | \$ 200.2          | \$ 763.3            | \$ 617.2   | \$ 1,985.3  | \$ 0.4 | \$ 3.1  | \$ 3.9  | \$ 17.1     | \$ 39.6         | \$ 203            | .4 \$ 133.7       | \$ 511.3            | \$ 413.6   | \$ 1,326.0  | \$ 0.7  | \$ 5.4  | \$ 6.8   | \$ 29.5     | \$ 68.4         | \$ 338.6          | \$ 219.7          | \$ 835.1            | \$ 674.6    | \$ 2,178.7  |
| 2026  | \$ 0.6 | \$   | 4.8   | \$ 6.0  | \$ 26.1    | \$ 6      | 60.7   | \$ 306.2          | \$ 199.7          | \$ 760.8            | \$ 615.1   | \$ 1,979.9  | \$ 0.4 | \$ 3.1  | \$ 4.0  | \$ 17.3     | \$ 40.2         | \$ 205            | .5 \$ 134.8       | \$ 515.2            | \$ 416.7   | \$ 1,337.1  | \$ 0.7  | \$ 5.3  | \$ 6.7   | \$ 29.2     | \$ 67.8         | \$ 335.3          | \$ 217.4          | \$ 825.9            | \$ 667.2    | \$ 2,155.4  |
| 2027  | \$ 0.6 | \$   | 4.8   | \$ 6.0  | \$ 26.1    | \$ 6      | 60.6   | \$ 305.1          | \$ 198.7          | \$ 756.6            | \$ 611.7   | \$ 1,970.1  | \$ 0.4 | \$ 3.2  | \$ 4.0  | \$ 17.5     | \$ 40.6         | \$ 207            | .0 \$ 135.6       | \$ 518.0            | \$ 418.9   | \$ 1,345.3  | \$ 0.7  | \$ 5.3  | \$ 6.6   | \$ 28.9     | \$ 67.0         | \$ 331.5          | \$ 214.8          | \$ 815.8            | \$ 659.0    | \$ 2,129.5  |
| 2028  | \$ 0.6 | \$   | 4.7   | \$ 5.9  | \$ 25.6    | \$ \$ 5   | 59.5   | \$ 299.4          | \$ 194.8          | \$ 741.3            | \$ 599.4   | \$ 1,931.2  | \$ 0.4 | \$ 3.2  | \$ 4.0  | \$ 17.4     | \$ 40.4         | \$ 205            | .4 \$ 134.4       | \$ 513.1            | \$ 414.9   | \$ 1,333.3  | \$ 0.7  | \$ 5.1  | \$ 6.5   | \$ 28.2     | \$ 65.4         | \$ 323.1          | \$ 209.2          | \$ 794.5            | \$ 641.8    | \$ 2,074.5  |
| 2029  | \$ 0.6 | \$   | 4.6   | \$ 5.8  | \$ 25.4    | \$ 5      | 59.0   | \$ 296.4          | \$ 192.7          | \$ 733.0            | \$ 592.6   | \$ 1,910.3  | \$ 0.4 | \$ 3.2  | \$ 4.0  | \$ 17.5     | \$ 40.6         | \$ 205            | .7 \$ 134.4       | \$ 512.8            | \$ 414.6   | \$ 1,333.2  | \$ 0.6  | \$ 5.0  | \$ 6.4   | \$ 27.7     | \$ 64.3         | \$ 318.0          | \$ 205.8          | \$ 781.4            | \$ 631.3    | \$ 2,040.6  |
| Total | \$ 8.8 | \$   | 69.1  | \$ 87.0 | \$ 379.4   | \$ 88     | 81.0   | \$ 4,572.5        | \$ 3,076.3        | \$ 11,927.3         | \$ 9,641.7 | \$ 30,643.0 | \$ 5.8 | \$ 45.1 | \$ 56.8 | \$ 247.7    | \$ 575.1        | \$ 3,084          | .6 \$ 2,083.4     | \$ 8,091.1          | \$ 6,552.2 | \$ 20,741.8 | \$ 10.8 | \$ 84.8 | \$ 106.7 | \$ 465.5    | \$ 1,080.8      | \$ 5,553.3        | \$ 3,720.2        | \$ 14,391.7         | \$ 11,629.0 | \$ 37,042.8 |
| Ann.  | \$ 0.5 | \$   | 4.0   | \$ 5.0  | \$ 21.8    | 3 \$ 5    | 50.6   | _                 | \$ 176.7          |                     | \$ 553.7   | \$ 1,759.8  | \$ 0.3 | \$ 2.6  | \$ 3.3  | \$ 14.2     |                 | \$ 177            | .1 \$ 119.6       | \$ 464.7            | \$ 376.3   | \$ 1,191.2  | \$ 0.6  | \$ 4.9  | \$ 6.1   | \$ 26.7     | \$ 62.1         | \$ 318.9          | \$ 213.6          |                     |             | \$ 2,127.3  |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derved from Exhibits F.11, E.389, E.39c, E.39f, E.39g, E.39j, and E.39k.

F-80

August 2005

#### Exhibit F.4g Mean Present Value of Benefits Yearly Projections, WTP for Lymphoma as Basis for Non-Fatal Cases, at 7% Discount Rate, by System Size (All Systems)

#### HAA5 - Preferred Alternative

|       | i icicii | ou / lito | rnative |        |          |             |                   |                   |                     |            |             | _      |         |         |            |                 |                   |                   |                     |            |          |        |         |         |             |                 |                   |                   |                     |            |            |
|-------|----------|-----------|---------|--------|----------|-------------|-------------------|-------------------|---------------------|------------|-------------|--------|---------|---------|------------|-----------------|-------------------|-------------------|---------------------|------------|----------|--------|---------|---------|-------------|-----------------|-------------------|-------------------|---------------------|------------|------------|
|       |          |           |         | Smok   | ting/Lun | g Cancer (  | Cessation         | Lag Mode          | l                   |            |             |        |         |         | Smoking/   | Bladder         | Cancer Ce         | ssation La        | g Model             |            |          |        |         |         | Arsenic/B   | ladder Ca       | ncer Cessa        | tion Lag M        | lodel               |            |            |
| Year  | <100     | 100-499   | 500-99  | 9 1.00 | 00-3.299 | 3,300-9,999 | 10,000-<br>49,999 | 50,000-<br>99,999 | 100,000-<br>999,999 | >1,000,000 | Total       | <100   | 100-499 | 500-999 | 1,000-3,29 | 3,300-<br>9,999 | 10,000-<br>49,999 | 50,000-<br>99,999 | 100,000-<br>999,999 | >1,000,000 | Total    | <100   | 100-499 | 500-999 | 1,000-3,299 | 3,300-<br>9,999 | 10,000-<br>49,999 | 50,000-<br>99,999 | 100,000-<br>999,999 | >1,000,000 | Total      |
| 2005  | e .      | s -       | e .     | e      |          |             |                   | s -               | e .                 |            | s -         | s -    | e .     | s -     | s -        | \$ -            | e .               | s -               | s -                 | s -        | s -      | s -    | s -     | s -     | s -         | s -             | e .               | s -               | s -                 | s -        | s -        |
| 2006  |          | \$ -      |         |        |          | •           | •                 | \$ -              |                     |            |             | ¢ .    | ¢ .     | e .     |            | \$ -            |                   |                   |                     |            |          |        |         | s -     | e .         |                 |                   |                   | • .                 | le .       | s -        |
| 2007  |          |           |         |        |          | •           | ¢ .               |                   |                     |            |             | ¢ .    | ¢ .     | e .     |            |                 |                   |                   |                     |            |          |        |         | ¢ .     | e .         |                 |                   |                   | • .                 | le .       |            |
| 2008  |          | \$ -      |         |        |          | s -         | •                 | s -               |                     |            |             | ¢ .    | ¢ .     | e .     |            | \$ -            |                   |                   | ¢ .                 |            |          |        |         | s -     | e .         |                 |                   |                   | \$ -                | le .       |            |
| 2009  |          |           |         | ,      | -        |             |                   |                   |                     |            |             |        |         |         |            | \$ -            |                   | \$ .              |                     |            |          |        |         |         |             |                 |                   |                   |                     | ا و        |            |
| 2010  | \$ 0.0   |           | 2 \$ 0  | 2 6    | 1.0      | \$ 2.3      | \$ 13.5           | \$ 10.6           | \$ 45.3             | \$ 36.6    | \$ 109.7    | \$ 0.0 | * 00    | \$ 0.2  | \$ 0.      | 1.              |                   | .8 \$ 10.3        | 2 \$ 43.8           | \$ 35.6    | \$ 105.5 | \$ 0.0 |         | \$ 0.4  |             | 5 -             | \$ 25.3           | \$ 20.1           | \$ 85.8             | \$ 69.5    | \$ 207.3   |
| 2010  | \$ 0.0   | \$ 0.     | 4 6 0   |        | 2.4      |             | \$ 32.6           | \$ 25.7           | \$ 109.5            | \$ 88.4    | \$ 265.2    | \$ 0.0 | \$ 0.2  | \$ 0.2  |            | 9 \$ 4.         |                   | .3 \$ 22.0        |                     |            |          | \$ 0.0 | \$ 0.3  | \$ 0.4  | \$ 1.0      | \$ 9.5          | \$ 25.3<br>e 57.0 | \$ 45.8           | \$ 195.8            | \$ 158.6   | \$ 473.4   |
|       |          | \$ 0.     | 7 \$ 0. | .9 \$  | 4.1      |             |                   | \$ 43.4           |                     |            |             |        | \$ 0.5  | \$ 0.4  |            | 0 \$ 7.0        |                   | .1 \$ 35.1        |                     |            |          |        | \$ 1.2  | \$ 1.5  |             |                 | \$ 93.3           |                   |                     |            |            |
|       | \$ 0.1   | \$ 1      | 1 5 1   |        | 5.9      | \$ 13.7     |                   | \$ 62.9           | \$ 268.0            |            | \$ 649.3    | \$ 0.1 | \$ 0.8  |         | \$ 4.      |                 |                   | .4 \$ 49.0        |                     |            |          | \$ 0.2 | \$ 1.7  |         | \$ 9.3      |                 | \$ 129.3          | \$ 102.2          |                     |            |            |
| 2014  | \$ 0.1   |           | 4 S 1.  |        | 7.8      |             |                   |                   |                     |            | \$ 793.4    |        |         |         |            | 4 \$ 12.        |                   | .6 \$ 59.3        |                     |            |          | \$ 0.2 | \$ 2.2  |         |             |                 |                   | \$ 121.9          |                     |            | \$ 1,210.3 |
| 2014  | \$ 0.2   | φ 1.      | 8 \$ 2  |        | 9.8      | \$ 10.2     | \$ 105.9          |                   | \$ 359.7            | \$ 290.6   | \$ 905.5    | \$ 0.1 | \$ 1.0  | -       |            | 6 \$ 15.        |                   | .5 \$ 63.6        |                     |            |          | \$ 0.3 | \$ 2.6  |         | \$ 14.4     | \$ 33.4         | \$ 188.1          | \$ 130.4          |                     |            | \$ 1,210.3 |
| 2016  | \$ 0.2   | \$ 2.     | 1 \$ 2. | 1      | 11.4     |             | \$ 142.2          |                   | \$ 388.6            |            | \$ 986.4    |        | \$ 1.2  |         |            | 4 \$ 17.3       |                   | .3 \$ 66.         |                     |            |          | \$ 0.4 | \$ 2.9  |         |             | \$ 37.3         |                   |                   |                     | -          | \$ 1,331.5 |
|       | \$ 0.3   |           |         |        | 12.4     |             | \$ 152.2          |                   | \$ 407.7            |            | \$ 1.040.2  |        | \$ 1.4  | -       |            | 9 \$ 18.3       |                   | .9 \$ 68.         |                     |            |          | \$ 0.4 | \$ 3.0  |         |             | \$ 38.9         | \$ 201.4          | \$ 134.5          |                     |            | \$ 1,335.9 |
|       | \$ 0.3   |           |         |        | 13.0     |             | \$ 158.6          |                   |                     |            | \$ 1,040.2  |        |         |         |            | 2 \$ 18.9       | 1                 | .8 \$ 69.         |                     |            |          | \$ 0.4 | \$ 3.1  | \$ 3.9  |             |                 |                   |                   |                     |            | \$ 1,320.4 |
| 2019  | \$ 0.3   |           | 4 \$ 3. |        | 13.4     | \$ 31.1     | \$ 161.8          | 1                 | \$ 418.5            |            | \$ 1.077.3  | \$ 0.2 | \$ 1.5  |         |            | 3 \$ 19.3       | 1                 | .6 \$ 69.3        |                     |            |          | \$ 0.4 | \$ 3.1  | \$ 3.9  | \$ 16.9     | \$ 39.2         |                   | \$ 130.1          |                     |            | \$ 1,291.5 |
|       | \$ 0.3   |           |         |        | 13.5     |             |                   | \$ 107.7          |                     |            | \$ 1,070.1  | \$ 0.2 | \$ 1.5  |         |            | 4 \$ 19.5       |                   | .5 \$ 68.9        |                     |            |          | \$ 0.4 | \$ 3.0  |         | \$ 16.6     | \$ 38.5         | \$ 192.8          | \$ 126.4          |                     |            | \$ 1,253.9 |
|       | \$ 0.3   |           |         |        | 13.5     |             |                   | \$ 106.0          | \$ 406.5            |            | \$ 1.052.1  | \$ 0.2 |         |         |            | 4 \$ 19.5       |                   | .7 \$ 68.         |                     |            |          | \$ 0.4 | \$ 2.9  |         |             | \$ 37.4         |                   | \$ 122.0          |                     |            | \$ 1,210.6 |
| 2022  | \$ 0.3   |           | 4 \$ 3. |        | 13.3     |             | \$ 157.2          |                   |                     |            | \$ 1.026.7  | \$ 0.2 | \$ 1.5  |         |            | 4 \$ 19.        | 1                 | .3 \$ 67.0        |                     |            | \$ 665.0 | \$ 0.4 | \$ 2.8  |         | \$ 15.6     | \$ 36.2         |                   |                   |                     |            | \$ 1,163.9 |
| 2023  | \$ 0.3   |           | 4 \$ 3. |        | 13.0     |             |                   | \$ 100.4          |                     |            | . ,         | \$ 0.2 |         |         |            | 3 \$ 19.3       |                   | .5 \$ 65.0        |                     |            |          | \$ 0.3 | \$ 2.7  |         |             |                 |                   | \$ 112.4          |                     |            | \$ 1,115.3 |
| 2024  | \$ 0.3   |           | 3 \$ 2  |        | 12.6     | \$ 29.3     | \$ 148.3          |                   | \$ 370.4            |            | \$ 962.5    | \$ 0.2 | \$ 1.5  |         | \$ 8.      |                 |                   | .4 \$ 64.         |                     |            |          | \$ 0.3 | \$ 2.6  |         | \$ 14.4     | \$ 33.4         |                   | \$ 107.5          |                     |            | \$ 1.066.0 |
| 2025  | \$ 0.3   |           | 2 \$ 2. |        | 12.2     |             |                   |                   |                     |            | \$ 926.6    | \$ 0.2 |         |         |            | 0 \$ 18.        |                   |                   | \$ 238.6            |            |          |        |         |         |             |                 |                   | \$ 102.5          |                     |            | \$ 1.016.9 |
| 2026  | \$ 0.3   | \$ 2      | 1 \$ 2  |        | 11.7     | \$ 27.3     | \$ 137.6          | \$ 89.7           | \$ 341.8            |            | \$ 889.6    | \$ 0.2 | \$ 14   | \$ 1.8  |            | 8 \$ 18.0       |                   | .3 \$ 60.0        |                     |            | \$ 600.8 | \$ 0.3 | \$ 2.4  |         | \$ 13.1     | \$ 30.5         | \$ 150.6          | \$ 97.7           |                     |            | \$ 968.4   |
| 2027  | \$ 0.3   | \$ 2.     | 1 \$ 2  |        | 11.3     |             | \$ 131.9          |                   | \$ 327.2            |            | \$ 852.0    | \$ 0.2 | \$ 14   | \$ 1.7  |            | 6 \$ 17.0       |                   | .5 \$ 58.         |                     |            |          | \$ 0.3 | \$ 2.3  |         | \$ 12.5     |                 |                   |                   |                     |            | \$ 921.0   |
| 2028  | \$ 0.2   | \$ 1.     | 9 \$ 2  |        | 10.7     | \$ 24.8     | \$ 124.6          | \$ 81.1           | \$ 308.6            |            | \$ 804.0    | \$ 0.2 | \$ 1.3  | \$ 1.7  | \$ 7.      |                 |                   | .5 \$ 56.0        |                     |            |          | \$ 0.3 | \$ 2.1  | \$ 2.7  | \$ 11.7     | \$ 27.2         |                   | \$ 87.1           |                     |            |            |
| 2029  | \$ 0.2   | \$ 1.     |         |        | 10.2     |             | \$ 118.8          |                   |                     |            | \$ 765.6    | \$ 0.2 | \$ 1.3  | \$ 1.6  |            | 0 \$ 16.3       |                   | .4 \$ 53.5        |                     |            |          | \$ 0.3 | \$ 2.0  |         |             |                 | \$ 127.4          |                   |                     |            | \$ 817.8   |
| Total |          |           | 0 S 46. |        | 203.2    | \$ 471.8    |                   | \$ 1.673.3        |                     | \$ 5,269.0 | \$ 16,690,5 |        | \$ 24.2 | -       |            |                 |                   | .5 \$ 1.140.      |                     | \$ 3,603,2 |          | \$ 5.9 |         | \$ 58.4 | \$ 254.5    |                 | \$ 3,068.1        | \$ 2.074.2        |                     | \$ 6.518.0 |            |
| Ann.  | \$ 0.4   | -         |         | .0 \$  | 17.4     |             | . ,               | \$ 143.6          | ,                   | \$ 452.1   | ,           |        |         |         |            | 4 \$ 26.4       |                   | .6 \$ 97.8        |                     | ,          | - /      |        |         |         |             | \$ 50.7         |                   | \$ 178.0          | ,                   | ,.         | \$ 1,774.7 |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.11, E.38b, E.39c, E.39f, E.39g, E.39j, and E.39k.

# Section F.5 Model Outputs - Preferred Alternative HAA5 as Indicator Bronchitis for Non-Fatal Cases

# Exhibit F.5a Projections of Yearly Benefits, WTP for Bronchitis as Basis for Non-Fatal Cases (All Surface Water Systems)

**HAA5 - Preferred Alternative** 

|       |                | •  | g/Lung Ca<br>ion Lag M |    |                     |                | _  | /Bladder (<br>ion Lag N |    |                     |                | Bladder C          |    | -                   |
|-------|----------------|----|------------------------|----|---------------------|----------------|----|-------------------------|----|---------------------|----------------|--------------------|----|---------------------|
|       |                |    | 90 P                   |    | -                   |                |    | 90 P<br>Confider        |    |                     |                | 90 P<br>Confider   |    |                     |
| Year  | Mean<br>Value  |    | Lower<br>th %tile)     | (9 | Upper<br>5th %tile) | Mean<br>Value  | (5 | Lower<br>th %tile)      | (9 | Upper<br>5th %tile) | Mean<br>Value  | Lower<br>th %tile) | (9 | Upper<br>5th %tile) |
| 2005  | \$<br>-        | \$ |                        | \$ | -                   | \$<br>-        | \$ | -                       | \$ | -                   | \$<br>-        | \$<br>-            | \$ | -                   |
| 2006  | \$<br>-        | \$ | -                      | \$ | -                   | \$<br>-        | \$ | -                       | \$ | -                   | \$<br>-        | \$<br>-            | \$ | -                   |
| 2007  | \$<br>-        | \$ | -                      | \$ | -                   | \$<br>-        | \$ | -                       | \$ | -                   | \$<br>-        | \$<br>-            | \$ | -                   |
| 2008  | \$<br>-        | \$ | -                      | \$ | -                   | \$<br>-        | \$ | -                       | \$ | -                   | \$<br>-        | \$<br>-            | \$ | -                   |
| 2009  | \$<br>-        | \$ | -                      | \$ | -                   | \$<br>-        | \$ | -                       | \$ | -                   | \$<br>-        | \$<br>-            | \$ | -                   |
| 2010  | \$<br>70.4     | \$ | 15.5                   | \$ | 154.7               | \$<br>68.4     | \$ | 15.1                    | \$ | 150.3               | \$<br>133.6    | \$<br>29.4         | \$ | 293.8               |
| 2011  | \$<br>182.0    | \$ | 40.0                   | \$ | 400.9               | \$<br>161.6    | \$ | 35.6                    | \$ | 356.0               | \$<br>326.2    | \$<br>71.7         | \$ | 718.6               |
| 2012  | \$<br>329.5    | \$ | 72.4                   | \$ | 725.3               | \$<br>275.2    | \$ | 60.4                    | \$ | 605.7               | \$<br>562.3    | \$<br>123.5        | \$ | 1,237.7             |
| 2013  | \$<br>510.9    | \$ | 112.2                  | \$ | 1,124.0             | \$<br>406.8    | \$ | 89.3                    | \$ | 895.0               | \$<br>833.1    | \$<br>182.9        | \$ | 1,833.0             |
| 2014  | \$<br>666.6    | \$ | 146.1                  | \$ | 1,467.4             | \$<br>496.2    | \$ | 108.7                   | \$ | 1,092.3             | \$<br>1,018.1  | \$<br>223.1        | \$ | 2,241.1             |
| 2015  | \$<br>812.9    | \$ | 177.8                  | \$ | 1,792.5             | \$<br>572.6    | \$ | 125.3                   | \$ | 1,262.6             | \$<br>1,162.9  | \$<br>254.4        | \$ | 2,564.3             |
| 2016  | \$<br>947.1    | \$ | 207.0                  | \$ | 2,087.8             | \$<br>639.3    | \$ | 139.7                   | \$ | 1,409.3             | \$<br>1,276.7  | \$<br>279.0        | \$ | 2,814.6             |
| 2017  | \$<br>1,068.9  | \$ | 233.3                  | \$ | 2,360.7             | \$<br>700.4    | \$ | 152.9                   | \$ | 1,546.8             | \$<br>1,370.0  | \$<br>299.1        | \$ | 3,025.7             |
| 2018  | \$<br>1,176.2  | \$ | 256.1                  | \$ | 2,598.6             | \$<br>757.7    | \$ | 165.0                   | \$ | 1,673.9             | \$<br>1,448.8  | \$<br>315.5        | \$ | 3,200.7             |
| 2019  | \$<br>1,268.2  | \$ | 275.7                  | \$ | 2,808.3             | \$<br>812.1    | \$ | 176.5                   | \$ | 1,798.2             | \$<br>1,516.7  | \$<br>329.7        | \$ | 3,358.5             |
| 2020  | \$<br>1,348.3  | \$ | 292.6                  | \$ | 2,988.1             | \$<br>864.1    | \$ | 187.5                   | \$ | 1,914.9             | \$<br>1,576.2  | \$<br>342.1        | \$ | 3,493.1             |
| 2021  | \$<br>1,419.2  | \$ | 307.6                  | \$ | 3,148.8             | \$<br>914.0    | \$ | 198.1                   | \$ | 2,028.0             | \$<br>1,629.3  | \$<br>353.2        | \$ | 3,615.0             |
| 2022  | \$<br>1,482.7  | \$ | 320.8                  | \$ | 3,296.4             | \$<br>962.2    | \$ | 208.2                   | \$ | 2,139.2             | \$<br>1,677.1  | \$<br>362.8        | \$ | 3,728.6             |
| 2023  | \$<br>1,540.4  | \$ | 332.4                  | \$ | 3,425.1             | \$<br>1,008.9  | \$ | 217.7                   | \$ | 2,243.3             | \$<br>1,720.9  | \$<br>371.3        | \$ | 3,826.4             |
| 2024  | \$<br>1,593.4  | \$ | 343.5                  | \$ | 3,544.7             | \$<br>1,054.3  | \$ | 227.3                   | \$ | 2,345.3             | \$<br>1,761.4  | \$<br>379.7        | \$ | 3,918.4             |
| 2025  | \$<br>1,642.6  | \$ | 353.3                  | \$ | 3,656.3             | \$<br>1,098.4  | \$ | 236.3                   | \$ | 2,445.1             | \$<br>1,799.3  | \$<br>387.1        | \$ | 4,005.1             |
| 2026  | \$<br>1,688.5  | \$ | 362.8                  | \$ | 3,759.8             | \$<br>1,141.5  | \$ | 245.2                   | \$ | 2,541.7             | \$<br>1,835.0  | \$<br>394.2        | \$ | 4,085.9             |
| 2027  | \$<br>1,731.9  | \$ | 371.5                  | \$ | 3,865.9             | \$<br>1,183.6  | \$ | 253.9                   | \$ | 2,642.1             | \$<br>1,869.0  | \$<br>400.9        | \$ | 4,172.0             |
| 2028  | \$<br>1,747.9  | \$ | 375.1                  | \$ | 3,898.3             | \$<br>1,207.6  | \$ | 259.1                   | \$ | 2,693.1             | \$<br>1,874.7  | \$<br>402.3        | \$ | 4,181.1             |
| 2029  | \$<br>1,781.9  | \$ | 381.9                  | \$ | 3,981.1             | \$<br>1,244.2  | \$ | 266.7                   | \$ | 2,779.6             | \$<br>1,900.8  | \$<br>407.4        | \$ | 4,246.6             |
| Total | \$<br>23,009.6 | \$ | 4,977.6                | \$ | 51,084.8            | \$<br>15,568.9 | \$ | 3,368.5                 | \$ | 34,562.5            | \$<br>27,292.0 | \$<br>5,909.3      | \$ | 60,560.0            |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

# Exhibit F.5b Projections of Yearly Benefits, WTP for Bronchitis as Basis for Non-Fatal Cases (All Ground Water Systems)

**HAA5 - Preferred Alternative** 

|       |               |    | g/Lung C<br>on Lag N |     |                     |               | _  | /Bladder<br>ion Lag l |    |                     |               |    | Bladder<br>ion Lag | _   |                     |
|-------|---------------|----|----------------------|-----|---------------------|---------------|----|-----------------------|----|---------------------|---------------|----|--------------------|-----|---------------------|
|       |               |    | 90 Po<br>Confider    |     |                     |               |    | 90 P<br>Confider      |    |                     |               | (  | 90 P<br>Confider   |     |                     |
| Year  | Mean<br>Value | _  | Lower<br>h %tile)    | (95 | Upper<br>5th %tile) | Mean<br>Value |    | Lower<br>h %tile)     | (9 | Upper<br>5th %tile) | Mean<br>Value |    | _ower<br>h %tile)  | (95 | Upper<br>5th %tile) |
| 2005  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-       | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                  | \$  | -                   |
| 2006  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-       | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                  | \$  | -                   |
| 2007  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-       | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                  | \$  | -                   |
| 2008  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-       | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                  | \$  | -                   |
| 2009  | \$<br>-       | \$ | -                    | \$  | -                   | \$<br>-       | \$ | -                     | \$ | -                   | \$<br>-       | \$ | -                  | \$  | -                   |
| 2010  | \$<br>5.7     | \$ | 1.2                  | \$  | 12.5                | \$<br>4.7     | \$ | 1.0                   | \$ | 10.4                | \$<br>10.0    | \$ | 2.2                | \$  | 22.0                |
| 2011  | \$<br>14.7    | \$ | 3.2                  | \$  | 32.5                | \$<br>11.4    | \$ | 2.5                   | \$ | 25.1                | \$<br>25.0    | \$ | 5.5                | \$  | 55.0                |
| 2012  | \$<br>26.7    | \$ | 5.9                  | \$  | 58.8                | \$<br>19.7    | \$ | 4.3                   | \$ | 43.3                | \$<br>43.6    | \$ | 9.6                | \$  | 95.9                |
| 2013  | \$<br>41.4    | \$ | 9.1                  | \$  | 91.1                | \$<br>29.4    | \$ | 6.4                   | \$ | 64.6                | \$<br>65.2    | \$ | 14.3               | \$  | 143.4               |
| 2014  | \$<br>56.0    | \$ | 12.3                 | \$  | 123.3               | \$<br>38.1    | \$ | 8.3                   | \$ | 83.8                | \$<br>84.3    | \$ | 18.5               | \$  | 185.5               |
| 2015  | \$<br>70.2    | \$ | 15.4                 | \$  | 154.9               | \$<br>46.1    | \$ | 10.1                  | \$ | 101.6               | \$<br>100.8   | \$ | 22.1               | \$  | 222.3               |
| 2016  | \$<br>83.0    | \$ | 18.1                 | \$  | 183.0               | \$<br>52.9    | \$ | 11.6                  | \$ | 116.7               | \$<br>113.8   | \$ | 24.9               | \$  | 250.9               |
| 2017  | \$<br>94.4    | \$ | 20.6                 | \$  | 208.4               | \$<br>59.0    | \$ | 12.9                  | \$ | 130.3               | \$<br>124.0   | \$ | 27.1               | \$  | 273.8               |
| 2018  | \$<br>104.5   | \$ | 22.8                 | \$  | 230.8               | \$<br>64.7    | \$ | 14.1                  | \$ | 142.9               | \$<br>132.4   | \$ | 28.8               | \$  | 292.5               |
| 2019  | \$<br>113.4   | \$ | 24.6                 | \$  | 251.0               | \$<br>70.1    | \$ | 15.2                  | \$ | 155.2               | \$<br>139.5   | \$ | 30.3               | \$  | 308.9               |
| 2020  | \$<br>121.2   | \$ | 26.3                 | \$  | 268.5               | \$<br>75.3    | \$ | 16.3                  | \$ | 166.8               | \$<br>145.6   | \$ | 31.6               | \$  | 322.7               |
| 2021  | \$<br>128.1   | \$ | 27.8                 | \$  | 284.1               | \$<br>80.2    | \$ | 17.4                  | \$ | 178.0               | \$<br>151.0   | \$ | 32.7               | \$  | 335.0               |
| 2022  | \$<br>134.2   | \$ | 29.0                 | \$  | 298.4               | \$<br>85.0    | \$ | 18.4                  | \$ | 189.0               | \$<br>155.7   | \$ | 33.7               | \$  | 346.2               |
| 2023  | \$<br>139.8   | \$ | 30.2                 | \$  | 310.8               | \$<br>89.7    | \$ | 19.3                  | \$ | 199.4               | \$<br>160.0   | \$ | 34.5               | \$  | 355.7               |
| 2024  | \$<br>144.9   | \$ | 31.2                 | \$  | 322.3               | \$<br>94.2    | \$ | 20.3                  | \$ | 209.5               | \$<br>163.9   | \$ | 35.3               | \$  | 364.6               |
| 2025  | \$<br>149.6   | \$ | 32.2                 | \$  | 333.0               | \$<br>98.6    | \$ | 21.2                  | \$ | 219.4               | \$<br>167.5   | \$ | 36.0               | \$  | 372.8               |
| 2026  | \$<br>154.0   | \$ | 33.1                 | \$  | 342.9               | \$<br>102.8   | \$ | 22.1                  | \$ | 229.0               | \$<br>170.8   | \$ | 36.7               | \$  | 380.4               |
| 2027  | \$<br>158.1   | \$ | 33.9                 | \$  | 353.0               | \$<br>107.0   | \$ | 23.0                  | \$ | 238.9               | \$<br>174.0   | \$ | 37.3               | \$  | 388.4               |
| 2028  | \$<br>159.8   | \$ | 34.3                 | \$  | 356.3               | \$<br>109.6   | \$ | 23.5                  | \$ | 244.3               | \$<br>174.5   | \$ | 37.5               | \$  | 389.2               |
| 2029  | \$<br>163.0   | \$ | 34.9                 | \$  | 364.2               | \$<br>113.2   | \$ | 24.3                  | \$ | 252.9               | \$<br>176.9   | \$ | 37.9               | \$  | 395.2               |
| Total | \$<br>2,062.7 | \$ | 446.1                | \$  | 4,580.0             | \$<br>1,351.6 | \$ | 292.3                 | \$ | 3,001.2             | \$<br>2,478.5 | \$ | 536.5              | \$  | 5,500.6             |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

## Exhibit F.5c Projections of Yearly Benefits, WTP for Bronchitis as Basis for Non-Fatal Cases (All Water Systems)

**HAA5 - Preferred Alternative** 

|       |                                         |               |             | g/Lung Ca<br>on Lag M |      |                      |                | _           | /Bladder           |             |                     |                | Bladder C<br>on Lag M |    | -                   |
|-------|-----------------------------------------|---------------|-------------|-----------------------|------|----------------------|----------------|-------------|--------------------|-------------|---------------------|----------------|-----------------------|----|---------------------|
|       |                                         |               |             | 90 P                  |      |                      |                |             | 90 P<br>Confide    |             |                     |                | 90 P                  |    | -                   |
| Year  |                                         | Mean<br>Value | (5          | Lower<br>th %tile)    | (9   | Upper<br>95th %tile) | Mean<br>Value  | (5          | Lower<br>th %tile) | (9          | Upper<br>5th %tile) | Mean<br>Value  | Lower<br>th %tile)    | (9 | Upper<br>5th %tile) |
| 2005  | \$                                      | -             | \$          | -                     | \$   | -                    | \$<br>-        | \$          | -                  | \$          | -                   | \$<br>-        | \$<br>-               | \$ | -                   |
| 2006  | \$                                      | -             | \$          | -                     | \$   | -                    | \$<br>-        | \$          | -                  | \$          | -                   | \$<br>-        | \$<br>-               | \$ | -                   |
| 2007  | \$                                      | -             | \$          | -                     | \$   | -                    | \$<br>-        | \$          | -                  | \$          | -                   | \$<br>-        | \$<br>-               | \$ | -                   |
| 2008  | \$                                      | -             | \$          | -                     | \$   | -                    | \$<br>-        | \$          | -                  | \$          | -                   | \$<br>-        | \$<br>-               | \$ | -                   |
| 2009  |                                         |               | \$<br>-     | \$                    | -    | \$                   | -              | \$<br>-     | \$<br>-            | \$          | -                   |                |                       |    |                     |
| 2010  |                                         |               | \$<br>148.0 | \$                    | 22.7 | \$                   | 340.2          | \$<br>290.7 | \$<br>44.5         | \$          | 668.4               |                |                       |    |                     |
| 2011  | \$                                      | 398.0         | \$          | 60.9                  | \$   | 915.5                | \$<br>350.1    | \$          | 53.6               | \$          | 805.2               | \$<br>710.5    | \$<br>108.8           | \$ | 1,634.1             |
| 2012  | \$                                      | 720.1         | \$          | 110.2                 | \$   | 1,654.3              | \$<br>596.1    | \$          | 91.2               | \$          | 1,369.3             | \$<br>1,224.8  | \$<br>187.4           | \$ | 2,813.8             |
| 2013  | \$                                      | 1,115.7       | \$          | 170.8                 | \$   | 2,562.6              | \$<br>881.0    | \$          | 134.8              | \$          | 2,023.6             | \$<br>1,814.5  | \$<br>277.7           | \$ | 4,167.8             |
| 2014  | \$                                      | 1,458.6       | \$          | 223.0                 | \$   | 3,353.0              | \$<br>1,078.4  | \$          | 164.9              | \$          | 2,479.1             | \$<br>2,225.1  | \$<br>340.2           | \$ | 5,115.0             |
| 2015  | \$                                      | 1,781.3       | \$          | 272.4                 | \$   | 4,096.7              | \$<br>1,247.9  | \$          | 190.8              | \$          | 2,869.9             | \$<br>2,549.0  | \$<br>389.8           | \$ | 5,862.2             |
| 2016  | \$                                      | 2,076.1       | \$          | 317.2                 | \$   | 4,774.5              | \$<br>1,395.1  | \$          | 213.1              | \$          | 3,208.3             | \$<br>2,802.6  | \$<br>428.1           | \$ | 6,445.2             |
| 2017  | \$                                      | 2,342.8       | \$          | 357.7                 | \$   | 5,392.8              | \$<br>1,529.3  | \$          | 233.5              | \$          | 3,520.4             | \$<br>3,008.8  | \$<br>459.4           | \$ | 6,925.9             |
| 2018  | \$                                      | 2,577.2       | \$          | 393.0                 | \$   | 5,937.4              | \$<br>1,654.9  | \$          | 252.3              | \$          | 3,812.7             | \$<br>3,181.9  | \$<br>485.2           | \$ | 7,330.4             |
| 2019  | \$                                      | 2,778.0       | \$          | 423.2                 | \$   | 6,410.7              | \$<br>1,773.8  | \$          | 270.2              | \$          | 4,093.4             | \$<br>3,330.1  | \$<br>507.3           | \$ | 7,685.0             |
| 2020  | \$                                      | 2,952.4       | \$          | 449.6                 | \$   | 6,816.4              | \$<br>1,887.2  | \$          | 287.4              | \$          | 4,357.1             | \$<br>3,459.4  | \$<br>526.8           | \$ | 7,986.9             |
| 2021  | \$                                      | 3,106.0       | \$          | 472.4                 | \$   | 7,171.5              | \$<br>1,995.9  | \$          | 303.6              | \$          | 4,608.4             | \$<br>3,573.8  | \$<br>543.6           | \$ | 8,251.5             |
| 2022  | \$                                      | 3,243.3       | \$          | 493.2                 | \$   | 7,501.0              | \$<br>2,100.6  | \$          | 319.4              | \$          | 4,858.3             | \$<br>3,676.4  | \$<br>559.0           | \$ | 8,502.7             |
| 2023  | \$                                      | 3,367.4       | \$          | 512.2                 | \$   | 7,790.1              | \$<br>2,201.7  | \$          | 334.9              | \$          | 5,093.4             | \$<br>3,769.6  | \$<br>573.3           | \$ | 8,720.5             |
| 2024  | \$                                      | 3,480.9       | \$          | 529.2                 | \$   | 8,055.7              | \$<br>2,299.7  | \$          | 349.6              | \$          | 5,322.1             | \$<br>3,855.3  | \$<br>586.1           | \$ | 8,922.2             |
| 2025  | \$                                      | 3,585.7       | \$          | 544.3                 | \$   | 8,298.7              | \$<br>2,394.8  | \$          | 363.5              | \$          | 5,542.6             | \$<br>3,935.0  | \$<br>597.3           | \$ | 9,107.0             |
| 2026  | \$                                      | 3,683.3       | \$          | 558.3                 | \$   | 8,531.8              | \$<br>2,487.4  | \$          | 377.1              | \$          | 5,761.9             | \$<br>4,009.7  | \$<br>607.8           | \$ | 9,287.9             |
| 2027  | \$                                      | 3,774.8       | \$          | 571.5                 | \$   | 8,757.4              | \$<br>2,577.7  | \$          | 390.3              | \$          | 5,980.2             | \$<br>4,080.4  | \$<br>617.8           | \$ | 9,466.3             |
| 2028  | \$                                      | 3,811.4       | \$          | 577.6                 | \$   | 8,837.2              | \$<br>2,631.4  | \$          | 398.8              | \$          | 6,101.3             | \$<br>4,094.2  | \$<br>620.4           | \$ | 9,493.0             |
| 2029  | <b>9</b> \$ 3,883.2 \$ 587.7 \$ 9,012.4 |               | 9,012.4     | \$<br>2,710.1         | \$   | 410.1                | \$             | 6,289.6     | \$<br>4,148.2      | \$<br>627.8 | \$                  | 9,627.3        |                       |    |                     |
| Total | \$ 50,290.1                             |               | \$          | 7,647.7               | \$   | 116,223.6            | \$<br>33,941.3 | \$          | 5,161.8            | \$          | 78,436.9            | \$<br>59,739.9 | \$<br>9,088.3         | \$ | 138,013.0           |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.5a and F.5b.

Exhibit F.5d Present Value of Benefits Yearly Projections, WTP for Bronchitis as Basis for Non-Fatal (All Water Systems)

**HAA5 - Preferred Alternative** 

|       |      |               | g/Lung Ca<br>on Lag M |    |                     |                  | _  | /Bladder (<br>ion Lag N |    |                     |                  |    | /Bladder (      |    | -                   |
|-------|------|---------------|-----------------------|----|---------------------|------------------|----|-------------------------|----|---------------------|------------------|----|-----------------|----|---------------------|
|       |      |               | 90 P                  |    |                     |                  |    | 90 P                    |    |                     |                  |    | 90 P<br>Confide |    |                     |
| Year  |      | Mean<br>Value | Lower<br>th %tile)    | (9 | Upper<br>5th %tile) | Mean<br>Value    | (5 | Lower<br>th %tile)      | (9 | Upper<br>5th %tile) | Mean<br>Value    | (5 | Lower           | (9 | Upper<br>5th %tile) |
| 2005  | \$   | value<br>-    | \$<br>_               | \$ | -                   | \$<br>value<br>- | \$ | _                       | \$ | _                   | \$<br>value<br>- | \$ | -               | \$ | -                   |
| 2006  | \$   | _             | \$<br>_               | \$ | _                   | \$<br>_          | \$ | _                       | \$ | _                   | \$<br>_          | \$ | _               | \$ | _                   |
| 2007  | \$   | -             | \$<br>_               | \$ | -                   | \$<br>-          | \$ | -                       | \$ | _                   | \$<br>-          | \$ | -               | \$ | -                   |
| 2008  | \$   | _             | \$<br>_               | \$ | _                   | \$<br>_          | \$ | -                       | \$ | _                   | \$<br>_          | \$ | _               | \$ | _                   |
| 2009  | \$ - |               | \$<br>_               | \$ | -                   | \$<br>_          | \$ | _                       | \$ | _                   | \$<br>_          | \$ | _               | \$ | _                   |
| 2010  | \$   | 132.7         | \$<br>20.3            | \$ | 305.2               | \$<br>127.7      | \$ | 19.5                    | \$ | 293.5               | \$<br>250.8      | \$ | 38.4            | \$ | 576.5               |
| 2011  | \$   | 333.4         | \$<br>51.0            | \$ | 766.7               | \$<br>293.2      | \$ | 44.9                    | \$ | 674.3               | \$<br>595.0      | \$ | 91.1            | \$ | 1,368.5             |
| 2012  | \$   | 585.5         | \$<br>89.6            | \$ | 1,345.1             | \$<br>484.6      | \$ | 74.2                    | \$ | 1,113.4             | \$<br>995.9      | \$ | 152.4           | \$ | 2,287.9             |
| 2013  | \$   | 880.7         | \$<br>134.8           | \$ | 2,022.9             | \$<br>695.5      | \$ | 106.5                   | \$ | 1,597.4             | \$<br>1,432.4    | \$ | 219.3           | \$ | 3,290.1             |
| 2014  | \$   | 1,117.9       | \$<br>170.9           | \$ | 2,569.8             | \$<br>826.5      | \$ | 126.4                   | \$ | 1,900.0             | \$<br>1,705.4    | \$ | 260.7           | \$ | 3,920.2             |
| 2015  | \$   | 1,325.5       | \$<br>202.7           | \$ | 3,048.3             | \$<br>928.5      | \$ | 142.0                   | \$ | 2,135.4             | \$<br>1,896.7    | \$ | 290.0           | \$ | 4,362.0             |
| 2016  | \$   | 1,499.8       | \$<br>229.1           | \$ | 3,449.2             | \$<br>1,007.9    | \$ | 154.0                   | \$ | 2,317.8             | \$<br>2,024.6    | \$ | 309.3           | \$ | 4,656.1             |
| 2017  | \$   | 1,643.2       | \$<br>250.9           | \$ | 3,782.4             | \$<br>1,072.6    | \$ | 163.8                   | \$ | 2,469.1             | \$<br>2,110.3    | \$ | 322.2           | \$ | 4,857.7             |
| 2018  | \$   | 1,755.0       | \$<br>267.6           | \$ | 4,043.1             | \$<br>1,126.9    | \$ | 171.8                   | \$ | 2,596.2             | \$<br>2,166.7    | \$ | 330.4           | \$ | 4,991.6             |
| 2019  | \$   | 1,836.6       | \$<br>279.8           | \$ | 4,238.2             | \$<br>1,172.7    | \$ | 178.6                   | \$ | 2,706.2             | \$<br>2,201.6    | \$ | 335.4           | \$ | 5,080.7             |
| 2020  | \$   | 1,895.0       | \$<br>288.6           | \$ | 4,375.2             | \$<br>1,211.3    | \$ | 184.4                   | \$ | 2,796.6             | \$<br>2,220.5    | \$ | 338.1           | \$ | 5,126.5             |
| 2021  | \$   | 1,935.6       | \$<br>294.4           | \$ | 4,469.1             | \$<br>1,243.8    | \$ | 189.2                   | \$ | 2,871.8             | \$<br>2,227.1    | \$ | 338.7           | \$ | 5,142.1             |
| 2022  | \$   | 1,962.2       | \$<br>298.4           | \$ | 4,538.2             | \$<br>1,270.9    | \$ | 193.3                   | \$ | 2,939.3             | \$<br>2,224.3    | \$ | 338.2           | \$ | 5,144.3             |
| 2023  | \$   | 1,978.0       | \$<br>300.8           | \$ | 4,575.8             | \$<br>1,293.3    | \$ | 196.7                   | \$ | 2,991.9             | \$<br>2,214.2    | \$ | 336.8           | \$ | 5,122.4             |
| 2024  | \$   | 1,985.1       | \$<br>301.8           | \$ | 4,594.0             | \$<br>1,311.5    | \$ | 199.4                   | \$ | 3,035.1             | \$<br>2,198.6    | \$ | 334.2           | \$ | 5,088.2             |
| 2025  | \$   | 1,985.3       | \$<br>301.3           | \$ | 4,594.8             | \$<br>1,326.0    | \$ | 201.3                   | \$ | 3,068.8             | \$<br>2,178.7    | \$ | 330.7           | \$ | 5,042.3             |
| 2026  | \$   | 1,979.9       | \$<br>300.1           | \$ | 4,586.3             | \$<br>1,337.1    | \$ | 202.7                   | \$ | 3,097.3             | \$<br>2,155.4    | \$ | 326.7           | \$ | 4,992.7             |
| 2027  | \$   | 1,970.1       | \$<br>298.3           | \$ | 4,570.4             | \$<br>1,345.3    | \$ | 203.7                   | \$ | 3,121.0             | \$<br>2,129.5    | \$ | 322.4           | \$ | 4,940.4             |
| 2028  | \$   | 1,931.2       | \$<br>292.7           | \$ | 4,477.7             | \$<br>1,333.3    | \$ | 202.1                   | \$ | 3,091.5             | \$<br>2,074.5    | \$ | 314.4           | \$ | 4,810.0             |
| 2029  | \$   | 1,910.3       | \$<br>289.1           | \$ | 4,433.5             | \$<br>1,333.2    | \$ | 201.8                   | \$ | 3,094.1             | \$<br>2,040.6    | \$ | 308.8           | \$ | 4,736.0             |
| Total | \$   | 30,643.0      | \$<br>4,662.2         | \$ | 70,786.1            | \$<br>20,741.8   | \$ | 3,156.0                 | \$ | 47,910.8            | \$<br>37,042.8   | \$ | 5,638.3         | \$ | 85,536.3            |
| Ann.  | \$   | 1,759.8       | \$<br>267.7           | \$ | 4,065.1             | \$<br>1,191.2    | \$ | 181.2                   | \$ | 2,751.4             | \$<br>2,127.3    | \$ | 323.8           | \$ | 4,912.2             |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibit F.5c.

### Exhibit F.5e Present Value of Benefits Yearly Projections, WTP for Bronchitis as Basis for Non-Fatal Cases, at (All Water Systems)

**HAA5 - Preferred Alternative** 

|       |                |    | ing/Lung Cation Lag M |    |                      |                | _  | ladder Ca<br>n Lag Mo |    | er                  |                |     | Bladder (<br>ion Lag N |     |                     |
|-------|----------------|----|-----------------------|----|----------------------|----------------|----|-----------------------|----|---------------------|----------------|-----|------------------------|-----|---------------------|
|       |                |    | 90 Po<br>Confider     |    |                      |                |    | 90 P                  |    |                     |                |     | 90 P<br>Confider       |     |                     |
| Year  | Mean<br>Value  | (5 | Lower<br>5th %tile)   | (  | Upper<br>95th %tile) | Mean<br>Value  | (5 | Lower<br>th %tile)    | (9 | Upper<br>5th %tile) | Mean<br>Value  | (5: | Lower<br>th %tile)     | (9: | Upper<br>5th %tile) |
| 2005  | \$<br>-        | \$ | -                     | \$ | -                    | \$<br>-        | \$ | -                     | \$ | -                   | \$<br>-        | \$  | -                      | \$  | -                   |
| 2006  | \$<br>-        | \$ | -                     | \$ | -                    | \$<br>-        | \$ | -                     | \$ | -                   | \$<br>-        | \$  | -                      | \$  | -                   |
| 2007  | \$<br>-        | \$ | -                     | \$ | -                    | \$<br>-        | \$ | -                     | \$ | -                   | \$<br>-        | \$  | -                      | \$  | -                   |
| 2008  | \$<br>-        | \$ | -                     | \$ | -                    | \$<br>-        | \$ | -                     | \$ | -                   | \$<br>-        | \$  | -                      | \$  | -                   |
| 2009  | \$<br>-        | \$ | -                     | \$ | -                    | \$<br>-        | \$ | -                     | \$ | -                   | \$<br>-        | \$  | -                      | \$  | -                   |
| 2010  | \$<br>109.7    | \$ | 16.8                  | \$ | 252.2                | \$<br>105.5    | \$ | 16.2                  | \$ | 242.6               | \$<br>207.3    | \$  | 31.7                   | \$  | 476.5               |
| 2011  | \$<br>265.2    | \$ | 40.6                  | \$ | 610.1                | \$<br>233.3    | \$ | 35.7                  | \$ | 536.5               | \$<br>473.4    | \$  | 72.5                   | \$  | 1,088.9             |
| 2012  | \$<br>448.5    | \$ | 68.6                  | \$ | 1,030.2              | \$<br>371.2    | \$ | 56.8                  | \$ | 852.7               | \$<br>762.8    | \$  | 116.7                  | \$  | 1,752.3             |
| 2013  | \$<br>649.3    | \$ | 99.4                  | \$ | 1,491.5              | \$<br>512.7    | \$ | 78.5                  | \$ | 1,177.7             | \$<br>1,056.1  | \$  | 161.6                  | \$  | 2,425.7             |
| 2014  | \$<br>793.4    | \$ | 121.3                 | \$ | 1,823.8              | \$<br>586.6    | \$ | 89.7                  | \$ | 1,348.4             | \$<br>1,210.3  | \$  | 185.0                  | \$  | 2,782.2             |
| 2015  | \$<br>905.5    | \$ | 138.5                 | \$ | 2,082.6              | \$<br>634.3    | \$ | 97.0                  | \$ | 1,458.9             | \$<br>1,295.8  | \$  | 198.1                  | \$  | 2,980.0             |
| 2016  | \$<br>986.4    | \$ | 150.7                 | \$ | 2,268.3              | \$<br>662.8    | \$ | 101.3                 | \$ | 1,524.3             | \$<br>1,331.5  | \$  | 203.4                  | \$  | 3,062.0             |
| 2017  | \$<br>1,040.2  | \$ | 158.8                 | \$ | 2,394.5              | \$<br>679.0    | \$ | 103.7                 | \$ | 1,563.1             | \$<br>1,335.9  | \$  | 204.0                  | \$  | 3,075.2             |
| 2018  | \$<br>1,069.5  | \$ | 163.1                 | \$ | 2,463.8              | \$<br>686.7    | \$ | 104.7                 | \$ | 1,582.1             | \$<br>1,320.4  | \$  | 201.3                  | \$  | 3,041.9             |
| 2019  | \$<br>1,077.3  | \$ | 164.1                 | \$ | 2,486.2              | \$<br>687.9    | \$ | 104.8                 | \$ | 1,587.5             | \$<br>1,291.5  | \$  | 196.7                  | \$  | 2,980.4             |
| 2020  | \$<br>1,070.1  | \$ | 162.9                 | \$ | 2,470.6              | \$<br>684.0    | \$ | 104.2                 | \$ | 1,579.2             | \$<br>1,253.9  | \$  | 190.9                  | \$  | 2,894.8             |
| 2021  | \$<br>1,052.1  | \$ | 160.0                 | \$ | 2,429.2              | \$<br>676.1    | \$ | 102.8                 | \$ | 1,561.0             | \$<br>1,210.6  | \$  | 184.1                  | \$  | 2,795.1             |
| 2022  | \$<br>1,026.7  | \$ | 156.1                 | \$ | 2,374.6              | \$<br>665.0    | \$ | 101.1                 | \$ | 1,538.0             | \$<br>1,163.9  | \$  | 177.0                  | \$  | 2,691.7             |
| 2023  | \$<br>996.3    | \$ | 151.5                 | \$ | 2,304.8              | \$<br>651.4    | \$ | 99.1                  | \$ | 1,507.0             | \$<br>1,115.3  | \$  | 169.6                  | \$  | 2,580.1             |
| 2024  | \$<br>962.5    | \$ | 146.3                 | \$ | 2,227.5              | \$<br>635.9    | \$ | 96.7                  | \$ | 1,471.6             | \$<br>1,066.0  | \$  | 162.1                  | \$  | 2,467.0             |
| 2025  | \$<br>926.6    | \$ | 140.6                 | \$ | 2,144.5              | \$<br>618.9    | \$ | 93.9                  | \$ | 1,432.3             | \$<br>1,016.9  | \$  | 154.3                  | \$  | 2,353.4             |
| 2026  | \$<br>889.6    | \$ | 134.8                 | \$ | 2,060.6              | \$<br>600.8    | \$ | 91.1                  | \$ | 1,391.6             | \$<br>968.4    | \$  | 146.8                  | \$  | 2,243.2             |
| 2027  | \$<br>852.0    | \$ | 129.0                 | \$ | 1,976.7              | \$<br>581.8    | \$ | 88.1                  | \$ | 1,349.8             | \$<br>921.0    | \$  | 139.4                  | \$  | 2,136.7             |
| 2028  | \$<br>804.0    | \$ | 121.8                 | \$ | 1,864.2              | \$<br>555.1    | \$ | 84.1                  | \$ | 1,287.1             | \$<br>863.7    | \$  | 130.9                  | \$  | 2,002.5             |
| 2029  | \$<br>765.6    | \$ | 115.9                 | \$ | 1,776.8              | \$<br>534.3    | \$ | 80.9                  | \$ | 1,240.0             | \$<br>817.8    | \$  | 123.8                  | \$  | 1,898.0             |
| Total | \$<br>16,690.5 | \$ | 2,541.0               | \$ | 38,532.5             | \$<br>11,363.4 | \$ | 1,730.2               | \$ | 26,231.4            | \$<br>20,682.2 | \$  | 3,150.1                | \$  | 47,727.6            |
| Ann.  | \$<br>1,432.2  | \$ | 218.0                 | \$ | 3,306.5              | \$<br>975.1    | \$ | 148.5                 | \$ | 2,250.9             | \$<br>1,774.7  | \$  | 270.3                  | \$  | 4,095.5             |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibit F.5c.

#### Exhibit F.5f Mean Present Value of Benefits Yearly Projections, WTP for Bronchitis as Basis for Non-Fatal Cases, at 3% Discount Rate, by System Size (All Systems)

HAA5 - Preferred Alternative

|      | -110 | JICITO | Alterna |                  | Smoking/Lu | ıng Cance | r Cessation          | Lag Mode          |                      |                       |                      |        |         |                  | Smokin           | n/Rladder | Cancer Ces        | eation I a         | a Model              |                      |                      | 1                |         |                  | Arconic | /Bladder C         | ancer Cess        | ation I an           | Model               |            | $\overline{}$            |
|------|------|--------|---------|------------------|------------|-----------|----------------------|-------------------|----------------------|-----------------------|----------------------|--------|---------|------------------|------------------|-----------|-------------------|--------------------|----------------------|----------------------|----------------------|------------------|---------|------------------|---------|--------------------|-------------------|----------------------|---------------------|------------|--------------------------|
| Year | <1   | 00     | 100-499 | 500-999          |            |           | 10,000-              | 50,000-<br>99,999 | 100,000-<br>999,999  | <u>&gt;</u> 1,000,000 | Total                | <100   | 100-499 | 500-999          |                  |           | 10,000-<br>49,999 | 50,000-<br>99,999  | 100,000-<br>999,999  | ≥1,000,000           | Total                | <100             | 100-499 | 500-999          |         | 3,300-9,999        | 10,000-<br>49,999 | 50,000-<br>99,999    | 100,000-<br>999,999 | ≥1,000,000 | Total                    |
| 2005 | \$   | -      | \$ -    | s -              | s -        | s -       | s -                  | s -               | s -                  | s -                   | \$ -                 | \$ -   | \$ -    | s -              | s -              | s -       | \$ -              | s -                | s -                  | s -                  | s -                  | s -              | s -     | s -              | s -     | s -                | s -               | s -                  | \$ -                | \$ -       | s -                      |
| 2006 | \$   | -      | \$ -    | \$ -             | \$ -       | \$ -      | \$ -                 | \$ -              | \$ -                 | \$ -                  | \$ -                 | \$ -   | \$ -    | \$ -             | \$ -             | \$ -      | \$ -              | \$ -               | \$ -                 | \$ -                 | \$ -                 | \$ -             | \$ -    | \$ -             | \$ -    | \$ -               | \$ -              | \$ -                 | \$ -                | \$ -       | \$ -                     |
| 2007 | \$   | -      | \$ -    | s -              | s -        | s -       | \$ -                 | s -               | \$ -                 | s -                   | \$ -                 | \$ -   | \$ -    | \$ -             | \$ -             | \$ -      | \$ -              | \$ -               | s -                  | \$ -                 | \$ -                 | \$ -             | \$ -    | \$ -             | s -     | \$ -               | \$ -              | s -                  | \$ -                | \$ -       | s -                      |
| 2008 | \$   | -      | s -     | \$ -             | \$ -       | s -       | \$ -                 | s -               | \$ -                 | \$ -                  | \$ -                 | \$ -   | \$ -    | \$ -             | \$ -             | \$ -      | \$ -              | \$ -               | \$ -                 | \$ -                 | \$ -                 | \$ -             | \$ -    | \$ -             | \$ -    | \$ -               | \$ -              | s -                  | \$ -                | \$ -       | \$ -                     |
| 2009 | \$   | -      | \$ -    | \$ -             | \$ -       | \$ -      | \$ -                 | \$ -              | \$ -                 | \$ -                  | \$ -                 | \$ -   | \$ -    | \$ -             | \$ -             | \$ -      | \$ -              | \$ -               | \$ -                 | \$ -                 | \$ -                 | \$ -             | \$ -    | \$ -             | \$ -    | \$ -               | \$ -              | s -                  | \$ -                | \$ -       | \$ -                     |
| 2010 | \$   | 0.0    | \$ 0.1  | \$ 0.1           | \$ 0.6     | \$ 1.4    | \$ 8.0               | \$ 6.3            | \$ 27.1              | \$ 21.9               | \$ 65.6              | \$ 0.0 | \$ 0.1  | \$ 0.1           | \$ 0.5           | \$ 1.2    | \$ 7.6            | \$ 6.1             | \$ 26.2              | \$ 21.3              | \$ 63.1              | \$ 0.0           | \$ 0.2  | \$ 0.2           | \$ 1.1  | \$ 2.4             | \$ 15.1           | \$ 12.0              | \$ 51.3             | \$ 41.6    | \$ 123.9                 |
| 2011 | \$   | 0.0    | \$ 0.3  | \$ 0.3           | \$ 1.5     | \$ 3.5    | \$ 20.2              | \$ 16.0           | \$ 68.0              | \$ 54.9               | \$ 164.8             | \$ 0.0 | \$ 0.2  | \$ 0.3           | \$ 1.2           | \$ 2.7    | \$ 17.6           | \$ 14.0            | \$ 60.1              | \$ 48.9              | \$ 144.9             | \$ 0.1           | \$ 0.5  | \$ 0.6           | \$ 2.5  | \$ 5.9             | \$ 35.9           | \$ 28.5              | \$ 121.6            | \$ 98.5    | \$ 294.1                 |
| 2012 | \$   | 0.1    | \$ 0.5  | \$ 0.6           | \$ 2.6     | \$ 6.1    | \$ 35.6              | \$ 28.0           | \$ 119.6             | \$ 96.6               | \$ 289.6             | \$ 0.0 | \$ 0.4  | \$ 0.4           | \$ 1.9           | \$ 4.5    | \$ 29.1           | \$ 23.2            | \$ 99.4              | \$ 80.7              | \$ 239.7             | \$ 0.1           | \$ 0.8  | \$ 1.0           | \$ 4.3  | \$ 10.0            | \$ 60.3           | \$ 47.7              | \$ 203.7            | \$ 164.9   | \$ 492.7                 |
| 2013 | \$   | 0.1    | \$ 0.7  | \$ 0.9           | \$ 4.0     | \$ 9.2    | \$ 53.5              | \$ 42.2           | \$ 180.0             | \$ 145.4              | \$ 436.0             | \$ 0.1 | \$ 0.5  | \$ 0.6           | \$ 2.8           | \$ 6.5    | \$ 41.9           | \$ 33.3            | \$ 142.6             | \$ 115.9             | \$ 344.3             | \$ 0.1           | \$ 1.1  | \$ 1.4           | \$ 6.2  | \$ 14.5            | \$ 86.8           | \$ 68.7              | \$ 293.0            | \$ 237.1   | \$ 709.1                 |
| 2014 | \$   | 0.1    | \$ 1.0  | \$ 1.3           | \$ 5.5     | \$ 12.7   | \$ 73.9              | \$ 55.4           | \$ 223.5             | \$ 180.5              | \$ 553.8             | \$ 0.1 | \$ 0.7  | \$ 0.9           | \$ 3.8           | \$ 8.7    | \$ 55.5           | \$ 41.3            | \$ 164.7             | \$ 133.7             | \$ 409.5             | \$ 0.2           | \$ 1.5  | \$ 1.9           | \$ 8.3  | \$ 19.3            | \$ 114.7          | \$ 85.1              | \$ 339.4            | \$ 274.4   | \$ 844.8                 |
| 2015 | \$   | 0.2    | \$ 1.3  | \$ 1.6           | \$ 7.1     | \$ 16.5   | \$ 92.7              | \$ 65.7           | \$ 261.0             | \$ 210.9              | \$ 657.1             | \$ 0.1 | \$ 0.9  | \$ 1.1           | \$ 4.8           | \$ 11.1   | \$ 66.4           | \$ 46.3            | \$ 182.0             | \$ 147.7             | \$ 460.3             | \$ 0.2           | \$ 1.9  | \$ 2.4           | \$ 10.4 | \$ 24.2            | \$ 136.5          | \$ 94.6              | \$ 370.5            | \$ 299.5   | \$ 940.3                 |
|      |      | 0.2    | \$ 1.6  | \$ 2.0           | \$ 8.6     | \$ 19.9   | \$ 107.3             | \$ 74.5           | \$ 293.2             | \$ 236.9              | \$ 744.2             | \$ 0.1 | \$ 1.0  | \$ 1.3           | \$ 5.6           | \$ 13.0   | \$ 73.4           | \$ 50.3            | \$ 196.2             | \$ 159.1             | \$ 500.1             | \$ 0.3           | \$ 2.2  | \$ 2.8           | \$ 12.1 | \$ 28.1            | \$ 149.3          | \$ 101.1             | \$ 392.0            | \$ 316.7   | \$ 1,004.5               |
| 2017 | 1    | 0.2    | \$ 1.8  | \$ 2.2           | \$ 9.7     | \$ 22.5   | \$ 119.4             | \$ 81.8           | \$ 319.8             |                       | \$ 815.9             | \$ 0.1 | \$ 1.1  | \$ 1.4           | \$ 6.2           | \$ 14.3   | \$ 79.1           | \$ 53.6            | \$ 208.1             | \$ 168.6             | \$ 532.6             | \$ 0.3           | \$ 2.4  | \$ 3.0           | \$ 13.1 |                    |                   | \$ 105.5             | \$ 406.6            | \$ 328.5   | \$ 1,047.8               |
|      | \$   |        | \$ 1.9  | \$ 2.4           |            |           | \$ 129.3             |                   |                      |                       | \$ 872.1             |        |         |                  |                  |           | \$ 83.9           | \$ 56.4            | \$ 218.1             | \$ 176.7             | \$ 560.0             |                  |         |                  |         | \$ 32.1            | \$ 163.8          | \$ 108.4             |                     |            | \$ 1,076.7               |
| 2019 | 1    | 0.3    |         | \$ 2.6           | l -        |           |                      | \$ 91.9           |                      |                       | \$ 913.4             |        |         |                  |                  |           |                   |                    | \$ 226.6             |                      | \$ 583.2             |                  |         | \$ 3.3           | 1       |                    |                   | \$ 110.3             | -                   |            | \$ 1,094.9               |
| 2020 | 1    | 0.3    |         | \$ 2.7           |            |           |                      |                   |                      |                       | \$ 943.2             |        |         |                  |                  | \$ 17.2   |                   |                    | \$ 233.8             | \$ 189.3             | \$ 602.9             |                  |         | \$ 3.3           |         |                    |                   | \$ 111.4             |                     |            | \$ 1,105.2               |
| 2021 | 1    | 0.3    |         | \$ 2.8           | l -        | \$ 28.7   |                      |                   |                      |                       | \$ 964.2             |        | l .     |                  |                  |           |                   |                    |                      |                      | \$ 619.6             |                  |         | 1                | 1       |                    | -                 |                      |                     |            | \$ 1,109.4               |
| 2022 | 1    | 0.3    |         | \$ 2.9           |            |           |                      |                   | \$ 377.3             |                       | \$ 978.3             |        |         |                  | \$ 8.0           |           | \$ 96.5           | \$ 63.8            | \$ 245.0             | \$ 198.3             | \$ 633.6             |                  |         | \$ 3.4           |         |                    | \$ 171.5          |                      |                     |            | \$ 1,108.9               |
| 2023 |      | 0.3    |         | \$ 2.9<br>\$ 3.0 |            |           | \$ 151.7<br>\$ 152.7 |                   | \$ 380.2<br>\$ 381.5 |                       | \$ 987.0<br>\$ 991.3 |        |         | \$ 1.9<br>\$ 1.9 | \$ 8.2<br>\$ 8.4 |           |                   | \$ 65.0<br>\$ 66.0 | \$ 249.3<br>\$ 252.7 | \$ 201.7<br>\$ 204.5 | \$ 645.3<br>\$ 654.9 | \$ 0.3<br>\$ 0.3 |         | \$ 3.4<br>\$ 3.4 |         | \$ 34.5<br>\$ 34.4 | -                 | \$ 111.4<br>\$ 110.7 |                     |            | \$ 1,104.8<br>\$ 1.098.0 |
| 2024 | 1    | 0.3    |         | \$ 3.0           |            |           |                      |                   |                      |                       | \$ 991.3             |        |         |                  |                  |           |                   |                    |                      |                      | \$ 662.7             |                  |         | 1                | 1       |                    |                   | \$ 109.8             | -                   |            | \$ 1,098.0               |
| 2025 |      | 0.3    |         | \$ 3.0           |            |           | \$ 153.2             |                   |                      |                       | \$ 992.5             |        |         |                  |                  |           | \$ 101.7          | \$ 67.4            |                      |                      | \$ 668.9             |                  |         | \$ 3.4           | '       |                    |                   | \$ 109.8             |                     |            | \$ 1,088.9               |
| 2027 | 1    | 0.3    |         | \$ 3.0           |            |           |                      |                   | \$ 378.8             | \$ 306.3              |                      |        |         | \$ 2.0           |                  |           |                   | \$ 67.9            |                      | \$ 209.7             |                      | \$ 0.3           |         |                  | 1       |                    |                   | \$ 100.7             |                     |            | \$ 1,066.2               |
| 2028 |      | 0.3    |         | \$ 2.9           |            | \$ 29.8   | \$ 149.9             | \$ 97.5           | \$ 371.1             |                       | \$ 966.6             | \$ 0.2 |         |                  |                  | \$ 20.2   |                   | \$ 67.3            | \$ 256.8             | \$ 207.7             | \$ 667.4             |                  | \$ 2.6  |                  | 1       | \$ 32.7            |                   | \$ 107.5             | \$ 397.7            |            | \$ 1,000.2               |
| 2029 | 1    | 0.3    |         | \$ 2.9           |            |           | \$ 148.5             |                   | \$ 367.2             |                       | \$ 956.8             |        |         |                  |                  |           |                   |                    |                      | \$ 207.7             | •                    |                  |         | \$ 3.2           | 1       |                    |                   | \$ 103.1             |                     |            | \$ 1,022.1               |
|      | _    |        |         | \$ 43.4          |            | \$ 439.1  | +                    |                   |                      | \$ 4,804.0            |                      |        |         |                  |                  | \$ 286.7  |                   |                    | \$ 4,031.0           |                      | \$ 10,334.4          |                  |         | \$ 53.2          |         |                    |                   | \$ 1,852.9           |                     |            | \$ 18,449.0              |
| Ann. |      | 0.3    |         |                  |            |           |                      |                   | \$ 341.3             |                       | \$ 876.9             |        |         |                  |                  |           |                   |                    |                      |                      | \$ 593.5             |                  |         | \$ 3.1           |         |                    |                   | \$ 106.4             |                     |            | \$ 1,059.5               |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f, E.39b, E.39c, E.39f, E.39g, E.39j, and E.39k.

#### Exhibit F.5g Mean Present Value of Benefits Yearly Projections, WTP for Bronchitis as Basis for Non-Fatal Cases, at 7% Discount Rate, by System Size (All Systems)

HAA5 - Preferred Alternative

| IIAA  | - 1 101 | CITC   | Alterna |                  | moking/L         | ung Ca    | ncer C             | essation L | ag Mode                                 | ı                    |            |          |                  |         |         | Smokir           | g/Bladder   | Cancer Ce | ssation L          | ag Model             |            |                      |                  | -       |                  |             |                    |                    |                    |                      |            |          |
|-------|---------|--------|---------|------------------|------------------|-----------|--------------------|------------|-----------------------------------------|----------------------|------------|----------|------------------|---------|---------|------------------|-------------|-----------|--------------------|----------------------|------------|----------------------|------------------|---------|------------------|-------------|--------------------|--------------------|--------------------|----------------------|------------|----------|
|       |         |        |         |                  |                  | Ť         |                    | 10,000-    | 50,000-                                 | 100,000-             |            |          |                  |         |         |                  |             | 10,000-   | 50,000-            | 100,000-             |            |                      |                  |         |                  |             |                    | 10,000-            | 50,000-            | 100,000-             |            |          |
| Year  | <10     | 00     | 100-499 | 500-999          | 1,000-3,29       | 9 3,300-9 | 9,999              | 49,999     | 99,999                                  | 999,999              | ≥1,000,000 | Total    | <100             | 100-499 | 500-999 | 1,000-3,299      | 3,300-9,999 | 49,999    | 99,999             | 999,999              | ≥1,000,000 | Total                | <100             | 100-499 | 500-999          | 1,000-3,299 | 3,300-9,999        | 49,999             | 99,999             | 999,999              | ≥1,000,000 | Total    |
| 2005  | \$ -    | - \$   | -       | \$ -             | \$ -             | \$        | - \$               | -          | \$ -                                    | \$ -                 | \$ -       | \$ -     | \$ -             | \$ -    | \$ -    | \$ -             | \$ -        | \$ -      | \$ -               | \$ -                 | \$ -       | \$ -                 | \$ -             | \$ -    | \$ -             | \$ -        | \$ -               | \$ -               | \$ -               | \$ -                 | \$ -       | \$ -     |
| 2006  | \$ -    | - \$   | · -     | \$ -             | \$ -             | \$        | - \$               | -          | \$ -                                    | \$ -                 | \$ -       | \$ -     | \$ -             | \$ -    | \$ -    | \$ -             | \$ -        | \$ -      | \$ -               | \$ -                 | \$ -       | \$ -                 | \$ -             | \$ -    | \$ -             | \$ -        | \$ -               | \$ -               | \$ -               | \$ -                 | \$ -       | \$ -     |
| 2007  | \$ -    | - \$   | · -     | \$ -             | \$ -             | \$        | - \$               | -          | \$ -                                    | \$ -                 | \$ -       | \$ -     | \$ -             | \$ -    | \$ -    | \$ -             | \$ -        | \$ -      | \$ -               | \$ -                 | \$ -       | \$ -                 | \$ -             | \$ -    | \$ -             | \$ -        | \$ -               | \$ -               | \$ -               | \$ -                 | \$ -       | \$ -     |
| 2008  | \$ -    | - \$   | · -     | \$ -             | \$ -             | \$        | - \$               | -          | \$ -                                    | \$ -                 | \$ -       | \$ -     | \$ -             | \$ -    | \$ -    | \$ -             | \$ -        | \$ -      | \$ -               | \$ -                 | \$ -       | \$ -                 | \$ -             | \$ -    | \$ -             | \$ -        | \$ -               | \$ -               | \$ -               | \$ -                 | \$ -       | \$ -     |
| 2009  | \$ -    | - \$   | -       | \$ -             | \$ -             | \$        | - \$               | -          | \$ -                                    | \$ -                 | \$ -       | \$ -     | \$ -             | \$ -    | \$ -    | \$ -             | \$ -        | \$ -      | \$ -               | \$ -                 | \$ -       | \$ -                 | \$ -             | \$ -    | \$ -             | \$ -        | \$ -               | \$ -               | \$ -               | \$ -                 | \$ -       | \$ -     |
| 2010  | \$      | 0.0    | 0.1     | \$ 0.1           | \$ 0.5           | 5 \$      | 1.1 \$             | 6.7        | \$ 5.2                                  | \$ 22.4              | \$ 18.1    | \$ 54.2  | \$ 0.0           | \$ 0.1  | \$ 0.1  | \$ 0.4           | \$ 1.0      | \$ 6.3    | \$ 5.0             | \$ 21.6              | \$ 17.6    |                      | \$ 0.0           | \$ 0.2  | \$ 0.2           | \$ 0.9      | \$ 2.0             | \$ 12.5            | \$ 9.9             | \$ 42.4              | \$ 34.4    | \$ 102.4 |
| 2011  | \$      | 0.0    | 0.2     | \$ 0.3           | \$ 1.2           | 2 \$      | 2.8 \$             | 16.1       | \$ 12.7                                 | \$ 54.1              | \$ 43.7    | \$ 131.1 | \$ 0.0           | \$ 0.2  | \$ 0.2  | \$ 0.9           | \$ 2.1      | \$ 14.0   | \$ 11.2            | \$ 47.8              | \$ 38.9    | \$ 115.3             | \$ 0.0           | \$ 0.4  | \$ 0.5           | \$ 2.0      | \$ 4.7             | \$ 28.6            | \$ 22.7            | \$ 96.8              | \$ 78.4    | \$ 234.0 |
| 2012  |         | 0.0    |         |                  | \$ 2.0           | \$        | 4.7 \$             |            |                                         |                      |            |          | \$ 0.0           |         | \$ 0.3  |                  | \$ 3.5      |           | \$ 17.8            |                      |            |                      | \$ 0.1           |         |                  | \$ 3.3      |                    | 1                  |                    |                      |            |          |
| 2013  | l .     | 0.1    |         | \$ 0.7           | \$ 2.9           | 9 \$      | 6.8 \$             |            | \$ 31.1                                 |                      | \$ 107.2   |          | \$ 0.0           | \$ 0.4  | \$ 0.5  | \$ 2.1           |             | \$ 30.9   | \$ 24.6            | \$ 105.2             | 1          | \$ 253.8             |                  | \$ 0.8  | \$ 1.1           |             |                    |                    | \$ 50.6            |                      |            |          |
| 2014  |         | 0.1    |         |                  |                  |           | 9.0 \$             | 52.5       | \$ 39.3                                 |                      | \$ 128.1   |          | \$ 0.1           |         | \$ 0.6  |                  | \$ 6.2      |           | \$ 29.3            |                      |            |                      |                  |         | -                |             |                    |                    |                    |                      |            |          |
| 2015  | \$      |        | 0.9     | -                | \$ 4.9           |           | 11.3 \$            |            |                                         |                      |            |          | \$ 0.1           |         |         |                  | \$ 7.6      |           | \$ 31.6            |                      | 1          |                      |                  |         |                  |             |                    |                    |                    |                      |            |          |
| 2016  |         | 0.1    | 1.0     | \$ 1.3           |                  |           | 13.1 \$            | 70.6       | \$ 49.0                                 |                      | \$ 155.8   |          | \$ 0.1           |         | \$ 0.8  | \$ 3.7           |             | \$ 48.3   |                    | \$ 129.0             |            | \$ 328.9             |                  |         |                  |             |                    |                    |                    |                      |            |          |
| 2017  | l .     | 0.1    |         |                  |                  | 1         | 14.3 \$            |            | \$ 51.8                                 |                      |            |          | \$ 0.1           |         | \$ 0.9  |                  | \$ 9.1      |           | \$ 33.9            |                      | 1          | \$ 337.2             |                  |         |                  |             |                    |                    |                    |                      |            |          |
| 2018  |         | 0.2    |         | •                |                  |           | 15.0 \$            | 78.8       | \$ 53.4                                 | \$ 207.3             |            |          | \$ 0.1           |         | \$ 0.9  | \$ 4.1           | \$ 9.4      | \$ 51.1   |                    | \$ 132.9             |            | \$ 341.3             |                  |         |                  |             |                    |                    |                    |                      |            |          |
| 2019  | l .     | 0.2    | 1.2     | \$ 1.5           |                  | 1         | 15.5 \$            |            |                                         |                      | \$ 168.3   |          | \$ 0.1           |         | \$ 0.9  | •                |             |           | \$ 34.5            |                      |            |                      |                  |         |                  |             |                    |                    |                    |                      |            |          |
| 2020  |         | 0.2    | 1.2     | \$ 1.5           | \$ 6.7           |           | 15.6 \$            | 80.7       | \$ 53.6                                 |                      | \$ 166.7   | \$ 532.6 | \$ 0.1           | \$ 0.8  |         | \$ 4.2           |             |           | \$ 34.3            | \$ 132.0             |            | \$ 340.4             |                  |         |                  | \$ 8.2      | \$ 19.1            | \$ 96.0            | \$ 62.9            | \$ 240.2             |            | \$ 624.1 |
| 2021  | l .     | 0.2    |         | \$ 1.5           | \$ 6.1           | 1         | 15.6 \$            |            | \$ 52.8<br>\$ 51.6                      |                      |            |          | \$ 0.1<br>\$ 0.1 |         | \$ 1.0  |                  |             |           | \$ 33.9            |                      | 1          |                      |                  |         | \$ 1.8           | \$ 7.8      | \$ 18.6<br>\$ 18.0 | \$ 93.1            | \$ 60.8            |                      | \$ 187.2   |          |
| 2022  | l .     | 0.2    | 1.2     | \$ 1.5           | \$ 6.0           |           | 15.4 \$            | 78.4       | • • • • • • • • • • • • • • • • • • • • |                      |            |          |                  |         | \$ 1.0  | \$ 4.2           |             |           | \$ 33.4<br>\$ 32.8 | \$ 128.2<br>\$ 125.6 |            | \$ 331.5<br>\$ 325.0 |                  |         | \$ 1.8           | \$ 7.5      |                    | \$ 89.8<br>\$ 86.3 | \$ 58.5<br>\$ 56.1 | \$ 222.8<br>\$ 213.5 |            |          |
| 2023  |         | 0.2 \$ |         | \$ 1.5<br>\$ 1.4 | \$ 6.5<br>\$ 6.3 |           | 15.0 \$<br>14.6 \$ | 1          | \$ 50.1                                 | \$ 191.5<br>\$ 185.0 |            |          | \$ 0.1<br>\$ 0.1 |         | \$ 0.9  | \$ 4.1<br>\$ 4.1 |             |           | \$ 32.8            | \$ 125.6             |            |                      | \$ 0.2<br>\$ 0.2 |         | \$ 1.7<br>\$ 1.6 | \$ 7.5      | \$ 17.4<br>\$ 16.7 | \$ 82.6            | \$ 56.1<br>\$ 53.7 | \$ 213.5             |            |          |
| 2024  | s       |        | 1.1     | -                |                  |           | 14.0 \$            |            |                                         | \$ 178.1             |            |          | \$ 0.1           |         | \$ 0.9  |                  |             |           | \$ 32.0            |                      |            | \$ 309.3             |                  |         | \$ 1.6           |             |                    | \$ 79.0            |                    | \$ 204.2             |            | \$ 508.2 |
| 2025  | s       |        |         | \$ 1.4           |                  | 1         | 13.6 \$            | 1          | \$ 44.9                                 |                      |            |          | \$ 0.1           |         | \$ 0.9  |                  | \$ 9.0      |           |                    |                      |            |                      |                  |         | \$ 1.5           |             | \$ 15.2            | \$ 75.4            | \$ 48.9            | \$ 185.6             |            |          |
| 2027  | s       |        |         | •                | \$ 5.6           |           | 13.1 \$            | 66.1       | \$ 43.0                                 |                      | \$ 132.5   |          | \$ 0.1           |         | \$ 0.9  | \$ 3.8           | \$ 8.8      |           | \$ 29.4            | \$ 112.2             | 1          | \$ 291.3             |                  |         | \$ 1.4           | \$ 6.3      | \$ 14.5            | \$ 71.8            | \$ 46.5            | \$ 176.7             |            |          |
| 2028  | s       |        | 1.0     | •                |                  |           | 12.4 \$            |            |                                         |                      |            |          | \$ 0.1           |         |         |                  |             |           | \$ 28.0            |                      |            | \$ 277.8             |                  |         | \$ 1.3           | \$ 5.9      | \$ 13.6            |                    | \$ 43.6            | \$ 165.6             |            |          |
| 2029  |         | 0.1    |         |                  | \$ 5.1           |           | 11.8 \$            | 1          |                                         |                      |            |          | \$ 0.1           | \$ 0.6  |         | \$ 3.5           |             |           | \$ 27.0            |                      |            |                      |                  |         | \$ 1.3           | \$ 5.6      | \$ 12.9            | \$ 63.8            | \$ 41.3            | \$ 156.9             |            | \$ 409.6 |
| Total | \$ :    | 2.4 \$ | 18.4    | \$ 23.2          | \$ 101.2         | 2 \$ 2    | 235.0 \$           |            |                                         | \$ 3,245.4           |            |          | \$ 1.5           |         | \$ 15.2 | \$ 66.1          | \$ 153.5    |           |                    |                      | \$ 1,793.7 | \$ 5,657.3           |                  | \$ 23.1 | \$ 29.1          | \$ 126.7    | \$ 294.3           | \$ 1,527.2         | \$ 1,032.3         |                      | \$ 3,243.5 |          |
| Ann.  |         | 0.2    |         |                  |                  |           | 20.2 \$            |            |                                         |                      |            | \$ 713.1 |                  |         | \$ 1.3  |                  | \$ 13.2     | \$ 71.5   |                    |                      |            |                      | \$ 0.3           |         | \$ 2.5           |             |                    | \$ 131.1           | \$ 88.6            |                      | \$ 278.3   |          |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. – value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f, E.39b, E.39e, E.39f, E.39g, E.39g, E.39g, and E.39k.

# Section F.6 Model Outputs - Alternative 1 TTHM as Indicator Lymphoma for Non-Fatal Cases

### Exhibit F.6a Projections of Yearly Benefits, WTP for Lymphoma as Basis for Non-Fatal Cases (Smoking/Lung Cancer Cessation Lag Model)

TTHM - Alternative 1

|       | Surface Water |               |    | Water Sys          | tem   | S                   | Grou          | und | Water Sy          | ste | ms                  |                | All | Systems             |    |                     |
|-------|---------------|---------------|----|--------------------|-------|---------------------|---------------|-----|-------------------|-----|---------------------|----------------|-----|---------------------|----|---------------------|
|       |               |               |    | 90 F<br>Confide    | Perce |                     |               |     | 90 Pe<br>Confider |     |                     |                |     | 90 Po               |    |                     |
| Year  |               | Mean<br>Value |    | Lower<br>th %tile) | (9    | Upper<br>5th %tile) | Mean<br>Value |     | _ower<br>h %tile) | (9  | Upper<br>5th %tile) | Mean<br>Value  | (5  | Lower<br>ith %tile) | (9 | Upper<br>5th %tile) |
| 2005  | \$            | -             | \$ | -                  | \$    |                     | \$            | \$  |                   | \$  | -                   | \$<br>-        | \$  | -                   | \$ | -                   |
| 2006  | \$            | -             | \$ | -                  | \$    | -                   | \$<br>-       | \$  | -                 | \$  | -                   | \$<br>-        | \$  | -                   | \$ | -                   |
| 2007  | \$            | -             | \$ | -                  | \$    | -                   | \$<br>-       | \$  | -                 | \$  | -                   | \$<br>-        | \$  | -                   | \$ | -                   |
| 2008  | \$            | -             | \$ | -                  | \$    | -                   | \$<br>-       | \$  | -                 | \$  | -                   | \$<br>-        | \$  | -                   | \$ | -                   |
| 2009  | \$            | -             | \$ | -                  | \$    | -                   | \$<br>-       | \$  | -                 | \$  | -                   | \$<br>-        | \$  | -                   | \$ | -                   |
| 2010  | \$            | 118.9         | \$ | 18.2               | \$    | 273.4               | \$<br>6.1     | \$  | 0.9               | \$  | 14.0                | \$<br>125.0    | \$  | 19.1                | \$ | 287.4               |
| 2011  | \$            | 316.9         | \$ | 48.5               | \$    | 729.0               | \$<br>16.2    | \$  | 2.5               | \$  | 37.2                | \$<br>333.1    | \$  | 51.0                | \$ | 766.2               |
| 2012  | \$            | 578.4         | \$ | 88.5               | \$    | 1,328.7             | \$<br>29.6    | \$  | 4.5               | \$  | 67.9                | \$<br>607.9    | \$  | 93.0                | \$ | 1,396.6             |
| 2013  | \$            | 893.5         | \$ | 136.8              | \$    | 2,052.3             | \$<br>45.7    | \$  | 7.0               | \$  | 104.9               | \$<br>939.1    | \$  | 143.8               | \$ | 2,157.1             |
| 2014  | \$            | 1,154.6       | \$ | 176.5              | \$    | 2,654.2             | \$<br>62.2    | \$  | 9.5               | \$  | 143.0               | \$<br>1,216.8  | \$  | 186.0               | \$ | 2,797.1             |
| 2015  | \$            | 1,377.8       | \$ | 210.7              | \$    | 3,168.6             | \$<br>78.7    | \$  | 12.0              | \$  | 180.9               | \$<br>1,456.4  | \$  | 222.7               | \$ | 3,349.5             |
| 2016  | \$            | 1,567.5       | \$ | 239.5              | \$    | 3,604.9             | \$<br>93.3    | \$  | 14.3              | \$  | 214.6               | \$<br>1,660.8  | \$  | 253.7               | \$ | 3,819.5             |
| 2017  | \$            | 1,731.5       | \$ | 264.4              | \$    | 3,985.8             | \$<br>105.5   | \$  | 16.1              | \$  | 242.8               | \$<br>1,837.0  | \$  | 280.5               | \$ | 4,228.6             |
| 2018  | \$            | 1,876.0       | \$ | 286.0              | \$    | 4,321.9             | \$<br>116.0   | \$  | 17.7              | \$  | 267.3               | \$<br>1,992.0  | \$  | 303.7               | \$ | 4,589.2             |
| 2019  | \$            | 2,004.9       | \$ | 305.4              | \$    | 4,626.8             | \$<br>125.3   | \$  | 19.1              | \$  | 289.1               | \$<br>2,130.2  | \$  | 324.5               | \$ | 4,915.9             |
| 2020  | \$            | 2,121.3       | \$ | 323.0              | \$    | 4,897.4             | \$<br>133.6   | \$  | 20.3              | \$  | 308.4               | \$<br>2,254.8  | \$  | 343.3               | \$ | 5,205.8             |
| 2021  | \$            | 2,227.1       | \$ | 338.7              | \$    | 5,142.2             | \$<br>141.1   | \$  | 21.5              | \$  | 325.7               | \$<br>2,368.2  | \$  | 360.2               | \$ | 5,467.9             |
| 2022  | \$            | 2,324.2       | \$ | 353.4              | \$    | 5,375.3             | \$<br>147.9   | \$  | 22.5              | \$  | 342.0               | \$<br>2,472.1  | \$  | 375.9               | \$ | 5,717.3             |
| 2023  | \$            | 2,413.8       | \$ | 367.1              | \$    | 5,584.0             | \$<br>154.1   | \$  | 23.4              | \$  | 356.5               | \$<br>2,567.9  | \$  | 390.6               | \$ | 5,940.5             |
| 2024  | \$            | 2,497.1       | \$ | 379.6              | \$    | 5,778.8             | \$<br>159.9   | \$  | 24.3              | \$  | 370.0               | \$<br>2,657.0  | \$  | 403.9               | \$ | 6,148.9             |
| 2025  | \$            | 2,574.9       | \$ | 390.8              | \$    | 5,959.2             | \$<br>165.3   | \$  | 25.1              | \$  | 382.5               | \$<br>2,740.1  | \$  | 415.9               | \$ | 6,341.7             |
| 2026  | \$            | 2,648.0       | \$ | 401.4              | \$    | 6,133.7             | \$<br>170.3   | \$  | 25.8              | \$  | 394.5               | \$<br>2,818.3  | \$  | 427.2               | \$ | 6,528.2             |
| 2027  | \$            | 2,717.0       | \$ | 411.4              | \$    | 6,303.3             | \$<br>175.0   | \$  | 26.5              | \$  | 406.0               | \$<br>2,892.0  | \$  | 437.9               | \$ | 6,709.3             |
| 2028  | \$            | 2,746.5       | \$ | 416.2              | \$    | 6,368.1             | \$<br>177.2   | \$  | 26.8              | \$  | 410.8               | \$<br>2,923.6  | \$  | 443.1               | \$ | 6,778.9             |
| 2029  | \$            | 2,801.3       | \$ | 423.9              | \$    | 6,501.5             | \$<br>180.9   | \$  | 27.4              | \$  | 419.9               | \$<br>2,982.3  | \$  | 451.3               | \$ | 6,921.4             |
| Total | \$            | 36,691.1      | \$ | 5,580.1            | \$    | 84,789.0            | \$<br>2,283.7 | \$  | 347.3             | \$  | 5,278.1             | \$<br>38,974.8 | \$  | 5,927.4             | \$ | 90,067.2            |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f, E.40b, and E.40c.

## Exhibit F.6b Present Value of Benefits Yearly Projections, WTP for Lymphoma as Basis for Non-Fatal Cases, Smoking/Lung Cancer Cessation Lag Model

(All Water Systems)

**TTHM - Alternative 1** 

|       |             |               | 3% | Discount R          | ate |                      | 7%             | ₀ Di | scount R           | ate |                     |
|-------|-------------|---------------|----|---------------------|-----|----------------------|----------------|------|--------------------|-----|---------------------|
|       |             |               |    | 90 Po<br>Confider   |     |                      |                |      | 90 P<br>Confide    |     |                     |
| Year  |             | Mean<br>Value | (5 | Lower<br>5th %tile) | (   | Upper<br>95th %tile) | Mean<br>Value  | (5   | Lower<br>th %tile) | (9  | Upper<br>5th %tile) |
| 2005  | \$          | -             | \$ |                     | \$  | 1                    | \$<br>-        | \$   | -                  | \$  |                     |
| 2006  | \$          | -             | \$ | -                   | \$  | -                    | \$<br>-        | \$   | -                  | \$  | -                   |
| 2007  | \$          | -             | \$ | -                   | \$  | -                    | \$<br>-        | \$   | -                  | \$  | -                   |
| 2008  | \$          | -             | \$ | -                   | \$  | -                    | \$<br>-        | \$   | -                  | \$  | -                   |
| 2009  | \$          | -             | \$ | -                   | \$  | -                    | \$<br>-        | \$   | -                  | \$  | -                   |
| 2010  | \$          | 107.8         | \$ | 16.5                | \$  | 247.9                | \$<br>89.1     | \$   | 13.6               | \$  | 204.9               |
| 2011  | \$ 279.0    |               | \$ | 42.7                | \$  | 641.7                | \$<br>222.0    | \$   | 34.0               | \$  | 510.6               |
| 2012  | \$ 494.3    |               | \$ | 75.6                | \$  | 1,135.6              | \$<br>378.6    | \$   | 57.9               | \$  | 869.7               |
| 2013  | \$          | 741.4         | \$ | 113.5               | \$  | 1,702.9              | \$<br>546.6    | \$   | 83.7               | \$  | 1,255.5             |
| 2014  | \$          | 932.6         | \$ | 142.6               | \$  | 2,143.8              | \$<br>661.9    | \$   | 101.2              | \$  | 1,521.5             |
| 2015  | \$          | 1,083.7       | \$ | 165.7               | \$  | 2,492.4              | \$<br>740.4    | \$   | 113.2              | \$  | 1,702.7             |
| 2016  | \$          | 1,199.8       | \$ | 183.3               | \$  | 2,759.3              | \$<br>789.1    | \$   | 120.5              | \$  | 1,814.6             |
| 2017  | \$          | 1,288.5       | \$ | 196.7               | \$  | 2,965.9              | \$<br>815.7    | \$   | 124.5              | \$  | 1,877.6             |
| 2018  | \$          | 1,356.5       | \$ | 206.8               | \$  | 3,125.0              | \$<br>826.6    | \$   | 126.0              | \$  | 1,904.4             |
| 2019  | \$          | 1,408.3       | \$ | 214.5               | \$  | 3,250.0              | \$<br>826.1    | \$   | 125.8              | \$  | 1,906.5             |
| 2020  | \$          | 1,447.3       | \$ | 220.4               | \$  | 3,341.4              | \$<br>817.3    | \$   | 124.4              | \$  | 1,886.8             |
| 2021  | \$          | 1,475.8       | \$ | 224.5               | \$  | 3,407.4              | \$<br>802.2    | \$   | 122.0              | \$  | 1,852.2             |
| 2022  | \$          | 1,495.6       | \$ | 227.4               | \$  | 3,459.1              | \$<br>782.6    | \$   | 119.0              | \$  | 1,810.0             |
| 2023  | \$          | 1,508.4       | \$ | 229.4               | \$  | 3,489.4              | \$<br>759.8    | \$   | 115.6              | \$  | 1,757.6             |
| 2024  | \$          | 1,515.2       | \$ | 230.3               | \$  | 3,506.6              | \$<br>734.7    | \$   | 111.7              | \$  | 1,700.2             |
| 2025  | \$          | 1,517.1       | \$ | 230.3               | \$  | 3,511.3              | \$<br>708.1    | \$   | 107.5              | \$  | 1,638.8             |
| 2026  | \$          | 1,515.0       | \$ | 229.6               | \$  | 3,509.2              | \$<br>680.6    | \$   | 103.2              | \$  | 1,576.6             |
| 2027  | \$ 1,509.3  |               | \$ | 228.5               | \$  | 3,501.6              | \$<br>652.8    | \$   | 98.8               | \$  | 1,514.4             |
| 2028  | \$ 1,481.4  |               | \$ | 224.5               | \$  | 3,434.8              | \$<br>616.7    | \$   | 93.5               | \$  | 1,430.0             |
| 2029  | \$ 1,467.1  |               | \$ | 222.0               | \$  | 3,404.9              | \$<br>587.9    | \$   | 89.0               | \$  | 1,364.5             |
| Total | \$ 23,824.0 |               | \$ | 3,625.0             | \$  | 55,030.0             | \$<br>13,038.6 | \$   | 1,985.2            | \$  | 30,099.0            |
| Ann.  | \$ 1,368.2  |               | \$ | 208.2               | \$  | 3,160.3              | \$<br>1,118.9  | \$   | 170.4              | \$  | 2,582.8             |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibit F.6a.

Exhibit F.6c Mean Present Value of Benefits Yearly Projections, WTP for Lymphoma as Basis for Non-Fatal Cases, at 3% Discount Rate, by System Size

(All Systems)

**TTHM - Alternative 1** 

|       |            |    |       |    | Sm     | noki | ing/Lun  | g ( | Cancer (  | Ces | ssation L         | .ag | Model            |                     |     |          |                |
|-------|------------|----|-------|----|--------|------|----------|-----|-----------|-----|-------------------|-----|------------------|---------------------|-----|----------|----------------|
| ,,    | :100       | 10 | 0-499 | E  | 00-999 | 4.0  | 00-3,299 | 2 2 | 000 0 000 |     | 10,000-<br>49,999 |     | 0,000-<br>99,999 | 100,000-<br>999,999 | . 1 | ,000,000 | Total          |
| Year  | 100        |    | 0-499 |    | 00-999 | 1,0  | 00-3,299 |     | 000-9,999 |     | 49,999            | •   | 99,999           | 999,999             |     | ,000,000 | TOTAL          |
| 2005  | \$<br>-    | \$ | -     | \$ | -      | \$   | -        | \$  | -         | \$  | -                 | \$  | -                | \$<br>-             | \$  | -        | \$<br>-        |
| 2006  | \$<br>-    | \$ | -     | \$ | -      | \$   | -        | \$  | -         | \$  | -                 | \$  | -                | \$<br>-             | \$  | -        | \$<br>-        |
| 2007  | \$<br>-    | \$ | -     | \$ | -      | \$   | -        | \$  | -         | \$  | -                 | \$  | -                | \$<br>-             | \$  | -        | \$<br>-        |
| 2008  | \$<br>-    | \$ | -     | \$ | -      | \$   | -        | \$  | -         | \$  | -                 | \$  | -                | \$<br>-             | \$  | -        | \$<br>-        |
| 2009  | \$<br>-    | \$ | -     | \$ | -      | \$   | -        | \$  | -         | \$  | -                 | \$  | -                | \$<br>-             | \$  | -        | \$<br>-        |
| 2010  | \$<br>0.0  | \$ | 0.3   | \$ | 0.4    | \$   | 1.5      | \$  | 3.5       | \$  | 12.0              | \$  | 10.0             | \$<br>43.7          | \$  | 36.3     | \$<br>107.8    |
| 2011  | \$<br>0.1  | \$ | 0.8   | \$ | 1.0    | \$   | 4.0      | \$  | 9.0       | \$  | 31.2              | \$  | 26.0             | \$<br>113.0         | \$  | 94.0     | \$<br>279.0    |
| 2012  | \$<br>0.2  | \$ | 1.4   | \$ | 1.7    | \$   | 7.1      | \$  | 16.0      | \$  | 55.2              | \$  | 46.0             | \$<br>200.2         | \$  | 166.6    | \$<br>494.3    |
| 2013  | \$<br>0.3  | \$ | 2.1   | \$ | 2.5    | \$   | 10.6     | \$  | 24.0      | \$  | 82.8              | \$  | 69.0             | \$<br>300.2         | \$  | 249.8    | \$<br>741.4    |
| 2014  | \$<br>0.4  | \$ | 2.8   | \$ | 3.5    | \$   | 14.5     | \$  | 32.8      | \$  | 113.0             | \$  | 89.4             | \$<br>369.1         | \$  | 307.2    | \$<br>932.6    |
| 2015  | \$<br>0.5  | \$ | 3.6   | \$ | 4.4    | \$   | 18.6     | \$  | 42.0      | \$  | 139.5             | \$  | 104.1            | \$<br>420.8         | \$  | 350.2    | \$<br>1,083.7  |
| 2016  | \$<br>0.6  | \$ | 4.3   | \$ | 5.3    | \$   | 22.2     | \$  | 50.1      | \$  | 158.6             | \$  | 115.3            | \$<br>460.4         | \$  | 383.2    | \$<br>1,199.8  |
| 2017  | \$<br>0.6  | \$ | 4.8   | \$ | 5.9    | \$   | 24.8     | \$  | 55.9      | \$  | 173.2             | \$  | 123.8            | \$<br>490.9         | \$  | 408.6    | \$<br>1,288.5  |
| 2018  | \$<br>0.7  | \$ | 5.2   | \$ | 6.4    | \$   | 26.7     | \$  | 60.4      | \$  | 184.3             | \$  | 130.4            | \$<br>514.4         | \$  | 428.1    | \$<br>1,356.5  |
| 2019  | \$<br>0.7  | \$ | 5.5   | \$ | 6.7    | \$   | 28.2     | \$  | 63.8      | \$  | 192.8             | \$  | 135.4            | \$<br>532.2         | \$  | 443.0    | \$<br>1,408.3  |
| 2020  | \$<br>0.7  | \$ | 5.7   | \$ | 7.0    | \$   | 29.4     | \$  | 66.4      | \$  | 199.3             | \$  | 139.2            | \$<br>545.6         | \$  | 454.1    | \$<br>1,447.3  |
| 2021  | \$<br>0.8  | \$ | 5.8   | \$ | 7.2    | \$   | 30.2     | \$  | 68.3      | \$  | 204.1             | \$  | 142.0            | \$<br>555.3         | \$  | 462.1    | \$<br>1,475.8  |
| 2022  | \$<br>0.8  | \$ | 6.0   | \$ | 7.3    | \$   | 30.9     | \$  | 69.7      | \$  | 207.5             | \$  | 143.9            | \$<br>561.9         | \$  | 467.6    | \$<br>1,495.6  |
| 2023  | \$<br>0.8  | \$ | 6.0   | \$ | 7.5    | \$   | 31.3     | \$  | 70.7      | \$  | 209.9             | \$  | 145.1            | \$<br>566.0         | \$  | 471.1    | \$<br>1,508.4  |
| 2024  | \$<br>0.8  | \$ | 6.1   | \$ | 7.5    | \$   | 31.6     | \$  | 71.4      | \$  | 211.3             | \$  | 145.8            | \$<br>568.0         | \$  | 472.7    | \$<br>1,515.2  |
| 2025  | \$<br>0.8  | \$ | 6.1   | \$ | 7.6    | \$   | 31.8     | \$  | 71.7      | \$  | 212.0             | \$  | 146.0            | \$<br>568.3         | \$  | 472.9    | \$<br>1,517.1  |
| 2026  | \$<br>0.8  | \$ | 6.1   | \$ | 7.6    | \$   | 31.8     | \$  | 71.9      | \$  | 212.0             | \$  | 145.8            | \$<br>567.1         | \$  | 471.9    | \$<br>1,515.0  |
| 2027  | \$<br>0.8  | \$ | 6.1   | \$ | 7.6    | \$   | 31.8     | \$  | 71.8      | \$  | 211.4             | \$  | 145.3            | \$<br>564.6         | \$  | 469.9    | \$<br>1,509.3  |
| 2028  | \$<br>0.8  | \$ | 6.0   | \$ | 7.4    | \$   | 31.3     | \$  | 70.6      | \$  | 207.7             | \$  | 142.6            | \$<br>553.9         | \$  | 461.0    | \$<br>1,481.4  |
| 2029  | \$<br>0.8  | \$ | 6.0   | \$ | 7.4    | \$   | 31.0     | \$  | 70.0      | \$  | 205.9             | \$  | 141.2            | \$<br>548.3         | \$  | 456.4    | \$<br>1,467.1  |
| Total | \$<br>11.7 | \$ | 90.7  | \$ | 111.7  | \$   | 469.4    | \$  | 1,060.0   | \$  | 3,223.8           | \$  | 2,286.3          | \$<br>9,043.7       | \$  | 7,526.8  | \$<br>23,824.0 |
| Ann.  | \$<br>0.7  | \$ | 5.2   | \$ | 6.4    | \$   | 27.0     | \$  | 60.9      | \$  | 185.1             | \$  | 131.3            | \$<br>519.4         | \$  | 432.2    | \$<br>1,368.2  |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f and E.40d.

#### Exhibit F.6d Mean Present Value of Benefits Yearly Projections, WTP for Lymphoma as Basis for Non-Fatal Cases, at 7% Discount Rate, by System Size (All Systems)

**TTHM - Alternative 1** 

|       |           |    |       |    | S      | mo  | king/Lu   | ng  | Cancer   | С  | essation    | La | g Mode            | I  |                     |    |          |                |
|-------|-----------|----|-------|----|--------|-----|-----------|-----|----------|----|-------------|----|-------------------|----|---------------------|----|----------|----------------|
| Vaar  | <br>100   | 10 | 0-499 | 50 | 00-999 | 1 ( | nnn-3 200 | 2 2 | nn_a aaa | 10 | ,000-49,999 |    | 50,000-<br>99,999 |    | 100,000-<br>999,999 | _1 | ,000,000 | Total          |
| Year  | 100       |    |       |    |        |     |           |     |          |    |             |    | 33,333            |    |                     | F  | ,000,000 | Total          |
| 2005  | \$<br>-   | \$ | -     | \$ | -      | \$  | -         | \$  | -        | \$ |             | \$ | -                 | \$ | -                   | \$ | -        | \$<br>-        |
| 2006  | \$<br>-   | \$ | -     | \$ | -      | \$  | -         | \$  | -        | \$ |             | \$ | -                 | \$ | -                   | \$ | -        | \$<br>-        |
| 2007  | \$<br>-   | \$ | -     | \$ | -      | \$  | -         | \$  | -        | \$ | -           | \$ | -                 | \$ | -                   | \$ | -        | \$<br>-        |
| 2008  | \$<br>-   | \$ | -     | \$ | -      | \$  | -         | \$  | -        | \$ | -           | \$ | -                 | \$ | -                   | \$ | -        | \$<br>-        |
| 2009  | \$<br>-   | \$ | -     | \$ | -      | \$  | -         | \$  | -        | \$ | -           | \$ | -                 | \$ | -                   | \$ | -        | \$<br>-        |
| 2010  | \$<br>0.0 | \$ | 0.2   | \$ | 0.3    | \$  | 1.3       | \$  | 2.9      | \$ | 10.0        | \$ | 8.3               | \$ | 36.1                | \$ | 30.0     | \$<br>89.1     |
| 2011  | \$<br>0.1 | \$ | 0.6   | \$ | 8.0    | \$  | 3.2       | \$  | 7.2      | \$ | 24.8        | \$ | 20.7              | \$ | 89.9                | \$ | 74.8     | \$<br>222.0    |
| 2012  | \$<br>0.1 | \$ | 1.0   | \$ | 1.3    | \$  | 5.4       | \$  | 12.3     | \$ | 42.3        | \$ | 35.2              | \$ | 153.3               | \$ | 127.6    | \$<br>378.6    |
| 2013  | \$<br>0.2 | \$ | 1.5   | \$ | 1.9    | \$  | 7.8       | \$  | 17.7     | \$ | 61.1        | \$ | 50.8              | \$ | 221.3               | \$ | 184.2    | \$<br>546.6    |
| 2014  | \$<br>0.3 | \$ | 2.0   | \$ | 2.5    | \$  | 10.3      | \$  | 23.2     | \$ | 80.2        | \$ | 63.5              | \$ | 261.9               | \$ | 218.0    | \$<br>661.9    |
| 2015  | \$<br>0.3 | \$ | 2.5   | \$ | 3.0    | \$  | 12.7      | \$  | 28.7     | \$ | 95.3        | \$ | 71.1              | \$ | 287.5               | \$ | 239.3    | \$<br>740.4    |
| 2016  | \$<br>0.4 | \$ | 2.8   | \$ | 3.5    | \$  | 14.6      | \$  | 32.9     | \$ | 104.3       | \$ | 75.8              | \$ | 302.8               | \$ | 252.0    | \$<br>789.1    |
| 2017  | \$<br>0.4 | \$ | 3.0   | \$ | 3.7    | \$  | 15.7      | \$  | 35.4     | \$ | 109.6       | \$ | 78.4              | \$ | 310.8               | \$ | 258.6    | \$<br>815.7    |
| 2018  | \$<br>0.4 | \$ | 3.1   | \$ | 3.9    | \$  | 16.3      | \$  | 36.8     | \$ | 112.3       | \$ | 79.5              | \$ | 313.5               | \$ | 260.9    | \$<br>826.6    |
| 2019  | \$<br>0.4 | \$ | 3.2   | \$ | 3.9    | \$  | 16.6      | \$  | 37.4     | \$ | 113.1       | \$ | 79.4              | \$ | 312.2               | \$ | 259.8    | \$<br>826.1    |
| 2020  | \$<br>0.4 | \$ | 3.2   | \$ | 3.9    | \$  | 16.6      | \$  | 37.5     | \$ | 112.5       | \$ | 78.6              | \$ | 308.1               | \$ | 256.4    | \$<br>817.3    |
| 2021  | \$<br>0.4 | \$ | 3.2   | \$ | 3.9    | \$  | 16.4      | \$  | 37.1     | \$ | 110.9       | \$ | 77.2              | \$ | 301.8               | \$ | 251.2    | \$<br>802.2    |
| 2022  | \$<br>0.4 | \$ | 3.1   | \$ | 3.8    | \$  | 16.2      | \$  | 36.5     | \$ | 108.6       | \$ | 75.3              | \$ | 294.0               | \$ | 244.7    | \$<br>782.6    |
| 2023  | \$<br>0.4 | \$ | 3.0   | \$ | 3.8    | \$  | 15.8      | \$  | 35.6     | \$ | 105.7       | \$ | 73.1              | \$ | 285.1               | \$ | 237.3    | \$<br>759.8    |
| 2024  | \$<br>0.4 | \$ | 3.0   | \$ | 3.6    | \$  | 15.3      | \$  | 34.6     | \$ | 102.5       | \$ | 70.7              | \$ | 275.4               | \$ | 229.2    | \$<br>734.7    |
| 2025  | \$<br>0.4 | \$ | 2.9   | \$ | 3.5    | \$  | 14.8      | \$  | 33.5     | \$ | 98.9        | \$ | 68.1              | \$ | 265.2               | \$ | 220.7    | \$<br>708.1    |
| 2026  | \$<br>0.4 | \$ | 2.8   | \$ | 3.4    | \$  | 14.3      | \$  | 32.3     | \$ | 95.2        | \$ | 65.5              | \$ | 254.8               | \$ | 212.0    | \$<br>680.6    |
| 2027  | \$<br>0.3 | \$ | 2.7   | \$ | 3.3    | \$  | 13.7      | \$  | 31.0     | \$ | 91.4        | \$ | 62.8              | \$ | 244.2               | \$ | 203.2    | \$<br>652.8    |
| 2028  | \$<br>0.3 | \$ | 2.5   | \$ | 3.1    | \$  | 13.0      | \$  | 29.4     | \$ | 86.5        | \$ | 59.4              | \$ | 230.6               | \$ | 191.9    | \$<br>616.7    |
| 2029  | \$<br>0.3 | \$ | 2.4   | \$ | 3.0    | \$  | 12.4      | \$  | 28.1     | \$ | 82.5        | \$ | 56.6              | \$ | 219.8               | \$ | 182.9    | \$<br>587.9    |
| Total | \$<br>6.3 | \$ | 48.8  | \$ | 60.1   | \$  | 252.4     | \$  | 570.1    | \$ | 1,747.8     | \$ | 1,250.0           | \$ | 4,968.2             | \$ | 4,134.9  | \$<br>13,038.6 |
| Ann.  | \$<br>0.5 | \$ | 4.2   | \$ | 5.2    | \$  | 21.7      | \$  | 48.9     | \$ |             | \$ | 107.3             | \$ | 426.3               | \$ | 354.8    | \$<br>1,118.9  |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f and E.40d.

# Section F.7 Model Outputs - Alternative 1 TTHM as Indicator Bronchitis for Non-Fatal Cases

### Exhibit F.7a Projections of Yearly Benefits, WTP for Bronchitis as Basis for Non-Fatal Cases (Smoking/Lung Cancer Cessation Lag Model)

TTHM - Alternative 1

|       | Su             | rfac | e Water Sys         | ten | ns                   | Grou          | ınd | Water Sy           | ste | ms                  |                | All | Systems             |    |                     |
|-------|----------------|------|---------------------|-----|----------------------|---------------|-----|--------------------|-----|---------------------|----------------|-----|---------------------|----|---------------------|
|       |                |      | 90 Pe<br>Confider   |     |                      |               |     | 90 P<br>Confider   |     |                     |                |     | 90 P<br>Confide     |    |                     |
| Year  | Mean<br>Value  | (5   | Lower<br>5th %tile) | (   | Upper<br>95th %tile) | Mean<br>Value | (5  | Lower<br>th %tile) | (9  | Upper<br>5th %tile) | Mean<br>Value  | (5  | Lower<br>oth %tile) | (9 | Upper<br>5th %tile) |
| 2005  | \$<br>-        | \$   | -                   | \$  | -                    | \$            | \$  | -                  | \$  | -                   | \$<br>-        | \$  | -                   | \$ | -                   |
| 2006  | \$<br>-        | \$   | -                   | \$  | -                    | \$<br>-       | \$  | -                  | \$  | -                   | \$<br>-        | \$  | -                   | \$ | -                   |
| 2007  | \$<br>-        | \$   | -                   | \$  | -                    | \$<br>-       | \$  | -                  | \$  | -                   | \$<br>-        | \$  | -                   | \$ | -                   |
| 2008  | \$<br>-        | \$   | -                   | \$  | -                    | \$<br>-       | \$  | -                  | \$  | -                   | \$<br>-        | \$  | -                   | \$ | -                   |
| 2009  | \$<br>-        | \$   | -                   | \$  | -                    | \$<br>-       | \$  | -                  | \$  | -                   | \$<br>-        | \$  | -                   | \$ | -                   |
| 2010  | \$<br>58.7     | \$   | 12.9                | \$  | 129.2                | \$<br>3.0     | \$  | 0.7                | \$  | 6.6                 | \$<br>61.7     | \$  | 13.6                | \$ | 135.8               |
| 2011  | \$<br>156.7    | \$   | 34.5                | \$  | 345.1                | \$<br>8.0     | \$  | 1.8                | \$  | 17.6                | \$<br>164.7    | \$  | 36.2                | \$ | 362.7               |
| 2012  | \$<br>286.1    | \$   | 62.8                | \$  | 629.8                | \$<br>14.6    | \$  | 3.2                | \$  | 32.2                | \$<br>300.7    | \$  | 66.1                | \$ | 661.9               |
| 2013  | \$<br>442.3    | \$   | 97.1                | \$  | 973.2                | \$<br>22.6    | \$  | 5.0                | \$  | 49.7                | \$<br>464.9    | \$  | 102.1               | \$ | 1,022.9             |
| 2014  | \$<br>572.0    | \$   | 125.3               | \$  | 1,259.2              | \$<br>30.8    | \$  | 6.8                | \$  | 67.8                | \$<br>602.8    | \$  | 132.1               | \$ | 1,327.0             |
| 2015  | \$<br>683.1    | \$   | 149.4               | \$  | 1,506.2              | \$<br>39.0    | \$  | 8.5                | \$  | 86.0                | \$<br>722.1    | \$  | 157.9               | \$ | 1,592.2             |
| 2016  | \$<br>777.7    | \$   | 170.0               | \$  | 1,714.5              | \$<br>46.3    | \$  | 10.1               | \$  | 102.1               | \$<br>824.0    | \$  | 180.1               | \$ | 1,816.6             |
| 2017  | \$<br>859.8    | \$   | 187.7               | \$  | 1,898.9              | \$<br>52.4    | \$  | 11.4               | \$  | 115.7               | \$<br>912.2    | \$  | 199.1               | \$ | 2,014.5             |
| 2018  | \$<br>932.2    | \$   | 203.0               | \$  | 2,059.6              | \$<br>57.7    | \$  | 12.6               | \$  | 127.4               | \$<br>989.9    | \$  | 215.6               | \$ | 2,186.9             |
| 2019  | \$<br>997.1    | \$   | 216.8               | \$  | 2,208.0              | \$<br>62.3    | \$  | 13.5               | \$  | 138.0               | \$<br>1,059.4  | \$  | 230.3               | \$ | 2,346.0             |
| 2020  | \$<br>1,055.8  | \$   | 229.2               | \$  | 2,339.8              | \$<br>66.5    | \$  | 14.4               | \$  | 147.3               | \$<br>1,122.3  | \$  | 243.6               | \$ | 2,487.2             |
| 2021  | \$<br>1,109.4  | \$   | 240.5               | \$  | 2,461.5              | \$<br>70.3    | \$  | 15.2               | \$  | 155.9               | \$<br>1,179.7  | \$  | 255.7               | \$ | 2,617.5             |
| 2022  | \$<br>1,158.7  | \$   | 250.7               | \$  | 2,576.1              | \$<br>73.7    | \$  | 15.9               | \$  | 163.9               | \$<br>1,232.4  | \$  | 266.6               | \$ | 2,740.0             |
| 2023  | \$<br>1,204.4  | \$   | 259.9               | \$  | 2,678.0              | \$<br>76.9    | \$  | 16.6               | \$  | 171.0               | \$<br>1,281.3  | \$  | 276.5               | \$ | 2,849.0             |
| 2024  | \$<br>1,247.0  | \$   | 268.8               | \$  | 2,774.0              | \$<br>79.9    | \$  | 17.2               | \$  | 177.6               | \$<br>1,326.9  | \$  | 286.0               | \$ | 2,951.7             |
| 2025  | \$<br>1,287.0  | \$   | 276.8               | \$  | 2,864.7              | \$<br>82.6    | \$  | 17.8               | \$  | 183.9               | \$<br>1,369.6  | \$  | 294.6               | \$ | 3,048.6             |
| 2026  | \$<br>1,324.6  | \$   | 284.6               | \$  | 2,949.5              | \$<br>85.2    | \$  | 18.3               | \$  | 189.7               | \$<br>1,409.8  | \$  | 302.9               | \$ | 3,139.2             |
| 2027  | \$<br>1,360.4  | \$   | 291.8               | \$  | 3,036.6              | \$<br>87.6    | \$  | 18.8               | \$  | 195.6               | \$<br>1,448.0  | \$  | 310.6               | \$ | 3,232.2             |
| 2028  | \$<br>1,374.7  | \$   | 295.0               | \$  | 3,065.9              | \$<br>88.7    | \$  | 19.0               | \$  | 197.8               | \$<br>1,463.4  | \$  | 314.0               | \$ | 3,263.6             |
| 2029  | \$<br>1,403.1  | \$   | 300.7               | \$  | 3,134.7              | \$<br>90.6    | \$  | 19.4               | \$  | 202.4               | \$<br>1,493.7  | \$  | 320.1               | \$ | 3,337.1             |
| Total | \$<br>18,290.8 | \$   | 3,957.5             | \$  | 40,604.3             | \$<br>1,138.6 | \$  | 246.3              | \$  | 2,528.3             | \$<br>19,429.5 | \$  | 4,203.8             | \$ | 43,132.6            |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f, E.40b, and E.40c.

# Exhibit F.7b Present Value of Benefits Yearly Projections, WTP for Bronchitis as Basis for Non-Fatal Cases, Smoking/Lung Cancer Cessation Lag Model (All Water Systems)

TTHM - Alternative 1

|       |          | 3%            | 6 Di | scount R           | ate |                     | 7%            | % D | iscount R          | ate |                     |
|-------|----------|---------------|------|--------------------|-----|---------------------|---------------|-----|--------------------|-----|---------------------|
|       |          |               |      | 90 P<br>Confider   |     |                     |               |     | 90 P               |     |                     |
| Year  |          | Mean<br>Value |      | Lower<br>th %tile) | (9  | Upper<br>5th %tile) | Mean<br>Value | (5  | Lower<br>th %tile) | (9  | Upper<br>5th %tile) |
| 2005  | \$       | _             | \$   | -                  | \$  | -                   | \$<br>-       | \$  | -                  | \$  | -                   |
| 2006  | \$       | -             | \$   | -                  | \$  | -                   | \$<br>_       | \$  | -                  | \$  | -                   |
| 2007  | \$       | -             | \$   | -                  | \$  | -                   | \$<br>-       | \$  | -                  | \$  | -                   |
| 2008  | \$       | -             | \$   | -                  | \$  | -                   | \$<br>-       | \$  | -                  | \$  | -                   |
| 2009  | \$       | -             | \$   | -                  | \$  | -                   | \$<br>-       | \$  | -                  | \$  | -                   |
| 2010  | \$       | 53.3          | \$   | 11.7               | \$  | 117.1               | \$<br>44.0    | \$  | 9.7                | \$  | 96.8                |
| 2011  | \$ 137.9 |               | \$   | 30.3               | \$  | 303.8               | \$<br>109.7   | \$  | 24.1               | \$  | 241.7               |
| 2012  | \$       | 244.5         | \$   | 53.7               | \$  | 538.2               | \$<br>187.3   | \$  | 41.1               | \$  | 412.2               |
| 2013  | \$       | 367.0         | \$   | 80.6               | \$  | 807.5               | \$<br>270.6   | \$  | 59.4               | \$  | 595.3               |
| 2014  | \$       | 462.0         | \$   | 101.2              | \$  | 1,017.0             | \$<br>327.9   | \$  | 71.9               | \$  | 721.8               |
| 2015  | \$       | 537.3         | \$   | 117.5              | \$  | 1,184.7             | \$<br>367.1   | \$  | 80.3               | \$  | 809.4               |
| 2016  | \$       | 595.3         | \$   | 130.1              | \$  | 1,312.4             | \$<br>391.5   | \$  | 85.6               | \$  | 863.1               |
| 2017  | \$       | 639.8         | \$   | 139.7              | \$  | 1,413.0             | \$<br>405.0   | \$  | 88.4               | \$  | 894.5               |
| 2018  | \$       | 674.1         | \$   | 146.8              | \$  | 1,489.2             | \$<br>410.8   | \$  | 89.5               | \$  | 907.5               |
| 2019  | \$       | 700.4         | \$   | 152.3              | \$  | 1,551.0             | \$<br>410.9   | \$  | 89.3               | \$  | 909.8               |
| 2020  | \$       | 720.4         | \$   | 156.4              | \$  | 1,596.4             | \$<br>406.8   | \$  | 88.3               | \$  | 901.5               |
| 2021  | \$       | 735.1         | \$   | 159.4              | \$  | 1,631.1             | \$<br>399.6   | \$  | 86.6               | \$  | 886.6               |
| 2022  | \$       | 745.6         | \$   | 161.3              | \$  | 1,657.7             | \$<br>390.2   | \$  | 84.4               | \$  | 867.4               |
| 2023  | \$       | 752.6         | \$   | 162.4              | \$  | 1,673.5             | \$<br>379.1   | \$  | 81.8               | \$  | 842.9               |
| 2024  | \$       | 756.7         | \$   | 163.1              | \$  | 1,683.3             | \$<br>366.9   | \$  | 79.1               | \$  | 816.2               |
| 2025  | \$       | 758.3         | \$   | 163.1              | \$  | 1,688.0             | \$<br>353.9   | \$  | 76.1               | \$  | 787.8               |
| 2026  | \$       | 757.9         | \$   | 162.8              | \$  | 1,687.5             | \$<br>340.5   | \$  | 73.2               | \$  | 758.2               |
| 2027  | \$       | 755.7         | \$   | 162.1              | \$  | 1,686.9             | \$<br>326.8   | \$  | 70.1               | \$  | 729.6               |
| 2028  | \$       | 741.5         | \$   | 159.1              | \$  | 1,653.7             | \$<br>308.7   | \$  | 66.2               | \$  | 688.5               |
| 2029  | \$       | 734.8         | \$   | 157.5              | \$  | 1,641.6             | \$<br>294.5   | \$  | 63.1               | \$  | 657.9               |
| Total | \$       | 11,870.1      | \$   | 2,571.1            | \$  | 26,333.4            | \$<br>6,491.6 | \$  | 1,408.2            | \$  | 14,388.5            |
| Ann.  | \$       | 681.7         | \$   | 147.7              | \$  | 1,512.3             | \$<br>557.0   | \$  | 120.8              | \$  | 1,234.7             |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibit F.7a.

## Exhibit F.7c Mean Present Value of Benefits Yearly Projections, WTP for Bronchitis as Basis for Non-Fatal Cases, at 3% Discount Rate, by System Size (All Systems)

**TTHM - Alternative 1** 

| 1 1111111 |    | ema |    |       |    | S     | mo  | king/Lu   | ng ( | Cancer   | С  | essation    | La | g Mode            | l  |                     |            |          |                |
|-----------|----|-----|----|-------|----|-------|-----|-----------|------|----------|----|-------------|----|-------------------|----|---------------------|------------|----------|----------------|
| Year      | <  | 100 | 10 | 0-499 | 50 | 0-999 | 1,0 | 000-3,299 | 3,30 | 00-9,999 | 10 | ,000-49,999 |    | 50,000-<br>99,999 |    | 100,000-<br>999,999 | <u>≥</u> 1 | ,000,000 | Total          |
| 2005      | \$ | -   | \$ | -     | \$ |       | \$  | -         | \$   | -        | \$ | -           | \$ | -                 | \$ | -                   | \$         |          | \$<br>-        |
| 2006      | \$ | -   | \$ | -     | \$ | -     | \$  | -         | \$   | -        | \$ | -           | \$ | -                 | \$ | -                   | \$         | -        | \$<br>-        |
| 2007      | \$ | -   | \$ | -     | \$ | -     | \$  | -         | \$   | -        | \$ | -           | \$ | -                 | \$ | -                   | \$         | -        | \$<br>-        |
| 2008      | \$ | -   | \$ | -     | \$ | -     | \$  | -         | \$   | -        | \$ | -           | \$ | -                 | \$ | -                   | \$         | -        | \$<br>-        |
| 2009      | \$ | -   | \$ | -     | \$ | -     | \$  | -         | \$   | -        | \$ | -           | \$ | -                 | \$ | -                   | \$         | -        | \$<br>-        |
| 2010      | \$ | 0.0 | \$ | 0.1   | \$ | 0.2   | \$  | 0.8       | \$   | 1.7      | \$ | 6.0         | \$ | 5.0               | \$ | 21.6                | \$         | 18.0     | \$<br>53.3     |
| 2011      | \$ | 0.0 | \$ | 0.4   | \$ | 0.5   | \$  | 2.0       | \$   | 4.5      | \$ | 15.4        | \$ | 12.8              | \$ | 55.8                | \$         | 46.5     | \$<br>137.9    |
| 2012      | \$ | 0.1 | \$ | 0.7   | \$ | 0.8   | \$  | 3.5       | \$   | 7.9      | \$ | 27.3        | \$ | 22.7              | \$ | 99.0                | \$         | 82.4     | \$<br>244.5    |
| 2013      | \$ | 0.1 | \$ | 1.0   | \$ | 1.3   | \$  | 5.3       | \$   | 11.9     | \$ | 41.0        | \$ | 34.1              | \$ | 148.6               | \$         | 123.7    | \$<br>367.0    |
| 2014      | \$ | 0.2 | \$ | 1.4   | \$ | 1.7   | \$  | 7.2       | \$   | 16.2     | \$ | 56.0        | \$ | 44.3              | \$ | 182.8               | \$         | 152.2    | \$<br>462.0    |
| 2015      | \$ | 0.2 | \$ | 1.8   | \$ | 2.2   | \$  | 9.2       | \$   | 20.8     | \$ | 69.1        | \$ | 51.6              | \$ | 208.6               | \$         | 173.6    | \$<br>537.3    |
| 2016      | \$ | 0.3 | \$ | 2.1   | \$ | 2.6   | \$  | 11.0      | \$   | 24.9     | \$ | 78.7        | \$ | 57.2              | \$ | 228.4               | \$         | 190.1    | \$<br>595.3    |
| 2017      | \$ | 0.3 | \$ | 2.4   | \$ | 2.9   | \$  | 12.3      | \$   | 27.8     | \$ | 86.0        | \$ | 61.5              | \$ | 243.8               | \$         | 202.9    | \$<br>639.8    |
| 2018      | \$ | 0.3 | \$ | 2.6   | \$ | 3.2   | \$  | 13.3      | \$   | 30.0     | \$ | 91.6        | \$ | 64.8              | \$ | 255.6               | \$         | 212.7    | \$<br>674.1    |
| 2019      | \$ | 0.3 | \$ | 2.7   | \$ | 3.3   | \$  | 14.0      | \$   | 31.7     | \$ | 95.9        | \$ | 67.3              | \$ | 264.7               | \$         | 220.3    | \$<br>700.4    |
| 2020      | \$ | 0.4 | \$ | 2.8   | \$ | 3.5   | \$  | 14.6      | \$   | 33.0     | \$ | 99.2        | \$ | 69.3              | \$ | 271.6               | \$         | 226.0    | \$<br>720.4    |
| 2021      | \$ | 0.4 | \$ | 2.9   | \$ | 3.6   | \$  | 15.1      | \$   | 34.0     | \$ | 101.7       | \$ | 70.7              | \$ | 276.6               | \$         | 230.2    | \$<br>735.1    |
| 2022      | \$ | 0.4 | \$ | 3.0   | \$ | 3.7   | \$  | 15.4      | \$   | 34.8     | \$ | 103.5       | \$ | 71.7              | \$ | 280.1               | \$         | 233.1    | \$<br>745.6    |
| 2023      | \$ | 0.4 | \$ | 3.0   | \$ | 3.7   | \$  | 15.6      | \$   | 35.3     | \$ | 104.7       | \$ | 72.4              | \$ | 282.4               | \$         | 235.0    | \$<br>752.6    |
| 2024      | \$ | 0.4 | \$ | 3.0   | \$ | 3.8   | \$  | 15.8      | \$   | 35.6     | \$ | 105.5       | \$ | 72.8              | \$ | 283.7               | \$         | 236.1    | \$<br>756.7    |
| 2025      | \$ | 0.4 | \$ | 3.1   | \$ | 3.8   | \$  | 15.9      | \$   | 35.9     | \$ | 105.9       | \$ | 73.0              | \$ | 284.0               | \$         | 236.4    | \$<br>758.3    |
| 2026      | \$ | 0.4 | \$ | 3.1   | \$ | 3.8   | \$  | 15.9      | \$   | 35.9     | \$ | 106.0       | \$ | 72.9              | \$ | 283.7               | \$         | 236.1    | \$<br>757.9    |
| 2027      | \$ | 0.4 | \$ | 3.1   | \$ | 3.8   | \$  | 15.9      | \$   | 35.9     | \$ | 105.9       | \$ | 72.7              | \$ | 282.7               | \$         | 235.3    | \$<br>755.7    |
| 2028      | \$ | 0.4 | \$ | 3.0   | \$ | 3.7   | \$  | 15.6      | \$   | 35.3     | \$ | 104.0       | \$ | 71.4              | \$ | 277.3               | \$         | 230.7    | \$<br>741.5    |
| 2029      | \$ | 0.4 | \$ | 3.0   | \$ | 3.7   | \$  | 15.5      | \$   | 35.1     | \$ | 103.1       | \$ | 70.7              | \$ | 274.6               | \$         | 228.6    | \$<br>734.8    |
| Total     | \$ | 5.8 | \$ | 45.2  | \$ | 55.7  | \$  | 233.9     | \$   | 528.3    | \$ | 1,606.5     | \$ | 1,139.2           | \$ | 4,505.6             | \$         | 3,749.9  | \$<br>11,870.1 |
| Ann.      | \$ | 0.3 | \$ | 2.6   | \$ | 3.2   | \$  | 13.4      | \$   | 30.3     | \$ | 92.3        | \$ | 65.4              | \$ | 258.7               | \$         | 215.3    | \$<br>681.7    |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f and E.40d.

#### Exhibit F.7d Mean Present Value of Benefits Yearly Projections, WTP for Bronchitis as Basis for Non-Fatal Cases, at 7% Discount Rate, by System Size (All Systems)

**TTHM - Alternative 1** 

|       |    |     |    |       |    | ,     | Sm  | oking/L  | unç | g Canc   | er C | essatio   | n L | ag Mod           | lek |                     |            |          |               |
|-------|----|-----|----|-------|----|-------|-----|----------|-----|----------|------|-----------|-----|------------------|-----|---------------------|------------|----------|---------------|
| Year  | ٧  | 100 | 10 | 0-499 | 50 | 0-999 | 1,0 | 00-3,299 | 3,3 | 00-9,999 | 10,0 | 00-49,999 |     | 0,000-<br>99,999 |     | 100,000-<br>999,999 | <u>≥</u> 1 | ,000,000 | Total         |
| 2005  | \$ | -   | \$ | -     | \$ | -     | \$  | -        | \$  | -        | \$   | -         | \$  | -                | \$  | -                   | \$         | -        | \$<br>-       |
| 2006  | \$ | -   | \$ | -     | \$ | -     | \$  | -        | \$  | -        | \$   | -         | \$  | -                | \$  | -                   | \$         | -        | \$<br>-       |
| 2007  | \$ | -   | \$ | -     | \$ | -     | \$  | -        | \$  | -        | \$   | -         | \$  | -                | \$  | -                   | \$         | -        | \$<br>-       |
| 2008  | \$ | -   | \$ | -     | \$ | -     | \$  | -        | \$  | -        | \$   | -         | \$  | -                | \$  | -                   | \$         | -        | \$<br>-       |
| 2009  | \$ | -   | \$ | -     | \$ | -     | \$  | -        | \$  | -        | \$   | -         | \$  | -                | \$  | -                   | \$         | -        | \$<br>-       |
| 2010  | \$ | 0.0 | \$ | 0.1   | \$ | 0.2   | \$  | 0.6      | \$  | 1.4      | \$   | 4.9       | \$  | 4.1              | \$  | 17.8                | \$         | 14.8     | \$<br>44.0    |
| 2011  | \$ | 0.0 | \$ | 0.3   | \$ | 0.4   | \$  | 1.6      | \$  | 3.6      | \$   | 12.3      | \$  | 10.2             | \$  | 44.4                | \$         | 37.0     | \$<br>109.7   |
| 2012  | \$ | 0.1 | \$ | 0.5   | \$ | 0.6   | \$  | 2.7      | \$  | 6.1      | \$   | 20.9      | \$  | 17.4             | \$  | 75.8                | \$         | 63.1     | \$<br>187.3   |
| 2013  | \$ | 0.1 | \$ | 0.7   | \$ | 0.9   | \$  | 3.9      | \$  | 8.8      | \$   | 30.2      | \$  | 25.2             | \$  | 109.6               | \$         | 91.2     | \$<br>270.6   |
| 2014  | \$ | 0.1 | \$ | 1.0   | \$ | 1.2   | \$  | 5.1      | \$  | 11.5     | \$   | 39.7      | \$  | 31.4             | \$  | 129.8               | \$         | 108.0    | \$<br>327.9   |
| 2015  | \$ | 0.2 | \$ | 1.2   | \$ | 1.5   | \$  | 6.3      | \$  | 14.2     | \$   | 47.2      | \$  | 35.3             | \$  | 142.5               | \$         | 118.6    | \$<br>367.1   |
| 2016  | \$ | 0.2 | \$ | 1.4   | \$ | 1.7   | \$  | 7.2      | \$  | 16.3     | \$   | 51.8      | \$  | 37.6             | \$  | 150.2               | \$         | 125.0    | \$<br>391.5   |
| 2017  | \$ | 0.2 | \$ | 1.5   | \$ | 1.9   | \$  | 7.8      | \$  | 17.6     | \$   | 54.4      | \$  | 38.9             | \$  | 154.3               | \$         | 128.4    | \$<br>405.0   |
| 2018  | \$ | 0.2 | \$ | 1.6   | \$ | 1.9   | \$  | 8.1      | \$  | 18.3     | \$   | 55.8      | \$  | 39.5             | \$  | 155.8               | \$         | 129.6    | \$<br>410.8   |
| 2019  | \$ | 0.2 | \$ | 1.6   | \$ | 2.0   | \$  | 8.2      | \$  | 18.6     | \$   | 56.3      | \$  | 39.5             | \$  | 155.3               | \$         | 129.2    | \$<br>410.9   |
| 2020  | \$ | 0.2 | \$ | 1.6   | \$ | 2.0   | \$  | 8.3      | \$  | 18.7     | \$   | 56.0      | \$  | 39.1             | \$  | 153.3               | \$         | 127.6    | \$<br>406.8   |
| 2021  | \$ | 0.2 | \$ | 1.6   | \$ | 1.9   | \$  | 8.2      | \$  | 18.5     | \$   | 55.3      | \$  | 38.4             | \$  | 150.3               | \$         | 125.1    | \$<br>399.6   |
| 2022  | \$ | 0.2 | \$ | 1.6   | \$ | 1.9   | \$  | 8.1      | \$  | 18.2     | \$   | 54.1      | \$  | 37.5             | \$  | 146.6               | \$         | 122.0    | \$<br>390.2   |
| 2023  | \$ | 0.2 | \$ | 1.5   | \$ | 1.9   | \$  | 7.9      | \$  | 17.8     | \$   | 52.7      | \$  | 36.5             | \$  | 142.2               | \$         | 118.4    | \$<br>379.1   |
| 2024  | \$ | 0.2 | \$ | 1.5   | \$ | 1.8   | \$  | 7.7      | \$  | 17.3     | \$   | 51.2      | \$  | 35.3             | \$  | 137.5               | \$         | 114.5    | \$<br>366.9   |
| 2025  | \$ | 0.2 | \$ | 1.4   | \$ | 1.8   | \$  | 7.4      | \$  | 16.7     | \$   | 49.4      | \$  | 34.1             | \$  | 132.6               | \$         | 110.3    | \$<br>353.9   |
| 2026  | \$ | 0.2 | \$ | 1.4   | \$ | 1.7   | \$  | 7.2      | \$  | 16.1     | \$   | 47.6      | \$  | 32.8             | \$  | 127.4               | \$         | 106.1    | \$<br>340.5   |
| 2027  | \$ | 0.2 | \$ | 1.3   | \$ | 1.6   | \$  | 6.9      | \$  | 15.5     | \$   | 45.8      | \$  | 31.5             | \$  | 122.3               | \$         | 101.8    | \$<br>326.8   |
| 2028  | \$ | 0.2 | \$ | 1.3   | \$ | 1.6   | \$  | 6.5      | \$  | 14.7     | \$   | 43.3      | \$  | 29.7             | \$  | 115.4               | \$         | 96.1     | \$<br>308.7   |
| 2029  | \$ | 0.2 | \$ | 1.2   | \$ | 1.5   | \$  | 6.2      | \$  | 14.1     | \$   | 41.3      | \$  | 28.3             | \$  | 110.1               | \$         | 91.6     | \$<br>294.5   |
| Total | \$ | 3.1 | \$ | 24.3  | \$ | 29.9  | \$  | 125.7    | \$  | 284.0    | \$   | 870.4     | \$  | 622.4            | \$  | 2,473.3             | \$         | 2,058.5  | \$<br>6,491.6 |
| Ann.  | \$ | 0.3 | \$ | 2.1   | \$ | 2.6   | \$  | 10.8     | \$  | 24.4     | \$   | 74.7      | \$  | 53.4             | \$  | 212.2               | \$         | 176.6    | \$<br>557.0   |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f and E.40d.

# Section F.8 Model Outputs - Alternative 2 TTHM as Indicator Lymphoma for Non-Fatal Cases

### Exhibit F.8a Projections of Yearly Benefits, WTP for Lymphoma as Basis for Non-Fatal Cases (Smoking/Lung Cancer Cessation Lag Model)

TTHM - Alternative 2

|       | Surfac          | e W | /ater Syst         | em | s                    | Grou           | ınd | Water Sy           | stei | ms                  |                 | All | Systems            |    |                     |
|-------|-----------------|-----|--------------------|----|----------------------|----------------|-----|--------------------|------|---------------------|-----------------|-----|--------------------|----|---------------------|
|       |                 |     | 90 P<br>Confider   |    |                      |                |     | 90 P<br>Confider   |      |                     |                 |     | 90 P<br>Confider   |    |                     |
| Year  | Mean<br>Value   | (5  | Lower<br>th %tile) | (9 | Upper<br>95th %tile) | Mean<br>Value  | (5  | Lower<br>th %tile) | (9   | Upper<br>5th %tile) | Mean<br>Value   | (5  | Lower<br>th %tile) | (9 | Upper<br>5th %tile) |
| 2005  | \$<br>-         | \$  | -                  | \$ | -                    | \$<br>-        | \$  | -                  | \$   | -                   | \$<br>-         | \$  | -                  | \$ | -                   |
| 2006  | \$<br>-         | \$  | -                  | \$ | -                    | \$<br>-        | \$  | -                  | \$   | -                   | \$<br>-         | \$  | _                  | \$ | -                   |
| 2007  | \$<br>-         | \$  | -                  | \$ | -                    | \$<br>-        | \$  | -                  | \$   | -                   | \$<br>-         | \$  | -                  | \$ | -                   |
| 2008  | \$<br>-         | \$  | -                  | \$ | -                    | \$<br>-        | \$  | -                  | \$   | -                   | \$<br>-         | \$  | -                  | \$ | -                   |
| 2009  | \$<br>-         | \$  | -                  | \$ | -                    | \$<br>-        | \$  | -                  | \$   | -                   | \$<br>-         | \$  | -                  | \$ | -                   |
| 2010  | \$<br>436.2     | \$  | 66.8               | \$ | 1,002.8              | \$<br>31.9     | \$  | 4.9                | \$   | 73.4                | \$<br>468.2     | \$  | 71.7               | \$ | 1,076.2             |
| 2011  | \$<br>1,162.3   | \$  | 178.0              | \$ | 2,673.4              | \$<br>85.0     | \$  | 13.0               | \$   | 195.6               | \$<br>1,247.4   | \$  | 191.0              | \$ | 2,869.0             |
| 2012  | \$<br>2,120.9   | \$  | 324.6              | \$ | 4,872.2              | \$<br>155.2    | \$  | 23.7               | \$   | 356.5               | \$<br>2,276.1   | \$  | 348.3              | \$ | 5,228.7             |
| 2013  | \$<br>3,276.0   | \$  | 501.4              | \$ | 7,524.7              | \$<br>239.7    | \$  | 36.7               | \$   | 550.6               | \$<br>3,515.7   | \$  | 538.1              | \$ | 8,075.3             |
| 2014  | \$<br>4,232.9   | \$  | 647.1              | \$ | 9,730.6              | \$<br>320.2    | \$  | 49.0               | \$   | 736.2               | \$<br>4,553.2   | \$  | 696.1              | \$ | 10,466.8            |
| 2015  | \$<br>5,050.6   | \$  | 772.3              | \$ | 11,615.5             | \$<br>393.4    | \$  | 60.2               | \$   | 904.8               | \$<br>5,444.0   | \$  | 832.5              | \$ | 12,520.3            |
| 2016  | \$<br>5,745.8   | \$  | 877.8              | \$ | 13,213.8             | \$<br>455.4    | \$  | 69.6               | \$   | 1,047.3             | \$<br>6,201.3   | \$  | 947.3              | \$ | 14,261.2            |
| 2017  | \$<br>6,346.7   | \$  | 969.1              | \$ | 14,609.5             | \$<br>508.2    | \$  | 77.6               | \$   | 1,169.8             | \$<br>6,854.9   | \$  | 1,046.7            | \$ | 15,779.3            |
| 2018  | \$<br>6,875.9   | \$  | 1,048.4            | \$ | 15,840.9             | \$<br>554.3    | \$  | 84.5               | \$   | 1,277.0             | \$<br>7,430.2   | \$  | 1,133.0            | \$ | 17,117.9            |
| 2019  | \$<br>7,348.3   | \$  | 1,119.4            | \$ | 16,957.7             | \$<br>595.2    | \$  | 90.7               | \$   | 1,373.5             | \$<br>7,943.5   | \$  | 1,210.0            | \$ | 18,331.2            |
| 2020  | \$<br>7,774.4   | \$  | 1,183.8            | \$ | 17,949.1             | \$<br>631.9    | \$  | 96.2               | \$   | 1,458.9             | \$<br>8,406.4   | \$  | 1,280.0            | \$ | 19,408.1            |
| 2021  | \$<br>8,162.3   | \$  | 1,241.4            | \$ | 18,845.8             | \$<br>665.2    | \$  | 101.2              | \$   | 1,535.9             | \$<br>8,827.5   | \$  | 1,342.6            | \$ | 20,381.7            |
| 2022  | \$<br>8,517.8   | \$  | 1,295.2            | \$ | 19,700.0             | \$<br>695.6    | \$  | 105.8              | \$   | 1,608.9             | \$<br>9,213.5   | \$  | 1,401.0            | \$ | 21,308.9            |
| 2023  | \$<br>8,846.1   | \$  | 1,345.4            | \$ | 20,464.4             | \$<br>723.7    | \$  | 110.1              | \$   | 1,674.1             | \$<br>9,569.8   | \$  | 1,455.5            | \$ | 22,138.5            |
| 2024  | \$<br>9,151.2   | \$  | 1,391.1            | \$ | 21,178.1             | \$<br>749.6    | \$  | 114.0              | \$   | 1,734.8             | \$<br>9,900.8   | \$  | 1,505.1            | \$ | 22,912.9            |
| 2025  | \$<br>9,436.2   | \$  | 1,432.3            | \$ | 21,839.1             | \$<br>773.8    | \$  | 117.5              | \$   | 1,790.9             | \$<br>10,210.0  | \$  | 1,549.8            | \$ | 23,630.0            |
| 2026  | \$<br>9,704.0   | \$  | 1,471.0            | \$ | 22,478.3             | \$<br>796.5    | \$  | 120.7              | \$   | 1,845.0             | \$<br>10,500.6  | \$  | 1,591.7            | \$ | 24,323.3            |
| 2027  | \$<br>9,956.9   | \$  | 1,507.6            | \$ | 23,099.6             | \$<br>817.9    | \$  | 123.8              | \$   | 1,897.5             | \$<br>10,774.8  | \$  | 1,631.4            | \$ | 24,997.1            |
| 2028  | \$<br>10,064.8  | \$  | 1,525.3            | \$ | 23,336.8             | \$<br>827.3    | \$  | 125.4              | \$   | 1,918.2             | \$<br>10,892.1  | \$  | 1,650.6            | \$ | 25,255.1            |
| 2029  | \$<br>10,265.9  | \$  | 1,553.6            | \$ | 23,825.6             | \$<br>844.3    | \$  | 127.8              | \$   | 1,959.5             | \$<br>11,110.2  | \$  | 1,681.4            | \$ | 25,785.0            |
| Total | \$<br>134,475.5 | \$  | 20,451.6           | \$ | 310,757.9            | \$<br>10,864.4 | \$  | 1,652.2            | \$   | 25,108.3            | \$<br>145,340.0 | \$  | 22,103.8           | \$ | 335,866.2           |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f, E.41b, and E.41c.

## Exhibit F.8b Present Value of Benefits Yearly Projections, WTP for Lymphoma as Basis for Non-Fatal Cases, Smoking/Lung Cancer Cessation Lag Model

(All Water Systems)

TTHM - Alternative 2

|       | 3%             | Di | scount Ra  | te  |             | 7%             | 6 Di | scount R         | ate |             |
|-------|----------------|----|------------|-----|-------------|----------------|------|------------------|-----|-------------|
|       |                |    | 90 P       |     |             |                |      | 90 P<br>Confider |     |             |
|       | Mean           |    | Lower      | ice | Upper       | Mean           |      | Lower            | ice | Upper       |
| Year  | Value          | (5 | ith %tile) | (9  | 95th %tile) | Value          | (5   | th %tile)        | (9  | 95th %tile) |
| 2005  | \$<br>-        | \$ | -          | \$  | -           | \$<br>-        | \$   | -                | \$  | -           |
| 2006  | \$<br>-        | \$ | -          | \$  | -           | \$<br>-        | \$   | -                | \$  | -           |
| 2007  | \$<br>-        | \$ | -          | \$  | -           | \$<br>-        | \$   | -                | \$  | -           |
| 2008  | \$<br>-        | \$ | -          | \$  | -           | \$<br>-        | \$   | -                | \$  | -           |
| 2009  | \$<br>-        | \$ | -          | \$  | -           | \$<br>-        | \$   | -                | \$  | -           |
| 2010  | \$<br>403.8    | \$ | 61.8       | \$  | 928.3       | \$<br>333.8    | \$   | 51.1             | \$  | 767.3       |
| 2011  | \$<br>1,044.6  | \$ | 160.0      | \$  | 2,402.7     | \$<br>831.2    | \$   | 127.3            | \$  | 1,911.7     |
| 2012  | \$<br>1,850.7  | \$ | 283.2      | \$  | 4,251.4     | \$<br>1,417.4  | \$   | 216.9            | \$  | 3,256.2     |
| 2013  | \$<br>2,775.3  | \$ | 424.8      | \$  | 6,374.7     | \$<br>2,046.2  | \$   | 313.2            | \$  | 4,699.9     |
| 2014  | \$<br>3,489.6  | \$ | 533.5      | \$  | 8,021.9     | \$<br>2,476.6  | \$   | 378.6            | \$  | 5,693.2     |
| 2015  | \$<br>4,050.9  | \$ | 619.4      | \$  | 9,316.3     | \$<br>2,767.5  | \$   | 423.2            | \$  | 6,364.7     |
| 2016  | \$<br>4,479.9  | \$ | 684.4      | \$  | 10,302.6    | \$<br>2,946.2  | \$   | 450.1            | \$  | 6,775.4     |
| 2017  | \$<br>4,807.9  | \$ | 734.1      | \$  | 11,067.3    | \$<br>3,043.7  | \$   | 464.8            | \$  | 7,006.2     |
| 2018  | \$<br>5,059.6  | \$ | 771.5      | \$  | 11,656.4    | \$<br>3,083.3  | \$   | 470.1            | \$  | 7,103.3     |
| 2019  | \$<br>5,251.6  | \$ | 800.0      | \$  | 12,119.1    | \$<br>3,080.6  | \$   | 469.3            | \$  | 7,109.2     |
| 2020  | \$<br>5,395.7  | \$ | 821.6      | \$  | 12,457.3    | \$<br>3,046.9  | \$   | 463.9            | \$  | 7,034.4     |
| 2021  | \$<br>5,501.0  | \$ | 836.7      | \$  | 12,701.2    | \$<br>2,990.2  | \$   | 454.8            | \$  | 6,904.0     |
| 2022  | \$<br>5,574.3  | \$ | 847.6      | \$  | 12,892.2    | \$<br>2,916.8  | \$   | 443.5            | \$  | 6,745.8     |
| 2023  | \$<br>5,621.2  | \$ | 855.0      | \$  | 13,004.0    | \$<br>2,831.4  | \$   | 430.6            | \$  | 6,550.0     |
| 2024  | \$<br>5,646.3  | \$ | 858.3      | \$  | 13,066.9    | \$<br>2,737.7  | \$   | 416.2            | \$  | 6,335.6     |
| 2025  | \$<br>5,653.1  | \$ | 858.1      | \$  | 13,083.4    | \$<br>2,638.5  | \$   | 400.5            | \$  | 6,106.4     |
| 2026  | \$<br>5,644.6  | \$ | 855.6      | \$  | 13,075.0    | \$<br>2,536.0  | \$   | 384.4            | \$  | 5,874.4     |
| 2027  | \$<br>5,623.3  | \$ | 851.4      | \$  | 13,045.8    | \$<br>2,432.0  | \$   | 368.2            | \$  | 5,642.2     |
| 2028  | \$<br>5,519.0  | \$ | 836.4      | \$  | 12,796.5    | \$<br>2,297.7  | \$   | 348.2            | \$  | 5,327.5     |
| 2029  | \$<br>5,465.5  | \$ | 827.1      | \$  | 12,684.5    | \$<br>2,190.3  | \$   | 331.5            | \$  | 5,083.4     |
| Total | \$<br>88,857.9 | \$ | 13,520.4   | \$  | 205,247.6   | \$<br>48,643.6 | \$   | 7,406.4          | \$  | 112,290.8   |
| Ann.  | \$<br>5,102.9  | \$ | 776.5      | \$  | 11,786.9    | \$<br>4,174.1  | \$   | 635.5            | \$  | 9,635.7     |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibit F.8a.

#### Exhibit F.8c Mean Present Value of Benefits Yearly Projections, WTP for Lymphoma as Basis for Non-Fatal Cases, at 3% Discount Rate, by System Size (All Systems)

TTHM - Alternative 2

|       |    |      |    |       |    | ,     | Sm  | oking/L   | un  | g Canc    | er ( | Cessatio   | n L | ag Mod            | lek |                     |            |           |                |
|-------|----|------|----|-------|----|-------|-----|-----------|-----|-----------|------|------------|-----|-------------------|-----|---------------------|------------|-----------|----------------|
| Year  | <  | 100  | 10 | 0-499 | 50 | 0-999 | 1,0 | 000-3,299 | 3,3 | 800-9,999 | 10,  | 000-49,999 |     | 50,000-<br>99,999 |     | 100,000-<br>999,999 | <u>≥</u> 1 | 1,000,000 | Total          |
| 2005  | \$ | -    | \$ | -     | \$ | -     | \$  | -         | \$  | -         | \$   | -          | \$  | -                 | \$  | -                   | \$         | -         | \$<br>-        |
| 2006  | \$ | -    | \$ | -     | \$ | -     | \$  | -         | \$  | -         | \$   | -          | \$  | -                 | \$  | -                   | \$         | -         | \$<br>-        |
| 2007  | \$ | -    | \$ | -     | \$ | -     | \$  | -         | \$  | -         | \$   | -          | \$  | -                 | \$  | -                   | \$         | -         | \$<br>-        |
| 2008  | \$ | -    | \$ | -     | \$ | -     | \$  | -         | \$  | -         | \$   | -          | \$  | -                 | \$  | -                   | \$         | -         | \$<br>-        |
| 2009  | \$ | -    | \$ | -     | \$ | -     | \$  | -         | \$  | -         | \$   | -          | \$  | -                 | \$  | -                   | \$         | -         | \$<br>-        |
| 2010  | \$ | 0.1  | \$ | 0.6   | \$ | 8.0   | \$  | 4.0       | \$  | 10.2      | \$   | 49.1       | \$  | 38.9              | \$  | 165.9               | \$         | 134.3     | \$<br>403.8    |
| 2011  | \$ | 0.2  | \$ | 1.5   | \$ | 2.1   | \$  | 10.4      | \$  | 26.3      | \$   | 127.1      | \$  | 100.6             | \$  | 429.2               | \$         | 347.3     | \$<br>1,044.6  |
| 2012  | \$ | 0.3  | \$ | 2.7   | \$ | 3.7   | \$  | 18.4      | \$  | 46.7      | \$   | 225.2      | \$  | 178.1             | \$  | 760.3               | \$         | 615.3     | \$<br>1,850.7  |
| 2013  | \$ | 0.5  | \$ | 4.0   | \$ | 5.5   | \$  | 27.6      | \$  | 70.0      | \$   | 337.8      | \$  | 267.1             | \$  | 1,140.2             | \$         | 922.7     | \$<br>2,775.3  |
| 2014  | \$ | 0.7  | \$ | 5.4   | \$ | 7.5   | \$  | 37.6      | \$  | 95.4      | \$   | 460.7      | \$  | 346.4             | \$  | 1,401.7             | \$         | 1,134.3   | \$<br>3,489.6  |
| 2015  | \$ | 0.9  | \$ | 7.0   | \$ | 9.6   | \$  | 48.2      | \$  | 122.4     | \$   | 568.6      | \$  | 403.2             | \$  | 1,597.9             | \$         | 1,293.0   | \$<br>4,050.9  |
| 2016  | \$ | 1.0  | \$ | 8.3   | \$ | 11.5  | \$  | 57.5      | \$  | 145.9     | \$   | 646.6      | \$  | 446.3             | \$  | 1,748.2             | \$         | 1,414.7   | \$<br>4,479.9  |
| 2017  | \$ | 1.1  | \$ | 9.3   | \$ | 12.8  | \$  | 64.2      | \$  | 162.9     | \$   | 705.8      | \$  | 479.4             | \$  | 1,864.0             | \$         | 1,508.4   | \$<br>4,807.9  |
| 2018  | \$ | 1.2  | \$ | 10.0  | \$ | 13.8  | \$  | 69.3      | \$  | 175.8     | \$   | 751.2      | \$  | 504.9             | \$  | 1,953.0             | \$         | 1,580.4   | \$<br>5,059.6  |
| 2019  | \$ | 1.3  | \$ | 10.6  | \$ | 14.6  | \$  | 73.2      | \$  | 185.7     | \$   | 785.9      | \$  | 524.3             | \$  | 2,020.8             | \$         | 1,635.2   | \$<br>5,251.6  |
| 2020  | \$ | 1.3  | \$ | 11.0  | \$ | 15.2  | \$  | 76.1      | \$  | 193.2     | \$   | 812.3      | \$  | 538.9             | \$  | 2,071.4             | \$         | 1,676.2   | \$<br>5,395.7  |
| 2021  | \$ | 1.4  | \$ | 11.3  | \$ | 15.6  | \$  | 78.4      | \$  | 198.9     | \$   | 831.8      | \$  | 549.6             | \$  | 2,108.1             | \$         | 1,705.9   | \$<br>5,501.0  |
| 2022  | \$ | 1.4  | \$ | 11.5  | \$ | 16.0  | \$  | 80.0      | \$  | 203.0     | \$   | 845.9      | \$  | 557.1             | \$  | 2,133.2             | \$         | 1,726.2   | \$<br>5,574.3  |
| 2023  | \$ | 1.4  | \$ | 11.7  | \$ | 16.2  | \$  | 81.1      | \$  | 205.9     | \$   | 855.4      | \$  | 561.9             | \$  | 2,148.7             | \$         | 1,738.8   | \$<br>5,621.2  |
| 2024  | \$ | 1.4  | \$ | 11.8  | \$ | 16.3  | \$  | 81.9      | \$  | 207.8     | \$   | 861.2      | \$  | 564.5             | \$  | 2,156.4             | \$         | 1,745.0   | \$<br>5,646.3  |
| 2025  | \$ | 1.5  | \$ | 11.9  | \$ | 16.4  | \$  | 82.3      | \$  | 208.9     | \$   | 863.8      | \$  | 565.2             | \$  | 2,157.3             | \$         | 1,745.7   | \$<br>5,653.1  |
| 2026  | \$ | 1.5  | \$ | 11.9  | \$ | 16.4  | \$  | 82.4      | \$  | 209.2     | \$   | 863.8      | \$  | 564.5             | \$  | 2,152.8             | \$         | 1,742.0   | \$<br>5,644.6  |
| 2027  | \$ | 1.5  | \$ | 11.9  | \$ | 16.4  | \$  | 82.3      | \$  | 209.0     | \$   | 861.7      | \$  | 562.4             | \$  | 2,143.5             | \$         | 1,734.6   | \$<br>5,623.3  |
| 2028  | \$ | 1.4  | \$ | 11.7  | \$ | 16.2  | \$  | 81.0      | \$  | 205.6     | \$   | 846.6      | \$  | 552.0             | \$  | 2,102.8             | \$         | 1,701.6   | \$<br>5,519.0  |
| 2029  | \$ | 1.4  | \$ | 11.6  | \$ | 16.0  | \$  | 80.4      | \$  | 204.0     | \$   | 839.2      | \$  | 546.7             | \$  | 2,081.7             | \$         | 1,684.5   | \$<br>5,465.5  |
| Total | \$ | 21.5 | \$ | 175.6 | \$ | 242.7 | \$  | 1,216.3   | \$  | 3,086.9   | \$   | 13,139.7   | \$  | 8,852.1           | \$  | 34,337.0            | \$         | 27,786.0  | \$<br>88,857.9 |
| Ann.  | \$ | 1.2  | \$ | 10.1  | \$ | 13.9  | \$  | 69.8      | \$  | 177.3     | \$   | 754.6      | \$  | 508.4             | \$  | 1,971.9             | \$         | 1,595.7   | \$<br>5,102.9  |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f and E.41d.

## Exhibit F.8d Mean Present Value of Benefits Yearly Projections, WTP for Lymphoma as Basis for Non-Fatal Cases, at 7% Discount Rate, by System Size (All Systems)

TTHM - Alternative 2

|       |            |    |       |    | Sm     | oki | ing/Lun   | g C | Cancer (  | Ce | ssation L         | .ag | Model           |                     |    |          |    |          |
|-------|------------|----|-------|----|--------|-----|-----------|-----|-----------|----|-------------------|-----|-----------------|---------------------|----|----------|----|----------|
| Year  | 100        | 10 | 0-499 | 5  | 00-999 | 1.0 | 00-3,299  | 2 2 | .nn-a aaa |    | 10,000-<br>49,999 |     | 0,000-<br>9,999 | 100,000-<br>999,999 | _1 | 000,000  |    | Total    |
|       |            |    | 0 433 |    |        |     | 700 0,233 | ŕ   | ·         | •  |                   |     |                 | •                   | F  |          | •  |          |
| 2005  | \$<br>-    | \$ | -     | \$ | -      | \$  | -         | \$  | -         | \$ | -                 | \$  | -               | \$<br>-             | \$ | -        | \$ | -        |
| 2006  | \$<br>-    | \$ | -     | \$ | -      | \$  | -         | \$  | -         | \$ | -                 | \$  | -               | \$<br>-             | \$ | -        | \$ | -        |
| 2007  | \$<br>-    | \$ | -     | \$ | -      | \$  | -         | \$  | -         | \$ | -                 | \$  | -               | \$<br>-             | \$ | -        | \$ | -        |
| 2008  | \$<br>-    | \$ | -     | \$ | -      | \$  | -         | \$  | -         | \$ | -                 | \$  | -               | \$<br>-             | \$ | -        | \$ | -        |
| 2009  | \$<br>-    | \$ | -     | \$ | -      | \$  | -         | \$  | -         | \$ | -                 | \$  | -               | \$<br>-             | \$ | -        | \$ |          |
| 2010  | \$<br>0.1  | \$ | 0.5   | \$ | 0.7    | \$  | 3.3       | \$  | 8.4       | \$ | 40.6              | \$  | 32.1            | \$<br>137.1         | \$ | 111.0    | \$ | 333.8    |
| 2011  | \$<br>0.1  | \$ | 1.2   | \$ | 1.6    | \$  | 8.3       | \$  | 21.0      | \$ | 101.2             | \$  | 80.0            | \$<br>341.5         | \$ | 276.3    | \$ | 831.2    |
| 2012  | \$<br>0.2  | \$ | 2.0   | \$ | 2.8    | \$  | 14.1      | \$  | 35.7      | \$ | 172.5             | \$  | 136.4           | \$<br>582.3         | \$ | 471.2    | \$ | 1,417.4  |
| 2013  | \$<br>0.4  | \$ | 2.9   | \$ | 4.1    | \$  | 20.3      | \$  | 51.6      | \$ | 249.0             | \$  | 197.0           | \$<br>840.7         | \$ | 680.3    | \$ | 2,046.2  |
| 2014  | \$<br>0.5  | \$ | 3.9   | \$ | 5.3    | \$  | 26.7      | \$  | 67.7      | \$ | 326.9             | \$  | 245.8           | \$<br>994.8         | \$ | 805.0    |    | 2,476.6  |
| 2015  | \$<br>0.6  | \$ | 4.8   | \$ | 6.6    | \$  | 32.9      | \$  | 83.6      | \$ | 388.5             | \$  | 275.5           | \$<br>1,091.7       | \$ | 883.4    |    | 2,767.5  |
| 2016  | \$<br>0.7  | \$ | 5.5   | \$ | 7.5    | \$  | 37.8      | \$  | 95.9      | \$ | 425.2             | \$  | 293.5           | \$<br>1,149.7       | \$ | 930.3    | \$ | 2,946.2  |
| 2017  | \$<br>0.7  | \$ | 5.9   | \$ | 8.1    | \$  | 40.6      | \$  | 103.1     | \$ | 446.8             | \$  | 303.5           | \$<br>1,180.0       | \$ | 954.9    | \$ | 3,043.7  |
| 2018  | \$<br>0.7  | \$ | 6.1   | \$ | 8.4    | \$  | 42.2      | \$  | 107.2     | \$ | 457.8             | \$  | 307.7           | \$<br>1,190.1       | \$ | 963.1    | \$ | 3,083.3  |
| 2019  | \$<br>8.0  | \$ | 6.2   | \$ | 8.6    | \$  | 42.9      | \$  | 108.9     | \$ | 461.0             | \$  | 307.6           | \$<br>1,185.4       | \$ | 959.2    | \$ | 3,080.6  |
| 2020  | \$<br>8.0  | \$ | 6.2   | \$ | 8.6    | \$  | 43.0      | \$  | 109.1     | \$ | 458.7             | \$  | 304.3           | \$<br>1,169.7       | \$ | 946.5    | \$ | 3,046.9  |
| 2021  | \$<br>8.0  | \$ | 6.1   | \$ | 8.5    | \$  | 42.6      | \$  | 108.1     | \$ | 452.2             | \$  | 298.8           | \$<br>1,145.9       | \$ | 927.3    | \$ | 2,990.2  |
| 2022  | \$<br>0.7  | \$ | 6.0   | \$ | 8.4    | \$  | 41.9      | \$  | 106.2     | \$ | 442.6             | \$  | 291.5           | \$<br>1,116.2       | \$ | 903.2    | \$ | 2,916.8  |
| 2023  | \$<br>0.7  | \$ | 5.9   | \$ | 8.2    | \$  | 40.9      | \$  | 103.7     | \$ | 430.9             | \$  | 283.0           | \$<br>1,082.3       | \$ | 875.8    | \$ | 2,831.4  |
| 2024  | \$<br>0.7  | \$ | 5.7   | \$ | 7.9    | \$  | 39.7      | \$  | 100.8     | \$ | 417.5             | \$  | 273.7           | \$<br>1,045.5       | \$ | 846.1    | \$ | 2,737.7  |
| 2025  | \$<br>0.7  | \$ | 5.5   | \$ | 7.7    | \$  | 38.4      | \$  | 97.5      | \$ | 403.2             | \$  | 263.8           | \$<br>1,006.9       | \$ | 814.8    | \$ | 2,638.5  |
| 2026  | \$<br>0.7  | \$ | 5.3   | \$ | 7.4    | \$  | 37.0      | \$  | 94.0      | \$ | 388.1             | \$  | 253.6           | \$<br>967.2         | \$ | 782.7    | \$ | 2,536.0  |
| 2027  | \$<br>0.6  | \$ | 5.1   | \$ | 7.1    | \$  | 35.6      | \$  | 90.4      | \$ | 372.7             | \$  | 243.2           | \$<br>927.1         | \$ | 750.2    | \$ | 2,432.0  |
| 2028  | \$<br>0.6  | \$ | 4.9   | \$ | 6.7    | \$  | 33.7      | \$  | 85.6      | \$ | 352.5             | \$  | 229.8           | \$<br>875.4         | \$ | 708.4    | \$ | 2,297.7  |
| 2029  | \$<br>0.6  | \$ | 4.6   | \$ | 6.4    | \$  | 32.2      | \$  | 81.7      | \$ | 336.3             | \$  | 219.1           | \$<br>834.2         | \$ | 675.1    | \$ | 2,190.3  |
| Total | \$<br>11.6 | \$ | 94.4  | \$ | 130.5  | \$  | 654.2     | \$  | 1,660.4   | \$ | 7,124.1           | \$  | 4,840.0         | \$<br>18,863.7      | \$ | 15,264.8 | \$ | 48,643.6 |
| Ann.  | \$<br>1.0  | \$ | 8.1   | \$ | 11.2   | \$  | 56.1      | \$  | 142.5     | \$ | 611.3             | \$  | 415.3           | \$<br>1,618.7       | \$ | 1,309.9  | \$ | 4,174.1  |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f and E.41d.

# Section F.9 Model Outputs - Alternative 2 TTHM as Indicator Bronchitis for Non-Fatal Cases

### Exhibit F.9a Projections of Yearly Benefits, WTP for Bronchitis as Basis for Non-Fatal Cases (Smoking/Lung Cancer Cessation Lag Model)

TTHM - Alternative 2

|       | Sı             | urfa | ce Water Sys        | sten | าร                    | Groun         | d۷ | later Sys          | ten | ns                  |                | All | l Systems           |    |                     |
|-------|----------------|------|---------------------|------|-----------------------|---------------|----|--------------------|-----|---------------------|----------------|-----|---------------------|----|---------------------|
|       |                |      | 90 P<br>Confider    |      |                       |               |    | 90 P<br>Confider   |     | -                   |                |     | 90 P<br>Confide     |    |                     |
| Year  | Mean<br>Value  | (    | Lower<br>5th %tile) | (    | Upper<br>(95th %tile) | Mean<br>Value | (5 | Lower<br>th %tile) | (9  | Upper<br>5th %tile) | Mean<br>Value  | (5  | Lower<br>5th %tile) | (9 | Upper<br>5th %tile) |
| 2005  | \$<br>-        | \$   | -                   | \$   | -                     | \$<br>-       | \$ | -                  | \$  | -                   | \$<br>-        | \$  | -                   | \$ | -                   |
| 2006  | \$<br>-        | \$   | -                   | \$   | -                     | \$<br>-       | \$ | -                  | \$  | -                   | \$<br>-        | \$  | -                   | \$ | -                   |
| 2007  | \$<br>-        | \$   | -                   | \$   | -                     | \$<br>-       | \$ | -                  | \$  | -                   | \$<br>-        | \$  | -                   | \$ | -                   |
| 2008  | \$<br>-        | \$   | -                   | \$   | -                     | \$<br>-       | \$ | -                  | \$  | -                   | \$<br>-        | \$  | -                   | \$ | -                   |
| 2009  | \$<br>-        | \$   | -                   | \$   | -                     | \$<br>-       | \$ | -                  | \$  | -                   | \$<br>-        | \$  | -                   | \$ | -                   |
| 2010  | \$<br>215.5    | \$   | 47.4                | \$   | 473.9                 | \$<br>15.8    | \$ | 3.5                | \$  | 34.7                | \$<br>231.3    | \$  | 50.9                | \$ | 508.5               |
| 2011  | \$<br>574.6    | \$   | 126.4               | \$   | 1,265.5               | \$<br>42.0    | \$ | 9.2                | \$  | 92.6                | \$<br>616.6    | \$  | 135.6               | \$ | 1,358.1             |
| 2012  | \$<br>1,049.2  | \$   | 230.4               | \$   | 2,309.3               | \$<br>76.8    | \$ | 16.9               | \$  | 169.0               | \$<br>1,125.9  | \$  | 247.3               | \$ | 2,478.3             |
| 2013  | \$<br>1,621.7  | \$   | 356.0               | \$   | 3,568.2               | \$<br>118.7   | \$ | 26.1               | \$  | 261.1               | \$<br>1,740.4  | \$  | 382.1               | \$ | 3,829.2             |
| 2014  | \$<br>2,097.0  | \$   | 459.5               | \$   | 4,616.3               | \$<br>158.7   | \$ | 34.8               | \$  | 349.3               | \$<br>2,255.7  | \$  | 494.3               | \$ | 4,965.5             |
| 2015  | \$<br>2,504.0  | \$   | 547.7               | \$   | 5,521.5               | \$<br>195.0   | \$ | 42.7               | \$  | 430.1               | \$<br>2,699.0  | \$  | 590.4               | \$ | 5,951.5             |
| 2016  | \$<br>2,850.8  | \$   | 623.1               | \$   | 6,284.7               | \$<br>226.0   | \$ | 49.4               | \$  | 498.1               | \$<br>3,076.8  | \$  | 672.4               | \$ | 6,782.9             |
| 2017  | \$<br>3,151.4  | \$   | 687.9               | \$   | 6,960.0               | \$<br>252.3   | \$ | 55.1               | \$  | 557.3               | \$<br>3,403.7  | \$  | 743.0               | \$ | 7,517.3             |
| 2018  | \$<br>3,416.9  | \$   | 744.1               | \$   | 7,548.8               | \$<br>275.4   | \$ | 60.0               | \$  | 608.5               | \$<br>3,692.3  | \$  | 804.1               | \$ | 8,157.3             |
| 2019  | \$<br>3,654.5  | \$   | 794.5               | \$   | 8,092.5               | \$<br>296.0   | \$ | 64.4               | \$  | 655.5               | \$<br>3,950.5  | \$  | 858.9               | \$ | 8,747.9             |
| 2020  | \$<br>3,869.6  | \$   | 839.9               | \$   | 8,575.5               | \$<br>314.5   | \$ | 68.3               | \$  | 697.0               | \$<br>4,184.1  | \$  | 908.1               | \$ | 9,272.5             |
| 2021  | \$<br>4,065.9  | \$   | 881.4               | \$   | 9,021.4               | \$<br>331.4   | \$ | 71.8               | \$  | 735.2               | \$<br>4,397.3  | \$  | 953.2               | \$ | 9,756.7             |
| 2022  | \$<br>4,246.5  | \$   | 918.7               | \$   | 9,440.9               | \$<br>346.8   | \$ | 75.0               | \$  | 771.0               | \$<br>4,593.4  | \$  | 993.7               | \$ | 10,212.0            |
| 2023  | \$<br>4,413.9  | \$   | 952.3               | \$   | 9,814.3               | \$<br>361.1   | \$ | 77.9               | \$  | 802.8               | \$<br>4,775.0  | \$  | 1,030.3             | \$ | 10,617.1            |
| 2024  | \$<br>4,570.0  | \$   | 985.2               | \$   | 10,166.3              | \$<br>374.3   | \$ | 80.7               | \$  | 832.8               | \$<br>4,944.3  | \$  | 1,065.9             | \$ | 10,999.1            |
| 2025  | \$<br>4,716.4  | \$   | 1,014.6             | \$   | 10,498.6              | \$<br>386.8   | \$ | 83.2               | \$  | 860.9               | \$<br>5,103.1  | \$  | 1,097.8             | \$ | 11,359.5            |
| 2026  | \$<br>4,854.4  | \$   | 1,042.9             | \$   | 10,809.1              | \$<br>398.5   | \$ | 85.6               | \$  | 887.2               | \$<br>5,252.9  | \$  | 1,128.6             | \$ | 11,696.3            |
| 2027  | \$<br>4,985.3  | \$   | 1,069.3             | \$   | 11,128.3              | \$<br>409.5   | \$ | 87.8               | \$  | 914.1               | \$<br>5,394.8  | \$  | 1,157.1             | \$ | 12,042.4            |
| 2028  | \$<br>5,037.8  | \$   | 1,081.1             | \$   | 11,235.3              | \$<br>414.1   | \$ | 88.9               | \$  | 923.5               | \$<br>5,451.8  | \$  | 1,170.0             | \$ | 12,158.8            |
| 2029  | \$<br>5,141.8  | \$   | 1,102.0             | \$   | 11,487.4              | \$<br>422.9   | \$ | 90.6               | \$  | 944.8               | \$<br>5,564.7  | \$  | 1,192.7             | \$ | 12,432.2            |
| Total | \$<br>67,037.1 | \$   | 14,504.5            | \$   | 148,817.7             | \$<br>5,416.5 | \$ | 1,171.7            | \$  | 12,025.5            | \$<br>72,453.6 | \$  | 15,676.2            | \$ | 160,843.2           |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f, E.41b, and E.41c.

## Exhibit F.9b Present Value of Benefits Yearly Projections, WTP for Bronchitis as Basis for Non-Fatal Cases, Smoking/Lung Cancer Cessation Lag Model

(All Water Systems)

TTHM - Alternative 2

|       |                | 3% | Discount Ra         | ate |                      | 79             | % D | iscount R          | ate |                     |
|-------|----------------|----|---------------------|-----|----------------------|----------------|-----|--------------------|-----|---------------------|
|       |                |    | 90 Pe<br>Confider   |     | -                    |                |     | 90 P<br>Confider   |     |                     |
| Year  | Mean<br>Value  | (! | Lower<br>5th %tile) | (9  | Upper<br>95th %tile) | Mean<br>Value  | (5  | Lower<br>th %tile) | (9  | Upper<br>5th %tile) |
| 2005  | \$<br>-        | \$ | -                   | \$  | -                    | \$<br>-        | \$  | -                  | \$  | -                   |
| 2006  | \$<br>-        | \$ | -                   | \$  | -                    | \$<br>-        | \$  | -                  | \$  | -                   |
| 2007  | \$<br>-        | \$ | -                   | \$  | -                    | \$<br>-        | \$  | -                  | \$  | -                   |
| 2008  | \$<br>-        | \$ | -                   | \$  | -                    | \$<br>-        | \$  | -                  | \$  | -                   |
| 2009  | \$<br>-        | \$ | -                   | \$  | -                    | \$<br>-        | \$  | -                  | \$  | -                   |
| 2010  | \$<br>199.5    | \$ | 43.9                | \$  | 438.7                | \$<br>164.9    | \$  | 36.3               | \$  | 362.6               |
| 2011  | \$<br>516.4    | \$ | 113.6               | \$  | 1,137.4              | \$<br>410.9    | \$  | 90.4               | \$  | 905.0               |
| 2012  | \$<br>915.5    | \$ | 201.1               | \$  | 2,015.1              | \$<br>701.2    | \$  | 154.0              | \$  | 1,543.3             |
| 2013  | \$<br>1,373.9  | \$ | 301.6               | \$  | 3,022.8              | \$<br>1,012.9  | \$  | 222.4              | \$  | 2,228.6             |
| 2014  | \$<br>1,728.8  | \$ | 378.8               | \$  | 3,805.7              | \$<br>1,226.9  | \$  | 268.9              | \$  | 2,700.9             |
| 2015  | \$<br>2,008.3  | \$ | 439.3               | \$  | 4,428.5              | \$<br>1,372.1  | \$  | 300.1              | \$  | 3,025.5             |
| 2016  | \$<br>2,222.8  | \$ | 485.8               | \$  | 4,900.1              | \$<br>1,461.8  | \$  | 319.5              | \$  | 3,222.5             |
| 2017  | \$<br>2,387.3  | \$ | 521.1               | \$  | 5,272.5              | \$<br>1,511.3  | \$  | 329.9              | \$  | 3,337.8             |
| 2018  | \$<br>2,514.3  | \$ | 547.5               | \$  | 5,554.7              | \$<br>1,532.2  | \$  | 333.7              | \$  | 3,385.0             |
| 2019  | \$<br>2,611.7  | \$ | 567.8               | \$  | 5,783.4              | \$<br>1,532.1  | \$  | 333.1              | \$  | 3,392.6             |
| 2020  | \$<br>2,685.6  | \$ | 582.9               | \$  | 5,951.7              | \$<br>1,516.5  | \$  | 329.2              | \$  | 3,360.8             |
| 2021  | \$<br>2,740.2  | \$ | 594.0               | \$  | 6,080.0              | \$<br>1,489.5  | \$  | 322.9              | \$  | 3,304.9             |
| 2022  | \$<br>2,779.1  | \$ | 601.2               | \$  | 6,178.4              | \$<br>1,454.1  | \$  | 314.6              | \$  | 3,232.8             |
| 2023  | \$<br>2,804.8  | \$ | 605.2               | \$  | 6,236.4              | \$<br>1,412.7  | \$  | 304.8              | \$  | 3,141.2             |
| 2024  | \$<br>2,819.7  | \$ | 607.9               | \$  | 6,272.6              | \$<br>1,367.1  | \$  | 294.7              | \$  | 3,041.3             |
| 2025  | \$<br>2,825.5  | \$ | 607.8               | \$  | 6,289.5              | \$<br>1,318.7  | \$  | 283.7              | \$  | 2,935.5             |
| 2026  | \$<br>2,823.7  | \$ | 606.7               | \$  | 6,287.3              | \$<br>1,268.6  | \$  | 272.6              | \$  | 2,824.8             |
| 2027  | \$<br>2,815.5  | \$ | 603.9               | \$  | 6,284.8              | \$<br>1,217.7  | \$  | 261.2              | \$  | 2,718.1             |
| 2028  | \$<br>2,762.4  | \$ | 592.8               | \$  | 6,160.8              | \$<br>1,150.1  | \$  | 246.8              | \$  | 2,564.9             |
| 2029  | \$<br>2,737.4  | \$ | 586.7               | \$  | 6,115.8              | \$<br>1,097.1  | \$  | 235.1              | \$  | 2,451.0             |
| Total | \$<br>44,272.4 | \$ | 9,589.6             | \$  | 98,216.2             | \$<br>24,218.4 | \$  | 5,253.7            | \$  | 53,679.2            |
| Ann.  | \$<br>2,542.5  | \$ | 550.7               | \$  | 5,640.4              | \$<br>2,078.2  | \$  | 450.8              | \$  | 4,606.2             |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibit F.9a.

#### Exhibit F.9c Mean Present Value of Benefits Yearly Projections, WTP for Bronchitis as Basis for Non-Fatal Cases, at 3% Discount Rate, by System Size (All Systems)

TTHM - Alternative 2

|       |    |      |    |       |    | ,     | Sm  | oking/L   | un  | g Canc   | er ( | Cessatio   | n L | ag Mod            | lek |                     |            |          |                |
|-------|----|------|----|-------|----|-------|-----|-----------|-----|----------|------|------------|-----|-------------------|-----|---------------------|------------|----------|----------------|
| Year  | ٧  | 100  | 10 | 0-499 | 50 | 0-999 | 1,0 | 000-3,299 | 3,3 | 00-9,999 | 10,0 | 000-49,999 |     | 50,000-<br>99,999 |     | 100,000-<br>999,999 | <u>≥</u> 1 | ,000,000 | Total          |
| 2005  | \$ | _    | \$ | _     | \$ | _     | \$  | -         | \$  | -        | \$   | -          | \$  | -                 | \$  | _                   | \$         | -        | \$<br>-        |
| 2006  | \$ | _    | \$ | _     | \$ | -     | \$  | -         | \$  | _        | \$   | -          | \$  | _                 | \$  | _                   | \$         | _        | \$<br>-        |
| 2007  | \$ | -    | \$ | -     | \$ | -     | \$  | -         | \$  | -        | \$   | -          | \$  | -                 | \$  | -                   | \$         | -        | \$<br>-        |
| 2008  | \$ | -    | \$ | -     | \$ | -     | \$  | -         | \$  | -        | \$   | -          | \$  | -                 | \$  | -                   | \$         | -        | \$<br>-        |
| 2009  | \$ | -    | \$ | -     | \$ | -     | \$  | -         | \$  | -        | \$   | -          | \$  | -                 | \$  | -                   | \$         | -        | \$<br>-        |
| 2010  | \$ | 0.0  | \$ | 0.3   | \$ | 0.4   | \$  | 2.0       | \$  | 5.0      | \$   | 24.3       | \$  | 19.2              | \$  | 82.0                | \$         | 66.3     | \$<br>199.5    |
| 2011  | \$ | 0.1  | \$ | 0.7   | \$ | 1.0   | \$  | 5.1       | \$  | 13.0     | \$   | 62.8       | \$  | 49.7              | \$  | 212.2               | \$         | 171.7    | \$<br>516.4    |
| 2012  | \$ | 0.2  | \$ | 1.3   | \$ | 1.8   | \$  | 9.1       | \$  | 23.1     | \$   | 111.4      | \$  | 88.1              | \$  | 376.1               | \$         | 304.4    | \$<br>915.5    |
| 2013  | \$ | 0.2  | \$ | 2.0   | \$ | 2.7   | \$  | 13.6      | \$  | 34.6     | \$   | 167.2      | \$  | 132.2             | \$  | 564.5               | \$         | 456.8    | \$<br>1,373.9  |
| 2014  | \$ | 0.3  | \$ | 2.7   | \$ | 3.7   | \$  | 18.6      | \$  | 47.3     | \$   | 228.2      | \$  | 171.6             | \$  | 694.4               | \$         | 561.9    | \$<br>1,728.8  |
| 2015  | \$ | 0.4  | \$ | 3.5   | \$ | 4.8   | \$  | 23.9      | \$  | 60.7     | \$   | 281.9      | \$  | 199.9             | \$  | 792.2               | \$         | 641.1    | \$<br>2,008.3  |
| 2016  | \$ | 0.5  | \$ | 4.1   | \$ | 5.7   | \$  | 28.5      | \$  | 72.4     | \$   | 320.8      | \$  | 221.5             | \$  | 867.4               | \$         | 701.9    | \$<br>2,222.8  |
| 2017  | \$ | 0.6  | \$ | 4.6   | \$ | 6.4   | \$  | 31.9      | \$  | 80.9     | \$   | 350.5      | \$  | 238.1             | \$  | 925.5               | \$         | 749.0    | \$<br>2,387.3  |
| 2018  | \$ | 0.6  | \$ | 5.0   | \$ | 6.9   | \$  | 34.4      | \$  | 87.4     | \$   | 373.3      | \$  | 250.9             | \$  | 970.5               | \$         | 785.3    | \$<br>2,514.3  |
| 2019  | \$ | 0.6  | \$ | 5.3   | \$ | 7.3   | \$  | 36.4      | \$  | 92.4     | \$   | 390.9      | \$  | 260.8             | \$  | 1,005.0             | \$         | 813.2    | \$<br>2,611.7  |
| 2020  | \$ | 0.7  | \$ | 5.5   | \$ | 7.6   | \$  | 37.9      | \$  | 96.2     | \$   | 404.3      | \$  | 268.2             | \$  | 1,031.0             | \$         | 834.3    | \$<br>2,685.6  |
| 2021  | \$ | 0.7  | \$ | 5.6   | \$ | 7.8   | \$  | 39.0      | \$  | 99.1     | \$   | 414.4      | \$  | 273.8             | \$  | 1,050.1             | \$         | 849.8    | \$<br>2,740.2  |
| 2022  | \$ | 0.7  | \$ | 5.8   | \$ | 8.0   | \$  | 39.9      | \$  | 101.2    | \$   | 421.7      | \$  | 277.7             | \$  | 1,063.5             | \$         | 860.6    | \$<br>2,779.1  |
| 2023  | \$ | 0.7  | \$ | 5.8   | \$ | 8.1   | \$  | 40.5      | \$  | 102.8    | \$   | 426.8      | \$  | 280.4             | \$  | 1,072.1             | \$         | 867.6    | \$<br>2,804.8  |
| 2024  | \$ | 0.7  | \$ | 5.9   | \$ | 8.2   | \$  | 40.9      | \$  | 103.8    | \$   | 430.1      | \$  | 281.9             | \$  | 1,076.9             | \$         | 871.4    | \$<br>2,819.7  |
| 2025  | \$ | 0.7  | \$ | 5.9   | \$ | 8.2   | \$  | 41.1      | \$  | 104.4    | \$   | 431.7      | \$  | 282.5             | \$  | 1,078.3             | \$         | 872.5    | \$<br>2,825.5  |
| 2026  | \$ | 0.7  | \$ | 6.0   | \$ | 8.2   | \$  | 41.2      | \$  | 104.7    | \$   | 432.1      | \$  | 282.4             | \$  | 1,076.9             | \$         | 871.5    | \$<br>2,823.7  |
| 2027  | \$ | 0.7  | \$ | 6.0   | \$ | 8.2   | \$  | 41.2      | \$  | 104.6    | \$   | 431.4      | \$  | 281.6             | \$  | 1,073.2             | \$         | 868.5    | \$<br>2,815.5  |
| 2028  | \$ | 0.7  | \$ | 5.9   | \$ | 8.1   | \$  | 40.5      | \$  | 102.9    | \$   | 423.8      | \$  | 276.3             | \$  | 1,052.5             | \$         | 851.7    | \$<br>2,762.4  |
| 2029  | \$ | 0.7  | \$ | 5.8   | \$ | 8.0   | \$  | 40.3      | \$  | 102.2    | \$   | 420.3      | \$  | 273.8             | \$  | 1,042.6             | \$         | 843.7    | \$<br>2,737.4  |
| Total | \$ | 10.7 | \$ | 87.5  | \$ | 121.0 | \$  | 606.2     | \$  | 1,538.5  | \$   | 6,547.9    | \$  | 4,410.6           | \$  | 17,106.9            | \$         | 13,843.1 | \$<br>44,272.4 |
| Ann.  | \$ | 0.6  | \$ | 5.0   | \$ | 6.9   | \$  | 34.8      | \$  | 88.4     | \$   | 376.0      | \$  | 253.3             | \$  | 982.4               | \$         | 795.0    | \$<br>2,542.5  |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f and E.41d.

## Exhibit F.9d Mean Present Value of Benefits Yearly Projections, WTP for Bronchitis as Basis for Non-Fatal Cases, at 7% Discount Rate, by System Size (All Systems)

**TTHM - Alternative 2** 

|       |    |     |    |       |    | S      | mo  | king/Lu   | ng ( | Cancer   | Ce | essation   | La | g Mode            | ŀ  |                     |          |          |                |
|-------|----|-----|----|-------|----|--------|-----|-----------|------|----------|----|------------|----|-------------------|----|---------------------|----------|----------|----------------|
| Voor  | _  | 100 | 10 | 0-499 | 50 | 00-999 | 1 ( | 000-3,299 | 2 2( | n_a aaa  | 10 | 000-49,999 |    | 50,000-<br>99,999 |    | 100,000-<br>999,999 | <b>\</b> | ,000,000 | Total          |
| Year  |    |     |    |       |    |        |     |           |      | 30-3,333 |    |            |    |                   |    | •                   | F        |          | Total          |
| 2005  | \$ | -   | \$ | -     | \$ | -      | \$  | -         | \$   | -        | \$ | -          | \$ | -                 | \$ | -                   | \$       | -        | \$<br>-        |
| 2006  | \$ | -   | \$ | -     | \$ | -      | \$  | -         | \$   | -        | \$ | -          | \$ | -                 | \$ | -                   | \$       | -        | \$<br>-        |
| 2007  | \$ | -   | \$ | -     | \$ | -      | \$  | -         | \$   | -        | \$ | -          | \$ | -                 | \$ | -                   | \$       | -        | \$<br>-        |
| 2008  | \$ | -   | \$ | -     | \$ | -      | \$  | -         | \$   | -        | \$ | -          | \$ | -                 | \$ | -                   | \$       | -        | \$<br>-        |
| 2009  | \$ | -   | \$ | -     | \$ | -      | \$  | -         | \$   | -        | \$ | -          | \$ | -                 | \$ | -                   | \$       | -        | \$<br>-        |
| 2010  | \$ | 0.0 | \$ | 0.2   | \$ | 0.3    | \$  | 1.6       | \$   | 4.2      | \$ | 20.1       | \$ | 15.9              | \$ | 67.7                | \$       | 54.8     | \$<br>164.9    |
| 2011  | \$ | 0.1 | \$ | 0.6   | \$ | 8.0    | \$  | 4.1       | \$   | 10.4     | \$ | 50.0       | \$ | 39.5              | \$ | 168.8               | \$       | 136.6    | \$<br>410.9    |
| 2012  | \$ | 0.1 | \$ | 1.0   | \$ | 1.4    | \$  | 7.0       | \$   | 17.7     | \$ | 85.3       | \$ | 67.5              | \$ | 288.1               | \$       | 233.1    | \$<br>701.2    |
| 2013  | \$ | 0.2 | \$ | 1.5   | \$ | 2.0    | \$  | 10.1      | \$   | 25.5     | \$ | 123.3      | \$ | 97.5              | \$ | 416.2               | \$       | 336.8    | \$<br>1,012.9  |
| 2014  | \$ | 0.2 | \$ | 1.9   | \$ | 2.6    | \$  | 13.2      | \$   | 33.6     | \$ | 162.0      | \$ | 121.8             | \$ | 492.8               | \$       | 398.8    | \$<br>1,226.9  |
| 2015  | \$ | 0.3 | \$ | 2.4   | \$ | 3.3    | \$  | 16.3      | \$   | 41.5     | \$ | 192.6      | \$ | 136.6             | \$ | 541.2               | \$       | 438.0    | \$<br>1,372.1  |
| 2016  | \$ | 0.3 | \$ | 2.7   | \$ | 3.7    | \$  | 18.8      | \$   | 47.6     | \$ | 211.0      | \$ | 145.6             | \$ | 570.4               | \$       | 461.6    | \$<br>1,461.8  |
| 2017  | \$ | 0.4 | \$ | 2.9   | \$ | 4.0    | \$  | 20.2      | \$   | 51.2     | \$ | 221.9      | \$ | 150.7             | \$ | 585.9               | \$       | 474.1    | \$<br>1,511.3  |
| 2018  | \$ | 0.4 | \$ | 3.0   | \$ | 4.2    | \$  | 21.0      | \$   | 53.2     | \$ | 227.5      | \$ | 152.9             | \$ | 591.4               | \$       | 478.6    | \$<br>1,532.2  |
| 2019  | \$ | 0.4 | \$ | 3.1   | \$ | 4.3    | \$  | 21.3      | \$   | 54.2     | \$ | 229.3      | \$ | 153.0             | \$ | 589.5               | \$       | 477.1    | \$<br>1,532.1  |
| 2020  | \$ | 0.4 | \$ | 3.1   | \$ | 4.3    | \$  | 21.4      | \$   | 54.3     | \$ | 228.3      | \$ | 151.5             | \$ | 582.2               | \$       | 471.1    | \$<br>1,516.5  |
| 2021  | \$ | 0.4 | \$ | 3.1   | \$ | 4.2    | \$  | 21.2      | \$   | 53.9     | \$ | 225.2      | \$ | 148.8             | \$ | 570.8               | \$       | 461.9    | \$<br>1,489.5  |
| 2022  | \$ | 0.4 | \$ | 3.0   | \$ | 4.2    | \$  | 20.9      | \$   | 53.0     | \$ | 220.7      | \$ | 145.3             | \$ | 556.5               | \$       | 450.3    | \$<br>1,454.1  |
| 2023  | \$ | 0.4 | \$ | 2.9   | \$ | 4.1    | \$  | 20.4      | \$   | 51.8     | \$ | 215.0      | \$ | 141.2             | \$ | 540.0               | \$       | 437.0    | \$<br>1,412.7  |
| 2024  | \$ | 0.4 | \$ | 2.9   | \$ | 4.0    | \$  | 19.8      | \$   | 50.3     | \$ | 208.5      | \$ | 136.7             | \$ | 522.1               | \$       | 422.5    | \$<br>1,367.1  |
| 2025  | \$ | 0.3 | \$ | 2.8   | \$ | 3.8    | \$  | 19.2      | \$   | 48.7     | \$ | 201.5      | \$ | 131.9             | \$ | 503.3               | \$       | 407.2    | \$<br>1,318.7  |
| 2026  | \$ | 0.3 | \$ | 2.7   | \$ | 3.7    | \$  | 18.5      | \$   | 47.0     | \$ | 194.2      | \$ | 126.9             | \$ | 483.8               | \$       | 391.5    | \$<br>1,268.6  |
| 2027  | \$ | 0.3 | \$ | 2.6   | \$ | 3.6    | \$  | 17.8      | \$   | 45.3     | \$ | 186.6      | \$ | 121.8             | \$ | 464.2               | \$       | 375.6    | \$<br>1,217.7  |
| 2028  | \$ | 0.3 | \$ | 2.4   | \$ | 3.4    | \$  | 16.9      | \$   | 42.8     | \$ | 176.4      | \$ | 115.0             | \$ | 438.2               | \$       | 354.6    | \$<br>1,150.1  |
| 2029  | \$ | 0.3 | \$ | 2.3   | \$ | 3.2    | \$  | 16.1      | \$   | 40.9     | \$ | 168.5      | \$ | 109.7             | \$ | 417.8               | \$       | 338.1    | \$<br>1,097.1  |
| Total | \$ | 5.8 | \$ | 47.0  | \$ | 65.0   | \$  | 325.8     | \$   | 827.0    | \$ | 3,547.6    | \$ | 2,409.7           | \$ | 9,391.0             | \$       | 7,599.3  | \$<br>24,218.4 |
| Ann.  | \$ | 0.5 | \$ | 4.0   | \$ | 5.6    | \$  | 28.0      | \$   | 71.0     | \$ | 304.4      | \$ | 206.8             | \$ | 805.8               | \$       | 652.1    | 2,078.2        |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f and E.41d.

# Section F.10 Model Outputs - Alternative 3 TTHM as Indicator Lymphoma for Non-Fatal Cases

### Exhibit F.10a Projections of Yearly Benefits, WTP for Lymphoma as Basis for Non-Fatal Cases (Smoking/Lung Cancer Cessation Lag Model)

**TTHM - Alternative 3** 

|       | Surf            | ace | Water Sy           | stem          | s                    | Grou           | nd | Water Sy           | ste | ms                  |                 | All | Systems             |    |                     |
|-------|-----------------|-----|--------------------|---------------|----------------------|----------------|----|--------------------|-----|---------------------|-----------------|-----|---------------------|----|---------------------|
|       |                 |     | 90<br>Confid       | Perce<br>ence |                      |                |    | 90 P               |     |                     |                 |     | 90 P                |    |                     |
| Year  | Mean<br>Value   | (5  | Lower<br>th %tile) | (9            | Upper<br>95th %tile) | Mean<br>Value  | (5 | Lower<br>th %tile) | (9  | Upper<br>5th %tile) | Mean<br>Value   | (5  | Lower<br>ith %tile) | (9 | Upper<br>5th %tile) |
| 2005  | \$<br>-         | \$  | -                  | \$            | -                    | \$<br>-        | \$ | -                  | \$  |                     | \$<br>-         | \$  | -                   | \$ | -                   |
| 2006  | \$<br>-         | \$  | -                  | \$            | -                    | \$<br>-        | \$ | -                  | \$  | -                   | \$<br>-         | \$  | -                   | \$ | -                   |
| 2007  | \$<br>-         | \$  | -                  | \$            | -                    | \$<br>-        | \$ | -                  | \$  | -                   | \$<br>-         | \$  | -                   | \$ | -                   |
| 2008  | \$<br>-         | \$  | -                  | \$            | -                    | \$<br>-        | \$ | -                  | \$  | -                   | \$<br>-         | \$  | -                   | \$ | -                   |
| 2009  | \$<br>-         | \$  | -                  | \$            | -                    | \$<br>-        | \$ | -                  | \$  | -                   | \$<br>-         | \$  | -                   | \$ | -                   |
| 2010  | \$<br>593.6     | \$  | 90.9               | \$            | 1,364.6              | \$<br>50.6     | \$ | 7.7                | \$  | 116.3               | \$<br>644.2     | \$  | 98.6                | \$ | 1,480.9             |
| 2011  | \$<br>1,580.9   | \$  | 242.1              | \$            | 3,636.1              | \$<br>134.7    | \$ | 20.6               | \$  | 309.9               | \$<br>1,715.6   | \$  | 262.7               | \$ | 3,946.1             |
| 2012  | \$<br>2,883.9   | \$  | 441.3              | \$            | 6,625.0              | \$<br>245.8    | \$ | 37.6               | \$  | 564.7               | \$<br>3,129.7   | \$  | 478.9               | \$ | 7,189.7             |
| 2013  | \$<br>4,453.6   | \$  | 681.7              | \$            | 10,229.8             | \$<br>379.6    | \$ | 58.1               | \$  | 871.9               | \$<br>4,833.3   | \$  | 739.8               | \$ | 11,101.7            |
| 2014  | \$<br>5,753.3   | \$  | 879.5              | \$            | 13,225.5             | \$<br>505.1    | \$ | 77.2               | \$  | 1,161.1             | \$<br>6,258.4   | \$  | 956.8               | \$ | 14,386.7            |
| 2015  | \$<br>6,863.5   | \$  | 1,049.5            | \$            | 15,784.8             | \$<br>616.6    | \$ | 94.3               | \$  | 1,418.2             | \$<br>7,480.2   | \$  | 1,143.8             | \$ | 17,203.0            |
| 2016  | \$<br>7,807.3   | \$  | 1,192.7            | \$            | 17,954.6             | \$<br>710.0    | \$ | 108.5              | \$  | 1,632.8             | \$<br>8,517.3   | \$  | 1,301.1             | \$ | 19,587.4            |
| 2017  | \$<br>8,622.9   | \$  | 1,316.7            | \$            | 19,849.1             | \$<br>789.9    | \$ | 120.6              | \$  | 1,818.3             | \$<br>9,412.8   | \$  | 1,437.3             | \$ | 21,667.4            |
| 2018  | \$<br>9,341.2   | \$  | 1,424.3            | \$            | 21,520.5             | \$<br>859.9    | \$ | 131.1              | \$  | 1,981.1             | \$<br>10,201.2  | \$  | 1,555.5             | \$ | 23,501.6            |
| 2019  | \$<br>9,982.3   | \$  | 1,520.6            | \$            | 23,036.3             | \$<br>922.1    | \$ | 140.5              | \$  | 2,128.0             | \$<br>10,904.5  | \$  | 1,661.1             | \$ | 25,164.3            |
| 2020  | \$<br>10,560.7  | \$  | 1,608.1            | \$            | 24,381.9             | \$<br>978.1    | \$ | 148.9              | \$  | 2,258.1             | \$<br>11,538.8  | \$  | 1,757.0             | \$ | 26,640.0            |
| 2021  | \$<br>11,087.1  | \$  | 1,686.3            | \$            | 25,598.8             | \$<br>1,028.8  | \$ | 156.5              | \$  | 2,375.4             | \$<br>12,115.9  | \$  | 1,842.7             | \$ | 27,974.3            |
| 2022  | \$<br>11,569.7  | \$  | 1,759.3            | \$            | 26,758.2             | \$<br>1,075.3  | \$ | 163.5              | \$  | 2,486.8             | \$<br>12,644.9  | \$  | 1,922.8             | \$ | 29,245.1            |
| 2023  | \$<br>12,015.2  | \$  | 1,827.4            | \$            | 27,795.7             | \$<br>1,118.0  | \$ | 170.0              | \$  | 2,586.4             | \$<br>13,133.3  | \$  | 1,997.5             | \$ | 30,382.1            |
| 2024  | \$<br>12,429.3  | \$  | 1,889.4            | \$            | 28,764.4             | \$<br>1,157.7  | \$ | 176.0              | \$  | 2,679.2             | \$<br>13,587.0  | \$  | 2,065.4             | \$ | 31,443.6            |
| 2025  | \$<br>12,816.1  | \$  | 1,945.4            | \$            | 29,661.5             | \$<br>1,194.7  | \$ | 181.3              | \$  | 2,765.1             | \$<br>14,010.9  | \$  | 2,126.7             | \$ | 32,426.6            |
| 2026  | \$<br>13,179.6  | \$  | 1,997.8            | \$            | 30,529.1             | \$<br>1,229.4  | \$ | 186.4              | \$  | 2,847.9             | \$<br>14,409.1  | \$  | 2,184.2             | \$ | 33,377.0            |
| 2027  | \$<br>13,522.9  | \$  | 2,047.5            | \$            | 31,372.5             | \$<br>1,262.2  | \$ | 191.1              | \$  | 2,928.2             | \$<br>14,785.1  | \$  | 2,238.6             | \$ | 34,300.7            |
| 2028  | \$<br>13,669.2  | \$  | 2,071.5            | \$            | 31,694.2             | \$<br>1,276.5  | \$ | 193.4              | \$  | 2,959.7             | \$<br>14,945.7  | \$  | 2,264.9             | \$ | 34,653.9            |
| 2029  | \$<br>13,942.1  | \$  | 2,109.9            | \$            | 32,357.6             | \$<br>1,302.5  | \$ | 197.1              | \$  | 3,022.9             | \$<br>15,244.6  | \$  | 2,307.0             | \$ | 35,380.4            |
| Total | \$<br>182,674.6 | \$  | 27,781.9           | \$            | 422,140.2            | \$<br>16,837.6 | \$ | 2,560.6            | \$  | 38,912.0            | \$<br>199,512.2 | \$  | 30,342.5            | \$ | 461,052.1           |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f, E.42b, and E.42c.

## Exhibit F.10b Present Value of Benefits Yearly Projections, WTP for Lymphoma as Basis for Non-Fatal Cases, Smoking/Lung Cancer Cessation Lag Model

(All Water Systems)

TTHM - Alternative 3

|       | ernative 3      | 6 D | iscount Ra          | ate |                      | 7%             | ₀ Di | iscount R          | ate |                      |
|-------|-----------------|-----|---------------------|-----|----------------------|----------------|------|--------------------|-----|----------------------|
|       |                 |     | 90 Po               |     | -                    |                |      | 90 P<br>Confide    |     | -                    |
| Year  | Mean<br>Value   | (5  | Lower<br>5th %tile) | (9  | Upper<br>95th %tile) | Mean<br>Value  | (5   | Lower<br>th %tile) | (9  | Upper<br>95th %tile) |
| 2005  | \$<br>-         | \$  | -                   | \$  | -                    | \$<br>-        | \$   | -                  | \$  | -                    |
| 2006  | \$<br>-         | \$  | -                   | \$  | -                    | \$<br>-        | \$   | -                  | \$  | -                    |
| 2007  | \$<br>-         | \$  | -                   | \$  | -                    | \$<br>-        | \$   | -                  | \$  | -                    |
| 2008  | \$<br>-         | \$  | -                   | \$  | -                    | \$<br>-        | \$   | -                  | \$  | -                    |
| 2009  | \$<br>-         | \$  | -                   | \$  | -                    | \$<br>-        | \$   | -                  | \$  | -                    |
| 2010  | \$<br>555.7     | \$  | 85.1                | \$  | 1,277.4              | \$<br>459.3    | \$   | 70.3               | \$  | 1,055.8              |
| 2011  | \$<br>1,436.8   | \$  | 220.0               | \$  | 3,304.8              | \$<br>1,143.2  | \$   | 175.0              | \$  | 2,629.4              |
| 2012  | \$<br>2,544.7   | \$  | 389.4               | \$  | 5,845.9              | \$<br>1,949.0  | \$   | 298.3              | \$  | 4,477.4              |
| 2013  | \$<br>3,815.4   | \$  | 584.0               | \$  | 8,763.8              | \$<br>2,813.0  | \$   | 430.6              | \$  | 6,461.3              |
| 2014  | \$<br>4,796.5   | \$  | 733.3               | \$  | 11,026.2             | \$<br>3,404.1  | \$   | 520.4              | \$  | 7,825.4              |
| 2015  | \$<br>5,565.9   | \$  | 851.1               | \$  | 12,800.7             | \$<br>3,802.5  | \$   | 581.5              | \$  | 8,745.1              |
| 2016  | \$<br>6,153.1   | \$  | 940.0               | \$  | 14,150.4             | \$<br>4,046.5  | \$   | 618.2              | \$  | 9,305.8              |
| 2017  | \$<br>6,602.0   | \$  | 1,008.1             | \$  | 15,197.0             | \$<br>4,179.4  | \$   | 638.2              | \$  | 9,620.6              |
| 2018  | \$<br>6,946.5   | \$  | 1,059.2             | \$  | 16,003.4             | \$<br>4,233.1  | \$   | 645.5              | \$  | 9,752.3              |
| 2019  | \$<br>7,209.1   | \$  | 1,098.2             | \$  | 16,636.5             | \$<br>4,228.9  | \$   | 644.2              | \$  | 9,759.1              |
| 2020  | \$<br>7,406.3   | \$  | 1,127.7             | \$  | 17,099.2             | \$<br>4,182.2  | \$   | 636.8              | \$  | 9,655.6              |
| 2021  | \$<br>7,550.2   | \$  | 1,148.3             | \$  | 17,432.6             | \$<br>4,104.1  | \$   | 624.2              | \$  | 9,475.9              |
| 2022  | \$<br>7,650.4   | \$  | 1,163.3             | \$  | 17,693.7             | \$<br>4,003.1  | \$   | 608.7              | \$  | 9,258.2              |
| 2023  | \$<br>7,714.4   | \$  | 1,173.3             | \$  | 17,846.3             | \$<br>3,885.7  | \$   | 591.0              | \$  | 8,989.0              |
| 2024  | \$<br>7,748.5   | \$  | 1,177.9             | \$  | 17,931.9             | \$<br>3,756.9  | \$   | 571.1              | \$  | 8,694.4              |
| 2025  | \$<br>7,757.5   | \$  | 1,177.5             | \$  | 17,953.8             | \$<br>3,620.7  | \$   | 549.6              | \$  | 8,379.6              |
| 2026  | \$<br>7,745.6   | \$  | 1,174.1             | \$  | 17,941.8             | \$<br>3,480.0  | \$   | 527.5              | \$  | 8,061.0              |
| 2027  | \$<br>7,716.2   | \$  | 1,168.3             | \$  | 17,901.3             | \$<br>3,337.2  | \$   | 505.3              | \$  | 7,742.1              |
| 2028  | \$<br>7,572.9   | \$  | 1,147.6             | \$  | 17,558.8             | \$<br>3,152.7  | \$   | 477.8              | \$  | 7,310.1              |
| 2029  | \$<br>7,499.3   | \$  | 1,134.9             | \$  | 17,404.8             | \$<br>3,005.4  | \$   | 454.8              | \$  | 6,975.1              |
| Total | \$<br>121,987.0 | \$  | 18,561.3            | \$  | 281,770.3            | \$<br>66,787.0 | \$   | 10,168.8           | \$  | 154,173.3            |
| Ann.  | \$<br>7,005.5   | \$  | 1,065.9             | \$  | 16,181.5             | \$<br>5,731.0  | \$   | 872.6              | \$  | 13,229.7             |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibit F.10a.

#### Exhibit F.10c Mean Present Value of Benefits Yearly Projections, WTP for Lymphoma as Basis for Non-Fatal Cases, at 3% Discount Rate, by System Size (All Systems)

**TTHM - Alternative 3** 

|       |    |      |    |       |    |       | Sm  | oking/L   | un  | g Canc   | er ( | Cessatio   | n L | ag Mod           | let |                     |            |           |     |          |
|-------|----|------|----|-------|----|-------|-----|-----------|-----|----------|------|------------|-----|------------------|-----|---------------------|------------|-----------|-----|----------|
| Year  | ٧  | 100  | 10 | 0-499 | 50 | 0-999 | 1,0 | 000-3,299 | 3,3 | 00-9,999 | 10,  | 000-49,999 |     | 0,000-<br>99,999 |     | 100,000-<br>999,999 | <u>≥</u> 1 | 1,000,000 |     | Total    |
| 2005  | \$ | -    | \$ | -     | \$ | -     | \$  | -         | \$  | -        | \$   | -          | \$  | -                | \$  | -                   | \$         | -         | \$  | -        |
| 2006  | \$ | -    | \$ | -     | \$ | -     | \$  | -         | \$  | -        | \$   | -          | \$  | -                | \$  | -                   | \$         | -         | \$  | -        |
| 2007  | \$ | -    | \$ | -     | \$ | -     | \$  | -         | \$  | -        | \$   | -          | \$  | -                | \$  | -                   | \$         | -         | \$  | -        |
| 2008  | \$ | -    | \$ | -     | \$ | -     | \$  | -         | \$  | -        | \$   | -          | \$  | -                | \$  | -                   | \$         | -         | \$  | -        |
| 2009  | \$ | -    | \$ | -     | \$ | -     | \$  | -         | \$  | -        | \$   | -          | \$  | -                | \$  | -                   | \$         | -         | \$  | -        |
| 2010  | \$ | 0.1  | \$ | 0.6   | \$ | 0.9   | \$  | 4.8       | \$  | 12.8     | \$   | 69.9       | \$  | 54.2             | \$  | 229.2               | \$         | 183.3     | \$  | 555.7    |
| 2011  | \$ | 0.2  | \$ | 1.5   | \$ | 2.2   | \$  | 12.4      | \$  | 33.1     | \$   | 180.7      | \$  | 140.0            | \$  | 592.8               | \$         | 473.9     | \$  | 1,436.8  |
| 2012  | \$ | 0.3  | \$ | 2.7   | \$ | 4.0   | \$  | 22.0      | \$  | 58.7     | \$   | 320.0      | \$  | 248.0            | \$  | 1,049.8             | \$         | 839.2     | \$  | 2,544.7  |
| 2013  | \$ | 0.5  | \$ | 4.0   | \$ | 6.0   | \$  | 33.0      | \$  | 88.0     | \$   | 479.8      | \$  | 371.8            | \$  | 1,574.1             | \$         | 1,258.3   | \$  | 3,815.4  |
| 2014  | \$ | 0.6  | \$ | 5.4   | \$ | 8.1   | \$  | 44.9      | \$  | 120.0    | \$   | 654.3      | \$  | 482.0            | \$  | 1,934.5             | \$         | 1,546.5   | \$  | 4,796.5  |
| 2015  | \$ | 8.0  | \$ | 7.0   | \$ | 10.4  | \$  | 57.6      | \$  | 153.9    | \$   | 807.6      | \$  | 561.0            | \$  | 2,204.9             | \$         | 1,762.6   | \$  | 5,565.9  |
| 2016  | \$ | 1.0  | \$ | 8.3   | \$ | 12.4  | \$  | 68.7      | \$  | 183.4    | \$   | 918.2      | \$  | 620.9            | \$  | 2,412.0             | \$         | 1,928.2   | \$  | 6,153.1  |
| 2017  | \$ | 1.1  | \$ | 9.3   | \$ | 13.9  | \$  | 76.7      | \$  | 204.8    | \$   | 1,002.1    | \$  | 666.9            | \$  | 2,571.5             | \$         | 2,055.7   | \$  | 6,602.0  |
| 2018  | \$ | 1.2  | \$ | 10.0  | \$ | 15.0  | \$  | 82.8      | \$  | 221.1    | \$   | 1,066.5    | \$  | 702.2            | \$  | 2,694.1             | \$         | 2,153.7   | \$  | 6,946.5  |
| 2019  | \$ | 1.3  | \$ | 10.6  | \$ | 15.8  | \$  | 87.4      | \$  | 233.5    | \$   | 1,115.7    | \$  | 729.2            | \$  | 2,787.4             | \$         | 2,228.3   | \$  | 7,209.1  |
| 2020  | \$ | 1.3  | \$ | 11.0  | \$ | 16.5  | \$  | 90.9      | \$  | 242.9    | \$   | 1,153.0    | \$  | 749.5            | \$  | 2,857.1             | \$         | 2,284.0   | \$  | 7,406.3  |
| 2021  | \$ | 1.3  | \$ | 11.3  | \$ | 17.0  | \$  | 93.6      | \$  | 250.0    | \$   | 1,180.7    | \$  | 764.3            | \$  | 2,907.6             | \$         | 2,324.4   | \$  | 7,550.2  |
| 2022  | \$ | 1.4  | \$ | 11.6  | \$ | 17.3  | \$  | 95.5      | \$  | 255.2    | \$   | 1,200.6    | \$  | 774.7            | \$  | 2,942.1             | \$         | 2,352.0   | \$  | 7,650.4  |
| 2023  | \$ | 1.4  | \$ | 11.7  | \$ | 17.6  | \$  | 96.9      | \$  | 258.8    | \$   | 1,214.1    | \$  | 781.3            | \$  | 2,963.5             | \$         | 2,369.1   | \$  | 7,714.4  |
| 2024  | \$ | 1.4  | \$ | 11.9  | \$ | 17.7  | \$  | 97.8      | \$  | 261.2    | \$   | 1,222.3    | \$  | 784.9            | \$  | 2,973.9             | \$         | 2,377.4   | \$  | 7,748.5  |
| 2025  | \$ | 1.4  | \$ | 11.9  | \$ | 17.8  | \$  | 98.3      | \$  | 262.5    | \$   | 1,226.0    | \$  | 786.0            | \$  | 2,975.2             | \$         | 2,378.4   | \$  | 7,757.5  |
| 2026  | \$ | 1.4  | \$ | 11.9  | \$ | 17.8  | \$  | 98.4      | \$  | 262.9    | \$   | 1,226.0    | \$  | 784.9            | \$  | 2,968.8             | \$         | 2,373.3   | \$  | 7,745.6  |
| 2027  | \$ | 1.4  | \$ | 11.9  | \$ | 17.8  | \$  | 98.3      | \$  | 262.6    | \$   | 1,222.9    | \$  | 782.0            | \$  | 2,956.1             | \$         | 2,363.1   | \$  | 7,716.2  |
| 2028  | \$ | 1.4  | \$ | 11.7  | \$ | 17.5  | \$  | 96.7      | \$  | 258.3    | \$   | 1,201.5    | \$  | 767.5            | \$  | 2,899.9             | \$         | 2,318.2   | \$  | 7,572.9  |
| 2029  | \$ | 1.4  | \$ | 11.6  | \$ | 17.4  | \$  | 96.0      | \$  | 256.3    | \$   | 1,191.0    | \$  | 760.1            | \$  | 2,870.7             | \$         | 2,294.9   | \$  | 7,499.3  |
| Total | \$ | 20.8 | \$ | 176.1 | \$ | 263.3 | \$  | 1,452.9   | \$  | 3,880.1  | \$   | 18,653.0   | \$1 | 2,311.3          | \$  | 47,365.2            | \$         | 37,864.4  | \$1 | 21,987.0 |
| Ann.  | \$ | 1.2  | \$ | 10.1  | \$ | 15.1  | \$  | 83.4      | \$  | 222.8    | \$   | 1,071.2    | \$  | 707.0            | \$  | 2,720.1             | \$         | 2,174.5   | \$  | 7,005.5  |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f and E.42d.

#### Exhibit F.10d Mean Present Value of Benefits Yearly Projections, WTP for Lymphoma as Basis for Non-Fatal Cases, at 7% Discount Rate, by System Size (All Systems)

**TTHM - Alternative 3** 

| Smoking/Lung Cancer Cessation Lag Model |      |      |         |      |         |       |             |       |             |         |                   |          |                   |         |                     |          |            |          |       |          |
|-----------------------------------------|------|------|---------|------|---------|-------|-------------|-------|-------------|---------|-------------------|----------|-------------------|---------|---------------------|----------|------------|----------|-------|----------|
| Year                                    | <100 |      | 100-499 |      | 500-999 |       | 1 000-3 200 |       | 3,300-9,999 |         | 10,000-<br>49,999 |          | 50,000-<br>99,999 |         | 100,000-<br>999,999 |          | >1,000,000 |          | Total |          |
|                                         |      |      |         |      |         |       |             |       | , ,         |         |                   |          | ·                 |         | <u> </u>            |          |            |          |       |          |
| 2005                                    | \$   | -    | \$      | -    | \$      | -     | \$          | -     | \$          | -       | \$                | -        | \$                | -       | \$                  | -        | \$         | -        | \$    | -        |
| 2006                                    | \$   | -    | \$      | -    | \$      | -     | \$          | -     | \$          | -       | \$                | -        | \$                | -       | \$                  | -        | \$         | -        | \$    | -        |
| 2007                                    | \$   | -    | \$      | -    | \$      | -     | \$          | -     | \$          | -       | \$                | -        | \$                | -       | \$                  | -        | \$         | -        | \$    | -        |
| 2008                                    | \$   | -    | \$      | -    | \$      | -     | \$          | -     | \$          | -       | \$                | -        | \$                | -       | \$                  | -        | \$         | -        | \$    | -        |
| 2009                                    | \$   | -    | \$      | -    | \$      | -     | \$          | -     | \$          | -       | \$                | -        | \$                | -       | \$                  | -        | \$         | -        | \$    | -        |
| 2010                                    | \$   | 0.1  | \$      | 0.5  | \$      | 0.7   | \$          | 4.0   | \$          | 10.6    | \$                | 57.8     | \$                | 44.8    | \$                  | 189.5    | \$         | 151.5    | \$    | 459.3    |
| 2011                                    | \$   | 0.1  | \$      | 1.2  | \$      | 1.8   | \$          | 9.9   | \$          | 26.4    | \$                | 143.8    | \$                | 111.4   | \$                  | 471.6    | \$         | 377.0    | \$    | 1,143.2  |
| 2012                                    | \$   | 0.2  | \$      | 2.0  | \$      | 3.1   | \$          | 16.8  | \$          | 45.0    | \$                | 245.1    | \$                | 189.9   | \$                  | 804.1    | \$         | 642.8    |       | 1,949.0  |
| 2013                                    | \$   | 0.3  | \$      | 2.9  | \$      | 4.4   | \$          | 24.3  | \$          | 64.9    | \$                | 353.8    | \$                | 274.1   | \$                  | 1,160.5  | \$         | 927.7    |       | 2,813.0  |
| 2014                                    | \$   | 0.5  | \$      | 3.9  | \$      | 5.8   | \$          | 31.9  | \$          | 85.2    | \$                | 464.4    | \$                | 342.1   | \$                  | 1,372.9  | \$         | 1,097.5  |       | 3,404.1  |
| 2015                                    | \$   | 0.6  | \$      | 4.8  | \$      | 7.1   | \$          | 39.4  | \$          | 105.2   | \$                | 551.7    | \$                | 383.3   | \$                  | 1,506.4  | \$         | 1,204.2  | \$    | 3,802.5  |
| 2016                                    | \$   | 0.6  | \$      | 5.5  | \$      | 8.2   | \$          | 45.2  | \$          | 120.6   | \$                | 603.8    | \$                | 408.3   | \$                  | 1,586.2  | \$         | 1,268.0  | \$    | 4,046.5  |
| 2017                                    | \$   | 0.7  | \$      | 5.9  | \$      | 8.8   | \$          | 48.6  | \$          | 129.7   | \$                | 634.4    | \$                | 422.2   | \$                  | 1,627.9  | \$         | 1,301.4  | \$    | 4,179.4  |
| 2018                                    | \$   | 0.7  | \$      | 6.1  | \$      | 9.1   | \$          | 50.4  | \$          | 134.7   | \$                | 649.9    | \$                | 427.9   | \$                  | 1,641.7  | \$         | 1,312.4  |       | 4,233.1  |
| 2019                                    | \$   | 0.7  | \$      | 6.2  | \$      | 9.3   | \$          | 51.3  | \$          | 136.9   | \$                | 654.5    | \$                | 427.8   | \$                  | 1,635.1  | \$         | 1,307.1  | \$    | 4,228.9  |
| 2020                                    | \$   | 0.7  | \$      | 6.2  | \$      | 9.3   | \$          | 51.4  | \$          | 137.2   | \$                | 651.1    | \$                | 423.2   | \$                  | 1,613.4  | \$         | 1,289.7  | \$    | 4,182.2  |
| 2021                                    | \$   | 0.7  | \$      | 6.2  | \$      | 9.2   | \$          | 50.9  | \$          | 135.9   | \$                | 641.8    | \$                | 415.5   | \$                  | 1,580.5  | \$         | 1,263.4  | \$    | 4,104.1  |
| 2022                                    | \$   | 0.7  | \$      | 6.1  | \$      | 9.1   | \$          | 50.0  | \$          | 133.5   | \$                | 628.2    | \$                | 405.3   | \$                  | 1,539.5  | \$         | 1,230.7  | \$    | 4,003.1  |
| 2023                                    | \$   | 0.7  | \$      | 5.9  | \$      | 8.8   | \$          | 48.8  | \$          | 130.4   | \$                | 611.5    | \$                | 393.5   | \$                  | 1,492.7  | \$         | 1,193.3  | \$    | 3,885.7  |
| 2024                                    | \$   | 0.7  | \$      | 5.7  | \$      | 8.6   | \$          | 47.4  | \$          | 126.6   | \$                | 592.6    | \$                | 380.6   | \$                  | 1,441.9  | \$         | 1,152.7  | \$    | 3,756.9  |
| 2025                                    | \$   | 0.7  | \$      | 5.6  | \$      | 8.3   | \$          | 45.9  | \$          | 122.5   | \$                | 572.2    | \$                | 366.8   | \$                  | 1,388.6  | \$         | 1,110.1  | \$    | 3,620.7  |
| 2026                                    | \$   | 0.6  | \$      | 5.4  | \$      | 8.0   | \$          | 44.2  | \$          | 118.1   | \$                | 550.8    | \$                | 352.6   | \$                  | 1,333.9  | \$         | 1,066.3  | \$    | 3,480.0  |
| 2027                                    | \$   | 0.6  | \$      | 5.2  | \$      | 7.7   | \$          | 42.5  | \$          | 113.6   | \$                | 528.9    | \$                | 338.2   | \$                  | 1,278.5  | \$         | 1,022.0  | \$    | 3,337.2  |
| 2028                                    | \$   | 0.6  | \$      | 4.9  | \$      | 7.3   | \$          | 40.3  | \$          | 107.5   | \$                | 500.2    | \$                | 319.5   | \$                  | 1,207.3  | \$         | 965.1    | \$    | 3,152.7  |
| 2029                                    | \$   | 0.6  | \$      | 4.7  | \$      | 7.0   | \$          | 38.5  | \$          | 102.7   | \$                | 477.3    | \$                | 304.6   | \$                  | 1,150.4  | \$         | 919.7    | \$    | 3,005.4  |
| Total                                   | \$   | 11.2 | \$      | 94.7 | \$      | 141.6 | \$          | 781.5 | \$          | 2,087.2 | \$                | 10,113.8 | \$                | 6,731.7 | \$                  | 26,022.5 | \$         | 20,802.8 | \$    | 66,787.0 |
| Ann.                                    | \$   | 1.0  | \$      | 8.1  | \$      | 12.2  | \$          | 67.1  | \$          | 179.1   | \$                | 867.9    | \$                | 577.7   | \$                  | 2,233.0  | \$         | 1,785.1  | \$    | 5,731.0  |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f and E.42d.

# Section F.11 Model Outputs - Alternative 3 TTHM as Indicator Bronchitis for Non-Fatal Cases

Exhibit F.11a Projections of Yearly Benefits, WTP for Bronchitis as Basis for Non-Fatal Cases (Smoking/Lung Cancer Cessation Lag Model)

TTHM - Alternative 3

|       | S              | urfa | ice Water Sys        | ster | ms                    | Groui         | nd \ | Nater Sys          | ster | ns                  |                | All | Systems             |    |                     |
|-------|----------------|------|----------------------|------|-----------------------|---------------|------|--------------------|------|---------------------|----------------|-----|---------------------|----|---------------------|
|       |                |      | 90 P<br>Confider     |      | -                     |               |      | 90 Pe<br>Confider  |      |                     |                |     | 90 P<br>Confider    |    |                     |
| Year  | Mean<br>Value  | •    | Lower<br>(5th %tile) |      | Upper<br>(95th %tile) | Mean<br>Value |      | Lower<br>th %tile) | (9   | Upper<br>5th %tile) | Mean<br>Value  | (5  | Lower<br>ith %tile) | (9 | Upper<br>5th %tile) |
| 2005  | \$             | \$   | -                    | \$   | -                     | \$<br>-       | \$   |                    | \$   | -                   | \$<br>-        | \$  | -                   | \$ |                     |
| 2006  | \$<br>-        | \$   | -                    | \$   | -                     | \$<br>-       | \$   | -                  | \$   | -                   | \$<br>-        | \$  | -                   | \$ | -                   |
| 2007  | \$<br>-        | \$   | -                    | \$   | -                     | \$<br>-       | \$   | -                  | \$   | -                   | \$<br>-        | \$  | -                   | \$ | -                   |
| 2008  | \$<br>-        | \$   | -                    | \$   | -                     | \$<br>-       | \$   | -                  | \$   | -                   | \$<br>-        | \$  | -                   | \$ | -                   |
| 2009  | \$<br>-        | \$   | -                    | \$   | -                     | \$<br>-       | \$   | -                  | \$   | -                   | \$<br>-        | \$  | -                   | \$ | -                   |
| 2010  | \$<br>293.2    | \$   | 64.6                 | \$   | 644.8                 | \$<br>25.0    | \$   | 5.5                | \$   | 55.0                | \$<br>318.2    | \$  | 70.1                | \$ | 699.7               |
| 2011  | \$<br>781.5    | \$   | 171.9                | \$   | 1,721.3               | \$<br>66.6    | \$   | 14.6               | \$   | 146.7               | \$<br>848.1    | \$  | 186.5               | \$ | 1,868.0             |
| 2012  | \$<br>1,426.6  | \$   | 313.3                | \$   | 3,140.1               | \$<br>121.6   | \$   | 26.7               | \$   | 267.6               | \$<br>1,548.2  | \$  | 340.0               | \$ | 3,407.7             |
| 2013  | \$<br>2,204.7  | \$   | 484.0                | \$   | 4,850.9               | \$<br>187.9   | \$   | 41.3               | \$   | 413.5               | \$<br>2,392.7  | \$  | 525.3               | \$ | 5,264.3             |
| 2014  | \$<br>2,850.2  | \$   | 624.6                | \$   | 6,274.3               | \$<br>250.2   | \$   | 54.8               | \$   | 550.8               | \$<br>3,100.4  | \$  | 679.4               | \$ | 6,825.1             |
| 2015  | \$<br>3,402.8  | \$   | 744.3                | \$   | 7,503.4               | \$<br>305.7   | \$   | 66.9               | \$   | 674.1               | \$<br>3,708.5  | \$  | 811.2               | \$ | 8,177.5             |
| 2016  | \$<br>3,873.7  | \$   | 846.6                | \$   | 8,539.5               | \$<br>352.3   | \$   | 77.0               | \$   | 776.6               | \$<br>4,225.9  | \$  | 923.6               | \$ | 9,316.1             |
| 2017  | \$<br>4,281.6  | \$   | 934.6                | \$   | 9,456.2               | \$<br>392.2   | \$   | 85.6               | \$   | 866.2               | \$<br>4,673.9  | \$  | 1,020.3             | \$ | 10,322.4            |
| 2018  | \$<br>4,641.9  | \$   | 1,010.9              | \$   | 10,255.3              | \$<br>427.3   | \$   | 93.1               | \$   | 944.1               | \$<br>5,069.3  | \$  | 1,103.9             | \$ | 11,199.4            |
| 2019  | \$<br>4,964.5  | \$   | 1,079.3              | \$   | 10,993.3              | \$<br>458.6   | \$   | 99.7               | \$   | 1,015.5             | \$<br>5,423.1  | \$  | 1,179.0             | \$ | 12,008.8            |
| 2020  | \$<br>5,256.4  | \$   | 1,140.9              | \$   | 11,648.8              | \$<br>486.8   | \$   | 105.7              | \$   | 1,078.8             | \$<br>5,743.2  | \$  | 1,246.5             | \$ | 12,727.7            |
| 2021  | \$<br>5,522.8  | \$   | 1,197.2              | \$   | 12,254.1              | \$<br>512.5   | \$   | 111.1              | \$   | 1,137.1             | \$<br>6,035.3  | \$  | 1,308.3             | \$ | 13,391.2            |
| 2022  | \$<br>5,768.0  | \$   | 1,247.9              | \$   | 12,823.5              | \$<br>536.1   | \$   | 116.0              | \$   | 1,191.8             | \$<br>6,304.1  | \$  | 1,363.9             | \$ | 14,015.3            |
| 2023  | \$<br>5,995.2  | \$   | 1,293.5              | \$   | 13,330.2              | \$<br>557.9   | \$   | 120.4              | \$   | 1,240.4             | \$<br>6,553.0  | \$  | 1,413.9             | \$ | 14,570.6            |
| 2024  | \$<br>6,207.0  | \$   | 1,338.1              | \$   | 13,808.0              | \$<br>578.1   | \$   | 124.6              | \$   | 1,286.1             | \$<br>6,785.2  | \$  | 1,462.7             | \$ | 15,094.1            |
| 2025  | \$<br>6,405.7  | \$   | 1,378.0              | \$   | 14,259.0              | \$<br>597.1   | \$   | 128.5              | \$   | 1,329.2             | \$<br>7,002.8  | \$  | 1,506.4             | \$ | 15,588.2            |
| 2026  | \$<br>6,593.1  | \$   | 1,416.5              | \$   | 14,680.4              | \$<br>615.0   | \$   | 132.1              | \$   | 1,369.4             | \$<br>7,208.1  | \$  | 1,548.6             | \$ | 16,049.9            |
| 2027  | \$<br>6,770.7  | \$   | 1,452.2              | \$   | 15,113.8              | \$<br>632.0   | \$   | 135.5              | \$   | 1,410.7             | \$<br>7,402.7  | \$  | 1,587.7             | \$ | 16,524.4            |
| 2028  | \$<br>6,841.9  | \$   | 1,468.3              | \$   | 15,258.9              | \$<br>638.9   | \$   | 137.1              | \$   | 1,424.9             | \$<br>7,480.8  | \$  | 1,605.4             | \$ | 16,683.8            |
| 2029  | \$<br>6,983.1  | \$   | 1,496.7              | \$   | 15,601.1              | \$<br>652.4   | \$   | 139.8              | \$   | 1,457.5             | \$<br>7,635.4  | \$  | 1,636.5             | \$ | 17,058.6            |
| Total | \$<br>91,064.7 | \$   | 19,703.2             | \$   | 202,156.8             | \$<br>8,394.2 | \$   | 1,816.0            | \$   | 18,636.1            | \$<br>99,458.9 | \$  | 21,519.2            | \$ | 220,792.9           |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f, E.42b, and E.42c.

### Exhibit F.11b Present Value of Benefits Yearly Projections, WTP for Bronchitis as Basis for Non-Fatal Cases, Smoking/Lung Cancer Cessation Lag Model (All Water Systems)

**TTHM - Alternative 3** 

|       |                | 3% | 6 Discount R         | ate |                       | 7%             | % D | iscount R          | ate |                     |
|-------|----------------|----|----------------------|-----|-----------------------|----------------|-----|--------------------|-----|---------------------|
|       |                |    | 90 P<br>Confider     |     |                       |                |     | 90 P               |     |                     |
| Year  | Mean<br>Value  | (  | Lower<br>(5th %tile) |     | Upper<br>(95th %tile) | Mean<br>Value  |     | Lower<br>th %tile) | (9: | Upper<br>5th %tile) |
| 2005  | \$<br>-        | \$ | -                    | \$  | -                     | \$<br>-        | \$  | -                  | \$  | -                   |
| 2006  | \$<br>-        | \$ | _                    | \$  | -                     | \$<br>-        | \$  | -                  | \$  | -                   |
| 2007  | \$<br>-        | \$ | -                    | \$  | -                     | \$<br>-        | \$  | -                  | \$  | -                   |
| 2008  | \$<br>-        | \$ | -                    | \$  | -                     | \$<br>-        | \$  | -                  | \$  | -                   |
| 2009  | \$<br>-        | \$ | -                    | \$  | -                     | \$<br>-        | \$  | -                  | \$  | -                   |
| 2010  | \$<br>274.5    | \$ | 60.4                 | \$  | 603.6                 | \$<br>226.9    | \$  | 49.9               | \$  | 498.9               |
| 2011  | \$<br>710.2    | \$ | 156.2                | \$  | 1,564.4               | \$<br>565.1    | \$  | 124.3              | \$  | 1,244.7             |
| 2012  | \$<br>1,258.8  | \$ | 276.5                | \$  | 2,770.8               | \$<br>964.1    | \$  | 211.8              | \$  | 2,122.1             |
| 2013  | \$<br>1,888.8  | \$ | 414.7                | \$  | 4,155.7               | \$<br>1,392.6  | \$  | 305.7              | \$  | 3,063.9             |
| 2014  | \$<br>2,376.2  | \$ | 520.7                | \$  | 5,230.9               | \$<br>1,686.4  | \$  | 369.6              | \$  | 3,712.4             |
| 2015  | \$<br>2,759.5  | \$ | 603.6                | \$  | 6,084.8               | \$<br>1,885.2  | \$  | 412.4              | \$  | 4,157.0             |
| 2016  | \$<br>3,052.9  | \$ | 667.2                | \$  | 6,730.2               | \$<br>2,007.7  | \$  | 438.8              | \$  | 4,426.0             |
| 2017  | \$<br>3,278.2  | \$ | 715.6                | \$  | 7,239.9               | \$<br>2,075.2  | \$  | 453.0              | \$  | 4,583.3             |
| 2018  | \$<br>3,451.9  | \$ | 751.7                | \$  | 7,626.2               | \$<br>2,103.6  | \$  | 458.1              | \$  | 4,647.3             |
| 2019  | \$<br>3,585.3  | \$ | 779.5                | \$  | 7,939.2               | \$<br>2,103.2  | \$  | 457.2              | \$  | 4,657.2             |
| 2020  | \$<br>3,686.3  | \$ | 800.1                | \$  | 8,169.4               | \$<br>2,081.6  | \$  | 451.8              | \$  | 4,613.1             |
| 2021  | \$<br>3,761.0  | \$ | 815.3                | \$  | 8,345.0               | \$<br>2,044.4  | \$  | 443.2              | \$  | 4,536.1             |
| 2022  | \$<br>3,814.1  | \$ | 825.2                | \$  | 8,479.5               | \$<br>1,995.7  | \$  | 431.8              | \$  | 4,436.9             |
| 2023  | \$<br>3,849.2  | \$ | 830.5                | \$  | 8,558.7               | \$<br>1,938.8  | \$  | 418.3              | \$  | 4,310.9             |
| 2024  | \$<br>3,869.5  | \$ | 834.2                | \$  | 8,608.0               | \$<br>1,876.2  | \$  | 404.5              | \$  | 4,173.7             |
| 2025  | \$<br>3,877.3  | \$ | 834.1                | \$  | 8,630.8               | \$<br>1,809.7  | \$  | 389.3              | \$  | 4,028.3             |
| 2026  | \$<br>3,874.7  | \$ | 832.5                | \$  | 8,627.6               | \$<br>1,740.9  | \$  | 374.0              | \$  | 3,876.3             |
| 2027  | \$<br>3,863.4  | \$ | 828.6                | \$  | 8,624.0               | \$<br>1,670.9  | \$  | 358.4              | \$  | 3,729.8             |
| 2028  | \$<br>3,790.5  | \$ | 813.4                | \$  | 8,453.5               | \$<br>1,578.0  | \$  | 338.6              | \$  | 3,519.4             |
| 2029  | \$<br>3,756.1  | \$ | 805.1                | \$  | 8,391.7               | \$<br>1,505.3  | \$  | 322.6              | \$  | 3,363.0             |
| Total | \$<br>60,778.5 | \$ | 13,164.9             | \$  | 134,833.9             | \$<br>33,251.4 | \$  | 7,213.2            | \$  | 73,700.3            |
| Ann.  | \$<br>3,490.4  | \$ | 756.0                | \$  | 7,743.2               | \$<br>2,853.3  | \$  | 619.0              | \$  | 6,324.3             |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibit F.11a.

Exhibit F.11c Mean Present Value of Benefits Yearly Projections, WTP for Bronchitis as Basis for Non-Fatal Cases, at 3% Discount Rate, by System Size

(All Systems)

TTHM - Alternative 3

|       |    |      |    |       |    | Sı     | mol | king/Lu  | ng  | Cancer    | C  | essation          | La | g Model           |                     |               |           |                |
|-------|----|------|----|-------|----|--------|-----|----------|-----|-----------|----|-------------------|----|-------------------|---------------------|---------------|-----------|----------------|
| Year  | <  | 100  | 10 | 0-499 | 5  | 00-999 | 1,0 | 00-3,299 | 3,3 | 800-9,999 |    | 10,000-<br>49,999 |    | 50,000-<br>99,999 | 100,000-<br>999,999 | <u>&gt;</u> ′ | 1,000,000 | Total          |
| 2005  | \$ | -    | \$ | -     | \$ |        | \$  |          | \$  |           | \$ | -                 | \$ | -                 | \$<br>-             | \$            | -         | \$<br>-        |
| 2006  | \$ | -    | \$ | -     | \$ | -      | \$  | -        | \$  | -         | \$ | -                 | \$ | -                 | \$<br>-             | \$            | -         | \$<br>-        |
| 2007  | \$ | -    | \$ | -     | \$ | -      | \$  | -        | \$  | -         | \$ | -                 | \$ | -                 | \$<br>-             | \$            | -         | \$<br>-        |
| 2008  | \$ | -    | \$ | -     | \$ | -      | \$  | -        | \$  | -         | \$ | -                 | \$ | -                 | \$<br>-             | \$            | -         | \$<br>-        |
| 2009  | \$ | -    | \$ | -     | \$ | -      | \$  | -        | \$  | -         | \$ | -                 | \$ | -                 | \$<br>-             | \$            | -         | \$<br>-        |
| 2010  | \$ | 0.0  | \$ | 0.3   | \$ | 0.4    | \$  | 2.4      | \$  | 6.3       | \$ | 34.5              | \$ | 26.7              | \$<br>113.2         | \$            | 90.5      | \$<br>274.5    |
| 2011  | \$ | 0.1  | \$ | 0.7   | \$ | 1.1    | \$  | 6.1      | \$  | 16.4      | \$ | 89.3              | \$ | 69.2              | \$<br>293.0         | \$            | 234.2     | \$<br>710.2    |
| 2012  | \$ | 0.2  | \$ | 1.3   | \$ | 2.0    | \$  | 10.9     | \$  | 29.0      | \$ | 158.3             | \$ | 122.7             | \$<br>519.3         | \$            | 415.2     | \$<br>1,258.8  |
| 2013  | \$ | 0.2  | \$ | 2.0   | \$ | 3.0    | \$  | 16.3     | \$  | 43.6      | \$ | 237.5             | \$ | 184.1             | \$<br>779.2         | \$            | 622.9     | \$<br>1,888.8  |
| 2014  | \$ | 0.3  | \$ | 2.7   | \$ | 4.0    | \$  | 22.3     | \$  | 59.5      | \$ | 324.2             | \$ | 238.8             | \$<br>958.4         | \$            | 766.1     | \$<br>2,376.2  |
| 2015  | \$ | 0.4  | \$ | 3.5   | \$ | 5.2    | \$  | 28.6     | \$  | 76.3      | \$ | 400.4             | \$ | 278.1             | \$<br>1,093.2       | \$            | 873.9     | \$<br>2,759.5  |
| 2016  | \$ | 0.5  | \$ | 4.1   | \$ | 6.2    | \$  | 34.1     | \$  | 91.0      | \$ | 455.6             | \$ | 308.1             | \$<br>1,196.7       | \$            | 956.7     | \$<br>3,052.9  |
| 2017  | \$ | 0.5  | \$ | 4.6   | \$ | 6.9    | \$  | 38.1     | \$  | 101.7     | \$ | 497.6             | \$ | 331.1             | \$<br>1,276.8       | \$            | 1,020.7   | \$<br>3,278.2  |
| 2018  | \$ | 0.6  | \$ | 5.0   | \$ | 7.5    | \$  | 41.1     | \$  | 109.8     | \$ | 530.0             | \$ | 349.0             | \$<br>1,338.8       | \$            | 1,070.2   | \$<br>3,451.9  |
| 2019  | \$ | 0.6  | \$ | 5.3   | \$ | 7.9    | \$  | 43.5     | \$  | 116.1     | \$ | 554.9             | \$ | 362.6             | \$<br>1,386.2       | \$            | 1,108.2   | \$<br>3,585.3  |
| 2020  | \$ | 0.6  | \$ | 5.5   | \$ | 8.2    | \$  | 45.3     | \$  | 120.9     | \$ | 573.9             | \$ | 373.0             | \$<br>1,422.1       | \$            | 1,136.8   | \$<br>3,686.3  |
| 2021  | \$ | 0.7  | \$ | 5.7   | \$ | 8.5    | \$  | 46.6     | \$  | 124.5     | \$ | 588.2             | \$ | 380.7             | \$<br>1,448.4       | \$            | 1,157.8   | \$<br>3,761.0  |
| 2022  | \$ | 0.7  | \$ | 5.8   | \$ | 8.6    | \$  | 47.6     | \$  | 127.2     | \$ | 598.6             | \$ | 386.2             | \$<br>1,466.8       | \$            | 1,172.6   | \$<br>3,814.1  |
| 2023  | \$ | 0.7  | \$ | 5.9   | \$ | 8.8    | \$  | 48.4     | \$  | 129.1     | \$ | 605.8             | \$ | 389.9             | \$<br>1,478.7       | \$            | 1,182.1   | \$<br>3,849.2  |
| 2024  | \$ | 0.7  | \$ | 5.9   | \$ | 8.9    | \$  | 48.8     | \$  | 130.4     | \$ | 610.4             | \$ | 392.0             | \$<br>1,485.1       | \$            | 1,187.2   | \$<br>3,869.5  |
| 2025  | \$ | 0.7  | \$ | 6.0   | \$ | 8.9    | \$  | 49.1     | \$  | 131.2     | \$ | 612.8             | \$ | 392.8             | \$<br>1,487.1       | \$            | 1,188.8   | \$<br>3,877.3  |
| 2026  | \$ | 0.7  | \$ | 6.0   | \$ | 8.9    | \$  | 49.2     | \$  | 131.5     | \$ | 613.3             | \$ | 392.6             | \$<br>1,485.2       | \$            | 1,187.3   | \$<br>3,874.7  |
| 2027  | \$ | 0.7  | \$ | 6.0   | \$ | 8.9    | \$  | 49.2     | \$  | 131.5     | \$ | 612.3             | \$ | 391.5             | \$<br>1,480.1       | \$            | 1,183.2   | \$<br>3,863.4  |
| 2028  | \$ | 0.7  | \$ | 5.9   | \$ | 8.8    | \$  | 48.4     | \$  | 129.3     | \$ | 601.4             | \$ | 384.2             | \$<br>1,451.5       | \$            | 1,160.3   | \$<br>3,790.5  |
| 2029  | \$ | 0.7  | \$ | 5.8   | \$ | 8.7    | \$  | 48.1     | \$  | 128.4     | \$ | 596.5             | \$ | 380.7             | \$<br>1,437.8       | \$            | 1,149.4   | \$<br>3,756.1  |
| Total | \$ | 10.4 | \$ | 87.7  | \$ | 131.2  | \$  | 724.1    | \$  | 1,933.9   | \$ | 9,295.3           | \$ | 6,134.1           | \$<br>23,597.5      | \$            | 18,864.2  | \$<br>60,778.5 |
| Ann.  | \$ | 0.6  | \$ | 5.0   | \$ | 7.5    | \$  | 41.6     | \$  | 111.1     | \$ | 533.8             | \$ | 352.3             | \$<br>1,355.2       | \$            | 1,083.3   | \$<br>3,490.4  |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f and E.42d.

#### Exhibit F.11d Mean Present Value of Benefits Yearly Projections, WTP for Bronchitis as Basis for Non-Fatal Cases, at 7% Discount Rate, by System Size (All Systems)

**TTHM - Alternative 3** 

|       |    | .ema |    |       |    | S      | mo  | king/Lu   | ng  | Cancer   | Ce  | essation   | La | g Mode            | el |                     |            |          |                |
|-------|----|------|----|-------|----|--------|-----|-----------|-----|----------|-----|------------|----|-------------------|----|---------------------|------------|----------|----------------|
| Year  | <  | 100  | 10 | 0-499 | 50 | 00-999 | 1,0 | 000-3,299 | 3,3 | 00-9,999 | 10, | 000-49,999 |    | 60,000-<br>99,999 |    | 100,000-<br>999,999 | <u>≥</u> 1 | ,000,000 | Total          |
| 2005  | \$ | -    | \$ | -     | \$ | -      | \$  | -         | \$  | -        | \$  | -          | \$ | -                 | \$ | -                   | \$         | -        | \$<br>-        |
| 2006  | \$ | -    | \$ | -     | \$ | -      | \$  | -         | \$  | -        | \$  | -          | \$ | -                 | \$ | -                   | \$         | -        | \$<br>-        |
| 2007  | \$ | -    | \$ | -     | \$ | -      | \$  | -         | \$  | -        | \$  | -          | \$ | -                 | \$ | -                   | \$         | -        | \$<br>-        |
| 2008  | \$ | -    | \$ | -     | \$ | -      | \$  | -         | \$  | -        | \$  | -          | \$ | -                 | \$ | -                   | \$         | -        | \$<br>-        |
| 2009  | \$ | -    | \$ | -     | \$ | -      | \$  | -         | \$  | -        | \$  | -          | \$ | -                 | \$ | -                   | \$         | -        | \$<br>-        |
| 2010  | \$ | 0.0  | \$ | 0.2   | \$ | 0.4    | \$  | 2.0       | \$  | 5.2      | \$  | 28.5       | \$ | 22.1              | \$ | 93.6                | \$         | 74.8     | \$<br>226.9    |
| 2011  | \$ | 0.1  | \$ | 0.6   | \$ | 0.9    | \$  | 4.9       | \$  | 13.0     | \$  | 71.1       | \$ | 55.1              | \$ | 233.1               | \$         | 186.4    | \$<br>565.1    |
| 2012  | \$ | 0.1  | \$ | 1.0   | \$ | 1.5    | \$  | 8.3       | \$  | 22.2     | \$  | 121.3      | \$ | 94.0              | \$ | 397.8               | \$         | 318.0    | \$<br>964.1    |
| 2013  | \$ | 0.2  | \$ | 1.5   | \$ | 2.2    | \$  | 12.0      | \$  | 32.1     | \$  | 175.1      | \$ | 135.7             | \$ | 574.5               | \$         | 459.3    | \$<br>1,392.6  |
| 2014  | \$ | 0.2  | \$ | 1.9   | \$ | 2.9    | \$  | 15.8      | \$  | 42.2     | \$  | 230.1      | \$ | 169.5             | \$ | 680.2               | \$         | 543.7    | \$<br>1,686.4  |
| 2015  | \$ | 0.3  | \$ | 2.4   | \$ | 3.5    | \$  | 19.5      | \$  | 52.1     | \$  | 273.5      | \$ | 190.0             | \$ | 746.8               | \$         | 597.0    | \$<br>1,885.2  |
| 2016  | \$ | 0.3  | \$ | 2.7   | \$ | 4.1    | \$  | 22.4      | \$  | 59.9     | \$  | 299.6      | \$ | 202.6             | \$ | 787.0               | \$         | 629.1    | \$<br>2,007.7  |
| 2017  | \$ | 0.3  | \$ | 2.9   | \$ | 4.4    | \$  | 24.1      | \$  | 64.4     | \$  | 315.0      | \$ | 209.6             | \$ | 808.3               | \$         | 646.2    | \$<br>2,075.2  |
| 2018  | \$ | 0.4  | \$ | 3.0   | \$ | 4.5    | \$  | 25.1      | \$  | 66.9     | \$  | 322.9      | \$ | 212.6             | \$ | 815.8               | \$         | 652.2    | \$<br>2,103.6  |
| 2019  | \$ | 0.4  | \$ | 3.1   | \$ | 4.6    | \$  | 25.5      | \$  | 68.1     | \$  | 325.5      | \$ | 212.7             | \$ | 813.2               | \$         | 650.1    | \$<br>2,103.2  |
| 2020  | \$ | 0.4  | \$ | 3.1   | \$ | 4.6    | \$  | 25.6      | \$  | 68.3     | \$  | 324.1      | \$ | 210.6             | \$ | 803.0               | \$         | 641.9    | \$<br>2,081.6  |
| 2021  | \$ | 0.4  | \$ | 3.1   | \$ | 4.6    | \$  | 25.3      | \$  | 67.7     | \$  | 319.7      | \$ | 207.0             | \$ | 787.3               | \$         | 629.4    | \$<br>2,044.4  |
| 2022  | \$ | 0.4  | \$ | 3.0   | \$ | 4.5    | \$  | 24.9      | \$  | 66.6     | \$  | 313.2      | \$ | 202.1             | \$ | 767.5               | \$         | 613.5    | \$<br>1,995.7  |
| 2023  | \$ | 0.3  | \$ | 3.0   | \$ | 4.4    | \$  | 24.4      | \$  | 65.0     | \$  | 305.1      | \$ | 196.4             | \$ | 744.8               | \$         | 595.4    | \$<br>1,938.8  |
| 2024  | \$ | 0.3  | \$ | 2.9   | \$ | 4.3    | \$  | 23.7      | \$  | 63.2     | \$  | 295.9      | \$ | 190.1             | \$ | 720.1               | \$         | 575.6    | \$<br>1,876.2  |
| 2025  | \$ | 0.3  | \$ | 2.8   | \$ | 4.2    | \$  | 22.9      | \$  | 61.2     | \$  | 286.0      | \$ | 183.4             | \$ | 694.1               | \$         | 554.8    | \$<br>1,809.7  |
| 2026  | \$ | 0.3  | \$ | 2.7   | \$ | 4.0    | \$  | 22.1      | \$  | 59.1     | \$  | 275.5      | \$ | 176.4             | \$ | 667.3               | \$         | 533.4    | \$<br>1,740.9  |
| 2027  | \$ | 0.3  | \$ | 2.6   | \$ | 3.9    | \$  | 21.3      | \$  | 56.9     | \$  | 264.8      | \$ | 169.3             | \$ | 640.1               | \$         | 511.7    | \$<br>1,670.9  |
| 2028  | \$ | 0.3  | \$ | 2.4   | \$ | 3.7    | \$  | 20.2      | \$  | 53.8     | \$  | 250.4      | \$ | 159.9             | \$ | 604.3               | \$         | 483.1    | \$<br>1,578.0  |
| 2029  | \$ | 0.3  | \$ | 2.3   | \$ | 3.5    | \$  | 19.3      | \$  | 51.4     | \$  | 239.1      | \$ | 152.6             | \$ | 576.2               | \$         | 460.6    | \$<br>1,505.3  |
| Total | \$ | 5.6  | \$ | 47.2  | \$ | 70.5   | \$  | 389.2     | \$  | 1,039.5  | \$  | 5,036.5    | \$ | 3,351.6           | \$ | 12,954.9            | \$         | 10,356.3 | \$<br>33,251.4 |
| Ann.  | \$ | 0.5  | \$ | 4.0   | \$ | 6.1    | \$  | 33.4      | \$  | 89.2     | \$  | 432.2      | \$ | 287.6             | \$ | 1,111.7             | \$         | 888.7    | \$<br>2,853.3  |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f and E.42d.

# Section F.12 Model Outputs - Colorectal Cancer Sensitivity Analysis TTHM as Indicator Lymphoma for Non-Fatal Cases

### Exhibit F.12a Projections of Yearly Benefits, WTP for Lymphoma as Basis for Non-Fatal Cases (Smoking/Lung Cancer Cessation Lag Model)

**TTHM - Colorectal Cancer Sensitivity Analysis** 

|       | Surf            | ace | Water Sy           | stem          | s                    | Grou           | nd | Water Sy           | stei | ms                  |                 | All | Systems            |    |                     |
|-------|-----------------|-----|--------------------|---------------|----------------------|----------------|----|--------------------|------|---------------------|-----------------|-----|--------------------|----|---------------------|
|       |                 |     | 90<br>Confid       | Perce<br>ence |                      |                |    | 90 Po<br>Confider  |      |                     |                 |     | 90 Po<br>Confider  |    |                     |
| Year  | Mean<br>Value   | (5  | Lower<br>th %tile) | (9            | Upper<br>95th %tile) | Mean<br>Value  | (5 | Lower<br>th %tile) | (9   | Upper<br>5th %tile) | Mean<br>Value   | (5  | Lower<br>th %tile) | (9 | Upper<br>5th %tile) |
| 2005  | \$<br>-         | \$  | -                  | \$            |                      | \$             | \$ |                    | \$   | -                   | \$              | \$  | ,                  | \$ | -                   |
| 2006  | \$<br>-         | \$  | -                  | \$            | -                    | \$<br>-        | \$ | -                  | \$   | -                   | \$<br>-         | \$  | -                  | \$ | -                   |
| 2007  | \$<br>-         | \$  | -                  | \$            | -                    | \$<br>-        | \$ | -                  | \$   | -                   | \$<br>-         | \$  | -                  | \$ | -                   |
| 2008  | \$<br>-         | \$  | -                  | \$            | -                    | \$<br>-        | \$ | -                  | \$   | -                   | \$<br>-         | \$  | -                  | \$ | -                   |
| 2009  | \$<br>-         | \$  | -                  | \$            | -                    | \$<br>-        | \$ | -                  | \$   | -                   | \$<br>-         | \$  | -                  | \$ | -                   |
| 2010  | \$<br>701.7     | \$  | 107.4              | \$            | 1,613.2              | \$<br>58.0     | \$ | 8.9                | \$   | 133.3               | \$<br>759.7     | \$  | 116.3              | \$ | 1,746.5             |
| 2011  | \$<br>1,817.3   | \$  | 278.3              | \$            | 4,180.0              | \$<br>150.2    | \$ | 23.0               | \$   | 345.5               | \$<br>1,967.5   | \$  | 301.3              | \$ | 4,525.4             |
| 2012  | \$<br>3,290.0   | \$  | 503.5              | \$            | 7,558.0              | \$<br>271.9    | \$ | 41.6               | \$   | 624.6               | \$<br>3,561.9   | \$  | 545.1              | \$ | 8,182.6             |
| 2013  | \$<br>5,098.5   | \$  | 780.4              | \$            | 11,711.0             | \$<br>421.4    | \$ | 64.5               | \$   | 967.8               | \$<br>5,519.9   | \$  | 844.9              | \$ | 12,678.8            |
| 2014  | \$<br>6,650.6   | \$  | 1,016.7            | \$            | 15,288.3             | \$<br>575.1    | \$ | 87.9               | \$   | 1,322.1             | \$<br>7,225.7   | \$  | 1,104.6            | \$ | 16,610.4            |
| 2015  | \$<br>8,101.2   | \$  | 1,238.8            | \$            | 18,631.4             | \$<br>730.9    | \$ | 111.8              | \$   | 1,681.0             | \$<br>8,832.1   | \$  | 1,350.5            | \$ | 20,312.4            |
| 2016  | \$<br>9,425.6   | \$  | 1,439.9            | \$            | 21,676.2             | \$<br>873.6    | \$ | 133.5              | \$   | 2,009.1             | \$<br>10,299.2  | \$  | 1,573.3            | \$ | 23,685.3            |
| 2017  | \$<br>10,622.4  | \$  | 1,622.0            | \$            | 24,451.6             | \$<br>999.5    | \$ | 152.6              | \$   | 2,300.7             | \$<br>11,621.9  | \$  | 1,774.6            | \$ | 26,752.3            |
| 2018  | \$<br>11,676.4  | \$  | 1,780.4            | \$            | 26,900.2             | \$<br>1,112.0  | \$ | 169.6              | \$   | 2,561.9             | \$<br>12,788.4  | \$  | 1,950.0            | \$ | 29,462.1            |
| 2019  | \$<br>12,583.6  | \$  | 1,916.9            | \$            | 29,039.2             | \$<br>1,211.4  | \$ | 184.5              | \$   | 2,795.5             | \$<br>13,795.0  | \$  | 2,101.4            | \$ | 31,834.7            |
| 2020  | \$<br>13,374.2  | \$  | 2,036.5            | \$            | 30,877.5             | \$<br>1,298.6  | \$ | 197.7              | \$   | 2,998.2             | \$<br>14,672.8  | \$  | 2,234.2            | \$ | 33,875.7            |
| 2021  | \$<br>14,071.7  | \$  | 2,140.2            | \$            | 32,490.1             | \$<br>1,374.9  | \$ | 209.1              | \$   | 3,174.6             | \$<br>15,446.6  | \$  | 2,349.3            | \$ | 35,664.7            |
| 2022  | \$<br>14,695.3  | \$  | 2,234.6            | \$            | 33,987.2             | \$<br>1,442.4  | \$ | 219.3              | \$   | 3,335.9             | \$<br>16,137.7  | \$  | 2,453.9            | \$ | 37,323.1            |
| 2023  | \$<br>15,259.6  | \$  | 2,320.9            | \$            | 35,301.0             | \$<br>1,502.8  | \$ | 228.6              | \$   | 3,476.6             | \$<br>16,762.4  | \$  | 2,549.5            | \$ | 38,777.6            |
| 2024  | \$<br>15,775.5  | \$  | 2,398.1            | \$            | 36,508.4             | \$<br>1,557.7  | \$ | 236.8              | \$   | 3,605.0             | \$<br>17,333.2  | \$  | 2,634.9            | \$ | 40,113.4            |
| 2025  | \$<br>16,251.8  | \$  | 2,466.8            | \$            | 37,612.9             | \$<br>1,608.1  | \$ | 244.1              | \$   | 3,721.7             | \$<br>17,859.8  | \$  | 2,710.9            | \$ | 41,334.6            |
| 2026  | \$<br>16,695.2  | \$  | 2,530.7            | \$            | 38,672.6             | \$<br>1,654.7  | \$ | 250.8              | \$   | 3,832.9             | \$<br>18,349.9  | \$  | 2,781.6            | \$ | 42,505.5            |
| 2027  | \$<br>17,111.4  | \$  | 2,590.8            | \$            | 39,697.5             | \$<br>1,698.2  | \$ | 257.1              | \$   | 3,939.8             | \$<br>18,809.6  | \$  | 2,847.9            | \$ | 43,637.3            |
| 2028  | \$<br>17,277.8  | \$  | 2,618.3            | \$            | 40,061.2             | \$<br>1,716.6  | \$ | 260.1              | \$   | 3,980.2             | \$<br>18,994.4  | \$  | 2,878.5            | \$ | 44,041.4            |
| 2029  | \$<br>17,604.3  | \$  | 2,664.1            | \$            | 40,856.9             | \$<br>1,750.6  | \$ | 264.9              | \$   | 4,063.0             | \$<br>19,354.9  | \$  | 2,929.1            | \$ | 44,919.9            |
| Total | \$<br>228,084.1 | \$  | 34,685.3           | \$            | 527,114.3            | \$<br>22,008.7 | \$ | 3,346.5            | \$   | 50,869.2            | \$<br>250,092.8 | \$  | 38,031.8           | \$ | 577,983.5           |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f, E.43b, and E.43c.

# Exhibit F.12b Present Value of Benefits Yearly Projections, WTP for Lymphoma as Basis for Non-Fatal Cases, Smoking/Lung Cancer Cessation Lag Model (All Water Systems)

**TTHM - Colorectal Cancer Sensitivity Analysis** 

|       |            | 3%            |    | scount Ra           |    |                      | 7%             | % D | iscount R          | ate |                      |
|-------|------------|---------------|----|---------------------|----|----------------------|----------------|-----|--------------------|-----|----------------------|
|       |            |               |    | 90 Po<br>Confider   |    |                      |                |     | 90 P<br>Confide    |     |                      |
| Year  |            | Mean<br>Value | (5 | Lower<br>5th %tile) | (9 | Upper<br>95th %tile) | Mean<br>Value  | (5  | Lower<br>th %tile) | (9  | Upper<br>95th %tile) |
| 2005  | \$         | -             | \$ | -                   | \$ | -                    | \$<br>-        | \$  | -                  | \$  | -                    |
| 2006  | \$         | -             | \$ | -                   | \$ | -                    | \$<br>-        | \$  | -                  | \$  | -                    |
| 2007  | \$         | -             | \$ | -                   | \$ | -                    | \$<br>-        | \$  | -                  | \$  | -                    |
| 2008  | \$         | -             | \$ | -                   | \$ | -                    | \$<br>-        | \$  | -                  | \$  | -                    |
| 2009  | \$         | -             | \$ | -                   | \$ | -                    | \$<br>-        | \$  | -                  | \$  | -                    |
| 2010  | \$         | 655.4         | \$ | 100.3               | \$ | 1,506.5              | \$<br>541.7    | \$  | 82.9               | \$  | 1,245.2              |
| 2011  | \$         | 1,647.8       | \$ | 252.3               | \$ | 3,790.0              | \$<br>1,311.0  | \$  | 200.7              | \$  | 3,015.5              |
| 2012  | \$         | 2,896.1       | \$ | 443.2               | \$ | 6,653.2              | \$<br>2,218.2  | \$  | 339.4              | \$  | 5,095.7              |
| 2013  | \$         | 4,357.4       | \$ | 667.0               | \$ | 10,008.8             | \$<br>3,212.6  | \$  | 491.7              | \$  | 7,379.2              |
| 2014  | \$         | 5,537.9       | \$ | 846.6               | \$ | 12,730.5             | \$<br>3,930.3  | \$  | 600.9              | \$  | 9,035.0              |
| 2015  | \$         | 6,571.9       | \$ | 1,004.9             | \$ | 15,114.3             | \$<br>4,489.8  | \$  | 686.5              | \$  | 10,325.8             |
| 2016  | \$         | 7,440.4       | \$ | 1,136.6             | \$ | 17,110.8             | \$<br>4,893.1  | \$  | 747.5              | \$  | 11,252.7             |
| 2017  | \$         | 8,151.3       | \$ | 1,244.7             | \$ | 18,763.5             | \$<br>5,160.2  | \$  | 787.9              | \$  | 11,878.3             |
| 2018  | \$         | 8,708.3       | \$ | 1,327.8             | \$ | 20,062.3             | \$<br>5,306.7  | \$  | 809.2              | \$  | 12,225.7             |
| 2019  | \$         | 9,120.1       | \$ | 1,389.3             | \$ | 21,046.5             | \$<br>5,349.9  | \$  | 815.0              | \$  | 12,346.1             |
| 2020  | \$         | 9,417.9       | \$ | 1,434.1             | \$ | 21,743.5             | \$<br>5,318.1  | \$  | 809.8              | \$  | 12,278.1             |
| 2021  | \$         | 9,625.8       | \$ | 1,464.0             | \$ | 22,225.0             | \$<br>5,232.3  | \$  | 795.8              | \$  | 12,080.9             |
| 2022  | \$         | 9,763.6       | \$ | 1,484.7             | \$ | 22,581.1             | \$<br>5,108.8  | \$  | 776.8              | \$  | 11,815.5             |
| 2023  | \$         | 9,846.1       | \$ | 1,497.5             | \$ | 22,777.7             | \$<br>4,959.4  | \$  | 754.3              | \$  | 11,472.9             |
| 2024  | \$         | 9,884.9       | \$ | 1,502.7             | \$ | 22,876.1             | \$<br>4,792.8  | \$  | 728.6              | \$  | 11,091.7             |
| 2025  | \$         | 9,888.6       | \$ | 1,501.0             | \$ | 22,886.0             | \$<br>4,615.3  | \$  | 700.6              | \$  | 10,681.6             |
| 2026  | \$         | 9,864.0       | \$ | 1,495.2             | \$ | 22,848.8             | \$<br>4,431.8  | \$  | 671.8              | \$  | 10,265.6             |
| 2027  | \$         | 9,816.6       | \$ | 1,486.3             | \$ | 22,774.0             | \$<br>4,245.6  | \$  | 642.8              | \$  | 9,849.5              |
| 2028  | \$         | 9,624.3       | \$ | 1,458.5             | \$ | 22,315.4             | \$<br>4,006.8  | \$  | 607.2              | \$  | 9,290.4              |
| 2029  | \$ 9,521.4 |               | \$ | 1,440.9             | \$ | 22,097.6             | \$<br>3,815.8  | \$  | 577.5              | \$  | 8,855.8              |
| Total | \$         | 152,339.8     | \$ | 23,177.6            | \$ | 351,911.5            | \$<br>82,940.2 | \$  | 12,626.9           | \$  | 191,481.2            |
| Ann.  | \$         | 8,748.6       | \$ | 1,331.0             | \$ | 20,209.5             | \$<br>7,117.1  | \$  | 1,083.5            | \$  | 16,431.1             |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibit F.12a.

Exhibit F.12c Mean Present Value of Benefits Yearly Projections, WTP for Lymphoma as Basis for Non-Fatal Cases, at 3% Discount Rate, by System Size

(All Systems)

**TTHM - Colorectal Cancer Sensitivity Analysis** 

|       |    |      |    |       |         | S       | mo | king/Lun   | g ( | Cancer    | Се  | ssation L  | .aç | g Model           |    |                     |    |           |    |           |
|-------|----|------|----|-------|---------|---------|----|------------|-----|-----------|-----|------------|-----|-------------------|----|---------------------|----|-----------|----|-----------|
| Year  | <  | 100  | 10 | 0-499 | 5       | 600-999 | 1. | ,000-3,299 | 3,3 | 300-9,999 | 10. | 000-49,999 |     | 50,000-<br>99,999 |    | 100,000-<br>999,999 | >1 | 1,000,000 |    | Total     |
| 2005  | \$ | _    | \$ | _     | \$      | _       | \$ | _          | \$  | <u> </u>  | \$  |            | \$  |                   | \$ | <u> </u>            | \$ |           | \$ | _         |
| 2006  | \$ | -    | \$ | -     | \$      | _       | \$ | -          | \$  | _         | \$  | -          | \$  | -                 | \$ | -                   | \$ | _         | \$ | -         |
| 2007  | \$ | -    | \$ | -     | φ<br>\$ | -       | \$ | -          | \$  | -         | \$  | -          | \$  | -                 | \$ | -                   | \$ | -         | \$ | -         |
| 2007  | \$ | -    | \$ | -     | э<br>\$ | -       |    | -          | \$  | -         | \$  | -          | \$  |                   | \$ | -                   | \$ | -         | \$ | -         |
| 2008  |    | -    | ·  | -     |         |         | \$ | -          | ľ   | -         |     | -          | l ' |                   | ·  | -                   |    |           | ľ  | -         |
|       | \$ | -    | \$ | -     | \$      | -       | \$ | -          | \$  | -         | \$  | -          | \$  |                   | \$ | -                   | \$ | -         | \$ | -         |
| 2010  | \$ | 0.2  | \$ | 1.9   | \$      | 2.3     | \$ | 9.5        | \$  | 21.2      | \$  | 77.5       | \$  | 61.9              | \$ | 265.1               | \$ | 215.7     | \$ | 655.4     |
| 2011  | \$ | 0.6  | \$ | 4.7   | \$      | 5.8     | \$ | 23.9       | \$  | 53.3      | \$  | 194.9      | \$  | 155.6             | \$ | 666.6               | \$ | 542.3     | \$ | 1,647.8   |
| 2012  | \$ | 1.1  | \$ | 8.3   | \$      | 10.2    | \$ | 42.0       | \$  | 93.7      | \$  | 342.5      | \$  | 273.5             | \$ | 1,171.6             | \$ | 953.2     | \$ | 2,896.1   |
| 2013  | \$ | 1.6  | \$ | 12.6  | \$      | 15.3    | \$ | 63.3       | \$  | 140.9     | \$  | 515.3      | \$  | 411.5             | \$ | 1,762.8             | \$ | 1,434.1   | \$ | 4,357.4   |
| 2014  | \$ | 2.2  | \$ | 17.3  | \$      | 21.2    | \$ | 87.3       | \$  | 194.4     | \$  | 710.8      | \$  | 539.1             | \$ | 2,186.7             | \$ | 1,778.9   | \$ | 5,537.9   |
| 2015  | \$ | 2.9  | \$ | 22.6  | \$      | 27.5    | \$ | 113.6      | \$  | 253.1     | \$  | 890.2      | \$  | 639.0             | \$ | 2,549.2             | \$ | 2,073.9   | \$ | 6,571.9   |
| 2016  | \$ | 3.5  | \$ | 27.2  | \$      | 33.3    | \$ | 137.2      | \$  | 305.6     | \$  | 1,029.0    | \$  | 722.9             | \$ | 2,857.2             | \$ | 2,324.5   | \$ | 7,440.4   |
| 2017  | \$ | 4.0  | \$ | 30.8  | \$      | 37.7    | \$ | 155.3      | \$  | 346.0     | \$  | 1,143.8    | \$  | 792.4             | \$ | 3,110.7             | \$ | 2,530.6   | \$ | 8,151.3   |
| 2018  | \$ | 4.4  | \$ | 33.8  | \$      | 41.2    | \$ | 170.2      | \$  | 379.1     | \$  | 1,237.6    | \$  | 847.5             | \$ | 3,305.4             | \$ | 2,689.1   | \$ | 8,708.3   |
| 2019  | \$ | 4.7  | \$ | 36.2  | \$      | 44.2    | \$ | 182.2      | \$  | 405.9     | \$  | 1,311.2    | \$  | 888.5             | \$ | 3,444.9             | \$ | 2,802.5   | \$ | 9,120.1   |
| 2020  | \$ | 4.9  | \$ | 38.0  | \$      | 46.4    | \$ | 191.5      | \$  | 426.7     | \$  | 1,365.4    | \$  | 917.6             | \$ | 3,544.1             | \$ | 2,883.2   | \$ | 9,417.9   |
| 2021  | \$ | 5.1  | \$ | 39.4  | \$      | 48.1    | \$ | 198.4      | \$  | 441.9     | \$  | 1,403.6    | \$  | 937.9             | \$ | 3,612.5             | \$ | 2,938.9   | \$ | 9,625.8   |
| 2022  | \$ | 5.2  | \$ | 40.3  | \$      | 49.2    | \$ | 203.1      | \$  | 452.5     | \$  | 1,429.7    | \$  | 951.4             | \$ | 3,657.0             | \$ | 2,975.1   | \$ | 9,763.6   |
| 2023  | \$ | 5.3  | \$ | 41.0  | \$      | 50.0    | \$ | 206.3      | \$  | 459.5     | \$  | 1,446.4    | \$  | 959.5             | \$ | 3,682.4             | \$ | 2,995.8   | \$ | 9,846.1   |
| 2024  | \$ | 5.3  | \$ | 41.3  | \$      | 50.5    | \$ | 208.2      | \$  | 463.8     | \$  | 1,455.7    | \$  | 963.4             | \$ | 3,692.6             | \$ | 3,004.1   | \$ | 9,884.9   |
| 2025  | \$ | 5.4  | \$ | 41.5  | \$      | 50.7    | \$ | 209.1      | \$  | 465.9     | \$  | 1,459.1    | \$  | 963.8             | \$ | 3,690.6             | \$ | 3,002.4   | \$ | 9,888.6   |
| 2026  | \$ | 5.4  | \$ | 41.6  | \$      | 50.7    | \$ | 209.3      | \$  | 466.3     | \$  | 1,457.8    | \$  | 961.4             | \$ | 3,678.7             | \$ | 2,992.8   | \$ | 9,864.0   |
| 2027  | \$ | 5.4  | \$ | 41.5  | \$      | 50.6    | \$ | 208.9      | \$  | 465.4     | \$  | 1,452.6    | \$  | 956.8             | \$ | 3,658.8             | \$ | 2,976.6   | \$ | 9,816.6   |
| 2028  | \$ | 5.3  | \$ | 40.8  | \$      | 49.8    | \$ | 205.2      | \$  | 457.3     | \$  | 1,425.7    | \$  | 938.1             | \$ | 3,585.4             | \$ | 2,916.8   | \$ | 9,624.3   |
| 2029  | \$ | 5.2  | \$ | 40.4  | \$      | 49.3    | \$ | 203.4      | \$  | 453.2     | \$  | 1,411.7    | \$  | 928.1             | \$ | 3,545.6             | \$ | 2,884.4   | \$ | 9,521.4   |
| Total | \$ | 77.8 | \$ | 601.3 | \$      | 734.0   | \$ | 3,027.9    | \$  | 6,745.7   | \$  | 21,760.3   | \$  | 14,809.9          | \$ | 57,667.9            | \$ | 46,915.0  | \$ | 152,339.8 |
| Ann.  | \$ | 4.5  | \$ | 34.5  | \$      | 42.2    | \$ | 173.9      | \$  | 387.4     | \$  | 1,249.7    | \$  | 850.5             | \$ | 3,311.7             | \$ | 2,694.2   | \$ | 8,748.6   |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f and E.43d.

#### Exhibit F.12d Mean Present Value of Benefits Yearly Projections, WTP for Lymphoma as Basis for Non-Fatal Cases, at 7% Discount Rate, by System Size (All Systems)

**TTHM - Colorectal Cancer Sensitivity Analysis** 

|       |            |    |                     |    |        | S   | moking/   | 'Lu | ng Can   | cer | Cessatio   | on | Lag Mod           | del |                     |    |          |                |
|-------|------------|----|---------------------|----|--------|-----|-----------|-----|----------|-----|------------|----|-------------------|-----|---------------------|----|----------|----------------|
| Vaan  | 100        | 10 | 00-499              | 50 | 0-999  | 1 ( | 000-3,299 | 2 2 | 00.000   | 10  | 000-49,999 |    | 50,000-<br>99,999 |     | 100,000-<br>999,999 | _1 | ,000,000 | Total          |
| Year  | 100        |    | JU- <del>4</del> 33 |    | 10-999 |     | 000-3,299 |     | 00-5,555 |     | 000-45,555 |    | 33,333            |     | 333,333             |    | ,000,000 | TOtal          |
| 2005  | \$<br>-    | \$ | -                   | \$ | -      | \$  | -         | \$  | -        | \$  | -          | \$ | -                 | \$  | -                   | \$ | -        | \$<br>-        |
| 2006  | \$<br>-    | \$ | -                   | \$ | -      | \$  | -         | \$  | -        | \$  | -          | \$ | -                 | \$  | -                   | \$ | -        | \$<br>-        |
| 2007  | \$<br>-    | \$ | -                   | \$ | -      | \$  | -         | \$  | -        | \$  | -          | \$ | -                 | \$  | -                   | \$ | -        | \$<br>-        |
| 2008  | \$<br>-    | \$ | -                   | \$ | -      | \$  | -         | \$  | -        | \$  | -          | \$ | -                 | \$  | -                   | \$ | -        | \$<br>-        |
| 2009  | \$<br>-    | \$ | -                   | \$ | -      | \$  | -         | \$  | -        | \$  | -          | \$ | -                 | \$  | -                   | \$ | -        | \$<br>-        |
| 2010  | \$<br>0.2  | \$ | 1.6                 | \$ | 1.9    | \$  | 7.9       | \$  | 17.5     | \$  | 64.1       | \$ | 51.2              | \$  | 219.1               | \$ | 178.3    | \$<br>541.7    |
| 2011  | \$<br>0.5  | \$ | 3.8                 | \$ | 4.6    | \$  | 19.0      | \$  | 42.4     | \$  | 155.0      | \$ | 123.8             | \$  | 530.4               | \$ | 431.5    | \$<br>1,311.0  |
| 2012  | \$<br>8.0  | \$ | 6.4                 | \$ | 7.8    | \$  | 32.2      | \$  | 71.7     | \$  | 262.3      | \$ | 209.5             | \$  | 897.4               | \$ | 730.0    | \$<br>2,218.2  |
| 2013  | \$<br>1.2  | \$ | 9.3                 | \$ | 11.3   | \$  | 46.6      | \$  | 103.9    | \$  | 379.9      | \$ | 303.4             | \$  | 1,299.7             | \$ | 1,057.3  | \$<br>3,212.6  |
| 2014  | \$<br>1.6  | \$ | 12.3                | \$ | 15.0   | \$  | 61.9      | \$  | 138.0    | \$  | 504.5      | \$ | 382.6             | \$  | 1,551.9             | \$ | 1,262.5  | \$<br>3,930.3  |
| 2015  | \$<br>2.0  | \$ | 15.4                | \$ | 18.8   | \$  | 77.6      | \$  | 172.9    | \$  | 608.2      | \$ | 436.5             | \$  | 1,741.6             | \$ | 1,416.8  | \$<br>4,489.8  |
| 2016  | \$<br>2.3  | \$ | 17.9                | \$ | 21.9   | \$  | 90.2      | \$  | 201.0    | \$  | 676.7      | \$ | 475.4             | \$  | 1,879.0             | \$ | 1,528.7  | \$<br>4,893.1  |
| 2017  | \$<br>2.5  | \$ | 19.5                | \$ | 23.8   | \$  | 98.3      | \$  | 219.1    | \$  | 724.1      | \$ | 501.6             | \$  | 1,969.2             | \$ | 1,602.0  | \$<br>5,160.2  |
| 2018  | \$<br>2.7  | \$ | 20.6                | \$ | 25.1   | \$  | 103.7     | \$  | 231.0    | \$  | 754.2      | \$ | 516.5             | \$  | 2,014.3             | \$ | 1,638.7  | \$<br>5,306.7  |
| 2019  | \$<br>2.7  | \$ | 21.2                | \$ | 25.9   | \$  | 106.9     | \$  | 238.1    | \$  | 769.1      | \$ | 521.2             | \$  | 2,020.8             | \$ | 1,644.0  | \$<br>5,349.9  |
| 2020  | \$<br>2.8  | \$ | 21.5                | \$ | 26.2   | \$  | 108.2     | \$  | 241.0    | \$  | 771.0      | \$ | 518.1             | \$  | 2,001.3             | \$ | 1,628.1  | \$<br>5,318.1  |
| 2021  | \$<br>2.8  | \$ | 21.4                | \$ | 26.1   | \$  | 107.8     | \$  | 240.2    | \$  | 763.0      | \$ | 509.8             | \$  | 1,963.7             | \$ | 1,597.5  | \$<br>5,232.3  |
| 2022  | \$<br>2.7  | \$ | 21.1                | \$ | 25.8   | \$  | 106.3     | \$  | 236.8    | \$  | 748.1      | \$ | 497.8             | \$  | 1,913.5             | \$ | 1,556.7  | \$<br>5,108.8  |
| 2023  | \$<br>2.7  | \$ | 20.6                | \$ | 25.2   | \$  | 103.9     | \$  | 231.4    | \$  | 728.5      | \$ | 483.3             | \$  | 1,854.8             | \$ | 1,508.9  | \$<br>4,959.4  |
| 2024  | \$<br>2.6  | \$ | 20.0                | \$ | 24.5   | \$  | 100.9     | \$  | 224.9    | \$  | 705.8      | \$ | 467.1             | \$  | 1,790.4             | \$ | 1,456.6  | \$<br>4,792.8  |
| 2025  | \$<br>2.5  | \$ | 19.4                | \$ | 23.7   | \$  | 97.6      | \$  | 217.5    | \$  | 681.0      | \$ | 449.8             | \$  | 1,722.5             | \$ | 1,401.3  | \$<br>4,615.3  |
| 2026  | \$<br>2.4  | \$ | 18.7                | \$ | 22.8   | \$  | 94.0      | \$  | 209.5    | \$  | 655.0      | \$ | 431.9             | \$  | 1,652.8             | \$ | 1,344.6  | \$<br>4,431.8  |
| 2027  | \$<br>2.3  | \$ | 17.9                | \$ | 21.9   | \$  | 90.3      | \$  | 201.3    | \$  | 628.2      | \$ | 413.8             | \$  | 1,582.4             | \$ | 1,287.3  | \$<br>4,245.6  |
| 2028  | \$<br>2.2  | \$ | 17.0                | \$ | 20.7   | \$  | 85.4      | \$  | 190.4    | \$  | 593.5      | \$ | 390.6             | \$  | 1,492.7             | \$ | 1,214.3  | \$<br>4,006.8  |
| 2029  | \$<br>2.1  | \$ | 16.2                | \$ | 19.8   | \$  | 81.5      | \$  | 181.6    | \$  | 565.7      | \$ | 371.9             | \$  | 1,420.9             | \$ | 1,156.0  | \$<br>3,815.8  |
| Total | \$<br>41.6 | \$ | 321.8               | \$ | 392.8  | \$  | 1,620.4   | \$  | 3,610.1  | \$  | 11,738.0   | \$ | 8,056.0           | \$  | 31,518.3            | \$ | 25,641.3 | \$<br>82,940.2 |
| Ann.  | \$<br>3.6  | \$ | 27.6                | \$ | 33.7   | \$  | 139.0     | \$  | 309.8    | \$  | 1,007.2    | \$ | 691.3             | \$  | 2,704.6             | \$ | 2,200.3  | \$<br>7,117.1  |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f and E.43d.

# Section F.13 Model Outputs - Colorectal Cancer Sensitivity Analysis TTHM as Indicator Bronchitis for Non-Fatal Cases

Exhibit F.13a Projections of Yearly Benefits, WTP for Bronchitis as Basis for Non-Fatal Cases (Smoking/Lung Cancer Cessation Lag Model)

**TTHM - Colorectal Cancer Sensitivity Analysis** 

|       | Surfac          | e V | later Syst         | ems | S                   | Grou           | nd | Water Sy           | stei | ms                  |                 | All | Systems            |    |                     |
|-------|-----------------|-----|--------------------|-----|---------------------|----------------|----|--------------------|------|---------------------|-----------------|-----|--------------------|----|---------------------|
|       |                 |     | 90 Po<br>Confider  |     |                     |                |    | 90 P<br>Confider   |      |                     |                 |     | 90 Po<br>Confider  |    |                     |
| Year  | Mean<br>Value   | (5  | Lower<br>th %tile) | (9  | Upper<br>5th %tile) | Mean<br>Value  |    | Lower<br>th %tile) | (9   | Upper<br>5th %tile) | Mean<br>Value   | (5  | Lower<br>th %tile) | (9 | Upper<br>5th %tile) |
| 2005  | \$              | \$  |                    | \$  | ,                   | \$<br>-        | \$ | -                  | \$   |                     | \$<br>-         | \$  | -                  | \$ |                     |
| 2006  | \$<br>-         | \$  | -                  | \$  | -                   | \$<br>-        | \$ | -                  | \$   | -                   | \$<br>-         | \$  | -                  | \$ | -                   |
| 2007  | \$<br>-         | \$  | -                  | \$  | -                   | \$<br>-        | \$ | -                  | \$   | -                   | \$<br>-         | \$  | -                  | \$ | -                   |
| 2008  | \$<br>-         | \$  | -                  | \$  | -                   | \$<br>-        | \$ | -                  | \$   | -                   | \$<br>-         | \$  | -                  | \$ | -                   |
| 2009  | \$<br>-         | \$  | -                  | \$  | -                   | \$<br>-        | \$ | -                  | \$   | -                   | \$<br>-         | \$  | -                  | \$ | -                   |
| 2010  | \$<br>346.6     | \$  | 76.3               | \$  | 762.3               | \$<br>28.6     | \$ | 6.3                | \$   | 63.0                | \$<br>375.3     | \$  | 82.6               | \$ | 825.3               |
| 2011  | \$<br>898.3     | \$  | 197.6              | \$  | 1,978.7             | \$<br>74.2     | \$ | 16.3               | \$   | 163.5               | \$<br>972.6     | \$  | 213.9              | \$ | 2,142.3             |
| 2012  | \$<br>1,627.5   | \$  | 357.4              | \$  | 3,582.3             | \$<br>134.5    | \$ | 29.5               | \$   | 296.1               | \$<br>1,762.0   | \$  | 387.0              | \$ | 3,878.3             |
| 2013  | \$<br>2,524.0   | \$  | 554.1              | \$  | 5,553.2             | \$<br>208.6    | \$ | 45.8               | \$   | 458.9               | \$<br>2,732.6   | \$  | 599.9              | \$ | 6,012.2             |
| 2014  | \$<br>3,294.8   | \$  | 722.0              | \$  | 7,252.9             | \$<br>284.9    | \$ | 62.4               | \$   | 627.2               | \$<br>3,579.7   | \$  | 784.4              | \$ | 7,880.1             |
| 2015  | \$<br>4,016.4   | \$  | 878.6              | \$  | 8,856.5             | \$<br>362.4    | \$ | 79.3               | \$   | 799.1               | \$<br>4,378.8   | \$  | 957.8              | \$ | 9,655.5             |
| 2016  | \$<br>4,676.6   | \$  | 1,022.1            | \$  | 10,309.6            | \$<br>433.5    | \$ | 94.7               | \$   | 955.5               | \$<br>5,110.0   | \$  | 1,116.8            | \$ | 11,265.2            |
| 2017  | \$<br>5,274.4   | \$  | 1,151.4            | \$  | 11,648.8            | \$<br>496.3    | \$ | 108.3              | \$   | 1,096.1             | \$<br>5,770.7   | \$  | 1,259.7            | \$ | 12,744.9            |
| 2018  | \$<br>5,802.3   | \$  | 1,263.5            | \$  | 12,819.0            | \$<br>552.6    | \$ | 120.3              | \$   | 1,220.8             | \$<br>6,354.9   | \$  | 1,383.9            | \$ | 14,039.8            |
| 2019  | \$<br>6,258.1   | \$  | 1,360.6            | \$  | 13,857.9            | \$<br>602.5    | \$ | 131.0              | \$   | 1,334.1             | \$<br>6,860.6   | \$  | 1,491.5            | \$ | 15,192.0            |
| 2020  | \$<br>6,656.7   | \$  | 1,444.8            | \$  | 14,752.2            | \$<br>646.4    | \$ | 140.3              | \$   | 1,432.4             | \$<br>7,303.1   | \$  | 1,585.1            | \$ | 16,184.6            |
| 2021  | \$<br>7,009.6   | \$  | 1,519.5            | \$  | 15,552.9            | \$<br>684.9    | \$ | 148.5              | \$   | 1,519.7             | \$<br>7,694.5   | \$  | 1,667.9            | \$ | 17,072.6            |
| 2022  | \$<br>7,326.3   | \$  | 1,585.0            | \$  | 16,287.9            | \$<br>719.1    | \$ | 155.6              | \$   | 1,598.7             | \$<br>8,045.4   | \$  | 1,740.6            | \$ | 17,886.5            |
| 2023  | \$<br>7,614.0   | \$  | 1,642.8            | \$  | 16,929.6            | \$<br>749.9    | \$ | 161.8              | \$   | 1,667.3             | \$<br>8,363.8   | \$  | 1,804.6            | \$ | 18,596.9            |
| 2024  | \$<br>7,878.1   | \$  | 1,698.3            | \$  | 17,525.4            | \$<br>777.9    | \$ | 167.7              | \$   | 1,730.5             | \$<br>8,656.0   | \$  | 1,866.0            | \$ | 19,255.9            |
| 2025  | \$<br>8,122.9   | \$  | 1,747.4            | \$  | 18,081.4            | \$<br>803.7    | \$ | 172.9              | \$   | 1,789.1             | \$<br>8,926.6   | \$  | 1,920.3            | \$ | 19,870.5            |
| 2026  | \$<br>8,351.8   | \$  | 1,794.3            | \$  | 18,596.4            | \$<br>827.8    | \$ | 177.8              | \$   | 1,843.1             | \$<br>9,179.5   | \$  | 1,972.2            | \$ | 20,439.5            |
| 2027  | \$<br>8,567.5   | \$  | 1,837.6            | \$  | 19,124.4            | \$<br>850.3    | \$ | 182.4              | \$   | 1,898.0             | \$<br>9,417.7   | \$  | 2,019.9            | \$ | 21,022.4            |
| 2028  | \$<br>8,648.1   | \$  | 1,855.9            | \$  | 19,287.1            | \$<br>859.2    | \$ | 184.4              | \$   | 1,916.2             | \$<br>9,507.3   | \$  | 2,040.3            | \$ | 21,203.4            |
| 2029  | \$<br>8,817.3   | \$  | 1,889.8            | \$  | 19,699.1            | \$<br>876.8    | \$ | 187.9              | \$   | 1,959.0             | \$<br>9,694.1   | \$  | 2,077.8            | \$ | 21,658.0            |
| Total | \$<br>113,711.3 | \$  | 24,598.9           | \$  | 252,457.6           | \$<br>10,974.0 | \$ | 2,373.3            | \$   | 24,368.3            | \$<br>124,685.3 | \$  | 26,972.2           | \$ | 276,825.8           |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f, E.43b, and E.43c.

# Exhibit F.13b Present Value of Benefits Yearly Projections, WTP for Bronchitis as Basis for Non-Fatal Cases, Smoking/Lung Cancer Cessation Lag Model (All Water Systems)

**TTHM - Colorectal Cancer Sensitivity Analysis** 

|       |                | 3% | biscount R          | ate |                       | 7%             | 6 Di | scount R           | ate |                     |
|-------|----------------|----|---------------------|-----|-----------------------|----------------|------|--------------------|-----|---------------------|
|       |                |    | 90 P<br>Confider    |     |                       |                |      | 90 P<br>Confide    |     |                     |
| Year  | Mean<br>Value  | (  | Lower<br>5th %tile) |     | Upper<br>(95th %tile) | Mean<br>Value  | (5   | Lower<br>th %tile) | (9  | Upper<br>5th %tile) |
| 2005  | \$<br>1        | \$ | -                   | \$  | -                     | \$             | \$   | -                  | \$  | -                   |
| 2006  | \$<br>-        | \$ | -                   | \$  | -                     | \$<br>-        | \$   | -                  | \$  | -                   |
| 2007  | \$<br>-        | \$ | -                   | \$  | -                     | \$<br>-        | \$   | -                  | \$  | -                   |
| 2008  | \$<br>-        | \$ | -                   | \$  | -                     | \$<br>-        | \$   | -                  | \$  | -                   |
| 2009  | \$<br>-        | \$ | -                   | \$  | -                     | \$<br>-        | \$   | -                  | \$  | -                   |
| 2010  | \$<br>323.7    | \$ | 71.3                | \$  | 711.9                 | \$<br>267.6    | \$   | 58.9               | \$  | 588.4               |
| 2011  | \$<br>814.5    | \$ | 179.1               | \$  | 1,794.1               | \$<br>648.1    | \$   | 142.5              | \$  | 1,427.5             |
| 2012  | \$<br>1,432.7  | \$ | 314.7               | \$  | 3,153.4               | \$<br>1,097.3  | \$   | 241.0              | \$  | 2,415.2             |
| 2013  | \$<br>2,157.1  | \$ | 473.6               | \$  | 4,746.1               | \$<br>1,590.4  | \$   | 349.2              | \$  | 3,499.1             |
| 2014  | \$<br>2,743.5  | \$ | 601.2               | \$  | 6,039.5               | \$<br>1,947.1  | \$   | 426.7              | \$  | 4,286.3             |
| 2015  | \$<br>3,258.2  | \$ | 712.7               | \$  | 7,184.6               | \$<br>2,226.0  | \$   | 486.9              | \$  | 4,908.4             |
| 2016  | \$<br>3,691.6  | \$ | 806.8               | \$  | 8,138.2               | \$<br>2,427.7  | \$   | 530.6              | \$  | 5,352.0             |
| 2017  | \$<br>4,047.5  | \$ | 883.5               | \$  | 8,939.0               | \$<br>2,562.3  | \$   | 559.3              | \$  | 5,658.9             |
| 2018  | \$<br>4,327.4  | \$ | 942.4               | \$  | 9,560.4               | \$<br>2,637.1  | \$   | 574.3              | \$  | 5,826.0             |
| 2019  | \$<br>4,535.7  | \$ | 986.1               | \$  | 10,043.7              | \$<br>2,660.7  | \$   | 578.4              | \$  | 5,891.7             |
| 2020  | \$<br>4,687.6  | \$ | 1,017.4             | \$  | 10,388.3              | \$<br>2,647.0  | \$   | 574.5              | \$  | 5,866.1             |
| 2021  | \$<br>4,795.0  | \$ | 1,039.4             | \$  | 10,639.1              | \$<br>2,606.4  | \$   | 565.0              | \$  | 5,783.1             |
| 2022  | \$<br>4,867.6  | \$ | 1,053.1             | \$  | 10,821.6              | \$<br>2,547.0  | \$   | 551.0              | \$  | 5,662.4             |
| 2023  | \$<br>4,912.9  | \$ | 1,060.0             | \$  | 10,923.7              | \$<br>2,474.6  | \$   | 533.9              | \$  | 5,502.1             |
| 2024  | \$<br>4,936.4  | \$ | 1,064.2             | \$  | 10,981.4              | \$<br>2,393.5  | \$   | 516.0              | \$  | 5,324.4             |
| 2025  | \$<br>4,942.5  | \$ | 1,063.2             | \$  | 11,001.8              | \$<br>2,306.8  | \$   | 496.2              | \$  | 5,134.9             |
| 2026  | \$<br>4,934.5  | \$ | 1,060.1             | \$  | 10,987.2              | \$<br>2,217.0  | \$   | 476.3              | \$  | 4,936.4             |
| 2027  | \$<br>4,915.0  | \$ | 1,054.2             | \$  | 10,971.4              | \$<br>2,125.7  | \$   | 455.9              | \$  | 4,745.0             |
| 2028  | \$<br>4,817.3  | \$ | 1,033.8             | \$  | 10,743.6              | \$<br>2,005.5  | \$   | 430.4              | \$  | 4,472.8             |
| 2029  | \$<br>4,768.9  | \$ | 1,022.1             | \$  | 10,654.3              | \$<br>1,911.2  | \$   | 409.6              | \$  | 4,269.8             |
| Total | \$<br>75,909.4 | \$ | 16,438.8            | \$  | 168,423.3             | \$<br>41,298.7 | \$   | 8,956.7            | \$  | 91,550.6            |
| Ann.  | \$<br>4,359.3  | \$ | 944.0               | \$  | 9,672.2               | \$<br>3,543.9  | \$   | 768.6              | \$  | 7,856.0             |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibit F.13a.

Exhibit F.13c Mean Present Value of Benefits Yearly Projections, WTP for Bronchitis as Basis for Non-Fatal Cases, at 3% Discount Rate, by System Size

(All Systems)

**TTHM - Colorectal Cancer Sensitivity Analysis** 

|       |    |      |      |        |    | Sm     | nok | ing/Lung   | Cá  | ancer C   | ess | sation La | g I | Model   |                     |    |           |    |          |
|-------|----|------|------|--------|----|--------|-----|------------|-----|-----------|-----|-----------|-----|---------|---------------------|----|-----------|----|----------|
|       |    | 100  | 40   | 00-499 | _  | 00-999 | 4   | ,000-3,299 | 2 2 | 300-9,999 |     | 10,000-   |     | 50,000- | 100,000-<br>999,999 |    | 1 000 000 |    | Total    |
| Year  | ^  | 100  | - 10 | JU-499 | 5  | 00-999 | _   | ,000-3,299 | ٥,٥ | 500-9,999 |     | 49,999    | -   | 99,999  | 999,999             | 2  | 1,000,000 | _  | TOTAL    |
| 2005  | \$ | -    | \$   | -      | \$ | -      | \$  | -          | \$  | -         | \$  | -         | \$  | -       | \$<br>-             | \$ | -         | \$ | -        |
| 2006  | \$ | -    | \$   | -      | \$ | -      | \$  | -          | \$  | -         | \$  | -         | \$  | -       | \$<br>-             | \$ | -         | \$ | -        |
| 2007  | \$ | -    | \$   | -      | \$ | -      | \$  | -          | \$  | -         | \$  | -         | \$  | -       | \$<br>-             | \$ | -         | \$ | -        |
| 2008  | \$ | -    | \$   | -      | \$ | -      | \$  | -          | \$  | -         | \$  | -         | \$  | -       | \$<br>-             | \$ | -         | \$ | -        |
| 2009  | \$ | -    | \$   | -      | \$ | -      | \$  | -          | \$  | -         | \$  | -         | \$  | -       | \$<br>-             | \$ | -         | \$ | -        |
| 2010  | \$ | 0.1  | \$   | 0.9    | \$ | 1.1    | \$  | 4.7        | \$  | 10.5      | \$  | 38.3      | \$  | 30.6    | \$<br>131.0         | \$ | 106.5     | \$ | 323.7    |
| 2011  | \$ | 0.3  | \$   | 2.3    | \$ | 2.9    | \$  | 11.8       | \$  | 26.3      | \$  | 96.3      | \$  | 76.9    | \$<br>329.5         | \$ | 268.1     | \$ | 814.5    |
| 2012  | \$ | 0.5  | \$   | 4.1    | \$ | 5.0    | \$  | 20.8       | \$  | 46.3      | \$  | 169.4     | \$  | 135.3   | \$<br>579.6         | \$ | 471.5     | \$ | 1,432.7  |
| 2013  | \$ | 8.0  | \$   | 6.2    | \$ | 7.6    | \$  | 31.3       | \$  | 69.8      | \$  | 255.1     | \$  | 203.7   | \$<br>872.7         | \$ | 709.9     | \$ | 2,157.1  |
| 2014  | \$ | 1.1  | \$   | 8.6    | \$ | 10.5   | \$  | 43.2       | \$  | 96.3      | \$  | 352.2     | \$  | 267.1   | \$<br>1,083.3       | \$ | 881.3     | \$ | 2,743.5  |
| 2015  | \$ | 1.4  | \$   | 11.2   | \$ | 13.7   | \$  | 56.3       | \$  | 125.5     | \$  | 441.3     | \$  | 316.8   | \$<br>1,263.8       | \$ | 1,028.2   | \$ | 3,258.2  |
| 2016  | \$ | 1.7  | \$   | 13.5   | \$ | 16.5   | \$  | 68.1       | \$  | 151.6     | \$  | 510.6     | \$  | 358.7   | \$<br>1,417.6       | \$ | 1,153.3   | \$ | 3,691.6  |
| 2017  | \$ | 2.0  | \$   | 15.3   | \$ | 18.7   | \$  | 77.1       | \$  | 171.8     | \$  | 567.9     | \$  | 393.5   | \$<br>1,544.6       | \$ | 1,256.6   | \$ | 4,047.5  |
| 2018  | \$ | 2.2  | \$   | 16.8   | \$ | 20.5   | \$  | 84.6       | \$  | 188.4     | \$  | 615.0     | \$  | 421.2   | \$<br>1,642.6       | \$ | 1,336.3   | \$ | 4,327.4  |
| 2019  | \$ | 2.3  | \$   | 18.0   | \$ | 22.0   | \$  | 90.6       | \$  | 201.9     | \$  | 652.1     | \$  | 441.9   | \$<br>1,713.2       | \$ | 1,393.8   | \$ | 4,535.7  |
| 2020  | \$ | 2.4  | \$   | 18.9   | \$ | 23.1   | \$  | 95.3       | \$  | 212.4     | \$  | 679.6     | \$  | 456.7   | \$<br>1,764.0       | \$ | 1,435.1   | \$ | 4,687.6  |
| 2021  | \$ | 2.5  | \$   | 19.6   | \$ | 24.0   | \$  | 98.8       | \$  | 220.1     | \$  | 699.2     | \$  | 467.2   | \$<br>1,799.5       | \$ | 1,464.0   | \$ | 4,795.0  |
| 2022  | \$ | 2.6  | \$   | 20.1   | \$ | 24.5   | \$  | 101.3      | \$  | 225.6     | \$  | 712.8     | \$  | 474.3   | \$<br>1,823.2       | \$ | 1,483.2   | \$ | 4,867.6  |
| 2023  | \$ | 2.6  | \$   | 20.4   | \$ | 24.9   | \$  | 102.9      | \$  | 229.3     | \$  | 721.7     | \$  | 478.8   | \$<br>1,837.4       | \$ | 1,494.8   | \$ | 4,912.9  |
| 2024  | \$ | 2.7  | \$   | 20.6   | \$ | 25.2   | \$  | 104.0      | \$  | 231.6     | \$  | 727.0     | \$  | 481.1   | \$<br>1,844.0       | \$ | 1,500.2   | \$ | 4,936.4  |
| 2025  | \$ | 2.7  | \$   | 20.8   | \$ | 25.3   | \$  | 104.5      | \$  | 232.9     | \$  | 729.3     | \$  | 481.7   | \$<br>1,844.6       | \$ | 1,500.7   | \$ | 4,942.5  |
| 2026  | \$ | 2.7  | \$   | 20.8   | \$ | 25.4   | \$  | 104.7      | \$  | 233.3     | \$  | 729.3     | \$  | 480.9   | \$<br>1,840.3       | \$ | 1,497.1   | \$ | 4,934.5  |
| 2027  | \$ | 2.7  | \$   | 20.8   | \$ | 25.4   | \$  | 104.6      | \$  | 233.0     | \$  | 727.3     | \$  | 479.1   | \$<br>1,831.9       | \$ | 1,490.3   | \$ | 4,915.0  |
| 2028  | \$ | 2.6  | \$   | 20.4   | \$ | 24.9   | \$  | 102.7      | \$  | 228.9     | \$  | 713.6     | \$  | 469.6   | \$<br>1,794.6       | \$ | 1,460.0   | \$ | 4,817.3  |
| 2029  | \$ | 2.6  | \$   | 20.2   | \$ | 24.7   | \$  | 101.9      | \$  | 227.0     | \$  | 707.0     | \$  | 464.9   | \$<br>1,775.8       | \$ | 1,444.7   | \$ | 4,768.9  |
| Total | \$ | 38.8 | \$   | 299.7  | \$ | 365.8  | \$  | 1,509.3    | \$  | 3,362.4   | \$  | 10,844.9  | \$  | 7,379.8 | \$<br>28,733.2      | \$ | 23,375.6  | \$ | 75,909.4 |
| Ann.  | \$ | 2.2  | \$   | 17.2   | \$ | 21.0   | \$  | 86.7       | \$  | 193.1     | \$  | 622.8     | \$  | 423.8   | \$<br>1,650.1       | \$ | 1,342.4   | \$ | 4,359.3  |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f and E.43d.

### Exhibit F.13d Mean Present Value of Benefits Yearly Projections, WTP for Bronchitis as Basis for Non-Fatal Cases, at 7% Discount Rate, by System Size (All Systems)

**TTHM - Colorectal Cancer Sensitivity Analysis** 

|       |            |    |       |    | Sm     | oki | ing/Lunç  | j C | ancer C  | Ces | sation L          | ag | Model           |                     |    |                                         |                |
|-------|------------|----|-------|----|--------|-----|-----------|-----|----------|-----|-------------------|----|-----------------|---------------------|----|-----------------------------------------|----------------|
| Vaar  | 100        | 10 | 0-499 | 5  | 00-999 | 1 ( | 000-3,299 | 2 2 | nn-a aaa |     | 10,000-<br>49,999 |    | 0,000-<br>9,999 | 100,000-<br>999,999 | _1 | ,000,000                                | Total          |
| Year  | 100        |    |       |    |        |     |           | ŕ   | 00-3,333 |     | 40,000            |    | 73,333          | •                   | F  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Total          |
| 2005  | \$<br>-    | \$ | -     | \$ | -      | \$  | -         | \$  | -        | \$  | -                 | \$ | -               | \$<br>-             | \$ | -                                       | \$<br>-        |
| 2006  | \$<br>-    | \$ | -     | \$ | -      | \$  | -         | \$  | -        | \$  | -                 | \$ | -               | \$<br>-             | \$ | -                                       | \$<br>-        |
| 2007  | \$<br>-    | \$ | -     | \$ | -      | \$  | -         | \$  | -        | \$  | -                 | \$ | -               | \$<br>-             | \$ | -                                       | \$<br>-        |
| 2008  | \$<br>-    | \$ | -     | \$ | -      | \$  | -         | \$  | -        | \$  | -                 | \$ | -               | \$<br>-             | \$ | -                                       | \$<br>-        |
| 2009  | \$<br>-    | \$ | -     | \$ | -      | \$  | -         | \$  | -        | \$  | -                 | \$ | -               | \$<br>-             | \$ | -                                       | \$<br>-        |
| 2010  | \$<br>0.1  | \$ | 8.0   | \$ | 0.9    | \$  | 3.9       | \$  | 8.7      | \$  | 31.6              | \$ | 25.3            | \$<br>108.2         | \$ | 88.1                                    | \$<br>267.6    |
| 2011  | \$<br>0.2  | \$ | 1.9   | \$ | 2.3    | \$  | 9.4       | \$  | 21.0     | \$  | 76.6              | \$ | 61.2            | \$<br>262.2         | \$ | 213.3                                   | \$<br>648.1    |
| 2012  | \$<br>0.4  | \$ | 3.2   | \$ | 3.9    | \$  | 15.9      | \$  | 35.5     | \$  | 129.8             | \$ | 103.6           | \$<br>443.9         | \$ | 361.1                                   | \$<br>1,097.3  |
| 2013  | \$<br>0.6  | \$ | 4.6   | \$ | 5.6    | \$  | 23.1      | \$  | 51.4     | \$  | 188.1             | \$ | 150.2           | \$<br>643.4         | \$ | 523.4                                   | \$<br>1,590.4  |
| 2014  | \$<br>8.0  | \$ | 6.1   | \$ | 7.4    | \$  | 30.7      | \$  | 68.4     | \$  | 249.9             | \$ | 189.5           | \$<br>768.8         | \$ | 625.5                                   | \$<br>1,947.1  |
| 2015  | \$<br>1.0  | \$ | 7.6   | \$ | 9.3    | \$  | 38.5      | \$  | 85.7     | \$  | 301.5             | \$ | 216.4           | \$<br>863.4         | \$ | 702.4                                   | \$<br>2,226.0  |
| 2016  | \$<br>1.2  | \$ | 8.9   | \$ | 10.8   | \$  | 44.8      | \$  | 99.7     | \$  | 335.8             | \$ | 235.9           | \$<br>932.3         | \$ | 758.5                                   | \$<br>2,427.7  |
| 2017  | \$<br>1.3  | \$ | 9.7   | \$ | 11.8   | \$  | 48.8      | \$  | 108.8    | \$  | 359.5             | \$ | 249.1           | \$<br>977.8         | \$ | 795.5                                   | \$<br>2,562.3  |
| 2018  | \$<br>1.3  | \$ | 10.2  | \$ | 12.5   | \$  | 51.5      | \$  | 114.8    | \$  | 374.8             | \$ | 256.7           | \$<br>1,001.0       | \$ | 814.3                                   | \$<br>2,637.1  |
| 2019  | \$<br>1.4  | \$ | 10.6  | \$ | 12.9   | \$  | 53.1      | \$  | 118.4    | \$  | 382.5             | \$ | 259.2           | \$<br>1,005.0       | \$ | 817.6                                   | \$<br>2,660.7  |
| 2020  | \$<br>1.4  | \$ | 10.7  | \$ | 13.0   | \$  | 53.8      | \$  | 119.9    | \$  | 383.8             | \$ | 257.9           | \$<br>996.1         | \$ | 810.3                                   | \$<br>2,647.0  |
| 2021  | \$<br>1.4  | \$ | 10.7  | \$ | 13.0   | \$  | 53.7      | \$  | 119.7    | \$  | 380.1             | \$ | 254.0           | \$<br>978.2         | \$ | 795.8                                   | \$<br>2,606.4  |
| 2022  | \$<br>1.4  | \$ | 10.5  | \$ | 12.8   | \$  | 53.0      | \$  | 118.0    | \$  | 373.0             | \$ | 248.2           | \$<br>954.0         | \$ | 776.1                                   | \$<br>2,547.0  |
| 2023  | \$<br>1.3  | \$ | 10.3  | \$ | 12.6   | \$  | 51.8      | \$  | 115.5    | \$  | 363.5             | \$ | 241.1           | \$<br>925.5         | \$ | 752.9                                   | \$<br>2,474.6  |
| 2024  | \$<br>1.3  | \$ | 10.0  | \$ | 12.2   | \$  | 50.4      | \$  | 112.3    | \$  | 352.5             | \$ | 233.3           | \$<br>894.1         | \$ | 727.4                                   | \$<br>2,393.5  |
| 2025  | \$<br>1.3  | \$ | 9.7   | \$ | 11.8   | \$  | 48.8      | \$  | 108.7    | \$  | 340.4             | \$ | 224.8           | \$<br>860.9         | \$ | 700.4                                   | \$<br>2,306.8  |
| 2026  | \$<br>1.2  | \$ | 9.3   | \$ | 11.4   | \$  | 47.0      | \$  | 104.8    | \$  | 327.6             | \$ | 216.1           | \$<br>826.8         | \$ | 672.6                                   | \$<br>2,217.0  |
| 2027  | \$<br>1.2  | \$ | 9.0   | \$ | 11.0   | \$  | 45.2      | \$  | 100.8    | \$  | 314.6             | \$ | 207.2           | \$<br>792.3         | \$ | 644.6                                   | \$<br>2,125.7  |
| 2028  | \$<br>1.1  | \$ | 8.5   | \$ | 10.4   | \$  | 42.8      | \$  | 95.3     | \$  | 297.1             | \$ | 195.5           | \$<br>747.1         | \$ | 607.8                                   | \$<br>2,005.5  |
| 2029  | \$<br>1.0  | \$ | 8.1   | \$ | 9.9    | \$  | 40.8      | \$  | 91.0     | \$  | 283.4             | \$ | 186.3           | \$<br>711.7         | \$ | 579.0                                   | \$<br>1,911.2  |
| Total | \$<br>20.7 | \$ | 160.3 | \$ | 195.7  | \$  | 807.2     | \$  | 1,798.2  | \$  | 5,845.9           | \$ | 4,011.4         | \$<br>15,692.7      | \$ | 12,766.6                                | \$<br>41,298.7 |
| Ann.  | \$<br>1.8  | \$ | 13.8  | \$ | 16.8   | \$  | 69.3      | \$  | 154.3    | \$  | 501.6             | \$ | 344.2           | \$<br>1,346.6       | \$ | 1,095.5                                 | 3,543.9        |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f and E.43d.

Section F.14
Model Outputs - Preferred Alternative
20% Safety Margin
TTHM as Indicator
Lymphoma for Non-Fatal Cases

Exhibit F.14a Projections of Yearly Benefits, WTP for Lymphoma as Basis for Non-Fatal Cases (Smoking/Lung Cancer Cessation Lag Model)

TTHM - Preferred Alternative, 20% Safety Margin

|       | Surfac         | e W | ater Syst          | ems | i                   | Grou          | nd | Water Sy           | ster | ns                  |                | All | Systems            |    |                     |
|-------|----------------|-----|--------------------|-----|---------------------|---------------|----|--------------------|------|---------------------|----------------|-----|--------------------|----|---------------------|
|       |                |     | 90 Po<br>Confider  |     | -                   |               |    | 90 P<br>Confider   |      |                     |                |     | 90 P<br>Confider   |    | -                   |
| Year  | Mean<br>Value  |     | Lower<br>th %tile) | (9  | Upper<br>5th %tile) | Mean<br>Value |    | Lower<br>th %tile) | (9:  | Upper<br>5th %tile) | Mean<br>Value  | (5  | Lower<br>th %tile) | (9 | Upper<br>5th %tile) |
| 2005  | \$             | \$  |                    | \$  |                     | \$            | \$ | -                  | \$   |                     | \$<br>-        | \$  | -                  | \$ | -                   |
| 2006  | \$<br>-        | \$  | -                  | \$  | -                   | \$<br>-       | \$ | -                  | \$   | -                   | \$<br>-        | \$  | -                  | \$ | -                   |
| 2007  | \$<br>-        | \$  | -                  | \$  | -                   | \$<br>-       | \$ | -                  | \$   | -                   | \$<br>-        | \$  | -                  | \$ | -                   |
| 2008  | \$<br>-        | \$  | -                  | \$  | -                   | \$<br>-       | \$ | -                  | \$   | -                   | \$<br>-        | \$  | -                  | \$ | -                   |
| 2009  | \$<br>-        | \$  | -                  | \$  | -                   | \$<br>-       | \$ | -                  | \$   | -                   | \$<br>-        | \$  | -                  | \$ | -                   |
| 2010  | \$<br>102.8    | \$  | 15.7               | \$  | 236.2               | \$<br>6.7     | \$ | 1.0                | \$   | 15.3                | \$<br>109.4    | \$  | 16.8               | \$ | 251.6               |
| 2011  | \$<br>274.0    | \$  | 42.0               | \$  | 630.3               | \$<br>17.8    | \$ | 2.7                | \$   | 40.9                | \$<br>291.8    | \$  | 44.7               | \$ | 671.2               |
| 2012  | \$<br>500.3    | \$  | 76.6               | \$  | 1,149.4             | \$<br>32.5    | \$ | 5.0                | \$   | 74.6                | \$<br>532.8    | \$  | 81.5               | \$ | 1,224.0             |
| 2013  | \$<br>773.1    | \$  | 118.3              | \$  | 1,775.8             | \$<br>50.2    | \$ | 7.7                | \$   | 115.3               | \$<br>823.3    | \$  | 126.0              | \$ | 1,891.1             |
| 2014  | \$<br>999.4    | \$  | 152.8              | \$  | 2,297.5             | \$<br>68.1    | \$ | 10.4               | \$   | 156.6               | \$<br>1,067.6  | \$  | 163.2              | \$ | 2,454.1             |
| 2015  | \$<br>1,192.9  | \$  | 182.4              | \$  | 2,743.5             | \$<br>85.6    | \$ | 13.1               | \$   | 196.8               | \$<br>1,278.5  | \$  | 195.5              | \$ | 2,940.4             |
| 2016  | \$<br>1,357.5  | \$  | 207.4              | \$  | 3,121.9             | \$<br>101.0   | \$ | 15.4               | \$   | 232.3               | \$<br>1,458.5  | \$  | 222.8              | \$ | 3,354.2             |
| 2017  | \$<br>1,499.8  | \$  | 229.0              | \$  | 3,452.4             | \$<br>113.9   | \$ | 17.4               | \$   | 262.1               | \$<br>1,613.7  | \$  | 246.4              | \$ | 3,714.5             |
| 2018  | \$<br>1,625.1  | \$  | 247.8              | \$  | 3,744.0             | \$<br>125.0   | \$ | 19.1               | \$   | 288.1               | \$<br>1,750.1  | \$  | 266.9              | \$ | 4,032.0             |
| 2019  | \$<br>1,737.0  | \$  | 264.6              | \$  | 4,008.4             | \$<br>134.9   | \$ | 20.5               | \$   | 311.3               | \$<br>1,871.9  | \$  | 285.1              | \$ | 4,319.7             |
| 2020  | \$<br>1,837.9  | \$  | 279.9              | \$  | 4,243.2             | \$<br>143.7   | \$ | 21.9               | \$   | 331.7               | \$<br>1,981.6  | \$  | 301.7              | \$ | 4,574.9             |
| 2021  | \$<br>1,929.7  | \$  | 293.5              | \$  | 4,455.6             | \$<br>151.6   | \$ | 23.1               | \$   | 350.1               | \$<br>2,081.4  | \$  | 316.6              | \$ | 4,805.7             |
| 2022  | \$<br>2,014.0  | \$  | 306.2              | \$  | 4,657.9             | \$<br>158.9   | \$ | 24.2               | \$   | 367.5               | \$<br>2,172.8  | \$  | 330.4              | \$ | 5,025.3             |
| 2023  | \$<br>2,091.7  | \$  | 318.1              | \$  | 4,838.9             | \$<br>165.5   | \$ | 25.2               | \$   | 383.0               | \$<br>2,257.2  | \$  | 343.3              | \$ | 5,221.8             |
| 2024  | \$<br>2,163.9  | \$  | 329.0              | \$  | 5,007.9             | \$<br>171.7   | \$ | 26.1               | \$   | 397.3               | \$<br>2,335.6  | \$  | 355.1              | \$ | 5,405.2             |
| 2025  | \$<br>2,231.4  | \$  | 338.7              | \$  | 5,164.4             | \$<br>177.4   | \$ | 26.9               | \$   | 410.6               | \$<br>2,408.9  | \$  | 365.6              | \$ | 5,575.1             |
| 2026  | \$<br>2,294.9  | \$  | 347.9              | \$  | 5,315.8             | \$<br>182.8   | \$ | 27.7               | \$   | 423.4               | \$<br>2,477.6  | \$  | 375.6              | \$ | 5,739.2             |
| 2027  | \$<br>2,354.7  | \$  | 356.5              | \$  | 5,462.9             | \$<br>187.8   | \$ | 28.4               | \$   | 435.7               | \$<br>2,542.6  | \$  | 385.0              | \$ | 5,898.6             |
| 2028  | \$<br>2,380.3  | \$  | 360.7              | \$  | 5,519.2             | \$<br>190.1   | \$ | 28.8               | \$   | 440.8               | \$<br>2,570.4  | \$  | 389.5              | \$ | 5,959.9             |
| 2029  | \$<br>2,427.9  | \$  | 367.4              | \$  | 5,634.9             | \$<br>194.1   | \$ | 29.4               | \$   | 450.5               | \$<br>2,622.0  | \$  | 396.8              | \$ | 6,085.4             |
| Total | \$<br>31,788.6 | \$  | 4,834.5            | \$  | 73,460.0            | \$<br>2,459.3 | \$ | 374.0              | \$   | 5,684.0             | \$<br>34,247.9 | \$  | 5,208.5            | \$ | 79,144.0            |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f, E.44b, and E.44c.

## Exhibit F.14b Present Value of Benefits Yearly Projections, WTP for Lymphoma as Basis for Non-Fatal Cases, Smoking/Lung Cancer Cessation Lag Model (All Water Systems)

TTHM - Preferred Alternative, 20% Safety Margin

|       | 3%             |    | scount Ra          |    |                     |                | 6 D | iscount R          | ate |                     |
|-------|----------------|----|--------------------|----|---------------------|----------------|-----|--------------------|-----|---------------------|
|       |                |    | 90 Po<br>Confider  |    |                     |                |     | 90 P<br>Confide    |     |                     |
| Year  | Mean<br>Value  | (5 | Lower<br>th %tile) | (9 | Upper<br>5th %tile) | Mean<br>Value  | (5  | Lower<br>th %tile) | (9  | Upper<br>5th %tile) |
| 2005  | \$<br>-        | \$ | -                  | \$ | -                   | \$<br>-        | \$  | -                  | \$  | -                   |
| 2006  | \$<br>-        | \$ | -                  | \$ | -                   | \$<br>-        | \$  | -                  | \$  | -                   |
| 2007  | \$<br>-        | \$ | -                  | \$ | -                   | \$<br>-        | \$  | -                  | \$  | -                   |
| 2008  | \$<br>-        | \$ | -                  | \$ | -                   | \$<br>-        | \$  | -                  | \$  | -                   |
| 2009  | \$<br>-        | \$ | -                  | \$ | -                   | \$<br>-        | \$  | -                  | \$  | -                   |
| 2010  | \$<br>94.4     | \$ | 14.5               | \$ | 217.0               | \$<br>78.0     | \$  | 11.9               | \$  | 179.4               |
| 2011  | \$<br>244.4    | \$ | 37.4               | \$ | 562.2               | \$<br>194.5    | \$  | 29.8               | \$  | 447.3               |
| 2012  | \$<br>433.2    | \$ | 66.3               | \$ | 995.2               | \$<br>331.8    | \$  | 50.8               | \$  | 762.3               |
| 2013  | \$<br>649.9    | \$ | 99.5               | \$ | 1,492.9             | \$<br>479.2    | \$  | 73.3               | \$  | 1,100.7             |
| 2014  | \$<br>818.2    | \$ | 125.1              | \$ | 1,880.8             | \$<br>580.7    | \$  | 88.8               | \$  | 1,334.9             |
| 2015  | \$<br>951.3    | \$ | 145.5              | \$ | 2,187.9             | \$<br>649.9    | \$  | 99.4               | \$  | 1,494.7             |
| 2016  | \$<br>1,053.7  | \$ | 161.0              | \$ | 2,423.1             | \$<br>692.9    | \$  | 105.9              | \$  | 1,593.5             |
| 2017  | \$<br>1,131.8  | \$ | 172.8              | \$ | 2,605.3             | \$<br>716.5    | \$  | 109.4              | \$  | 1,649.3             |
| 2018  | \$<br>1,191.8  | \$ | 181.7              | \$ | 2,745.6             | \$<br>726.2    | \$  | 110.7              | \$  | 1,673.1             |
| 2019  | \$<br>1,237.5  | \$ | 188.5              | \$ | 2,855.8             | \$<br>725.9    | \$  | 110.6              | \$  | 1,675.2             |
| 2020  | \$<br>1,271.9  | \$ | 193.7              | \$ | 2,936.5             | \$<br>718.2    | \$  | 109.4              | \$  | 1,658.2             |
| 2021  | \$<br>1,297.0  | \$ | 197.3              | \$ | 2,994.7             | \$<br>705.0    | \$  | 107.2              | \$  | 1,627.8             |
| 2022  | \$<br>1,314.6  | \$ | 199.9              | \$ | 3,040.4             | \$<br>687.9    | \$  | 104.6              | \$  | 1,590.9             |
| 2023  | \$<br>1,325.9  | \$ | 201.7              | \$ | 3,067.3             | \$<br>667.8    | \$  | 101.6              | \$  | 1,545.0             |
| 2024  | \$<br>1,332.0  | \$ | 202.5              | \$ | 3,082.5             | \$<br>645.8    | \$  | 98.2               | \$  | 1,494.6             |
| 2025  | \$<br>1,333.7  | \$ | 202.4              | \$ | 3,086.8             | \$<br>622.5    | \$  | 94.5               | \$  | 1,440.7             |
| 2026  | \$<br>1,331.9  | \$ | 201.9              | \$ | 3,085.1             | \$<br>598.4    | \$  | 90.7               | \$  | 1,386.1             |
| 2027  | \$<br>1,326.9  | \$ | 200.9              | \$ | 3,078.5             | \$<br>573.9    | \$  | 86.9               | \$  | 1,331.4             |
| 2028  | \$<br>1,302.4  | \$ | 197.4              | \$ | 3,019.8             | \$<br>542.2    | \$  | 82.2               | \$  | 1,257.2             |
| 2029  | \$<br>1,289.9  | \$ | 195.2              | \$ | 2,993.6             | \$<br>516.9    | \$  | 78.2               | \$  | 1,199.7             |
| Total | \$<br>20,932.5 | \$ | 3,185.0            | \$ | 48,351.1            | \$<br>11,454.4 | \$  | 1,744.0            | \$  | 26,442.0            |
| Ann.  | \$<br>1,202.1  | \$ | 182.9              | \$ | 2,776.7             | \$<br>982.9    | \$  | 149.7              | \$  | 2,269.0             |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibit F.12a.

#### Exhibit F.14c Mean Present Value of Benefits Yearly Projections, WTP for Lymphoma as Basis for Non-Fatal Cases, at 3% Discount Rate, by System Size (All Systems)

TTHM - Preferred Alternative, 20% Safety Margin

|       |          |      |    |       |    |        | Sn  | noking/l | _un  | g Cano   | er   | Cessatio   | n l | Lag Mod           | el |                     |    |           |                |
|-------|----------|------|----|-------|----|--------|-----|----------|------|----------|------|------------|-----|-------------------|----|---------------------|----|-----------|----------------|
| Year  | <b>~</b> | :100 | 10 | 0-499 | 5( | 00-999 | 1,0 | 00-3,299 | 3,30 | 00-9,999 | 10,0 | 000-49,999 |     | 50,000-<br>99,999 |    | 100,000-<br>999,999 | ≥′ | 1,000,000 | Total          |
| 2005  | \$       | ,    | \$ | -     | \$ | 1      | \$  | -        | \$   | -        | \$   | -          | \$  | -                 | \$ | -                   | \$ | -         | \$<br>-        |
| 2006  | \$       | -    | \$ | -     | \$ | -      | \$  | -        | \$   | -        | \$   | -          | \$  | -                 | \$ | -                   | \$ | -         | \$<br>-        |
| 2007  | \$       | -    | \$ | -     | \$ | -      | \$  | -        | \$   | -        | \$   | -          | \$  | -                 | \$ | -                   | \$ | -         | \$<br>-        |
| 2008  | \$       | -    | \$ | -     | \$ | -      | \$  | -        | \$   | -        | \$   | -          | \$  | -                 | \$ | -                   | \$ | -         | \$<br>-        |
| 2009  | \$       | -    | \$ | -     | \$ | -      | \$  | -        | \$   | -        | \$   | -          | \$  | -                 | \$ | -                   | \$ | -         | \$<br>-        |
| 2010  | \$       | 0.0  | \$ | 0.3   | \$ | 0.3    | \$  | 1.4      | \$   | 3.1      | \$   | 10.8       | \$  | 8.8               | \$ | 38.2                | \$ | 31.5      | \$<br>94.4     |
| 2011  | \$       | 0.1  | \$ | 0.7   | \$ | 0.9    | \$  | 3.5      | \$   | 7.9      | \$   | 28.0       | \$  | 22.9              | \$ | 98.9                | \$ | 81.5      | \$<br>244.4    |
| 2012  | \$       | 0.2  | \$ | 1.2   | \$ | 1.5    | \$  | 6.3      | \$   | 14.1     | \$   | 49.6       | \$  | 40.6              | \$ | 175.3               | \$ | 144.5     | \$<br>433.2    |
| 2013  | \$       | 0.2  | \$ | 1.8   | \$ | 2.3    | \$  | 9.4      | \$   | 21.1     | \$   | 74.5       | \$  | 60.8              | \$ | 263.0               | \$ | 216.7     | \$<br>649.9    |
| 2014  | \$       | 0.3  | \$ | 2.5   | \$ | 3.1    | \$  | 12.9     | \$   | 28.8     | \$   | 101.6      | \$  | 78.9              | \$ | 323.5               | \$ | 266.6     | \$<br>818.2    |
| 2015  | \$       | 0.4  | \$ | 3.2   | \$ | 4.0    | \$  | 16.5     | \$   | 37.0     | \$   | 125.4      | \$  | 91.9              | \$ | 368.9               | \$ | 304.0     | \$<br>951.3    |
| 2016  | \$       | 0.5  | \$ | 3.9   | \$ | 4.7    | \$  | 19.7     | \$   | 44.1     | \$   | 142.7      | \$  | 101.8             | \$ | 403.7               | \$ | 332.7     | \$<br>1,053.7  |
| 2017  | \$       | 0.6  | \$ | 4.3   | \$ | 5.3    | \$  | 22.0     | \$   | 49.2     | \$   | 155.8      | \$  | 109.3             | \$ | 430.5               | \$ | 354.8     | \$<br>1,131.8  |
| 2018  | \$       | 0.6  | \$ | 4.6   | \$ | 5.7    | \$  | 23.7     | \$   | 53.2     | \$   | 165.8      | \$  | 115.2             | \$ | 451.2               | \$ | 371.8     | \$<br>1,191.8  |
| 2019  | \$       | 0.6  | \$ | 4.9   | \$ | 6.0    | \$  | 25.0     | \$   | 56.2     | \$   | 173.5      | \$  | 119.6             | \$ | 466.9               | \$ | 384.7     | \$<br>1,237.5  |
| 2020  | \$       | 0.7  | \$ | 5.1   | \$ | 6.3    | \$  | 26.1     | \$   | 58.4     | \$   | 179.4      | \$  | 123.0             | \$ | 478.6               | \$ | 394.4     | \$<br>1,271.9  |
| 2021  | \$       | 0.7  | \$ | 5.3   | \$ | 6.4    | \$  | 26.8     | \$   | 60.2     | \$   | 183.7      | \$  | 125.4             | \$ | 487.1               | \$ | 401.4     | \$<br>1,297.0  |
| 2022  | \$       | 0.7  | \$ | 5.4   | \$ | 6.6    | \$  | 27.4     | \$   | 61.4     | \$   | 186.8      | \$  | 127.1             | \$ | 493.0               | \$ | 406.2     | \$<br>1,314.6  |
| 2023  | \$       | 0.7  | \$ | 5.4   | \$ | 6.7    | \$  | 27.8     | \$   | 62.3     | \$   | 188.9      | \$  | 128.2             | \$ | 496.6               | \$ | 409.2     | \$<br>1,325.9  |
| 2024  | \$       | 0.7  | \$ | 5.5   | \$ | 6.7    | \$  | 28.0     | \$   | 62.9     | \$   | 190.2      | \$  | 128.8             | \$ | 498.4               | \$ | 410.7     | \$<br>1,332.0  |
| 2025  | \$       | 0.7  | \$ | 5.5   | \$ | 6.8    | \$  | 28.2     | \$   | 63.2     | \$   | 190.8      | \$  | 129.0             | \$ | 498.6               | \$ | 410.9     | \$<br>1,333.7  |
| 2026  | \$       | 0.7  | \$ | 5.5   | \$ | 6.8    | \$  | 28.2     | \$   | 63.3     | \$   | 190.8      | \$  | 128.8             | \$ | 497.6               | \$ | 410.0     | \$<br>1,331.9  |
| 2027  | \$       | 0.7  | \$ | 5.5   | \$ | 6.8    | \$  | 28.2     | \$   | 63.2     | \$   | 190.4      | \$  | 128.4             | \$ | 495.5               | \$ | 408.3     | \$<br>1,326.9  |
| 2028  | \$       | 0.7  | \$ | 5.4   | \$ | 6.7    | \$  | 27.7     | \$   | 62.2     | \$   | 187.1      | \$  | 126.0             | \$ | 486.1               | \$ | 400.6     | \$<br>1,302.4  |
| 2029  | \$       | 0.7  | \$ | 5.4   | \$ | 6.6    | \$  | 27.5     | \$   | 61.7     | \$   | 185.4      | \$  | 124.8             | \$ | 481.2               | \$ | 396.5     | \$<br>1,289.9  |
| Total | \$       | 10.5 | \$ | 81.6  | \$ | 100.0  | \$  | 416.3    | \$   | 933.4    | \$   | 2,901.4    | \$  | 2,019.5           | \$ | 7,932.6             | \$ | 6,537.2   | \$<br>20,932.5 |
| Ann.  | \$       | 0.6  | \$ | 4.7   | \$ | 5.7    | \$  | 23.9     | \$   | 53.6     | \$   | 166.6      | \$  | 116.0             | \$ | 455.6               | \$ | 375.4     | \$<br>1,202.1  |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f and E.44d.

#### Exhibit F.14d Mean Present Value of Benefits Yearly Projections, WTP for Lymphoma as Basis for Non-Fatal Cases, at 7% Discount Rate, by System Size (All Systems)

TTHM - Preferred Alternative, 20% Safety Margin

|       | -  | 01011 | <u> </u> | 1110111 | at. 1 | -     |     | oking/L  |     |          | er C | essation          | ۱ L | ag Mode           | el |                     |            |           |                |
|-------|----|-------|----------|---------|-------|-------|-----|----------|-----|----------|------|-------------------|-----|-------------------|----|---------------------|------------|-----------|----------------|
| Year  | <  | 100   | 10       | 0-499   | 50    | 0-999 | 1,0 | 00-3,299 | 3,3 | 00-9,999 |      | 10,000-<br>49,999 |     | 50,000-<br>99,999 |    | 100,000-<br>999,999 | <u>≥</u> 1 | 1,000,000 | Total          |
| 2005  | \$ | -     | \$       | -       | \$    | -     | \$  | -        | \$  | -        | \$   | -                 | \$  | -                 | \$ | -                   | \$         | -         | \$<br>-        |
| 2006  | \$ | -     | \$       | -       | \$    | -     | \$  | -        | \$  | -        | \$   | -                 | \$  | -                 | \$ | -                   | \$         | -         | \$<br>-        |
| 2007  | \$ | -     | \$       | -       | \$    | -     | \$  | -        | \$  | -        | \$   | -                 | \$  | -                 | \$ | -                   | \$         | -         | \$<br>-        |
| 2008  | \$ | -     | \$       | -       | \$    | -     | \$  | -        | \$  | -        | \$   | -                 | \$  | -                 | \$ | -                   | \$         | -         | \$<br>-        |
| 2009  | \$ | -     | \$       | -       | \$    | -     | \$  | -        | \$  | -        | \$   | -                 | \$  | -                 | \$ | -                   | \$         | -         | \$<br>-        |
| 2010  | \$ | 0.0   | \$       | 0.2     | \$    | 0.3   | \$  | 1.1      | \$  | 2.5      | \$   | 8.9               | \$  | 7.3               | \$ | 31.6                | \$         | 26.0      | \$<br>78.0     |
| 2011  | \$ | 0.1   | \$       | 0.6     | \$    | 0.7   | \$  | 2.8      | \$  | 6.3      | \$   | 22.3              | \$  | 18.2              | \$ | 78.7                | \$         | 64.8      | \$<br>194.5    |
| 2012  | \$ | 0.1   | \$       | 0.9     | \$    | 1.2   | \$  | 4.8      | \$  | 10.8     | \$   | 38.0              | \$  | 31.1              | \$ | 134.3               | \$         | 110.7     | \$<br>331.8    |
| 2013  | \$ | 0.2   | \$       | 1.4     | \$    | 1.7   | \$  | 6.9      | \$  | 15.6     | \$   | 54.9              | \$  | 44.9              | \$ | 193.9               | \$         | 159.8     | \$<br>479.2    |
| 2014  | \$ | 0.2   | \$       | 1.8     | \$    | 2.2   | \$  | 9.1      | \$  | 20.5     | \$   | 72.1              | \$  | 56.0              | \$ | 229.6               | \$         | 189.2     | \$<br>580.7    |
| 2015  | \$ | 0.3   | \$       | 2.2     | \$    | 2.7   | \$  | 11.3     | \$  | 25.3     | \$   | 85.7              | \$  | 62.8              | \$ | 252.0               | \$         | 207.7     | \$<br>649.9    |
| 2016  | \$ | 0.3   | \$       | 2.5     | \$    | 3.1   | \$  | 12.9     | \$  | 29.0     | \$   | 93.8              | \$  | 66.9              | \$ | 265.5               | \$         | 218.8     | \$<br>692.9    |
| 2017  | \$ | 0.4   | \$       | 2.7     | \$    | 3.3   | \$  | 13.9     | \$  | 31.2     | \$   | 98.6              | \$  | 69.2              | \$ | 272.5               | \$         | 224.6     | \$<br>716.5    |
| 2018  | \$ | 0.4   | \$       | 2.8     | \$    | 3.5   | \$  | 14.4     | \$  | 32.4     | \$   | 101.1             | \$  | 70.2              | \$ | 274.9               | \$         | 226.6     | \$<br>726.2    |
| 2019  | \$ | 0.4   | \$       | 2.9     | \$    | 3.5   | \$  | 14.7     | \$  | 32.9     | \$   | 101.8             | \$  | 70.2              | \$ | 273.9               | \$         | 225.7     | \$<br>725.9    |
| 2020  | \$ | 0.4   | \$       | 2.9     | \$    | 3.5   | \$  | 14.7     | \$  | 33.0     | \$   | 101.3             | \$  | 69.4              | \$ | 270.3               | \$         | 222.7     | \$<br>718.2    |
| 2021  | \$ | 0.4   | \$       | 2.9     | \$    | 3.5   | \$  | 14.6     | \$  | 32.7     | \$   | 99.9              | \$  | 68.2              | \$ | 264.8               | \$         | 218.2     | \$<br>705.0    |
| 2022  | \$ | 0.4   | \$       | 2.8     | \$    | 3.4   | \$  | 14.3     | \$  | 32.1     | \$   | 97.8              | \$  | 66.5              | \$ | 257.9               | \$         | 212.6     | \$<br>687.9    |
| 2023  | \$ | 0.4   | \$       | 2.7     | \$    | 3.4   | \$  | 14.0     | \$  | 31.4     | \$   | 95.2              | \$  | 64.6              | \$ | 250.1               | \$         | 206.1     | \$<br>667.8    |
| 2024  | \$ | 0.3   | \$       | 2.7     | \$    | 3.3   | \$  | 13.6     | \$  | 30.5     | \$   | 92.2              | \$  | 62.5              | \$ | 241.6               | \$         | 199.1     | \$<br>645.8    |
| 2025  | \$ | 0.3   | \$       | 2.6     | \$    | 3.2   | \$  | 13.2     | \$  | 29.5     | \$   | 89.1              | \$  | 60.2              | \$ | 232.7               | \$         | 191.8     | \$<br>622.5    |
| 2026  | \$ | 0.3   | \$       | 2.5     | \$    | 3.0   | \$  | 12.7     | \$  | 28.4     | \$   | 85.7              | \$  | 57.9              | \$ | 223.6               | \$         | 184.2     | \$<br>598.4    |
| 2027  | \$ | 0.3   | \$       | 2.4     | \$    | 2.9   | \$  | 12.2     | \$  | 27.3     | \$   | 82.3              | \$  | 55.5              | \$ | 214.3               | \$         | 176.6     | \$<br>573.9    |
| 2028  | \$ | 0.3   | \$       | 2.3     | \$    | 2.8   | \$  | 11.5     | \$  | 25.9     | \$   | 77.9              | \$  | 52.5              | \$ | 202.4               | \$         | 166.8     | \$<br>542.2    |
| 2029  | \$ | 0.3   | \$       | 2.2     | \$    | 2.6   | \$  | 11.0     | \$  | 24.7     | \$   | 74.3              | \$  | 50.0              | \$ | 192.8               | \$         | 158.9     | \$<br>516.9    |
| Total | \$ | 5.7   | \$       | 43.9    | \$    | 53.8  | \$  | 223.9    | \$  | 502.0    | \$   | 1,572.9           | \$  | 1,104.0           | \$ | 4,357.4             | \$         | 3,590.9   | \$<br>11,454.4 |
| Ann.  | \$ | 0.5   | \$       | 3.8     | \$    | 4.6   | \$  | 19.2     | \$  | 43.1     | \$   | 135.0             | \$  | 94.7              | \$ | 373.9               | \$         | 308.1     | \$<br>982.9    |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f and E.44d.

Section F.15
Model Outputs - Preferred Alternative
20% Safety Margin
TTHM as Indicator
Bronchitis for Non-Fatal Cases

### Exhibit F.15a Projections of Yearly Benefits, WTP for Bronchitis as Basis for Non-Fatal Cases (Smoking/Lung Cancer Cessation Lag Model)

TTHM - Preferred Alternative, 20% Safety Margin

|       | Surfa          | ice V | Vater Sys          | tem   | S                    | Grou          | ınd | Water Sys          | sten | ns                  |                | All | Systems            |    |                     |
|-------|----------------|-------|--------------------|-------|----------------------|---------------|-----|--------------------|------|---------------------|----------------|-----|--------------------|----|---------------------|
|       |                |       | 90 F<br>Confide    | Perce |                      |               |     | 90 Po<br>Confider  |      |                     |                |     | 90 P<br>Confider   |    |                     |
| Year  | Mean<br>Value  |       | Lower<br>th %tile) | (9    | Upper<br>95th %tile) | Mean<br>Value |     | Lower<br>th %tile) | (9   | Upper<br>5th %tile) | Mean<br>Value  |     | Lower<br>th %tile) | (9 | Upper<br>5th %tile) |
| 2005  | \$<br>-        | \$    |                    | \$    |                      | \$            | \$  |                    | \$   |                     | \$<br>-        | \$  | -                  | \$ | -                   |
| 2006  | \$<br>-        | \$    | -                  | \$    | -                    | \$<br>-       | \$  | -                  | \$   | -                   | \$<br>-        | \$  | -                  | \$ | -                   |
| 2007  | \$<br>-        | \$    | -                  | \$    | -                    | \$<br>-       | \$  | -                  | \$   | -                   | \$<br>-        | \$  | -                  | \$ | -                   |
| 2008  | \$<br>-        | \$    | -                  | \$    | -                    | \$<br>-       | \$  | -                  | \$   | -                   | \$<br>-        | \$  | -                  | \$ | -                   |
| 2009  | \$<br>-        | \$    | -                  | \$    | -                    | \$<br>-       | \$  | -                  | \$   | -                   | \$<br>-        | \$  | -                  | \$ | -                   |
| 2010  | \$<br>50.8     | \$    | 11.2               | \$    | 111.6                | \$<br>3.3     | \$  | 0.7                | \$   | 7.2                 | \$<br>54.1     | \$  | 11.9               | \$ | 118.9               |
| 2011  | \$<br>135.5    | \$    | 29.8               | \$    | 298.4                | \$<br>8.8     | \$  | 1.9                | \$   | 19.4                | \$<br>144.3    | \$  | 31.7               | \$ | 317.8               |
| 2012  | \$<br>247.5    | \$    | 54.4               | \$    | 544.8                | \$<br>16.1    | \$  | 3.5                | \$   | 35.4                | \$<br>263.6    | \$  | 57.9               | \$ | 580.2               |
| 2013  | \$<br>382.7    | \$    | 84.0               | \$    | 842.1                | \$<br>24.9    | \$  | 5.5                | \$   | 54.7                | \$<br>407.6    | \$  | 89.5               | \$ | 896.8               |
| 2014  | \$<br>495.1    | \$    | 108.5              | \$    | 1,090.0              | \$<br>33.7    | \$  | 7.4                | \$   | 74.3                | \$<br>528.9    | \$  | 115.9              | \$ | 1,164.2             |
| 2015  | \$<br>591.4    | \$    | 129.4              | \$    | 1,304.1              | \$<br>42.4    | \$  | 9.3                | \$   | 93.6                | \$<br>633.9    | \$  | 138.7              | \$ | 1,397.7             |
| 2016  | \$<br>673.5    | \$    | 147.2              | \$    | 1,484.8              | \$<br>50.1    | \$  | 11.0               | \$   | 110.5               | \$<br>723.7    | \$  | 158.2              | \$ | 1,595.3             |
| 2017  | \$<br>744.7    | \$    | 162.6              | \$    | 1,644.7              | \$<br>56.5    | \$  | 12.3               | \$   | 124.9               | \$<br>801.3    | \$  | 174.9              | \$ | 1,769.6             |
| 2018  | \$<br>807.6    | \$    | 175.9              | \$    | 1,784.1              | \$<br>62.1    | \$  | 13.5               | \$   | 137.3               | \$<br>869.7    | \$  | 189.4              | \$ | 1,921.4             |
| 2019  | \$<br>863.8    | \$    | 187.8              | \$    | 1,912.9              | \$<br>67.1    | \$  | 14.6               | \$   | 148.5               | \$<br>930.9    | \$  | 202.4              | \$ | 2,061.4             |
| 2020  | \$<br>914.8    | \$    | 198.5              | \$    | 2,027.3              | \$<br>71.5    | \$  | 15.5               | \$   | 158.5               | \$<br>986.3    | \$  | 214.1              | \$ | 2,185.8             |
| 2021  | \$<br>961.3    | \$    | 208.4              | \$    | 2,132.9              | \$<br>75.5    | \$  | 16.4               | \$   | 167.6               | \$<br>1,036.8  | \$  | 224.7              | \$ | 2,300.5             |
| 2022  | \$<br>1,004.1  | \$    | 217.2              | \$    | 2,232.2              | \$<br>79.2    | \$  | 17.1               | \$   | 176.1               | \$<br>1,083.3  | \$  | 234.4              | \$ | 2,408.3             |
| 2023  | \$<br>1,043.7  | \$    | 225.2              | \$    | 2,320.6              | \$<br>82.6    | \$  | 17.8               | \$   | 183.7               | \$<br>1,126.3  | \$  | 243.0              | \$ | 2,504.3             |
| 2024  | \$<br>1,080.6  | \$    | 233.0              | \$    | 2,404.0              | \$<br>85.7    | \$  | 18.5               | \$   | 190.7               | \$<br>1,166.4  | \$  | 251.4              | \$ | 2,594.7             |
| 2025  | \$<br>1,115.3  | \$    | 239.9              | \$    | 2,482.7              | \$<br>88.7    | \$  | 19.1               | \$   | 197.4               | \$<br>1,204.0  | \$  | 259.0              | \$ | 2,680.1             |
| 2026  | \$<br>1,148.0  | \$    | 246.6              | \$    | 2,556.2              | \$<br>91.4    | \$  | 19.6               | \$   | 203.6               | \$<br>1,239.4  | \$  | 266.3              | \$ | 2,759.8             |
| 2027  | \$<br>1,179.0  | \$    | 252.9              | \$    | 2,631.8              | \$<br>94.0    | \$  | 20.2               | \$   | 209.9               | \$<br>1,273.0  | \$  | 273.0              | \$ | 2,841.7             |
| 2028  | \$<br>1,191.4  | \$    | 255.7              | \$    | 2,657.2              | \$<br>95.1    | \$  | 20.4               | \$   | 212.2               | \$<br>1,286.6  | \$  | 276.1              | \$ | 2,869.4             |
| 2029  | \$<br>1,216.1  | \$    | 260.6              | \$    | 2,716.9              | \$<br>97.2    | \$  | 20.8               | \$   | 217.2               | \$<br>1,313.3  | \$  | 281.5              | \$ | 2,934.0             |
| Total | \$<br>15,846.9 | \$    | 3,428.7            | \$    | 35,179.1             | \$<br>1,226.2 | \$  | 265.2              | \$   | 2,722.6             | \$<br>17,073.1 | \$  | 3,693.9            | \$ | 37,901.7            |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f, E.44b, and E.44c.

## Exhibit F.15b Present Value of Benefits Yearly Projections, WTP for Bronchitis as Basis for Non-Fatal Cases, Smoking/Lung Cancer Cessation Lag Model (All Water Systems)

TTHM - Preferred Alternative, 20% Safety Margin

|       | 3%             | % D | iscount R          | ate |                     | 7%            | 6 Di | scount R           | ate |                     |
|-------|----------------|-----|--------------------|-----|---------------------|---------------|------|--------------------|-----|---------------------|
|       |                |     | 90 Pe<br>Confider  |     |                     |               |      | 90 P<br>Confide    |     |                     |
| Year  | Mean<br>Value  | (5  | Lower<br>th %tile) | (9  | Upper<br>5th %tile) | Mean<br>Value | (5   | Lower<br>th %tile) | (9  | Upper<br>5th %tile) |
| 2005  | \$<br>-        | \$  | -                  | \$  | -                   | \$<br>-       | \$   | -                  | \$  | -                   |
| 2006  | \$<br>-        | \$  | -                  | \$  | -                   | \$<br>-       | \$   | -                  | \$  | -                   |
| 2007  | \$<br>-        | \$  | -                  | \$  | -                   | \$<br>-       | \$   | -                  | \$  | -                   |
| 2008  | \$<br>-        | \$  | -                  | \$  | -                   | \$<br>-       | \$   | -                  | \$  | -                   |
| 2009  | \$<br>-        | \$  | -                  | \$  | -                   | \$<br>-       | \$   | -                  | \$  | -                   |
| 2010  | \$<br>46.6     | \$  | 10.3               | \$  | 102.5               | \$<br>38.5    | \$   | 8.5                | \$  | 84.8                |
| 2011  | \$<br>120.8    | \$  | 26.6               | \$  | 266.1               | \$<br>96.1    | \$   | 21.1               | \$  | 211.7               |
| 2012  | \$<br>214.3    | \$  | 47.1               | \$  | 471.7               | \$<br>164.1   | \$   | 36.1               | \$  | 361.3               |
| 2013  | \$<br>321.8    | \$  | 70.6               | \$  | 707.9               | \$<br>237.2   | \$   | 52.1               | \$  | 521.9               |
| 2014  | \$<br>405.3    | \$  | 88.8               | \$  | 892.3               | \$<br>287.7   | \$   | 63.0               | \$  | 633.3               |
| 2015  | \$<br>471.7    | \$  | 103.2              | \$  | 1,040.0             | \$<br>322.2   | \$   | 70.5               | \$  | 710.5               |
| 2016  | \$<br>522.8    | \$  | 114.3              | \$  | 1,152.5             | \$<br>343.8   | \$   | 75.1               | \$  | 757.9               |
| 2017  | \$<br>562.0    | \$  | 122.7              | \$  | 1,241.2             | \$<br>355.8   | \$   | 77.7               | \$  | 785.7               |
| 2018  | \$<br>592.2    | \$  | 129.0              | \$  | 1,308.4             | \$<br>360.9   | \$   | 78.6               | \$  | 797.3               |
| 2019  | \$<br>615.4    | \$  | 133.8              | \$  | 1,362.8             | \$<br>361.0   | \$   | 78.5               | \$  | 799.5               |
| 2020  | \$<br>633.1    | \$  | 137.4              | \$  | 1,402.9             | \$<br>357.5   | \$   | 77.6               | \$  | 792.2               |
| 2021  | \$<br>646.1    | \$  | 140.1              | \$  | 1,433.6             | \$<br>351.2   | \$   | 76.1               | \$  | 779.2               |
| 2022  | \$<br>655.4    | \$  | 141.8              | \$  | 1,457.1             | \$<br>342.9   | \$   | 74.2               | \$  | 762.4               |
| 2023  | \$<br>661.6    | \$  | 142.7              | \$  | 1,471.0             | \$<br>333.2   | \$   | 71.9               | \$  | 740.9               |
| 2024  | \$<br>665.2    | \$  | 143.4              | \$  | 1,479.7             | \$<br>322.5   | \$   | 69.5               | \$  | 717.5               |
| 2025  | \$<br>666.6    | \$  | 143.4              | \$  | 1,483.9             | \$<br>311.1   | \$   | 66.9               | \$  | 692.6               |
| 2026  | \$<br>666.3    | \$  | 143.1              | \$  | 1,483.5             | \$<br>299.3   | \$   | 64.3               | \$  | 666.5               |
| 2027  | \$<br>664.4    | \$  | 142.5              | \$  | 1,483.1             | \$<br>287.3   | \$   | 61.6               | \$  | 641.4               |
| 2028  | \$<br>651.9    | \$  | 139.9              | \$  | 1,453.9             | \$<br>271.4   | \$   | 58.2               | \$  | 605.3               |
| 2029  | \$<br>646.0    | \$  | 138.5              | \$  | 1,443.4             | \$<br>258.9   | \$   | 55.5               | \$  | 578.4               |
| Total | \$<br>10,429.5 | \$  | 2,259.0            | \$  | 23,137.5            | \$<br>5,702.9 | \$   | 1,237.1            | \$  | 12,640.4            |
| Ann.  | \$<br>598.9    | \$  | 129.7              | \$  | 1,328.7             | \$<br>489.4   | \$   | 106.2              | \$  | 1,084.7             |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibit F.13a.

#### Exhibit F.15c Mean Present Value of Benefits Yearly Projections, WTP for Bronchitis as Basis for Non-Fatal Cases, at 3% Discount Rate, by System Size (All Systems)

TTHM - Preferred Alternative, 20% Safety Margin

|       |           |    |       |    |       |     | oking/L  |      | _                    | er C | essatio    | n L | ag Mod  | lek |          |    |          |                |
|-------|-----------|----|-------|----|-------|-----|----------|------|----------------------|------|------------|-----|---------|-----|----------|----|----------|----------------|
|       | 400       | 40 | 0.400 | 50 | 0.000 | 4.0 | 00 0 000 | 2 24 | 20.000               | 40.6 | 200 40 000 |     | 50,000- |     | 100,000- |    | 000 000  | Total          |
| Year  | 100       |    | 0-499 |    | 0-999 |     | 00-3,299 |      | JU-9,999<br>JU-9,999 |      | 000-49,999 |     | 99,999  |     | 999,999  | H  | ,000,000 | Total          |
| 2005  | \$<br>-   | \$ | -     | \$ | -     | \$  | -        | \$   | -                    | \$   | -          | \$  | -       | \$  | -        | \$ | -        | \$<br>-        |
| 2006  | \$<br>-   | \$ | -     | \$ | -     | \$  | -        | \$   | -                    | \$   | -          | \$  | -       | \$  | -        | \$ | -        | \$<br>-        |
| 2007  | \$<br>-   | \$ | -     | \$ | -     | \$  | -        | \$   | -                    | \$   | -          | \$  | -       | \$  | -        | \$ | -        | \$<br>-        |
| 2008  | \$<br>-   | \$ | -     | \$ | -     | \$  | -        | \$   | -                    | \$   | -          | \$  | -       | \$  | -        | \$ | -        | \$<br>-        |
| 2009  | \$<br>-   | \$ | -     | \$ | -     | \$  | -        | \$   | -                    | \$   | -          | \$  | -       | \$  | -        | \$ | -        | \$<br>-        |
| 2010  | \$<br>0.0 | \$ | 0.1   | \$ | 0.2   | \$  | 0.7      | \$   | 1.5                  | \$   | 5.3        | \$  | 4.4     | \$  | 18.9     | \$ | 15.5     | \$<br>46.6     |
| 2011  | \$<br>0.0 | \$ | 0.3   | \$ | 0.4   | \$  | 1.8      | \$   | 3.9                  | \$   | 13.8       | \$  | 11.3    | \$  | 48.9     | \$ | 40.3     | \$<br>120.8    |
| 2012  | \$<br>0.1 | \$ | 0.6   | \$ | 0.7   | \$  | 3.1      | \$   | 7.0                  | \$   | 24.6       | \$  | 20.1    | \$  | 86.7     | \$ | 71.5     | \$<br>214.3    |
| 2013  | \$<br>0.1 | \$ | 0.9   | \$ | 1.1   | \$  | 4.7      | \$   | 10.5                 | \$   | 36.9       | \$  | 30.1    | \$  | 130.2    | \$ | 107.3    | \$<br>321.8    |
| 2014  | \$<br>0.2 | \$ | 1.2   | \$ | 1.5   | \$  | 6.4      | \$   | 14.3                 | \$   | 50.3       | \$  | 39.1    | \$  | 160.3    | \$ | 132.1    | \$<br>405.3    |
| 2015  | \$<br>0.2 | \$ | 1.6   | \$ | 2.0   | \$  | 8.2      | \$   | 18.3                 | \$   | 62.2       | \$  | 45.6    | \$  | 182.9    | \$ | 150.7    | \$<br>471.7    |
| 2016  | \$<br>0.2 | \$ | 1.9   | \$ | 2.3   | \$  | 9.8      | \$   | 21.9                 | \$   | 70.8       | \$  | 50.5    | \$  | 200.3    | \$ | 165.1    | \$<br>522.8    |
| 2017  | \$<br>0.3 | \$ | 2.1   | \$ | 2.6   | \$  | 10.9     | \$   | 24.4                 | \$   | 77.4       | \$  | 54.3    | \$  | 213.8    | \$ | 176.2    | \$<br>562.0    |
| 2018  | \$<br>0.3 | \$ | 2.3   | \$ | 2.8   | \$  | 11.8     | \$   | 26.4                 | \$   | 82.4       | \$  | 57.2    | \$  | 224.2    | \$ | 184.8    | \$<br>592.2    |
| 2019  | \$<br>0.3 | \$ | 2.4   | \$ | 3.0   | \$  | 12.5     | \$   | 27.9                 | \$   | 86.3       | \$  | 59.5    | \$  | 232.2    | \$ | 191.3    | \$<br>615.4    |
| 2020  | \$<br>0.3 | \$ | 2.5   | \$ | 3.1   | \$  | 13.0     | \$   | 29.1                 | \$   | 89.3       | \$  | 61.2    | \$  | 238.2    | \$ | 196.3    | \$<br>633.1    |
| 2021  | \$<br>0.3 | \$ | 2.6   | \$ | 3.2   | \$  | 13.4     | \$   | 30.0                 | \$   | 91.5       | \$  | 62.5    | \$  | 242.7    | \$ | 200.0    | \$<br>646.1    |
| 2022  | \$<br>0.3 | \$ | 2.7   | \$ | 3.3   | \$  | 13.7     | \$   | 30.6                 | \$   | 93.1       | \$  | 63.4    | \$  | 245.8    | \$ | 202.5    | \$<br>655.4    |
| 2023  | \$<br>0.4 | \$ | 2.7   | \$ | 3.3   | \$  | 13.9     | \$   | 31.1                 | \$   | 94.3       | \$  | 64.0    | \$  | 247.8    | \$ | 204.2    | \$<br>661.6    |
| 2024  | \$<br>0.4 | \$ | 2.7   | \$ | 3.4   | \$  | 14.0     | \$   | 31.4                 | \$   | 95.0       | \$  | 64.3    | \$  | 248.9    | \$ | 205.1    | \$<br>665.2    |
| 2025  | \$<br>0.4 | \$ | 2.8   | \$ | 3.4   | \$  | 14.1     | \$   | 31.6                 | \$   | 95.4       | \$  | 64.5    | \$  | 249.2    | \$ | 205.4    | \$<br>666.6    |
| 2026  | \$<br>0.4 | \$ | 2.8   | \$ | 3.4   | \$  | 14.1     | \$   | 31.7                 | \$   | 95.5       | \$  | 64.5    | \$  | 248.9    | \$ | 205.1    | \$<br>666.3    |
| 2027  | \$<br>0.4 | \$ | 2.8   | \$ | 3.4   | \$  | 14.1     | \$   | 31.7                 | \$   | 95.3       | \$  | 64.3    | \$  | 248.1    | \$ | 204.4    | \$<br>664.4    |
| 2028  | \$<br>0.4 | \$ | 2.7   | \$ | 3.3   | \$  | 13.9     | \$   | 31.1                 | \$   | 93.6       | \$  | 63.1    | \$  | 243.3    | \$ | 200.5    | \$<br>651.9    |
| 2029  | \$<br>0.3 | \$ | 2.7   | \$ | 3.3   | \$  | 13.8     | \$   | 30.9                 | \$   | 92.9       | \$  | 62.5    | \$  | 241.0    | \$ | 198.6    | \$<br>646.0    |
| Total | \$<br>5.2 | \$ | 40.7  | \$ | 49.8  | \$  | 207.5    | \$   | 465.2                | \$   | 1,445.9    | \$  | 1,006.2 | \$  | 3,952.1  | \$ | 3,256.9  | \$<br>10,429.5 |
| Ann.  | \$<br>0.3 | \$ | 2.3   | \$ | 2.9   | \$  | 11.9     | \$   | 26.7                 | \$   | 83.0       | \$  | 57.8    | \$  | 227.0    | \$ | 187.0    | \$<br>598.9    |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f and E.44d.

#### Exhibit F.15d Mean Present Value of Benefits Yearly Projections, WTP for Bronchitis as Basis for Non-Fatal Cases, at 7% Discount Rate, by System Size (All Systems)

TTHM - Preferred Alternative, 20% Safety Margin

|       |    |     |    |       |    |       |     | oking/L  |      |          | er C | essatio   | n L | ag Mod          | del |                     |            |          |               |
|-------|----|-----|----|-------|----|-------|-----|----------|------|----------|------|-----------|-----|-----------------|-----|---------------------|------------|----------|---------------|
| Year  | <  | 100 | 10 | 0-499 | 50 | 0-999 | 1,0 | 00-3,299 | 3,30 | 00-9,999 | 10,0 | 00-49,999 |     | 0,000-<br>9,999 |     | 100,000-<br>999,999 | <u>≥</u> 1 | ,000,000 | Total         |
| 2005  | \$ |     | \$ |       | \$ |       | \$  |          | \$   | -        | \$   |           | \$  | -               | \$  | -                   | \$         | -        | \$<br>-       |
| 2006  | \$ | -   | \$ | -     | \$ | -     | \$  | -        | \$   | -        | \$   | -         | \$  | -               | \$  | -                   | \$         | -        | \$<br>-       |
| 2007  | \$ | -   | \$ | -     | \$ | -     | \$  | -        | \$   | -        | \$   | -         | \$  | -               | \$  | -                   | \$         | -        | \$<br>-       |
| 2008  | \$ | -   | \$ | -     | \$ | -     | \$  | -        | \$   | -        | \$   | -         | \$  | -               | \$  | -                   | \$         | -        | \$<br>-       |
| 2009  | \$ | -   | \$ | -     | \$ | -     | \$  | -        | \$   | -        | \$   | -         | \$  | -               | \$  | -                   | \$         | -        | \$<br>-       |
| 2010  | \$ | 0.0 | \$ | 0.1   | \$ | 0.1   | \$  | 0.6      | \$   | 1.3      | \$   | 4.4       | \$  | 3.6             | \$  | 15.6                | \$         | 12.9     | \$<br>38.5    |
| 2011  | \$ | 0.0 | \$ | 0.3   | \$ | 0.3   | \$  | 1.4      | \$   | 3.1      | \$   | 11.0      | \$  | 9.0             | \$  | 38.9                | \$         | 32.1     | \$<br>96.1    |
| 2012  | \$ | 0.1 | \$ | 0.5   | \$ | 0.6   | \$  | 2.4      | \$   | 5.3      | \$   | 18.8      | \$  | 15.4            | \$  | 66.4                | \$         | 54.7     | \$<br>164.1   |
| 2013  | \$ | 0.1 | \$ | 0.7   | \$ | 8.0   | \$  | 3.4      | \$   | 7.7      | \$   | 27.2      | \$  | 22.2            | \$  | 96.0                | \$         | 79.1     | \$<br>237.2   |
| 2014  | \$ | 0.1 | \$ | 0.9   | \$ | 1.1   | \$  | 4.5      | \$   | 10.1     | \$   | 35.7      | \$  | 27.8            | \$  | 113.7               | \$         | 93.7     | \$<br>287.7   |
| 2015  | \$ | 0.1 | \$ | 1.1   | \$ | 1.3   | \$  | 5.6      | \$   | 12.5     | \$   | 42.5      | \$  | 31.1            | \$  | 124.9               | \$         | 103.0    | \$<br>322.2   |
| 2016  | \$ | 0.2 | \$ | 1.3   | \$ | 1.5   | \$  | 6.4      | \$   | 14.4     | \$   | 46.6      | \$  | 33.2            | \$  | 131.7               | \$         | 108.6    | \$<br>343.8   |
| 2017  | \$ | 0.2 | \$ | 1.4   | \$ | 1.7   | \$  | 6.9      | \$   | 15.5     | \$   | 49.0      | \$  | 34.4            | \$  | 135.3               | \$         | 111.5    | \$<br>355.8   |
| 2018  | \$ | 0.2 | \$ | 1.4   | \$ | 1.7   | \$  | 7.2      | \$   | 16.1     | \$   | 50.2      | \$  | 34.9            | \$  | 136.6               | \$         | 112.6    | \$<br>360.9   |
| 2019  | \$ | 0.2 | \$ | 1.4   | \$ | 1.8   | \$  | 7.3      | \$   | 16.4     | \$   | 50.6      | \$  | 34.9            | \$  | 136.2               | \$         | 112.2    | \$<br>361.0   |
| 2020  | \$ | 0.2 | \$ | 1.4   | \$ | 1.8   | \$  | 7.3      | \$   | 16.4     | \$   | 50.4      | \$  | 34.6            | \$  | 134.5               | \$         | 110.9    | \$<br>357.5   |
| 2021  | \$ | 0.2 | \$ | 1.4   | \$ | 1.7   | \$  | 7.3      | \$   | 16.3     | \$   | 49.7      | \$  | 34.0            | \$  | 131.9               | \$         | 108.7    | \$<br>351.2   |
| 2022  | \$ | 0.2 | \$ | 1.4   | \$ | 1.7   | \$  | 7.1      | \$   | 16.0     | \$   | 48.7      | \$  | 33.2            | \$  | 128.6               | \$         | 106.0    | \$<br>342.9   |
| 2023  | \$ | 0.2 | \$ | 1.4   | \$ | 1.7   | \$  | 7.0      | \$   | 15.7     | \$   | 47.5      | \$  | 32.2            | \$  | 124.8               | \$         | 102.8    | \$<br>333.2   |
| 2024  | \$ | 0.2 | \$ | 1.3   | \$ | 1.6   | \$  | 6.8      | \$   | 15.2     | \$   | 46.1      | \$  | 31.2            | \$  | 120.7               | \$         | 99.4     | \$<br>322.5   |
| 2025  | \$ | 0.2 | \$ | 1.3   | \$ | 1.6   | \$  | 6.6      | \$   | 14.7     | \$   | 44.5      | \$  | 30.1            | \$  | 116.3               | \$         | 95.9     | \$<br>311.1   |
| 2026  | \$ | 0.2 | \$ | 1.2   | \$ | 1.5   | \$  | 6.3      | \$   | 14.2     | \$   | 42.9      | \$  | 29.0            | \$  | 111.8               | \$         | 92.2     | \$<br>299.3   |
| 2027  | \$ | 0.2 | \$ | 1.2   | \$ | 1.5   | \$  | 6.1      | \$   | 13.7     | \$   | 41.2      | \$  | 27.8            | \$  | 107.3               | \$         | 88.4     | \$<br>287.3   |
| 2028  | \$ | 0.1 | \$ | 1.1   | \$ | 1.4   | \$  | 5.8      | \$   | 13.0     | \$   | 39.0      | \$  | 26.3            | \$  | 101.3               | \$         | 83.5     | \$<br>271.4   |
| 2029  | \$ | 0.1 | \$ | 1.1   | \$ | 1.3   | \$  | 5.5      | \$   | 12.4     | \$   | 37.2      | \$  | 25.0            | \$  | 96.6                | \$         | 79.6     | \$<br>258.9   |
| Total | \$ | 2.8 | \$ | 21.9  | \$ | 26.8  | \$  | 111.5    | \$   | 250.0    | \$   | 783.3     | \$  | 549.7           | \$  | 2,169.3             | \$         | 1,787.7  | \$<br>5,702.9 |
| Ann.  | \$ | 0.2 | \$ | 1.9   | \$ | 2.3   | \$  | 9.6      | \$   | 21.5     | \$   | 67.2      | \$  | 47.2            | \$  | 186.1               | \$         | 153.4    | \$<br>489.4   |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f and E.44d.

Section F.16
Model Outputs - Preferred Alternative
25% Safety Margin
TTHM as Indicator
Lymphoma for Non-Fatal Cases

### Exhibit F.16a Projections of Yearly Benefits, WTP for Lymphoma as Basis for Non-Fatal Cases (Smoking/Lung Cancer Cessation Lag Model)

TTHM - Preferred Alternative, 25% Safety Margin

|       | Surf           | ace | Water Sy           | stem         | s                    | Grou          | ınd ' | Water Sy:          | ster | ns                  |                | All | Systems            |    |                     |
|-------|----------------|-----|--------------------|--------------|----------------------|---------------|-------|--------------------|------|---------------------|----------------|-----|--------------------|----|---------------------|
|       |                |     |                    | Perc<br>ence | ent<br>Bound         |               |       | 90 Pe<br>Confider  |      | -                   |                |     | 90 P<br>Confider   |    |                     |
| Year  | Mean<br>Value  |     | Lower<br>th %tile) | (9           | Upper<br>95th %tile) | Mean<br>Value |       | Lower<br>th %tile) | (9   | Upper<br>5th %tile) | Mean<br>Value  |     | Lower<br>th %tile) | (9 | Upper<br>5th %tile) |
| 2005  | \$<br>-        | \$  | -                  | \$           | -                    | \$<br>-       | \$    |                    | \$   | -                   | \$<br>-        | \$  | -                  | \$ | -                   |
| 2006  | \$<br>-        | \$  | -                  | \$           | -                    | \$<br>-       | \$    | -                  | \$   | -                   | \$<br>-        | \$  | -                  | \$ | -                   |
| 2007  | \$<br>-        | \$  | -                  | \$           | -                    | \$<br>-       | \$    | -                  | \$   | -                   | \$<br>-        | \$  | -                  | \$ | -                   |
| 2008  | \$<br>-        | \$  | -                  | \$           | -                    | \$<br>-       | \$    | -                  | \$   | -                   | \$<br>-        | \$  | -                  | \$ | -                   |
| 2009  | \$<br>-        | \$  | -                  | \$           | -                    | \$<br>-       | \$    | -                  | \$   | -                   | \$<br>-        | \$  | -                  | \$ | -                   |
| 2010  | \$<br>147.7    | \$  | 22.6               | \$           | 339.5                | \$<br>5.5     | \$    | 0.8                | \$   | 12.6                | \$<br>153.2    | \$  | 23.5               | \$ | 352.2               |
| 2011  | \$<br>378.6    | \$  | 58.0               | \$           | 870.9                | \$<br>14.1    | \$    | 2.2                | \$   | 32.3                | \$<br>392.7    | \$  | 60.1               | \$ | 903.2               |
| 2012  | \$<br>684.9    | \$  | 104.8              | \$           | 1,573.4              | \$<br>25.4    | \$    | 3.9                | \$   | 58.4                | \$<br>710.3    | \$  | 108.7              | \$ | 1,631.8             |
| 2013  | \$<br>1,065.8  | \$  | 163.1              | \$           | 2,448.1              | \$<br>39.6    | \$    | 6.1                | \$   | 90.9                | \$<br>1,105.4  | \$  | 169.2              | \$ | 2,539.0             |
| 2014  | \$<br>1,399.6  | \$  | 214.0              | \$           | 3,217.4              | \$<br>54.7    | \$    | 8.4                | \$   | 125.7               | \$<br>1,454.3  | \$  | 222.3              | \$ | 3,343.2             |
| 2015  | \$<br>1,725.1  | \$  | 263.8              | \$           | 3,967.3              | \$<br>70.7    | \$    | 10.8               | \$   | 162.5               | \$<br>1,795.7  | \$  | 274.6              | \$ | 4,129.8             |
| 2016  | \$<br>2,031.1  | \$  | 310.3              | \$           | 4,671.0              | \$<br>85.7    | \$    | 13.1               | \$   | 197.2               | \$<br>2,116.9  | \$  | 323.4              | \$ | 4,868.2             |
| 2017  | \$<br>2,312.3  | \$  | 353.1              | \$           | 5,322.7              | \$<br>99.2    | \$    | 15.2               | \$   | 228.4               | \$<br>2,411.6  | \$  | 368.2              | \$ | 5,551.1             |
| 2018  | \$<br>2,558.6  | \$  | 390.1              | \$           | 5,894.6              | \$<br>111.5   | \$    | 17.0               | \$   | 256.8               | \$<br>2,670.1  | \$  | 407.1              | \$ | 6,151.4             |
| 2019  | \$<br>2,765.6  | \$  | 421.3              | \$           | 6,382.3              | \$<br>122.2   | \$    | 18.6               | \$   | 282.1               | \$<br>2,887.9  | \$  | 439.9              | \$ | 6,664.4             |
| 2020  | \$<br>2,942.1  | \$  | 448.0              | \$           | 6,792.5              | \$<br>131.6   | \$    | 20.0               | \$   | 303.8               | \$<br>3,073.7  | \$  | 468.0              | \$ | 7,096.3             |
| 2021  | \$<br>3,095.2  | \$  | 470.8              | \$           | 7,146.4              | \$<br>139.6   | \$    | 21.2               | \$   | 322.4               | \$<br>3,234.8  | \$  | 492.0              | \$ | 7,468.8             |
| 2022  | \$<br>3,230.6  | \$  | 491.2              | \$           | 7,471.7              | \$<br>146.6   | \$    | 22.3               | \$   | 339.1               | \$<br>3,377.2  | \$  | 513.5              | \$ | 7,810.8             |
| 2023  | \$<br>3,352.3  | \$  | 509.9              | \$           | 7,755.0              | \$<br>152.8   | \$    | 23.2               | \$   | 353.5               | \$<br>3,505.1  | \$  | 533.1              | \$ | 8,108.5             |
| 2024  | \$<br>3,463.1  | \$  | 526.4              | \$           | 8,014.4              | \$<br>158.3   | \$    | 24.1               | \$   | 366.5               | \$<br>3,621.4  | \$  | 550.5              | \$ | 8,380.8             |
| 2025  | \$<br>3,565.0  | \$  | 541.1              | \$           | 8,250.9              | \$<br>163.4   | \$    | 24.8               | \$   | 378.2               | \$<br>3,728.5  | \$  | 565.9              | \$ | 8,629.1             |
| 2026  | \$<br>3,659.8  | \$  | 554.8              | \$           | 8,477.6              | \$<br>168.1   | \$    | 25.5               | \$   | 389.4               | \$<br>3,827.9  | \$  | 580.3              | \$ | 8,866.9             |
| 2027  | \$<br>3,748.7  | \$  | 567.6              | \$           | 8,696.8              | \$<br>172.4   | \$    | 26.1               | \$   | 400.0               | \$<br>3,921.1  | \$  | 593.7              | \$ | 9,096.9             |
| 2028  | \$<br>3,783.0  | \$  | 573.3              | \$           | 8,771.5              | \$<br>174.2   | \$    | 26.4               | \$   | 404.0               | \$<br>3,957.2  | \$  | 599.7              | \$ | 9,175.5             |
| 2029  | \$<br>3,852.5  | \$  | 583.0              | \$           | 8,941.0              | \$<br>177.6   | \$    | 26.9               | \$   | 412.2               | \$<br>4,030.1  | \$  | 609.9              | \$ | 9,353.3             |
| Total | \$<br>49,761.7 | \$  | 7,567.2            | \$           | 115,005.0            | \$<br>2,213.4 | \$    | 336.5              | \$   | 5,116.0             | \$<br>51,975.0 | \$  | 7,903.7            | \$ | 120,121.1           |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f, E.45b, and E.45c.

# Exhibit F.16b Present Value of Benefits Yearly Projections, WTP for Lymphoma as Basis for Non-Fatal Cases, Smoking/Lung Cancer Cessation Lag Model (All Water Systems)

TTHM - Preferred Alternative, 25% Safety Margin

|       | erred Alte     |    | scount Ra          |    | culoty iii          |                | 6 Di | iscount R          | ate |                     |
|-------|----------------|----|--------------------|----|---------------------|----------------|------|--------------------|-----|---------------------|
|       |                |    | 90 Po<br>Confider  |    |                     |                |      | 90 P<br>Confide    |     |                     |
| Year  | Mean<br>Value  | (5 | Lower<br>th %tile) | (9 | Upper<br>5th %tile) | Mean<br>Value  | (5   | Lower<br>th %tile) | (9  | Upper<br>5th %tile) |
| 2005  | \$<br>-        | \$ | -                  | \$ | _                   | \$<br>-        | \$   |                    | \$  | _                   |
| 2006  | \$<br>_        | \$ | _                  | \$ | -                   | \$<br>-        | \$   | -                  | \$  | _                   |
| 2007  | \$<br>-        | \$ | _                  | \$ | -                   | \$<br>-        | \$   | -                  | \$  | _                   |
| 2008  | \$<br>-        | \$ | _                  | \$ | -                   | \$<br>-        | \$   | _                  | \$  | _                   |
| 2009  | \$<br>-        | \$ | _                  | \$ | -                   | \$<br>-        | \$   | _                  | \$  | _                   |
| 2010  | \$<br>132.1    | \$ | 20.2               | \$ | 303.8               | \$<br>109.2    | \$   | 16.7               | \$  | 251.1               |
| 2011  | \$<br>328.9    | \$ | 50.4               | \$ | 756.5               | \$<br>261.7    | \$   | 40.1               | \$  | 601.9               |
| 2012  | \$<br>577.6    | \$ | 88.4               | \$ | 1,326.8             | \$<br>442.4    | \$   | 67.7               | \$  | 1,016.2             |
| 2013  | \$<br>872.6    | \$ | 133.6              | \$ | 2,004.3             | \$<br>643.3    | \$   | 98.5               | \$  | 1,477.7             |
| 2014  | \$<br>1,114.6  | \$ | 170.4              | \$ | 2,562.2             | \$<br>791.0    | \$   | 120.9              | \$  | 1,818.5             |
| 2015  | \$<br>1,336.2  | \$ | 204.3              | \$ | 3,073.0             | \$<br>912.9    | \$   | 139.6              | \$  | 2,099.4             |
| 2016  | \$<br>1,529.3  | \$ | 233.6              | \$ | 3,516.9             | \$<br>1,005.7  | \$   | 153.6              | \$  | 2,312.8             |
| 2017  | \$<br>1,691.4  | \$ | 258.3              | \$ | 3,893.5             | \$<br>1,070.8  | \$   | 163.5              | \$  | 2,464.8             |
| 2018  | \$<br>1,818.2  | \$ | 277.2              | \$ | 4,188.8             | \$<br>1,108.0  | \$   | 168.9              | \$  | 2,552.6             |
| 2019  | \$<br>1,909.2  | \$ | 290.8              | \$ | 4,405.9             | \$<br>1,120.0  | \$   | 170.6              | \$  | 2,584.6             |
| 2020  | \$<br>1,972.9  | \$ | 300.4              | \$ | 4,554.9             | \$<br>1,114.0  | \$   | 169.6              | \$  | 2,572.0             |
| 2021  | \$<br>2,015.8  | \$ | 306.6              | \$ | 4,654.3             | \$<br>1,095.7  | \$   | 166.7              | \$  | 2,530.0             |
| 2022  | \$<br>2,043.3  | \$ | 310.7              | \$ | 4,725.6             | \$<br>1,069.1  | \$   | 162.6              | \$  | 2,472.7             |
| 2023  | \$<br>2,058.9  | \$ | 313.1              | \$ | 4,762.9             | \$<br>1,037.0  | \$   | 157.7              | \$  | 2,399.0             |
| 2024  | \$<br>2,065.2  | \$ | 313.9              | \$ | 4,779.5             | \$<br>1,001.3  | \$   | 152.2              | \$  | 2,317.4             |
| 2025  | \$<br>2,064.4  | \$ | 313.3              | \$ | 4,777.7             | \$<br>963.5    | \$   | 146.2              | \$  | 2,229.9             |
| 2026  | \$<br>2,057.7  | \$ | 311.9              | \$ | 4,766.4             | \$<br>924.5    | \$   | 140.1              | \$  | 2,141.5             |
| 2027  | \$<br>2,046.4  | \$ | 309.8              | \$ | 4,747.6             | \$<br>885.1    | \$   | 134.0              | \$  | 2,053.3             |
| 2028  | \$<br>2,005.1  | \$ | 303.9              | \$ | 4,649.1             | \$<br>834.8    | \$   | 126.5              | \$  | 1,935.5             |
| 2029  | \$<br>1,982.5  | \$ | 300.0              | \$ | 4,601.2             | \$<br>794.5    | \$   | 120.2              | \$  | 1,844.0             |
| Total | \$<br>31,622.3 | \$ | 4,811.0            | \$ | 73,050.8            | \$<br>17,184.6 | \$   | 2,616.1            | \$  | 39,674.7            |
| Ann.  | \$<br>1,816.0  | \$ | 276.3              | \$ | 4,195.2             | \$<br>1,474.6  | \$   | 224.5              | \$  | 3,404.5             |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibit F.12a.

#### Exhibit F.16c Mean Present Value of Benefits Yearly Projections, WTP for Lymphoma as Basis for Non-Fatal Cases, at 3% Discount Rate, by System Size (All Systems)

TTHM - Preferred Alternative, 25% Safety Margin

|       |    |     |    |       |    | •     | Sm  | oking/l  | _un  | g Cano   | er   | Cessatio   | n l | Lag Mod           | el |                     |            |           |                |
|-------|----|-----|----|-------|----|-------|-----|----------|------|----------|------|------------|-----|-------------------|----|---------------------|------------|-----------|----------------|
| Year  | ٧  | 100 | 10 | 0-499 | 50 | 0-999 | 1,0 | 00-3,299 | 3,30 | 00-9,999 | 10,0 | 000-49,999 |     | 50,000-<br>99,999 |    | 100,000-<br>999,999 | <u>≥</u> 1 | 1,000,000 | Total          |
| 2005  | \$ |     | \$ |       | \$ | 1     | \$  | -        | \$   | -        | \$   | -          | \$  | -                 | \$ | -                   | \$         | -         | \$<br>-        |
| 2006  | \$ | -   | \$ | -     | \$ | -     | \$  | -        | \$   | -        | \$   | -          | \$  | -                 | \$ | -                   | \$         | -         | \$<br>-        |
| 2007  | \$ | -   | \$ | -     | \$ | -     | \$  | -        | \$   | -        | \$   | -          | \$  | -                 | \$ | -                   | \$         | -         | \$<br>-        |
| 2008  | \$ | -   | \$ | -     | \$ | -     | \$  | -        | \$   | -        | \$   | -          | \$  | -                 | \$ | -                   | \$         | -         | \$<br>-        |
| 2009  | \$ | -   | \$ | -     | \$ | -     | \$  | -        | \$   | -        | \$   | -          | \$  | -                 | \$ | -                   | \$         | -         | \$<br>-        |
| 2010  | \$ | 0.0 | \$ | 0.2   | \$ | 0.3   | \$  | 1.1      | \$   | 2.5      | \$   | 14.9       | \$  | 12.5              | \$ | 54.7                | \$         | 45.7      | \$<br>132.1    |
| 2011  | \$ | 0.1 | \$ | 0.5   | \$ | 0.7   | \$  | 2.8      | \$   | 6.3      | \$   | 37.2       | \$  | 31.2              | \$ | 136.2               | \$         | 113.8     | \$<br>328.9    |
| 2012  | \$ | 0.1 | \$ | 1.0   | \$ | 1.2   | \$  | 4.9      | \$   | 11.0     | \$   | 65.3       | \$  | 54.8              | \$ | 239.3               | \$         | 199.9     | \$<br>577.6    |
| 2013  | \$ | 0.2 | \$ | 1.5   | \$ | 1.8   | \$  | 7.4      | \$   | 16.7     | \$   | 98.7       | \$  | 82.8              | \$ | 361.5               | \$         | 302.1     | \$<br>872.6    |
| 2014  | \$ | 0.3 | \$ | 2.0   | \$ | 2.5   | \$  | 10.3     | \$   | 23.2     | \$   | 137.2      | \$  | 109.4             | \$ | 452.0               | \$         | 377.7     | \$<br>1,114.6  |
| 2015  | \$ | 0.3 | \$ | 2.7   | \$ | 3.3   | \$  | 13.6     | \$   | 30.5     | \$   | 173.5      | \$  | 131.2             | \$ | 534.5               | \$         | 446.6     | \$<br>1,336.2  |
| 2016  | \$ | 0.4 | \$ | 3.2   | \$ | 4.0   | \$  | 16.6     | \$   | 37.1     | \$   | 202.7      | \$  | 150.3             | \$ | 607.4               | \$         | 507.5     | \$<br>1,529.3  |
| 2017  | \$ | 0.5 | \$ | 3.7   | \$ | 4.5   | \$  | 18.9     | \$   | 42.4     | \$   | 227.6      | \$  | 166.6             | \$ | 668.6               | \$         | 558.7     | \$<br>1,691.4  |
| 2018  | \$ | 0.5 | \$ | 4.1   | \$ | 5.0   | \$  | 20.9     | \$   | 46.8     | \$   | 248.4      | \$  | 179.6             | \$ | 715.3               | \$         | 597.7     | \$<br>1,818.2  |
| 2019  | \$ | 0.6 | \$ | 4.4   | \$ | 5.4   | \$  | 22.5     | \$   | 50.4     | \$   | 264.7      | \$  | 189.0             | \$ | 747.5               | \$         | 624.7     | \$<br>1,909.2  |
| 2020  | \$ | 0.6 | \$ | 4.7   | \$ | 5.7   | \$  | 23.8     | \$   | 53.3     | \$   | 276.5      | \$  | 195.5             | \$ | 769.7               | \$         | 643.2     | \$<br>1,972.9  |
| 2021  | \$ | 0.6 | \$ | 4.8   | \$ | 5.9   | \$  | 24.7     | \$   | 55.3     | \$   | 284.6      | \$  | 199.9             | \$ | 784.5               | \$         | 655.5     | \$<br>2,015.8  |
| 2022  | \$ | 0.6 | \$ | 5.0   | \$ | 6.1   | \$  | 25.3     | \$   | 56.7     | \$   | 289.9      | \$  | 202.7             | \$ | 793.8               | \$         | 663.3     | \$<br>2,043.3  |
| 2023  | \$ | 0.6 | \$ | 5.0   | \$ | 6.2   | \$  | 25.7     | \$   | 57.6     | \$   | 293.1      | \$  | 204.3             | \$ | 798.8               | \$         | 667.5     | \$<br>2,058.9  |
| 2024  | \$ | 0.7 | \$ | 5.1   | \$ | 6.2   | \$  | 25.9     | \$   | 58.1     | \$   | 294.9      | \$  | 205.0             | \$ | 800.5               | \$         | 668.9     | \$<br>2,065.2  |
| 2025  | \$ | 0.7 | \$ | 5.1   | \$ | 6.3   | \$  | 26.0     | \$   | 58.3     | \$   | 295.4      | \$  | 204.9             | \$ | 799.6               | \$         | 668.1     | \$<br>2,064.4  |
| 2026  | \$ | 0.7 | \$ | 5.1   | \$ | 6.3   | \$  | 26.0     | \$   | 58.3     | \$   | 294.9      | \$  | 204.3             | \$ | 796.5               | \$         | 665.6     | \$<br>2,057.7  |
| 2027  | \$ | 0.7 | \$ | 5.1   | \$ | 6.2   | \$  | 25.9     | \$   | 58.2     | \$   | 293.7      | \$  | 203.2             | \$ | 791.8               | \$         | 661.6     | \$<br>2,046.4  |
| 2028  | \$ | 0.6 | \$ | 5.0   | \$ | 6.1   | \$  | 25.5     | \$   | 57.1     | \$   | 288.1      | \$  | 199.1             | \$ | 775.5               | \$         | 648.0     | \$<br>2,005.1  |
| 2029  | \$ | 0.6 | \$ | 4.9   | \$ | 6.1   | \$  | 25.2     | \$   | 56.6     | \$   | 285.1      | \$  | 196.9             | \$ | 766.5               | \$         | 640.5     | \$<br>1,982.5  |
| Total | \$ | 9.4 | \$ | 73.2  | \$ | 89.7  | \$  | 373.1    | \$   | 836.4    | \$   | 4,366.5    | \$  | 3,123.3           | \$ | 12,394.1            | \$         | 10,356.7  | \$<br>31,622.3 |
| Ann.  | \$ | 0.5 | \$ | 4.2   | \$ | 5.1   | \$  | 21.4     | \$   | 48.0     | \$   | 250.8      | \$  | 179.4             | \$ | 711.8               | \$         | 594.8     | \$<br>1,816.0  |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f and E.45d.

#### Exhibit F.16d Mean Present Value of Benefits Yearly Projections, WTP for Lymphoma as Basis for Non-Fatal Cases, at 7% Discount Rate, by System Size (All Systems)

TTHM - Preferred Alternative, 25% Safety Margin

|       |    |     |    |       |    | •     | Sı  | moking/   |     | ng Can   | cer | Cessatio   | on | Lag Mo            | del |                     |            |           |                |
|-------|----|-----|----|-------|----|-------|-----|-----------|-----|----------|-----|------------|----|-------------------|-----|---------------------|------------|-----------|----------------|
| Year  | <  | 100 | 10 | 0-499 | 50 | 0-999 | 1,0 | 000-3,299 | 3,3 | 00-9,999 | 10, | 000-49,999 |    | 50,000-<br>99,999 |     | 100,000-<br>999,999 | <u>≥</u> 1 | 1,000,000 | Total          |
| 2005  | \$ | -   | \$ | -     | \$ | -     | \$  | -         | \$  | -        | \$  | -          | \$ | -                 | \$  | -                   | \$         | -         | \$<br>-        |
| 2006  | \$ | -   | \$ | _     | \$ | _     | \$  | _         | \$  | _        | \$  | -          | \$ | -                 | \$  | -                   | \$         | -         | \$<br>_        |
| 2007  | \$ | -   | \$ | -     | \$ | -     | \$  | -         | \$  | -        | \$  | -          | \$ | -                 | \$  | -                   | \$         | -         | \$<br>_        |
| 2008  | \$ | -   | \$ | -     | \$ | -     | \$  | -         | \$  | _        | \$  | -          | \$ | -                 | \$  | -                   | \$         | -         | \$<br>-        |
| 2009  | \$ | -   | \$ | -     | \$ | -     | \$  | -         | \$  | -        | \$  | -          | \$ | -                 | \$  | -                   | \$         | -         | \$<br>-        |
| 2010  | \$ | 0.0 | \$ | 0.2   | \$ | 0.2   | \$  | 0.9       | \$  | 2.1      | \$  | 12.4       | \$ | 10.4              | \$  | 45.2                | \$         | 37.8      | \$<br>109.2    |
| 2011  | \$ | 0.1 | \$ | 0.4   | \$ | 0.5   | \$  | 2.2       | \$  | 5.0      | \$  | 29.6       | \$ | 24.8              | \$  | 108.4               | \$         | 90.6      | \$<br>261.7    |
| 2012  | \$ | 0.1 | \$ | 0.7   | \$ | 0.9   | \$  | 3.8       | \$  | 8.5      | \$  | 50.0       | \$ | 42.0              | \$  | 183.3               | \$         | 153.1     | \$<br>442.4    |
| 2013  | \$ | 0.1 | \$ | 1.1   | \$ | 1.3   | \$  | 5.5       | \$  | 12.3     | \$  | 72.8       | \$ | 61.1              | \$  | 266.5               | \$         | 222.7     | \$<br>643.3    |
| 2014  | \$ | 0.2 | \$ | 1.4   | \$ | 1.8   | \$  | 7.3       | \$  | 16.5     | \$  | 97.4       | \$ | 77.6              | \$  | 320.8               | \$         | 268.1     | \$<br>791.0    |
| 2015  | \$ | 0.2 | \$ | 1.8   | \$ | 2.2   | \$  | 9.3       | \$  | 20.8     | \$  | 118.6      | \$ | 89.6              | \$  | 365.2               | \$         | 305.1     | \$<br>912.9    |
| 2016  | \$ | 0.3 | \$ | 2.1   | \$ | 2.6   | \$  | 10.9      | \$  | 24.4     | \$  | 133.3      | \$ | 98.9              | \$  | 399.4               | \$         | 333.8     | \$<br>1,005.7  |
| 2017  | \$ | 0.3 | \$ | 2.3   | \$ | 2.9   | \$  | 12.0      | \$  | 26.8     | \$  | 144.1      | \$ | 105.5             | \$  | 423.2               | \$         | 353.7     | \$<br>1,070.8  |
| 2018  | \$ | 0.3 | \$ | 2.5   | \$ | 3.1   | \$  | 12.7      | \$  | 28.5     | \$  | 151.3      | \$ | 109.4             | \$  | 435.9               | \$         | 364.2     | \$<br>1,108.0  |
| 2019  | \$ | 0.3 | \$ | 2.6   | \$ | 3.2   | \$  | 13.2      | \$  | 29.6     | \$  | 155.3      | \$ | 110.9             | \$  | 438.5               | \$         | 366.4     | \$<br>1,120.0  |
| 2020  | \$ | 0.3 | \$ | 2.6   | \$ | 3.2   | \$  | 13.4      | \$  | 30.1     | \$  | 156.2      | \$ | 110.4             | \$  | 434.6               | \$         | 363.2     | \$<br>1,114.0  |
| 2021  | \$ | 0.3 | \$ | 2.6   | \$ | 3.2   | \$  | 13.4      | \$  | 30.1     | \$  | 154.7      | \$ | 108.6             | \$  | 426.4               | \$         | 356.3     | \$<br>1,095.7  |
| 2022  | \$ | 0.3 | \$ | 2.6   | \$ | 3.2   | \$  | 13.2      | \$  | 29.7     | \$  | 151.7      | \$ | 106.0             | \$  | 415.3               | \$         | 347.1     | \$<br>1,069.1  |
| 2023  | \$ | 0.3 | \$ | 2.5   | \$ | 3.1   | \$  | 12.9      | \$  | 29.0     | \$  | 147.7      | \$ | 102.9             | \$  | 402.4               | \$         | 336.2     | \$<br>1,037.0  |
| 2024  | \$ | 0.3 | \$ | 2.5   | \$ | 3.0   | \$  | 12.6      | \$  | 28.2     | \$  | 143.0      | \$ | 99.4              | \$  | 388.1               | \$         | 324.3     | \$<br>1,001.3  |
| 2025  | \$ | 0.3 | \$ | 2.4   | \$ | 2.9   | \$  | 12.1      | \$  | 27.2     | \$  | 137.9      | \$ | 95.7              | \$  | 373.2               | \$         | 311.8     | \$<br>963.5    |
| 2026  | \$ | 0.3 | \$ | 2.3   | \$ | 2.8   | \$  | 11.7      | \$  | 26.2     | \$  | 132.5      | \$ | 91.8              | \$  | 357.9               | \$         | 299.0     | \$<br>924.5    |
| 2027  | \$ | 0.3 | \$ | 2.2   | \$ | 2.7   | \$  | 11.2      | \$  | 25.2     | \$  | 127.0      | \$ | 87.9              | \$  | 342.4               | \$         | 286.1     | \$<br>885.1    |
| 2028  | \$ | 0.3 | \$ | 2.1   | \$ | 2.5   | \$  | 10.6      | \$  | 23.8     | \$  | 119.9      | \$ | 82.9              | \$  | 322.8               | \$         | 269.8     | \$<br>834.8    |
| 2029  | \$ | 0.3 | \$ | 2.0   | \$ | 2.4   | \$  | 10.1      | \$  | 22.7     | \$  | 114.3      | \$ | 78.9              | \$  | 307.2               | \$         | 256.7     | \$<br>794.5    |
| Total | \$ | 5.0 | \$ | 39.1  | \$ | 47.9  | \$  | 199.2     | \$  | 446.5    | \$  | 2,349.4    | \$ | 1,694.6           | \$  | 6,756.8             | \$         | 5,646.1   | \$<br>17,184.6 |
| Ann.  | \$ | 0.4 | \$ | 3.4   | \$ | 4.1   | \$  | 17.1      | \$  | 38.3     | \$  | 201.6      | \$ | 145.4             | \$  | 579.8               | \$         | 484.5     | \$<br>1,474.6  |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f and E.45d.

Section F.17
Model Outputs - Preferred Alternative
25% Safety Margin
TTHM as Indicator
Bronchitis for Non-Fatal Cases

Exhibit F.17a Projections of Yearly Benefits, WTP for Bronchitis as Basis for Non-Fatal Cases (Smoking/Lung Cancer Cessation Lag Model)

TTHM - Preferred Alternative, 25% Safety Margin

|       |               | Surfac   | e W | ater Syst          | ems                   | 3        | Ground Water Systems |         |                      |                  | ns                    | All Systems |               |          |    |                    |    |                     |
|-------|---------------|----------|-----|--------------------|-----------------------|----------|----------------------|---------|----------------------|------------------|-----------------------|-------------|---------------|----------|----|--------------------|----|---------------------|
|       |               |          |     | 90 Po<br>Confider  |                       | -        |                      |         |                      | 90 P<br>Confider |                       |             |               |          |    | 90 P<br>Confider   |    |                     |
| Year  | Mean<br>Value |          |     | Lower<br>th %tile) | Upper<br>(95th %tile) |          | Mean<br>Value        |         | Lower<br>(5th %tile) |                  | Upper<br>(95th %tile) |             | Mean<br>Value |          | (5 | Lower<br>th %tile) | (9 | Upper<br>5th %tile) |
| 2005  | \$            | -        | \$  |                    | \$                    | -        | \$                   |         | \$                   | -                | \$                    |             | \$            | -        | \$ | -                  | \$ | -                   |
| 2006  | \$            | -        | \$  | -                  | \$                    | -        | \$                   | -       | \$                   | -                | \$                    | -           | \$            | -        | \$ | -                  | \$ | -                   |
| 2007  | \$            | -        | \$  | -                  | \$                    | -        | \$                   | -       | \$                   | -                | \$                    | -           | \$            | -        | \$ | -                  | \$ | -                   |
| 2008  | \$            | -        | \$  | -                  | \$                    | -        | \$                   | -       | \$                   | -                | \$                    | -           | \$            | -        | \$ | -                  | \$ | -                   |
| 2009  | \$            | -        | \$  | -                  | \$                    | -        | \$                   | -       | \$                   | -                | \$                    | -           | \$            | -        | \$ | -                  | \$ | -                   |
| 2010  | \$            | 73.0     | \$  | 16.1               | \$                    | 160.4    | \$                   | 2.7     | \$                   | 0.6              | \$                    | 6.0         | \$            | 75.7     | \$ | 16.7               | \$ | 166.4               |
| 2011  | \$            | 187.2    | \$  | 41.2               | \$                    | 412.3    | \$                   | 7.0     | \$                   | 1.5              | \$                    | 15.3        | \$            | 194.1    | \$ | 42.7               | \$ | 427.6               |
| 2012  | \$            | 338.8    | \$  | 74.4               | \$                    | 745.8    | \$                   | 12.6    | \$                   | 2.8              | \$                    | 27.7        | \$            | 351.4    | \$ | 77.2               | \$ | 773.4               |
| 2013  | \$            | 527.6    | \$  | 115.8              | \$                    | 1,160.9  | \$                   | 19.6    | \$                   | 4.3              | \$                    | 43.1        | \$            | 547.2    | \$ | 120.1              | \$ | 1,204.0             |
| 2014  | \$            | 693.4    | \$  | 151.9              | \$                    | 1,526.4  | \$                   | 27.1    | \$                   | 5.9              | \$                    | 59.6        | \$            | 720.5    | \$ | 157.9              | \$ | 1,586.0             |
| 2015  | \$            | 855.2    | \$  | 187.1              | \$                    | 1,885.9  | \$                   | 35.0    | \$                   | 7.7              | \$                    | 77.2        | \$            | 890.3    | \$ | 194.7              | \$ | 1,963.1             |
| 2016  | \$            | 1,007.8  | \$  | 220.3              | \$                    | 2,221.6  | \$                   | 42.5    | \$                   | 9.3              | \$                    | 93.8        | \$            | 1,050.3  | \$ | 229.5              | \$ | 2,315.4             |
| 2017  | \$            | 1,148.2  | \$  | 250.6              | \$                    | 2,535.8  | \$                   | 49.3    | \$                   | 10.8             | \$                    | 108.8       | \$            | 1,197.4  | \$ | 261.4              | \$ | 2,644.6             |
| 2018  | \$            | 1,271.5  | \$  | 276.9              | \$                    | 2,809.0  | \$                   | 55.4    | \$                   | 12.1             | \$                    | 122.4       | \$            | 1,326.8  | \$ | 288.9              | \$ | 2,931.4             |
| 2019  | \$            | 1,375.4  | \$  | 299.0              | \$                    | 3,045.7  | \$                   | 60.8    | \$                   | 13.2             | \$                    | 134.6       | \$            | 1,436.2  | \$ | 312.2              | \$ | 3,180.3             |
| 2020  | \$            | 1,464.4  | \$  | 317.8              | \$                    | 3,245.2  | \$                   | 65.5    | \$                   | 14.2             | \$                    | 145.2       | \$            | 1,529.9  | \$ | 332.1              | \$ | 3,390.4             |
| 2021  | \$            | 1,541.8  | \$  | 334.2              | \$                    | 3,421.0  | \$                   | 69.6    | \$                   | 15.1             | \$                    | 154.3       | \$            | 1,611.4  | \$ | 349.3              | \$ | 3,575.3             |
| 2022  | \$            | 1,610.6  | \$  | 348.4              | \$                    | 3,580.7  | \$                   | 73.1    | \$                   | 15.8             | \$                    | 162.5       | \$            | 1,683.7  | \$ | 364.3              | \$ | 3,743.2             |
| 2023  | \$            | 1,672.7  | \$  | 360.9              | \$                    | 3,719.1  | \$                   | 76.2    | \$                   | 16.4             | \$                    | 169.5       | \$            | 1,748.9  | \$ | 377.3              | \$ | 3,888.7             |
| 2024  | \$            | 1,729.4  | \$  | 372.8              | \$                    | 3,847.2  | \$                   | 79.1    | \$                   | 17.0             | \$                    | 175.9       | \$            | 1,808.5  | \$ | 389.9              | \$ | 4,023.1             |
| 2025  | \$            | 1,781.9  | \$  | 383.3              | \$                    | 3,966.4  | \$                   | 81.7    | \$                   | 17.6             | \$                    | 181.8       | \$            | 1,863.5  | \$ | 400.9              | \$ | 4,148.2             |
| 2026  | \$            | 1,830.8  | \$  | 393.3              | \$                    | 4,076.6  | \$                   | 84.1    | \$                   | 18.1             | \$                    | 187.2       | \$            | 1,914.9  | \$ | 411.4              | \$ | 4,263.8             |
| 2027  | \$            | 1,876.9  | \$  | 402.6              | \$                    | 4,189.7  | \$                   | 86.3    | \$                   | 18.5             | \$                    | 192.7       | \$            | 1,963.3  | \$ | 421.1              | \$ | 4,382.4             |
| 2028  | \$            | 1,893.5  | \$  | 406.3              | \$                    | 4,222.9  | \$                   | 87.2    | \$                   | 18.7             | \$                    | 194.5       | \$            | 1,980.7  | \$ | 425.1              | \$ | 4,417.4             |
| 2029  | \$            | 1,929.6  | \$  | 413.6              | \$                    | 4,310.9  | \$                   | 89.0    | \$                   | 19.1             | \$                    | 198.8       | \$            | 2,018.5  | \$ | 432.6              | \$ | 4,509.7             |
| Total | \$            | 24,809.5 | \$  | 5,366.6            | \$                    | 55,083.4 | \$                   | 1,103.7 | \$                   | 238.7            | \$                    | 2,451.0     | \$            | 25,913.2 | \$ | 5,605.3            | \$ | 57,534.4            |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f, E.45b, and E.45c.

# Exhibit F.17b Present Value of Benefits Yearly Projections, WTP for Bronchitis as Basis for Non-Fatal Cases, Smoking/Lung Cancer Cessation Lag Model (All Water Systems)

TTHM - Preferred Alternative, 25% Safety Margin

|       | 39             | % D | iscount R          | ate |                     | 7%            | 6 Di | iscount R          | ate |                       |  |
|-------|----------------|-----|--------------------|-----|---------------------|---------------|------|--------------------|-----|-----------------------|--|
|       |                |     | 90 Pe<br>Confider  |     | -                   |               |      | 90 P<br>Confide    |     |                       |  |
| Year  | Mean<br>Value  | (5  | Lower<br>th %tile) | (9  | Upper<br>5th %tile) | Mean<br>Value |      | Lower<br>th %tile) | (9  | Upper<br>(95th %tile) |  |
| 2005  | \$             | \$  | -                  | \$  | -                   | \$<br>-       | \$   | -                  | \$  | -                     |  |
| 2006  | \$<br>-        | \$  | -                  | \$  | -                   | \$<br>-       | \$   | -                  | \$  | -                     |  |
| 2007  | \$<br>-        | \$  | -                  | \$  | -                   | \$<br>-       | \$   | -                  | \$  | -                     |  |
| 2008  | \$<br>-        | \$  | -                  | \$  | -                   | \$<br>-       | \$   | -                  | \$  | -                     |  |
| 2009  | \$<br>-        | \$  | -                  | \$  | -                   | \$<br>-       | \$   | -                  | \$  | -                     |  |
| 2010  | \$<br>65.3     | \$  | 14.4               | \$  | 143.5               | \$<br>54.0    | \$   | 11.9               | \$  | 118.6                 |  |
| 2011  | \$<br>162.6    | \$  | 35.8               | \$  | 358.1               | \$<br>129.4   | \$   | 28.4               | \$  | 284.9                 |  |
| 2012  | \$<br>285.7    | \$  | 62.8               | \$  | 628.9               | \$<br>218.8   | \$   | 48.1               | \$  | 481.7                 |  |
| 2013  | \$<br>432.0    | \$  | 94.8               | \$  | 950.4               | \$<br>318.5   | \$   | 69.9               | \$  | 700.7                 |  |
| 2014  | \$<br>552.2    | \$  | 121.0              | \$  | 1,215.6             | \$<br>391.9   | \$   | 85.9               | \$  | 862.7                 |  |
| 2015  | \$<br>662.5    | \$  | 144.9              | \$  | 1,460.8             | \$<br>452.6   | \$   | 99.0               | \$  | 998.0                 |  |
| 2016  | \$<br>758.8    | \$  | 165.8              | \$  | 1,672.7             | \$<br>499.0   | \$   | 109.1              | \$  | 1,100.0               |  |
| 2017  | \$<br>839.9    | \$  | 183.3              | \$  | 1,854.9             | \$<br>531.7   | \$   | 116.1              | \$  | 1,174.2               |  |
| 2018  | \$<br>903.5    | \$  | 196.8              | \$  | 1,996.1             | \$<br>550.6   | \$   | 119.9              | \$  | 1,216.4               |  |
| 2019  | \$<br>949.5    | \$  | 206.4              | \$  | 2,102.6             | \$<br>557.0   | \$   | 121.1              | \$  | 1,233.4               |  |
| 2020  | \$<br>982.0    | \$  | 213.1              | \$  | 2,176.2             | \$<br>554.5   | \$   | 120.4              | \$  | 1,228.8               |  |
| 2021  | \$<br>1,004.2  | \$  | 217.7              | \$  | 2,228.0             | \$<br>545.8   | \$   | 118.3              | \$  | 1,211.1               |  |
| 2022  | \$<br>1,018.7  | \$  | 220.4              | \$  | 2,264.7             | \$<br>533.0   | \$   | 115.3              | \$  | 1,185.0               |  |
| 2023  | \$<br>1,027.3  | \$  | 221.6              | \$  | 2,284.2             | \$<br>517.4   | \$   | 111.6              | \$  | 1,150.5               |  |
| 2024  | \$<br>1,031.4  | \$  | 222.3              | \$  | 2,294.3             | \$<br>500.1   | \$   | 107.8              | \$  | 1,112.4               |  |
| 2025  | \$<br>1,031.8  | \$  | 222.0              | \$  | 2,296.8             | \$<br>481.6   | \$   | 103.6              | \$  | 1,072.0               |  |
| 2026  | \$<br>1,029.4  | \$  | 221.2              | \$  | 2,292.0             | \$<br>462.5   | \$   | 99.4               | \$  | 1,029.8               |  |
| 2027  | \$<br>1,024.6  | \$  | 219.8              | \$  | 2,287.2             | \$<br>443.1   | \$   | 95.0               | \$  | 989.2                 |  |
| 2028  | \$<br>1,003.6  | \$  | 215.4              | \$  | 2,238.3             | \$<br>417.8   | \$   | 89.7               | \$  | 931.8                 |  |
| 2029  | \$<br>993.0    | \$  | 212.8              | \$  | 2,218.5             | \$<br>397.9   | \$   | 85.3               | \$  | 889.1                 |  |
| Total | \$<br>15,757.6 | \$  | 3,412.2            | \$  | 34,963.5            | \$<br>8,557.1 | \$   | 1,855.7            | \$  | 18,970.3              |  |
| Ann.  | \$<br>904.9    | \$  | 196.0              | \$  | 2,007.9             | \$<br>734.3   | \$   | 159.2              | \$  | 1,627.9               |  |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibit F.13a.

#### Exhibit F.17c Mean Present Value of Benefits Yearly Projections, WTP for Bronchitis as Basis for Non-Fatal Cases, at 3% Discount Rate, by System Size (All Systems)

TTHM - Preferred Alternative, 25% Safety Margin

|       |           |    |       |            |     | oking/L   |      | _       | er C | essatio    | n L | ag Mod  | lek |          |    |          |                |
|-------|-----------|----|-------|------------|-----|-----------|------|---------|------|------------|-----|---------|-----|----------|----|----------|----------------|
|       | 400       | 40 | 0.400 | <br>0.000  | 4.0 | 200 2 200 | 2 24 | 20.000  | 40.6 | 200 40 000 |     | 50,000- |     | 100,000- |    | 000 000  | Tatal          |
| Year  | 100       |    | 0-499 | 0-999      |     | 100-3,299 |      | 0-9,999 |      | 000-49,999 |     | 99,999  |     | 999,999  | H  | ,000,000 | Total          |
| 2005  | \$<br>-   | \$ | -     | \$<br>-    | \$  | -         | \$   | -       | \$   | -          | \$  | -       | \$  | -        | \$ | -        | \$<br>-        |
| 2006  | \$<br>-   | \$ | -     | \$<br>-    | \$  | -         | \$   | -       | \$   | -          | \$  | -       | \$  | -        | \$ | -        | \$<br>-        |
| 2007  | \$<br>-   | \$ | -     | \$<br>-    | \$  | -         | \$   | -       | \$   | -          | \$  | -       | \$  | -        | \$ | -        | \$<br>-        |
| 2008  | \$<br>-   | \$ | -     | \$<br>-    | \$  | -         | \$   | -       | \$   | -          | \$  | -       | \$  | -        | \$ | -        | \$<br>-        |
| 2009  | \$<br>-   | \$ | -     | \$<br>-    | \$  | -         | \$   | -       | \$   | -          | \$  | -       | \$  | -        | \$ | -        | \$<br>-        |
| 2010  | \$<br>0.0 | \$ | 0.1   | \$<br>0.1  | \$  | 0.6       | \$   | 1.2     | \$   | 7.4        | \$  | 6.2     | \$  | 27.0     | \$ | 22.6     | \$<br>65.3     |
| 2011  | \$<br>0.0 | \$ | 0.3   | \$<br>0.3  | \$  | 1.4       | \$   | 3.1     | \$   | 18.4       | \$  | 15.4    | \$  | 67.3     | \$ | 56.3     | \$<br>162.6    |
| 2012  | \$<br>0.1 | \$ | 0.5   | \$<br>0.6  | \$  | 2.4       | \$   | 5.5     | \$   | 32.3       | \$  | 27.1    | \$  | 118.4    | \$ | 98.9     | \$<br>285.7    |
| 2013  | \$<br>0.1 | \$ | 0.7   | \$<br>0.9  | \$  | 3.7       | \$   | 8.3     | \$   | 48.9       | \$  | 41.0    | \$  | 179.0    | \$ | 149.5    | \$<br>432.0    |
| 2014  | \$<br>0.1 | \$ | 1.0   | \$<br>1.2  | \$  | 5.1       | \$   | 11.5    | \$   | 68.0       | \$  | 54.2    | \$  | 223.9    | \$ | 187.1    | \$<br>552.2    |
| 2015  | \$<br>0.2 | \$ | 1.3   | \$<br>1.6  | \$  | 6.7       | \$   | 15.1    | \$   | 86.0       | \$  | 65.0    | \$  | 265.0    | \$ | 221.4    | \$<br>662.5    |
| 2016  | \$<br>0.2 | \$ | 1.6   | \$<br>2.0  | \$  | 8.2       | \$   | 18.4    | \$   | 100.6      | \$  | 74.6    | \$  | 301.4    | \$ | 251.8    | \$<br>758.8    |
| 2017  | \$<br>0.2 | \$ | 1.8   | \$<br>2.3  | \$  | 9.4       | \$   | 21.0    | \$   | 113.0      | \$  | 82.7    | \$  | 332.0    | \$ | 277.4    | \$<br>839.9    |
| 2018  | \$<br>0.3 | \$ | 2.0   | \$<br>2.5  | \$  | 10.4      | \$   | 23.3    | \$   | 123.4      | \$  | 89.2    | \$  | 355.4    | \$ | 297.0    | \$<br>903.5    |
| 2019  | \$<br>0.3 | \$ | 2.2   | \$<br>2.7  | \$  | 11.2      | \$   | 25.1    | \$   | 131.6      | \$  | 94.0    | \$  | 371.8    | \$ | 310.7    | \$<br>949.5    |
| 2020  | \$<br>0.3 | \$ | 2.3   | \$<br>2.8  | \$  | 11.8      | \$   | 26.5    | \$   | 137.6      | \$  | 97.3    | \$  | 383.1    | \$ | 320.1    | \$<br>982.0    |
| 2021  | \$<br>0.3 | \$ | 2.4   | \$<br>3.0  | \$  | 12.3      | \$   | 27.6    | \$   | 141.8      | \$  | 99.6    | \$  | 390.8    | \$ | 326.5    | \$<br>1,004.2  |
| 2022  | \$<br>0.3 | \$ | 2.5   | \$<br>3.0  | \$  | 12.6      | \$   | 28.3    | \$   | 144.5      | \$  | 101.0   | \$  | 395.7    | \$ | 330.7    | \$<br>1,018.7  |
| 2023  | \$<br>0.3 | \$ | 2.5   | \$<br>3.1  | \$  | 12.8      | \$   | 28.7    | \$   | 146.3      | \$  | 101.9   | \$  | 398.6    | \$ | 333.1    | \$<br>1,027.3  |
| 2024  | \$<br>0.3 | \$ | 2.5   | \$<br>3.1  | \$  | 12.9      | \$   | 29.0    | \$   | 147.3      | \$  | 102.4   | \$  | 399.8    | \$ | 334.1    | \$<br>1,031.4  |
| 2025  | \$<br>0.3 | \$ | 2.5   | \$<br>3.1  | \$  | 13.0      | \$   | 29.1    | \$   | 147.6      | \$  | 102.4   | \$  | 399.6    | \$ | 333.9    | \$<br>1,031.8  |
| 2026  | \$<br>0.3 | \$ | 2.6   | \$<br>3.1  | \$  | 13.0      | \$   | 29.2    | \$   | 147.5      | \$  | 102.2   | \$  | 398.5    | \$ | 333.0    | \$<br>1,029.4  |
| 2027  | \$<br>0.3 | \$ | 2.5   | \$<br>3.1  | \$  | 13.0      | \$   | 29.1    | \$   | 147.1      | \$  | 101.8   | \$  | 396.4    | \$ | 331.3    | \$<br>1,024.6  |
| 2028  | \$<br>0.3 | \$ | 2.5   | \$<br>3.1  | \$  | 12.8      | \$   | 28.6    | \$   | 144.2      | \$  | 99.7    | \$  | 388.1    | \$ | 324.3    | \$<br>1,003.6  |
| 2029  | \$<br>0.3 | \$ | 2.5   | \$<br>3.0  | \$  | 12.6      | \$   | 28.3    | \$   | 142.8      | \$  | 98.6    | \$  | 383.9    | \$ | 320.8    | \$<br>993.0    |
| Total | \$<br>4.7 | \$ | 36.5  | \$<br>44.7 | \$  | 186.0     | \$   | 416.9   | \$   | 2,176.3    | \$  | 1,556.4 | \$  | 6,175.7  | \$ | 5,160.5  | \$<br>15,757.6 |
| Ann.  | \$<br>0.3 | \$ | 2.1   | \$<br>2.6  | \$  | 10.7      | \$   | 23.9    | \$   | 125.0      | \$  | 89.4    | \$  | 354.7    | \$ | 296.4    | \$<br>904.9    |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f and E.45d.

#### Exhibit F.17d Mean Present Value of Benefits Yearly Projections, WTP for Bronchitis as Basis for Non-Fatal Cases, at 7% Discount Rate, by System Size (All Systems)

TTHM - Preferred Alternative, 25% Safety Margin

|       |    |     |    |       |    | Ţ,    | Sm  | oking/L  | un  | g Canc   | er C | Cessatio   | n L | ag Mod          | lek |                     |            |          |               |
|-------|----|-----|----|-------|----|-------|-----|----------|-----|----------|------|------------|-----|-----------------|-----|---------------------|------------|----------|---------------|
| Year  | ٧  | 100 | 10 | 0-499 | 50 | 0-999 | 1,0 | 00-3,299 | 3,3 | 00-9,999 | 10,0 | 000-49,999 |     | 0,000-<br>9,999 |     | 100,000-<br>999,999 | <u>≥</u> 1 | ,000,000 | Total         |
| 2005  | \$ |     | \$ |       | \$ | -     | \$  | -        | \$  | -        | \$   | -          | \$  | -               | \$  | -                   | \$         | -        | \$<br>-       |
| 2006  | \$ | -   | \$ | -     | \$ | -     | \$  | -        | \$  | -        | \$   | -          | \$  | -               | \$  | -                   | \$         | -        | \$<br>-       |
| 2007  | \$ | -   | \$ | -     | \$ | -     | \$  | -        | \$  | -        | \$   | -          | \$  | -               | \$  | -                   | \$         | -        | \$<br>-       |
| 2008  | \$ | -   | \$ | -     | \$ | -     | \$  | -        | \$  | -        | \$   | -          | \$  | -               | \$  | -                   | \$         | -        | \$<br>-       |
| 2009  | \$ | -   | \$ | -     | \$ | -     | \$  | -        | \$  | -        | \$   | -          | \$  | -               | \$  | -                   | \$         | -        | \$<br>-       |
| 2010  | \$ | 0.0 | \$ | 0.1   | \$ | 0.1   | \$  | 0.5      | \$  | 1.0      | \$   | 6.1        | \$  | 5.1             | \$  | 22.4                | \$         | 18.7     | \$<br>54.0    |
| 2011  | \$ | 0.0 | \$ | 0.2   | \$ | 0.3   | \$  | 1.1      | \$  | 2.5      | \$   | 14.6       | \$  | 12.3            | \$  | 53.6                | \$         | 44.8     | \$<br>129.4   |
| 2012  | \$ | 0.0 | \$ | 0.4   | \$ | 0.4   | \$  | 1.9      | \$  | 4.2      | \$   | 24.7       | \$  | 20.8            | \$  | 90.7                | \$         | 75.8     | \$<br>218.8   |
| 2013  | \$ | 0.1 | \$ | 0.5   | \$ | 0.7   | \$  | 2.7      | \$  | 6.1      | \$   | 36.0       | \$  | 30.2            | \$  | 131.9               | \$         | 110.2    | \$<br>318.5   |
| 2014  | \$ | 0.1 | \$ | 0.7   | \$ | 0.9   | \$  | 3.6      | \$  | 8.2      | \$   | 48.2       | \$  | 38.4            | \$  | 158.9               | \$         | 132.8    | \$<br>391.9   |
| 2015  | \$ | 0.1 | \$ | 0.9   | \$ | 1.1   | \$  | 4.6      | \$  | 10.3     | \$   | 58.8       | \$  | 44.4            | \$  | 181.0               | \$         | 151.3    | \$<br>452.6   |
| 2016  | \$ | 0.1 | \$ | 1.1   | \$ | 1.3   | \$  | 5.4      | \$  | 12.1     | \$   | 66.1       | \$  | 49.1            | \$  | 198.2               | \$         | 165.6    | \$<br>499.0   |
| 2017  | \$ | 0.2 | \$ | 1.2   | \$ | 1.4   | \$  | 5.9      | \$  | 13.3     | \$   | 71.5       | \$  | 52.4            | \$  | 210.2               | \$         | 175.6    | \$<br>531.7   |
| 2018  | \$ | 0.2 | \$ | 1.2   | \$ | 1.5   | \$  | 6.3      | \$  | 14.2     | \$   | 75.2       | \$  | 54.4            | \$  | 216.6               | \$         | 181.0    | \$<br>550.6   |
| 2019  | \$ | 0.2 | \$ | 1.3   | \$ | 1.6   | \$  | 6.6      | \$  | 14.7     | \$   | 77.2       | \$  | 55.1            | \$  | 218.1               | \$         | 182.2    | \$<br>557.0   |
| 2020  | \$ | 0.2 | \$ | 1.3   | \$ | 1.6   | \$  | 6.7      | \$  | 15.0     | \$   | 77.7       | \$  | 54.9            | \$  | 216.3               | \$         | 180.8    | \$<br>554.5   |
| 2021  | \$ | 0.2 | \$ | 1.3   | \$ | 1.6   | \$  | 6.7      | \$  | 15.0     | \$   | 77.1       | \$  | 54.1            | \$  | 212.4               | \$         | 177.5    | \$<br>545.8   |
| 2022  | \$ | 0.2 | \$ | 1.3   | \$ | 1.6   | \$  | 6.6      | \$  | 14.8     | \$   | 75.6       | \$  | 52.9            | \$  | 207.1               | \$         | 173.0    | \$<br>533.0   |
| 2023  | \$ | 0.2 | \$ | 1.3   | \$ | 1.6   | \$  | 6.5      | \$  | 14.5     | \$   | 73.7       | \$  | 51.3            | \$  | 200.8               | \$         | 167.8    | \$<br>517.4   |
| 2024  | \$ | 0.2 | \$ | 1.2   | \$ | 1.5   | \$  | 6.3      | \$  | 14.1     | \$   | 71.4       | \$  | 49.6            | \$  | 193.8               | \$         | 162.0    | \$<br>500.1   |
| 2025  | \$ | 0.2 | \$ | 1.2   | \$ | 1.5   | \$  | 6.1      | \$  | 13.6     | \$   | 68.9       | \$  | 47.8            | \$  | 186.5               | \$         | 155.9    | \$<br>481.6   |
| 2026  | \$ | 0.1 | \$ | 1.1   | \$ | 1.4   | \$  | 5.8      | \$  | 13.1     | \$   | 66.3       | \$  | 45.9            | \$  | 179.0               | \$         | 149.6    | \$<br>462.5   |
| 2027  | \$ | 0.1 | \$ | 1.1   | \$ | 1.4   | \$  | 5.6      | \$  | 12.6     | \$   | 63.6       | \$  | 44.0            | \$  | 171.5               | \$         | 143.3    | \$<br>443.1   |
| 2028  | \$ | 0.1 | \$ | 1.0   | \$ | 1.3   | \$  | 5.3      | \$  | 11.9     | \$   | 60.0       | \$  | 41.5            | \$  | 161.6               | \$         | 135.0    | \$<br>417.8   |
| 2029  | \$ | 0.1 | \$ | 1.0   | \$ | 1.2   | \$  | 5.1      | \$  | 11.4     | \$   | 57.2       | \$  | 39.5            | \$  | 153.9               | \$         | 128.6    | \$<br>397.9   |
| Total | \$ | 2.5 | \$ | 19.5  | \$ | 23.8  | \$  | 99.2     | \$  | 222.4    | \$   | 1,170.2    | \$  | 843.9           | \$  | 3,364.4             | \$         | 2,811.3  | \$<br>8,557.1 |
| Ann.  | \$ | 0.2 | \$ | 1.7   | \$ | 2.0   | \$  | 8.5      | \$  | 19.1     | \$   | 100.4      | \$  | 72.4            | \$  | 288.7               | \$         | 241.2    | \$<br>734.3   |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Ann. = value of total annualized at discount rate.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits F.1f and E.45d.

# **Appendix G**

Illustrative Calculation for Quantifying Reproductive/Developmental Benefits of the Stage 2 DBPR

### Appendix G 2

### Illustrative Calculation for Quantifying Reproductive/Developmental Benefits of the Stage 2 DBPR

3 4 5

1

#### **G.1 Introduction and Purpose**

6 7

8

9

10

11

12

13

14

15

16

The purpose of this Appendix is to support Section 6.8.1 by providing details for an illustrative calculation that quantifies the benefits of reduced fetal losses (miscarriage and stillbirth) potentially attributable to the reduction in elevated disinfection byproduct (DBP) levels from the Stage 2 Disinfection Byproduct Rule (DBPR). Fetal loss was chosen from among the reported reproductive and developmental health endpoints (including neural tube defects, low birth weight, cardiovascular effects, intrauterine growth retardation and cleft palate, etc.) because there are relatively more epidemiological data for it in comparison to the other endpoints. In addition, fetal loss occurs at a high incidence rate in the United States; of the approximately 6 million pregnancies experienced in the United States each year, approximately 1 million end as fetal losses (Ventura et al. 2000). Consequently, even a small risk attributable to DBPs (e.g., 0.1 percent) may result in a large number of fetal losses (n=1,000) and, thus, increase potential benefits from avoided cases of fetal losses for the Stage 2 DBPR.

17 18 19

20

21

22

Section G.2 describes the derivation of Population Attributable Risk (PAR) values relating fetal losses to DBP exposure. Section G.3 presents the calculation of fetal losses avoided as a result of the Stage 2 DBPR. Assumptions and uncertainties in these calculations are summarized in Section G.4. Detailed tables supported the estimated reduction in occurrence of DBP peaks are provided in Section G.5

23 24 25

#### **G.2 Derivation of PARs from Three Studies**

26 27 28

29

30

31

Fetal losses potentially attributable to DBPs in drinking water were estimated use the PAR approach, similar to the approach used to quantify benefits associated with reduced incidence of bladder cancer cases in the main benefits analysis. PAR is a measure of the fraction of a disease that occurs in the population that is attributable to some specified risk factor. By extension, it also implies the fraction of that disease that would be eliminated from the population if the specified risk factor was eliminated.

32 33 34

To derive PAR, the Environmental Protection Agency (EPA) evaluated three published population-based human epidemiology studies:

35 36 37

- Waller et al. 2001
- King et al. 2000a Savitz et al. 1995

39 40

38

Exhibit G.1 summarizes the key characteristics of these studies. All three are considered high quality studies as they conform to the following criteria: 1) population-based-case-control or cohort study that ascertained exposure to chlorinated surface water, 2) high quality, well-designed study that had sufficient

sample sizes, high response rates<sup>1</sup>, and adjusted for known confounding factors, and 3) exposure assessment using information from water treatment data, residential histories, and trihalomethane (THM) measurement data. These are the same criteria used to select the bladder cancer studies for the primary benefits analysis for both Stage 1 and Stage 2 DBPR.

**Exhibit G.1 Summary of the Fetal Loss Human Epidemiology Studies** 

| Study                 | Type of Study and<br>Population                                                                     | Exposure Assessment                                                                                                                                                                        | Outcome                                                | Potential Confounders                                                                                                                               |
|-----------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Waller et al.<br>2001 | Prospective cohort<br>of 4,209 pregnant<br>women in prepaid<br>health plan in CA<br>1989-91         | Estimated TTHM levels during first trimester of pregnancy via ingestion and showering.                                                                                                     | Spontaneous<br>abortion<br>(≤20 weeks of<br>gestation) | Gestational age at interview,<br>maternal age, cigarette<br>smoking, history of<br>pregnancy loss, maternal<br>race, employment during<br>pregnancy |
| King et al.<br>2000a  | Population-based<br>retrospective cohort<br>of 47,275 births in<br>Nova Scotia,<br>Canada 1988-1995 | Linked mother's residence at time of delivery to the levels of specific TTHMs monitored in the PWS and averaged predicted values of byproduct level for the months covering the pregnancy. | Stillbirth                                             | Smoking, maternal age                                                                                                                               |
| Savitz et al.<br>1995 | Population-based<br>case-control study<br>of 126 cases and<br>122 controls in NC<br>1988-91         | Examined TTHM concentration at residences and water consumption (during first and third trimesters). Fourth week of pregnancy used to assign the reported quarterly average TTHM.          | Spontaneous abortion                                   | Maternal age, race,<br>education, marital status,<br>poverty level, smoking,<br>alcohol use, nausea,<br>employment                                  |

The PARs were derived using the risk Odds Ratios (ORs) or Relative Risks (RRs) from the three studies. To determine the fraction of cases within the exposed population that would be attributable to a specific exposure (i.e., PAR value), the proportion of exposed cases can be derived from either the study population or national occurrence information. To calculate a PAR value using the study-exposed fraction, Equation G.1 would be used. Equation G.2, which is mathematically equivalent to Equation G.1, would be used when adjusting the exposed fraction using the national occurrence data. RR refers to the relative risk,  $P_c$  refers to the prevalence of exposure in the cases (the total number of exposed cases/total number of cases), and  $P_e$  refer to the exposed population.

$$PAR = 100 \times P_{c} \times \underline{(RR-1)}$$

$$RR$$
(Equation G.1)

<sup>&</sup>lt;sup>1</sup> *Note:* The Savitz et al. 1995 study had a response rate of 62 percent for miscarriage cases which is not unexpected due to the highly sensitive nature of this event.

$$PAR = 100 \times \underline{P_e \times (RR-1)}$$
$$[P_e \times (RR-1)) + 1]$$

(Equation G.2)

It is common practice to use the study population derived exposed fraction of cases to calculate the PAR estimate (Equation G.1) by making the assumption that the study populations is representative of the general U.S. population. However, analysis of Information Collection Rule (ICR) occurrence data show that study populations have higher DBP exposures than the general U.S. population. National DBP exposure is compared to study population exposure in Section G.2.1. Section G.2.2 follows with detailed derivation of PAR using Equation G.2 (adjusted to be more representative of national exposure levels).

#### G.2.1 DBP Exposure for Study Populations Compared to National Data

Section 5.2.3 provides a basis for why ICR data can be used to represent national exposure to DBPs. Below is a discussion of how EPA compared ICR data to the exposure characterizations of three epidemiology studies. The data are presented in a different manner than in 5.2.3 to reflect the specific methodologies used in the epidemiology studies to characterize exposure.

Summary of exposure characterizations from epidemiological studies

The three epidemiological studies used in this analysis differ in geographic location, health endpoints, study type, and exposure classification. Major features of the studies are summarized in Exhibit G.1. The three studies assigned pregnancies to multiple exposure categories, but the categorizations most closely related to the Stage 2 DBP maximum contaminant level (MCL) are those closest to the MCL (80 micrograms per liter ( $\mu$ g/L)). Exhibits G.2 and G.3 presents the study data that are used to assess representativeness of national exposure in this appendix.

G-3

# Exhibit G.2 DBP Exposure Data for Cohort Studies (Waller et al. 2001 and King et al. 2000a)

| Study                             | Exposure                          | Cases | Non-Cases | Total  | Percent of<br>Population |
|-----------------------------------|-----------------------------------|-------|-----------|--------|--------------------------|
| Waller et al.<br>2001,<br>Table 2 | 1st Trimester Mean TTHM > 80 μg/L | 74    | 578       | 652    | 15.5% <sup>1</sup>       |
|                                   | 1st Trimester Mean TTHM ≤ 80 µg/L | 322   | 3,238     | 3,560  | 84.5%                    |
| King et al.<br>2000a,             | Pregnancy Mean TTHM ≥ 75 μg/L     | 75    | 15,163    | 15,238 | 32.4% <sup>2</sup>       |
| Table 3                           | Pregnancy Mean TTHM < 75 μg/L     | 122   | 31,718    | 31,840 | 67.5%                    |

#### Notes

- 1. As derived from original study data: (488+164)/(488+164+488+1139+715+654+564) = 652/(652+3650) = 15.5 percent
- 2. As derived from original study data: (31+44+7350+7813)/(31+44+7350+7813+43+79+12987+18730)= 15,258/(15,258+31,840)=32.4 percent

# Exhibit G.3 DBP Exposure Data for Case-Control Study (Savitz et al. 1995, Table 2)

| Exposure                          | Cases | Controls | Percent of Population <sup>1</sup> |
|-----------------------------------|-------|----------|------------------------------------|
| 1st Trimester Mean TTHM > 81 µg/L | 46    | 43       | 35.2% <sup>2</sup>                 |
| 1st Trimester Mean TTHM ≤ 81 µg/L | 80    | 79       | 64.8%                              |
| TOTAL                             | 126   | 122      |                                    |

#### Notes

- 1. For case-control studies, the distribution of population exposure is most appropriately represented by the control group only.
- 2. 43/(43+79) = 35.2 percent

#### Comparison of exposure between ICR data and study populations

EPA derived national exposure estimates based on the ICR data using the exposure study definitions by Waller et al. 2001, Savitz et al. 1995, and King et al. 2000b. For the Waller study, EPA used the first trimester utility wide average, rather than the closest-site estimate, as only this definition could be applied to the ICR data. This assumption is supported by the Waller et al. 2001 comment that there is little difference between the exposure estimates derived from the utility-wide average versus the closest-site estimates. In analyzing the ICR data for purpose of exposure comparison with the Waller study, EPA considered the plants having data from at least 3 distribution system locations with at least three valid results for both total trihalomethanes (TTHM) and haloacetic acid (HAA5) during the final

year of the ICR survey, i.e., ICR quarters 3, 4, 5, and 6. Among these plants, 77 out of 1,130 plant-quarters (6.8 percent) had distribution system averages greater than 80  $\mu$ g/L, and therefore are categorized as high-exposure per Waller. The Savitz study also used utility wide averages in a given quarter as the basis for the exposure estimates. Thus, the 6.8 percent exposure estimate from the ICR data for Savitz is essentially the same as for Waller since the population cutoffs are only different by 1  $\mu$ g/L, i.e., 80 vs 81  $\mu$ g/L.

For the King study, exposure was estimated by averaging predicted TTHM values for the months covering the duration of the mother's pregnancy and using 75  $\mu$ g/L as the exposure concentration for comparisons. To relate the King exposure estimate to the ICR data, EPA calculated locational nine month running averages from the ICR data; i.e., locational averages for 3 consecutive quarters. Each ICR plant location provided three or four nine-month averages, taking quarters (3,4,5), (3,4,6), (3,5,6), or (4,5,6). Of the 4,917 location-nine-month averages from the ICR data, 314 (6.4 percent) exceeded 75  $\mu$ g/L, and therefore are categorized as high-exposure per King.

Exhibit G.4 compares DBP exposures for the studies and ICR data using the study exposure definitions. The fraction of cases among the study population experiencing TTHM occurrences over 80  $\mu$ g/L (current TTHM MCL) is 15 percent to 35 percent. National ICR DBP occurrence data indicate that approximately 6.8 percent of the U.S. population are potentially exposed to TTHM levels higher than the current MCL of 80  $\mu$ g/L during any of the four quarters during the last 12 months of the ICR.

Exhibit G.4: Comparison of DBP Peak Exposures: Fractions Exposed in Study and ICR Populations

| Data Source      | Waller et al.<br>(1st trimester > 80) | Savitz et al.<br>(1st trimester > 81) | King et al.<br>(pregnancy mean > 75) |
|------------------|---------------------------------------|---------------------------------------|--------------------------------------|
| Study Population | 15%                                   | 35%                                   | 32%                                  |
| ICR Population   | 6.8%                                  | 6.8%                                  | 6.4%                                 |

Note: The King et al. estimate is based on running average values over nine months whereas the Waller et al. and Savitz et al. studies are based on averages for three month periods (quarters) and thus, would include systems that exceeded the threshold for one three month period over nine months.

#### G.2.2 PAR Results Using OR or RR and Scaling to National Exposure

PAR estimates were derived using risk estimates and odds ratios calculated from the studies (summarized in Exhibit G.5). Each study assigned pregnancies to multiple exposure categories, but the exposure category closest to the Stage 2 DBP TTHM MCL (80  $\mu$ g/L) was used to recalculate Odds Ratio (OR)/Relative Risk (RR). For the Waller et al. 2001 and Savitz et al.1995 studies, persons with exposure to greater than or equal to 80  $\mu$ g/L and 81  $\mu$ g/L, respectively, were defined as "exposed." For the King et al. study, the cut-off was established at 75  $\mu$ g/L. In addition, to make the results from the Waller et. al. 2001 study comparable to the other studies, the utility-wide, unweighted average TTHM concentrations were used, disregarding the number of glasses of water consumed per day. For this analysis, crude odds ratios were used because it was not possible to calculate adjusted odds ratios for the

referent unexposed group with the limited information provided in the underlying studies. Hence, not all confounding variables have been considered.

PAR results were derived using Equation G.2, i.e., adjusting the exposed fraction in the study population to reflect national exposure levels. Note that the lower 95 percent confidence bound, which are calculated to be less than zero for all studies, were truncated to zero to reflect biological plausibility.

Exhibit G.5 RR, OR and PAR Estimates for Three Epidemiological Studies

|                       | Calcula   | ated RR and ORs 1       | PAR Estimates <sup>2</sup> |                                         |  |  |
|-----------------------|-----------|-------------------------|----------------------------|-----------------------------------------|--|--|
| Study                 | Median    | 95% Confidence Interval | Median                     | 95% Confidence<br>Interval <sup>3</sup> |  |  |
| Waller et al.<br>2001 | RR = 1.25 | 0.99 - 1.6              | 1.7 %                      | 0 - 4%                                  |  |  |
| Savitz et al.<br>1995 | OR = 1.06 | 0.6 - 1.8               | 0.4 %                      | 0 - 4%                                  |  |  |
| King et al.<br>2000a  | RR = 1.28 | 0.98 - 1.7              | 1.7 %                      | 0 - 4%                                  |  |  |

#### Notes:

- 1. Re-calculated by EPA for exposure levels as described in Section 2.2.1 using crude odds ratios reported in the studies
- 2. Based on Equation G.2: % PAR = 100% \* (Pe)\* (RR-1) / [(RR-1)\* Pe + 1] where Pe is the fraction of the exposed population and RR is Relative Risks or Odds Ratio
- 3. Lower confidence bounds were truncated to zero to reflect biological plausibility

#### G.3 Estimate of Annual Fetal Losses Avoided as a Result of the Stage 2 DBPR

All three epidemiology studies covered exposure periods that occurred between 1988 and 1995, before implementation of the Stage 1 DBPR. To calculate the number of fetal losses avoided as a consequence of the Stage 2 DBPR, TTHM quarterly distribution system data collected during the ICR were used to estimate the fraction of locations with peak exposures for pre-Stage 1, pre-Stage 2 (post-Stage 1), and post-Stage 2 scenarios<sup>2</sup>. From these fractions, the percent reduction in peak exposures attributed to the Stage 2 DBPR can be calculated (see Section 5.5 for a discussion of this analysis). Although EPA recognizes that the developmental and reproductive health data described in section 6.2 does not conclusively identify the peak level of concern, a peak TTHM concentration of  $80 \mu g/L$  was assumed for all analyses, since this was closest to the level evaluated in the studies.

EPA made several assumptions for this analysis. For example, each ICR plant-location (Distribution System Equivalent Sample Point (DSE), Average Sample Point Number 1 (AVG1), Average

<sup>&</sup>lt;sup>2</sup>Note that EPA uses the unadjusted compliance forecast analysis for this illustrative calculation. For the benefits and cost analyses, an alternative compliance forecast was developed to account for the potential impacts of the IDSE. By using the unadjusted compliance forecast results, this illustrative analysis is potentially biased low.

Sample Point Number 2 (AVG2), and Distribution System Maximum Sample Point (DS Maximum)) was assumed to represent an equal portion of the population. Also, TTHM occurrence for ICR plants evaluated are assumed to represent national occurrence. Section G.4 provides a full discussion of the assumptions and uncertainties for the derivation of fetal losses avoided as a result of the Stage 2 DBPR

EPA estimates that approximately 250 to 4,100 fetal losses could be avoided per year as a result of the Stage 2 DBPR based on PAR values of 0.4 and 1.7 percent, respectively. The following four steps show the derivation of fetal losses avoided as a result of the Stage 2 DBPR for a PAR value of 1.7 percent. The same steps can be used to derive the results for the PAR value of 0.4 percent.

Step 1: Estimate the baseline number of fetal losses (pre-Stage 1 conditions) attributable to exposure to peak DBPs by multiplying the PAR value by the total number of fetal losses per year (983,000 from Ventura et al. 2000):

$$1.7\% \text{ PAR x } 983,000 = 16,711$$

Exhibit G.6 shows the range of baseline fetal losses attributable to DBPs for PAR values of 0 to 4.0 percent (95 confidence bounds based on the three studies).

- Step 2: Estimate the percent of population exposed to peaks for Pre-Stage 1, Pre-Stage 2 and Post-Stage 2 conditions (derived in Section 5.5). Results for a TTHM study level of 80 µg/L are shown in Exhibit G.6.
- Step 3: Estimate the fetal losses remaining for Pre-Stage 2 conditions. First, estimate the fetal losses avoided by the Stage 1 DBPR by multiplying the Pre-Stage 1 cases by the percent reduction in peak DBP exposure as a result of the Stage 1 DBPR (shown in Exhibit G.6):

$$16,711 \times ([17.5\% - 6.0\%]/17.5\%) = 10,981$$

Subtract the fetal losses avoided as a result of the Stage 1 DBPR from the pre-Stage 1 baseline number of fetal losses attributable to DBPs to produce the fetal losses remaining that are attributable to DBPs for Pre-Stage 2 conditions:

$$16,711 - 10,981 = 5,730$$

Step 4: Calculate the fetal losses avoided as a result of the Stage 2 DBPR. Similarly to Step 3, multiply the fetal losses remaining after the Stage 1 DBPR by the percent reduction in peak DBP exposure as a result of the Stage 1 DBPR (shown in Exhibit G.7):

$$5,730 \times ([6.0\% - 1.7\%]/6.0\%] = 4,105$$

Exhibit G.6 Exposure to Peaks Based on ICR Data, TTHM Study Level of 80 µg/L

|                                                           | Pre-Stage 1 | Pre-Stage 2<br>(Post-Stage 1) | Post-Stage 2 <sup>1</sup> |
|-----------------------------------------------------------|-------------|-------------------------------|---------------------------|
| Locations with Peaks / Total Locations                    | 215 / 1230  | 74 /1230                      | 21 / 1230                 |
| Prevalence of Exposure (Locations with Peaks / Locations) | 17.5%       | 6.0%                          | 1.7%                      |

Source: Exhibit 5.21

Note: <sup>1</sup>Stage 2 data is based on the unadjusted compliance forecast (20 percent safety margin)

Exhibit G.7 Baseline Annual Fetal Losses Attributable to DBPs Based on Different PAR Values



#### **G.4** Summary of Assumptions and Uncertainties

There are a number of uncertainties and assumptions associated with calculating PAR and deriving the estimate of Fetal Losses that could be attributable to DBP exposure. The assumptions are necessary, however, for predicting exposure changes given the limited data on DBP occurrence in small systems and in distribution systems in general. These include:

• DBPs may not be the causative agent for these fetal losses.

- All confounding factors may not have been considered in these three studies.
- By using the crude odds ratios to recalculate the risk estimates, the PAR estimates may not have captured the true risk estimate.
- The total incidence for all fetal losses (n=983,000) was used to represent both spontaneous abortion and stillbirth because there is insufficient data to distinguish the number of miscarriages vs. number of stillbirths per year.

These assumptions and uncertainties are not all specific to this analysis; they would be true for many environmental epidemiology studies and population attributable risk calculations.

There are other uncertainties and assumptions associated with calculating the reduction in fetal losses that could be attributable to the Stage 2 DBPR. To translate DBP occurrence to DBP exposure, two assumptions were used.

- Each plant-location (DSE, AVG1, AVG2, and DS Maximum) represents an equal portion (25 percent) of the total population served by the plant.
- Peak DBP occurrence for 311 large ICR plants evaluated is representative of the peak DBP occurrence for all plants (large and small).

Section 5.5 provides an assessment of the validity and impact of these assumptions.

Because DBP concentrations are highly variable in distribution systems, it is possible that the exposure analysis in Section 5.5 does not capture true variability in exposure to peaks. Uncertainties with interpretation of ICR data for the purposes of this exposure assessment include:

- The extent to which small system occurrence is represented
- Year to year variability of DBP occurrence data that might be affected by changes in source water quality (e.g., drought years versus non-drought years)
- The extent to which each ICR sampling point represents an equal fraction of the population served
- The extent to which ICR sampling locations represent compliance monitoring locations when trying to estimate reductions in exposure resulting from compliance with Stage 1 and Stage 2 DBPRs.

# **Appendix H**

# National Costs for Non-Treatment-Related Rule Activities

## Appendix H

### **National Costs for Non-Treatment-Related Rule Activities**

This appendix presents calculation summaries and cost tables for activities under the Stage 2 Disinfectants and Disinfection Byproducts Rule (DBPR) associated with rule implementation, Initial Distribution System Evaluations (IDSEs), Stage 2 DBPR monitoring plans, additional routine monitoring, and operational evaluations. It supports the discussion of these rule activities in Chapter 7. For systems, each activity is described separately in sections H.2 through H.6. A summary of all non-treatment activities and costs for systems is presented in H.7. State/Primacy Agency activities are described in section H.8.

Each cost summary presented in this appendix details the labor hours and corresponding labor costs for a given activity. The derivation of the public water system (PWS) and State labor rates used for each activity is discussed in further detail in Chapter 7 (section 7.2).

#### **H.1** Derivation of the Stage 2 Monitoring Baseline

The Stage 2 DBPR monitoring requirements (both IDSE and compliance monitoring) are based on 8 surface water and 5 ground water population size categories. The Environmental Protection Agency (EPA) believes these to be more appropriate for specifying the numbers of samples per system than the standard nine system size categories that are used to generate treatment costs in this Economic Analysis (EA). Thus, a separate Stage 2 monitoring baseline for systems is needed. The final Stage 2 DBPR monitoring baseline, as presented in Column K in Exhibit H.1, is derived as described below.

Exhibit H.1 begins with the total number of systems according to the monitoring size categories. The data is obtained from the 2003 4<sup>th</sup> quarter Safe Drinking Water Information System (SDWIS) frozen database (USEPA 2003t), as explained in section 3.4 of this EA. Systems are categorized by source and system type as well as by purchasing and nonpurchasing systems. The purchasing or nonpurchasing designation is important because systems that purchase all their water may not have monitored for the Stage 1 DBPR, so they may not have the data available to take advantage of some IDSE options such as 40/30 certification or very small system waivers (see section 7.3 of this EA). The purchased designation in SDWIS, however, includes systems that treat their own water as well as purchase some of their water from another system. These producing systems would be required to monitor for the Stage 1 DBPR and so should be included with the nonpurchasing systems for determining which monitoring options are available to them. To estimate inputs for these types of systems separately, estimates of "100% purchasing" and "Producing" systems are needed.

To determine the percent of purchasing systems in SDWIS that purchase 100 percent of their water, EPA examined SDWIS purchasing system inventory data. As explained in Chapter 3 of this EA, in SDWIS and the Baseline Handbook (USEPA 2001c), systems are assigned a source type using the following hierarchy, in descending order: Surface water<sup>1</sup>, Purchased Surface water, Ground Water, and

<sup>&</sup>lt;sup>1</sup> For the purposes of this EA, systems supplying ground water under the influence of surface water (GWUDI) are included with surface water systems. EPA also refers to the grouping of surface water and GWUDI

Purchased Ground Water. The presence of the first source in this list determines the source assignment for that system. As a result, <u>all</u> purchasing ground water community water systems (CWSs) and nontransient noncommunity water systems (NTNCWSs) are, by SDWIS definition, 100 percent purchasing systems.

Unlike purchasing ground water systems, purchasing surface water systems may have non-purchasing supplies. To determine how many purchasing surface water CWSs buy 100 percent of their water, EPA reviewed the results of the system linking exercise presented in section 3.4.2.2 of this EA. As explained in that section, the "linked" surface water system inventory was created by adding the population of 100 percent purchasing systems to their sellers and removing those systems from the inventory. A system was not "linked" to its seller if it had its own treatment plant or bought water from a system of a different type (e.g., a CWS buying water from a NTNCWS). Thus, remaining unlinked purchasing surface water systems (shown in Exhibit 3.2 of this EA, columns A and B) represent either systems that purchase finished water *and* have their own source, systems that buy from a different system type (e.g., a purchasing surface water plant that has its own ground water wells), or systems with missing seller information. In other words, those purchasing surface water systems that were able to be linked represents the minimum number of 100 percent purchasing systems. Using the percentage of purchasing systems that could be linked to estimate 100 percent purchasing systems may create a bias in the number of estimated 100 percent purchasing systems, but the error introduced is expected to be minimal since the number of remaining unlinked surface water CWSs is small.

From Exhibits 3.2 and 3.3 of this EA, the total number SDWIS purchasing surface water CWSs that could be linked is 5,124 (4130+994), and the percent of the total is 94 [5124/(4130+994+232+83)]. Note that this calculation was not performed for each Stage 2 DBPR monitoring size category because inventory data in Chapter 3 is organized according to the standard nine size categories (not the Stage 2 DBPR monitoring categories). The percentage of all purchasing surface water systems that could be linked (94 percent) was used in Exhibit H.1 to estimate the baseline number of purchasing surface water CWSs that buy 100 percent of their water (see column D).

A large portion of NTNCWSs could not be linked because they purchase water from different system types (in many cases, a NTNCWS purchases water from a CWS and was therefore, not linked). Therefore, a different methodology was used to estimate the percent of purchasing surface water NTNCWS that buy 100 percent of their water. All NTNCWSs are assumed to have just one entry point per system (as explained in section 3.4.2.2, these systems are most often a single building or located in a small area). Following this logic, a purchasing surface water NTNCWS is unlikely to have a second treated source—all are assumed to be 100 percent purchasing systems.

Only systems that disinfect or deliver disinfected water will be required to meet the requirements of the Stage 2 DBPR. Therefore, to determine the appropriate baseline for nontreatment costs, the number of disinfecting systems is determined. As with the treatment plant baseline, all surface water systems are assumed to be disinfecting. The percent of disinfecting ground water systems was obtained from the Third Edition of the Baseline Handbook, which is derived from the 1995 Community Water Systems Survey (CWSS). Column H of Exhibit H.1 displays the percentage disinfecting.

systems as "subpart H" systems in the Stage 2 DBPR rule language. Surface water and GWUDI systems are grouped together because they fall under the same requirements in the Safe Drinking Water Act (SDWA) regulations.

Exhibit H.1 Baseline Number of Disinfecting Systems by Monitoring Size Categories

|                     | N             | lumber of Systems |        |                                                                            | Nun                | nber of System | S         |                         | Number             | of Disinfecting | Systems   |
|---------------------|---------------|-------------------|--------|----------------------------------------------------------------------------|--------------------|----------------|-----------|-------------------------|--------------------|-----------------|-----------|
| Size Category       | Purchased     | Nonpurchased      | Total  | Percent of<br>Purchased<br>Systems that<br>Purchase 100%<br>of Their Water | 100%<br>Purchasing | Producing      | Total     | Percent<br>Disinfecting | 100%<br>Purchasing | Producing       | Total     |
| Ī                   | Α             | В                 | С      | D                                                                          | E = A*D            | F = C - E      | G = E + F | Н                       | I = E*H            | J = F*H         | K = I + J |
| Surface Water and M | ixed CWSs     |                   |        |                                                                            |                    |                |           |                         |                    |                 |           |
| <500                | 2,191         | 1,106             | 3,297  | 94.00%                                                                     | 2,060              | 1,237          | 3,297     | 100.00%                 | 2,060              | 1,237           | 3,297     |
| 500-3,300           | 2,531         | 1,527             | 4,058  | 94.00%                                                                     | 2,379              | 1,679          | 4,058     | 100.00%                 | 2,379              | 1,679           | 4,058     |
| 3,301-9,999         | 1,001         | 1,041             | 2,042  | 94.00%                                                                     | 941                | 1,101          | 2,042     | 100.00%                 | 941                | 1,101           | 2,042     |
| 10,000-49,999       | 795           | 978               | 1,773  | 94.00%                                                                     | 747                | 1,026          | 1,773     | 100.00%                 | 747                | 1,026           | 1,773     |
| 50,000-249,999      | 188           | 346               | 534    | 94.00%                                                                     | 177                | 357            | 534       | 100.00%                 | 177                | 357             | 534       |
| 250,000-999,999     | 9             | 72                | 81     | 94.00%                                                                     | 8                  | 73             | 81        | 100.00%                 | 8                  | 73              | 81        |
| 1,000,000-4,999,999 | -             | 17                | 17     | 94.00%                                                                     | 0                  | 17             | 17        | 100.00%                 | 0                  | 17              | 17        |
| ≥5 M                | -             | 1                 | 1      | 94.00%                                                                     | 0                  | 1              | 1         | 100.00%                 | 0                  | 1               | 1         |
| National Totals     | 6,715         | 5,088             | 11,803 |                                                                            | 6,312              | 5,491          | 11,803    |                         | 6,312              | 5,491           | 11,803    |
| Disinfecting Ground | Water Only CW | /Ss               |        |                                                                            |                    |                |           |                         |                    |                 |           |
| <500                | 1,127         | 25,501            | 26,628 | 100.00%                                                                    | 1,127              | 25,501         | 26,628    | 66.68%                  | 752                | 17,005          | 17,756    |
| 500-9,999           | 976           | 12,390            | 13,366 | 100.00%                                                                    | 976                | 12,390         | 13,366    | 82.67%                  | 807                | 10,243          | 11,050    |
| 10,000-99,999       | 41            | 1,381             | 1,422  | 100.00%                                                                    | 41                 | 1,381          | 1,422     | 95.48%                  | 39                 | 1,319           | 1,358     |
| 100,000-499,999     | 1             | 61                | 62     | 100.00%                                                                    | 1                  | 61             | 62        | 96.40%                  | 1                  | 59              | 60        |
| > 500,000           | -             | 6                 | 6      | 100.00%                                                                    | 0                  | 6              | 6         | 98.19%                  | 0                  | 6               | 6         |
| National Totals     | 2,145         | 39,339            | 41,484 |                                                                            | 2,145              | 39,339         | 41,484    |                         | 1,598              | 28,631          | 30,229    |
| Surface Water and M | ixed NTNCWSs  |                   |        |                                                                            |                    |                |           |                         |                    |                 |           |
| <500                | 126           | 422               | 548    | 100.00%                                                                    | 126                | 422            | 548       | 100.00%                 | 126                | 422             | 548       |
| 500-3,300           | 55            | 144               | 199    | 100.00%                                                                    | 55                 | 144            | 199       | 100.00%                 | 55                 | 144             | 199       |
| 3,301-9,999         | 11            | 13                | 24     | 100.00%                                                                    | 11                 | 13             | 24        | 100.00%                 | 11                 | 13              | 24        |
| 10,000-49,999       | 4             | 1                 | 5      | 100.00%                                                                    | 4                  | 1              | 5         | 100.00%                 | 4                  | 1               | 5         |
| 50,000-249,999      | 1             | -                 | 1      | 100.00%                                                                    | 1                  | 0              | 1         | 100.00%                 | 1                  | 0               | 1         |
| 250,000-999,999     | -             | -                 | -      | 100.00%                                                                    | 0                  | 0              | 0         | 100.00%                 | 0                  | 0               | 0         |
| 1,000,000-4,999,999 | -             | -                 | -      | 100.00%                                                                    | 0                  | 0              | 0         | 100.00%                 | 0                  | 0               | 0         |
| ≥5 M                | -             | -                 | -      | 100.00%                                                                    | 0                  | 0              | 0         | 100.00%                 | 0                  | 0               | 0         |
| National Totals     | 197           | 580               | 777    |                                                                            | 197                | 580            | 777       |                         | 197                | 580             | 777       |
| Disinfecting Ground | Water Only NT | NCWSs             |        |                                                                            |                    |                |           |                         |                    |                 |           |
| <500                | 55            | 15,882            | 15,937 | 100.00%                                                                    | 55                 | 15,882         | 15,937    | 29.00%                  | 16                 | 4,606           | 4,622     |
| 500-9,999           | 25            | 2,933             | 2,958  | 100.00%                                                                    | 25                 | 2,933          | 2,958     | 29.00%                  | 7                  | 851             | 858       |
| 10,000-99,999       | 3             | 9                 | 12     | 100.00%                                                                    | 3                  | 9              | 12        | 29.00%                  | 1                  | 3               | 3         |
| 100,000-499,999     | -             | 1                 | 1      | 100.00%                                                                    | 0                  | 1              | 1         | 29.00%                  | 0                  | 0               | 0         |
| > 500,000           | -             | -                 | -      | 100.00%                                                                    | 0                  | 0              | 0         | 29.00%                  | 0                  | 0               | 0         |
| National Totals     | 83            | 18,825            | 18,908 |                                                                            | 83                 | 18,825         | 18,908    |                         | 24                 | 5,459           | 5,483     |
| Grand Totals        | 9,140         | 63,832            | 72,972 |                                                                            | 8,737              | 64,235         | 72,972    |                         | 8,132              | 40,161          | 48,293    |

Sources:

2

<sup>(</sup>A), (B) 2003 4th quarter SDWIS frozen database (USEPA 2003t).

<sup>(</sup>D) Percentage of purchased systems that are 100% purchasing is estimated from SDWIS data

<sup>(</sup>H) Percent disinfecting is estimated from the Third Edition of the Baseline Handbook (Table B1.3.3) originally derived from the 1995 CWSS.

1

#### **H.2** Rule Implementation Activities for Systems

Exhibit H.2 presents the costs and burden<sup>2</sup> for systems to perform implementation activities associated with the Stage 2 DBPR. These costs represent the labor hours incurred by PWSs to read the appropriate Stage 2 DBPR documents and train staff in their requirements. All systems subject to the Stage 2 DBPR are expected to undertake these implementation activities. Exhibit H.2 presents estimates of implementation hours and costs by system type, system size, and source water type.

<sup>&</sup>lt;sup>2</sup> Burden means the total time, effort, or resources expended by persons to generate, maintain, retain, disclose, or provide information to or for a federal agency. This includes the time needed to review instructions; adjust the existing ways to comply with any previously applicable instructions and requirements; train personnel to be able to respond to the collection of information; search data sources; complete and review the collection of information; and transmit or otherwise disclose the information.

**Exhibit H.2 Rule Implementation Burden and Costs for Systems** 

|                                   | Total Number of Systems | Read Hours<br>per PWS | Train Hours<br>per PWS |    | Cost per<br>Labor Hour<br>D |    | Total Cost  | Total Burden<br>(Hours) | Total Burden<br>(FTEs) |
|-----------------------------------|-------------------------|-----------------------|------------------------|----|-----------------------------|----|-------------|-------------------------|------------------------|
| Size Category Surface Water and N | A<br>lived CWSs         | В                     | С                      |    | D                           | E  | = A*(B+C)*D | F = A*(B+C)             | G = F/2,080            |
| <500                              | 3,297                   | 8                     | 2                      | \$ | 22.55                       | \$ | 743,375     | 32,970                  | 15.85                  |
| 500-3,300                         | 4,058                   | 8                     | 2                      | \$ | 24.74                       | \$ | 1,003,949   | 40,580                  | 19.51                  |
| 3,301-9,999                       | 2,042                   | 8                     | 2                      | \$ | 30.51                       | \$ | 623,055     | 20,420                  | 9.82                   |
| 10,000-49,999                     | 1,773                   | 20                    | 2                      | \$ | 31.08                       | \$ | 1,212,306   | 39,006                  | 18.75                  |
| 50,000-249,999                    | 534                     | 20                    | 2                      | \$ | 32.64                       | \$ | 383,467     | 11,748                  | 5.65                   |
| 250,000-999,999                   | 81                      | 20                    | 4                      | \$ | 35.25                       | \$ | 68,522      | 1,944                   | 0.93                   |
| 1,000,000-4,999,999               | 17                      | 20                    | 4                      | \$ | 35.25                       | \$ | 14,381      | 408                     | 0.20                   |
| ≥5 M                              | 1                       | 20                    | 4                      | \$ | 35.25                       | \$ | 846         | 24                      | 0.01                   |
| National Totals                   | 11.803                  |                       | · ·                    | Ψ  | 00.20                       | \$ | 4,049,902   | 147,100                 | 70.72                  |
| Disinfecting Ground               | ,                       | /Ss                   |                        |    |                             | Ť  | .,0 .0,002  | ,                       |                        |
| <500                              | 17,756                  | 8                     | 1                      | \$ | 22.35                       | \$ | 3,572,101   | 159,807                 | 76.83                  |
| 500-9,999                         | 11,050                  | 8                     | 1                      | \$ | 24.86                       | \$ | 2,472,179   | 99,446                  | 47.81                  |
| 10,000-99,999                     | 1,358                   | 20                    | 1                      | \$ | 31.08                       | \$ | 886,174     | 28,513                  | 13.71                  |
| 100,000-499,999                   | 60                      | 20                    | 1                      | \$ | 35.25                       | \$ | 44,241      | 1,255                   | 0.60                   |
| > 500,000                         | 6                       | 20                    | 1                      | \$ | 35.25                       | \$ | 4,361       | 124                     | 0.06                   |
| National Totals                   | 30,229                  |                       |                        | •  |                             | \$ | 6,979,054   | 289,145                 | 139.01                 |
| Surface Water and M               | lixed NTNCWS            | 3                     |                        |    |                             |    |             |                         |                        |
| <500                              | 548                     | 8                     | 1                      | \$ | 22.39                       | \$ | 110,450     | 4,932                   | 2.37                   |
| 500-3,300                         | 199                     | 8                     | 1                      | \$ | 24.74                       | \$ | 44,309      | 1,791                   | 0.86                   |
| 3,301-9,999                       | 24                      | 8                     | 1                      | \$ | 30.51                       | \$ | 6,591       | 216                     | 0.10                   |
| 10,000-49,999                     | 5                       | 20                    | 1                      | \$ | 31.08                       | \$ | 3,263       | 105                     | 0.05                   |
| 50,000-249,999                    | 1                       | 20                    | 1                      | \$ | 35.25                       | \$ | 740         | 21                      | 0.01                   |
| 250,000-999,999                   | -                       | 20                    | 2                      |    | N/A                         | \$ | -           | -                       | -                      |
| 1,000,000-4,999,999               | -                       | 20                    | 2                      |    | N/A                         | \$ | -           | -                       | -                      |
| ≥5 M                              | -                       | 20                    | 2                      |    | N/A                         | \$ | -           | -                       | 1                      |
| National Totals                   | 777                     |                       |                        |    |                             | \$ | 165,353     | 7,065                   | 3.40                   |
| Disinfecting Ground               | Water Only NT           | NCWSs                 |                        |    |                             |    |             |                         |                        |
| <500                              | 4,622                   | 8                     | 1                      | \$ | 22.20                       | \$ | 923,423     | 41,596                  | 20.00                  |
| 500-9,999                         | 858                     | 8                     | 1                      | \$ | 24.76                       | \$ | 191,118     | 7,720                   | 3.71                   |
| 10,000-99,999                     | 3                       | 20                    | 1                      | \$ | 31.08                       | \$ | 2,271       | 73                      | 0.04                   |
| 100,000-499,999                   | 0.3                     | 20                    | 1                      | \$ | 35.25                       | \$ | 215         | 6                       | 0.00                   |
| 500,000-1,499,999                 | -                       | 20                    | 1                      |    | N/A                         | \$ | -           | -                       | -                      |
| National Totals                   | 5,483                   |                       |                        |    |                             | \$ | 1,117,027   | 49,395                  | 23.75                  |
| Grand Totals                      | 48,293                  |                       |                        |    |                             | \$ | 12,311,336  | 492,705                 | 236.88                 |

Notes: Detail may not add due to independent rounding.

1 FTE=2,080 hours (40 hours/week; 52 weeks/year).

Sources: (A) Number of disinfecting systems (column K) from Exhibit H.1.

(B and C) Hours for reading the rule and training appropriate personel are estimated based on EPA experience implementing previous regulations.

(D) Labor rates from the *Labor Costs for National Drinking Water Rules* (USEPA, 2003s). An 80:20 split between technical and managerial labor rates was assumed, except for systems serving 500 or fewer people, for which only a technical rate was applied.

42 43

44

45 46

#### H.3 **IDSE Activities for Systems**

The purpose of the IDSE is to aid PWSs in identifying sample locations for Stage 2 compliance monitoring that represent distribution system sites with high TTHM and HAA5 levels. Some systems are not subject to IDSE requirements or may receive waivers. The first step in estimating costs for the IDSE is to categorize the systems into one of the five IDSE options listed below.

*Systems Performing the IDSE*:

*Systems Not Performing the IDSE:* 

- Systems conducting standard monitoring
- Systems using system specific studies (SSS)
- All NTNCWSs serving fewer than 10,000 people.
- Systems serving fewer than 500 people that receive a very small system waiver.
- Systems eligible for the 40/30 certification.

Costs and burden associated with IDSE activities differ depending on whether or not the system performs the IDSE and, if so, which option a system chooses. All systems performing the IDSE are expected to incur some costs, as are those that are eligible for the 40/30 certification.

Section H.3.1 describes the assumptions for allocating systems to the five categories. Section H.3.2 provides cost estimates for those systems performing the IDSE (Standard Monitoring or SSS option). Section H.3.3 provides the rationale and, if appropriate, cost estimates for systems not performing the IDSE (NTNCWSs serving < 10,000; systems serving < 500 that receive a waiver; and systems that qualify for the 40/30 certification).

#### **H.3.1** Categorization of Systems

Exhibits H.3a and H.3b summarize the percentages and estimated number of systems that will conduct each IDSE activity for 100 percent purchasing and producing systems, respectively. The percentages associated with each IDSE activity, listed in columns B-D of these exhibits, have been derived for the total population served in each size category, but are applied to the number of systems in a size category sequentially. For example, the very small system waiver is applied to the total number of systems (3,297); then the percentage of systems qualifying for the 40/30 certification is applied to the remaining systems; finally, the percentage of systems conducting an SSS is applied to the systems that cannot be granted either the waiver or certification. The assumptions underlying the percentages are discussed in detail in the remainder of this section. The number of systems in the IDSE categories that are expected to incur system costs (standard monitoring, SSS, and 40/30 certification) are presented in the last three columns of these exhibits.

NTNCWSs Serving < 10,000 People

None of the NTNCWSs serving fewer than 10,000 people are subject to the IDSE requirements. The exhibits in this appendix note "N/A" for these NTNCWS population categories.

# Exhibit H.3a Percent and Number of 100 % Purchasing Systems in Each IDSE Category

| Size Category                | Total<br>Number of<br>100%<br>Purchasing<br>Systems | Percentage<br>Receiving a<br>Very Small<br>System<br>Waiver | Percentage<br>Having<br>Concentrations<br>Less than or<br>Equal to 40/30 | Percentage<br>Using Studies<br>D | Systems Conducting IDSE Standard Monitoring  E=A*(1-B)-F- G | Systems Receiving the 40/30 Certification F=Round [A*(1-B)*C] | Systems Using Studies G=Round [A*(1-B)*(1-C)*D] |
|------------------------------|-----------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------|
| Surface Water and Mixed      |                                                     | 1                                                           |                                                                          |                                  |                                                             | ı                                                             | T                                               |
| <500                         | 2,060                                               | 0%                                                          | 0%                                                                       | 0%                               | 2,060                                                       | -                                                             | -                                               |
| 500-3,300                    | 2,379                                               | 0%                                                          | 0%                                                                       | 0%                               | 2,379                                                       | -                                                             | -                                               |
| 3,301-9,999                  | 941                                                 | 0%                                                          | 0%                                                                       | 0%                               | 941                                                         | -                                                             | -                                               |
| 10,000-49,999                | 747                                                 | 0%                                                          | 14%                                                                      | 0%                               | 642                                                         | 105                                                           | -                                               |
| 50,000-249,999               | 177                                                 | 0%                                                          | 14%                                                                      | 5%                               | 144                                                         | 25                                                            | 8                                               |
| 250,000-999,999              | 8                                                   | 0%                                                          | 14%                                                                      | 10%                              | 6                                                           | 1                                                             | 1                                               |
| 1,000,000-4,999,999          | -                                                   | 0%                                                          | 14%                                                                      | 10%                              | -                                                           | -                                                             | -                                               |
| ≥5 M                         | -                                                   | 0%                                                          | 14%                                                                      | 10%                              | -                                                           | -                                                             | -                                               |
| National Totals              | 6,312                                               |                                                             |                                                                          |                                  | 6,172                                                       | 131                                                           | 9                                               |
| Disinfecting Ground Water    |                                                     |                                                             |                                                                          |                                  |                                                             | ı                                                             | 1                                               |
| <500                         | 752                                                 | 0%                                                          | 0%                                                                       | 0%                               | 752                                                         | -                                                             | -                                               |
| 500-9,999                    | 807                                                 | 0%                                                          | 0%                                                                       | 0%                               | 807                                                         | -                                                             | -                                               |
| 10,000-99,999                | 39                                                  | 0%                                                          | 82%                                                                      | 0%                               | 7                                                           | 32                                                            | -                                               |
| 100,000-499,999              | 1                                                   | 0%                                                          | 66%                                                                      | 10%<br>10%                       | =                                                           | 1                                                             | -                                               |
| > 500,000<br>National Totals | 1.598                                               | 0%                                                          | 79%                                                                      | 10%                              | 1,566                                                       | 33                                                            | - 0                                             |
| Surface Water and Mixed      | ,                                                   |                                                             |                                                                          |                                  | 1,566                                                       | 33                                                            | U                                               |
| <500                         | 126                                                 | N/A                                                         | N/A                                                                      | N/A                              | N/A                                                         | N/A                                                           | N/A                                             |
| 500-3,300                    | 55                                                  | N/A<br>N/A                                                  | N/A<br>N/A                                                               | N/A<br>N/A                       | N/A<br>N/A                                                  | N/A<br>N/A                                                    | N/A<br>N/A                                      |
| 3,301-9,999                  | 11                                                  | N/A                                                         | N/A                                                                      | N/A                              | N/A                                                         | N/A                                                           | N/A                                             |
| 10,000-49,999                | 4                                                   | 0%                                                          | 14%                                                                      | 0%                               | 3                                                           | 1                                                             | -                                               |
| 50,000-249,999               | 1                                                   | 0%                                                          | 14%                                                                      | 0%                               | 1                                                           | _ '                                                           | _                                               |
| 250,000-999,999              | ·                                                   | 0%                                                          | 14%                                                                      | 0%                               | <u>.</u>                                                    | _                                                             | _                                               |
| 1,000,000-4,999,999          | _                                                   | 0%                                                          | 14%                                                                      | 0%                               | -                                                           | _                                                             | _                                               |
| ≥5 M                         | -                                                   | 0%                                                          | 14%                                                                      | 0%                               | -                                                           | _                                                             | -                                               |
| National Totals              | 197                                                 | 270                                                         | . 170                                                                    | 370                              | 4                                                           | 1                                                             | 0                                               |
| Disinfecting Ground Water    | er Only NTNCW                                       | /Ss                                                         |                                                                          |                                  |                                                             |                                                               | •                                               |
| <500                         | 16                                                  | N/A                                                         | N/A                                                                      | N/A                              | N/A                                                         | N/A                                                           | N/A                                             |
| 500-9,999                    | 7                                                   | N/A                                                         | N/A                                                                      | N/A                              | N/A                                                         | N/A                                                           | N/A                                             |
| 10,000-99,999                | 1                                                   | 0%                                                          | 92%                                                                      | 0%                               | -                                                           | 1                                                             | _                                               |
| 100,000-499,999              | -                                                   | 0%                                                          | 92%                                                                      | 0%                               | -                                                           | -                                                             | -                                               |
| > 500,000                    | -                                                   | 0%                                                          | 92%                                                                      | 0%                               | -                                                           |                                                               | -                                               |
| National Totals              | 24                                                  |                                                             |                                                                          |                                  | 0                                                           | 1                                                             | 0                                               |
| Grand Totals                 | 8,132                                               |                                                             |                                                                          |                                  | 7,742                                                       | 166                                                           | 9                                               |

Notes: Detail may not add due to independent rounding.

Results in columns F and G are rounded to whole systems.

Column C is percent of systems with TTHM concentrations less than or equal to 40 ug/L and HAA5 concentrations less than or equal to 30 ug/L for Stage 1 DBPR monitoring.

Sources: (A) Number of disinfecting 100% purchasing systems (Exhibit H.1, column I).

(B)-(C) 100% purchasing systems may not have DBP data with which to qualify for the waiver or certification. As a conservative assumption, 0% is used.

(D) Percentage of systems able to use historical data based on expert opinion.

### 1 Exhibit H.3b Percent and Number of Producing Systems in Each IDSE Category

|                           | Total<br>Number of<br>Producing<br>Systems | Percentage<br>Receiving a<br>Very Small<br>System<br>Waiver | Percentage<br>Having<br>Concentrations<br>Less than or Equal<br>to 40/30 | Percentage<br>Using Studies | Systems<br>Conducting<br>IDSE<br>Standard<br>Monitoring | Systems<br>Receiving the<br>40/30<br>Certification | Systems<br>Using<br>Studies<br>G=Round |
|---------------------------|--------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------|----------------------------------------------------|----------------------------------------|
| Size Category             | Α                                          | В                                                           | С                                                                        | D                           | E=A*(1-B)-F-G                                           | F=Round<br>[A*(1-B)*C]                             | [A*(1-B)*(1-<br>C)*D]                  |
| Surface Water and Mixed   | CWSs                                       |                                                             |                                                                          |                             |                                                         |                                                    |                                        |
| <500                      | 1,237                                      | 100%                                                        | 0%                                                                       | 0%                          | -                                                       | -                                                  | -                                      |
| 500-3,300                 | 1,679                                      | 0%                                                          | 14%                                                                      | 0%                          | 1,444                                                   | 235                                                | -                                      |
| 3,301-9,999               | 1,101                                      | 0%                                                          | 14%                                                                      | 0%                          | 947                                                     | 154                                                | -                                      |
| 10,000-49,999             | 1,026                                      | 0%                                                          | 14%                                                                      | 0%                          | 882                                                     | 144                                                | -                                      |
| 50,000-249,999            | 357                                        | 0%                                                          | 14%                                                                      | 5%                          | 292                                                     | 50                                                 | 15                                     |
| 250,000-999,999           | 73                                         | 0%                                                          | 14%                                                                      | 10%                         | 57                                                      | 10                                                 | 6                                      |
| 1,000,000-4,999,999       | 17                                         | 0%                                                          | 14%                                                                      | 10%                         | 14                                                      | 2                                                  | 1                                      |
| ≥5 M                      | 1                                          | 0%                                                          | 14%                                                                      | 10%                         | 1                                                       | -                                                  | -                                      |
| National Totals           | 5,491                                      |                                                             |                                                                          |                             | 3,636                                                   | 595                                                | 22                                     |
| Disinfecting Ground Water | er Only CWSs                               |                                                             |                                                                          |                             |                                                         |                                                    |                                        |
| <500                      | 17,005                                     | 100%                                                        | 0%                                                                       | 0%                          | -                                                       | -                                                  | -                                      |
| 500-9,999                 | 10,243                                     | 0%                                                          | 89%                                                                      | 0%                          | 1,149                                                   | 9,094                                              | -                                      |
| 10,000-99,999             | 1,319                                      | 0%                                                          | 82%                                                                      | 0%                          | 233                                                     | 1,086                                              | -                                      |
| 100,000-499,999           | 59                                         | 0%                                                          | 66%                                                                      | 10%                         | 18                                                      | 39                                                 | 2                                      |
| > 500,000                 | 6                                          | 0%                                                          | 79%                                                                      | 10%                         | 1                                                       | 5                                                  | -                                      |
| National Totals           | 28,631                                     |                                                             |                                                                          |                             | 1,400                                                   | 10,224                                             | 2                                      |
| Surface Water and Mixed   | NTNCWSs                                    |                                                             |                                                                          |                             |                                                         | _                                                  |                                        |
| <500                      | 422                                        | N/A                                                         | N/A                                                                      | N/A                         | N/A                                                     | N/A                                                | N/A                                    |
| 500-3,300                 | 144                                        | N/A                                                         | N/A                                                                      | N/A                         | N/A                                                     | N/A                                                | N/A                                    |
| 3,301-9,999               | 13                                         | N/A                                                         | N/A                                                                      | N/A                         | N/A                                                     | N/A                                                | N/A                                    |
| 10,000-49,999             | 1                                          | 0%                                                          | 14%                                                                      | 0%                          | 1                                                       | -                                                  | -                                      |
| 50,000-249,999            | -                                          | 0%                                                          | 14%                                                                      | 0%                          | -                                                       | -                                                  | -                                      |
| 250,000-999,999           | -                                          | 0%                                                          | 14%                                                                      | 0%                          | -                                                       | -                                                  | -                                      |
| 1,000,000-4,999,999       | -                                          | 0%                                                          | 14%                                                                      | 0%                          | -                                                       | -                                                  | -                                      |
| ≥5 M                      | -                                          | 0%                                                          | 14%                                                                      | 0%                          | -                                                       | -                                                  | -                                      |
| National Totals           | 580                                        |                                                             |                                                                          |                             | 1                                                       | 0                                                  | 0                                      |
| Disinfecting Ground Water | r Only NTNC                                | WSs                                                         |                                                                          |                             |                                                         |                                                    |                                        |
| <500                      | 4,606                                      | N/A                                                         | N/A                                                                      | N/A                         | N/A                                                     | N/A                                                | N/A                                    |
| 500-9,999                 | 851                                        | N/A                                                         | N/A                                                                      | N/A                         | N/A                                                     | N/A                                                | N/A                                    |
| 10,000-99,999             | 3                                          | 0%                                                          | 92%                                                                      | 0%                          | 1                                                       | 2                                                  | -                                      |
| 100,000-499,999           | 0                                          | 0%                                                          | 92%                                                                      | 0%                          | 0                                                       | -                                                  | -                                      |
| > 500,000                 | -                                          | 0%                                                          | 92%                                                                      | 0%                          | -                                                       | -                                                  | -                                      |
| National Totals           | 5,459                                      |                                                             |                                                                          |                             | 1                                                       | 2                                                  | 0                                      |
| Grand Totals              | 40,161                                     |                                                             |                                                                          | -                           | 5,038                                                   | 10,821                                             | 24                                     |

Notes: Detail may not add due to independent rounding.

Results in columns F and G are rounded to whole systems.

Column C is percent of systems with TTHM concentrations less than or equal to 40 ug/L and HAA5 concentrations less than or equal to 30 ug/L for Stage 1 DBPR monitoring.

Sources:

(A) Number of producing disinfecting systems (Exhibit H.1, column J).

<sup>(</sup>B) The percentage of small systems to receive a very small system waiver is an assumption based on EPA experience with small systems. 100% purchasing systems may not have DBP data with which to qualify for small system waivers. As a conservative estimate 0% is assumed.

<sup>(</sup>C) Percentage of systems with all data less than or equal to 40/30 for Surface Water and Mixed systems based on ICR and NRWA data.

<sup>(</sup>D) Percentage of systems able to use historical data based on expert opinion.

Systems serving fewer than 500 people that have conducted Stage 1 monitoring are eligible for a very small system waiver from the IDSE requirements. These systems must conduct IDSE monitoring or an SSS, however, if they have not monitored for Stage 1 or if the State directs them to do so. Since small 100 percent purchasing systems are assumed not to have monitored for the Stage 1 DBPR, they will not be eligible for the very small system waiver. Therefore, no 100 percent purchasing systems are assumed to obtain the very small system waiver. This is a conservative estimate, as some States may have already required these systems to monitor disinfection byproduct (DBPs).

Because all systems with data will receive the waiver unless the State notifies them otherwise, it is assumed all producing systems will receive the very small system waiver. Although this may be a slight overestimate, it is believed that very few of these systems will be required to monitor by the State.

Systems Receiving the 40/30 Certification

To be eligible for the 40/30 certification, systems must certify to the State/Primacy Agency that each individual sample collected for the Stage 1 DBPR is no more than 40 micrograms per liter ( $\mu$ g/L) for TTHM and 30  $\mu$ g/L for HAA5. Small systems that purchase 100 percent of their water may not have the Stage 1 DBPR monitoring data needed in order to apply for a 40/30 certification. Although this is a conservative estimate as some States require consecutive systems to monitor DBPs, it is assumed that no small 100 percent purchasing systems can receive a 40/30 certification.

EPA used various data sources to estimate the percentage of producing systems that could potentially qualify for the 40/30 certification. Based on analysis of the last 4 quarters of Information Collection Rule (ICR) data<sup>3</sup>, it was estimated that 14 percent of large and medium surface water systems could show that all compliance monitoring data were less than or equal to  $40 \,\mu\text{g/L}$  for TTHM and  $30 \,\mu\text{g/L}$  for HAA5. While this may be an underestimate because it is based on pre-Stage 1 data, few additional systems will make changes to meet Stage 1 requirements that will result in all of their samples being less than or equal to 40/30. In the absence of other information, however, EPA believes that 14 percent is the best estimate of large and medium surface water systems that could meet the 40/30 certification requirements.

For small surface water systems, analysis of National Rural Water Association (NRWA) Winter and Summer data indicates that 12 percent could quality for the 40/30 certification. However, small systems have a later start date for the IDSE, and some systems will most likely make treatment technology changes to meet the Stage 1 DBPR before the start of the IDSE. Therefore, the percent with all compliance data less than or equal to 40/30 for small systems is estimated to be the same as for large systems (i.e., 14 percent). EPA assumed that no very small systems will qualify for the 40/30 certification since very small systems with data will receive a very small system waiver instead.

For all ground water systems, ICR data were used to estimate the percentage that could qualify for the 40/30 certification. Approximately 24 percent of ICR ground water systems are located in Florida

<sup>&</sup>lt;sup>3</sup>At least 3 of 4 quarters must have TTHM and HAA5 data for at least 3 of 4 distribution system locations (TTHM and HAA5 data do not have to be present at the same location, however) for a plant to be included in this analysis.

 where total organic carbon (TOC) levels (and consequently DBP levels) are high. Appendix B describes the analysis of Florida and non-Florida ICR data, which shows that 18 percent of Florida systems have all TTHM and HAA5 concentrations less than or equal to 40/30 respectively and 92 percent of non-Florida systems have all concentrations less than or equal to 40/30. These percentages were applied to the Florida and non-Florida systems in each system size category, respectively to produce the percent estimates in column C of Exhibit H.3a and H.3b.

#### Conducting an SSS

An SSS can be used instead of standard monitoring if the system can show that an SSS would provide equivalent or superior Stage 2 site selection. An SSS can be based on hydraulic modeling and historical data. EPA estimates that 10 percent of the surface water and disinfecting ground water systems serving more than 100,000 people and 5 percent of surface water systems serving 50,000 to 100,000 people will complete an SSS in lieu of monitoring. EPA assumed that surface water systems serving fewer than 50,000 people and ground water systems serving fewer than 100,000 people will not have adequate historical data or models to meet the SSS requirements.

#### Conducting Standard Monitoring

All systems that do not receive a waiver, do not quality for the 40/30 certification, or cannot use an SSS are required to perform standard monitoring. Standard monitoring involves selecting specific types of sample sites in the distribution system (e.g., maximum TTHM sites, sites near the entry point) and monitoring at those sites for 1 year. The number and type of required samples are based on system size, the number of plants in the system (for producing systems), source water type, and residual disinfectant type. The system must prepare a report summarizing the results of the standard monitoring and justifying selection of Stage 2 compliance monitoring sites.

#### **H.3.2** Costs for Systems Performing the IDSE

#### Systems Conducting Standard Monitoring

Standard monitoring consists of three activities—preparing an IDSE monitoring plan, monitoring, and reporting. Costs associated with preparing the IDSE monitoring plan result from the labor effort required to evaluate the distribution system, select the sites, and layout where and when the system will collect and analyze samples. Labor hours are estimated on a per-system basis and vary by system size, with the assumption that larger systems need more time to select sites. The labor hour estimates for monitoring plan preparation are based on EPA's experience with other rules.

Monitoring costs include labor for sample collection and laboratory costs for sample analysis. These costs are estimated from the number of samples required. EPA estimates that systems will spend an average of 1 hour to collect one sample. Laboratory costs include \$200 for analysis of TTHM and HAA5 paired samples. A shipping cost of \$40 for systems serving fewer than 10,000 is included to reflect that these systems are unlikely to have in-house laboratory facilities and are less likely to be able to take advantage of bulk rate discounts. For systems serving 10,000 or more people, a shipping cost of \$10 is added to reflect that many of them have in-house laboratories and can take advantage of bulk rates. These costs represent averages obtained from the ICR (see Chapter 7, section 7.1.1 for more information

on laboratory cost assumptions). Costs per sample for ground and surface water plants are not expected to differ substantially.

As noted in section H.1, the total number of sampling sites and frequency of sampling for systems is a function of system size (population served) and source water type, <u>not</u> the number of plants. Larger systems must sample at more sites and more frequently than smaller ones, which typically have shorter and less complex distribution systems. Surface water sources generally have higher DBP precursor levels than ground water sources; therefore, they have a greater potential for high DBP occurrence.

Reporting costs reflect the labor required for systems to prepare and submit a report to their State/Primacy Agency on IDSE results and their proposed Stage 2 DBPR compliance monitoring sites. These costs are estimated on a per system basis for all systems. The reporting labor rate is the same rate used for preparation of the IDSE monitoring plan.

Exhibit H.4 shows the calculations and estimated costs and burden for systems expected to monitor for the IDSE.

Systems Performing an SSS

Cost estimates for systems conducting an SSS consist of preparing a study plan, conducting the study, and reporting results. The labor hours required for the study plan and report are similar to the hours required for the standard monitoring plan and report for systems performing the standard monitoring. A uniform value of 20 hours was used for all large systems, as it is the average of the reporting costs in the three largest size categories for systems doing an IDSE report for the standard monitoring. Conducting the SSS study was estimated to take 40 hours of labor. The estimate is based on EPA's best professional judgement and its experience with similar programs. Exhibit H.5 shows the calculations and estimated costs and burden for systems completing an SSS in lieu of standard monitoring to fulfill IDSE requirements.

### Exhibit H.4 IDSE Costs for Systems Using Standard Monitoring

|                     |                                            | Develop IDS                                  | E monitoring pl            | an and report                    |                                                | Sa                     | mpling                             |                                  |                             |                            |                           |
|---------------------|--------------------------------------------|----------------------------------------------|----------------------------|----------------------------------|------------------------------------------------|------------------------|------------------------------------|----------------------------------|-----------------------------|----------------------------|---------------------------|
| Size Category       | Total Number<br>of Systems<br>that Monitor | Preparation<br>of IDSE<br>Monitoring<br>Plan | Preparation of IDSE Report | Reporting Cost<br>per Labor Hour | Number of<br>Dual Sample<br>Sets per<br>System | Hours<br>per<br>Sample | Sampling<br>Cost per<br>Labor Hour | Laboratory<br>Cost per<br>Sample | Total Cost                  | Total<br>Burden<br>(Hours) | Total<br>Burden<br>(FTEs) |
|                     | А                                          | В                                            | С                          | D                                | E                                              | F                      | G                                  | Н                                | I=A*((B+C)*D+E*(<br>F*G+H)) | J=A*(B+C+<br>E*F)          | K=J/2,080                 |
| Surface Water and M | ixed CWSs                                  |                                              |                            |                                  |                                                |                        |                                    |                                  |                             |                            |                           |
| <500                | 2,060                                      | 4                                            | 2                          | \$ 22.55                         | 2                                              | 1                      | \$ 22.55                           | \$ 240                           | \$ 1,360,071                | 16,476                     | 7.9                       |
| 500-3,300           | 3,823                                      | 4                                            | 2                          | \$ 24.74                         | 8                                              | 1                      | \$ 24.74                           | \$ 240                           | \$ 8,664,294                | 53,522                     | 25.7                      |
| 3,301-9,999         | 1,888                                      | 4                                            | 2                          | \$ 30.51                         | 16                                             | 1                      | \$ 25.34                           | \$ 240                           | \$ 8,361,031                | 41,536                     | 20.0                      |
| 10,000-49,999       | 1,524                                      | 8                                            | 4                          | \$ 31.08                         | 48                                             | 1                      | \$ 26.05                           | \$ 210                           | \$ 17,835,921               | 91,440                     | 44.0                      |
| 50,000-249,999      | 436                                        | 8                                            | 8                          | \$ 32.64                         | 96                                             | 1                      | \$ 28.00                           | \$ 210                           | \$ 10,189,487               | 48,832                     | 23.5                      |
| 250,000-999,999     | 63                                         | 12                                           | 12                         | \$ 35.25                         | 144                                            | 1                      | \$ 31.26                           | \$ 210                           | \$ 2,242,006                | 10,584                     | 5.1                       |
| 1,000,000-4,999,999 | 14                                         | 16                                           | 24                         | \$ 35.25                         | 192                                            | 1                      | \$ 31.26                           | \$ 210                           | \$ 668,246                  | 3,248                      | 1.6                       |
| ≥5 M                | 1                                          | 24                                           | 24                         | \$ 35.25                         | 240                                            | 1                      | \$ 31.26                           | \$ 210                           | \$ 59,594                   | 288                        | 0.1                       |
| National Totals     | 9,809                                      |                                              |                            |                                  |                                                |                        |                                    |                                  | \$ 49,380,649               | 265,926                    | 127.8                     |
| Disinfecting Ground | Water Only CW                              | Ss                                           |                            |                                  |                                                |                        |                                    |                                  |                             |                            |                           |
| <500                | 752                                        | 4                                            | 2                          | \$ 22.35                         | 2                                              | 1                      | \$ 22.35                           | \$ 240                           | \$ 495,114                  | 6,012                      | 2.9                       |
| 500-9,999           | 1,956                                      | 4                                            | 2                          | \$ 24.86                         | 8                                              | 1                      | \$ 24.86                           | \$ 240                           | \$ 4,435,321                | 27,378                     | 13.2                      |
| 10,000-99,999       | 240                                        | 8                                            | 8                          | \$ 31.08                         | 24                                             | 1                      | \$ 26.05                           | \$ 210                           | \$ 1,477,430                | 9,590                      | 4.6                       |
| 100,000-499,999     | 18                                         | 12                                           | 12                         | \$ 35.25                         | 32                                             | 1                      | \$ 31.26                           | \$ 210                           | \$ 152,514                  | 997                        | 0.5                       |
| > 500,000           | 1                                          | 16                                           | 24                         | \$ 35.25                         | 48                                             | 1                      | \$ 31.26                           | \$ 210                           | \$ 11,576                   | 78                         | 0.0                       |
| National Totals     | 2,966                                      |                                              |                            |                                  |                                                |                        |                                    |                                  | \$ 6,571,956                | 44,056                     | 21.2                      |
| Surface Water and M | ixed NTNCWSs                               |                                              |                            |                                  |                                                |                        |                                    |                                  |                             |                            |                           |
| <500                | N/A                                        | N/A                                          | N/A                        | N/A                              | N/A                                            | N/A                    | N/A                                | N/A                              | N/A                         | N/A                        | N/A                       |
| 500-3,300           | N/A                                        | N/A                                          | N/A                        | N/A                              | N/A                                            | N/A                    | N/A                                | N/A                              | N/A                         | N/A                        | N/A                       |
| 3,301-9,999         | N/A                                        | N/A                                          | N/A                        | N/A                              | N/A                                            | N/A                    | N/A                                | N/A                              | N/A                         | N/A                        | N/A                       |
| 10,000-49,999       | 4                                          | 8                                            | 4                          | \$ 31.08                         | 48                                             | 1                      | \$ 26.05                           | \$ 210                           | \$ 46,813                   | 240                        | 0.1                       |
| 50,000-249,999      | 1                                          | 8                                            | 8                          | \$ 35.25                         | 96                                             | 1                      | \$ 31.26                           | \$ 210                           | \$ 23,725                   | 112                        | 0.1                       |
| 250,000-999,999     | 0                                          | 12                                           | 12                         | N/A                              | 144                                            | 1                      | N/A                                | \$ 210                           | \$ -                        | -                          | -                         |
| 1,000,000-4,999,999 | 0                                          | 16                                           | 24                         | N/A                              | 192                                            | 1                      | N/A                                | \$ 210                           | \$ -                        | -                          | -                         |
| ≥5 M                | 0                                          | 24                                           | 24                         | N/A                              | 240                                            | 1                      | N/A                                | \$ 210                           | \$ -                        | -                          | -                         |
| National Totals     | 5                                          |                                              |                            |                                  |                                                |                        |                                    |                                  | \$ 70,538                   | 352                        | 0.2                       |
| Disinfecting Ground | Nater Only NTN                             | CWSs                                         |                            |                                  |                                                |                        |                                    |                                  |                             |                            |                           |
| <500                | N/A                                        | N/A                                          | N/A                        | N/A                              | N/A                                            | N/A                    | N/A                                | N/A                              | N/A                         | N/A                        | N/A                       |
| 500-9,999           | N/A                                        | N/A                                          | N/A                        | N/A                              | N/A                                            | N/A                    | N/A                                | N/A                              | N/A                         | N/A                        | N/A                       |
| 10,000-99,999       | 1                                          | 8                                            | 8                          | \$ 31.08                         | 24                                             | 1                      | \$ 26.05                           | \$ 210                           | \$ 3,759                    | 24                         | 0.0                       |
| 100,000-499,999     | 0                                          | 12                                           | 12                         | \$ 35.25                         | 32                                             | 1                      | \$ 31.26                           | \$ 210                           | \$ 2,484                    | 16                         | 0.0                       |
| > 500,000           | 0                                          | 16                                           | 24                         | N/A                              | 48                                             | 1                      | N/A                                | \$ 210                           | \$ -                        | -                          | -                         |
| National Totals     | 1                                          |                                              |                            |                                  |                                                |                        |                                    |                                  | \$ 6,243                    | 41                         | 0.0                       |
| Grand Totals        | 12,780                                     |                                              |                            |                                  |                                                |                        |                                    |                                  | \$ 56,029,386               | 310,375                    | 149.2                     |

Notes: Detail may not add due to independent rounding.

Shaded areas represent systems that are not subject to IDSE requirements.

1 FTE=2,080 hours (40 hours/week; 52 weeks/year).

Sources: (A) From Exhibits H.3a and H.3b, column E.

- (B and C) Labor hours for site selection and reporting based on expert opinion received during regulatory development process.
- (D) Site selection and reporting labor rates estimated based on labor rates from Labor Costs for National Drinking Water Rules (USEPA 2003s). An 80:20 split between technical and managerial labor rates was assumed, except for systems serving 500 or fewer people, for which only a technical rate was applied.
- (E) Number of IDSE samples per system based on rule requirements for conducting IDSE monitoring. Column E in Exhibit 1.2. (Number of sites multiplied by frequency of samples
- (F) Labor hours per sample reflect EPA estimate.
- (G) Sampling labor rates estimated based on technical labor rates from the Labor Costs for National Drinking Water Rules (USEPA 2003s).
- (H) Laboratory cost for TTHM and HAA5 analyses per sample based on costs incurred for the ICR. \$10 Shipping is added for large systems as many large systems have in-house capacity and will not have to ship. \$40 is added for small systems because of higher shipping charges and fewer samples (no bulk discounts).

| Size Category         | Number of<br>Systems<br>Qualifying for<br>SSS | Systems Qualifying for  Preparation of IDSE Study Conduct Study Penort Labor Hour |     | To  | otal Cost   | Total Burden<br>(Hours) | Total Burden<br>(FTEs) |                  |             |
|-----------------------|-----------------------------------------------|-----------------------------------------------------------------------------------|-----|-----|-------------|-------------------------|------------------------|------------------|-------------|
|                       | A                                             | В                                                                                 | С   | D   | E           | A*(                     | F =<br>B+C+D)*E        | G =<br>A*(B+C+D) | H = G/2,080 |
| Surface Water and Mix | xed CWSs                                      |                                                                                   |     |     |             |                         |                        |                  |             |
| <500                  | -                                             | -                                                                                 | -   | -   | -           | \$                      | -                      | -                | 0.00        |
| 500-3,300             | -                                             | -                                                                                 | -   | -   | -           | \$                      | -                      | -                | 0.00        |
| 3,301-9,999           | -                                             | -                                                                                 | -   | -   | -           | \$                      | -                      | -                | 0.00        |
| 10,000-49,999         | -                                             | -                                                                                 | -   | -   | -           | \$                      | -                      | -                | 0.00        |
| 50,000-249,999        | 23                                            | 20                                                                                | 40  | 20  | \$<br>32.64 | \$                      | 60,060                 | 1,840            | 0.88        |
| 250,000-999,999       | 7                                             | 20                                                                                | 40  | 20  | \$<br>35.25 | \$                      | 19,739                 | 560              | 0.27        |
| 1,000,000-4,999,999   | 1                                             | 20                                                                                | 40  | 20  | \$<br>35.25 | \$                      | 2,820                  | 80               | 0.04        |
| ≥5 M                  | -                                             | -                                                                                 | -   | -   | -           | \$                      | -                      | -                | 0.00        |
| National Total        | 31                                            |                                                                                   |     |     |             | \$                      | 82,618                 | 2,480            | 1.19        |
| Disinfecting Ground V | Vater Only CWSs                               |                                                                                   |     |     |             |                         |                        |                  |             |
| <500                  | -                                             | -                                                                                 | -   | -   | -           | \$                      | -                      | -                | 0.00        |
| 500-9,999             | -                                             | -                                                                                 | -   | -   | -           | \$                      | -                      | -                | 0.00        |
| 10,000-99,999         | -                                             | -                                                                                 | -   | -   | -           | \$                      | -                      | -                | 0.00        |
| 100,000-499,999       | 2                                             | 20                                                                                | 40  | 20  | \$<br>35.25 | \$                      | 5,640                  | 160              | 0.08        |
| > 500,000             | -                                             | -                                                                                 | -   | -   | -           | \$                      | -                      | -                | 0.00        |
| National Total        | 2                                             |                                                                                   |     |     |             | <b>\$</b>               | 5,640                  | 160              | 0.08        |
| Surface Water and Mix | xed NTNCWSs                                   |                                                                                   |     |     |             |                         |                        |                  |             |
| <500                  | N/A                                           | N/A                                                                               | N/A | N/A | N/A         |                         | N/A                    | N/A              | N/A         |
| 500-3,300             | N/A                                           | N/A                                                                               | N/A | N/A | N/A         |                         | N/A                    | N/A              | N/A         |
| 3,301-9,999           | N/A                                           | N/A                                                                               | N/A | N/A | N/A         |                         | N/A                    | N/A              | N/A         |
| 10,000-49,999         | -                                             | -                                                                                 | -   | -   | -           | \$                      | -                      | -                | 0.00        |
| 50,000-249,999        | -                                             | -                                                                                 | -   | -   | -           | \$                      | -                      | -                | 0.00        |
| 250,000-999,999       | -                                             | -                                                                                 | -   | -   | -           | \$                      | -                      | -                | 0.00        |
| 1,000,000-4,999,999   | -                                             | -                                                                                 | -   | -   | -           | \$                      | -                      | -                | 0.00        |
| ≥5 M                  | -                                             | -                                                                                 | -   | -   | -           | \$                      | -                      | -                | 0.00        |
| National Total        | -                                             |                                                                                   |     | •   |             | \$                      | -                      | -                | 0.00        |
| Disinfecting Ground V | Vater Only NTNC\                              | <b>NSs</b>                                                                        |     |     |             |                         |                        |                  |             |
| <500                  | N/A                                           | N/A                                                                               | N/A | N/A | N/A         |                         | N/A                    | N/A              | N/A         |
| 500-9,999             | N/A                                           | N/A                                                                               | N/A | N/A | N/A         |                         | N/A                    | N/A              | N/A         |
| 10,000-99,999         | -                                             | -                                                                                 | -   | -   | -           | \$                      | -                      | -                | 0.00        |
| 100,000-499,999       | -                                             | -                                                                                 | -   | -   | -           | \$                      | -                      | -                | 0.00        |
| > 500,000             | -                                             | -                                                                                 | -   | -   | -           | \$                      | -                      | -                | 0.00        |
| National Total        | -                                             |                                                                                   |     |     |             | \$                      | -                      | -                | 0.00        |
| Grand Totals          | 33                                            |                                                                                   |     |     |             | \$                      | 88,258                 | 2,640            | 1.27        |

Notes: Detail may not add due to independent rounding.

Shaded areas represent systems that are not subject to IDSE requirements.

 $Sources: \quad \hbox{(A) Number of systems using studies to satisfy IDSE requirements from Exhibits H.3a and H.3b, column G.}$ 

<sup>(</sup>B), (C), (D) Reporting hours required per system based on expert opinion.

<sup>(</sup>E) Labor rates from Labor Costs for National Drinking Water Rules (USEPA, 2003s). An 80:20 split between technical and managerial labor rates was assumed, except for systems serving 500 or fewer people, for which only a technical rate was applied.

#### H.3.3 Costs for Systems Not Performing the IDSE

As noted in the beginning of section H.3, there are three types of systems that do not have to perform the IDSE:

- All NTNCWSs serving fewer than 10,000 people (they are not subject to IDSE requirements)
- Systems receiving the very small system waiver (States/Primacy Agencies can grant this waiver)
- Systems qualifying for the 40/30 certification (all TTHM and HAA5 compliance monitoring data must be less than or equal to 40/30 µg/L, respectively)

Since NTNCWSs serving fewer than 10,000 people are not subject to IDSE requirements, they bear no costs. EPA estimates a minimal burden for systems receiving a very small system waiver, given that they are automatically covered by the waiver if they have Stage 1 monitoring data unless the State requires otherwise. Therefore, this EA does not include costs for systems receiving the very small system waiver.

Systems qualifying for the 40/30 certification are expected to bear a small cost for reviewing monitoring data and preparing a certification to send to the State. Cost calculations are shown in Exhibit H.7. For CWS systems serving fewer than 10,000 people, reporting hours for 40/30 certification reports were estimated to be one hour. For systems serving at least 10,000 people certification reports were estimated to be 2 hours.

EPA also considers costs for those systems that receive the 40/30 certification and do not have to perform the IDSE, but must select additional Stage 2 sites compared to Stage 1 DBPR requirements. The number of those systems with additional sites is based on a comparison of Stage 2 population-based monitoring requirements to an analysis of Stage 1 plant-based requirements multiplied by the average number of plants per system. This analysis is shown in Section H.5. A minimal burden of one hour is estimated for very small systems, as only one additional site will be selected and the distribution systems are generally small. For larger systems the hours are estimated to be similar to the hours required to prepare the standard monitoring plan.

### Exhibit H.6 IDSE Costs for Systems Receiving the 40/30 Certification

|                                     | Selecting Additio                                                         | nal Sites           | Sites Preparing IDSE Certification                    |                                  |                   |                        |             |             |                         |                        |
|-------------------------------------|---------------------------------------------------------------------------|---------------------|-------------------------------------------------------|----------------------------------|-------------------|------------------------|-------------|-------------|-------------------------|------------------------|
|                                     | Systems Receiving<br>40/30 Certification<br>but Adding Stage 2<br>site(s) | Hours per<br>System | Number of<br>Systems Receiving<br>40/30 Certification | Reporting<br>Hours per<br>System | L                 | Cost per<br>_abor Hour |             | Total Cost  | Total Burden<br>(Hours) | Total Burden<br>(FTEs) |
| Size Category Surface Water and Mix | A                                                                         | В                   | С                                                     | D                                | E F = (A*B+C*D)*E |                        | (A*B+C*D)*E | G = A*B+C*D | H = G/2,080             |                        |
| <500                                | ea CWSs                                                                   | 1                   | 1                                                     | 1                                | \$                | 22.55                  | \$          |             |                         |                        |
| <500<br>500-3,300                   | -                                                                         | 3                   | 235                                                   | 1                                | \$                |                        | \$          | -<br>5,814  | 235                     | 0.1                    |
| 3,301-9,999                         | 154                                                                       | 3                   | 154                                                   | 1                                | \$                |                        | \$          | 18,795      | 616                     | 0.1                    |
| 10,000-49,999                       | 154                                                                       | 8                   | 249                                                   | 2                                | \$                |                        | \$          | 15,478      | 498                     | 0.3                    |
| 50,000-249,999                      | 75                                                                        | 8                   | 75                                                    | 2                                | \$                |                        | \$          | 24,481      | 750                     | 0.2                    |
| 250,000-249,999                     | 11                                                                        | 8                   | 11                                                    | 2                                | \$                |                        | \$          | 3,877       | 110                     | 0.1                    |
| 1,000,000-4,999,999                 | 2                                                                         | 8                   | 2                                                     | 2                                | \$                |                        | \$          | 705         | 20                      | 0.0                    |
| ≥5 M                                | -                                                                         | 8                   | . [                                                   | 2                                | \$                |                        | \$          | -           | -                       | -                      |
| National Total                      | 242                                                                       | -                   | 726                                                   |                                  | Ψ                 | 00.20                  | \$          | 69,150      | 2.229                   | 1.1                    |
| Disinfecting Ground W               |                                                                           |                     |                                                       |                                  |                   |                        | •           | 00,.00      | _,0                     |                        |
| <500                                | -                                                                         | 1                   | -                                                     | 1                                | \$                | 22.35                  | \$          | -           | -                       | -                      |
| 500-9,999                           | 9,094                                                                     | 3                   | 9,094                                                 | 1                                | \$                | 24.86                  | \$          | 904,287     | 36,376                  | 17.5                   |
| 10,000-99,999                       | 1,118                                                                     | 8                   | 1,118                                                 | 2                                | \$                | 31.08                  | \$          | 347,474     | 11,180                  | 5.4                    |
| 100,000-499,999                     | -                                                                         | 8                   | 40                                                    | 2                                | \$                | 35.25                  | \$          | 2,820       | 80                      | 0.0                    |
| > 500,000                           | -                                                                         | 8                   | 5                                                     | 2                                | \$                | 35.25                  | \$          | 352         | 10                      | 0.0                    |
| National Total                      | 10,212                                                                    |                     | 10,257                                                |                                  |                   |                        | \$          | 1,254,934   | 47,646                  | 22.9                   |
| Surface Water and Mix               | ed NTNCWSs                                                                |                     |                                                       |                                  |                   |                        |             |             |                         |                        |
| <500                                | N/A                                                                       | N/A                 | N/A                                                   | N/A                              |                   | N/A                    |             | N/A         | N/A                     | N/A                    |
| 500-3,300                           | N/A                                                                       | N/A                 | N/A                                                   | N/A                              |                   | N/A                    |             | N/A         | N/A                     | N/A                    |
| 3,301-9,999                         | N/A                                                                       | N/A                 | N/A                                                   | N/A                              |                   | N/A                    |             | N/A         | N/A                     | N/A                    |
| 10,000-49,999                       | -                                                                         | 8                   | 1                                                     | 2                                | \$                |                        | \$          | 62          | 2                       | 0.0                    |
| 50,000-249,999                      | -                                                                         | 8                   | -                                                     | 2                                | \$                |                        | \$          | -           | -                       | -                      |
| 250,000-999,999                     | -                                                                         | 8                   | -                                                     | 2                                |                   | N/A                    | \$          | -           | -                       | -                      |
| 1,000,000-4,999,999                 | -                                                                         | 8                   | -                                                     | 2                                |                   | N/A                    | \$          | -           | -                       | -                      |
| ≥5 M                                | -                                                                         | 8                   | -                                                     | 2                                | L                 | N/A                    | \$          | -           | -                       | -                      |
| National Total                      | -                                                                         |                     | 1                                                     |                                  |                   |                        | \$          | 62          | 2                       | 0.0                    |
| Disinfecting Ground W               |                                                                           | N/A                 | N/A                                                   | N/A                              |                   | NI/A                   |             | N/A         | N/A                     | N/A                    |
| <500                                | N/A<br>N/A                                                                | N/A<br>N/A          | N/A<br>N/A                                            | N/A<br>N/A                       |                   | N/A<br>N/A             |             | N/A<br>N/A  | N/A<br>N/A              | N/A<br>N/A             |
| 500-9,999                           | N/A 3                                                                     | N/A<br>8            | N/A<br>3                                              | 1N/A<br>2                        | \$                |                        | \$          | 932         | 30                      | 0.0                    |
| 10,000-99,999<br>100,000-499,999    | 3                                                                         | 8                   | 3                                                     | 3                                | \$                |                        | э<br>\$     | 932         | 30                      | 0.0                    |
| > 500,000                           | _                                                                         | 8                   | -                                                     | 6                                | ľ                 | 0 35.25<br>N/A         | \$          |             | -                       | -                      |
| > 500,000<br>National Total         | 3                                                                         | 8                   | 3                                                     |                                  | _                 | IN/A                   | \$          | 932         | 30                      | 0.0                    |
| Grand Totals                        | 10.457                                                                    |                     | 10.987                                                |                                  |                   |                        | \$          | 1.325.079   | 49.907                  | 24.0                   |
| Notac: Shadad area                  | -, -                                                                      |                     | ioet to IDSE requirements                             |                                  |                   |                        | Þ           | 1,323,079   | 49,907                  | 24.0                   |

Notes: Shaded areas represent systems that are not subject to IDSE requirements.

Sources: (A) Number of systems less than or equal to 40/30 from Exhibit H.3a and H.3b (column F) for only those system size categories that are predicted to have additional routine monitoring from Stage 1 to Stage 2 (see Exhibit H.8a, column I).

- (B) Hours per system required to select new sites for Stage 2 based on expert opinion.
- (C) Number of systems that qualify for 40/30 certification from Exhibit H.3a and H.3b, column F.
- (D) Reporting hours are based on best professional judgement and experience with similar rules.
- (E) Labor rates from Labor Costs for National Drinking Water Rules (USEPA, 2003s). An 80:20 split between technical and managerial labor rates was assumed, except for systems serving 500 or fewer people, for which only a technical rate was applied.

1

#### H.4 Developing a Stage 2 Monitoring Plan

This section presents the costs for systems to develop a monitoring plan for the Stage 2 DBPR. Prior to the beginning of compliance sampling, systems must prepare a monitoring plan describing how the system intends to comply with the monitoring requirements. The plan must contain the sites where the samples will be taken, based on data gathered in the IDSE and Stage 1 compliance monitoring, the month(s) in which samples will be taken, and other information. Surface water systems serving more than 3,300 people must submit their plans to the State.

For systems that perform the IDSE (SSS or standard monitoring), most of the information in the monitoring plan is required in the IDSE report. Most of the work required for the monitoring plan will be consulting with and making modifications suggested by the State/Primacy Agency. Therefore the labor hours required for the monitoring plan will be less than those required for the IDSE report. EPA assumes that for the purposes of this EA, the monitoring plans will take half the time estimated for systems to complete the IDSE report. Very small systems obtaining waivers will only have to update their existing Stage 1 monitoring plans. A minimal burden of 2 hours is assumed for these systems. Exhibit H.7 displays the burden and costs associated with monitoring plan preparation.

Ground water systems which add disinfection for the Ground Water Rule (GWR) will have to prepare monitoring plans<sup>4</sup>. Estimates of the number of ground water systems that will add disinfection as a result of the GWR is based on the GWR EA (USEPA 2004). Assumptions for labor hours for these systems are similar to the assumptions listed above for other systems subject to the Stage 2 DBPR.

<sup>&</sup>lt;sup>4</sup> EPA assumes that systems adding disinfection for the GWR will not have to prepare a monitoring plan and conduct compliance monitoring. The IDSE requirement will likely be completed before these systems add disinfection, so this EA does not include costs for newly disinfecting systems to conduct an IDSE.

|                           |                                                                            | iii Ota                                                                                   | ge z mon                                                                                       | itoring                                              | i iaii ot                                                        | <del>5010 10</del> | - Oyotoiii               | <u> </u>                   |                           |
|---------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------|--------------------|--------------------------|----------------------------|---------------------------|
| Size Category             | Number<br>Systems<br>Performing<br>IDSE, SSS, or<br>40/30<br>Certification | Number of<br>Systems<br>Receiving<br>Very Small<br>System<br>Waiver or<br>Small<br>NTNCWS | Number of<br>Systems Adding<br>Disinfection for<br>the GWR<br>Preparing<br>Monitoring<br>Plans | Hours to<br>Prepare<br>Stage 2<br>Monitoring<br>Plan | Hours to<br>Update<br>Exisiting<br>Stage 1<br>Monitoring<br>Plan | Labor Cost         | Total Cost               | Total<br>Burden<br>(hours) | Total<br>Burden<br>(FTEs) |
|                           | А                                                                          | В                                                                                         | С                                                                                              | D                                                    | E                                                                | F                  | G = F*((A+C)*D<br>+ B*E) | H = G/F                    | I = H/2080                |
| Surface Water and Mixed   | CWSs                                                                       |                                                                                           |                                                                                                |                                                      |                                                                  |                    |                          |                            |                           |
| <500                      | 2,060                                                                      | 1,237                                                                                     | 0                                                                                              | 5                                                    | 2                                                                |                    | \$ 287,984               | 12,773                     | 6.14                      |
| 500-3,300                 | 4,058                                                                      | 0                                                                                         | 0                                                                                              | 5                                                    | 0                                                                | \$ 24.74           | \$ 501,975               | 20,290                     | 9.75                      |
| 3,301-9,999               | 2,042                                                                      | 0                                                                                         | 0                                                                                              | 5                                                    | 0                                                                | \$ 25.34           | \$ 258,721               | 10,210                     | 4.91                      |
| 10,000-49,999             | 1,773                                                                      | 0                                                                                         | 0                                                                                              | 10                                                   | 0                                                                | \$ 26.05           | \$ 461,867               | 17,730                     | 8.52                      |
| 50,000-249,999            | 534                                                                        | 0                                                                                         | 0                                                                                              | 10                                                   | 0                                                                | \$ 28.00           | \$ 149,527               | 5,340                      | 2.57                      |
| 250,000-999,999           | 81                                                                         | 0                                                                                         | 0                                                                                              | 15                                                   | 0                                                                | \$ 31.26           | \$ 37,981                | 1,215                      | 0.58                      |
| 1,000,000-4,999,999       | 17                                                                         | 0                                                                                         | 0                                                                                              | 20                                                   | 0                                                                | \$ 31.26           | \$ 10,628                | 340                        | 0.16                      |
| ≥5 M                      | 1                                                                          | 0                                                                                         | 0                                                                                              | 30                                                   | 0                                                                | \$ 31.26           | \$ 938                   | 30                         | 0.01                      |
| National Totals           | 10,566                                                                     | 1,237                                                                                     | 0                                                                                              |                                                      |                                                                  |                    | \$ 1,709,621             | 67,928                     | 32.66                     |
| Disinfecting Ground Wat   | er Only CWSs                                                               |                                                                                           |                                                                                                |                                                      |                                                                  |                    |                          |                            |                           |
| <500                      | 752                                                                        | 17,005                                                                                    | 793                                                                                            | 5                                                    | 2                                                                | \$ 22.35           | \$ 932,815               | 41,732                     | 20.06                     |
| 500-9,999                 | 11,050                                                                     | 0                                                                                         | 237                                                                                            | 5                                                    | 0                                                                | \$ 24.86           | \$ 1,402,853             | 56,431                     | 27.13                     |
| 10,000-99,999             | 1,358                                                                      | 0                                                                                         | 11                                                                                             | 10                                                   | 0                                                                | \$ 26.05           | \$ 356,494               | 13,685                     | 6.58                      |
| 100,000-499,999           | 60                                                                         | 0                                                                                         | 2                                                                                              | 15                                                   | 0                                                                | \$ 31.26           | \$ 28,822                | 922                        | 0.44                      |
| > 500,000                 | 6                                                                          | 0                                                                                         | 0                                                                                              | 20                                                   | 0                                                                | \$ 31.26           | \$ 3,735                 | 119                        | 0.06                      |
| National Totals           | 13,225                                                                     | 17,005                                                                                    | 1,042                                                                                          |                                                      |                                                                  |                    | \$ 2,724,718             | 112,890                    | 54.27                     |
| Surface Water and Mixed   | NTNCWSs                                                                    |                                                                                           |                                                                                                |                                                      |                                                                  |                    |                          |                            |                           |
| <500                      | -                                                                          | 548                                                                                       | 0                                                                                              | 5                                                    | 2                                                                | \$ 22.39           | \$ 24,544                | 1,096                      | 0.53                      |
| 500-3,300                 | -                                                                          | 199                                                                                       | 0                                                                                              | 5                                                    | 2                                                                | \$ 24.74           | \$ 9,847                 | 398                        | 0.19                      |
| 3,301-9,999               | -                                                                          | 24                                                                                        | 0                                                                                              | 5                                                    | 2                                                                | \$ 25.34           | \$ 1,216                 | 48                         | 0.02                      |
| 10,000-49,999             | 5                                                                          | 0                                                                                         | 0                                                                                              | 10                                                   | 0                                                                | \$ 26.05           | \$ 1,303                 | 50                         | 0.02                      |
| 50,000-249,999            | 1                                                                          | 0                                                                                         | 0                                                                                              | 10                                                   | 0                                                                | \$ 31.26           | \$ 313                   | 10                         | 0.00                      |
| 250,000-999,999           | -                                                                          | 0                                                                                         | 0                                                                                              | 15                                                   | 0                                                                | N/A                | \$ -                     | 0                          | 0.00                      |
| 1,000,000-4,999,999       | -                                                                          | 0                                                                                         | 0                                                                                              | 20                                                   | 0                                                                | N/A                | \$ -                     | 0                          | 0.00                      |
| ≥5 M                      | -                                                                          | 0                                                                                         | 0                                                                                              | 30                                                   | 0                                                                | N/A                | \$ -                     | 0                          | 0.00                      |
| National Totals           | 6                                                                          | 771                                                                                       | 0                                                                                              |                                                      |                                                                  |                    | \$ 37,222                | 1,602                      | 0.77                      |
| Disinfecting Ground Water | er Only NTNCWS                                                             | Ss                                                                                        |                                                                                                |                                                      |                                                                  | 1                  |                          | 1                          |                           |
| <500                      | -                                                                          | 4,622                                                                                     | 1,241                                                                                          | 5                                                    | 2                                                                |                    | \$ 342,966               | 15,449                     | 7.43                      |
| 500-9,999                 | -                                                                          | 858                                                                                       | 268                                                                                            | 5                                                    | 2                                                                |                    | \$ 75,586                | 3,053                      | 1.47                      |
| 10,000-99,999             | 3                                                                          | 0                                                                                         | 1                                                                                              | 10                                                   | 0                                                                |                    | \$ 1,247                 | 48                         | 0.02                      |
| 100,000-499,999           | 0                                                                          | 0                                                                                         | 0                                                                                              | 15                                                   | 0                                                                |                    | \$ 192                   | 6                          | 0.00                      |
| > 500,000                 | -                                                                          | 0                                                                                         | 0                                                                                              | 20                                                   | 0                                                                | N/A                | \$ -                     | 0                          | 0.00                      |
| National Totals           | 4                                                                          | 5,480                                                                                     |                                                                                                |                                                      |                                                                  |                    | \$ 419,990               | 18,556                     | 8.92                      |
| Grand Totals              | 23,800                                                                     | 24,493                                                                                    | 2,552                                                                                          |                                                      |                                                                  |                    | \$ 4,891,552             | 200,975                    | 96.62                     |

Notes:

Detail may not add due to independent rounding.

1 FTE=2,080 hours (40 hours/week; 52 weeks/year).

Sources: (A) Exhibit H.1 Column K minus systems receiving small system waivers from column B in this Exhibit.

- (B) From Exhibit H.3a and H.3b, colulmn A minus columns E, F, and G.
- (D), (E) Labor hours based on a best professional judgement and experience with similar rules.
- (F) Labor rates from Labor Costs for National Drinking Water Rules (USEPA, 2003s). An 80:20 split between technical and managerial labor rates was assumed, except for systems serving 500 or fewer people, for which only a technical rate was applied.

#### **H.5** Additional Routine Monitoring

Because systems already sample for the Stage 1 DBPR, costs for additional routine monitoring are determined by the change in the number of samples collected from the Stage 1 to the Stage 2 DBPR.

The Stage 2 DBPR monitoring requirements are based only on population served and source water type. The Stage 1 DBPR requirements are based on number of treatment plants per system in addition to these characteristics. Depending on the number of plants in a given system, the number of Stage 2 compliance samples required per year can stay the same, decrease, or increase from Stage 1 requirements. For example, if a system has many plants, they must collect compliance samples for each plant under the Stage 1 DBPR. The sampling requirements for the Stage 2 DBPR, based on population served and not plants, will likely be lower than for Stage 1 for this system.

Exhibit H.8 summarizes the estimated change in number of samples required and the associated cost. An explanation of this exhibit is provided in the following paragraphs.

To compare plant-based Stage 1 to population-based Stage 2 monitoring requirements, an estimate of plants per system is needed for each of the monitoring size categories. Column B in Exhibit H.8a shows the mean number of plants per system for (1) surface water and all mixed systems, and (2) disinfecting ground water-only systems. This number is used to transform the system baseline to a plant baseline in order to calculate number of samples per system for Stage 1. The values are based on analysis of 2000 CWSS data, question 18.<sup>5</sup> EPA used the 2000 CWSS instead of the 1995 CWSS because the mean number of plants per system is key in defining new population-based monitoring requirements. EPA believes that the additional analyses needed to derive new estimates using 2000 CWSS data were warranted in this case. (As shown in Chapter 3 of this EA, all other baseline analyses were performed with 1995 CWSS data.)

Systems Using One Site to Represent Both High TTHM and HAA5

Column F shows the number of Stage 2 DBPR routine samples required per system. For surface water systems serving 3,300 or fewer people and disinfecting ground water systems serving fewer than 500 people, one sample is required unless the TTHM and HAA5 sites are at different locations in the distribution system. If this is the case, then the system must collect one TTHM sample at the high TTHM site, and one HAA5 sample at the high HAA5 site, which is equivalent to one dual sample. The only increase in burden is the extra sample collection time to visit two sites instead of one. (Note that for surface water systems serving 500 to 3,300 people, samples must be collected every 90 days, resulting in a total of 4 dual samples per system. Surface and ground water systems serving fewer than 500 people only have to collect one sample per year, resulting in one dual sample per system as shown in Exhibit H.8a).

EPA assumes that systems that receive a very small system waiver (i.e., all 100 percent purchasing systems, see Exhibit H.3b) will use one site for high TTHM and HAA5 at the same location. ICR data was used to estimate the percent of producing systems that need two monitoring sites (instead of one) to represent both high TTHM and high HAA5 concentrations. For CWSs, EPA evaluated data

<sup>&</sup>lt;sup>5</sup> Systems were considered outliers if their flow data were incomplete or if they had more than 100 entry points, or if they lacked other data for question 18 and were excluded from the analysis.

from the last four quarters<sup>6</sup> of the ICR to estimate the percentage of systems that had their highest TTHM and HAA5 at different locations<sup>7</sup> and thus need to monitor at two sites. Results of this analysis show that approximately 51 percent of surface water and 44 percent of ground water plants have their high TTHM and HAA5 sites at different locations. Therefore the total percent that will monitor at two sites is:

(51%)\*(2060))/3297 = 32% for surface water systems serving less than 500 people.

(51%)\*(2379)/4058 = 30% for surface water systems serving between 500 and 3,300 people.

(44%)\*(752)/17756 = 2% for ground water systems serving less than 500 people.

For NTNCWSs, high TTHM and HAA5 concentrations are more likely to be at the same location because these systems are typically small and have small distribution systems. Thus, EPA believes that all eligible NTNCWSs (surface water NTNCWSs serving fewer than 10,000 people and ground water NTNCWSs serving fewer than 500 people) will qualify for reduced sample sites.

Surface water systems serving 3,300 or fewer people and ground water systems serving fewer than 500 people required to monitor at two sites instead of a single site have an additional hour of labor to account for travel time to the additional site. However, no additional lab costs are added since the total number of samples is the same.

### Effects of Reduced Monitoring

Both the Stage 1 and Stage 2 DBPRs have a provision for reduced monitoring if compliance monitoring results are below 40  $\mu$ g/L for TTHM and 30  $\mu$ g/L for HAA5. Although there may be a slight decrease in systems qualifying because of the change from RAA to LRAA, other systems may qualify as they install better treatment technologies. EPA believes monitoring costs incurred for the reduced monitoring systems from Stage 1 to Stage 2 are expected to change minimally. This EA does not calculate costs associated with changes in reduced monitoring status.

#### *Increased Monitoring for Small Systems*

Surface water systems serving fewer than 500 people and ground water systems serving fewer than 10,000 people are only required to monitor once a year. If one of these systems exceeds 80  $\mu$ g/L for TTHM or 60  $\mu$ g/L for HAA5, they are not in violation of the maximum contaminant level (MCL) immediately, but instead must increase their monitoring to quarterly. If quarterly monitoring produces a locational running annual average (LRAA) above 80  $\mu$ g/L for TTHM or 60  $\mu$ g/L for HAA5, then they are in violation of the MCL. If the LRAA is below 60  $\mu$ g/L for TTHM or 45  $\mu$ g/L for HAA5, the system

<sup>&</sup>lt;sup>6</sup>At least 3 of 4 quarters must have TTHM and HAA5 data for at least 3 of 4 distribution system locations (TTHM and HAA5 data do not have to be present at the same location, however) for a plant to be included in this analysis.

<sup>&</sup>lt;sup>7</sup> This was based on the average of four quarters of data for each of four distribution system sites (AVE1, AVE2, DSE, and MAX for plants with at least three quarters of data). Plants with the highest four quarter HAA5 average and highest four quarter TTHM average occurring at the same location were assumed to be able to qualify for a reduction in number of monitoring sites under the Stage 2 DBPR.

may return to annual monitoring. Some systems will incur additional monitoring costs because of this requirement.

Increased monitoring costs for small systems are not explicitly calculated in this EA because all systems are assumed to apply an operational safety factor when assessing compliance with MCLs. Thus, they are not expected to experience concentrations over the MCLs in future years. This is particularly true for ground water systems since they tend to see less year-to-year variability in source water quality. Although surface water systems could potentially see higher year-to-year variability and be triggered into increased monitoring in the future, EPA expects very few systems to be affected.

**Exhibit H.8a Additional Routine Monitoring Samples for Systems** 

|                       |                  |                      | Stage 1 S    | Sampling                        |                             | Stage 2 S                             | ampling                         |
|-----------------------|------------------|----------------------|--------------|---------------------------------|-----------------------------|---------------------------------------|---------------------------------|
|                       | Total<br>Systems | Plants Per<br>System | Total Plants | Routine<br>Samples per<br>Plant | Total<br>Stage 1<br>Samples | Routine Dual<br>Samples per<br>System | Number of<br>Stage 2<br>Samples |
| Size Category         | А                | В                    | C = A*B      | D                               | E=C*D                       | F                                     | G = A*F                         |
| Surface Water and Mi  | xed CWSs         |                      |              | 1                               |                             |                                       |                                 |
| <500                  | 3,297            | 1.2                  | 3,989        | 1                               | 3,989                       | 1                                     | 3,297                           |
| 500-3,300             | 4,058            | 1.2                  | 4,951        | 4                               | 19,803                      | 4                                     | 16,232                          |
| 3,301-9,999           | 2,042            | 1.6                  | 3,186        | 4                               | 12,742                      | 8                                     | 16,336                          |
| 10,000-49,999         | 1,773            | 1.4                  | 2,429        | 16                              | 38,864                      | 16                                    | 28,368                          |
| 50,000-249,999        | 534              | 1.8                  | 977          | 16                              | 15,636                      | 32                                    | 17,088                          |
| 250,000-999,999       | 81               | 2.5                  | 205          | 16                              | 3,279                       | 48                                    | 3,888                           |
| 1,000,000-4,999,999   | 17               | 3.5                  | 60           | 16                              | 960                         | 64                                    | 1,088                           |
| ≥5 M                  | 1                | 3.5                  | 4            | 16                              | 56                          | 80                                    | 80                              |
| National Totals       | 11,803           |                      | 15,800       |                                 | 95,330                      |                                       | 86,377                          |
| Disinfecting Ground \ | Water Only       | CWSs                 |              |                                 |                             |                                       |                                 |
| <500                  | 17,756           | 1.0                  | 17,756       | 1                               | 17,756                      | 1                                     | 17,756                          |
| 500-9,999             | 11,050           | 1.5                  | 16,795       | 1                               | 16,795                      | 2                                     | 22,099                          |
| 10,000-99,999         | 1,358            | 3.9                  | 5,336        | 1                               | 5,336                       | 16                                    | 21,724                          |
| 100,000-499,999       | 60               | 7.3                  | 438          | 4                               | 1,752                       | 24                                    | 1,434                           |
| > 500,000             | 6                | 17.0                 | 100          | 4                               | 401                         | 32                                    | 189                             |
| National Totals       | 30,229           |                      | 40,426       |                                 | 42,041                      |                                       | 63,202                          |
| Surface Water and Mi  | xed NTNCV        | VSs                  |              |                                 |                             |                                       |                                 |
| <500                  | 548              | 1.0                  | 548          | 1                               | 548                         | 1                                     | 548                             |
| 500-3,300             | 199              | 1.0                  | 199          | 4                               | 796                         | 4                                     | 796                             |
| 3,301-9,999           | 24               | 1.0                  | 24           | 4                               | 96                          | 8                                     | 192                             |
| 10,000-49,999         | 5                | 1.0                  | 5            | 16                              | 80                          | 16                                    | 80                              |
| 50,000-249,999        | 1                | 1.0                  | 1            | 16                              | 16                          | 32                                    | 32                              |
| 250,000-999,999       | -                | 1.0                  | -            | 16                              | -                           | 48                                    | -                               |
| 1,000,000-4,999,999   | -                | 1.0                  | -            | 16                              | -                           | 64                                    | -                               |
| ≥5 M                  | -                | 1.0                  | -            | 16                              | -                           | 80                                    | -                               |
| National Totals       | 777              |                      | 777          |                                 | 1,536                       |                                       | 1,648                           |
| Disinfecting Ground \ | Water Only       | NTNCWSs              |              |                                 |                             |                                       |                                 |
| <500                  | 4,622            | 1.0                  | 4,622        | 1                               | 4,622                       | 1                                     | 4,622                           |
| 500-9,999             | 858              | 1.0                  | 858          | 1                               | 858                         | 2                                     | 1,716                           |
| 10,000-99,999         | 3                | 1.0                  | 3            | 1                               | 3                           | 16                                    | 56                              |
| 100,000-499,999       | 0                | 1.0                  | 0            | 4                               | 1                           | 24                                    | 7                               |
| > 500,000             | -                | 1.0                  | -            | 4                               | -                           | 32                                    | -                               |
| National Totals       | 5,483            |                      | 5,483        |                                 | 5,484                       |                                       | 6,400                           |
| Grand Totals          | 48,293           |                      | 62,487       |                                 | 144,390                     |                                       | 157,627                         |

Notes: Detail may not added due to independent rounding.

Systems will incur routine monitoring costs only for sites and samples that are required beyond those required under the Stage 1 DBPR (i.e., systems that, as a result of the IDSE, only move sample sites will incur no additional costs).

1 FTE = 2,080 hours (40 hours/week; 52 weeks/year).

Sources:

- (A) Number of systems from Exhibit H.1 (column K).
- (B) Number of plants per system based on 2000 CWSS question 18.
- (D) Routine samples per plant from the Stage 1 Rule (USEPA 1998a).
- (F) Number of routine samples per system based on Stage 2 rule requirements (population-based approach).

### **H.8a Additional Routine Monitoring Costs for Systems (continued)**

| Surface Water and Mixed CWS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                                                  |               |                                                       |    |                  |    |      |    |                        |         |                                              |    |             |                              | 1        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------|---------------|-------------------------------------------------------|----|------------------|----|------|----|------------------------|---------|----------------------------------------------|----|-------------|------------------------------|----------|
| Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Mixed CWSs   Surface Water and Water Only NTNCWSs   Surface Water Only NTNCWSs   Surface Water Only NTNCWSs   Surface Water Only NTNCWSs   Surface Water Only NTNCWSs   Surface Water Only NTNCWSs   Surface Water Only NTNCWSs   Surface Water Only NTNCWSs   Surface Water Only NTNCWSs   Surface Water Only NTNCWSs   Surface Water Only NTNCWSs   Surface Water Only NTNCWSs   Surface Water Only NTNCWSs   Surface Water Only NTNCWSs   Surface Surface Water Only NTNCWSs   Surface Water Only NTNCWSs   Surface Water Only NTNCWSs   Surface Surface Water Only NTNCWSs   Surface Water Only NTNCWSs   Surface Surface Water Only NTNCWSs   Surface Water Only NTNCWSs   Surface Surface Water Only NTNCWSs    |                       | Samples<br>Required for<br>Stage 2<br>Monitoring | per<br>Sample | Systems<br>with<br>Separate<br>TTHM and<br>HAA5 sites | С  | ost per<br>Labor |    | mple | s  | Based on<br>Additional | La<br>f | bor Costs<br>or Small<br>Systems<br>vith Two |    | Total Cost  | Burden<br>(Hours)<br>Q=I*J + | Burden   |
| Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect |                       |                                                  | J             | K                                                     |    | L                |    | M    | ١  | $N = I^*(J^*L + M)$    | 0       | = A*J*K*L                                    |    | P = N + O   | O/L                          | R=Q/2080 |
| Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   Solicy   S |                       |                                                  |               |                                                       | _  |                  |    |      |    |                        |         |                                              |    |             |                              |          |
| 3,301-9,999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       | ` ′                                              |               |                                                       |    |                  | ı  | -    |    | , , ,                  | ı       |                                              |    | ` ' '       |                              | 0        |
| 10,000-49,999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · ·                   |                                                  |               |                                                       |    |                  |    |      |    | ,                      |         | 29,730                                       |    |             |                              | (1)      |
| 50,000-249,999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                                  |               |                                                       |    |                  |    | -    |    |                        |         | -                                            |    |             | ,                            | 2        |
| 250,000-99,999 609 1 0 0% \$ 31.26 \$ 210 \$ 146,956 \$ \$ 146,956 609 1 0 0 0 1,000,000-4,999,999 128 1 0% \$ 31.26 \$ 210 \$ 5 30,843 \$ \$ 30,843 128 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | , , ,                                            |               |                                                       |    |                  | ı  | -    |    |                        | · ·     | -                                            |    |             | , , ,                        | (5)      |
| 1,000,000-4,999,999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · ·                   |                                                  |               |                                                       |    |                  |    |      |    |                        |         | -                                            |    |             | ,                            | 1        |
| Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sharp   Sha  |                       |                                                  | •             |                                                       |    |                  |    | -    |    |                        |         | -                                            |    |             |                              | 0        |
| National Totals   (8,953)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                                  |               |                                                       |    |                  | ı  |      |    |                        | ı       | -                                            |    |             |                              | 0        |
| Disinfecting Ground Water Only CWS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                                                  | 1             | 0%                                                    | \$ | 31.26            | \$ | 210  | ·  |                        | _       |                                              | ·  |             |                              | 0        |
| Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect |                       | , ,                                              |               |                                                       |    |                  |    |      | \$ | (2,122,019)            | \$      | 53,185                                       | \$ | (2,068,834) | (6,711)                      | (3)      |
| 500-9,999         5,304         1         0%         \$ 24.86         \$ 240         \$ 1,404,761         \$ -         \$ 1,404,761         5,304         3           10,000-99,999         16,388         1         0%         \$ 26.05         \$ 210         \$ 3,868,386         \$ -         \$ 3,868,386         16,388         8           100,000-499,999         (318)         1         0%         \$ 31.26         \$ 210         \$ (76,712)         \$ -         \$ (76,712)         (318)         (1           > 500,000         (212)         1         0%         \$ 31.26         \$ 210         \$ (76,712)         \$ -         \$ (76,712)         (318)         (0           National Totals         21,162         ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Disinfecting Ground V | Vater Only CWS                                   |               |                                                       |    |                  |    |      |    |                        |         |                                              |    |             |                              |          |
| 10,000-99,999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <500                  | 0                                                | 1             | 2%                                                    | \$ | 22.35            | \$ | 240  | \$ | -                      | \$      | 8,485                                        | \$ | 8,485       | 380                          | 0        |
| 100,000-499,999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 500-9,999             | 5,304                                            | 1             | 0%                                                    |    | 24.86            |    | 240  | \$ | 1,404,761              |         | -                                            | \$ | 1,404,761   | 5,304                        | 3        |
| > 500,000         (212)         1         0%         \$ 31.26         \$ 210         \$ (51,167)         \$ -         \$ (51,167)         (212)         ((10.30)           National Totals         21,162         5,145,268         8,485         5,153,753         21,541         10.30           Surface Water and Mixed NTNCWSs           <500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10,000-99,999         | 16,388                                           | 1             | 0%                                                    | \$ | 26.05            | \$ | 210  | \$ | 3,868,386              | \$      | -                                            | \$ | 3,868,386   | 16,388                       | 8        |
| National Totals   21,162   5,145,268   8,485   5,153,753   21,541   10.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100,000-499,999       | (318)                                            | 1             | 0%                                                    | \$ | 31.26            | \$ | 210  | \$ | (76,712)               | \$      | -                                            | \$ | (76,712)    | (318)                        | (0)      |
| Surface Water and Mixed NTNCWS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | > 500,000             | (212)                                            | 1             | 0%                                                    | \$ | 31.26            | \$ | 210  | \$ | (51,167)               | \$      | -                                            | \$ | (51,167)    | (212)                        | (0)      |
| <500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | National Totals       | 21,162                                           |               |                                                       |    |                  |    |      |    | 5,145,268              |         | 8,485                                        |    | 5,153,753   | 21,541                       | 10.36    |
| 500-3,300 0 1 0% \$ 24.74 \$ 240 \$ - \$ - \$ 3,301-9,999 96 1 0% \$ 25.34 \$ 240 \$ 25,473 \$ - \$ 25,473 96 (0.00-49,999 0 0 1 0% \$ 26.05 \$ 210 \$ - \$ - \$ - \$ 3,860 16 (0.00-249,999 16 1 0% \$ 31.26 \$ 210 \$ 3,860 \$ - \$ 3,860 16 (0.00-249,999 16 1 0% \$ 31.26 \$ 210 \$ 3,860 \$ - \$ 3,860 16 (0.00-249,999 16 1 0% \$ 10.00 \$ N/A \$ 210 \$ - \$ - \$ - \$ - \$ \$ 1,000,000-4,999,999 0 1 0 0 1 0% \$ N/A \$ 210 \$ - \$ - \$ - \$ - \$ \$ 1,000,000-4,999,999 0 1 0 0 1 0% \$ N/A \$ 210 \$ - \$ - \$ - \$ - \$ \$ 1,000,000-4,999,999 0 1 0 0 1 0% \$ N/A \$ 210 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ 1,000,000-4,999,999 0 0 1 0% \$ N/A \$ 210 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Surface Water and Mix | xed NTNCWSs                                      |               |                                                       |    |                  |    |      |    |                        |         |                                              |    |             |                              |          |
| 3,301-9,999 96 1 0% \$ 25.34 \$ 240 \$ 25,473 \$ - \$ 25,473 96 (0.000-49,999 0 1 0% \$ 26.05 \$ 210 \$ - \$ - \$ - \$ - 50,000-249,999 16 1 0% \$ 31.26 \$ 210 \$ 3,860 \$ - \$ 3,860 16 (0.000-49,999) 99 0 1 0% N/A \$ 210 \$ - \$ - \$ - \$ 1 1,000,000-4,999,999 0 1 0 1 0% N/A \$ 210 \$ - \$ - \$ - \$ 1 1,000,000-4,999,999 0 1 0 0 1 0% N/A \$ 210 \$ - \$ - \$ - \$ 1 1,000,000-4,999,999 0 1 0 0 1 0% N/A \$ 210 \$ - \$ - \$ - \$ - \$ 1 1,000,000-4,999,999 0 1 0 0 1 0% N/A \$ 210 \$ - \$ - \$ - \$ - \$ 1 1,000,000-4,999,999 0 1 0 0 1 0% N/A \$ 210 \$ - \$ - \$ - \$ - \$ - 1 1,000,000-4,999,999 0 1 0 0 1 0% \$ 22.20 \$ 240 \$ - \$ - \$ - \$ - \$ 1,000,000-4,99,999 0 1 0 0 1 0% \$ 22.20 \$ 240 \$ - \$ - \$ - \$ 1,000,000-4,000,99,999 0 1 0 0 1 0% \$ 26.05 \$ 210 \$ 12,322 \$ - \$ 12,322 52 0 0 0,000-4,000,999 0 6 1 0% N/A \$ 210 \$ - \$ - \$ - \$ - \$ - \$ 1,399 6 0 0 0 0 0 1 0% N/A \$ 210 \$ - \$ - \$ - \$ - \$ - \$ - \$ 1,399 6 0 0 0 0 0 0 1 0% N/A \$ 210 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <500                  | 0                                                | 1             | 0%                                                    | \$ | 22.39            | \$ | 240  | \$ | -                      | \$      | -                                            | \$ | -           | -                            |          |
| 10,000-49,999 0 1 0 0 1 0% \$ 26.05 \$ 210 \$ - \$ - \$ 50,000-249,999 16 1 0% \$ 31.26 \$ 210 \$ 3,860 \$ - \$ 3,860 16 0 250,000-999,999 0 1 0 0 1 0% N/A \$ 210 \$ - \$ - \$ - \$ 1 0,000,000-4,999,999 0 1 0 0 1 0% N/A \$ 210 \$ - \$ - \$ - \$ 1 0,000,000-4,999,999 0 1 0 0 1 0% N/A \$ 210 \$ - \$ - \$ - \$ 1 0,000,000-4,999,999 0 1 0 0 1 0% N/A \$ 210 \$ - \$ - \$ - \$ 0 0,000 0,000-4,999,999 0 1 0 0 1 0% N/A \$ 210 \$ - \$ - \$ - \$ - \$ 0 0,000 0,000 0,000 0,000 0 0 0 1 0 0% \$ 22.20 \$ 240 \$ - \$ - \$ - \$ - \$ - \$ - 0 0,000 0,000 0,000 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500-3,300             | 0                                                | 1             | 0%                                                    | \$ | 24.74            | \$ | 240  | \$ | -                      | \$      | -                                            | \$ | -           | -                            | -        |
| 50,000-249,999 16 1 0% \$ 31.26 \$ 210 \$ 3,860 \$ - \$ 3,860 16 (250,000-999,999 0 1 0% N/A \$ 210 \$ - \$ - \$ - \$ 1,000,000-4,999,999 0 1 0% N/A \$ 210 \$ - \$ - \$ - \$ 1,000,000-4,999,999 0 1 0% N/A \$ 210 \$ - \$ - \$ - \$ 1,000,000-4,999,999 0 1 0 0 1 0% N/A \$ 210 \$ - \$ - \$ - \$ 1,000,000-4,999,999 0 1 0 0 1 0% N/A \$ 210 \$ - \$ - \$ - \$ - \$ 0,000,000-4,000,000 0 0 1 0 0% \$ 22.20 \$ 240 \$ - \$ - \$ - \$ - \$ - \$ 0,000,000-4,000,000 0 0 1 0 0% \$ 26.05 \$ 210 \$ 12,322 \$ - \$ 12,322 \$ 52 0 0,000,000-4,000,000 0 0 1 0 0% N/A \$ 210 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3,301-9,999           | 96                                               | 1             | 0%                                                    | \$ | 25.34            | \$ | 240  | \$ | 25,473                 | \$      | -                                            | \$ | 25,473      | 96                           | 0        |
| 250,000-999,999 0 1 0% N/A \$ 210 \$ - \$ - \$ 1,000,000-4,999,999 0 1 0% N/A \$ 210 \$ - \$ - \$ - \$ 1,000,000-4,999,999 0 1 0% N/A \$ 210 \$ - \$ - \$ - \$ 1,000,000-4,999,999 0 1 0 0 1 0% N/A \$ 210 \$ - \$ - \$ - \$ 1,000,000-4,000,000 0 0 1 0 0% N/A \$ 210 \$ - \$ - \$ - \$ - \$ 1,000,000-4,000,000 0 0 1 0 0% \$ 22.20 \$ 240 \$ - \$ - \$ - \$ - \$ - \$ 1,000,000-4,000,000 0 0 0 1 0 0% \$ 31.26 \$ 210 \$ 1,399 \$ - \$ 12,322 \$ 52 0 0,000 0 0 0 1 0 0% N/A \$ 210 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10,000-49,999         | 0                                                | 1             | 0%                                                    | \$ | 26.05            | \$ | 210  | \$ | -                      | \$      | -                                            | \$ | -           | -                            | -        |
| 1,000,000-4,999,999 0 1 0 0 1 0% N/A \$ 210 \$ - \$ - \$ \$  National Totals 112 \$ 29,333 \$ - \$ 29,333 112 0.05  Disinfecting Ground Water Only NTNCWSs  <500 0 0 1 0% \$ 22.20 \$ 240 \$ - \$ - \$ - \$ \$  500-9,999 858 1 0% \$ 24.76 \$ 240 \$ 227,112 \$ - \$ 227,112 858 0 0  10,000-99,999 52 1 0% \$ 26.05 \$ 210 \$ 12,322 \$ - \$ 12,322 52 0  100,000-499,999 6 1 0% \$ 31.26 \$ 210 \$ 1,399 \$ - \$ 1,399 6 0  > 500,000 0 0 1 0% N/A \$ 210 \$ - \$ - \$ - \$ - \$ - 0  National Totals 916 \$ 240,833 \$ - \$ 240,833 916 0     N/A   \$ 210   \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50,000-249,999        | 16                                               | 1             | 0%                                                    | \$ | 31.26            | \$ | 210  | \$ | 3,860                  | \$      | -                                            | \$ | 3,860       | 16                           | 0        |
| ≥5 M 0 1 0% N/A \$ 210 \$ - \$ - \$<br>National Totals 112 \$ 29,333 \$ - \$ 29,333 112 0.05  Disinfecting Ground Water Only NTNCWSs  <500 0 0 1 0% \$ 22.20 \$ 240 \$ - \$ - \$ - \$   500-9,999 858 1 0% \$ 24.76 \$ 240 \$ 227,112 \$ - \$ 227,112 858 (0.000-99,999 52 1 0% \$ 26.05 \$ 210 \$ 12,322 \$ - \$ 12,322 52 (0.0000-499,999 6 1 0% \$ 31.26 \$ 210 \$ 1,399 \$ - \$ 1,399 6 (0.000-499,999 6 1 0 0% \$ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 250,000-999,999       | 0                                                | 1             | 0%                                                    |    | N/A              | \$ | 210  | \$ | -                      | \$      | -                                            | \$ | -           | -                            | -        |
| National Totals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,000,000-4,999,999   | 0                                                | 1             | 0%                                                    |    | N/A              | \$ | 210  | \$ | -                      | \$      | -                                            | \$ | -           | -                            | -        |
| Stational Totals   Part   Pa | ≥5 M                  | 0                                                | 1             | 0%                                                    |    | N/A              | \$ | 210  | \$ |                        | \$      | -                                            | \$ |             |                              | -        |
| <500         0         1         0%         \$ 22.20         \$ 240         \$ -         \$ -         \$ -         -         -         -         500-9,999         858         1         0%         \$ 24.76         \$ 240         \$ 227,112         \$ -         \$ 227,112         858         0           10,000-99,999         52         1         0%         \$ 26.05         \$ 210         \$ 12,322         \$ -         \$ 12,322         52         0           100,000-499,999         6         1         0%         \$ 31.26         \$ 210         \$ 1,399         \$ -         \$ 1,399         6         0           > 500,000         0         1         0%         N/A         \$ 210         \$ -         \$ -         \$ 1,399         6         0           National Totals         916         8         240,833         \$ -         \$ 240,833         916         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | National Totals       | 112                                              |               |                                                       |    |                  |    |      | \$ | 29,333                 | \$      | -                                            | \$ | 29,333      | 112                          | 0.05     |
| 500-9,999     858     1     0%     \$ 24.76     \$ 240     \$ 227,112     \$ -     \$ 227,112     858     0       10,000-99,999     52     1     0%     \$ 26.05     \$ 210     \$ 12,322     \$ -     \$ 12,322     52     0       100,000-499,999     6     1     0%     \$ 31.26     \$ 210     \$ 1,399     \$ -     \$ 1,399     6     0       > 500,000     0     1     0%     N/A     \$ 210     \$ -     \$ -     \$ -     \$ -     -       National Totals     916     \$ 240,833     \$ -     \$ 240,833     916     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Disinfecting Ground V | Vater Only NTNO                                  | CWSs          |                                                       |    |                  |    |      |    |                        |         |                                              |    |             |                              |          |
| 10,000-99,999     52     1     0%     \$ 26.05     \$ 210     \$ 12,322     \$ -     \$ 12,322     52     0       100,000-499,999     6     1     0%     \$ 31.26     \$ 210     \$ 1,399     \$ -     \$ 1,399     6     0       > 500,000     0     1     0%     N/A     \$ 210     \$ -     \$ -     \$ -     -     -       National Totals     916     \$ 240,833     \$ -     \$ 240,833     916     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <500                  | 0                                                | 1             | 0%                                                    | \$ | 22.20            | \$ | 240  | \$ | -                      | \$      | -                                            | \$ | -           | -                            | -        |
| 100,000-499,999     6     1     0%     \$ 31.26     \$ 210     \$ 1,399     \$ -     \$ 1,399     6     0       > 500,000     0     1     0%     N/A     \$ 210     \$ -     \$ -     \$ -     \$ -     -       National Totals     916     \$ 240,833     \$ -     \$ 240,833     916     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500-9,999             | 858                                              | 1             | 0%                                                    | \$ | 24.76            | \$ | 240  | \$ | 227,112                | \$      | -                                            | \$ | 227,112     | 858                          | 0        |
| 100,000-499,999       6       1       0%       \$ 31.26       \$ 210       \$ 1,399       \$ -       \$ 1,399       6       0         > 500,000       0       1       0%       N/A       \$ 210       \$ -       \$ -       \$ -       -       -       -         National Totals       916       \$ 240,833       \$ -       \$ 240,833       916       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10,000-99,999         | 52                                               | 1             | 0%                                                    | \$ | 26.05            | \$ | 210  | \$ | 12,322                 | \$      | -                                            | \$ | 12,322      | 52                           | 0        |
| > 500,000 0 1 0% N/A \$ 210 \$ - \$ - \$ - National Totals 916 \$ 240,833 \$ - \$ 240,833 916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 6                                                | 1             | 0%                                                    | \$ | 31.26            | \$ | 210  | \$ | 1,399                  | \$      | -                                            | \$ | 1,399       | 6                            | 0        |
| National Totals 916 \$ 240,833 \$ - \$ 240,833 916 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | 0                                                | 1             | 0%                                                    |    | N/A              |    | 210  | \$ | -                      |         | -                                            | \$ |             | -                            | -        |
| Grand Totals 13.237 3.293.415 61.670 3.355.085 15.858 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,                     | 916                                              |               |                                                       |    |                  |    |      | \$ | 240,833                | \$      | -                                            | \$ | 240,833     | 916                          | 0        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Grand Totals          | 13,237                                           |               |                                                       |    |                  |    |      |    | 3,293,415              |         | 61,670                                       |    | 3,355,085   | 15,858                       | 8        |

Notes:

Detail may not added due to independent rounding.

Systems will incur routine monitoring costs only for sites and samples that are required beyond those required under the Stage 1 DBPR (i.e., systems that, as a result of the IDSE, only move sample sites will incur no additional costs).

FTE = 2,080 hours (40 hours/week; 52 weeks/year).

 $^{1}$  Columns N and O for SW < 3,300 and GW < 500 adds in an hour extra sampling time for systems which only take 1 dual sample but at two different sites. This additional labor is calculated by A\*K\*L

Sources:

(J) Labor hours per sample reflects EPA estimate.

(K) Estimated percent of systems that will have only one sampling site because their high TTHM and HAA5 site occur at the same location based on analysis of Information Collection Rule data from 4 distribution system locations.

- (L) Technical labor rates from Labor Costs for National Drinking Water Rules (USEPA, 2003s).
- (M) Laboratory cost for TTHM and HAA5 analyses per sample based on costs incurred for the ICR.

Some ground water systems that do not currently disinfect may install disinfection to correct a significant deficiency identified under the GWR. Because the GWR is expected to be promulgated at the same time as or just after the Stage 2 DBPR, EPA expects new systems adding disinfection to meet GWR requirements to simultaneously achieve compliance with Stage 2 MCLs. Therefore, as discussed in Chapter 3 of this EA, these systems are not included in the treatment baseline. Although these systems will be required to monitor for the first time under Stage 2, they will not be required to perform an IDSE since they will add disinfection after the IDSE is required.

Systems that do not currently disinfect will incur new costs for all of the required Stage 2 DBPR samples. These costs are shown in Exhibit H.8b. Exhibit H.8c shows the sum of additional routine monitoring for disinfecting systems and new GWR disinfecting systems (sum of Exhibits H.8a - H.8b). Column A of this exhibit shows the total change in the number of samples required for each size category between the Stage 1 and Stage 2 compliance monitoring requirements. The rest of the exhibit displays total costs and burdens for Stage 2 DBPR monitoring requirements.

# Exhibit H.8b Additional Routine Monitoring Costs for Systems Installing Disinfectant to Comply with the GWR

|                         |                                                           |                                          |                     |    |                                 |                    |    | -                 |                            |                           |
|-------------------------|-----------------------------------------------------------|------------------------------------------|---------------------|----|---------------------------------|--------------------|----|-------------------|----------------------------|---------------------------|
|                         | Number of<br>Systems<br>Adding<br>Disinfectant<br>for GWR | Number of<br>Samples for<br>Stage 2 DBPR | Hours Per<br>Sample | C  | ampling<br>Cost Per<br>bor Hour | Cost Per<br>Sample | T  | otal Costs<br>F = | Total<br>Burden<br>(Hours) | Total<br>Burden<br>(FTEs) |
| Size Category           | Α                                                         | В                                        | С                   |    | D                               | E                  | Α* | B*(C*D+E)         | G = A*B*C                  | H = G/2080                |
| Surface Water and Mixe  | d CWSs                                                    |                                          |                     |    |                                 |                    |    |                   |                            |                           |
| <500                    | -                                                         | 1                                        | 1                   | \$ | 22.55                           | \$<br>240          | \$ | -                 | -                          | -                         |
| 500-3,300               | -                                                         | 4                                        | 1                   | \$ | 24.74                           | \$<br>240          | \$ | -                 | -                          | -                         |
| 3,301-9,999             | -                                                         | 8                                        | 1                   | \$ | 25.34                           | \$<br>240          | \$ | -                 | -                          | -                         |
| 10,000-49,999           | -                                                         | 16                                       | 1                   | \$ | 26.05                           | \$<br>210          | \$ | -                 | -                          | -                         |
| 50,000-249,999          | -                                                         | 32                                       | 1                   | \$ | 28.00                           | \$<br>210          | \$ | -                 | -                          | -                         |
| 250,000-999,999         | -                                                         | 48                                       | 1                   | \$ | 31.26                           | \$<br>210          | \$ | -                 | -                          | -                         |
| 1,000,000-4,999,999     | -                                                         | 64                                       | 1                   | \$ | 31.26                           | \$<br>210          | \$ | -                 | -                          | -                         |
| ≥5 M                    | -                                                         | 80                                       | 1                   | \$ | 31.26                           | \$<br>210          | \$ | -                 | -                          | -                         |
| National Totals         | -                                                         |                                          |                     |    |                                 |                    | \$ | -                 | -                          | -                         |
| Disinfecting Ground War | ter Only CWSs                                             |                                          |                     |    |                                 |                    |    |                   |                            |                           |
| <500                    | 793                                                       | 1                                        | 1                   | \$ | 22.35                           | \$<br>240          | \$ | 208,026           | 793                        | 0.38                      |
| 500-9,999               | 237                                                       | 2                                        | 1                   | \$ | 24.86                           | \$<br>240          | \$ | 125,379           | 473                        | 0.23                      |
| 10,000-99,999           | 11                                                        | 16                                       | 1                   | \$ | 26.05                           | \$<br>210          | \$ | 40,611            | 172                        | 0.08                      |
| 100,000-499,999         | 2                                                         | 24                                       | 1                   | \$ | 31.26                           | \$<br>210          | \$ | 9,834             | 41                         | 0.02                      |
| > 500,000               | 0                                                         | 32                                       | 1                   | \$ | 31.26                           | \$<br>210          | \$ | 645               | 3                          | 0.00                      |
| National Totals         | 1,042                                                     |                                          |                     |    |                                 |                    | \$ | 384,494           | 1,482                      | 0.71                      |
| Surface Water and Mixed | NTNCWSs                                                   |                                          |                     |    |                                 |                    |    |                   |                            |                           |
| <500                    | 0                                                         | 1                                        | 1                   | \$ | 22.39                           | \$<br>240          | \$ | -                 | -                          | -                         |
| 500-3,300               | 0                                                         | 4                                        | 1                   | \$ | 24.74                           | \$<br>240          | \$ | -                 | -                          | -                         |
| 3,301-9,999             | 0                                                         | 8                                        | 1                   | \$ | 25.34                           | \$<br>240          | \$ | -                 | -                          | -                         |
| 10,000-49,999           | 0                                                         | 16                                       | 1                   | \$ | 26.05                           | \$<br>210          | \$ | -                 | -                          | -                         |
| 50,000-249,999          | 0                                                         | 32                                       | 1                   | \$ | 31.26                           | \$<br>210          | \$ | -                 | -                          | -                         |
| 250,000-999,999         | 0                                                         | 48                                       | 1                   |    | N/A                             | \$<br>210          | \$ | -                 | -                          | -                         |
| 1,000,000-4,999,999     | 0                                                         | 64                                       | 1                   |    | N/A                             | \$<br>210          | \$ | -                 | -                          | -                         |
| ≥5 M                    | 0                                                         | 80                                       | 1                   |    | N/A                             | \$<br>210          | \$ | -                 | -                          | -                         |
| National Totals         | -                                                         |                                          |                     |    |                                 |                    | \$ | -                 | -                          | -                         |
| Disinfecting Ground Wat | ter Only NTNCW                                            | Ss                                       |                     |    |                                 |                    |    |                   |                            |                           |
| <500                    | 1,241                                                     | 1                                        | 1                   | \$ | 22.20                           | \$<br>240          | \$ | 325,412           | 1,241                      | 0.60                      |
| 500-9,999               | 268                                                       | 2                                        | 1                   | \$ | 24.76                           | \$<br>240          | \$ | 141,666           | 535                        | 0.26                      |
| 10,000-99,999           | 1                                                         | 16                                       | 1                   | \$ | 26.05                           | \$<br>210          | \$ | 4,938             | 21                         | 0.01                      |
| 100,000-499,999         | 0                                                         | 24                                       | 1                   | \$ | 31.26                           | \$<br>210          | \$ | 686               | 3                          | 0.00                      |
| > 500,000               | 0                                                         | 32                                       | 1                   |    | N/A                             | \$<br>210          | \$ | -                 | -                          | 0.00                      |
| National Totals         | 1,510                                                     |                                          |                     |    | -                               |                    | \$ | 472,703           | 1,800                      | 0.87                      |
| Grand Totals            | 2,552                                                     |                                          |                     |    |                                 |                    | \$ | 857,197           | 3,282                      | 1.58                      |

#### Sources

<sup>(</sup>A) Ground Water Rule EA, Exhibit 6.21 (USEPA 2004).

<sup>(</sup>B) Number of routine samples per system, Exhibit H.8a Column F. Number of samples may be less for SW systems serving < 5,000 and GW systems serving < 500 if high TTHM and HAA5 locations are the same.

<sup>(</sup>C) Labor hours per sample reflects EPA estimate.

<sup>(</sup>D) Technical labor rates from Labor Costs for National Drinking Water Rules (USEPA, 2003s).

<sup>(</sup>E) Laboratory cost for TTHM and HAA5 analyses per sample based on costs incurred for the ICR.

### **Exhibit H.8c Total Additional Routine Monitoring Costs**

| EXIIIDIC III.             | Total               |     |                     |                   | - WOIIICOI        |                   |                  |
|---------------------------|---------------------|-----|---------------------|-------------------|-------------------|-------------------|------------------|
|                           | Additional          |     |                     |                   |                   |                   | _                |
|                           | Compliance          | _   |                     | Total             |                   | Total             | Total            |
|                           | Samples per<br>Year | 10  | otal Labor<br>Costs | Sampling<br>Costs | Total Costs       | Burden<br>(Hours) | Burden<br>(FTEs) |
| Size Category             | A                   |     | В                   | C                 | D D               | E                 | F= E/2080        |
| Surface Water and Mixed   | CWSs                |     |                     |                   |                   |                   |                  |
| <500                      | (692)               | \$  | 7,844               | \$<br>(166,169)   | \$<br>(158,325)   | 348               | 0.17             |
| 500-3,300                 | (3,571)             | \$  | (58,617)            | (857,050)         | \$<br>(915,667)   | (2,369)           | -1.14            |
| 3,301-9,999               | 3,594               | \$  | 91,070              | \$<br>862,541     | \$<br>953,611     | 3,594             | 1.73             |
| 10,000-49,999             | (10,496)            | \$  | (273,425)           | (2,204,194)       | \$<br>(2,477,619) | (10,496)          | -5.05            |
| 50,000-249,999            | 1,452               | \$  | 40,671              | \$<br>305,021     | \$<br>345,692     | 1,452             | 0.70             |
| 250,000-999,999           | 609                 | \$  | 19,041              | \$<br>127,915     | \$<br>146,956     | 609               | 0.29             |
| 1,000,000-4,999,999       | 128                 | \$  | 3,996               | \$<br>26,846      | \$<br>30,843      | 128               | 0.06             |
| ≥5 M                      | 24                  | \$  | 735                 | \$<br>4,939       | \$<br>5,674       | 24                | 0.01             |
| National Totals           | (8,953)             | \$  | (168,684)           | \$<br>(1,900,150) | \$<br>(2,068,834) | (6,711)           | (3.23)           |
| Disinfecting Ground Wate  | er Only CWSs        |     |                     |                   |                   |                   |                  |
| <500                      | 793                 | \$  | 26,209              | \$<br>190,302     | \$<br>216,511     | 1,173             | 0.56             |
| 500-9,999                 | 5,777               | \$  | 143,617             | \$<br>1,386,523   | \$<br>1,530,140   | 5,777             | 2.78             |
| 10,000-99,999             | 16,560              | \$  | 431,389             | \$<br>3,477,608   | \$<br>3,908,997   | 16,560            | 7.96             |
| 100,000-499,999           | (277)               | \$  | (8,665)             | \$<br>(58,213)    | \$<br>(66,879)    | (277)             | -0.13            |
| > 500,000                 | (209)               | \$  | (6,546)             | \$<br>(43,976)    | \$<br>(50,522)    | (209)             | -0.10            |
| National Totals           | 22,644              | \$  | 586,004             | \$<br>4,952,244   | \$<br>5,538,247   | 23,023            | 11.07            |
| Surface Water and Mixed   | NTNCWSs             |     |                     |                   |                   |                   |                  |
| <500                      | 0                   | \$  | 0                   | \$<br>0           | \$<br>0           | 0                 | 0.00             |
| 500-3,300                 | 0                   | \$  | 0                   | \$<br>0           | \$<br>0           | 0                 | 0.00             |
| 3,301-9,999               | 96                  | \$  | 2,433               | \$<br>23,040      | \$<br>25,473      | 96                | 0.05             |
| 10,000-49,999             | 0                   | \$  | 0                   | \$<br>0           | \$<br>0           | 0                 | 0.00             |
| 50,000-249,999            | 16                  | \$  | 500                 | \$<br>3,360       | \$<br>3,860       | 16                | 0.01             |
| 250,000-999,999           | -                   | \$  | -                   | \$<br>-           | \$<br>-           | 0                 | 0.00             |
| 1,000,000-4,999,999       | -                   | \$  | -                   | \$<br>-           | \$<br>-           | 0                 | 0.00             |
| ≥5 M                      | -                   | \$  | -                   | \$<br>-           | \$<br>-           | 0                 | 0.00             |
| National Totals           | 112                 | \$  | 2,933               | \$<br>26,400      | \$<br>29,333      | 112               | 0.05             |
| Disinfecting Ground Water | er Only NTNCV       | /Ss |                     |                   |                   | -                 |                  |
| <500                      | 1,241               | \$  | 27,552              | \$<br>297,860     | \$<br>325,412     | 1,241             | 0.60             |
| 500-9,999                 | 1,393               | \$  | 34,481              | \$<br>334,297     | \$<br>368,779     | 1,393             | 0.67             |
| 10,000-99,999             | 73                  | \$  | 1,905               | \$<br>15,355      | \$<br>17,260      | 73                | 0.04             |
| 100,000-499,999           | 9                   | \$  | 270                 | \$<br>1,815       | \$<br>2,085       | 9                 | 0.00             |
| > 500,000                 | -                   | \$  | -                   | \$<br>-           | \$<br>-           | 0                 | 0.00             |
| National Totals           | 2,716               | \$  | 64,208              | \$<br>649,328     | \$<br>713,536     | 2,716             | 1.31             |
| Grand Totals              | 16,519              | \$  | 484,461             | \$<br>3,727,822   | \$<br>4,212,282   | 19,140            | 9.20             |

Note:

(A) Shows the difference in total compliance monitoring samples from Stage 1 to Stage 2 for disinfecting systems and systms predicted to install disinfection for the GWR. For disinfecting systems, derived from Exhibit H.8a, column I. For systems installing disinfection for the GWR, derived from Exhibit H.8b, product of columns A and B.

Sources:

(A) sum of column I from Exhibit H.8a and column (A) times column (B) from Exhibit H.8b

(B) - (E) Summed from tables H.8a - H.8b.

#### **H.6** National Costs for Operational Evaluations

This section discusses the national costs of exceeding operational evaluation levels and the benefits that may occur by reducing them after implementing the Stage 2 DBPR.

- Section H.6.1 defines an operational evaluation.
- Section H.6.2 describes the evaluation procedure for systems that exceed operational evaluation levels.
- Section H.6.3 presents the costs associated with operational evaluations and the estimated number of systems affected.
- Section H.6.4 explains the benefits of operational evaluation requirements.

#### **H.6.1** Definition of "Operational Evaluation Level"

Although the Stage 2 DBPR is expected to reduce the number and level of peak DBP events, EPA recognizes that levels above 80  $\mu$ g/L for TTHM and 60  $\mu$ g/L for HAA5 may still occur, even when systems are in full compliance with MCLs. An exceedance of the operational evaluation level is defined as a sample result, when multiplied by 2 and added to the previous two quarters and then divided by 4, that gives an LRAA over 80  $\mu$ g/L for TTHM or 60  $\mu$ g/L for HAA5. For example, if a system had a current quarter result of 100  $\mu$ g/L and had first and second quarter TTHM results of 70  $\mu$ g/L, the resulting calculation gives:

$$(2*(100 \mu g/L) + 70 \mu g/L + 70 \mu g/L)/4 = 85 \mu g/L$$

Therefore, an exceedance of the operational evaluation level would result from the above scenario.

#### **H.6.2** System Requirements for Operational Evaluations

If a system exceeds an operational evaluation level, it must conduct a operational evaluation and submit a written report to the State no later than 90 days after being notified of the analytical result that exceeded the operational evaluation level. The evaluation must include an examination of system treatment and distribution operational practices, including storage tank operations, excess storage capacity, distribution system flushing, changes in sources or source water quality, and treatment technology changes or problems that may contribute to TTHM and HAA5 formation and what steps could be considered to minimize future excursions.

Exceeding an operational evaluation level, as defined in section H.6.1, is not a violation of the Stage 2 DBPR and does not require any public notification or explanation in Consumer Confidence Reports (CCR). Systems are not required to take any action to reduce DBP concentrations as a result of exceeding operational evaluation levels; however, reducing peaks is a primary objective of the Stage 2 DBPR and is an important goal in providing safe drinking water. EPA is providing guidance to systems on operational alternatives to reduce DBP peaks in the distribution system.

### **H.6.3** Cost Implications of Exceeding Operational Evaluation Levels

Each time an operational evaluation level is exceeded, it is expected to result in some labor costs for systems to evaluate the exceedance and prepare the operational evaluation report. To determine national costs for operational evaluations, this section presents an estimate of: (1) the percent of all sampling locations exceeding Stage 2 DBPR operational evaluation levels, and (2) the burden for each operational evaluation.

Percent of Locations That Are Peaks and Percent of Systems Experiencing Peaks

EPA examined ICR data to estimate the number of systems that might exceed an operational evaluation level. Because the ICR data were taken before both Stage 1 and Stage 2 requirements were in place, the data had to be adjusted to reflect changes that plants would make to meet Stage 1 and Stage 2 MCLs. EPA developed a method called the ICR matrix method, which is described in detail in Chapter 5 of this EA, to adjust the data.

Post-Stage 2 predicted occurrence of TTHM and HAA5 concentrations were evaluated to assess the potential frequency of operational evaluation level exceedances. Because the predicted occurrence was only based on 1 year of data, alternative sequences of samples were evaluated. For example, EPA checked whether the 3<sup>rd</sup> quarter results would exceed an operational evaluation level following the 1<sup>st</sup> and 2<sup>nd</sup> quarter results. Next, EPA checked whether the 3<sup>rd</sup> quarter results would exceed an operational evaluation level following the 4<sup>th</sup> and 1<sup>st</sup> quarter results and the 4<sup>th</sup> and 2<sup>nd</sup> quarter results. This process continued until all possible combinations of quarters had been examined. However, no more than one excursion occurred for any given sample location. For each system size category, the number of exceedances of operational evaluation levels were estimated as a percent of locations exceeding these levels. The percent for each category was multiplied by the adjusted number of locations in that category to determine the total number of locations exceeding operational evaluation levels.

Individual monitoring locations were evaluated instead of plants so that the results could be extrapolated to systems with a different number of sites per system than the plants participating in the ICR. The 10 percent safety factor was chosen for the cost analysis for this rule activity, to more conservatively reflect the possibility of year to year variability from the ICR data. Exhibit H.9 displays the results of the analysis.

# Exhibit H.9 Predicted Occurrence of Exceeding Operational Evaluation Levels in Large Systems

| System<br>Type | Number of<br>Locations<br>Evaluated | Number of Locations exceeding Operation Evaluational Levels | % of Locations exceeding Operational Evaluation Levels |
|----------------|-------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|
|                | Α                                   | В                                                           | C = B/A                                                |
|                |                                     | Post-Stage 2                                                |                                                        |
| GW             | 327                                 | 0                                                           | 0.00%                                                  |
| SW             | 851                                 | 12                                                          | 1.41%                                                  |
| All            | 1,178                               | 12                                                          | 1.02%                                                  |

Sources: (A) - (B) Analysis of Post-Stage 2 ICR data, developed using the ICR matrix method defined in Ch. 5.

3 4 5

6 7

8

9

10

11

12 13

14

15

16 17

18

19

20

To estimate the total number of operational evaluation level exceedances that will occur nationally, EPA assumed that results of the ICR location analysis represent, as a whole, the probability that any one treated-water location meeting the Stage 2 requirements will exceed an operational evaluation level. Those single-location probabilities are 1.4 percent (12/851) and 0 percent (0/327) for surface water and ground water sampling locations, respectively. EPA used the following procedure to calculate the probability of finding an operational evaluation level exceedance in 1 year. Assuming independence from one location to the next, EPA calculated the probability of at least one exceedance occurring for N locations from 1-(1-p)<sup>N</sup>, where p is the probability of observing a peak. In this calculation. (1-p) is the probability of not observing an operational evaluation level exceedance in any one location, and (1-p)<sup>N</sup> is the probability of not observing an exceedance after N locations. For example, it can be estimated that a surface water system monitoring at 4 locations has a probability of  $(1-0.0141)^4 = 0.9448$ of not observing an operational evaluation level exceedance. Therefore, the probability of observing at least one exceedance is simply 1 minus that value, or 1 - 0.9448 = 0.0552 (5.52 percent). EPA used this approach to estimate the probability of observing an operational evaluation level exceedance in surface and ground water systems, as shown in Exhibit H.10. EPA assumed that two exceedances in a given location would not occur since systems are expected to address problems identified in the operational evaluation, making a recurrence unlikely.

21 22 23

24

25

26

The same percentages used for large systems were also used to estimate the occurrence of operational evaluation level exceedances for small and medium systems. EPA assumed that NTNCWSs would not exceed operational evaluation levels since these systems typically have very small distribution systems and have less variability in TTHM/HAA5 levels.

2728

### **Exhibit H.10 Number of Locations and Systems Exceeding Operational Evaluation Levels**

| Size                         | No. of<br>Systems | No. of Stage 2<br>Monitoring<br>Locations/<br>System | Percent of<br>Locations that<br>exceed<br>Operational<br>Evaluation<br>Levels | Estimated Number of<br>Locations/Year that<br>exceed Operational<br>Evaluation Levels | not exceed<br>Operational<br>Evaluation Levels | Percent of Systems<br>with atleast one<br>exceedance of<br>Operational Evaluation<br>Levels/yr | Predicted No. of<br>Systems with atleast<br>one exceedance of<br>Operational Evaluation<br>Levels/yr |
|------------------------------|-------------------|------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Category                     | Α                 | В                                                    | С                                                                             | D = Round [A*B*C]                                                                     | E = (1-C) <sup>B</sup>                         | F = 1-E                                                                                        | G = Round [A*F]                                                                                      |
| Surface Water and M          |                   |                                                      |                                                                               |                                                                                       |                                                |                                                                                                |                                                                                                      |
| <500                         | 3,297             | 1                                                    | 0.4%                                                                          | 12                                                                                    | 99.65%                                         | 0.3%                                                                                           | 12                                                                                                   |
| 500-3,300                    | 4,058             | 1                                                    | 0.7%                                                                          | 28                                                                                    | 99.30%                                         | 0.7%                                                                                           | 28                                                                                                   |
| 3,301-9,999                  | 2,042             | 4                                                    | 0.7%                                                                          | 57                                                                                    | 97.23%                                         | 2.8%                                                                                           | 57                                                                                                   |
| 10,000-49,999                | 1,773             | 8                                                    | 1.4%                                                                          | 199                                                                                   | 89.33%                                         | 10.7%                                                                                          | 189                                                                                                  |
| 50,000-249,999               | 534               | 16                                                   | 1.4%                                                                          | 120                                                                                   | 79.68%                                         | 20.3%                                                                                          | 109                                                                                                  |
| 250,000-999,999              | 81                | 24                                                   | 1.4%                                                                          | 27                                                                                    | 71.12%                                         | 28.9%                                                                                          | 23                                                                                                   |
| 1,000,000-4,999,999          | 17                | 32                                                   | 1.4%                                                                          | 8                                                                                     | 63.48%                                         | 36.5%                                                                                          | 6                                                                                                    |
| ≥5 M                         | 1                 | 40                                                   | 1.4%                                                                          | 1                                                                                     | 56.66%                                         | 43.3%                                                                                          | 0                                                                                                    |
| National Totals              | 11,803            |                                                      |                                                                               | 452                                                                                   |                                                |                                                                                                | 424                                                                                                  |
| Disinfecting Ground          |                   |                                                      |                                                                               |                                                                                       |                                                |                                                                                                |                                                                                                      |
| <500                         | 17,756            | 1                                                    | 0.0%                                                                          | -                                                                                     | 100.00%                                        | 0.0%                                                                                           | 0                                                                                                    |
| 500-9,999                    | 11,050            | 2                                                    | 0.0%                                                                          | -                                                                                     | 100.00%                                        | 0.0%                                                                                           | 0                                                                                                    |
| 10,000-99,999                | 1,358             | 6                                                    | 0.0%                                                                          | -                                                                                     | 100.00%                                        | 0.0%                                                                                           | 0                                                                                                    |
| 100,000-499,999              | 60<br>6           | 8<br>12                                              | 0.0%                                                                          |                                                                                       | 100.00%                                        | 0.0%                                                                                           | 0                                                                                                    |
| > 500,000<br>National Totals | 30,229            | 12                                                   | 0.0%                                                                          | -                                                                                     | 100.00%                                        | 0.0%                                                                                           | 0                                                                                                    |
| Surface Water and M          | ,                 | 180                                                  |                                                                               | -                                                                                     |                                                |                                                                                                | 0                                                                                                    |
| <500                         | 548               | 1                                                    | 0.0%                                                                          |                                                                                       | 100.00%                                        | 0.0%                                                                                           | 0                                                                                                    |
| 500-3,300                    | 199               | 1                                                    | 0.0%                                                                          | _                                                                                     | 100.00%                                        | 0.0%                                                                                           | 0                                                                                                    |
| 3,301-9,999                  | 24                | 4                                                    | 0.0%                                                                          | _                                                                                     | 100.00%                                        | 0.0%                                                                                           | 0                                                                                                    |
| 10,000-49,999                | 5                 | 8                                                    | 0.0%                                                                          | -                                                                                     | 100.00%                                        | 0.0%                                                                                           | 0                                                                                                    |
| 50,000-249,999               | 1                 | 16                                                   | 0.0%                                                                          | -                                                                                     | 100.00%                                        | 0.0%                                                                                           | 0                                                                                                    |
| 250,000-999,999              | -                 | 24                                                   | 0.0%                                                                          | -                                                                                     | 100.00%                                        | 0.0%                                                                                           | 0                                                                                                    |
| 1,000,000-4,999,999          | -                 | 32                                                   | 0.0%                                                                          | -                                                                                     | 100.00%                                        | 0.0%                                                                                           | 0                                                                                                    |
| ≥5 M                         | -                 | 40                                                   | 0.0%                                                                          | -                                                                                     | 100.00%                                        | 0.0%                                                                                           | 0                                                                                                    |
| National Totals              | 777               |                                                      |                                                                               |                                                                                       |                                                |                                                                                                | 0                                                                                                    |
| Disinfecting Ground          | Water Only N      | NTNCWSs                                              |                                                                               |                                                                                       |                                                |                                                                                                |                                                                                                      |
| <500                         | 4,622             | 1                                                    | 0.0%                                                                          | -                                                                                     | 100.00%                                        | 0.0%                                                                                           | 0                                                                                                    |
| 500-9,999                    | 858               | 2                                                    | 0.0%                                                                          | -                                                                                     | 100.00%                                        | 0.0%                                                                                           | 0                                                                                                    |
| 10,000-99,999                | 3                 | 6                                                    | 0.0%                                                                          | -                                                                                     | 100.00%                                        | 0.0%                                                                                           | 0                                                                                                    |
| 100,000-499,999              | 0                 | 8                                                    | 0.0%                                                                          | -                                                                                     | 100.00%                                        | 0.0%                                                                                           | 0                                                                                                    |
| > 500,000                    | -                 | 12                                                   | 0.0%                                                                          | -                                                                                     | 100.00%                                        | 0.0%                                                                                           | 0                                                                                                    |
| National Totals              | 5,483             |                                                      |                                                                               | -                                                                                     |                                                |                                                                                                | 0                                                                                                    |
| Grand Totals                 | 48,293            |                                                      |                                                                               | 452                                                                                   |                                                |                                                                                                | 424                                                                                                  |

Detail may not add to totals due to independent rounding.

Sources: (A) Exhibit H.1, Column K.

<sup>(</sup>B) Stage 2 DBPR sample requirements presented in Chapter 1. Data shown are the total number of locations required per year. (C) Exhibit H.9, column I for 10% safety factor.

EPA estimates that systems will spend 2 to 16 hours to perform an operational evaluation, depending on system size (large systems with more complex distribution systems are expected to spend 16 hours per exceedance, while small systems with simpler distribution systems are expected to spend 2 hours per exceedance). There may be reduced effort for systems that experience more than one exceedance of operational evaluation levels yearly; however, this effect could not be quantified. EPA also expects the rate of exceedances to decrease over time as systems begin identifying the cause and working with their States/Primacy Agencies to reduce future exceedances.

#### Other Cost Implications

Although systems are not required to make changes as a result of exceeding operational evaluation levels, they may still decide to change their operations to reduce the likelihood of future exceedances of operational evaluation levels and potential MCL violations. These changes can range from minimal to significant depending on the nature of the solution and size of the system. Because changes are not required by EPA, the costs for responding to exceedances of operational evaluation levels are not included as part of the national costs of the Stage 2 DBPR; however, examples of typical system-level costs are provided below to show potential implications.

Systems have a number of operational and distribution system modification options available to reduce DBP concentrations and eliminate exceedances of operational evaluation levels. If a system determines that a storage tank is the cause of an exceedance, it may be possible to implement operational changes, such as lengthening drain/fill cycles or increasing the frequency of drain/fill cycles, to improve tank mixing. A system may also consider decommissioning excess storage, or maintaining excess storage for emergency use only. Generally, these options will require minimal additional expenditures by the system; however, in some cases their feasibility may depend on system pressure requirements. When excess storage is to be maintained for emergency use only, it is still important to maintain water quality in the storage tank. This may require periodic manual disinfection (i.e., addition of calcium hypochlorite tablets) to prevent significant microbiological activity in the storage tank. This can involve some chemical cost (chlorination tablets are available for about \$65 per 25 pounds), as well as additional labor cost (e.g., a few hours for a two-person crew). When excess storage is to be maintained for emergency use only, it is important to adequately flush the system after the tank has been used.

If operational modifications fail to improve tank water quality, it may be necessary to make inlet/outlet piping modifications, install baffles, or add a recirculation system to improve tank mixing. The costs for these types of improvements are widely variable and depend on the size and configuration of the existing tank. For example, capital costs for modifications to inlet/outlet piping in six standpipes (2 million gallon (MG) to 4 MG capacity) may range from \$78,000 to \$94,000 for one system. Costs for modifications to elevated tanks (all 1 MG capacity) may range from \$19,000 to \$90,000 for the same system. These costs do not include the installation of sample probes and temperature sensors used to verify proper tank mixing (estimated at \$34,000 per tank including tie-in to an existing Supervisory Control and Data Acquisition (SCADA) system).

Another operational option available to systems is the use of flushing and blow-offs in high residence-time areas. Costs for these options can vary significantly from system to system depending on size, amount of labor involved, and if system modifications are required. Some large systems employ one or more flushing crews, whose sole responsibility is to flush system dead ends. For a two-person crew at

### **Exhibit H.11 Operational Evaluation Costs**

| Size<br>Category    | Estimated No. of<br>Locations/yr that<br>exceed Operational<br>Evaluation Levels | Reporting Hours<br>per Operational<br>Evaluation<br>B | Cost per<br>abor Hour | otal Cost     | Total Burden<br>(Hours)<br>E = A*B | Total Burden<br>(FTEs)<br>F=E/2,080 |
|---------------------|----------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------|---------------|------------------------------------|-------------------------------------|
| Surface Water and M | ixed CWSs                                                                        |                                                       |                       |               |                                    | ·                                   |
| <500                | 12                                                                               | 6                                                     | \$<br>22.55           | \$<br>1,623   | 72                                 | 0.0                                 |
| 500-3,300           | 28                                                                               | 12                                                    | \$<br>24.74           | \$<br>8,313   | 336                                | 0.2                                 |
| 3,301-9,999         | 57                                                                               | 12                                                    | \$<br>30.51           | \$<br>20,870  | 684                                | 0.3                                 |
| 10,000-49,999       | 199                                                                              | 16                                                    | \$<br>31.08           | \$<br>98,959  | 3,184                              | 1.5                                 |
| 50,000-249,999      | 120                                                                              | 16                                                    | \$<br>32.64           | \$<br>62,671  | 1,920                              | 0.9                                 |
| 250,000-999,999     | 27                                                                               | 16                                                    | \$<br>35.25           | \$<br>15,227  | 432                                | 0.2                                 |
| 1,000,000-4,999,999 | 8                                                                                | 16                                                    | \$<br>35.25           | \$<br>4,512   | 128                                | 0.1                                 |
| ≥5 M                | 1                                                                                | 16                                                    | \$<br>35.25           | \$<br>564     | 16                                 | 0.0                                 |
| National Totals     | 452                                                                              |                                                       |                       | \$<br>212,739 | 6772                               | 3.3                                 |
| Disinfecting Ground | Water Only CWSs                                                                  |                                                       |                       |               |                                    |                                     |
| <500                | -                                                                                | 6                                                     | \$<br>22.35           | \$<br>-       | -                                  | -                                   |
| 500-9,999           | -                                                                                | 12                                                    | \$<br>24.86           | \$<br>-       | -                                  | -                                   |
| 10,000-99,999       | -                                                                                | 16                                                    | \$<br>31.08           | \$<br>-       | -                                  | -                                   |
| 100,000-499,999     | -                                                                                | 16                                                    | \$<br>35.25           | \$<br>-       | -                                  | -                                   |
| > 500,000           | -                                                                                | 16                                                    | \$<br>35.25           | \$<br>-       | -                                  | -                                   |
| National Totals     | -                                                                                |                                                       |                       | \$<br>-       | -                                  | -                                   |
| Surface Water and M | ixed NTNCWSs                                                                     |                                                       |                       |               |                                    |                                     |
| <500                | -                                                                                | 6                                                     | \$<br>22.39           | \$<br>-       | -                                  | -                                   |
| 500-3,300           | -                                                                                | 12                                                    | \$<br>24.74           | \$<br>-       | -                                  | -                                   |
| 3,301-9,999         | -                                                                                | 12                                                    | \$<br>30.51           | \$<br>-       | -                                  | -                                   |
| 10,000-49,999       | -                                                                                | 16                                                    | \$<br>31.08           | \$<br>-       | -                                  | -                                   |
| 50,000-249,999      | -                                                                                | 16                                                    | \$<br>35.25           | \$<br>-       | -                                  | -                                   |
| 250,000-999,999     | -                                                                                | 16                                                    |                       | \$<br>-       | -                                  | -                                   |
| 1,000,000-4,999,999 | -                                                                                | 16                                                    |                       | \$<br>-       | -                                  | -                                   |
| ≥5 M                | -                                                                                | 16                                                    |                       | \$<br>-       | -                                  | -                                   |
| National Totals     | -                                                                                |                                                       |                       | \$<br>-       | -                                  | -                                   |
| •                   | Water Only NTNCWSs                                                               |                                                       |                       |               |                                    |                                     |
| <500                | -                                                                                | 2                                                     | \$<br>22.20           | \$<br>-       | -                                  | -                                   |
| 500-9,999           | -                                                                                | 2                                                     | \$<br>24.76           | \$<br>-       | -                                  | -                                   |
| 10,000-99,999       | -                                                                                | 3                                                     | \$<br>31.08           | \$<br>-       | -                                  | -                                   |
| 100,000-499,999     | -                                                                                | 3                                                     | \$<br>35.25           | \$<br>-       | -                                  | -                                   |
| > 500,000           | -                                                                                | 3                                                     |                       | \$<br>-       | -                                  | -                                   |
| National Totals     | -                                                                                |                                                       |                       | \$<br>-       | -                                  | -                                   |
| Grand Totals        | 452                                                                              |                                                       |                       | \$<br>212,739 | 6,772                              | 3.3                                 |

Notes: Detail may not add to totals due to independent rounding.

1 FTE = 2,080 hours (40 hours/week; 52 weeks/year).

Sources: (A) Exhibit H.10, column D.

(B) Hours estimated by EPA to complete Operational Evaluations. EPA expects it to take less time for small systems given they have simpler distribution systems.

(C) Labor rates from the *Labor Costs for National Drinking Water Rules (USEPA, 2003s)*. An 80:20 split between technical and managerial labor rates was assumed, except for systems serving 500 or fewer people, for which only a technical rate was applied.

If long residence times in distribution system dead ends are the source of an exceedance of an operational evaluation level, then systems may be able to improve flow in dead-end areas and reduce water residence time by "looping" dead ends together. For looping to be effective, it is critical that sufficient demand exists in the looped area to create a flow pattern that eliminates the dead end, rather than creating a larger one. The costs associated with looping will vary from system to system, depending on the size and length of pipe involved. Based on cost data presented in RS Means (1999), the cost for looping may range from \$3,500 per 100 feet for a 6-inch line to \$20,000 per 100 feet for a 24-inch line.

Variability from system to system makes it difficult to quantify the possible costs associated with operational evaluation remedies. The most effective option will vary from system to system, as will the costs for similar types of improvements.

### **H.6.4** Benefits Implications of the Operational Evaluation Requirements

As discussed in detail in Chapter 5 of this EA, a primary objective of the Stage 2 DBPR is to reduce peak DBP occurrence, thereby reducing potential adverse developmental and reproductive health effects and cancers associated with DBPs. Although systems are not required to make changes in response to significant DBP excursions, EPA believes that the requirement to perform an operational evaluation will encourage attention to peak events and foster better understanding of peak TTHM and HAA5 occurrence in the distribution system.

### H.7 Summary of Systems Costs for Non-Treatment-Related Rule Activities

This section summarizes the estimated number of systems performing various rule activities and their associated costs, derived previously in sections H.2 through H.6. Exhibit H.12a shows the number of systems performing each rule activity, and Exhibit H.12b shows the number of systems that will add disinfection for the GWR performing each rule activity. Exhibit H.13 shows costs for both the baseline systems and the GWR systems. The estimates in Exhibits H.12a, H.12b, and H.13 are broken out by the Stage 2 DBPR monitoring size categories. To combine system and cost breakouts with comparable treatment costs (derived in Chapter 7 of this EA), the results in Exhibits H.12 and H.13 were transformed into EPA's standard nine system size categories. Exhibit H.14 (the baseline adjustment matrix) shows the percentage of systems from each of the Stage 2 DBPR monitoring size categories that is in each of EPA's nine standard size categories (see section H.1 for an additional description of this calculation). Data in Exhibit H.14 are derived from SDWIS 4<sup>th</sup> Quarter Frozen Database (USEPA 2003t). EPA multiplied the results from Exhibits H.12 and H.13 by the baseline adjustment matrix in Exhibit H.14 to produce system and cost results in EPA's nine standard size categories (Exhibits H.15a, H.15b, and H.16).

# Exhibit H.12a Systems Performing Various Rule Activities, by Stage 2 Monitoring Size Categories

|                              |                            | <u> </u>        |        |                                |                            |
|------------------------------|----------------------------|-----------------|--------|--------------------------------|----------------------------|
| System Size                  | Baseline No. of<br>Systems | Implemen-tation | IDSE   | Stage 2<br>Monitoring<br>Plans | Operational<br>Evaluations |
| (Population Served)          | Α                          | B = A           | C      | D                              | E                          |
| Surface Water and Mixed CW   | Ss                         |                 |        |                                |                            |
| <500                         | 3,297                      | 3,297           | 2,060  | 3,297                          | 12                         |
| 500-3,300                    | 4,058                      | 4,058           | 3,823  | 4,058                          | 28                         |
| 3,301-9,999                  | 2,042                      | 2,042           | 1,888  | 2,042                          | 57                         |
| 10,000-49,999                | 1,773                      | 1,773           | 1,524  | 1,773                          | 189                        |
| 50,000-249,999               | 534                        | 534             | 436    | 534                            | 109                        |
| 250,000-999,999              | 81                         | 81              | 63     | 81                             | 23                         |
| 1,000,000-4,999,999          | 17                         | 17              | 14     | 17                             | 6                          |
| ≥5 M                         | 1                          | 1               | 1      | 1                              | 0                          |
| National Totals              | 11,803                     | 11,803          | 9,809  | 11,803                         | 424                        |
| Disinfecting Ground Water Or | dy CWSs                    |                 |        |                                |                            |
| <500                         | 17,756                     | 17,756          | 752    | 17,756                         | 0                          |
| 500-9,999                    | 11,050                     | 11,050          | 1,956  | 11,050                         | 0                          |
| 10,000-99,999                | 1,358                      | 1,358           | 240    | 1,358                          | 0                          |
| 100,000-499,999              | 60                         | 60              | 18     | 60                             | 0                          |
| > 500,000                    | 6                          | 6               | 1      | 6                              | 0                          |
| National Totals              | 30,229                     | 30,229          | 2,966  | 30,229                         | 0                          |
| Surface Water and Mixed NTN  | ICWSe                      |                 |        |                                |                            |
| <500                         | 548                        | 548             | _      | 548                            | 0                          |
| 500-3,300                    | 199                        | 199             | _      | 199                            | 0                          |
| 3,301-9,999                  | 24                         | 24              | _      | 24                             | 0                          |
| 10,000-49,999                | 5                          | 5               | 4      | 5                              | 0                          |
| 50,000-249,999               | 1                          | 1               | 1      | 1                              | 0                          |
| 250,000-999,999              | 0                          | 0               | 0      | 0                              | 0                          |
| 1,000,000-4,999,999          | 0                          | 0               | 0      | 0                              | 0                          |
| ≥5 M                         | 0                          | 0               | 0      | 0                              | 0                          |
| National Totals              | 777                        | 777             | 5      | 777                            | 0                          |
| Disinfecting Ground Water Or | IV NTNCWSs                 |                 |        |                                |                            |
| <500                         | 4,622                      | 4,622           |        | 4,622                          | 0                          |
| 500-9,999                    | 858                        | 858             | _      | 858                            | 0                          |
| 10,000-99,999                | 3                          | 3               | 1      | 3                              | 0                          |
| 100,000-499,999              | 0                          | 0               | 0      | 0                              | 0                          |
| > 500,000                    | 0                          | 0               | 0      | 0                              | 0                          |
| National Totals              | 5,483                      | 5,483           | 1      | 5,483                          | Ö                          |
| Grand Totals                 | 48,293                     | 48,293          | 12,780 | 48,293                         | 424                        |
|                              |                            |                 |        |                                |                            |

Note: Detail may not add due to independent rounding.

Non-treatment-Related Rule Activities, in addition to those shown in the table, also include routine compliance monitoring. Some systems are expected to take more samples and some are expected to take less from Stage 1 to Stage 2 depending on the number of plants in their systems. Overall, the Stage 2 DBPR results in an increase in the total number of compliance samples taken from the Stage 1 DBPR. See Exhibit H.8a for column I, for the change in total samples for different system size categories.

Sources: (A) and (B) Exhibit H.1 (column K).

(C)Exhibits H.3a and b (column E).

(D) Exhibit H.7 (column A).

(E) Exhibit H.10 (column G).

# Exhibit H.12b Non-Treatment Related Rule Activities for Systems Adding Disinfection to Comply with the GWR

| (Population Served) Surface Water and Mixed C | WSs 0                                 | В         | O D/A        |
|-----------------------------------------------|---------------------------------------|-----------|--------------|
| Surface water and Mixed C                     |                                       |           | C = B/A      |
| F00                                           | 1 0                                   | 1 0       | 00/          |
| <500                                          |                                       | 0         | 0%           |
| 500-3,300                                     | 0                                     | 0         | 0%           |
| 3,301-9,999                                   | 0                                     | 0         | 0%           |
| 10,000-49,999                                 | 0                                     | 0         | 0%           |
| 50,000-249,999                                | 0                                     | 0         | 0%           |
| 250,000-999,999                               | 0                                     | 0         | 0%           |
| 1,000,000-4,999,999                           | 0                                     | 0         | 0%           |
| ≥5 M<br>National Totals                       | 0                                     | 0         | 0%           |
|                                               | · · · · · · · · · · · · · · · · · · · | U         |              |
| Oisinfecting Ground Water (<500)              | 793                                   | 793       | 100%         |
|                                               |                                       |           |              |
| 500-9,999<br>10,000-99,999                    | 237                                   | 237<br>11 | 100%<br>100% |
| 100,000-99,999                                | 2                                     | 2         | 100%         |
| > 500,000                                     | 0                                     | 0         | 100%         |
| National Totals                               | 1,042                                 | 1,042     | 100 %        |
| Surface Water and Mixed N                     |                                       | 1,042     |              |
| <500                                          | 0                                     | 0         | 0%           |
| 500-3,300                                     |                                       | 0         | 0%           |
| 3,301-9,999                                   |                                       | 0         | 0%           |
| 10,000-49,999                                 |                                       | 0         | 0%           |
| 50,000-249,999                                |                                       | 0         | 0%           |
| 250,000-999,999                               |                                       | 0         | 0%           |
| 1,000,000-4,999,999                           |                                       | 0         | 0%           |
| ≥5 M                                          |                                       | 0         | 0%           |
| National Totals                               | 0                                     | 0         | 070          |
| Disinfecting Ground Water                     | _                                     | <u> </u>  |              |
| <500                                          | 1,241                                 | 1,241     | 100%         |
| 500-9,999                                     | 268                                   | 268       | 100%         |
| 10,000-99,999                                 | 1                                     | 1         | 100%         |
| 100,000-499,999                               |                                       | 0         | 100%         |
| > 500,000                                     |                                       | 0         | 0%           |
| National Totals                               | 1,510                                 | 1,510     |              |
| Grand Total                                   | 2,552                                 | 2,552     |              |

Note: Detail may not add due to independent rounding.

Non-treatment-Related Rule Activities, in addition to those shown in the table, include routine compliance monitoring for

all systems.

Sources: (A) Exhibit 8.b

(B) Exhibits H.7 (column C).

(D) Exhibit H.8b (column A).

Exhibit H.13 Non-Treatment Cost Summary, by Stage 2 Monitoring Size **Categories** 

|                          |                    |       |                                       |     |                       |    | Additional Routine |    | Operational |
|--------------------------|--------------------|-------|---------------------------------------|-----|-----------------------|----|--------------------|----|-------------|
| System Size              | Implementation     |       | IDSE                                  | Sta | ge 2 Monitoring Plans |    | Monitoring         |    | Evaluations |
| (Population Served)      | A                  |       | В                                     |     | С                     |    | D                  |    | E           |
| Surface Water and M <500 |                    |       | 1 000 071                             | _   | 227.224               | _  | (450.005)          | •  | 4.000       |
|                          | \$ 743,37          | 1 -   |                                       | \$  | 287,984               | \$ | (158,325)          | \$ | 1,623       |
| 500-3,300                | \$ 1,003,94        | I     |                                       |     | 501,975               | \$ | (915,667)          | \$ | 8,313       |
| 3,301-9,999              | \$ 623,05          | 1 -   |                                       |     | 258,721               | \$ | 953,611            | \$ | 20,870      |
| 10,000-49,999            | \$ 1,212,30        | 1 -   |                                       |     | 461,867               | \$ | (2,477,619)        | \$ | 98,959      |
| 50,000-249,999           | \$ 383,46          | 1 -   |                                       | \$  | 149,527               | \$ | 345,692            | \$ | 62,671      |
| 250,000-999,999          | \$ 68,52           | 1 -   |                                       | \$  | 37,981                | \$ | 146,956            | \$ | 15,227      |
| 1,000,000-4,999,99       |                    | 1 -   | - ,                                   | \$  | 10,628                | \$ | 30,843             | \$ | 4,512       |
| <sup>3</sup> 5 M         | •                  | 6 \$  | /                                     | \$  | 938                   | \$ | 5,674              | \$ | 564         |
| National Totals          | \$ 4,049,90        | )2 \$ | 49,532,418                            | \$  | 1,709,621             | \$ | (2,068,834)        | \$ | 212,739     |
| Disinfecting Ground      | •                  |       |                                       |     |                       |    |                    |    |             |
| <500                     | \$ 3,572,10        | 1 -   | · · · · · · · · · · · · · · · · · · · | \$  | 932,815               | \$ | 216,511            | \$ | -           |
| 500-9,999                | \$ 2,472,17        | 9 \$  |                                       |     | 1,402,853             | \$ | 1,530,140          | \$ | -           |
| 10,000-99,999            | \$ 886,17          |       |                                       |     | 356,494               | \$ | 3,908,997          | \$ | -           |
| 100,000-499,999          | \$ 44,24           | 1 -   |                                       | \$  | 28,822                | \$ | (66,879)           | \$ | -           |
| > 500,000                | \$ 4,36            | _     | ,                                     | \$  | 3,735                 | \$ | (50,522)           | \$ | -           |
| National Totals          | \$ 6,979,05        | 54 \$ | 7,832,529                             | \$  | 2,724,718             | \$ | 5,538,247          | \$ | -           |
| Surface Water and Mix    |                    |       |                                       |     |                       |    |                    |    |             |
| <500                     | \$ 110,45          | 50 \$ | -                                     | \$  | 24,544                | \$ | -                  | \$ | -           |
| 500-3,300                | \$ 44,30           | 9 \$  | -                                     | \$  | 9,847                 | \$ | -                  | \$ | -           |
| 3,301-9,999              | \$ 6,59            | 91 \$ | -                                     | \$  | 1,216                 | \$ | 25,473             | \$ | -           |
| 10,000-49,999            | \$ 3,26            | 3 \$  | 46,876                                | \$  | 1,303                 | \$ | -                  | \$ | -           |
| 50,000-249,999           | \$ 74              | 10 \$ | 23,725                                | \$  | 313                   | \$ | 3,860              | \$ | -           |
| 250,000-999,999          | \$                 | - \$  | -                                     | \$  | -                     | \$ | -                  | \$ | -           |
| 1,000,000-4,999,99       | \$                 | - \$  | -                                     | \$  | -                     | \$ | -                  | \$ | -           |
| <sup>3</sup> 5 M         | \$                 | - \$  | -                                     | \$  | -                     | \$ | -                  | \$ | -           |
| National Totals          | \$ 165,35          | 3 \$  | 70,601                                | \$  | 37,222                | \$ | 29,333             | \$ | -           |
| Disinfecting Ground V    | Vater Only NTNCWSs |       |                                       |     |                       |    |                    |    |             |
| <500                     | \$ 923,42          | 23 \$ | -                                     | \$  | 342,966               | \$ | 325,412            | \$ | -           |
| 500-9,999                | \$ 191,11          | 8 \$  | -                                     | \$  | 75,586                | \$ | 368,779            | \$ | -           |
| 10,000-99,999            | \$ 2,27            | ′1 \$ | 932                                   | \$  | 1,247                 | \$ | 17,260             | \$ | -           |
| 100,000-499,999          | \$ 2               | 5 \$  | -                                     | \$  | 192                   | \$ | 2,085              | \$ | -           |
| > 500,000                | \$                 | - \$  | -                                     | \$  | -                     | \$ | -                  | \$ |             |
| National Totals          | \$ 1,117,02        | 27 \$ | 932                                   | \$  | 419,990               | \$ | 713,536            | \$ | -           |
| Grand Totals             | \$ 12,311,33       | 86 \$ | 57,436,480                            | \$  | 4,891,552             | \$ | 4,212,282          | \$ | 212,739     |

Notes: Detail may not add to totals due to independent rounding.

Costs for Stage 2 monitoring plans and additional routine monitoring include those costs for systems that are projected to add disinfection to comply with the GWR.

Sources: (A) Exhibit H.2 (column E).

(B) Sum of Exhibit H.4 (column I), Exhibit H.5 (column F), and H.6(column F).

(C) Exhibit H.7 (column G). (D) Exhibit H.8c (column D).

(E) Exhibit H.11 (Column D).

# Exhibit H.14 Baseline Adjustment Matrix from Stage 2 Monitoring Categories to Standard Nine Categories

| Stage 2 Monitoring                     | Standard Size Categories (Population Served) |         |         |             |             |              |              |              |             |  |  |  |  |
|----------------------------------------|----------------------------------------------|---------|---------|-------------|-------------|--------------|--------------|--------------|-------------|--|--|--|--|
| Size Categories<br>(Population Served) | <100                                         | 100-499 | 500-999 | 1,000-3,299 | 3,300-9,999 | 10,000-49,99 | 50,000-99,99 | 100,000-999, | > 1,000,000 |  |  |  |  |
| SW-CWS                                 |                                              |         |         |             |             |              |              |              |             |  |  |  |  |
| <500                                   | 32.9%                                        | 67.1%   |         |             |             |              |              |              |             |  |  |  |  |
| 500-3,299                              |                                              |         | 36.2%   | 63.8%       |             |              |              |              |             |  |  |  |  |
| 3,300-9,999                            |                                              |         |         |             | 100.0%      |              |              |              |             |  |  |  |  |
| 10,000-49,999                          |                                              |         |         |             |             | 100.0%       |              |              |             |  |  |  |  |
| 50,000-249,999                         |                                              |         |         |             |             |              | 62.5%        | 37.5%        |             |  |  |  |  |
| 250,000-999,999                        |                                              |         |         |             |             |              |              | 100.0%       |             |  |  |  |  |
| 1,000,000-4,999,999                    |                                              |         |         |             |             |              |              |              | 100.0%      |  |  |  |  |
| ≥5 M                                   |                                              |         |         |             |             |              |              |              | 100.0%      |  |  |  |  |
| SW-NTNCWS                              |                                              |         |         |             |             |              |              |              |             |  |  |  |  |
| <500                                   | 42.2%                                        | 57.8%   |         |             |             |              |              |              |             |  |  |  |  |
| 500-3,299                              |                                              |         | 53.3%   | 46.7%       |             |              |              |              |             |  |  |  |  |
| 3,300-9,999                            |                                              |         |         |             | 100.0%      |              |              |              |             |  |  |  |  |
| 10,000-49,999                          |                                              |         |         |             |             | 100.0%       |              |              |             |  |  |  |  |
| 50,000-249,999                         |                                              |         |         |             |             |              | 0.0%         | 100.0%       |             |  |  |  |  |
| 250,000-999,999                        |                                              |         |         |             |             |              |              | 100.0%       |             |  |  |  |  |
| 1,000,000-4,999,999                    |                                              |         |         |             |             |              |              |              | 100.0%      |  |  |  |  |
| ≥5 M                                   |                                              |         |         |             |             |              |              |              | 100.0%      |  |  |  |  |

| Stone 2 Manitarina                                      | s     | tandard Size | Categories (F | opulation Ser | ved)        |               |               |                 |             |
|---------------------------------------------------------|-------|--------------|---------------|---------------|-------------|---------------|---------------|-----------------|-------------|
| Stage 2 Monitoring<br>Categories (Population<br>Served) | <100  | 101-499      | 500-999       | 1,000-3,299   | 3,300-9,999 | 10,000-49,999 | 50,000-99,999 | 100,000-999,999 | > 1,000,000 |
| GW-CWS                                                  |       |              |               |               | ,           |               | •             | •               |             |
| <500                                                    | 44.7% | 55.3%        |               |               |             |               |               |                 |             |
| 500-9,999                                               |       |              | 36.2%         | 43.9%         | 19.9%       |               |               |                 |             |
| 10,000-99,999                                           |       |              |               |               |             | 90.0%         | 10.0%         |                 |             |
| 100,000-499,999                                         |       |              |               |               |             |               |               | 100.0%          |             |
| <b>&gt;</b> 500,000                                     |       |              |               |               |             |               |               | 50.0%           | 50.0%       |
| GW-NTNCWS                                               |       |              |               |               |             |               |               |                 |             |
| <500                                                    | 53.9% | 46.1%        |               |               |             |               |               |                 |             |
| 500-9,999                                               |       |              | 68.7%         | 28.8%         | 2.5%        |               |               |                 |             |
| 10,000-99,999                                           |       |              |               |               |             | 91.7%         | 8.3%          |                 |             |
| 100,000-499,999                                         |       |              |               |               |             |               |               | 100.0%          |             |
| <b>≥</b> 500,000                                        |       |              |               |               |             |               |               |                 |             |

Source: SDWIS 2003 4<sup>th</sup> quarter frozen database (USEPA 2003t)

Exhibit H.15a Systems Performing Various Rule Activities, Standard Nine Size Categories

|                              |                 |           |           | <b>0</b> , 0 |                         |
|------------------------------|-----------------|-----------|-----------|--------------|-------------------------|
|                              | Baseline No. of | Implemen- |           | Stage 2      |                         |
|                              |                 | tation    | IDEE      | Monitoring   | Operational Evaluations |
| System Size                  | Systems         |           | IDSE<br>C | Plans        | Operational Evaluations |
| (Population Served)          | Α               | B=A       | C         | D            | E                       |
| Surface Water and Mixed CW   |                 |           |           |              |                         |
| <100                         | 1,085           | 1,085     | 678       | 1,085        | 4                       |
| 100-499                      | 2,212           | 2,212     | 1,382     | 2,212        | 8                       |
| 500-999                      | 1,470           | 1,470     | 1,385     | 1,470        | 10                      |
| 1,000-3,299                  | 2,588           | 2,588     | 2,438     | 2,588        | 18                      |
| 3,300-9,999                  | 2,042           | 2,042     | 1,888     | 2,042        | 57                      |
| 10,000-49,999                | 1,773           | 1,773     | 1,524     | 1,773        | 189                     |
| 50,000-99,999                | 334             | 334       | 273       | 334          | 68                      |
| 100,000-999,999              | 281             | 281       | 226       | 281          | 64                      |
| <u>≥</u> 1,000,000           | 18              | 18        | 15        | 18           | 6                       |
| National Totals              | 11,803          | 11,803    | 9,809     | 11,803       | 424                     |
| Disinfecting Ground Water Or | nly CWSs        |           |           |              |                         |
| <100                         | 7,935           | 7,935     | 336       | 7,935        | -                       |
| 100-499                      | 9,821           | 9,821     | 416       | 9,821        | -                       |
| 500-999                      | 3,998           | 3,998     | 708       | 3,998        | -                       |
| 1,000-3,299                  | 4,852           | 4,852     | 859       | 4,852        | -                       |
| 3,300-9,999                  | 2,200           | 2,200     | 389       | 2,200        | -                       |
| 10,000-49,999                | 1,222           | 1,222     | 216       | 1,222        | -                       |
| 50,000-99,999                | 136             | 136       | 24        | 136          | -                       |
| 100,000-999,999              | 63              | 63        | 18        | 63           | Ē                       |
| ≥ 1,000,000                  | 3               | 3         | 0         | 3            | Ē                       |
| National Totals              | 30,229          | 30,229    | 2,966     | 30,229       | -                       |
| Surface Water and Mixed NTN  | CWSs            |           |           |              |                         |
| <100                         | 231             | 231       | -         | 231          | -                       |
| 100-499                      | 317             | 317       | -         | 317          | -                       |
| 500-999                      | 106             | 106       | -         | 106          | -                       |
| 1,000-3,299                  | 93              | 93        | -         | 93           | -                       |
| 3,300-9,999                  | 24              | 24        | -         | 24           | -                       |
| 10,000-49,999                | 5               | 5         | 4         | 5            | -                       |
| 50,000-99,999                | -               | -         | -         | -            | -                       |
| 100,000-999,999              | 1               | 1         | 1         | 1            | -                       |
| ≥ 1,000,000                  | -               | -         | -         | -            | -                       |
| National Totals              | 777             | 777       | 5         | 777          | •                       |
| Disinfecting Ground Water On | y NTNCWSs       |           |           |              |                         |
| <100                         | 2,493           | 2,493     | -         | 2,493        | -                       |
| 100-499                      | 2,129           | 2,129     | -         | 2,129        | -                       |
| 500-999                      | 589             | 589       | -         | 589          | -                       |
| 1,000-3,299                  | 247             | 247       | -         | 247          | -                       |
| 3,300-9,999                  | 21              | 21        | -         | 21           | -                       |
| 10,000-49,999                | 3               | 3         | 1         | 3            | -                       |
| 50,000-99,999                | 0               | 0         | 0         | 0            | -                       |
| 100,000-999,999              | 0               | 0         | 0         | 0            | -                       |
| <u>&gt;</u> 1,000,000        | <u> </u>        |           |           | <u> </u>     |                         |
| National Totals              | 5,483           | 5,483     | 1         | 5,483        | -                       |
| Grand Totals                 | 48,293          | 48,293    | 12,780    | 48,293       | 424                     |

Notes: Detail may not add to totals due to independent rounding.

Non-treatment-Related Rule Activities, in addition to those shown in the table, also include routine compliance monitoring. Some systems are expected to take more samples and some are expected to take less from Stage 1 to Stage 2 depending on the number of plants in their systems. Overall, the Stage 2 DBPR results in an increase in the total number of compliance samples taken from the Stage 1 DBPR. See Exhibit H.8a for column I, for the change in total samples for different system size categories.

Source: Derived by multiplying results in H.13 by the baseline adjustment matrix in H.14.

| 1  |
|----|
| 2  |
| 3  |
| 4  |
| 5  |
| 6  |
| 7  |
| 8  |
| 9  |
| 10 |
| 11 |
| 12 |
| 13 |
| 14 |
| 15 |
| 16 |
| 17 |
| 18 |
| 19 |
| 20 |
| 21 |
| 22 |
| 23 |
| 24 |
| 25 |
| 26 |
| 27 |
| 28 |
| 29 |
| 30 |
| 31 |
| 32 |
| 33 |
| 34 |
| 35 |
| 36 |
|    |

1

|                                    |                                                                  | ,                                                          |                                                  |
|------------------------------------|------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------|
| System Size<br>(Population Served) | Baseline No. of<br>Systems Adding<br>Disinfectant for<br>the GWR | Number<br>Preparing<br>Stage 2<br>Monitoring<br>Plans<br>B | Percent Preparing<br>Monitoring Plans<br>C = B/A |
|                                    |                                                                  | _                                                          |                                                  |
| Surface Water and Mixed CWS        | S I                                                              |                                                            |                                                  |
| <100                               | -                                                                | -                                                          | -                                                |
| 100-499                            | -                                                                | -                                                          | -                                                |
| 500-999                            | -                                                                | -                                                          | -                                                |
| 1,000-3,299                        | -                                                                | -                                                          | -                                                |
| 3,300-9,999                        | -                                                                | -                                                          | -                                                |
| 10,000-49,999                      | -                                                                | -                                                          | -                                                |
| 50,000-99,999                      | -                                                                | -                                                          | -                                                |
| 100,000-999,999                    | -                                                                | -                                                          | -                                                |
| ≥ 1,000,000                        | -                                                                | -                                                          | -                                                |
| National Totals                    | -                                                                | -                                                          |                                                  |
| Disinfecting Ground Water On       | ly CWSs                                                          |                                                            |                                                  |
| <100                               | 354                                                              | 354                                                        | 100%                                             |
| 100-499                            | 439                                                              | 439                                                        | 100%                                             |
| 500-999                            | 86                                                               | 86                                                         | 100%                                             |
| 1,000-3,299                        | 104                                                              | 104                                                        | 100%                                             |
| 3,300-9,999                        | 47                                                               | 47                                                         | 100%                                             |
| 10,000-49,999                      | 10                                                               | 10                                                         | 100%                                             |
| 50,000-99,999                      | 1                                                                | 1                                                          | 100%                                             |
| 100,000-999,999                    | 2                                                                | 2                                                          | 100%                                             |
| ≥ 1,000,000                        | 0                                                                | 0                                                          | 100%                                             |
| National Totals                    | 1,042                                                            | 1,042                                                      |                                                  |
| Surface Water and Mixed NTNC       | WSs                                                              |                                                            |                                                  |
| <100                               | -                                                                | -                                                          | -                                                |
| 100-499                            | -                                                                | -                                                          | -                                                |
| 500-999                            | -                                                                | -                                                          | -                                                |
| 1,000-3,299                        | -                                                                | -                                                          | -                                                |
| 3,300-9,999                        | _                                                                | -                                                          | _                                                |
| 10,000-49,999                      | _                                                                | -                                                          | _                                                |
| 50,000-99,999                      | _                                                                | _                                                          | _                                                |
| 100,000-999,999                    | _                                                                | _                                                          | _                                                |
| ≥ 1,000,000                        | _                                                                | _                                                          | _                                                |
| National Totals                    | -                                                                | -                                                          |                                                  |
| Disinfecting Ground Water Only     | / NTNCWSs                                                        |                                                            |                                                  |
| <100                               | 669                                                              | 669                                                        | 100%                                             |
| 100-499                            | 572                                                              | 572                                                        | 100%                                             |
| 500-999                            | 184                                                              | 184                                                        | 100%                                             |
| 1,000-3,299                        | 77                                                               | 77                                                         | 100%                                             |
| 3,300-9,999                        | 7                                                                | 7                                                          | 100%                                             |
| 10,000-49,999                      | 1                                                                | 1                                                          | 100%                                             |
| 50,000-99,999                      | 0                                                                | 0                                                          | 100%                                             |
| 100,000-999,999                    | 0                                                                | 0                                                          | 100%                                             |
| ≥ 1,000,000                        |                                                                  | _                                                          | 0%                                               |
| National Totals                    | 1,510                                                            | 1,510                                                      | 0 /0                                             |
| Grand Totals                       | 2,552                                                            | 2,552                                                      |                                                  |
| Orana Totals                       | 2,332                                                            | 2,332                                                      |                                                  |

Notes: Detail may not add to totals due to independent rounding.

Non-treatment-Related Rule Activities, in addition to those shown in the table, also include routine compliance monitoring. Some systems are expected to take more samples and some are expected to take less from Stage 1 to Stage 2 depending on the number of plants in their systems. Overall, the Stage 2 DBPR results in an increase in the total number of compliance samples taken from the Stage 1 DBPR. See Exhibit H.8a for column I, for the change in total samples for different system size categories.

Source: Derived by multiplying results in H.12b by the baseline adjustment matrix in H.14.

# Exhibit H.16 Non-Treatment Cost Summary, Standard Nine Size Categories

|                                |                                 |         |               |     | 0                 |                    |                 |               |             |  |
|--------------------------------|---------------------------------|---------|---------------|-----|-------------------|--------------------|-----------------|---------------|-------------|--|
|                                |                                 |         | IDCE          | St  | tage 2 Monitoring | Additional Routine |                 | O             | Fuelmetiene |  |
| System Size                    | Implementation                  | -       | IDSE<br>B     |     | Plans             |                    | Monitoring<br>D | Operational E |             |  |
| (Population Served)            | Α                               |         | В             |     | С                 |                    | U               |               |             |  |
| Surface Water and Mixed CWS    |                                 |         |               |     |                   |                    |                 |               |             |  |
| <100                           | \$ 244,6                        |         | \$ 447,582    | \$  | 94,772            | \$                 | (52,103)        | \$            | 534         |  |
| 100-499                        | \$ 498,7                        |         | \$ 912,489    | \$  | 193,212           | \$                 | (106,222)       | \$            | 1,089       |  |
| 500-999                        | \$ 363,6                        |         | \$ 3,140,721  | \$  | 181,839           | \$                 | (331,698)       | \$            | 3,011       |  |
| 1,000-3,299                    | \$ 640,2                        |         | \$ 5,529,388  | \$  | 320,136           | \$                 | (583,969)       | \$            | 5,301       |  |
| 3,300-9,999                    | \$ 623,0                        |         | \$ 8,379,826  | \$  | 258,721           | \$                 | 953,611         | \$            | 20,870      |  |
| 10,000-49,999                  | \$ 1,212,3                      |         | \$ 17,851,398 | \$  | 461,867           | \$                 | (2,477,619)     | \$            | 98,959      |  |
| 50,000-99,999                  | \$ 239,8                        |         | \$ 6,426,075  | \$  | 93,524            | \$                 | 216,219         | \$            | 39,199      |  |
| 100,000-999,999                | \$ 212,1                        | 13   9  | \$ 6,113,574  | \$  | 93,984            | \$                 | 276,429         | \$            | 38,699      |  |
| ≥ 1,000,000                    | \$ 15,2                         |         | \$ 731,365    | \$  | 11,566            | \$                 | 36,517          | \$            | 5,076       |  |
| National Totals                | \$ 4,049,9                      | )2   \$ | \$ 49,532,418 | \$  | 1,709,621         | \$                 | (2,068,834)     | \$            | 212,739     |  |
| Disinfecting Ground Water Onl  | y CWSs                          |         |               |     |                   |                    |                 |               |             |  |
| <100                           | \$ 1,596,3                      | 55   5  | \$ 221,266    | \$  | 416,873           | \$                 | 96,758          | \$            | -           |  |
| 100-499                        | \$ 1,975,7                      | 36      | \$ 273,849    | \$  | 515,942           | \$                 | 119,753         | \$            | -           |  |
| 500-999                        | \$ 894,4                        | 69 5    | \$ 1,931,945  | \$  | 507,572           | \$                 | 553,626         | \$            | -           |  |
| 1,000-3,299                    | \$ 1,085,5                      | 31 5    | \$ 2,344,617  | \$  | 615,991           | \$                 | 671,883         | \$            | -           |  |
| 3,300-9,999                    | \$ 492,1                        | 79 9    | \$ 1,063,047  | \$  | 279,290           | \$                 | 304,631         | \$            | -           |  |
| 10,000-49,999                  | \$ 797,6                        | 31 8    | \$ 1,642,671  | \$  | 320,895           | \$                 | 3,518,648       | \$            | -           |  |
| 50,000-99,999                  | \$ 88,4                         | 92 5    | \$ 182,233    | \$  | 35,599            | \$                 | 390,348         | \$            | -           |  |
| 100,000-999,999                | \$ 46,4                         | 21 5    | \$ 166,938    | \$  | 30,689            | \$                 | (92,140)        | \$            | -           |  |
| ≥ 1,000,000                    | \$ 2,1                          | 30 8    | 5,964         | \$  | 1,868             | \$                 | (25,261)        | \$            | -           |  |
| National Totals                | \$ 6,979,0                      | 54 5    | \$ 7,832,529  | \$  | 2,724,718         | \$                 | 5,538,247       | \$            | -           |  |
| Surface Water and Mixed NTNC   | Surface Water and Mixed NTNCWSs |         |               |     |                   |                    |                 |               |             |  |
| <100                           | \$ 46,5                         | 58 5    | \$ -          | \$  | 10,346            | \$                 | -               | \$            | -           |  |
| 100-499                        | \$ 63,8                         | 91 5    | \$ -          | \$  | 14,198            | \$                 | -               | \$            | -           |  |
| 500-999                        | \$ 23,6                         | 02   9  | \$ -          | \$  | 5,245             | \$                 | -               | \$            | -           |  |
| 1,000-3,299                    | \$ 20,7                         |         | \$ -          | \$  | 4,602             | \$                 | -               | \$            | _           |  |
| 3,300-9,999                    | \$ 6,5                          |         | ·<br>\$ -     | \$  | 1,216             | \$                 | 25,473          | \$            | _           |  |
| 10,000-49,999                  | \$ 3,2                          |         | \$ 46,876     | \$  | 1,303             | \$                 | -               | \$            | _           |  |
| 50,000-99,999                  | \$                              |         | \$ -          | \$  | -                 | \$                 | _               | \$            | _           |  |
| 100,000-999,999                | · ·                             |         | \$ 23,725     | \$  | 313               | \$                 | 3,860           | \$            | _           |  |
| > 1,000,000                    | \$                              |         | \$ -          | \$  | -                 | \$                 | -               | \$            | -           |  |
| National Totals                | \$ 165,3                        |         | \$ 70,601     | \$  | 37,222            | \$                 | 29,333          | \$            | -           |  |
| Disinfecting Ground Water Only |                                 |         | •             | _   | •                 |                    | ,               |               |             |  |
| <100                           | \$ 498,0                        | 70 9    | \$ -          | \$  | 184.987           | \$                 | 175,519         | \$            | _           |  |
| 100-499                        | \$ 425,3                        | - 1     | \$ -          | \$  | 157,979           | \$                 | 149,893         | \$            | _           |  |
| 500-999                        | \$ 131,2                        |         | \$ -          | \$  | 51,924            | \$                 | 253.333         | \$            | _           |  |
| 1,000-3,299                    | \$ 55,0                         |         | \$ -          | \$  | 21,771            | \$                 | 106,220         | \$            | _           |  |
| 3,300-9,999                    | \$ 4,7                          |         | \$ -          | \$  | 1,891             | \$                 | 9,226           | \$            | _           |  |
| 10,000-49,999                  | \$ 2,0                          |         | \$ 855        | \$  | 1.143             | \$                 | 15,822          | \$            | _           |  |
| 50,000-99,999                  |                                 |         | \$ 78         | \$  | 1,143             | \$                 | 1,438           | \$            | -           |  |
| 100,000-999,999                |                                 |         | \$ 78<br>\$ - | \$  | 192               | \$                 | 2,085           | \$            | -           |  |
| ≥ 1,000,000                    | \$                              |         | \$ -          | \$  | 192               | \$                 | 2,065           | \$            | -           |  |
| National Totals                | \$ 1.117.0                      |         | § 932         | \$  | 419.990           | \$                 | 713.536         | \$<br>\$      |             |  |
| Grand Totals                   | \$ 12,311,3                     | _       | \$ 57,436,480 | \$  | 4,891,552         | \$                 | 4,212,282       | \$            | 212 720     |  |
| Grand Totals                   | p 1∠,311,3                      | 00 3    | p 57,436,480  | 1 3 | 4,891,552         | 9                  | 4,212,282       | φ             | 212,739     |  |

Notes: Detail may not add to totals due to independent rounding.

Costs for Stage 2 monitoring plans and additional routine monitoring include those costs for systems that are projected to add disinfection to comply with the GWR.

Source: Derived by multiplying results in H.12 by the baseline adjustment matrix in H.14.

 To estimate State/Primacy Agency costs, the estimated number of full-time equivalents (FTEs) required per activity is multiplied by the number of labor hours per FTE, the State/Primacy Agency hourly wage, and the number of States/Primacy Agencies. EPA estimated the number of FTEs required per activity based on experience implementing previous rules, such as the Stage 1 DBPR. The number of States/Primacy Agencies is the sum of the 50 States, six territories, and one tribal government (57 total). Labor costs attributable to States for administrative tasks are based on an average annual FTE labor cost, including overhead and fringe benefits, of \$65,255 (2001\$). This rate was established based on data from the 2001 State Drinking Water Needs Analysis (ASDWA 2001). For use in the Stage 2 EA analyses, the \$65,255 annual rate was updated to a year 2003 price level (\$70,132) using the ECI and converted to an hourly basis (1 FTE = 2,080 hours) to establish a State rate of \$33.60 per hour.

### Implementation Activities

States/Primacy Agencies incur labor costs for adopting the regulation and developing a program for implementation, providing initial public notification, training State staff, training PWS staff, providing technical assistance, and updating their data management systems. Exhibit H.17 presents the calculations and estimated costs and burden for these activities. Note that this EA does not include initial State costs for laboratory certification because EPA assumes that these activities occurred under the Stage 1 DBPR and were captured in the Stage 1 DBPR Regulatory Impact Analysis (RIA) (USEPA 1998a).

#### IDSE Activities for States/Primacy Agencies

States/Primacy Agencies will also incur costs as a result of the IDSE. EPA estimated the number of FTEs required per activity based on experience with previous rules, such as the Stage 1 DBPR. States/Primacy Agencies are expected to work with the small systems that conduct IDSEs to review data and make compliance determinations. State/Primacy Agency activities include analyzing IDSE reports and approving new or revised monitoring sites, responding to PWSs, and keeping records. All the costs for the IDSE activities were conservatively attributed to States/Primacy Agencies although it is possible that some of them may not have primacy before the IDSEs begin. Exhibit H.18 shows the calculations and estimated costs and burden associated with the IDSE for States/Primacy Agencies.

Because systems receiving the very small system waivers do not have to submit an IDSE report, EPA assumes that minimal state time will be needed for these systems.

#### Monitoring Plans

States/Primacy Agencies will incur costs to review the monitoring plans. States/Primacy Agencies are expected to review the monitoring plans for PWSs and approve them. States will only have to review monitoring plans for subpart H systems serving more than 3,300 people. EPA estimated the effort at four hours per monitoring plan for small systems and 8 hours for large systems, based on experience with previous rules, such as the Stage 1 DBPR. Exhibit H.19 shows the calculations and estimated costs and burden associated with the IDSE for States/Primacy Agencies.

21

#### Additional Routine Monitoring for States/Primacy Agencies

States/Primacy Agencies will incur costs to review and monitor PWSs' routine monitoring for TTHM and HAA5. States/Primacy Agencies are expected to incur costs for tracking PWS monitoring data and updating records. EPA estimated that 0.40 FTE's will be needed per State/Primacy agency for this activity, which is equivalent to 832 hours per State/Primacy Agency or 47,424 hours total (57x832).

#### Operational Evaluations

States/Primacy Agencies will incur costs to review operational evaluations made by PWSs. It is estimated that States/Primacy Agencies will use 1 hour to review each report and consult with the PWS. Exhibit H.20 shows estimated costs and burdens for operational evaluations for States/Primacy Agencies.

Summary

Exhibit H.21 shows a summary of all State/Primacy Agency costs.

# Exhibit H.17 State/Primacy Agency Costs for Implementation and Additional Routine Monitoring Activities

|                                             | С   | ost per  | FTEs per | Hours per |    |              | National   | National    | Na   | tional Total |
|---------------------------------------------|-----|----------|----------|-----------|----|--------------|------------|-------------|------|--------------|
|                                             | Lal | oor Hour | State    | State     |    | st per State | Total FTEs | Total Hours | Cost |              |
|                                             |     | Α        | В        | C=B*2,080 |    | D=A*C        | E=B*57     | F=C*57      |      | G=D*57       |
| Implementation Activities                   |     |          |          |           |    | •            | ,          |             |      |              |
| Public Notification                         | \$  | 33.60    | 0.10     | 208       | \$ | 6,989        | 5.70       | 11,856      | \$   | 398,362      |
| Regulation Adoption and Program Development | \$  | 33.60    | 0.50     | 1,040     | \$ | 34,944       | 28.50      | 59,280      | \$   | 1,991,808    |
| Training State Staff                        | \$  | 33.60    | 0.25     | 520       | \$ | 17,472       | 14.25      | 29,640      | \$   | 995,904      |
| Training PWS Staff and Technical Assistants | \$  | 33.60    | 1.00     | 2,080     | \$ | 69,888       | 57.00      | 118,560     | \$   | 3,983,616    |
| Updating Data Management System             | \$  | 33.60    | 0.10     | 208       | \$ | 6,989        | 5.70       | 11,856      | \$   | 398,362      |
| Totals                                      |     |          | 1.95     | 4,056     | \$ | 136,282      | 111        | 231,192     | \$   | 7,768,051    |
| Additional Routine Monitoring Activities    |     |          |          |           |    |              |            |             |      |              |
| Recordkeeping and Compliance Tracking       | \$  | 33.60    | 0.40     | 832       | \$ | 27,955       | 22.80      | 47,424      | \$   | 1,593,446    |
| Totals                                      |     |          | 0.40     | 832       | \$ | 27,955       | 22.80      | 47,424      | \$   | 1,593,446    |
| Grand Totals                                |     |          | 2.35     | 4,888     |    | 164,237      | 134        | 278,616     |      | 9,361,498    |

Notes: All states/primacy agencies are assumed to incur some costs for each activity.

Sources:

- (A) State labor rates based on the State Workload Model, updated to year 2003 dollar values.
- (B) FTEs per State/Primacy Agency based on EPA experience with previous regulations.

# Exhibit H.18 State/Primacy Agency Costs for the IDSE

|                        | Number of Sy           | stems Condu<br>Category      | ucting IDSE, by        |                        | urs to Work                  | with Systems on<br>SE Reports |                                          |                               |                                     |                        |                             |
|------------------------|------------------------|------------------------------|------------------------|------------------------|------------------------------|-------------------------------|------------------------------------------|-------------------------------|-------------------------------------|------------------------|-----------------------------|
| Size Category          | Standard<br>Monitoring | System-<br>Specific<br>Study | 40/30<br>Certification | Standard<br>Monitoring | System-<br>Specific<br>Study | 40/30<br>Certification        | Average State<br>Employee<br>Hourly Wage | Average Total Costs to States | Average<br>Total Costs<br>per State | Total<br>Burden        | Average<br>Burden/<br>State |
|                        | A                      | В                            | С                      | D                      | E                            | F                             | G                                        | H = G *<br>(A*D+B*E+C*F)      | I = H / 57                          | J = A*D +<br>B*E + C*F | K = J/57                    |
| Surface Water and M    | ixed CWSs              | -                            |                        |                        |                              |                               |                                          |                               |                                     |                        |                             |
| <500                   | 2,060                  | 0                            | 0                      | 4                      | 4                            | 0.5                           | \$ 33.60                                 | \$ 276,802                    | \$ 4,856                            | 8238.16                | 144.5                       |
| 500-3,300              | 3,823                  | 0                            | 235                    | 4                      | 4                            | 0.5                           | \$ 33.60                                 | \$ 517,759                    | \$ 9,083                            | 15409.5                | 270.3                       |
| 3,301-9,999            | 1,888                  | 0                            | 154                    | 4                      | 4                            | 0.5                           | \$ 33.60                                 | \$ 256,334                    | \$ 4,497                            | 7629                   | 133.8                       |
| 10,000-49,999          | 1,524                  | 0                            | 249                    | 8                      | 8                            | 0.5                           | \$ 33.60                                 | \$ 413,834                    | \$ 7,260                            | 12316.5                | 216.1                       |
| 50,000-249,999         | 436                    | 23                           | 75                     | 8                      | 8                            | 0.5                           | \$ 33.60                                 | \$ 124,639                    | \$ 2,187                            | 3709.5                 | 65.1                        |
| 250,000-999,999        | 63                     | 7                            | 11                     | 10                     | 12                           | 0.5                           | \$ 33.60                                 | \$ 24,175                     | \$ 424                              | 719.5                  | 12.6                        |
| 1,000,000-4,999,999    | 14                     | 1                            | 2                      | 12                     | 16                           | 0.5                           | \$ 33.60                                 | \$ 6,216                      | \$ 109                              | 185                    | 3.2                         |
| ≥5 M                   | 1                      | 0                            | 0                      | 12                     | 16                           | 0.5                           | \$ 33.60                                 | \$ 403                        | \$ 7                                | 12                     | 0.2                         |
| National Totals        | 9,809                  | 31                           | 726                    |                        |                              |                               |                                          | \$ 1,620,164                  | \$ 28,424                           | 48,219                 | 846.0                       |
| Ground Water Only CWSs |                        |                              |                        |                        |                              |                               |                                          |                               |                                     |                        |                             |
| <500                   | 752                    | 0                            | 0                      | 4                      | 4                            | 0.5                           | \$ 33.60                                 | \$ 101,004                    | \$ 1,772                            | 3,006                  | 52.7                        |
| 500-9,999              | 1,956                  | 0                            | 9,094                  | 4                      | 4                            | 0.5                           | \$ 33.60                                 | \$ 415,609                    | \$ 7,291                            | 12,369                 | 217.0                       |
| 10,000-99,999          | 240                    | 0                            | 1,118                  | 8                      | 8                            | 0.5                           | \$ 33.60                                 | \$ 83,226                     | \$ 1,460                            | 2,477                  | 43.5                        |
| 100,000-499,999        | 18                     | 2                            | 40                     | 8                      | 8                            | 0.5                           | \$ 33.60                                 | \$ 5,995                      | \$ 105                              | 178                    | 3.1                         |
| > 500,000              | 1                      | 0                            | 5                      | 12                     | 16                           | 0.5                           | \$ 33.60                                 | \$ 443                        | \$ 8                                | 13                     | 0.2                         |
| National Totals        | 2,966                  | 2                            | 10,257                 |                        |                              |                               |                                          | \$ 606,278                    | \$ 10,636                           | 18,044                 | 316.6                       |
| Surface Water and M    | ixed NTNCWSs           |                              |                        |                        |                              |                               |                                          |                               |                                     |                        |                             |
| <500                   | -                      | -                            | -                      | -                      | -                            | -                             |                                          | -                             |                                     | -                      | -                           |
| 500-3,300              | -                      | -                            | -                      | -                      | -                            | -                             |                                          | -                             | -                                   | -                      | -                           |
| 3,301-9,999            | -                      | -                            | -                      | -                      | -                            | -                             |                                          |                               | -                                   | -                      | -                           |
| 10,000-49,999          | 4                      | 0                            | 1                      | 8                      | 8                            | 0.5                           | \$ 33.60                                 | \$ 1,092                      | \$ 19                               | 33                     | 0.6                         |
| 50,000-249,999         | 1                      | 0                            | 0                      | 8                      | 8                            | 0.5                           | \$ 33.60                                 | \$ 269                        | \$ 5                                | 8                      | 0.1                         |
| 250,000-999,999        | 0                      | 0                            | 0                      | 10                     | 12                           | 0.5                           | \$ 33.60                                 | \$ -                          | \$ -                                | 0                      | 0.0                         |
| 1,000,000-4,999,999    | 0                      | 0                            | 0                      | 12                     | 16                           | 0.5                           | \$ 33.60                                 | \$ -                          | \$ -                                | 0                      | 0.0                         |
| ≥5 M                   | 0                      | 0                            | 0                      | 12                     | 16                           | 0.5                           | \$ 33.60                                 | \$ -                          | \$ -                                | 0                      | 0.0                         |
| National Totals        | 5                      | 0                            | 1                      |                        |                              |                               |                                          | \$ 1,361                      | \$ 24                               | 41                     | 0.7                         |
| Disinfecting Ground    | Water Only NTN         | ICWSs                        |                        |                        |                              |                               |                                          |                               |                                     |                        |                             |
| <500                   | -                      | -                            | -                      | -                      | -                            | -                             |                                          | -                             |                                     | -                      | -                           |
| 500-9,999              | -                      | -                            | -                      | -                      | -                            | -                             |                                          | -                             |                                     | -                      | -                           |
| 10,000-99,999          | 1                      | 0                            | 3                      | 8                      | 8                            | 0.5                           | \$ 33.60                                 | \$ 214                        | \$ 4                                | 6                      | 0.1                         |
| 100,000-499,999        | 0                      | 0                            | 0                      | 8                      | 8                            | 0.5                           | \$ 33.60                                 | \$ 78                         | \$ 1                                | 2                      | 0.0                         |
| > 500,000              | 0                      | 0                            | 0                      | 12                     | 16                           | 0.5                           | \$ 33.60                                 | \$ -                          | \$ -                                | 0                      | 0.0                         |
| National Totals        | 1                      | 0                            | 3                      |                        |                              |                               |                                          | \$ 292                        | \$ 5                                | 9                      | 0.2                         |
| Grand Totals           | 12,780                 | 33                           | 10,987                 |                        |                              |                               |                                          | \$ 2,228,095                  | \$ 39,089                           | 66,312                 | 1,163.4                     |

Sources: (A, B, C) From columns E, F, and G in Exhibits H.3a and H.3b.

(D, E, F) From EPA experience with other regulations.

| Size Category             | Number of<br>Systems<br>Conducting<br>Monitoring<br>Plan, by<br>Category | Number of<br>Hours to<br>Review<br>Monitoring<br>Plans per<br>System |     | Average<br>State<br>Employee<br>Hourly<br>Wage |    | verage Total<br>Costs to<br>States | To<br>p | Average<br>otal Costs<br>per State | Total<br>Burden |
|---------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------|-----|------------------------------------------------|----|------------------------------------|---------|------------------------------------|-----------------|
|                           | A                                                                        | В                                                                    |     | С                                              |    | D = A*B*C                          | ı       | E = D/57                           | F = A*B         |
| Surface Water and Mixed   |                                                                          |                                                                      | _   |                                                | _  |                                    | _       | -                                  |                 |
| <500                      | 3,297                                                                    | 0                                                                    | I ' |                                                | \$ | -                                  | \$      | -                                  | 0               |
| 500-3,300                 | 4,058                                                                    | 0                                                                    | \$  |                                                | \$ | -                                  | \$      | -                                  | 0 400           |
| 3,301-9,999               | 2,042                                                                    | 4                                                                    | \$  |                                                | \$ | 274,445                            | \$      | 4,815                              | 8,168           |
| 10,000-49,999             | 1,773                                                                    | 8                                                                    | \$  |                                                | \$ | 476,582                            | \$      | 8,361                              | 14,184          |
| 50,000-249,999            | 534                                                                      | 8                                                                    | \$  |                                                | \$ | 143,539                            | \$      | 2,518                              | 4,272           |
| 250,000-999,999           | 81                                                                       | 8                                                                    | \$  | 33.60                                          | \$ | 21,773                             | \$      | 382                                | 648             |
| 1,000,000-4,999,999       | 17                                                                       | 8                                                                    | \$  | 33.60                                          | \$ | 4,570                              | \$      | 80                                 | 136             |
| ≥5 M                      | 1                                                                        | 8                                                                    | \$  | 33.60                                          | \$ | 269                                | \$      | 5                                  | 8               |
| National Totals           | 11,803                                                                   | -                                                                    |     | -                                              | \$ | 921,178                            | \$      | 16,161                             | 27,416          |
| Ground Water Only CWSs    |                                                                          |                                                                      |     |                                                |    |                                    |         |                                    | _               |
| <500                      | 19,031                                                                   | 0                                                                    | l ' |                                                | \$ | -                                  | \$      | -                                  | 0               |
| 500-9,999                 | 11,492                                                                   | 0                                                                    | \$  |                                                | \$ | -                                  | \$      | -                                  | 0               |
| 10,000-99,999             | 1,393                                                                    | 0                                                                    | \$  |                                                | \$ | -                                  | \$      | -                                  | 0               |
| 100,000-499,999           | 64                                                                       | 0                                                                    | \$  | 33.60                                          | \$ | -                                  | \$      | -                                  | 0               |
| > 500,000                 | 6                                                                        | 0                                                                    | \$  | 33.60                                          | \$ | -                                  | \$      | -                                  | 0               |
| National Totals           | 31,985                                                                   | -                                                                    |     | -                                              | \$ | -                                  | \$      | -                                  | 0               |
| Surface Water and Mixed   |                                                                          |                                                                      |     |                                                |    |                                    |         |                                    | _               |
| <500                      | 548                                                                      | 0                                                                    | \$  |                                                | \$ | -                                  | \$      | -                                  | 0               |
| 500-3,300                 | 199                                                                      | 0                                                                    | \$  |                                                | \$ | -                                  | \$      | -                                  | 0               |
| 3,301-9,999               | 24                                                                       | 4                                                                    | \$  | 33.60                                          | \$ | 3,226                              | \$      | 57                                 | 96              |
| 10,000-49,999             | 5                                                                        | 8                                                                    | \$  |                                                | \$ | 1,344                              | \$      | 24                                 | 40              |
| 50,000-249,999            | 1                                                                        | 8                                                                    | \$  |                                                | \$ | 269                                | \$      | 5                                  | 8               |
| 250,000-999,999           | 0                                                                        | 8                                                                    | \$  | 33.60                                          | \$ | -                                  | \$      | -                                  | 0               |
| 1,000,000-4,999,999       | 0                                                                        | 8                                                                    | \$  | 33.60                                          | \$ | -                                  | \$      | -                                  | 0               |
| ≥5 M                      | 0                                                                        | 8                                                                    | \$  | 33.60                                          | \$ | -                                  | \$      | -                                  | 0               |
| National Totals           | 777                                                                      | -                                                                    |     | -                                              | \$ | 4,838                              | \$      | 85                                 | 48              |
| Disinfecting Ground Water |                                                                          |                                                                      |     |                                                |    |                                    |         |                                    |                 |
| <500                      | 6,191                                                                    | 0                                                                    | \$  |                                                | \$ | -                                  | \$      | -                                  | 0               |
| 500-9,999                 | 1,180                                                                    | 0                                                                    | \$  |                                                | \$ | -                                  | \$      | -                                  | 0               |
| 10,000-99,999             | 5                                                                        | 0                                                                    | \$  |                                                | \$ | -                                  | \$      | -                                  | 0               |
| 100,000-499,999           | 0                                                                        | 0                                                                    | l ' |                                                | \$ | -                                  | \$      | -                                  | 0               |
| > 500,000                 | 0                                                                        | 0                                                                    | \$  | 33.60                                          | \$ | -                                  | \$      | -                                  | 0               |
| National Totals           | 7,377                                                                    | -                                                                    |     | -                                              | \$ | -                                  | \$      | -                                  | 0               |
| Grand Totals              | 51,941                                                                   | -                                                                    |     | -                                              | \$ | 926,016                            | \$      | 16,246                             | 27,464          |

Notes:

Sources:

- (A) From columns A, B, and C in Exhibit H.7
- (B) From EPA experience with other regulations.
- (C) State labor rates based on the State Workload Model, updated to year 2003 dollar values.

**Exhibit H.20 State/Primacy Agency Operational Evaluation Costs** 

|                                | Number of            |                           |          |                |    |                    |    |                         |                 |
|--------------------------------|----------------------|---------------------------|----------|----------------|----|--------------------|----|-------------------------|-----------------|
|                                | times                | Number of                 |          |                |    |                    |    |                         |                 |
|                                | Operational          | Hours to                  | 4        | Average        |    |                    |    |                         |                 |
|                                | Evaluation           | Review                    | _ ا      | State          | ١. |                    |    |                         |                 |
|                                | Levels are           | Operational               | =        | mployee        |    | erage Total        |    | Average                 | Total           |
| Size Category                  | exceeded per<br>Year | Evaluations<br>per System |          | Hourly<br>Wage | '  | Costs to<br>States |    | otal Costs<br>per State | Total<br>Burden |
| Size Gategory                  | A                    | B B                       |          | C              | _  | = A*B*C            | •  | E = D/57                | F = A*B         |
| Surface Water and Mixed        |                      | ь                         |          |                | _  | -7.20              |    | 2,0.                    | r=A B           |
| <500                           | 12                   | 4                         | \$       | 33.60          | \$ | 1,613              | \$ | 28                      | 48              |
| 500-3,300                      | 28                   | 6                         | \$       | 33.60          | \$ | 5,645              | \$ | 99                      | 168             |
| 3,301-9,999                    | 57                   | 6                         | \$       | 33.60          | \$ | 11,491             | \$ | 202                     | 342             |
| 10,000-49,999                  | 199                  | 8                         | \$       | 33.60          | \$ | 53,491             | \$ | 938                     | 1,592           |
| 50,000-249,999                 | 120                  | 8                         | \$       | 33.60          | \$ | 32,256             | \$ | 566                     | 960             |
| 250,000-999,999                | 27                   | 8                         | \$       | 33.60          | \$ | 7,258              | \$ | 127                     | 216             |
| 1,000,000-4,999,999            | 8                    | 8                         | \$       | 33.60          | \$ | 2,150              | \$ | 38                      | 64              |
| 1,000,000 4,000,000<br>≥5 M    | 1                    | 8                         | \$       | 33.60          | \$ | 269                | \$ | 5                       | 8               |
| National Totals                | 452                  | -                         | Ψ        | -              | \$ | 114,173            | \$ | 2,003                   | 3,398           |
| Ground Water Only CWSs         |                      |                           | <u> </u> |                |    | , -                | Ė  | ,                       | .,              |
| <500                           | 0                    | 4                         | \$       | 33.60          | \$ | -                  | \$ | -                       | 0               |
| 500-9,999                      | 0                    | 6                         | \$       | 33.60          | \$ | -                  | \$ | -                       | 0               |
| 10,000-99,999                  | 0                    | 8                         | \$       | 33.60          | \$ | -                  | \$ | -                       | 0               |
| 100,000-499,999                | 0                    | 8                         | \$       | 33.60          | \$ | -                  | \$ | -                       | 0               |
| > 500,000                      | 0                    | 8                         | \$       | 33.60          | \$ | -                  | \$ | -                       | 0               |
| National Totals                | 0                    | -                         |          | -              | \$ | -                  | \$ | -                       | 0               |
| <b>Surface Water and Mixed</b> | NTNCWSs              |                           |          |                |    |                    |    |                         |                 |
| <500                           | 0                    | 4                         | \$       | 33.60          | \$ | -                  | \$ | -                       | 0               |
| 500-3,300                      | 0                    | 6                         | \$       | 33.60          | \$ | -                  | \$ | -                       | 0               |
| 3,301-9,999                    | 0                    | 6                         | \$       | 33.60          | \$ | -                  | \$ | -                       | 0               |
| 10,000-49,999                  | 0                    | 8                         | \$       | 33.60          | \$ | -                  | \$ | -                       | 0               |
| 50,000-249,999                 | 0                    | 8                         | \$       | 33.60          | \$ | -                  | \$ | -                       | 0               |
| 250,000-999,999                | 0                    | 8                         | \$       | 33.60          | \$ | -                  | \$ | -                       | 0               |
| 1,000,000-4,999,999            | 0                    | 8                         | \$       | 33.60          | \$ | -                  | \$ | -                       | 0               |
| ≥5 M                           | 0                    | 8                         | \$       | 33.60          | \$ | -                  | \$ |                         | 0               |
| National Totals                | 0                    | -                         |          |                | \$ | -                  | \$ | -                       | 0               |
| Disinfecting Ground Water      | er Only NTNCWS       | s                         |          |                |    |                    |    |                         |                 |
| <500                           | 0                    | 4                         | \$       | 33.60          | \$ | -                  | \$ | -                       | 0               |
| 500-9,999                      | 0                    | 6                         | \$       | 33.60          | \$ | -                  | \$ | -                       | 0               |
| 10,000-99,999                  | 0                    | 8                         | \$       | 33.60          | \$ | -                  | \$ | -                       | 0               |
| 100,000-499,999                | 0                    | 8                         | \$       | 33.60          | \$ | -                  | \$ | -                       | 0               |
| > 500,000                      | 0                    | 8                         | \$       | 33.60          | \$ | -                  | \$ | -                       | 0               |
| National Totals                | 0                    | -                         |          | -              | \$ | -                  | \$ | -                       | 0               |
| Grand Totals                   | 452                  | -                         |          | -              | \$ | 114,173            | \$ | 2,003                   | 3,398           |

Sources:

- (A) From column D in Exhibit H.10
- (B) From EPA experience with other regulations.
- (C) State labor rates based on the State Workload Model, updated to year 2003 dollar values.

# **Exhibit H.21 State/Primacy Agency Cost Summary**

|                                             | Total Hours | Average<br>Hours per<br>State<br>B = A/57 | С  | ost/Labor<br>Hour<br>C | Total Cost<br>D  | Cost per<br>State<br>E = D/57 |
|---------------------------------------------|-------------|-------------------------------------------|----|------------------------|------------------|-------------------------------|
| Implementation Activities                   | •           |                                           |    |                        |                  |                               |
| Public Notification                         | 11,856      | 208                                       | \$ | 33.60                  | \$<br>398,362    | \$<br>6,989                   |
| Regulation Adoption and Program Development | 59,280      | 1,040                                     | \$ | 33.60                  | \$<br>1,991,808  | \$<br>34,944                  |
| Training State Staff                        | 29,640      | 520                                       | \$ | 33.60                  | \$<br>995,904    | \$<br>17,472                  |
| Training PWS Staff and Technical Assistants | 118,560     | 2,080                                     | \$ | 33.60                  | \$<br>3,983,616  | \$<br>69,888                  |
| Updating Data Management System             | 11,856      | 208                                       | \$ | 33.60                  | \$<br>398,362    | \$<br>6,989                   |
| Subtotal                                    | 231,192     | 4,056                                     |    |                        | \$<br>7,768,051  | \$<br>136,282                 |
| Monitoring Plan Activities                  |             |                                           |    |                        |                  |                               |
| Monitoring Plans                            | 27,464      | 482                                       | \$ | 33.60                  | \$<br>926,016    | \$<br>16,246                  |
| IDSE Activities                             |             |                                           |    |                        |                  |                               |
| IDSE Monitoring                             | 66,312      | 1,163                                     | \$ | 33.60                  | \$<br>2,228,095  | \$<br>39,089                  |
| Additional Routine Monitoring Activities    |             |                                           |    |                        |                  |                               |
| Recordkeeping and Compliance Tracking       | 47,424      | 832                                       | \$ | 33.60                  | \$<br>1,593,446  | \$<br>27,955                  |
| Operational Evaluation Costs                | 3,398       | 60                                        | \$ | 33.60                  | \$<br>114,173    | \$<br>2,003                   |
| Subtotal                                    | 50,822      | 892                                       |    |                        | \$<br>1,707,619  | \$<br>29,958                  |
| Grand Totals                                | 375,790     | 6,593                                     |    |                        | \$<br>12,629,781 | \$<br>221,575                 |

Notes: All states/primacy agencies are assumed to incur some costs for each activity.

Sources: (A) Exhibits H.17 to H.20.

(B) Exhibits H.17 to H.20.

(C) State labor rates based on the State Workload Model, updated to year 2003 dollar values.

# Appendix I Unit Costs for Technologies Considered in the Stage 2 DBPR

### Appendix I

# **Unit Costs for Technologies Considered in the Stage 2 DBPR**

Exhibits 7.8a and 7.8b in Chapter 7 list the treatment technologies (along with their constraints and design criteria) considered for surface and ground water plants to meet the Stage 2 Disinfectants and Disinfection Byproducts Rule (DBPR). This Appendix builds on information presented in Chapter 7 by presenting the following.

- Capital unit cost estimates for a wide range of design flows (in tabular and graphical form)
- Operations and Maintenance (O&M) unit cost estimates for a wide range of average daily flows (in tabular and graphical form)

The range of design and average flows is intended to cover all possible system flows. When flows fall between the design or average daily flows used to estimate unit costs, straight line interpolation can be used to estimate the capital or O&M cost. Design costs were calculated for points ranging between 0.007 million gallons per day (MGD) and 520 MGD. For plants with flows less than 0.007 MGD, the value for 0.007 MGD was used. For plants with flows greater than 520 MGD, the costs are calculated by extrapolating a straight line between the last two calculated cost points. Points are included in the graphs at 0.0001 MGD and 1500 MGD to show these assumptions. Likewise for average daily flows, points were calculated between 0.0015 MGD and 350 MGD. Points outside this range show the assumptions used to extrapolate costs.

The majority of unit costs are derived from the *Technologies and Costs Document for Control of Microbial Contaminants and Disinfection By-Products* (T&C Document) (USEPA 2003o). These unit costs have been revised to incorporate recommendations from the National Drinking Water Advisory Council (NDWAC) Arsenic Cost Working Group (NDWAC 2001).

The only costs not in the T&C Document are the ultraviolet (UV) costs for groundwater systems. The cost contained in that document for groundwater UV systems is for a single reactor providing a 200 mJ/cm² dose. The *UV Disinfection Guidance Manual* (USEPA 2003k), however, does not contain a validation procedure capable of validating a reactor for 4-log virus inactivation. The 200 millijoules per centimeter square (mJ/cm²) dose is only sufficient to provide 2-log virus inactivation. Because many groundwater systems will be required to achieve 4-log virus inactivation either because of the Ground Water Rule or state requirements, 2-200 mJ/cm² reactors were assumed to be used in series for this EA.

To obtain the costs for 2-200 mJ/cm² reactors in series, the many line item costs for a 200 mJ/cm² reactor, as presented in the T&C Document (Exhibit 4.16), were doubled. However, there are a number of exceptions. Housing and pumping are multiplied by factors of 1.5 because the reactors can be mounted in such a way that they do not require twice the additional room, and head loss will not be twice as large due to the second reactor. Instrumentation and control was multiplied by a factor of 1.8 to account for some instrumentation, which can be shared by the two reactors. Labor was also multiplied by a factor of 1.5, as the prep time for performing maintenance activities will be the same regardless of the number of reactors serviced. Training and testing items were not multiplied by two because only a single reactor needs to be tested.

*I-1* 

The Matrix of Appendix I Contents describes the exhibits in this appendix. Each exhibit lists the constraints and design criteria for the treatment technology, presents a table showing the unit cost estimates for each design or average flow point, and graphically displays each point to illustrate the way in which the costs increase with flow. All graphs are in Log-Log scale. Summaries of capital, O&M, and household costs for mean flow values for each of the Environmental Protection Agency's (EPA's) standard nine system size categories are presented in Chapter 7.

### **Matrix of Appendix I Contents**

| Source Water<br>Type | Technology                      | Cost Type | Exhibit<br>Number |
|----------------------|---------------------------------|-----------|-------------------|
|                      | Chloramines                     | Capital   | l.1               |
|                      |                                 | O&M       | 1.2               |
|                      | Chlorine Dioxide                | Capital   | 1.3               |
|                      |                                 | O&M       | 1.4               |
|                      | UV                              | Capital   | 1.5               |
|                      |                                 | O&M       | 1.6               |
|                      | Ozone                           | Capital   | 1.7               |
| Surface              |                                 | O&M       | 1.8               |
|                      | Microfiltration/Ultrafiltration | Capital   | 1.9               |
|                      |                                 | O&M       | I.10              |
|                      | GAC10                           | Capital   | I.11              |
|                      |                                 | O&M       | I.12              |
|                      | GAC20                           | Capital   | I.13              |
|                      |                                 | O&M       | 1.14              |
|                      | Nanofiltration <sup>1</sup>     | Capital   | I.15              |
|                      |                                 | O&M       | I.16              |
|                      | Chloramines                     | Capital   | 1.17              |
|                      |                                 | O&M       | I.18              |
|                      | UV                              | Capital   | I.19              |
|                      |                                 | O&M       | 1.20              |
| Ground               | Ozone                           | Capital   | I.21              |
| Ground               |                                 | O&M       | 1.22              |
|                      | GAC20                           | Capital   | 1.23              |
|                      |                                 | O&M       | 1.24              |
|                      | Nanofiltration                  | Capital   | 1.25              |
|                      |                                 | O&M       | 1.26              |
| Derivation of Hou    | usehold Unit Costs for Smal     | l System  |                   |
| Affordability Ana    | lysis                           |           | 1.27              |

<sup>&</sup>lt;sup>1</sup>Nanofiltration is combined with microfiltration/ultrafiltration to represent the integrated membrane technology for surface water plants.

### **Matrix of Appendix I Contents**

| Type         Technology         Cost           Chloramines         Capital O&M           Chlorine Dioxide         Capital O&M           UV         Capital O&M           Ozone         Capital O&M           Microfiltration/Ultrafiltration         Capital O&M           GAC10         Capital O&M           GAC20         Capital O&M           GAC20         Capital O&M | St Type Number |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| O&M   Chlorine Dioxide   Capital   O&M                                                                                                                                                                                                                                                                                                                                       |                |
| Chlorine Dioxide                                                                                                                                                                                                                                                                                                                                                             | 1.2            |
| O&M                                                                                                                                                                                                                                                                                                                                                                          |                |
| UV   Capital   O&M                                                                                                                                                                                                                                                                                                                                                           | I.3            |
| O&M   Ozone   Capital   O&M                                                                                                                                                                                                                                                                                                                                                  | 1.4            |
| Surface  Ozone  Capital O&M  Microfiltration/Ultrafiltration Capital O&M  GAC10 Capital O&M  GAC20 Capital CAM  Capital CAM  Capital CAM  CAM  CAM  CAM  CAM  CAM  CAM  CAM                                                                                                                                                                                                  |                |
| Surface    Microfiltration/Ultrafiltration   O&M                                                                                                                                                                                                                                                                                                                             | 1.6            |
| Microfiltration/Ultrafiltration Capital O&M GAC10 Capital O&M GAC20 Capital                                                                                                                                                                                                                                                                                                  |                |
| Microfiltration/Ultrafiltration Capital O&M GAC10 Capital O&M GAC20 Capital                                                                                                                                                                                                                                                                                                  | 1.8            |
| GAC10 Capital O&M GAC20 Capital                                                                                                                                                                                                                                                                                                                                              |                |
| O&M<br>GAC20 Capital                                                                                                                                                                                                                                                                                                                                                         | I.10           |
| GAC20 Capital                                                                                                                                                                                                                                                                                                                                                                |                |
| l ' '                                                                                                                                                                                                                                                                                                                                                                        | I.12           |
| I                                                                                                                                                                                                                                                                                                                                                                            |                |
|                                                                                                                                                                                                                                                                                                                                                                              | I.14           |
| Nanofiltration <sup>1</sup> Capital                                                                                                                                                                                                                                                                                                                                          | l I.15         |
| O&M                                                                                                                                                                                                                                                                                                                                                                          | I.16           |
| Chloramines Capital                                                                                                                                                                                                                                                                                                                                                          | l.17           |
| O&M                                                                                                                                                                                                                                                                                                                                                                          | I.18           |
| UV Capital                                                                                                                                                                                                                                                                                                                                                                   | l.19           |
| O&M                                                                                                                                                                                                                                                                                                                                                                          | 1.20           |
| Ground Ozone Capital                                                                                                                                                                                                                                                                                                                                                         | l I.21         |
| O&M                                                                                                                                                                                                                                                                                                                                                                          | 1.22           |
| GAC20 Capital                                                                                                                                                                                                                                                                                                                                                                |                |
| O&M                                                                                                                                                                                                                                                                                                                                                                          | 1.24           |
| Nanofiltration Capital                                                                                                                                                                                                                                                                                                                                                       | 1.25           |
| O&M                                                                                                                                                                                                                                                                                                                                                                          |                |
| Derivation of Household Unit Costs for Small System                                                                                                                                                                                                                                                                                                                          | 1.26           |
| Affordability Analysis                                                                                                                                                                                                                                                                                                                                                       | 1.26           |

<sup>\*</sup>Nanofiltration is combined with microfiltration/ultrafiltration to represent the integrated membrane technology for surface water plants

# Exhibit I.1 Capital Costs for Switching to Chloramines Surface Water Plants

**Constraints:** It can be used alone or in conjunction with the other technologies

Design Criteria:

1) Ammonia dose = 0.55 mg/L

| Design Flow | Capital Cost |
|-------------|--------------|
| (mgd)       | (\$)         |
| 0.0001      | \$29,104     |
| 0.0070      | \$29,104     |
| 0.0220      | \$29,104     |
| 0.0370      | \$29,104     |
| 0.0910      | \$29,104     |
| 0.1800      | \$30,604     |
| 0.2700      | \$37,939     |
| 0.3600      | \$38,858     |
| 0.6800      | \$42,127     |
| 1.0000      | \$53,396     |
| 1.2000      | \$83,772     |
| 2.0000      | \$83,772     |
| 3.5000      | \$83,772     |
| 7.0000      | \$83,772     |
| 17.0000     | \$98,772     |
| 22.0000     | \$133,907    |
| 76.0000     | \$397,173    |
| 210.0000    | \$492,039    |
| 430.0000    | \$590,780    |
| 520.0000    | \$736,773    |
| 1500.0000   | \$2,326,467  |



Sources: Exhibits I.1-I.26, flows from Exhibit 8.3.

# Exhibit I.2 O&M Costs for Switching to Chloramines Surface Water Plants

**Constraints:** It can be used alone or in conjunction with the other technologies

Design Criteria:

1) Ammonia dose = 0.55 mg/L

| Average Flow | O&M cost  |
|--------------|-----------|
| (mgd)        | (\$)      |
| 0.00005      | \$1,566   |
| 0.00150      | \$1,566   |
| 0.00540      | \$1,570   |
| 0.00950      | \$1,575   |
| 0.02500      | \$1,592   |
| 0.05400      | \$1,623   |
| 0.08400      | \$3,038   |
| 0.11000      | \$3,065   |
| 0.23000      | \$3,101   |
| 0.35000      | \$4,478   |
| 0.41000      | \$6,037   |
| 0.77000      | \$6,678   |
| 1.40000      | \$7,875   |
| 3.00000      | \$10,263  |
| 7.80000      | \$15,174  |
| 11.00000     | \$18,601  |
| 38.00000     | \$30,967  |
| 120.00000    | \$79,369  |
| 270.00000    | \$153,192 |
| 350.00000    | \$195,454 |
| 750.00000    | \$406,765 |



Sources: Exhibits I.1-I.26, flows from Exhibit 8.3.

# Exhibit I.3 Capital Costs for Chlorine Dioxide Surface Water Plants

Constraints: Not applicable for systems serving populations < 100 Design Criteria:

- 1) No new contact basin would be required
- 2)  $CIO_2$  dose = 1.25 mg/L

| Design Flow | Capital Cost   |
|-------------|----------------|
| (mgd)       | (\$)           |
| 0.0001      | Not Applicable |
| 0.0070      | Not Applicable |
| 0.0220      | Not Applicable |
| 0.0370      | Not Applicable |
| 0.0910      | \$32,427       |
| 0.1800      | \$38,370       |
| 0.2700      | \$39,172       |
| 0.3600      | \$40,066       |
| 0.6800      | \$43,005       |
| 1.0000      | \$40,035       |
| 1.2000      | \$80,585       |
| 2.0000      | \$82,054       |
| 3.5000      | \$191,088      |
| 7.0000      | \$211,473      |
| 17.0000     | \$268,223      |
| 22.0000     | \$296,568      |
| 76.0000     | \$603,425      |
| 210.0000    | \$897,449      |
| 430.0000    | \$1,245,987    |
| 520.0000    | \$1,368,982    |
| 1500.0000   | \$2,708,268    |



Sources: Exhibits I.1-I.26, flows from Exhibit 8.3.

# Exhibit I.4 O&M Costs for Chlorine Dioxide Surface Water Plants

**Constraints:** Not applicable for systems serving populations < 100

Design Criteria:

- 1) No new contact basin would be required
- 2)  $CIO_2$  dose = 1.25 mg/L

| Average Flour | O&M Cost       |
|---------------|----------------|
| Average Flow  |                |
| (mgd)         | (\$)           |
| 0.00005       | Not Applicable |
| 0.00150       | Not Applicable |
| 0.00540       | Not Applicable |
| 0.00950       | Not Applicable |
| 0.02500       | \$14,093       |
| 0.05400       | \$15,204       |
| 0.08400       | \$16,721       |
| 0.11000       | \$16,999       |
| 0.23000       | \$17,812       |
| 0.35000       | \$18,571       |
| 0.41000       | \$18,984       |
| 0.77000       | \$21,638       |
| 1.40000       | \$22,001       |
| 3.00000       | \$25,392       |
| 7.80000       | \$35,939       |
| 11.00000      | \$42,336       |
| 38.00000      | \$87,061       |
| 120.00000     | \$216,813      |
| 270.00000     | \$446,533      |
| 350.00000     | \$561,934      |
| 750.00000     | \$1,138,937    |



### Exhibit I.5 Capital Costs for UV Surface Water Plants

Constraints: None Design Criteria:

1)  $UV_{254} = 0.051$  cm<sup>-1</sup>, Turbidity = 0.1 NTU, Alkalinity = 60 mg/L CaCO<sub>3</sub>, Hardness = 100 mg/L CaCO<sub>3</sub>

2) UV dose =  $40 \text{ mJ/cm}^2$ 

| Design Flow | Capital Cost             |
|-------------|--------------------------|
| (mgd)       | (\$)                     |
| 0.0001      | \$10,195                 |
| 0.0070      | \$10,195                 |
| 0.0220      | \$13,034                 |
| 0.0370      | \$15,834                 |
| 0.0910      | \$25,596                 |
| 0.1800      | \$40,597                 |
| 0.2700      | \$54,386                 |
| 0.3600      | \$66,790                 |
| 0.6800      | \$99,661                 |
| 1.0000      | \$309.007                |
| 1.2000      | \$312,516                |
| 2.0000      | \$332,185                |
| 3.5000      | \$361,819                |
| 7.0000      | \$543,582                |
| 17.0000     | \$1,335,938              |
| 22.0000     | \$1,925,888              |
| 76.0000     | \$3,353,263              |
| 210.0000    | \$8,041,758              |
| 430.0000    | \$15,736,025             |
| 520.0000    | \$18,526,877             |
| 1500.0000   | \$48,916,153             |
| 1300.0000   | ψ <del>1</del> 0,310,133 |



### Exhibit I.6 O&M Costs for UV Surface Water Plants

Constraints: None Design Criteria:

1)  $UV_{254} = 0.051$  cm<sup>-1</sup>, Turbidity = 0.1 NTU, Alkalinity = 60 mg/L CaCO<sub>3</sub>, Hardness = 100 mg/L CaCO<sub>3</sub>

2) UV dose =  $40 \text{ mJ/cm}^2$ 

| Average Flow | O&M Cost    |
|--------------|-------------|
| (mgd)        | (\$)        |
| 0.00005      | \$3,399     |
| 0.00150      | \$3,399     |
| 0.00540      | \$3,429     |
| 0.00950      | \$3,818     |
| 0.02500      | \$4,579     |
| 0.05400      | \$4,769     |
| 0.08400      | \$6,119     |
| 0.11000      | \$6,498     |
| 0.23000      | \$8,159     |
| 0.35000      | \$9,024     |
| 0.41000      | \$9,457     |
| 0.77000      | \$11,499    |
| 1.40000      | \$13,938    |
| 3.00000      | \$16,140    |
| 7.80000      | 1 1         |
|              | \$22,853    |
| 11.00000     | \$27,468    |
| 38.00000     | \$66,624    |
| 120.00000    | \$187,881   |
| 270.00000    | \$418,801   |
| 350.00000    | \$546,773   |
| 750.00000    | \$1,186,635 |



### Exhibit I.7 Capital Costs for Ozone Surface Water Plants

Constraints: Not practical for systems serving 100 or fewer

**Design Criteria:** 

- 1) Contact time = 12 minutes
- 2) Ozone Maximum dose = 3.19 mg/L

| Design Flow | Capital Cost   |
|-------------|----------------|
| (mgd)       | (\$)           |
| \ \ \ \ \   | ( · /          |
|             | Not Applicable |
| 0.0070      | Not Applicable |
| 0.0220      | Not Applicable |
| 0.0370      | Not Applicable |
| 0.0910      | \$322,787      |
| 0.1800      | \$382,874      |
| 0.2700      | \$438,785      |
| 0.3600      | \$493,394      |
| 0.6800      | \$675,951      |
| 1.0000      | \$804,614      |
| 1.2000      | \$902,391      |
| 2.0000      | \$1,226,541    |
| 3.5000      | \$1,595,373    |
| 7.0000      | \$2,357,412    |
| 17.0000     | \$3,946,957    |
| 22.0000     | \$4,546,365    |
| 76.0000     | \$12,628,950   |
| 210.0000    | \$26,317,852   |
| 430.0000    | \$44,918,178   |
| 520.0000    | \$53,248,978   |
| 1500.0000   | \$143,962,124  |



### Exhibit I.8 O&M Costs for Ozone Surface Water Plants

Constraints: Not practical for systems serving 100 or fewer

**Design Criteria:** 

- 1) Contact time = 12 minutes
- 2) Ozone maximum dose = 3.19 mg/L

| Average Flow | O&M Cost       |
|--------------|----------------|
| (mgd)        | (\$)           |
| 0.00005      | Not Applicable |
| 0.00150      | Not Applicable |
|              | Not Applicable |
| 0.00950      | Not Applicable |
| 0.02500      | \$55,520       |
| 0.05400      | \$55,884       |
| 0.08400      | \$59,391       |
| 0.11000      | \$59,737       |
| 0.23000      | \$61,152       |
| 0.35000      | \$62,566       |
| 0.41000      | \$63,350       |
| 0.77000      | \$67,621       |
| 1.40000      | \$77,719       |
| 3.00000      | \$95,346       |
| 7.80000      | \$145,700      |
| 11.00000     | \$177,752      |
| 38.00000     | \$464,832      |
| 120.00000    | \$1,377,320    |
| 270.00000    | \$2,871,997    |
| 350.00000    | \$3,662,456    |
| 750.00000    | \$7,614,752    |



# Exhibit I.9 Capital Costs for MF/UF Surface Water Plants

Constraints: None Design Criteria:

- 1) Water temp. = 10 degrees C
- 2) Sewer disposal

| Design Flow | Capital Cost  |
|-------------|---------------|
| (mgd)       | (\$)          |
| 0.0001      | \$131,478     |
| 0.0070      | \$131,478     |
| 0.0220      | \$214,432     |
| 0.0370      | \$270,819     |
| 0.0910      | \$409,983     |
| 0.1800      | \$628,117     |
| 0.2700      | \$748,563     |
| 0.3600      | \$850,970     |
| 0.6800      | \$1,133,988   |
| 1.0000      | \$1,594,911   |
| 1.2000      | \$1,738,505   |
| 2.0000      | \$2,720,593   |
| 3.5000      | \$4,142,559   |
| 7.0000      | \$7,382,351   |
| 17.0000     | \$15,991,348  |
| 22.0000     | \$20,058,196  |
| 76.0000     | \$61,150,358  |
| 210.0000    | \$153,184,031 |
| 430.0000    | \$293,759,889 |
| 520.0000    | \$349,252,221 |
| 1500.0000   | \$953,502,064 |



### Exhibit I.10 O&M Costs for MF/UF Surface Water Plants

Constraints: None Design Criteria:

1) Water temp. = 10 degrees C

2) Sewer disposal

| Average Flow | O&M Cost     |
|--------------|--------------|
| (mgd)        | (\$)         |
| 0.00005      | \$6,230      |
| 0.00150      | \$6,230      |
| 0.00540      | \$6,686      |
| 0.00950      | \$7,156      |
| 0.02500      | \$9,329      |
| 0.05400      | \$22,042     |
| 0.08400      | \$26,348     |
| 0.11000      | \$29,272     |
| 0.23000      | \$41,522     |
| 0.35000      | \$69,214     |
| 0.41000      | \$75,317     |
| 0.77000      | \$106,798    |
| 1.40000      | \$164,173    |
| 3.00000      | \$324,393    |
| 7.80000      | \$786,427    |
| 11.00000     | \$1,034,793  |
| 38.00000     | \$3,301,730  |
| 120.00000    | \$9,888,387  |
| 270.00000    | \$21,519,157 |
| 350.00000    | \$27,300,426 |
| 750.00000    | \$56,206,770 |



# Exhibit I.11 Capital Costs for GAC10 Surface Water Plants

**Constraints:** Not practical for systems serving 10,000 or fewer persons **Design Criteria:** 

- 1) Reactivation frequency = 360 days
- 2) Onsite regeneration for large systems, offsite regeneration for small systems

| Design Flow | Capital Cost   |
|-------------|----------------|
| (mgd)       | (\$)           |
| 0.0001      | Not Applicable |
| 0.0070      | Not Applicable |
| 0.0220      | Not Applicable |
| 0.0370      | \$63,046       |
| 0.0910      | \$101,302      |
| 0.1800      | \$159,645      |
| 0.2700      | \$215,163      |
| 0.3600      | \$269,400      |
| 0.6800      | \$452,926      |
| 1.0000      | \$783,808      |
| 1.2000      | \$999,248      |
| 2.0000      | \$1,385,099    |
| 3.5000      | \$2,014,217    |
| 7.0000      | \$3,258,534    |
| 17.0000     | \$6,140,593    |
| 22.0000     | \$7,400,352    |
| 76.0000     | \$18,311,317   |
| 210.0000    | \$38,194,366   |
| 430.0000    | \$64,571,358   |
| 520.0000    | \$74,261,694   |
| 1500.0000   | \$179,778,692  |



#### Exhibit I.12 O&M Costs for GAC10 Surface Water Plants

**Constraints:** Not practical for systems serving 10,000 or fewer persons **Design Criteria:** 

- 1) Reactivation frequency = 360 days
- 2) Onsite regeneration for large systems, offsite regeneration for small systems

| Average Flow | O&M Cost       |   |
|--------------|----------------|---|
| (mgd)        | (\$)           |   |
| 0.00005      | Not Applicable |   |
| 0.00150      | Not Applicable |   |
| 0.00540      | Not Applicable |   |
| 0.00950      | \$12,360       |   |
| 0.02500      | \$19,485       |   |
| 0.05400      | \$27,213       |   |
| 0.08400      | \$30,798       |   |
| 0.11000      | \$34,808       |   |
| 0.23000      | \$46,000       |   |
| 0.35000      | \$57,078       |   |
| 0.41000      | \$51,809       |   |
| 0.77000      | \$61,887       |   |
| 1.40000      | \$79,158       |   |
| 3.00000      | \$120,100      |   |
| 7.80000      | \$227,710      |   |
| 11.00000     | \$280,625      |   |
| 38.00000     | \$709,287      |   |
| 120.00000    | \$1,952,120    |   |
| 270.00000    | \$4,368,760    |   |
| 350.00000    | \$5,584,876    |   |
| 750.00000    | \$11,665,453   | L |



# Exhibit I.13 Capital Costs for GAC20 Surface Water Plants

Constraints: None Design Criteria:

- 1) Reactivation frequency = 90 days
- 2) Onsite regeneration for system serving more than 10,000 people
- 3) Media replacement for systems serving 10,000 or fewer people

| Design Flow | Capital Cost  |
|-------------|---------------|
| (mgd)       | (\$)          |
| 0.0001      | \$36,117      |
| 0.0070      | \$36,117      |
| 0.0220      | \$53,091      |
| 0.0370      | \$70,491      |
| 0.0910      | \$137,932     |
| 0.1800      | \$241,793     |
| 0.2700      | \$340,528     |
| 0.3600      | \$435,155     |
| 0.6800      | \$739,387     |
| 1.0000      | \$1,228,620   |
| 1.2000      | \$1,551,122   |
| 2.0000      | \$2,203,728   |
| 3.5000      | \$3,275,153   |
| 7.0000      | \$5,411,638   |
| 17.0000     | \$10,411,502  |
| 22.0000     | \$12,611,714  |
| 76.0000     | \$31,503,622  |
| 210.0000    | \$67,096,117  |
| 430.0000    | \$114,813,572 |
| 520.0000    | \$132,437,789 |
| 1500.0000   | \$324,345,925 |



#### Exhibit I.14 O&M Costs for GAC20 Surface Water Plants

Constraints: None Design Criteria:

- 1) Reactivation frequency = 90 days
- 2) Onsite regeneration for system serving more than 10,000 people
- 3) Media replacement for systems serving 10,000 or fewer people

| Average Flow | O&M Cost     |
|--------------|--------------|
| (mgd)        | (\$)         |
| 0.00005      | \$9,222      |
| 0.00150      | \$9,222      |
| 0.00540      | \$18,223     |
| 0.00950      | \$25,644     |
| 0.02500      | \$47,782     |
| 0.05400      | \$47,639     |
| 0.08400      | \$61,728     |
| 0.11000      | \$74.417     |
| 0.23000      | \$123,691    |
| 0.35000      | \$171,149    |
| 0.41000      | \$177,242    |
| 0.77000      | \$199,489    |
| 1.40000      | \$237,836    |
| 3.00000      | \$330,703    |
| 7.80000      | \$656,235    |
| 11.00000     | \$863,063    |
|              | . ' '        |
| 38.00000     | \$2,448,311  |
| 120.00000    | \$6,727,479  |
| 270.00000    | \$14,362,281 |
| 350.00000    | \$18,123,898 |
| 750.00000    | \$36,931,984 |



### Exhibit I.15 Capital Costs for Nanofiltration Surface Water Plants

Constraints: None Design Criteria:

- 1) Water temp. = 10 degrees C
- 2) Ocean or Sewer discharge

| Design Flow          | Capital Cost                 |
|----------------------|------------------------------|
| (mgd)                | (\$)                         |
| 0.0001               | \$51,894                     |
| 0.0070               | \$51,894                     |
| 0.0220               | \$69,241                     |
| 0.0370               | \$86,588                     |
| 0.0910               | \$156,079                    |
| 0.1800               | \$222,829                    |
| 0.2700               | \$315,937                    |
| 0.3600               | \$357,087                    |
| 0.6800               | \$663,375                    |
| 1.0000               | \$912,423                    |
| 1.2000               | \$1,080,532                  |
| 2.0000               | \$2,018,579                  |
| 3.5000               | \$3,404,129                  |
| 7.0000               | \$6,745,258                  |
| 17.0000              | \$15,456,118                 |
| 22.0000              | \$19,862,964                 |
| 76.0000              | \$57,558,238                 |
| 210.0000             | \$129,659,099                |
| 430.0000             | \$265,356,059                |
| 520.0000             | \$318,914,577                |
| 1500.0000            | \$902,107,327                |
| 430.0000<br>520.0000 | \$265,356,05<br>\$318,914,57 |



### Exhibit I.16 O&M Costs for Nanofiltration Surface Water Plants

Constraints: None Design Criteria:

Water temp. = 10 degrees C
 Ocean or sewer discharge

| A            | 0014.01       |
|--------------|---------------|
| Average Flow | O&M Cost      |
| (mgd)        | (\$)          |
| 0.00005      | \$6,909       |
| 0.00150      | \$6,909       |
| 0.00540      | \$7,937       |
| 0.00950      | \$9,025       |
| 0.02500      | \$13,703      |
| 0.05400      | \$29,539      |
| 0.08400      | \$37,904      |
| 0.11000      | \$43,223      |
| 0.23000      | \$70,725      |
| 0.35000      | \$112,309     |
| 0.41000      | \$126,572     |
| 0.77000      | \$205,817     |
| 1.40000      | \$343,298     |
| 3.00000      | \$710,894     |
| 7.80000      | \$1,780,761   |
| 11.00000     | \$2,429,844   |
| 38.00000     | \$7,914,024   |
| 120.00000    | \$23,845,168  |
| 270.00000    | \$52,975,344  |
| 350.00000    | \$68,097,181  |
| 750.00000    | \$143,706,367 |



# Exhibit I.17 Capital Costs for Switching to Chloramines Ground Water Plants

**Constraints:** It can be used alone or in conjunction with the other technologies

Design Criteria:

1) Ammonia dose = 0.15 mg/L

| Design Flow | Capital Cost |
|-------------|--------------|
| (mgd)       | (\$)         |
| 0.0001      | \$29,104     |
| 0.0070      | \$29,104     |
| 0.0220      | \$29,104     |
| 0.0370      | \$29,104     |
| 0.0910      | \$29,104     |
| 0.1800      | \$30,604     |
| 0.2700      | \$37,939     |
| 0.3600      | \$38,858     |
| 0.6800      | \$42,127     |
| 1.0000      | \$53,396     |
| 1.2000      | \$83,772     |
| 2.0000      | \$83,772     |
| 3.5000      | \$83,772     |
| 7.0000      | \$83,772     |
| 17.0000     | \$98,772     |
| 22.0000     | \$98,772     |
| 76.0000     | \$98,772     |
| 210.0000    | \$158,907    |
| 430.0000    | \$428,047    |
| 520.0000    | \$428,047    |
| 1500.0000   | \$428,047    |



# Exhibit I.18 O&M Costs for Switching to Chloramines Ground Water Plants

**Constraints:** It can be used alone or in conjunction with the other technologies

Design Criteria:

1) Ammonia dose = 0.15 mg/L

| Average Flow | O&M Cost  |
|--------------|-----------|
| -            | (\$)      |
| (mgd)        | ( · · /   |
| 0.00005      | \$1,565   |
| 0.00150      | \$1,565   |
| 0.00540      | \$1,566   |
| 0.00950      | \$1,567   |
| 0.02500      | \$1,572   |
| 0.05400      | \$1,580   |
| 0.08400      | \$2,973   |
| 0.11000      | \$2,981   |
| 0.23000      | \$2,990   |
| 0.35000      | \$4,310   |
| 0.41000      | \$5,780   |
| 0.77000      | \$6,196   |
| 1.40000      | \$7,004   |
| 3.00000      | \$8,415   |
| 7.80000      | \$11,015  |
| 11.00000     | \$12,534  |
|              |           |
| 38.00000     | \$23,008  |
| 120.00000    | \$45,384  |
| 270.00000    | \$65,310  |
| 350.00000    | \$77,901  |
| 750.00000    | \$140,855 |



# Exhibit I.19 Capital Costs for UV Ground Water Plants

**Constraints:** Not practical for systems serving 10,000 or more **Design Criteria:** 

- 1)  $UV_{254} = 0.051 \text{ cm}^{-1}$ , Turbidity = 0.1 NTU
- 2) Alkalinity = 60 mg/L CaCO<sub>3</sub>, Hardness = 100 mg/L CaCO<sub>3</sub>
- 3) UV dose =  $200 \text{ mJ/cm}^2$
- 4) 2 reactors in series

| Design Flow | Capital Cost   |
|-------------|----------------|
| (mgd)       | (\$)           |
| 0.0001      | \$37,874       |
| 0.0070      | \$37,874       |
| 0.0220      | \$46,025       |
| 0.0370      | \$54,176       |
| 0.0910      | \$83,520       |
| 0.1800      | \$131,884      |
| 0.2700      | \$180,791      |
| 0.3600      | \$229,698      |
| 0.6800      | \$403,588      |
| 1.0000      | \$842,925      |
| 1.2000      | \$914,515      |
| 2.0000      | \$1,299,090    |
| 3.5000      | Not Applicable |
| 7.0000      | Not Applicable |
|             | Not Applicable |
|             | Not Applicable |
|             | Not Applicable |
| 210.0000    | Not Applicable |
|             | Not Applicable |
| 520.0000    | Not Applicable |
| 1500.0000   | Not Applicable |



# Exhibit I.20 O&M Costs for UV Ground Water Plants

**Constraints:** Not practical for systems serving 10,000 or more **Design Criteria:** 

- 1)  $UV_{254} = 0.051 \text{ cm}^{-1}$ , Turbidity = 0.1 NTU
- 2) Alkalinity = 60 mg/L CaCO<sub>3</sub>, Hardness = 100 mg/L CaCO<sub>3</sub>
- 3) UV dose =  $200 \text{ mJ/cm}^2$
- 4) 2 reactors in series

| Average Flow | O&M Cost       |
|--------------|----------------|
| (mgd)        | (\$)           |
| 0.00005      | \$7,700        |
| 0.00150      | \$7,700        |
| 0.00540      | \$7,97         |
| 0.00950      | \$9,110        |
| 0.02500      | \$11,650       |
| 0.05400      | \$14,076       |
| 0.08400      | \$17,326       |
| 0.11000      | \$18,030       |
| 0.23000      | \$20,952       |
| 0.35000      | \$22,376       |
| 0.41000      | \$24,324       |
| 0.77000      | \$30,11°       |
| 1.40000      | Not Applicable |
| 3.00000      | Not Applicable |
| 7.80000      | Not Applicable |
|              | Not Applicable |
|              | Not Applicable |
| 120.00000    | Not Applicable |
|              | Not Applicable |
| 350.00000    | Not Applicable |
| 750.00000    | Not Applicable |



# Exhibit I.21 Capital Costs for Ozone Ground Water Plants

**Constraints:** Not practical for systems serving 100 or fewer people **Design Criteria:** 

- 1) Contact time = 12 minutes
- 2) Ozone maximum dose = 3.19 mg/L

| Design Flow | Capital Cost   |  |  |  |  |  |
|-------------|----------------|--|--|--|--|--|
| (mgd)       | (\$)           |  |  |  |  |  |
| 0.0001      | Not Applicable |  |  |  |  |  |
| 0.0070      | Not Applicable |  |  |  |  |  |
| 0.0220      | Not Applicable |  |  |  |  |  |
| 0.0370      | Not Applicable |  |  |  |  |  |
| 0.0910      | \$322,787      |  |  |  |  |  |
| 0.1800      | \$382,874      |  |  |  |  |  |
| 0.2700      | \$438,785      |  |  |  |  |  |
| 0.3600      | \$493,394      |  |  |  |  |  |
| 0.6800      | \$675,951      |  |  |  |  |  |
| 1.0000      | \$804,614      |  |  |  |  |  |
| 1.2000      | \$902,391      |  |  |  |  |  |
| 2.0000      | \$1,226,541    |  |  |  |  |  |
| 3.5000      | \$1,595,373    |  |  |  |  |  |
| 7.0000      | \$2,357,412    |  |  |  |  |  |
| 17.0000     | \$3,946,957    |  |  |  |  |  |
| 22.0000     | \$4,546,365    |  |  |  |  |  |
| 76.0000     | \$12,628,950   |  |  |  |  |  |
| 210.0000    | \$26,317,852   |  |  |  |  |  |
| 430.0000    | \$44,918,178   |  |  |  |  |  |
| 520.0000    | \$53,248,978   |  |  |  |  |  |
| 1500.0000   | \$143,962,124  |  |  |  |  |  |



### Exhibit I.22 O&M Costs for Ozone Ground Water Plants

**Constraints:** Not practical for systems serving 100 or fewer people **Design Criteria:** 

- 1) Contact time = 12 minutes
- 2) Ozone maximum dose = 3.19 mg/L

| Average Flow | O&M Cost       |  |  |  |  |
|--------------|----------------|--|--|--|--|
| (mgd)        | (\$)           |  |  |  |  |
| 0.00005      | Not Applicable |  |  |  |  |
| 0.00150      | Not Applicable |  |  |  |  |
|              | Not Applicable |  |  |  |  |
| 0.00950      | Not Applicable |  |  |  |  |
| 0.02500      | \$55,520       |  |  |  |  |
| 0.05400      | \$55,884       |  |  |  |  |
| 0.08400      | \$59,391       |  |  |  |  |
| 0.11000      | \$59,737       |  |  |  |  |
| 0.23000      | \$61,152       |  |  |  |  |
| 0.35000      | \$62,566       |  |  |  |  |
| 0.41000      | \$63,350       |  |  |  |  |
| 0.77000      | \$67,621       |  |  |  |  |
| 1.40000      | \$77,719       |  |  |  |  |
| 3.00000      | \$95,346       |  |  |  |  |
| 7.80000      | \$145,700      |  |  |  |  |
| 11.00000     | \$177,752      |  |  |  |  |
| 38.00000     | \$464,832      |  |  |  |  |
| 120.00000    | \$1,377,320    |  |  |  |  |
| 270.00000    | \$2,871,997    |  |  |  |  |
| 350.00000    | \$3,662,456    |  |  |  |  |
| 750.00000    | \$7,614,752    |  |  |  |  |



# Exhibit I.23 Capital Costs for GAC20 Ground Water Plants

Constraints: None Design Criteria:

- 1) Reactivation frequency = 240 days
- 2) Onsite regeneration for systems serving more than 10,000 people
- 3) Media replacement for systems serving 10,000 or fewer people

| Design Flow | Capital Cost  |  |  |  |  |  |
|-------------|---------------|--|--|--|--|--|
| (mgd)       | (\$)          |  |  |  |  |  |
| 0.0001      | \$36,117      |  |  |  |  |  |
| 0.0070      | \$36,117      |  |  |  |  |  |
| 0.0220      | \$53,091      |  |  |  |  |  |
| 0.0370      | \$70,491      |  |  |  |  |  |
| 0.0910      | \$137,932     |  |  |  |  |  |
| 0.1800      | \$241,793     |  |  |  |  |  |
| 0.2700      | \$340,528     |  |  |  |  |  |
| 0.3600      | \$435,155     |  |  |  |  |  |
| 0.6800      | \$739,387     |  |  |  |  |  |
| 1.0000      | \$1,228,620   |  |  |  |  |  |
| 1.2000      | \$1,351,323   |  |  |  |  |  |
| 2.0000      | \$1,931,036   |  |  |  |  |  |
| 3.5000      | \$2,894,585   |  |  |  |  |  |
| 7.0000      | \$4,844,129   |  |  |  |  |  |
| 17.0000     | \$9,491,603   |  |  |  |  |  |
| 22.0000     | \$11,561,478  |  |  |  |  |  |
| 76.0000     | \$29,712,377  |  |  |  |  |  |
| 210.0000    | \$64,708,727  |  |  |  |  |  |
| 430.0000    | \$112,528,561 |  |  |  |  |  |
| 520.0000    | \$130,362,039 |  |  |  |  |  |
| 1500.0000   | \$324,548,797 |  |  |  |  |  |



# Exhibit I.24 O&M Costs for GAC20 Ground Water Plants

Constraints: None Design Criteria:

- 1) Reactivation frequency = 240 days
- 2) Onsite regeneration for systems serving more than 10,000 people
- 3) Media replacement for systems serving 10,000 or fewer people

| Average Flow | O&M Cost     |
|--------------|--------------|
| (mgd)        | (\$)         |
| 0.00005      | \$6,673      |
| 0.00150      | \$6,673      |
| 0.00540      | \$11,206     |
| 0.00950      | \$14,742     |
| 0.02500      | \$24,752     |
| 0.05400      | \$35,068     |
| 0.08400      | \$42,835     |
| 0.11000      | \$50,123     |
| 0.23000      | \$75,023     |
| 0.35000      | \$98,679     |
| 0.41000      | \$96,623     |
| 0.77000      | \$110,575    |
| 1.40000      | \$134,831    |
| 3.00000      | \$193,396    |
| 7.80000      | \$367,103    |
| 11.00000     | \$469,818    |
| 38.00000     | \$1,294,938  |
| 120.00000    | \$3,624,295  |
| 270.00000    | \$7,945,037  |
| 350.00000    | \$9,865,622  |
| 750.00000    | \$19,468,547 |



# Exhibit I.25 Capital Costs for Nanofiltration Ground Water Plants

Constraints: None Design Criteria:

- 1) Water temp. = 10 degrees C
- 2) Ocean or sewer discharge

| Design Flow | Capital Cost  |  |  |  |  |  |
|-------------|---------------|--|--|--|--|--|
| (mgd)       | (\$)          |  |  |  |  |  |
| 0.0001      | \$51,894      |  |  |  |  |  |
| 0.0070      | \$51,894      |  |  |  |  |  |
| 0.0220      | \$69,241      |  |  |  |  |  |
| 0.0370      | \$86,588      |  |  |  |  |  |
| 0.0910      | \$156,079     |  |  |  |  |  |
| 0.1800      | \$222,829     |  |  |  |  |  |
| 0.2700      | \$315,937     |  |  |  |  |  |
| 0.3600      | \$357,087     |  |  |  |  |  |
| 0.6800      | \$663,375     |  |  |  |  |  |
| 1.0000      | \$912,423     |  |  |  |  |  |
| 1.2000      | \$1,080,532   |  |  |  |  |  |
| 2.0000      | \$2,018,579   |  |  |  |  |  |
| 3.5000      | \$3,404,129   |  |  |  |  |  |
| 7.0000      | \$6,745,258   |  |  |  |  |  |
| 17.0000     | \$15,456,118  |  |  |  |  |  |
| 22.0000     | \$19,862,964  |  |  |  |  |  |
| 76.0000     | \$57,558,238  |  |  |  |  |  |
| 210.0000    | \$129,659,099 |  |  |  |  |  |
| 430.0000    | \$265,356,059 |  |  |  |  |  |
| 520.0000    | \$318,914,577 |  |  |  |  |  |
| 1500.0000   | \$902,107,327 |  |  |  |  |  |



### Exhibit I.26 O&M Costs for Nanofiltration Ground Water Plants

Constraints: None Design Criteria:

- 1) Water temp. = 10 degrees C
- 2) Ocean or sewer discharge

| Average Flow | O&M Cost      |
|--------------|---------------|
| (mgd)        | (\$)          |
| 0.00005      | \$6,909       |
| 0.00150      | \$6,909       |
| 0.00540      | \$7,937       |
| 0.00950      | \$9,025       |
| 0.02500      | \$13,703      |
| 0.05400      | \$29,539      |
| 0.08400      | \$37,904      |
| 0.11000      | \$43,223      |
| 0.23000      | \$70,725      |
| 0.35000      | \$112,309     |
| 0.41000      | \$126,572     |
| 0.77000      | \$205,817     |
| 1.40000      | \$343,298     |
| 3.00000      | \$710,894     |
| 7.80000      | \$1,780,761   |
| 11.00000     | \$2,429,844   |
| 38.00000     | \$7,914,024   |
| 120.00000    | \$23,845,168  |
| 270.00000    | \$52,975,344  |
| 350.00000    | \$68,097,181  |
| 750.00000    | \$143,706,367 |
| •            |               |



Exhibit I.27 Stage 2 DBPR - Small Systems Household Unit Costs for the Stage 2 Affordability Analysis

|            |                                         | Population                    | Design<br>Flow<br>(mgd) | Average<br>Daily Flow<br>(mgd) | Capital<br>Cost<br>(\$)   | Annual<br>Capital<br>Cost at 7% | (\$)       | O&M<br>Cost<br>(\$) | Total<br>Annual<br>Costs (\$) | Unit<br>Costs<br>(\$/kgal/yr) | Median Annual Water<br>Usage per HH<br>(kgal/yr) | Household<br>Unit Costs<br>(\$) |
|------------|-----------------------------------------|-------------------------------|-------------------------|--------------------------------|---------------------------|---------------------------------|------------|---------------------|-------------------------------|-------------------------------|--------------------------------------------------|---------------------------------|
|            | Technology                              | Served                        | Α                       | В                              | С                         | D                               |            | E                   | F=D+E                         | G=F/A                         | Н                                                | I=G*H                           |
|            | Chloramines                             | 25 - 500                      | 0.142                   | 0.022                          |                           |                                 |            |                     | 4,316                         | 0.54                          | 83                                               | 44.50                           |
|            | (0.15 mg/L)                             | 501 - 3,300                   | 0.464                   | 0.126                          |                           |                                 |            | ,                   | 6,788                         | 0.15                          | 85                                               | 12.56                           |
|            | ` ,                                     | 3,301 - 10,000                | 1.431                   | 0.544                          |                           |                                 |            |                     | 14,023                        | 0.07                          | 89                                               | 6.25                            |
|            | UV                                      | 25 - 500                      | 0.142                   | 0.022                          |                           |                                 |            |                     | 16,202                        | 2.02                          | 83                                               | 167.07                          |
|            | (200mJ/cm <sup>2</sup> )                | 501 - 3,300                   | 0.464                   | 0.126                          |                           | . ,                             |            | -, -                | 48,354                        | 1.05                          | 85                                               | 89.47                           |
|            | (====================================== | 3,301 - 10,000                | 1.431                   | 0.544                          |                           |                                 |            |                     | 142,535                       | 0.72                          | 89                                               | 63.57                           |
| Ground     | Ozone                                   | 25 - 500                      | 0.142                   | 0.022                          |                           |                                 |            |                     | 85,989                        | 10.71                         | 83                                               | 886.66                          |
| Water CWSs | (0.5-log dose)                          | 501 - 3,300                   | 0.464                   | 0.126                          |                           |                                 |            |                     | 114,557                       | 2.49                          | 85                                               | 211.98                          |
|            | 0.4.000                                 | 3,301 - 10,000                | 1.431                   |                                | \$ 1,145,503              |                                 |            |                     | 174,918                       | 0.88                          | 89                                               | 78.01                           |
|            | GAC20                                   | 25 - 500                      | 0.142                   |                                | \$ 96,718                 |                                 |            |                     | 27,424                        | 3.42                          | 83                                               | 282.77                          |
|            | (EBCT=20 min, 240                       | 501 - 3,300                   | 0.464                   | 0.126                          |                           | . ,                             |            | - ,                 | 116,213                       | 2.53                          | 85                                               | 215.04                          |
|            | day regeneration)                       | 3,301 - 10,000                | 1.431                   |                                | \$ 1,786,108              |                                 |            | - ,                 | 276,458                       | 1.39                          | 89                                               | 123.29                          |
|            | NF                                      | 25 - 500                      | 0.142                   | 0.022                          |                           |                                 |            | -,                  | 21,409                        | 2.67                          | 83                                               | 220.76                          |
|            | INF                                     | 501 - 3,300                   | 0.464                   | 0.126                          |                           |                                 |            | / -                 | 103,329                       | 2.25                          | 85                                               | 191.20                          |
|            |                                         | 3,301 - 10,000                | 1.431                   |                                | \$ 1,784,068              |                                 |            | -                   | 358,812                       | 1.81                          | 89                                               | 160.02                          |
|            | Chloramines                             | 25 - 500                      | 0.142                   | 0.022                          |                           |                                 |            | ,                   | 4,328                         | 0.54                          | 83                                               | 44.63                           |
|            | (0.55 mg/L)                             | 501 - 3,300                   | 0.464                   | 0.126                          |                           |                                 |            | ,                   | 6,886                         | 0.15                          | 85                                               | 12.74                           |
|            | (+                                      | 3,301 - 10,000                | 1.431                   | 0.544                          |                           |                                 | _          |                     | 14,461                        | 0.07                          | 89                                               | 6.45                            |
|            | Chlorine Dioxide                        | 25 - 500                      | 0.142                   | 0.022                          |                           | . ,                             |            | ,                   | 8,061                         | 1.00                          | 83                                               | 83.12                           |
|            | (1.25 mg/L)                             | 501 - 3,300                   | 0.464                   | 0.126                          |                           |                                 |            | ,                   | 21,309                        | 0.46                          | 85                                               | 39.43                           |
|            |                                         | 3,301 - 10,000                | 1.431                   | 0.544                          |                           |                                 | _          | ,                   | 28,833                        | 0.15                          | 89                                               | 12.86                           |
|            | UV<br>(40mJ/cm²)                        | 25 - 500                      | 0.142                   |                                | \$ 19,631                 |                                 |            |                     | 5,941                         | 0.74                          | 83                                               | 61.26                           |
|            |                                         | 501 - 3,300                   | 0.464                   | 0.126                          |                           |                                 |            |                     | 14,991                        | 0.33                          | 85                                               | 27.74                           |
|            | ( ,                                     | 3,301 - 10,000                | 1.431                   |                                | \$ 327,268                |                                 |            |                     | 41,993                        | 0.21                          | 89                                               | 18.73                           |
|            | Ozone                                   | 25 - 500                      | 0.142                   | 0.022                          |                           |                                 |            | ,                   | 85,989                        | 10.71                         | 83                                               | 886.66                          |
| Surface    | (0.5-log dose)                          | 501 - 3,300                   | 0.464                   | 0.126                          |                           |                                 |            |                     | 114,557                       | 2.49                          | 85                                               | 211.98                          |
| Water CWSs |                                         | 3,301 - 10,000                | 1.431                   | 0.544                          |                           |                                 |            |                     | 174,918                       | 0.88                          | 89                                               | 78.01                           |
| water Cwss | MF/UF                                   | 25 - 500<br>501 - 3,300       | 0.142<br>0.464          | 0.022<br>0.126                 |                           |                                 |            |                     | 38,599<br>127,411             | 4.81<br>2.77                  | 83<br>85                                         | 398.00<br>235.76                |
|            | IVIF/UF                                 | 3,301 - 10,000                | 1.431                   |                                |                           |                                 |            | ,                   | ,                             |                               | 89                                               | 149.09                          |
|            | GAC10                                   | 25 - 500                      | 0.142                   | 0.544<br>0.022                 | \$ 2,475,071<br>\$ 77,923 |                                 | . ,        |                     | 334,306<br>22,244             | 1.68<br>2.77                  | 83                                               | 229.36                          |
|            | (EBCT=10 min, 360                       |                               | 0.142                   | 0.022                          |                           |                                 |            | ,                   | 73,413                        | 1.60                          | 85 I                                             | 135.84                          |
|            | ` '                                     | 501 - 3,300<br>3,301 - 10,000 | 1.431                   | 0.126                          |                           |                                 |            | ,                   | 73,413<br>181,565             | 0.91                          | 89                                               | 80.97                           |
|            | day regeneration) GAC20                 | 3,301 - 10,000<br>25 - 500    | 0.142                   | 0.544                          |                           |                                 |            |                     | 181,565<br>42,629             | 5.31                          | 83                                               | 439.56                          |
|            | (EBCT=20 min, 90                        | 501 - 3,300                   | 0.142                   |                                | \$ 568,257                | . ,                             |            |                     | 152,693                       | 3.32                          | 85 I                                             | 282.54                          |
|            | day regeneration)                       | 3,301 - 10,000                | 1.431                   |                                | \$ 2,040,576              | . ,                             |            | ,                   | 387,779                       | 3.32<br>1.95                  | 89                                               | 172.93                          |
|            |                                         | 25 - 500                      | 0.142                   | 0.022                          |                           |                                 |            |                     | 60,008                        | 7.47                          | 83                                               | 618.76                          |
|            | Integrated                              | 501 - 3,300                   | 0.142                   |                                | \$ 436,55<br>\$ 1,465,879 |                                 |            | ,                   | 230,740                       | 7.47<br>5.02                  | 85 I                                             | 426.96                          |
|            | Membranes                               | 3,301 - 10,000                | 1.431                   |                                | \$ 4,259,139              |                                 |            |                     | 693,118                       | 3.49                          | 89                                               | 309.10                          |
|            | its I 1 I 26 flows from E               | , ,                           | 1.431                   | 0.544                          | ψ <del>4</del> ,∠08,138   | φ +υ2,υ3                        | <i>,</i> φ | 231,000             | 033,110                       | 3.49                          | 69                                               | 309.10                          |

Sources: Exhibits I.1-I.26, flows from Exhibit 8.3.

Note: HH consumption values derived from small system affordability document, values were multiplied by 1.15 to account for water lost due to leaks.

Appendix J
Stage 2 DBPR Cost Projections

### Matrix of Appendix J Contents

| Applicable Rule Alternative(s)        | Exhibit Description                                                                                      | Applicable<br>Source Water<br>Type(s) | Applicable System Classification(s) | Applicable<br>System Size | Exhibit<br>Number |
|---------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------|---------------------------|-------------------|
| Preferred Alternative                 | Total Capital and O&M Costs                                                                              | All                                   | All                                 | All                       | J.1a              |
| Alternative 1                         | Total Capital and O&M Costs                                                                              | All                                   | All                                 | All                       | J.1b              |
| Alternative 2                         | Total Capital and O&M Costs                                                                              | All                                   | All                                 | All                       | J.1c              |
| Alternative 3                         | Total Capital and O&M Costs                                                                              | All                                   | All                                 | All                       | J.1d              |
| Unadjusted Compliance                 |                                                                                                          |                                       |                                     |                           | J.1e              |
| Forcast                               | Total Capital and O&M Costs                                                                              | All                                   | All                                 | All                       | J. IE             |
| IDSE Alternate Compliance<br>Forecast | Total Capital and O&M Costs                                                                              | All                                   | All                                 | All                       | J.1f              |
| All Alternatives                      | Total Implementation, IDSE, Additional Routine Monitoring, and<br>Significant Excursion Evaluation Costs | All                                   | All                                 | All                       | J.1g              |
| All Alternatives                      | Total Primacy Agency Costs                                                                               | N/A                                   | N/A                                 | N/A                       | J.1h              |
|                                       |                                                                                                          |                                       |                                     | <100                      | J.2a              |
|                                       |                                                                                                          |                                       |                                     | 100-499                   | J.2b              |
|                                       |                                                                                                          |                                       |                                     | 500-999                   | J.2c              |
|                                       |                                                                                                          |                                       |                                     | 1,000-3,299               | J.2d              |
|                                       |                                                                                                          |                                       |                                     |                           | J.2e              |
|                                       |                                                                                                          |                                       | CWS                                 | 3,300-9,999               |                   |
|                                       |                                                                                                          |                                       |                                     | 10,000-49,999             | J.2f              |
|                                       |                                                                                                          |                                       |                                     | 50,000-99,999             | J.2g              |
|                                       |                                                                                                          |                                       |                                     | 100,000-999,999           | J.2h              |
|                                       |                                                                                                          | ]                                     |                                     | 1,000,000+                | J.2i              |
|                                       |                                                                                                          | ]                                     |                                     | All                       | J.2j              |
|                                       |                                                                                                          | Surface Water                         |                                     | <100                      | J.2k              |
|                                       |                                                                                                          |                                       |                                     | 100-499                   | J.2l              |
|                                       |                                                                                                          |                                       |                                     | 500-999                   | J.2m              |
|                                       |                                                                                                          |                                       |                                     | 1,000-3,299               | J.2n              |
|                                       |                                                                                                          |                                       |                                     | 3,300-9,999               | J.20              |
|                                       |                                                                                                          |                                       | NTNCWS                              |                           |                   |
|                                       |                                                                                                          |                                       |                                     | 10,000-49,999             | J.2p              |
|                                       |                                                                                                          |                                       |                                     | 50,000-99,999             | J.2q              |
|                                       |                                                                                                          |                                       |                                     | 100,000-999,999           | J.2r              |
|                                       |                                                                                                          |                                       |                                     | 1,000,000+                | J.2s              |
|                                       |                                                                                                          |                                       |                                     | All                       | J.2t              |
|                                       |                                                                                                          |                                       | All                                 | All                       | J.2u              |
|                                       | Annual PWS Cost Projections                                                                              |                                       |                                     | <100                      | J.2v              |
|                                       |                                                                                                          |                                       |                                     | 100-499                   | J.2w              |
|                                       |                                                                                                          |                                       |                                     | 500-999                   | J.2x              |
|                                       |                                                                                                          |                                       |                                     | 1,000-3,299               | J.2y              |
|                                       |                                                                                                          |                                       |                                     | 3,300-9,999               | J.2z              |
|                                       |                                                                                                          |                                       | CWS                                 | 10,000-49,999             |                   |
|                                       |                                                                                                          |                                       |                                     |                           | J.2aa             |
|                                       |                                                                                                          |                                       |                                     | 50,000-99,999             | J.2ab             |
|                                       |                                                                                                          |                                       |                                     | 100,000-999,999           | J.2ac             |
|                                       |                                                                                                          |                                       |                                     | 1,000,000+                | J.2ad             |
|                                       |                                                                                                          |                                       |                                     | All                       | J.2ae             |
|                                       |                                                                                                          | Ground Water                          |                                     | <100                      | J.2af             |
|                                       |                                                                                                          |                                       |                                     | 100-499                   | J.2ag             |
| Stage 2                               |                                                                                                          |                                       |                                     | 500-999                   | J.2ah             |
| Preferred Alternative                 |                                                                                                          | ]                                     |                                     | 1,000-3,299               | J.2ai             |
|                                       |                                                                                                          | ]                                     | NTNCWS                              | 3,300-9,999               | J.2aj             |
|                                       |                                                                                                          |                                       | INTINCANO                           | 10,000-49,999             | J.2ak             |
|                                       |                                                                                                          |                                       |                                     | 50,000-99,999             | J.2al             |
|                                       |                                                                                                          | ]                                     |                                     | 100,000-999,999           |                   |
|                                       |                                                                                                          | ]                                     |                                     | 1,000,000+                | J.2an             |
|                                       |                                                                                                          |                                       |                                     | All                       | J.2ao             |
|                                       |                                                                                                          |                                       | All                                 | All                       | J.2ap             |
|                                       |                                                                                                          | ΔII                                   | All                                 | All                       |                   |
|                                       | Applied Drimon (Agency Coet Projections                                                                  | All                                   |                                     |                           | J.2aq             |
|                                       | Annual Primacy Agency Cost Projections                                                                   | N/A                                   | N/A                                 | N/A                       | J.2ar             |
|                                       | Present Value of Total Costs at 3% Discount Rate                                                         | All                                   | All                                 | All                       | J.2as             |
|                                       | Present Value of Capital Costs at 3% Discount Rate                                                       | All                                   | All                                 | All                       | J.2at             |
|                                       | Present Value of O&M Costs at 3% Discount Rate                                                           | All                                   | All                                 | All                       | J.2au             |
|                                       | Present Value of Non-treatment Costs at 3% Discount Rate                                                 | All                                   | All                                 | All                       | J.2av             |
|                                       | Present Value of Total Costs at 7% Discount Rate                                                         | All                                   | All                                 | All                       | J.2aw             |
|                                       | Present Value of Capital Costs at 7% Discount Rate                                                       | All                                   | All                                 | All                       | J.2ax             |
|                                       | Present Value of O&M Costs at 7% Discount Rate                                                           | All                                   | All                                 | All                       | J.2ay             |
|                                       | Present Value of Non-treatment Costs at 7% Discount Rate                                                 | All                                   | All                                 | All                       | J.2az             |
|                                       | Present Value of Total Costs at 3% Discount Rate                                                         | Ì                                     |                                     | All                       | J.2ba             |
|                                       | Present Value of Capital Costs at 3% Discount Rate                                                       | 1                                     |                                     | All                       | J.2bb             |
|                                       | ·                                                                                                        | 1                                     | CWS                                 | All                       | J.2bc             |
|                                       | Present Value of O&M Costs at 3% Discount Rate                                                           | 1                                     |                                     |                           |                   |
|                                       | Present Value of Non-Treatment Costs at 3% Discount Rate                                                 | Surface Water                         |                                     | All                       | J.2bd             |
|                                       | Present Value of Total Costs at 3% Discount Rate                                                         |                                       |                                     | All                       | J.2be             |
|                                       | Present Value of Capital Costs at 3% Discount Rate                                                       |                                       | NTNCWS                              | All                       | J.2bf             |
|                                       | Present Value of O&M Costs at 3% Discount Rate                                                           |                                       |                                     | All                       | J.2bg             |
|                                       | Present Value of Non-Treatment Costs at 3% Discount Rate                                                 | Ì                                     | I                                   | All                       | J.2bh             |

| Applicable Rule<br>Alternative(s) | Exhibit Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Applicable<br>Source Water<br>Type(s)                                 | Applicable System Classification(s)                                | Applicable<br>System Size               | Exhibi<br>Numbe                                                                                      |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------|
|                                   | Present Value of Total Costs at 3% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       |                                                                    | All                                     | J.2bi                                                                                                |
|                                   | Present Value of Capital Costs at 3% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ground Water                                                          | cws                                                                | All                                     | J.2bj                                                                                                |
|                                   | Present Value of O&M Costs at 3% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       |                                                                    | All                                     | J.2bk                                                                                                |
|                                   | Present Value of Non-Treatment Costs at 3% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |                                                                    | All                                     | J.2bl                                                                                                |
|                                   | Present Value of Total Costs at 3% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                     |                                                                    | All                                     | J.2bm                                                                                                |
|                                   | Present Value of Capital Costs at 3% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ground Water                                                          | NTNCWS                                                             | All                                     | J.2bn                                                                                                |
|                                   | Present Value of O&M Costs at 3% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                     |                                                                    | All                                     | J.2bo                                                                                                |
|                                   | Present Value of Non-Treatment Costs at 3% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |                                                                    | All                                     | J.2bp                                                                                                |
|                                   | Present Value of Total Costs at 7% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                     |                                                                    | All                                     | J.2bq                                                                                                |
|                                   | Present Value of Capital Costs at 7% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                     | CWS                                                                | All                                     | J.2br                                                                                                |
|                                   | Present Value of O&M Costs at 7% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                     |                                                                    | All                                     | J.2bs                                                                                                |
|                                   | Present Value of Non-Treatment Costs at 7% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Surface Water                                                         |                                                                    | All                                     | J.2bt                                                                                                |
|                                   | Present Value of Total Costs at 7% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                     |                                                                    | All                                     | J.2bu                                                                                                |
|                                   | Present Value of Capital Costs at 7% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                     | NTNCWS                                                             | All                                     | J.2bv                                                                                                |
| Stage 2                           | Present Value of O&M Costs at 7% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                     |                                                                    | All                                     | J.2bw                                                                                                |
| Preferred Alternative             | Present Value of Non-Treatment Costs at 7% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |                                                                    | All                                     | J.2bx                                                                                                |
| (Continued)                       | Present Value of Total Costs at 7% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       |                                                                    | All                                     | J.2by                                                                                                |
| ,                                 | Present Value of Capital Costs at 7% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       | cws                                                                | All                                     | J.2bz                                                                                                |
|                                   | Present Value of O&M Costs at 7% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                     |                                                                    | All                                     | J.2ca                                                                                                |
|                                   | Present Value of Non-Treatment Costs at 7% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ground Water                                                          |                                                                    | All                                     | J.2cb                                                                                                |
|                                   | Present Value of Total Costs at 7% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       |                                                                    | All                                     | J.2cc                                                                                                |
|                                   | Present Value of Capital Costs at 7% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                     | NTNCWS                                                             | All                                     | J.2cd                                                                                                |
|                                   | Present Value of O&M Costs at 7% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                     |                                                                    | All                                     | J.2ce                                                                                                |
|                                   | Present Value of Non-Treatment Costs at 7% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |                                                                    | All                                     | J.2cf                                                                                                |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       | CWSs                                                               | All                                     | J.3a                                                                                                 |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Surface Water                                                         | NTNCWs                                                             | All                                     | J.3b                                                                                                 |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       | All                                                                | All                                     | J.3c                                                                                                 |
|                                   | Annual PWS Cost Projections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       | CWSs                                                               | All                                     | J.3d                                                                                                 |
|                                   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ground Water                                                          | NTNCWs                                                             | All                                     | J.3e                                                                                                 |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       | All                                                                | All                                     | J.3f                                                                                                 |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | All                                                                   | All                                                                | All                                     | J.3g                                                                                                 |
| Stage 2                           | Annual Primacy Agency Cost Projections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | All                                                                   | All                                                                | All                                     | J.3h                                                                                                 |
| Alternative 1                     | Present Value of Total Costs at 3% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | All                                                                   | All                                                                | All                                     | J.3i                                                                                                 |
| Alternative                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | All                                                                   | All                                                                | All                                     |                                                                                                      |
|                                   | Present Value of Capital Costs at 3% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | All                                                                   | All                                                                | All                                     | J.3j                                                                                                 |
|                                   | Present Value of O&M Costs at 3% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       | All                                                                |                                         | J.3k                                                                                                 |
|                                   | Present Value of Non-treatment Costs at 3% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | All                                                                   |                                                                    | All                                     | J.3l                                                                                                 |
|                                   | Present Value of Total Costs at 7% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | All                                                                   | All                                                                | All                                     | J.3m                                                                                                 |
|                                   | Present Value of Capital Costs at 7% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | All                                                                   | All                                                                | All                                     | J.3n                                                                                                 |
|                                   | Present Value of O&M Costs at 7% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | All                                                                   | All                                                                | All                                     | J.30                                                                                                 |
|                                   | Present Value of Non-treatment Costs at 7% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | All                                                                   | All                                                                | All                                     | J.3p                                                                                                 |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       | CWSs                                                               | All                                     | J.4a                                                                                                 |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Surface Water                                                         | NTNCWs                                                             | All                                     | J.4b                                                                                                 |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       | All                                                                | All                                     | J.4c                                                                                                 |
|                                   | Annual PWS Cost Projections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       | CWSs                                                               | All                                     | J.4d                                                                                                 |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ground Water                                                          | NTNCWs                                                             | All                                     | J.4e                                                                                                 |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       | All                                                                | All                                     | J.4f                                                                                                 |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | All                                                                   | All                                                                | All                                     | J.4g                                                                                                 |
| Stage 2                           | Annual Primacy Agency Cost Projections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | All                                                                   | All                                                                | All                                     | J.4h                                                                                                 |
| Alternative 2                     | Present Value of Total Costs at 3% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | All                                                                   | All                                                                | All                                     | J.4i                                                                                                 |
|                                   | Present Value of Capital Costs at 3% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | All                                                                   | All                                                                | All                                     | J.4j                                                                                                 |
|                                   | Present Value of O&M Costs at 3% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | All                                                                   | All                                                                | All                                     | J.4k                                                                                                 |
|                                   | Present Value of Non-treatment Costs at 3% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | All                                                                   | All                                                                | All                                     | J.4I                                                                                                 |
|                                   | Present Value of Total Costs at 7% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | All                                                                   | All                                                                | All                                     | J.4m                                                                                                 |
|                                   | Present Value of Capital Costs at 7% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | All                                                                   | All                                                                | All                                     | J.4n                                                                                                 |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | All                                                                   | All                                                                | All                                     | J.40                                                                                                 |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       | p                                                                  | All                                     | J.4p                                                                                                 |
|                                   | Present Value of O&M Costs at 7% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       | ΔII                                                                |                                         | <del></del>                                                                                          |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | All                                                                   | All<br>CWSs                                                        |                                         |                                                                                                      |
|                                   | Present Value of O&M Costs at 7% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | All                                                                   | CWSs                                                               | All                                     | J.5a                                                                                                 |
|                                   | Present Value of O&M Costs at 7% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       | CWSs<br>NTNCWs                                                     | All                                     | J.5b                                                                                                 |
|                                   | Present Value of O&M Costs at 7% Discount Rate Present Value of Non-treatment Costs at 7% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | All                                                                   | CWSs<br>NTNCWs<br>All                                              | All<br>All                              | J.5b<br>J.5c                                                                                         |
|                                   | Present Value of O&M Costs at 7% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | All<br>Surface Water                                                  | CWSs<br>NTNCWs<br>All<br>CWSs                                      | All<br>All<br>All                       | J.5b<br>J.5c<br>J.5d                                                                                 |
|                                   | Present Value of O&M Costs at 7% Discount Rate Present Value of Non-treatment Costs at 7% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | All                                                                   | CWSs<br>NTNCWs<br>All<br>CWSs<br>NTNCWs                            | All<br>All<br>All<br>All                | J.5b<br>J.5c<br>J.5d<br>J.5e                                                                         |
|                                   | Present Value of O&M Costs at 7% Discount Rate Present Value of Non-treatment Costs at 7% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | All Surface Water Ground Water                                        | CWSs<br>NTNCWs<br>All<br>CWSs<br>NTNCWs<br>All                     | All All All All All All                 | J.5b<br>J.5c<br>J.5d<br>J.5e<br>J.5f                                                                 |
|                                   | Present Value of O&M Costs at 7% Discount Rate Present Value of Non-treatment Costs at 7% Discount Rate  Annual PWS Cost Projections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | All Surface Water Ground Water All                                    | CWSs NTNCWs All CWSs NTNCWs All All                                | AII AII AII AII AII AII AII             | J.5b<br>J.5c<br>J.5d<br>J.5e<br>J.5f<br>J.5f                                                         |
| Stage 2                           | Present Value of O&M Costs at 7% Discount Rate Present Value of Non-treatment Costs at 7% Discount Rate  Annual PWS Cost Projections  Annual Primacy Agency Cost Projections                                                                                                                                                                                                                                                                                                                                                                                                                                                                | All Surface Water Ground Water All All                                | CWSs NTNCWS All CWSs NTNCWS All All All                            | AII AII AII AII AII AII AII AII         | J.5b<br>J.5c<br>J.5d<br>J.5e<br>J.5f<br>J.5g<br>J.5h                                                 |
| Stage 2<br>Alternative 3          | Present Value of O&M Costs at 7% Discount Rate Present Value of Non-treatment Costs at 7% Discount Rate  Annual PWS Cost Projections  Annual Primacy Agency Cost Projections Present Value of Total Costs at 3% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                               | All Surface Water Ground Water All All                                | CWSs NTNCWS All CWSs NTNCWS All All All All                        | AII AII AII AII AII AII AII AII AII     | J.5b<br>J.5c<br>J.5d<br>J.5e<br>J.5f<br>J.5g<br>J.5h<br>J.5i                                         |
| •                                 | Present Value of O&M Costs at 7% Discount Rate Present Value of Non-treatment Costs at 7% Discount Rate  Annual PWS Cost Projections  Annual Primacy Agency Cost Projections                                                                                                                                                                                                                                                                                                                                                                                                                                                                | All Surface Water Ground Water All All All                            | CWSs NTNCWS All CWSs NTNCWS All All All                            | AII AII AII AII AII AII AII AII AII AII | J.5b<br>J.5c<br>J.5d<br>J.5e<br>J.5f<br>J.5g<br>J.5h                                                 |
| •                                 | Present Value of O&M Costs at 7% Discount Rate Present Value of Non-treatment Costs at 7% Discount Rate  Annual PWS Cost Projections  Annual Primacy Agency Cost Projections Present Value of Total Costs at 3% Discount Rate                                                                                                                                                                                                                                                                                                                                                                                                               | All Surface Water Ground Water All All                                | CWSs NTNCWS All CWSs NTNCWS All All All All                        | AII AII AII AII AII AII AII AII AII     | J.5b<br>J.5c<br>J.5d<br>J.5e<br>J.5f<br>J.5g<br>J.5h<br>J.5i                                         |
| •                                 | Present Value of O&M Costs at 7% Discount Rate Present Value of Non-treatment Costs at 7% Discount Rate  Annual PWS Cost Projections  Annual Primacy Agency Cost Projections Present Value of Total Costs at 3% Discount Rate Present Value of Capital Costs at 3% Discount Rate                                                                                                                                                                                                                                                                                                                                                            | All Surface Water Ground Water All All All                            | CWSs NTNCWS All CWSs NTNCWS All All All All All All                | AII AII AII AII AII AII AII AII AII AII | J.5b<br>J.5c<br>J.5d<br>J.5e<br>J.5f<br>J.5g<br>J.5h<br>J.5i<br>J.5j                                 |
| •                                 | Present Value of O&M Costs at 7% Discount Rate Present Value of Non-treatment Costs at 7% Discount Rate  Annual PWS Cost Projections  Annual Primacy Agency Cost Projections Present Value of Total Costs at 3% Discount Rate Present Value of Capital Costs at 3% Discount Rate Present Value of O&M Costs at 3% Discount Rate                                                                                                                                                                                                                                                                                                             | All Surface Water Ground Water All All All All All                    | CWSs NTNCWS All CWSs NTNCWS All All All All All All All            | AII AII AII AII AII AII AII AII AII AII | J.5b<br>J.5c<br>J.5d<br>J.5e<br>J.5f<br>J.5g<br>J.5h<br>J.5i<br>J.5i<br>J.5j                         |
| •                                 | Present Value of O&M Costs at 7% Discount Rate Present Value of Non-treatment Costs at 7% Discount Rate  Annual PWS Cost Projections  Annual Primacy Agency Cost Projections  Present Value of Total Costs at 3% Discount Rate Present Value of Capital Costs at 3% Discount Rate Present Value of O&M Costs at 3% Discount Rate Present Value of Non-treatment Costs at 3% Discount Rate                                                                                                                                                                                                                                                   | All Surface Water Ground Water All All All All All All                | CWSs NTNCWS All CWSs NTNCWS All All All All All All All All All    | AII AII AII AII AII AII AII AII AII AII | J.5b J.5c J.5d J.5e J.5f J.5g J.5h J.5i J.5j J.5k J.5l                                               |
| •                                 | Present Value of O&M Costs at 7% Discount Rate Present Value of Non-treatment Costs at 7% Discount Rate  Annual PWS Cost Projections  Annual Primacy Agency Cost Projections Present Value of Total Costs at 3% Discount Rate Present Value of Capital Costs at 3% Discount Rate Present Value of Non-treatment Costs at 3% Discount Rate Present Value of Total Costs at 7% Discount Rate Present Value of Total Costs at 7% Discount Rate Present Value of Total Costs at 7% Discount Rate Present Value of Total Costs at 7% Discount Rate                                                                                               | All Surface Water Ground Water All All All All All All All All        | CWSs NTNCWS All CWSs NTNCWS All All All All All All All All All Al | AII AII AII AII AII AII AII AII AII AII | J.5b<br>J.5c<br>J.5d<br>J.5e<br>J.5f<br>J.5g<br>J.5h<br>J.5i<br>J.5j<br>J.5k<br>J.5j<br>J.5k         |
| •                                 | Present Value of O&M Costs at 7% Discount Rate Present Value of Non-treatment Costs at 7% Discount Rate  Annual PWS Cost Projections  Annual Primacy Agency Cost Projections Present Value of Total Costs at 3% Discount Rate Present Value of Capital Costs at 3% Discount Rate Present Value of O&M Costs at 3% Discount Rate Present Value of Total Costs at 3% Discount Rate Present Value of Total Costs at 7% Discount Rate Present Value of Total Costs at 7% Discount Rate Present Value of Capital Costs at 7% Discount Rate Present Value of Capital Costs at 7% Discount Rate Present Value of Capital Costs at 7% Discount Rate | All Surface Water Ground Water All All All All All All All All All Al | CWSs NTNCWS All CWSs NTNCWS All All All All All All All All All Al | AII AII AII AII AII AII AII AII AII AII | J.5b<br>J.5c<br>J.5d<br>J.5e<br>J.5f<br>J.5g<br>J.5h<br>J.5i<br>J.5j<br>J.5k<br>J.5j<br>J.5k<br>J.5j |
| •                                 | Present Value of O&M Costs at 7% Discount Rate Present Value of Non-treatment Costs at 7% Discount Rate  Annual PWS Cost Projections  Annual Primacy Agency Cost Projections Present Value of Total Costs at 3% Discount Rate Present Value of Capital Costs at 3% Discount Rate Present Value of Non-treatment Costs at 3% Discount Rate Present Value of Total Costs at 7% Discount Rate Present Value of Total Costs at 7% Discount Rate Present Value of Total Costs at 7% Discount Rate Present Value of Total Costs at 7% Discount Rate                                                                                               | All Surface Water Ground Water All All All All All All All All        | CWSs NTNCWS All CWSs NTNCWS All All All All All All All All All Al | AII AII AII AII AII AII AII AII AII AII | J.5b J.5c J.5d J.5e J.5f J.5g J.5h J.5i J.5j J.5k J.5l J.5m J.5n J.5o                                |

| Applicable Rule<br>Alternative(s) | Exhibit Description                              | Applicable<br>Source Water<br>Type(s) | Applicable System Classification(s) | Applicable<br>System Size | Exhibit<br>Number |
|-----------------------------------|--------------------------------------------------|---------------------------------------|-------------------------------------|---------------------------|-------------------|
|                                   |                                                  |                                       | All                                 | All                       | J.6c              |
| Stage 2                           | Annual PWS Cost Projections                      |                                       | CWSs                                | All                       | J.6d              |
| Preferred Alternative, 20%        |                                                  | Ground Water                          | NTNCWs                              | All                       | J.6e              |
| Safety Margin                     |                                                  |                                       | All                                 | All                       | J.6f              |
|                                   |                                                  | All                                   | All                                 | All                       | J.6g              |
|                                   | Annual Primacy Agency Cost Projections           | All                                   | All                                 | All                       | J.6h              |
|                                   | Present Value of Total Costs at 3% Discount Rate | All                                   | All                                 | All                       | J.6i              |
|                                   |                                                  |                                       | CWSs                                | All                       | J.7a              |
|                                   |                                                  | Surface Water                         | NTNCWs                              | All                       | J.7b              |
|                                   |                                                  |                                       | All                                 | All                       | J.7c              |
| Stage 2                           | Annual PWS Cost Projections                      |                                       | CWSs                                | All                       | J.7d              |
| Preferred Alternative, 25%        |                                                  | Ground Water                          | NTNCWs                              | All                       | J.7e              |
| Safety Margin                     |                                                  |                                       | All                                 | All                       | J.7f              |
|                                   |                                                  | All                                   | All                                 | All                       | J.7g              |
|                                   | Annual Primacy Agency Cost Projections           | All                                   | All                                 | All                       | J.7h              |
|                                   | Present Value of Total Costs at 3% Discount Rate | All                                   | All                                 | All                       | J.7i              |

Section J.1
Total Costs Summaries and Cost Schedules

Exhibit J.1a Total Stage 2 DBPR Capital and O&M Costs - PWSs

#### Preferred Alternative

| Preterre        | d Alternative  | )<br>                                                                          |                                       | Canita                                | I Costs                               |                                       |                                       | O.P.                                  | I Costs                               |                            |
|-----------------|----------------|--------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|----------------------------|
|                 |                | 0                                                                              |                                       | Capita                                |                                       | ercent                                |                                       | Jak                                   |                                       | Percent                    |
|                 |                | System<br>Size                                                                 |                                       |                                       | Confiden                              | ce Bound                              |                                       |                                       | Confider                              | nce Bound                  |
|                 | System         | (population                                                                    | Mean                                  | Median                                | Lower                                 | Upper                                 | Mean                                  | Median                                | Lower                                 | Upper                      |
| Source          | Classification | served)                                                                        | Value                                 | Value                                 | (5th %tile)                           | (95th %tile)                          | Value                                 | Value                                 | (5th %tile)                           | (95th %tile)               |
|                 |                | <100                                                                           | \$ 1.20                               | \$ 1.18                               | \$ 0.60                               | \$ 1.89                               | \$ 0.22                               | \$ 0.22                               | \$ 0.11                               | \$ 0.32                    |
|                 |                | 100-499                                                                        | \$ 3.59                               | \$ 3.54                               | \$ 1.81                               | \$ 5.58                               | \$ 0.90                               | \$ 0.90                               | \$ 0.47                               | \$ 1.34                    |
|                 |                | 500-999                                                                        | \$ 4.24                               | \$ 4.16                               | \$ 2.13                               | \$ 6.63                               | \$ 0.67                               | \$ 0.67                               | \$ 0.35                               | \$ 1.00                    |
|                 |                | 1,000-3,299                                                                    | \$ 26.79                              | \$ 26.71                              | \$ 13.65                              | \$ 40.68                              | \$ 3.69                               | \$ 3.70                               | \$ 1.91                               | \$ 5.49                    |
|                 | CWSs           | 3,300-9,999                                                                    | \$ 68.36                              | \$ 68.00                              | \$ 35.07                              | \$ 103.50                             | \$ 5.85                               | \$ 5.87                               | \$ 3.03                               | \$ 8.69                    |
|                 |                | 10,000-49,999                                                                  | \$ 124.13                             | \$ 124.48                             | \$ 64.58                              | \$ 179.49                             | \$ 6.63                               | \$ 6.60                               | \$ 3.85                               | \$ 9.77                    |
|                 |                | 50,000-99,999                                                                  | \$ 73.91                              | \$ 74.31                              | \$ 38.44                              | \$ 106.75                             | \$ 3.74                               | \$ 3.70                               | \$ 2.18                               | \$ 5.58                    |
|                 |                | 100,000-999,999                                                                | \$ 201.75                             | \$ 202.92                             | \$ 101.21                             | \$ 294.49                             | \$ 8.96                               | \$ 8.69                               | \$ 5.24                               | \$ 14.10                   |
|                 |                | 1,000,000+                                                                     | \$ 94.35                              | \$ 94.25                              | \$ 48.67                              | \$ 137.67                             | \$ 5.39                               | \$ 5.14                               | \$ 3.12                               | \$ 8.71                    |
| Surface         |                | All Sizes                                                                      | \$ 598.31                             | \$ 599.55                             | \$ 306.16                             | \$ 876.67                             | \$ 36.04                              | \$ 35.49                              | \$ 20.24                              | \$ 55.02                   |
| Water           |                | <100                                                                           | \$ 0.74                               | \$ 0.73                               | \$ 0.37                               | \$ 1.16                               | \$ 0.13                               | \$ 0.13                               | \$ 0.07                               | \$ 0.20                    |
|                 |                | 100-499                                                                        | \$ 1.45                               | \$ 1.44                               | \$ 0.74                               | \$ 2.25                               | \$ 0.37                               | \$ 0.37                               | \$ 0.19                               | \$ 0.55                    |
|                 |                | 500-999                                                                        | \$ 0.94                               | \$ 0.93                               | \$ 0.47                               | \$ 1.46                               | \$ 0.15                               | \$ 0.15                               | \$ 0.08                               | \$ 0.22                    |
|                 |                | 1,000-3,299                                                                    | \$ 2.08                               | \$ 2.07                               | \$ 1.06                               | \$ 3.15                               | \$ 0.29                               | \$ 0.29                               | \$ 0.15                               | \$ 0.43                    |
|                 | NTNCWSs        | 3,300-9,999                                                                    | \$ 1.41                               | \$ 1.41                               | \$ 0.73                               | \$ 2.14                               | \$ 0.12                               | \$ 0.12                               | \$ 0.06                               | \$ 0.18                    |
|                 | NINCWS         | 10,000-49,999                                                                  | \$ 0.60                               | \$ 0.60                               | \$ 0.31                               | \$ 0.86                               | \$ 0.03                               | \$ 0.03                               | \$ 0.02                               | \$ 0.04                    |
|                 |                | 50,000-99,999                                                                  | \$ -                                  | \$ -                                  | \$ -                                  | \$ -                                  | \$ -                                  | \$ -                                  | \$ -                                  | \$ -                       |
|                 |                | 100,000-999,999                                                                | \$ 0.45                               | \$ 0.45                               | \$ 0.23                               | \$ 0.65                               | \$ 0.02                               | \$ 0.02                               | \$ 0.01                               | \$ 0.03                    |
|                 |                | 1,000,000+                                                                     | \$ -                                  | \$ -                                  | \$ -                                  | \$ -                                  | \$ -                                  | \$ -                                  | \$ -                                  | \$ -                       |
|                 |                | All Sizes                                                                      | \$ 7.67                               | \$ 7.63                               | \$ 3.91                               | \$ 11.69                              | \$ 1.10                               | \$ 1.10                               | \$ 0.57                               | \$ 1.65                    |
|                 |                | Subtotal                                                                       | \$ 605.99                             | \$ 607.18                             | \$ 310.07                             | \$ 888.36                             | \$ 37.14                              | \$ 36.59                              | \$ 20.82                              | \$ 56.66                   |
|                 |                | <100                                                                           | \$ 8.35                               | \$ 8.34                               | \$ 7.19                               | \$ 9.54                               | \$ 0.93                               | \$ 0.93                               | \$ 0.87                               | \$ 1.00                    |
|                 |                | 100-499                                                                        | \$ 33.25                              | \$ 33.24                              | \$ 28.08                              | \$ 38.45                              | \$ 3.50                               | \$ 3.50                               | \$ 3.23                               | \$ 3.78                    |
|                 |                | 500-999                                                                        | \$ 20.22                              | \$ 20.22                              | \$ 17.03                              | \$ 23.38                              | \$ 1.88                               | \$ 1.88                               | \$ 1.73                               | \$ 2.02                    |
|                 |                | 1,000-3,299                                                                    | \$ 39.43                              | \$ 39.41                              | \$ 32.34                              | \$ 46.55                              | \$ 2.83                               | \$ 2.83                               | \$ 2.58                               | \$ 3.08                    |
|                 | CWSs           | 3,300-9,999                                                                    | \$ 65.93                              | \$ 65.88                              | \$ 53.54                              | \$ 78.38                              | \$ 2.40                               | \$ 2.40                               | \$ 2.20                               | \$ 2.60                    |
|                 | 01100          | 10,000-49,999                                                                  | \$ 59.09                              | \$ 59.08                              | \$ 53.39                              | \$ 64.79                              | \$ 5.03                               | \$ 5.03                               | \$ 4.76                               | \$ 5.30                    |
|                 |                | 50,000-99,999                                                                  | \$ 14.96                              | \$ 14.96                              | \$ 13.38                              | \$ 16.53                              | \$ 1.28                               | \$ 1.28                               | \$ 1.20                               | \$ 1.36                    |
|                 |                | 100,000-999,999                                                                | \$ 29.70                              | \$ 29.71                              | \$ 26.43                              | \$ 32.95                              | \$ 2.83                               | \$ 2.83                               | \$ 2.64                               | \$ 3.02                    |
|                 |                | 1,000,000+                                                                     | \$ 3.38                               | \$ 3.38                               | \$ 2.97                               | \$ 3.79                               | \$ 0.43                               | \$ 0.43                               | \$ 0.40                               | \$ 0.46                    |
|                 |                | All Sizes                                                                      | \$ 274.30                             | \$ 274.22                             | \$ 234.36                             | \$ 314.36                             | \$ 21.11                              | \$ 21.11                              | \$ 19.60                              | \$ 22.63                   |
| Ground<br>Water |                | <100                                                                           | \$ 3.18                               | \$ 3.17                               | \$ 2.73                               | \$ 3.62                               | \$ 0.35                               | \$ 0.35                               | \$ 0.33                               | \$ 0.38                    |
|                 |                | 100-499                                                                        | \$ 5.04                               | \$ 5.05                               | \$ 4.26                               | \$ 5.82                               | \$ 0.53                               | \$ 0.53                               | \$ 0.48                               | \$ 0.57                    |
|                 |                | 500-999                                                                        | \$ 2.48                               | \$ 2.48                               | \$ 2.08                               | \$ 2.87                               | \$ 0.22                               | \$ 0.22                               | \$ 0.20                               | \$ 0.24                    |
|                 | 1              | 1,000-3,299                                                                    | \$ 1.61                               | \$ 1.61                               | \$ 1.32                               | \$ 1.90                               | \$ 0.10                               | \$ 0.10                               | \$ 0.09                               | \$ 0.10                    |
|                 |                |                                                                                |                                       |                                       |                                       |                                       | \$ 0.01                               | \$ 0.01                               | \$ 0.01                               | \$ 0.01                    |
|                 | NITNICANO -    | 3,300-9,999                                                                    | \$ 0.46                               | \$ 0.46                               | \$ 0.38                               | \$ 0.55                               | φ 0.01                                |                                       |                                       |                            |
|                 | NTNCWSs        |                                                                                | \$ 0.46<br>\$ 0.10                    | \$ 0.46<br>\$ 0.10                    | \$ 0.38<br>\$ 0.09                    | \$ 0.55                               | \$ 0.01                               | \$ 0.01                               | \$ 0.01                               | \$ 0.01                    |
|                 | NTNCWSs        | 3,300-9,999                                                                    |                                       |                                       |                                       |                                       |                                       |                                       |                                       | \$ 0.01<br>\$ 0.00         |
|                 | NTNCWSs        | 3,300-9,999<br>10,000-49,999                                                   | \$ 0.10                               | \$ 0.10                               | \$ 0.09                               | \$ 0.11                               | \$ 0.01                               | \$ 0.01                               | \$ 0.01                               |                            |
|                 | NTNCWSs        | 3,300-9,999<br>10,000-49,999<br>50,000-99,999<br>100,000-999,999               | \$ 0.10<br>\$ 0.02<br>\$ 0.03         | \$ 0.10<br>\$ 0.02                    | \$ 0.09<br>\$ 0.02                    | \$ 0.11<br>\$ 0.02                    | \$ 0.01<br>\$ 0.00                    | \$ 0.01<br>\$ 0.00                    | \$ 0.01<br>\$ 0.00                    | \$ 0.00                    |
|                 | NTNCWSs        | 3,300-9,999<br>10,000-49,999<br>50,000-99,999                                  | \$ 0.10<br>\$ 0.02                    | \$ 0.10<br>\$ 0.02<br>\$ 0.03         | \$ 0.09<br>\$ 0.02<br>\$ 0.03         | \$ 0.11<br>\$ 0.02<br>\$ 0.03         | \$ 0.01<br>\$ 0.00                    | \$ 0.01<br>\$ 0.00<br>\$ 0.00         | \$ 0.01<br>\$ 0.00<br>\$ 0.00         | \$ 0.00<br>\$ 0.00         |
|                 | NTNCWSs        | 3,300-9,999<br>10,000-49,999<br>50,000-99,999<br>100,000-999,999<br>1,000,000+ | \$ 0.10<br>\$ 0.02<br>\$ 0.03<br>\$ - | \$ 0.10<br>\$ 0.02<br>\$ 0.03<br>\$ - | \$ 0.09<br>\$ 0.02<br>\$ 0.03<br>\$ - | \$ 0.11<br>\$ 0.02<br>\$ 0.03<br>\$ - | \$ 0.01<br>\$ 0.00<br>\$ 0.00<br>\$ - | \$ 0.01<br>\$ 0.00<br>\$ 0.00<br>\$ - | \$ 0.01<br>\$ 0.00<br>\$ 0.00<br>\$ - | \$ 0.00<br>\$ 0.00<br>\$ - |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

Source: Derived by multiplying unit costs in Exhibits 7.10 and 7.11 by Technology Selection Deltas in Exhibits 5.14 and 5.17 for the Preferred Alternative, summed for all technologies.

Exhibit J.1b Total Stage 2 DBPR Capital and O&M Costs - PWSs

|                  | ive 1   | 1                                                                                                                                                                                 | Г                                                        |                                                                                                             |                                           |                                                                                               |                                                                            | -1-                                                                                                                 |                                                 |                                                                                                               |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                  |         |                                                                                                                                                                                   |                                                          |                                                                                                             |                                           | Capita                                                                                        | I Cos                                                                      | sts<br>90 Pe                                                                                                        | oroon                                           | nt                                                                                                            |                                                                                                                                                                                                                                                                        | 0&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M Costs<br>90 Percent                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                  |         | System                                                                                                                                                                            |                                                          |                                                                                                             |                                           |                                                                                               |                                                                            | Confidence                                                                                                          |                                                 |                                                                                                               |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                   | nce Bound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                  | System  | Size<br>(population                                                                                                                                                               |                                                          | Mean                                                                                                        |                                           | Median                                                                                        |                                                                            | Lower                                                                                                               |                                                 | Upper                                                                                                         | Mean                                                                                                                                                                                                                                                                   | Median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lower                                                                                                                             | Upper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Source           |         | served)                                                                                                                                                                           |                                                          | Value                                                                                                       |                                           | Value                                                                                         | (                                                                          | 5th %tile)                                                                                                          | (9                                              | 95th %tile)                                                                                                   | Value                                                                                                                                                                                                                                                                  | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (5th %tile)                                                                                                                       | (95th %tile)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                  |         | <100                                                                                                                                                                              | \$                                                       | 1.63                                                                                                        | \$                                        | 1.62                                                                                          | \$                                                                         | 0.85                                                                                                                | \$                                              | 2.48                                                                                                          | \$ 0.31                                                                                                                                                                                                                                                                | \$ 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 0.17                                                                                                                           | \$ 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                  |         | 100-499                                                                                                                                                                           | \$                                                       | 10.29                                                                                                       | \$                                        | 10.22                                                                                         | \$                                                                         | 5.45                                                                                                                | \$                                              | 15.41                                                                                                         | \$ 0.97                                                                                                                                                                                                                                                                | \$ 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 0.52                                                                                                                           | \$ 1.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                  |         | 500-999                                                                                                                                                                           | \$                                                       | 11.58                                                                                                       | \$                                        | 11.50                                                                                         | \$                                                                         | 6.10                                                                                                                | \$                                              | 17.46                                                                                                         | \$ 1.03                                                                                                                                                                                                                                                                | \$ 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 0.55                                                                                                                           | \$ 1.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                  |         | 1,000-3,299                                                                                                                                                                       | \$                                                       | 52.52                                                                                                       | <b>\$</b> \$                              | 52.28                                                                                         | \$                                                                         | 27.76                                                                                                               | \$                                              | 78.36                                                                                                         | \$ 4.64                                                                                                                                                                                                                                                                | \$ 4.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 2.47                                                                                                                           | \$ 6.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                  | CWSs    | 3,300-9,999                                                                                                                                                                       | \$                                                       | 126.46                                                                                                      | \$                                        | 126.07                                                                                        | \$                                                                         | 67.06                                                                                                               | \$                                              | 188.90                                                                                                        | \$ 10.01                                                                                                                                                                                                                                                               | \$ 10.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$ 5.33                                                                                                                           | \$ 14.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                  | CWSs    | 10,000-49,999                                                                                                                                                                     | \$                                                       | 375.17                                                                                                      | \$                                        | 373.02                                                                                        | \$                                                                         | 198.16                                                                                                              | \$                                              | 566.50                                                                                                        | \$ 27.18                                                                                                                                                                                                                                                               | \$ 27.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$ 14.50                                                                                                                          | \$ 40.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                  |         | 50,000-99,999                                                                                                                                                                     | \$                                                       | 243.58                                                                                                      | \$                                        | 241.91                                                                                        | \$                                                                         | 128.35                                                                                                              | \$                                              | 366.17                                                                                                        | \$ 18.55                                                                                                                                                                                                                                                               | \$ 18.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$ 9.86                                                                                                                           | \$ 27.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                  |         | 100,000-999,999                                                                                                                                                                   | \$                                                       | 777.62                                                                                                      | \$                                        | 770.90                                                                                        | \$                                                                         | 408.61                                                                                                              | \$                                              | 1,175.78                                                                                                      | \$ 64.73                                                                                                                                                                                                                                                               | \$ 64.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$ 34.49                                                                                                                          | \$ 95.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                  |         | 1,000,000+                                                                                                                                                                        | \$                                                       | 474.66                                                                                                      | \$                                        | 470.09                                                                                        | \$                                                                         | 250.48                                                                                                              | \$                                              | 720.87                                                                                                        | \$ 51.19                                                                                                                                                                                                                                                               | \$ 51.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$ 27.23                                                                                                                          | \$ 75.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                  |         | All Sizes                                                                                                                                                                         | \$                                                       | 2,073.51                                                                                                    | \$                                        | 2,057.62                                                                                      | \$                                                                         | 1,092.82                                                                                                            | \$                                              | 3,131.93                                                                                                      | \$ 178.63                                                                                                                                                                                                                                                              | \$ 178.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$ 95.13                                                                                                                          | \$ 263.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Surface<br>Water |         | <100                                                                                                                                                                              | \$                                                       | 1.00                                                                                                        | \$                                        | 0.99                                                                                          | \$                                                                         | 0.52                                                                                                                | \$                                              | 1.52                                                                                                          | \$ 0.19                                                                                                                                                                                                                                                                | \$ 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 0.10                                                                                                                           | \$ 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| water            |         | 100-499                                                                                                                                                                           | \$                                                       | 4.16                                                                                                        | \$                                        | 4.14                                                                                          | \$                                                                         | 2.20                                                                                                                | \$                                              | 6.25                                                                                                          | \$ 0.39                                                                                                                                                                                                                                                                | \$ 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                   | \$ 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                  |         | 500-999                                                                                                                                                                           | \$                                                       | 2.56                                                                                                        | \$                                        | 2.55                                                                                          | \$                                                                         | 1.35                                                                                                                | \$                                              | 3.85                                                                                                          | \$ 0.23                                                                                                                                                                                                                                                                | \$ 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                   | \$ 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                  |         | 1,000-3,299                                                                                                                                                                       | \$                                                       | 4.08                                                                                                        | \$                                        | 4.06                                                                                          | \$                                                                         | 2.16                                                                                                                | \$                                              | 6.11                                                                                                          | \$ 0.36                                                                                                                                                                                                                                                                | \$ 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                   | \$ 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                  |         | 3,300-9,999                                                                                                                                                                       | \$                                                       | 2.68                                                                                                        | \$                                        | 2.68                                                                                          | \$                                                                         | 1.42                                                                                                                | \$                                              | 4.00                                                                                                          | \$ 0.21                                                                                                                                                                                                                                                                | \$ 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 0.11                                                                                                                           | \$ 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                  | NTNCWSs | 10,000-49,999                                                                                                                                                                     | \$                                                       | 1.95                                                                                                        | \$                                        | 1.94                                                                                          | \$                                                                         | 1.03                                                                                                                | \$                                              | 2.94                                                                                                          | \$ 0.14                                                                                                                                                                                                                                                                | \$ 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 0.08                                                                                                                           | \$ 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                  |         | 50,000-99,999                                                                                                                                                                     | \$                                                       | _                                                                                                           | \$                                        | _                                                                                             | \$                                                                         | _                                                                                                                   | \$                                              | _                                                                                                             | s -                                                                                                                                                                                                                                                                    | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s -                                                                                                                               | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                  |         | 100,000-999,999                                                                                                                                                                   | \$                                                       | 1.90                                                                                                        | \$                                        | 1.89                                                                                          | \$                                                                         | 1.00                                                                                                                | \$                                              | 2.87                                                                                                          | \$ 0.16                                                                                                                                                                                                                                                                | \$ 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 0.09                                                                                                                           | \$ 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                  |         | 1,000,000+                                                                                                                                                                        | \$                                                       |                                                                                                             | \$                                        | -                                                                                             | \$                                                                         | -                                                                                                                   | \$                                              |                                                                                                               | \$ -                                                                                                                                                                                                                                                                   | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s -                                                                                                                               | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                  |         | All Sizes                                                                                                                                                                         | \$                                                       | 18.33                                                                                                       | \$                                        | 18.25                                                                                         | \$                                                                         | 9.69                                                                                                                | \$                                              | 27.55                                                                                                         | \$ 1.68                                                                                                                                                                                                                                                                | \$ 1.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                 | \$ 2.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                  |         | Subtotal                                                                                                                                                                          | \$                                                       | 2,091.84                                                                                                    | \$                                        | 2,075.87                                                                                      | \$                                                                         | 1,102.51                                                                                                            | \$                                              | 3,159.48                                                                                                      | \$ 180.30                                                                                                                                                                                                                                                              | \$ 180.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$ 96.02                                                                                                                          | \$ 266.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                  |         | <100                                                                                                                                                                              | \$                                                       | 9.49                                                                                                        | \$                                        | 9.48                                                                                          | \$                                                                         | 8.19                                                                                                                | \$                                              | 10.81                                                                                                         | \$ 1.11                                                                                                                                                                                                                                                                | \$ 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 1.03                                                                                                                           | \$ 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                  |         | 100-499                                                                                                                                                                           | \$                                                       | 41.02                                                                                                       | \$                                        | 41.03                                                                                         | \$                                                                         | 34.80                                                                                                               | \$                                              | 47.22                                                                                                         | \$ 4.47                                                                                                                                                                                                                                                                | \$ 4.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 4.13                                                                                                                           | \$ 4.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                  |         | 500-999                                                                                                                                                                           | \$                                                       | 25.90                                                                                                       | \$                                        | 25.91                                                                                         | \$                                                                         | 22.03                                                                                                               | \$                                              | 29.76                                                                                                         | \$ 2.56                                                                                                                                                                                                                                                                | \$ 2.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                   | \$ 2.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                  |         | 1,000-3,299                                                                                                                                                                       | \$                                                       | 66.11                                                                                                       | \$                                        | 66.12                                                                                         | \$                                                                         |                                                                                                                     |                                                 |                                                                                                               |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                  |         | 3,300-9,999                                                                                                                                                                       | \$                                                       |                                                                                                             | _                                         |                                                                                               | 3                                                                          | 55.71                                                                                                               | \$                                              | 76.61                                                                                                         | \$ 5.36                                                                                                                                                                                                                                                                | \$ 5.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 4.99                                                                                                                           | \$ 5.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                  | CWSs    | .,                                                                                                                                                                                |                                                          | 111.35                                                                                                      | \$                                        |                                                                                               | \$                                                                         |                                                                                                                     | \$                                              |                                                                                                               |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                  |         | 10.000-49.999                                                                                                                                                                     | \$                                                       | 111.35<br>141.00                                                                                            | \$                                        | 111.19                                                                                        |                                                                            | 93.04                                                                                                               |                                                 | 129.69                                                                                                        | \$ 5.23                                                                                                                                                                                                                                                                | \$ 5.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 4.90                                                                                                                           | \$ 5.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                  |         | 10,000-49,999                                                                                                                                                                     | \$                                                       | 141.00                                                                                                      | \$                                        | 111.19<br>140.97                                                                              | \$                                                                         | 93.04<br>122.94                                                                                                     | \$                                              | 129.69<br>159.17                                                                                              | \$ 5.23<br>\$ 13.60                                                                                                                                                                                                                                                    | \$ 5.23<br>\$ 13.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$ 4.90<br>\$ 12.66                                                                                                               | \$ 5.56<br>\$ 14.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                  |         | 50,000-99,999                                                                                                                                                                     | \$                                                       | 141.00<br>41.16                                                                                             |                                           | 111.19<br>140.97<br>41.17                                                                     | \$                                                                         | 93.04<br>122.94<br>35.68                                                                                            | \$                                              | 129.69<br>159.17<br>46.65                                                                                     | \$ 5.23<br>\$ 13.60<br>\$ 3.92                                                                                                                                                                                                                                         | \$ 5.23<br>\$ 13.60<br>\$ 3.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ 4.90<br>\$ 12.66<br>\$ 3.62                                                                                                    | \$ 5.56<br>\$ 14.56<br>\$ 4.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                  |         | 50,000-99,999<br>100,000-999,999                                                                                                                                                  | \$                                                       | 141.00<br>41.16<br>85.11                                                                                    | \$                                        | 111.19<br>140.97<br>41.17<br>85.20                                                            | \$<br>\$<br>\$                                                             | 93.04<br>122.94<br>35.68<br>73.73                                                                                   | \$ \$                                           | 129.69<br>159.17<br>46.65<br>96.51                                                                            | \$ 5.23<br>\$ 13.60<br>\$ 3.92<br>\$ 9.08                                                                                                                                                                                                                              | \$ 5.23<br>\$ 13.60<br>\$ 3.92<br>\$ 9.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$ 4.90<br>\$ 12.66<br>\$ 3.62<br>\$ 8.36                                                                                         | \$ 5.56<br>\$ 14.56<br>\$ 4.21<br>\$ 9.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                  |         | 50,000-99,999<br>100,000-999,999<br>1,000,000+                                                                                                                                    | \$                                                       | 141.00<br>41.16                                                                                             | \$                                        | 111.19<br>140.97<br>41.17                                                                     | \$ \$                                                                      | 93.04<br>122.94<br>35.68                                                                                            | \$ \$                                           | 129.69<br>159.17<br>46.65                                                                                     | \$ 5.23<br>\$ 13.60<br>\$ 3.92                                                                                                                                                                                                                                         | \$ 5.23<br>\$ 13.60<br>\$ 3.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ 4.90<br>\$ 12.66<br>\$ 3.62<br>\$ 8.36<br>\$ 1.36                                                                              | \$ 5.56<br>\$ 14.56<br>\$ 4.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Ground           |         | 50,000-99,999<br>100,000-999,999<br>1,000,000+<br>All Sizes                                                                                                                       | \$<br>\$<br>\$                                           | 141.00<br>41.16<br>85.11<br>10.53<br>531.67                                                                 | \$ \$                                     | 111.19<br>140.97<br>41.17<br>85.20<br>10.52<br>531.60                                         | \$ \$                                                                      | 93.04<br>122.94<br>35.68<br>73.73<br>9.05<br>455.17                                                                 | \$ \$ \$                                        | 129.69<br>159.17<br>46.65<br>96.51<br>12.01<br>608.43                                                         | \$ 5.23<br>\$ 13.60<br>\$ 3.92<br>\$ 9.08<br>\$ 1.48                                                                                                                                                                                                                   | \$ 5.23<br>\$ 13.60<br>\$ 3.92<br>\$ 9.08<br>\$ 1.48<br>\$ 46.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 4.90<br>\$ 12.66<br>\$ 3.62<br>\$ 8.36<br>\$ 1.36<br>\$ 43.42                                                                  | \$ 5.56<br>\$ 14.56<br>\$ 4.21<br>\$ 9.80<br>\$ 1.60<br>\$ 50.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Ground<br>Water  |         | 50,000-99,999<br>100,000-999,999<br>1,000,000+<br>All Sizes                                                                                                                       | \$ \$                                                    | 141.00<br>41.16<br>85.11<br>10.53<br>531.67<br>3.60                                                         | \$ \$ \$                                  | 111.19<br>140.97<br>41.17<br>85.20<br>10.52<br>531.60                                         | \$<br>\$<br>\$<br>\$<br>\$                                                 | 93.04<br>122.94<br>35.68<br>73.73<br>9.05<br>455.17                                                                 | \$ \$ \$                                        | 129.69<br>159.17<br>46.65<br>96.51<br>12.01<br>608.43                                                         | \$ 5.23<br>\$ 13.60<br>\$ 3.92<br>\$ 9.08<br>\$ 1.48<br>\$ 46.81                                                                                                                                                                                                       | \$ 5.23<br>\$ 13.60<br>\$ 3.92<br>\$ 9.08<br>\$ 1.48<br>\$ 46.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 4.90<br>\$ 12.66<br>\$ 3.62<br>\$ 8.36<br>\$ 1.36<br>\$ 43.42<br>\$ 0.39                                                       | \$ 5.560<br>\$ 14.560<br>\$ 4.21<br>\$ 9.80<br>\$ 1.60<br>\$ 50.20<br>\$ 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                  |         | 50,000-99,999<br>100,000-999,999<br>1,000,000+<br>All Sizes<br><100<br>100-499                                                                                                    | \$ \$                                                    | 141.00<br>41.16<br>85.11<br>10.53<br>531.67<br>3.60<br>6.31                                                 | \$ \$ \$ \$                               | 111.19<br>140.97<br>41.17<br>85.20<br>10.52<br>531.60<br>3.60<br>6.32                         | \$ \$ \$ \$ \$                                                             | 93.04<br>122.94<br>35.68<br>73.73<br>9.05<br>455.17<br>3.10<br>5.37                                                 | \$ \$ \$ \$ \$                                  | 129.69<br>159.17<br>46.65<br>96.51<br>12.01<br>608.43<br>4.10                                                 | \$ 5.23<br>\$ 13.60<br>\$ 3.92<br>\$ 9.08<br>\$ 1.48<br>\$ 46.81<br>\$ 0.42<br>\$ 0.68                                                                                                                                                                                 | \$ 5.23<br>\$ 13.60<br>\$ 3.92<br>\$ 9.08<br>\$ 1.48<br>\$ 46.80<br>\$ 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$ 4.90<br>\$ 12.66<br>\$ 3.62<br>\$ 8.36<br>\$ 1.36<br>\$ 43.42<br>\$ 0.39<br>\$ 0.62                                            | \$ 5.56<br>\$ 14.56<br>\$ 4.21<br>\$ 9.80<br>\$ 1.60<br>\$ 50.20<br>\$ 0.45<br>\$ 0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                  |         | 50,000-99,999<br>100,000-999,999<br>1,000,000+<br>All Sizes<br><100<br>100-499<br>500-999                                                                                         | \$<br>\$<br>\$<br>\$<br>\$                               | 141.00<br>41.16<br>85.11<br>10.53<br>531.67<br>3.60<br>6.31<br>3.20                                         | \$ \$ \$ \$ \$                            | 111.19<br>140.97<br>41.17<br>85.20<br>10.52<br>531.60<br>3.60<br>6.32<br>3.20                 | \$<br>\$<br>\$<br>\$<br>\$<br>\$                                           | 93.04<br>122.94<br>35.68<br>73.73<br>9.05<br>455.17<br>3.10<br>5.37<br>2.71                                         | \$ \$ \$ \$ \$                                  | 129.69<br>159.17<br>46.65<br>96.51<br>12.01<br>608.43<br>4.10<br>7.26                                         | \$ 5.23<br>\$ 13.60<br>\$ 3.92<br>\$ 9.08<br>\$ 1.48<br>\$ 46.81<br>\$ 0.42<br>\$ 0.68<br>\$ 0.30                                                                                                                                                                      | \$ 5.23<br>\$ 13.60<br>\$ 3.92<br>\$ 9.08<br>\$ 1.48<br>\$ 46.80<br>\$ 0.42<br>\$ 0.68<br>\$ 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$ 4.90<br>\$ 12.66<br>\$ 3.62<br>\$ 8.36<br>\$ 1.36<br>\$ 43.42<br>\$ 0.39<br>\$ 0.62<br>\$ 0.28                                 | \$ 5.56<br>\$ 14.56<br>\$ 9.80<br>\$ 1.60<br>\$ 50.20<br>\$ 0.45<br>\$ 0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                  |         | 50,000-99,999<br>100,000-999,999<br>1,000,000+<br>All Sizes<br><100<br>100-499<br>500-999<br>1,000-3,299                                                                          | \$ \$ \$ \$ \$ \$                                        | 141.00<br>41.16<br>85.11<br>10.53<br>531.67<br>3.60<br>6.31<br>3.20<br>2.74                                 | \$ \$ \$ \$                               | 111.19<br>140.97<br>41.17<br>85.20<br>10.52<br>531.60<br>3.60<br>6.32<br>3.20<br>2.74         | \$<br>\$<br>\$<br>\$<br>\$<br>\$                                           | 93.04<br>122.94<br>35.68<br>73.73<br>9.05<br>455.17<br>3.10<br>5.37<br>2.71                                         | \$ \$ \$ \$ \$ \$                               | 129.69<br>159.17<br>46.65<br>96.51<br>12.01<br>608.43<br>4.10<br>7.26<br>3.69                                 | \$ 5.23<br>\$ 13.60<br>\$ 3.92<br>\$ 9.08<br>\$ 1.48<br>\$ 46.81<br>\$ 0.42<br>\$ 0.68<br>\$ 0.30<br>\$ 0.19                                                                                                                                                           | \$ 5.23<br>\$ 13.60<br>\$ 3.92<br>\$ 9.08<br>\$ 1.46<br>\$ 46.80<br>\$ 0.42<br>\$ 0.68<br>\$ 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$ 4.90<br>\$ 12.66<br>\$ 3.62<br>\$ 8.36<br>\$ 1.36<br>\$ 43.42<br>\$ 0.39<br>\$ 0.62<br>\$ 0.28<br>\$ 0.18                      | \$ 5.56<br>\$ 14.56<br>\$ 9.80<br>\$ 1.60<br>\$ 50.20<br>\$ 0.45<br>\$ 0.73<br>\$ 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                  | NTNCWSs | 50,000-99,999<br>100,000-999,999<br>1,000,000+<br>All Sizes<br><100<br>100-499<br>500-999<br>1,000-3,299<br>3,300-9,999                                                           | \$ \$ \$                                                 | 141.00<br>41.16<br>85.11<br>10.53<br>531.67<br>3.60<br>6.31<br>3.20<br>2.74                                 | \$ \$ \$ \$ \$                            | 111.19<br>140.97<br>41.17<br>85.20<br>10.52<br>531.60<br>3.60<br>6.32<br>3.20<br>2.74<br>0.79 | \$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$                               | 93.04<br>122.94<br>35.68<br>73.73<br>9.05<br>455.17<br>3.10<br>5.37<br>2.71<br>2.31                                 | \$ \$ \$ \$ \$ \$                               | 129.69<br>159.17<br>46.65<br>96.51<br>12.01<br>608.43<br>4.10<br>7.26<br>3.69<br>3.17                         | \$ 5.23<br>\$ 13.60<br>\$ 3.92<br>\$ 9.08<br>\$ 1.48<br>\$ 46.81<br>\$ 0.42<br>\$ 0.68<br>\$ 0.30<br>\$ 0.19<br>\$ 0.03                                                                                                                                                | \$ 5.23<br>\$ 13.60<br>\$ 3.92<br>\$ 9.06<br>\$ 1.48<br>\$ 46.80<br>\$ 0.42<br>\$ 0.66<br>\$ 0.30<br>\$ 0.03<br>\$ 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 4.90<br>\$ 12.66<br>\$ 3.62<br>\$ 8.36<br>\$ 1.36<br>\$ 43.42<br>\$ 0.39<br>\$ 0.62<br>\$ 0.28<br>\$ 0.18                      | \$ 5.56<br>\$ 14.56<br>\$ 9.80<br>\$ 1.60<br>\$ 50.20<br>\$ 0.45<br>\$ 0.73<br>\$ 0.32<br>\$ 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                  | NTNCWSs | 50,000-99,999<br>100,000-999,999<br>1,000,000+<br>All Sizes<br><100<br>100-499<br>500-999<br>1,000-3,299<br>3,300-9,999<br>10,000-49,999                                          | \$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$                   | 141.00<br>41.16<br>85.11<br>10.53<br>531.67<br>3.60<br>6.31<br>3.20<br>2.74<br>0.79                         | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 111.19 140.97 41.17 85.20 10.52 531.60 3.60 6.32 3.20 2.74 0.79 0.28                          | \$<br>\$<br>\$<br>\$<br>\$<br>\$                                           | 93.04<br>122.94<br>35.68<br>73.73<br>90.5<br>455.17<br>3.10<br>5.37<br>2.71<br>2.31<br>0.66                         | \$ \$ \$ \$ \$ \$                               | 129.69<br>159.17<br>46.65<br>96.51<br>12.01<br>608.43<br>4.10<br>7.26<br>3.69<br>3.17<br>0.92                 | \$ 5.23<br>\$ 13.60<br>\$ 3.92<br>\$ 9.08<br>\$ 1.48<br>\$ 46.81<br>\$ 0.42<br>\$ 0.68<br>\$ 0.30<br>\$ 0.19<br>\$ 0.03                                                                                                                                                | \$ 523<br>\$ 13,600<br>\$ 3,92<br>\$ 9,08<br>\$ 1.48<br>\$ 0.42<br>\$ 0.68<br>\$ 0.30<br>\$ 0.15<br>\$ 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$ 4.90<br>\$ 12.66<br>\$ 3.62<br>\$ 8.36<br>\$ 1.36<br>\$ 43.42<br>\$ 0.39<br>\$ 0.62<br>\$ 0.28<br>\$ 0.18<br>\$ 0.03           | \$ 5.56<br>\$ 14.56<br>\$ 9.80<br>\$ 1.60<br>\$ 50.20<br>\$ 0.45<br>\$ 0.73<br>\$ 0.32<br>\$ 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                  | NTNCWSs | 50,000-99,999 100,000-999,999 1,000,000+ All Sizes <100 100-499 500-999 1,000-3,299 3,300-9,999 10,000-49,999 50,000-99,999                                                       | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                | 141.00<br>41.16<br>85.11<br>10.53<br>531.67<br>3.60<br>6.31<br>3.20<br>2.74<br>0.79<br>0.28                 | \$ \$ \$ \$ \$ \$ \$                      | 111.19 140.97 41.17 85.20 10.52 531.60 3.60 6.32 3.20 2.74 0.79 0.28                          | \$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$ | 93.04<br>122.94<br>35.68<br>73.73<br>9.05<br>455.17<br>3.10<br>5.37<br>2.71<br>2.31<br>0.66<br>0.24                 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                   | 129.69<br>159.17<br>46.65<br>96.51<br>12.01<br>608.43<br>4.10<br>7.26<br>3.69<br>3.17<br>0.92                 | \$ 5.23<br>\$ 13.60<br>\$ 3.92<br>\$ 9.08<br>\$ 1.48<br>\$ 46.81<br>\$ 0.42<br>\$ 0.68<br>\$ 0.30<br>\$ 0.19<br>\$ 0.03<br>\$ 0.02<br>\$ 0.02                                                                                                                          | \$ 523<br>\$ 13,600<br>\$ 3,92<br>\$ 9,08<br>\$ 1.48<br>\$ 0.42<br>\$ 0.68<br>\$ 0.30<br>\$ 0.15<br>\$ 0.03<br>\$ 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$ 4.90<br>\$ 12.66<br>\$ 3.62<br>\$ 8.36<br>\$ 1.36<br>\$ 43.42<br>\$ 0.39<br>\$ 0.62<br>\$ 0.28<br>\$ 0.18<br>\$ 0.03           | \$ 5.56<br>\$ 14.56<br>\$ 9.80<br>\$ 1.60<br>\$ 50.20<br>\$ 0.45<br>\$ 0.73<br>\$ 0.32<br>\$ 0.03<br>\$ 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                  | NTNCWSs | 50,000-99,999 100,000-999,999 1,000,000-999,999 4100 100-499 500-999 1,000-3,299 10,000-49,999 10,000-999,999 100,000-999,999                                                     | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 141.00<br>41.16<br>85.11<br>10.53<br>531.67<br>3.60<br>6.31<br>3.20<br>2.74<br>0.79                         | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$          | 111.19 140.97 41.17 85.20 10.52 531.60 3.60 6.32 3.20 2.74 0.79 0.28                          | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                                           | 93.04<br>122.94<br>35.68<br>73.73<br>90.5<br>455.17<br>3.10<br>5.37<br>2.71<br>2.31<br>0.66                         | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$             | 129.69<br>159.17<br>46.65<br>96.51<br>12.01<br>608.43<br>4.10<br>7.26<br>3.69<br>3.17<br>0.92                 | \$ 5.23<br>\$ 13.60<br>\$ 3.92<br>\$ 9.08<br>\$ 1.48<br>\$ 46.81<br>\$ 0.42<br>\$ 0.68<br>\$ 0.30<br>\$ 0.19<br>\$ 0.03<br>\$ 0.02<br>\$ 0.01                                                                                                                          | \$ 522<br>\$ 13,60<br>\$ 3,92<br>\$ 9,08<br>\$ 1.48<br>\$ 0.42<br>\$ 0.68<br>\$ 0.30<br>\$ 0.03<br>\$ 0.03<br>\$ 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ 4.90<br>\$ 12.66<br>\$ 3.62<br>\$ 8.36<br>\$ 1.36<br>\$ 0.39<br>\$ 0.62<br>\$ 0.28<br>\$ 0.18<br>\$ 0.03<br>\$ 0.02<br>\$ 0.01 | \$ 5.56<br>\$ 14.56<br>\$ 9.80<br>\$ 1.60<br>\$ 50.20<br>\$ 0.45<br>\$ 0.73<br>\$ 0.32<br>\$ 0.03<br>\$ 0.00<br>\$ 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                  | NTNCWSs | 50,000-99,999 100,000-999,999 1,000,000+ All Sizes <100 100-499 500-999 1,000-3,299 10,000-49,999 10,000-999,999 10,000-999,999 1,000,000-999,999 1,000,000+                      | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 141.00<br>41.16<br>85.11<br>10.53<br>531.67<br>3.60<br>6.31<br>3.20<br>2.74<br>0.79<br>0.28<br>0.07         | \$ \$ \$ \$ \$ \$                         | 111.19 140.97 41.17 85.20 10.52 531.60 3.60 6.32 3.20 2.74 0.79 0.28 0.07                     | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                                           | 93.04<br>122.94<br>35.68<br>73.73<br>90.5<br>455.17<br>3.10<br>5.37<br>2.71<br>2.31<br>0.66<br>0.24<br>0.06         | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 129.69<br>159.17<br>46.65<br>96.51<br>12.01<br>608.43<br>4.10<br>7.26<br>3.69<br>3.17<br>0.92<br>0.31         | \$ 5.23<br>\$ 13.60<br>\$ 3.92<br>\$ 9.08<br>\$ 1.48<br>\$ 46.81<br>\$ 0.42<br>\$ 0.68<br>\$ 0.30<br>\$ 0.19<br>\$ 0.03<br>\$ 0.02<br>\$ 0.01<br>\$ 0.01<br>\$ 0.01                                                                                                    | \$ 522<br>\$ 13,60<br>\$ 3,92<br>\$ 9,08<br>\$ 1.48<br>\$ 0.42<br>\$ 0.68<br>\$ 0.30<br>\$ 0.00<br>\$ 0.00<br>\$ 0.00<br>\$ 0.00<br>\$ 0.00<br>\$ 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$ 4.90 \$ 12.66 \$ 3.62 \$ 8.36 \$ 1.36 \$ 43.42 \$ 0.39 \$ 0.62 \$ 0.18 \$ 0.03 \$ 0.01 \$ 0.01 \$ 0.01                         | \$ 5.56 \$ 14.56 \$ 9.80 \$ 1.60 \$ 0.45 \$ 0.73 \$ 0.32 \$ 0.03 \$ 0.01 \$ 0.01 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                  | NTNCWSs | 50,000-99,999 100,000-999,999 1,000,000+ All Sizes <100 100-499 500-999 1,000-3,299 10,000-49,999 10,000-99,999 10,000-99,999 10,000-99,999 1,000,000-99,999 1,000,000+ All Sizes | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 141.00<br>41.16<br>85.11<br>10.53<br>531.67<br>3.60<br>6.31<br>3.20<br>2.74<br>0.79<br>0.28<br>0.07<br>0.09 | \$ \$ \$ \$ \$ \$ \$                      | 111.19 140.97 41.17 85.20 10.52 531.60 3.60 6.32 3.20 2.74 0.79 0.28 0.07 0.09                | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                   | 93.04<br>122.94<br>35.68<br>73.73<br>9.05<br>455.17<br>3.10<br>5.37<br>2.71<br>2.31<br>0.66<br>0.24<br>0.06<br>0.08 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$             | 129.69<br>159.17<br>46.65<br>96.51<br>12.01<br>608.43<br>4.10<br>7.26<br>3.69<br>3.17<br>0.92<br>0.31<br>0.08 | \$ 5.23<br>\$ 13.60<br>\$ 3.92<br>\$ 9.08<br>\$ 1.48<br>\$ 46.81<br>\$ 0.42<br>\$ 0.68<br>\$ 0.30<br>\$ 0.19<br>\$ 0.03<br>\$ 0.02<br>\$ 0.01<br>\$ 0.01 | \$ 523<br>\$ 13,600<br>\$ 9,08<br>\$ 1.48<br>\$ 0.42<br>\$ 0.68<br>\$ 0.30<br>\$ 0.00<br>\$ | \$ 4.90 \$ 12.66 \$ 3.62 \$ 8.36 \$ 1.36 \$ 43.42 \$ 0.39 \$ 0.62 \$ 0.18 \$ 0.01 \$ 0.01 \$ 0.01 \$ \$ 1.54                      | \$ 5.56 \$ 14.56 \$ 9.80 \$ 1.60 \$ 0.45 \$ 0.73 \$ 0.32 \$ 0.03 \$ 0.01 \$ 0.01 \$ - \$ 1.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                  | NTNCWSs | 50,000-99,999 100,000-999,999 1,000,000+ All Sizes <100 100-499 500-999 1,000-3,299 10,000-49,999 10,000-999,999 10,000-999,999 1,000,000-999,999 1,000,000+                      | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 141.00<br>41.16<br>85.11<br>10.53<br>531.67<br>3.60<br>6.31<br>3.20<br>2.74<br>0.79<br>0.28<br>0.07         | \$ \$ \$ \$ \$ \$                         | 111.19 140.97 41.17 85.20 10.52 531.60 3.60 6.32 3.20 2.74 0.79 0.28 0.07                     | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                                           | 93.04<br>122.94<br>35.68<br>73.73<br>90.5<br>455.17<br>3.10<br>5.37<br>2.71<br>2.31<br>0.66<br>0.24<br>0.06         | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 129.69<br>159.17<br>46.65<br>96.51<br>12.01<br>608.43<br>4.10<br>7.26<br>3.69<br>3.17<br>0.92<br>0.31         | \$ 5.23<br>\$ 13.60<br>\$ 3.92<br>\$ 9.08<br>\$ 1.48<br>\$ 46.81<br>\$ 0.42<br>\$ 0.68<br>\$ 0.30<br>\$ 0.19<br>\$ 0.03<br>\$ 0.02<br>\$ 0.01<br>\$ 0.01<br>\$ 0.01                                                                                                    | \$ 522<br>\$ 13,60<br>\$ 3,92<br>\$ 9,08<br>\$ 1.48<br>\$ 0.42<br>\$ 0.68<br>\$ 0.30<br>\$ 0.00<br>\$ 0.00<br>\$ 0.00<br>\$ 0.00<br>\$ 0.00<br>\$ 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$ 4.90 \$ 12.66 \$ 3.62 \$ 8.36 \$ 1.36 \$ 43.42 \$ 0.39 \$ 0.62 \$ 0.18 \$ 0.01 \$ 0.01 \$ 0.01 \$ \$ 1.54                      | \$ 5.5 14.1 \$ 4.1 \$ 9.0 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ 1.1 \$ |  |  |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

Source: Derived by multiplying unit costs in Exhibits 7.10 and 7.11 by Technology Selection Deltas in in Appendix C (results for Alternative 1), summed for all technologies.

Exhibit J.1c Total Stage 2 DBPR Capital and O&M Costs - PWSs

#### Alternative 2

|                  | ive 2          | 1                                                                                                                            |                                                 |                                                                                          |                                                          | Capita                                                                                   | l Co                             | ete                                                                              |                                        |                                                                                                    |                                                          |                                                                                |                                                          | O&M                                                                            | Costs                                                                                                                                                    |                                                          |                                                                               |
|------------------|----------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------|
|                  |                | System                                                                                                                       |                                                 |                                                                                          |                                                          | Сарна                                                                                    |                                  | 90 P€                                                                            | ercei                                  | ent                                                                                                |                                                          |                                                                                |                                                          | Odivi                                                                          |                                                                                                                                                          | ercent                                                   |                                                                               |
|                  |                | Size                                                                                                                         |                                                 |                                                                                          |                                                          |                                                                                          |                                  | Confidence                                                                       |                                        |                                                                                                    |                                                          |                                                                                |                                                          |                                                                                | Confider                                                                                                                                                 |                                                          | und                                                                           |
|                  | System         | (population                                                                                                                  |                                                 | Mean                                                                                     |                                                          | Median                                                                                   |                                  | Lower                                                                            |                                        | Upper                                                                                              |                                                          | Mean                                                                           |                                                          | Median                                                                         | Lower                                                                                                                                                    |                                                          | Jpper                                                                         |
| Source           | Classification | served)                                                                                                                      |                                                 | Value                                                                                    |                                                          | Value                                                                                    | _                                | (5th %tile)                                                                      | (9                                     | (95th %tile)                                                                                       |                                                          | Value                                                                          |                                                          | Value                                                                          | (5th %tile)                                                                                                                                              | (95th                                                    | n %tile)                                                                      |
|                  |                | <100                                                                                                                         | \$                                              | 8.13                                                                                     | \$                                                       | 8.10                                                                                     | \$                               | 6.66                                                                             | \$                                     | 9.71                                                                                               | \$                                                       | 1.47                                                                           | \$                                                       | 1.47                                                                           | \$ 1.24                                                                                                                                                  | \$                                                       | 1.71                                                                          |
|                  |                | 100-499                                                                                                                      | \$                                              | 43.58                                                                                    | \$                                                       | 43.41                                                                                    | \$                               | 36.02                                                                            | \$                                     | 51.61                                                                                              | \$                                                       | 7.63                                                                           | \$                                                       | 7.62                                                                           | \$ 6.43                                                                                                                                                  | \$                                                       | 8.87                                                                          |
|                  |                | 500-999                                                                                                                      | \$                                              | 53.68                                                                                    | \$                                                       | 53.57                                                                                    | \$                               | 44.37                                                                            | \$                                     | 63.45                                                                                              | \$                                                       | 6.44                                                                           | \$                                                       | 6.44                                                                           | \$ 5.44                                                                                                                                                  | \$                                                       | 7.48                                                                          |
|                  |                | 1,000-3,299                                                                                                                  | \$                                              | 246.27                                                                                   | \$                                                       | 245.72                                                                                   | \$                               | 203.14                                                                           | \$                                     | 291.56                                                                                             | \$                                                       | 31.98                                                                          | \$                                                       | 31.96                                                                          | \$ 26.89                                                                                                                                                 | \$                                                       | 37.22                                                                         |
|                  | CWSs           | 3,300-9,999                                                                                                                  | \$                                              | 629.73                                                                                   | \$                                                       | 627.53                                                                                   | \$                               | 520.34                                                                           | \$                                     | 746.23                                                                                             | \$                                                       | 55.92                                                                          | \$                                                       | 55.88                                                                          | \$ 47.17                                                                                                                                                 | \$                                                       | 64.96                                                                         |
|                  |                | 10,000-49,999                                                                                                                | \$                                              | 820.20                                                                                   | \$                                                       | 816.83                                                                                   | \$                               | 679.03                                                                           | \$                                     | 972.15                                                                                             | \$                                                       | 42.30                                                                          | \$                                                       | 42.26                                                                          | \$ 35.74                                                                                                                                                 | \$                                                       | 48.94                                                                         |
|                  |                | 50,000-99,999                                                                                                                | \$                                              | 501.30                                                                                   | \$                                                       | 499.80                                                                                   | \$                               | 414.99                                                                           | \$                                     | 592.70                                                                                             | \$                                                       | 25.74                                                                          | \$                                                       | 25.75                                                                          | \$ 21.76                                                                                                                                                 | \$                                                       | 29.78                                                                         |
|                  |                | 100,000-999,999                                                                                                              | \$                                              | 1,364.84                                                                                 | \$                                                       | 1,364.04                                                                                 | \$                               | 1,130.35                                                                         | \$                                     | 1,612.55                                                                                           | \$                                                       | 72.10                                                                          | \$                                                       | 72.15                                                                          | \$ 60.91                                                                                                                                                 | \$                                                       | 83.55                                                                         |
|                  |                | 1,000,000+                                                                                                                   | \$                                              | 703.45                                                                                   | \$                                                       | 701.15                                                                                   | \$                               | 582.60                                                                           | \$                                     | 830.64                                                                                             | \$                                                       | 49.28                                                                          | \$                                                       | 49.29                                                                          | \$ 41.59                                                                                                                                                 | \$                                                       | 57.19                                                                         |
|                  |                | All Sizes                                                                                                                    | \$                                              | 4,371.18                                                                                 | \$                                                       | 4,360.14                                                                                 | \$                               | 3,617.49                                                                         | \$                                     | 5,170.61                                                                                           | \$                                                       | 292.87                                                                         | \$                                                       | 292.82                                                                         | \$ 247.17                                                                                                                                                | \$                                                       | 339.70                                                                        |
| Surface<br>Water |                | <100                                                                                                                         | \$                                              | 4.90                                                                                     | \$                                                       | 4.89                                                                                     | \$                               | 4.02                                                                             | \$                                     | 5.86                                                                                               | \$                                                       | 0.87                                                                           | \$                                                       | 0.87                                                                           | \$ 0.74                                                                                                                                                  | \$                                                       | 1.01                                                                          |
| rator            |                | 100-499                                                                                                                      | \$                                              | 17.59                                                                                    | \$                                                       | 17.56                                                                                    | \$                               | 14.55                                                                            | \$                                     | 20.85                                                                                              | \$                                                       | 3.10                                                                           | \$                                                       | 3.10                                                                           | \$ 2.60                                                                                                                                                  | \$                                                       | 3.60                                                                          |
|                  |                | 500-999                                                                                                                      | \$                                              | 11.86                                                                                    | \$                                                       | 11.85                                                                                    | \$                               | 9.80                                                                             | \$                                     | 14.04                                                                                              | \$                                                       | 1.42                                                                           | \$                                                       | 1.42                                                                           | \$ 1.20                                                                                                                                                  | \$                                                       | 1.65                                                                          |
|                  |                | 1,000-3,299                                                                                                                  | \$                                              | 19.01                                                                                    | \$                                                       | 18.95                                                                                    | \$                               | 15.72                                                                            | \$                                     | 22.57                                                                                              | \$                                                       | 2.47                                                                           | \$                                                       | 2.46                                                                           | \$ 2.08                                                                                                                                                  | \$                                                       | 2.87                                                                          |
|                  |                | 3,300-9,999                                                                                                                  | \$                                              | 13.23                                                                                    | \$                                                       | 13.17                                                                                    | \$                               | 10.98                                                                            | \$                                     | 15.71                                                                                              | \$                                                       | 1.13                                                                           | \$                                                       | 1.13                                                                           | \$ 0.95                                                                                                                                                  | \$                                                       | 1.32                                                                          |
|                  | NTNCWSs        | 10,000-49,999                                                                                                                | \$                                              | 4.07                                                                                     | \$                                                       | 4.06                                                                                     | \$                               | 3.37                                                                             | \$                                     | 4.80                                                                                               | \$                                                       | 0.20                                                                           | \$                                                       | 0.20                                                                           | \$ 0.17                                                                                                                                                  | \$                                                       | 0.24                                                                          |
|                  |                | 50,000-99,999                                                                                                                | \$                                              | -                                                                                        | \$                                                       | -                                                                                        | \$                               | -                                                                                | \$                                     | -                                                                                                  | \$                                                       | -                                                                              | \$                                                       | -                                                                              | \$ -                                                                                                                                                     | \$                                                       |                                                                               |
|                  |                | 100,000-999,999                                                                                                              | \$                                              | 3.17                                                                                     | \$                                                       | 3.17                                                                                     | \$                               | 2.62                                                                             | \$                                     | 3.74                                                                                               | \$                                                       | 0.17                                                                           | \$                                                       | 0.17                                                                           | \$ 0.14                                                                                                                                                  | \$                                                       | 0.20                                                                          |
|                  |                | 1,000,000+                                                                                                                   | \$                                              | 3.17                                                                                     | \$                                                       | 3.17                                                                                     | 9                                | 2.02                                                                             | \$                                     | 5.74                                                                                               | \$                                                       | 0.17                                                                           | \$                                                       | 0.17                                                                           | \$ -                                                                                                                                                     | \$                                                       | 0.20                                                                          |
|                  |                | All Sizes                                                                                                                    | \$                                              | 73.85                                                                                    | \$                                                       | 73.65                                                                                    | 9 %                              | 61.06                                                                            | \$                                     | 87.57                                                                                              | \$                                                       | 9.36                                                                           | \$                                                       | 9.36                                                                           | \$ 7.88                                                                                                                                                  | \$                                                       | 10.89                                                                         |
|                  |                | Subtotal                                                                                                                     | \$                                              | 4,445.03                                                                                 | \$                                                       | 4,433.79                                                                                 | \$                               | 3,678.55                                                                         | \$                                     | 5,258.18                                                                                           | \$                                                       | 302.23                                                                         | \$                                                       | 302.18                                                                         | \$ 255.05                                                                                                                                                | s                                                        | 350.58                                                                        |
|                  |                | <100                                                                                                                         | \$                                              | 12.68                                                                                    | \$                                                       | 12.67                                                                                    | \$                               | 10.99                                                                            | \$                                     | 14.40                                                                                              | \$                                                       | 1.05                                                                           | \$                                                       | 1.05                                                                           | \$ 0.99                                                                                                                                                  | \$                                                       | 1.12                                                                          |
|                  |                | 100-499                                                                                                                      | \$                                              | 39.43                                                                                    | \$                                                       | 39.49                                                                                    | \$                               | 33.99                                                                            | \$                                     | 44.84                                                                                              | \$                                                       | 3.47                                                                           | \$                                                       | 3.47                                                                           | \$ 3.23                                                                                                                                                  | \$                                                       | 3.72                                                                          |
|                  |                | 500-999                                                                                                                      | \$                                              | 21.66                                                                                    | \$                                                       | 21.67                                                                                    | \$                               | 18.69                                                                            | \$                                     | 24.56                                                                                              | \$                                                       | 1.79                                                                           | \$                                                       | 1.79                                                                           | \$ 1.66                                                                                                                                                  | \$                                                       | 1.91                                                                          |
|                  |                | 1,000-3,299                                                                                                                  | \$                                              | 45.85                                                                                    | \$                                                       | 45.85                                                                                    | \$                               | 39.11                                                                            | \$                                     | 52.63                                                                                              | \$                                                       | 3.43                                                                           | \$                                                       | 3.43                                                                           | \$ 3.20                                                                                                                                                  | \$                                                       | 3.67                                                                          |
|                  |                | 3,300-9,999                                                                                                                  | \$                                              | 70.09                                                                                    | \$                                                       | 70.07                                                                                    | \$                               | 58.66                                                                            | \$                                     | 81.52                                                                                              |                                                          | 3.43                                                                           | \$                                                       |                                                                                |                                                                                                                                                          |                                                          | 3.25                                                                          |
|                  | CWSs           |                                                                                                                              | \$                                              |                                                                                          |                                                          | 70.07                                                                                    | Ф                                | 30.00                                                                            |                                        |                                                                                                    |                                                          |                                                                                |                                                          |                                                                                | 0.00                                                                                                                                                     |                                                          | 3.25                                                                          |
|                  |                | 10,000-49,999                                                                                                                |                                                 |                                                                                          |                                                          | 101.00                                                                                   | 6                                | 100.00                                                                           |                                        |                                                                                                    | \$                                                       |                                                                                |                                                          | 3.06                                                                           | \$ 2.86                                                                                                                                                  | \$                                                       | 44.44                                                                         |
|                  |                | 50 000 00 000                                                                                                                |                                                 | 121.85                                                                                   | \$                                                       | 121.92                                                                                   | \$                               | 108.20                                                                           | \$                                     | 135.41                                                                                             | \$                                                       | 10.74                                                                          | \$                                                       | 10.74                                                                          | \$ 10.08                                                                                                                                                 | \$                                                       | 11.41                                                                         |
|                  |                | 50,000-99,999                                                                                                                | \$                                              | 30.69                                                                                    | \$                                                       | 30.70                                                                                    | \$                               | 26.84                                                                            | \$                                     | 135.41<br>34.51                                                                                    | \$                                                       | 10.74                                                                          | \$                                                       | 10.74                                                                          | \$ 10.08<br>\$ 2.58                                                                                                                                      | \$                                                       | 2.98                                                                          |
|                  |                | 100,000-999,999                                                                                                              | \$                                              | 30.69<br>60.59                                                                           | \$                                                       | 30.70<br>60.61                                                                           | \$                               | 26.84<br>52.61                                                                   | \$                                     | 135.41<br>34.51<br>68.58                                                                           | \$                                                       | 10.74<br>2.78<br>6.16                                                          | \$                                                       | 10.74<br>2.78<br>6.16                                                          | \$ 10.08<br>\$ 2.58<br>\$ 5.67                                                                                                                           | \$                                                       | 2.98<br>6.65                                                                  |
|                  |                | 100,000-999,999<br>1,000,000+                                                                                                | \$<br>\$<br>\$                                  | 30.69<br>60.59<br>6.98                                                                   | \$ \$                                                    | 30.70<br>60.61<br>6.98                                                                   | \$                               | 26.84<br>52.61<br>5.95                                                           | \$ \$                                  | 135.41<br>34.51<br>68.58<br>8.00                                                                   | \$ \$                                                    | 10.74<br>2.78<br>6.16<br>0.94                                                  | \$ \$                                                    | 10.74<br>2.78<br>6.16<br>0.94                                                  | \$ 10.08<br>\$ 2.58<br>\$ 5.67<br>\$ 0.86                                                                                                                | \$ \$                                                    | 2.98<br>6.65<br>1.02                                                          |
| Ground           |                | 100,000-999,999<br>1,000,000+<br>All Sizes                                                                                   | \$<br>\$<br>\$                                  | 30.69<br>60.59<br>6.98<br>409.82                                                         | \$<br>\$<br>\$<br>\$                                     | 30.70<br>60.61<br>6.98<br>409.97                                                         | \$ \$                            | 26.84<br>52.61<br>5.95<br>355.04                                                 | \$ \$ \$                               | 135.41<br>34.51<br>68.58<br>8.00<br>464.46                                                         | \$ \$ \$                                                 | 10.74<br>2.78<br>6.16<br>0.94<br>33.42                                         | \$ \$ \$                                                 | 10.74<br>2.78<br>6.16<br>0.94<br>33.42                                         | \$ 10.08<br>\$ 2.58<br>\$ 5.67<br>\$ 0.86<br>\$ 31.11                                                                                                    | \$ \$ \$                                                 | 2.98<br>6.65<br>1.02<br>35.74                                                 |
| Ground<br>Water  |                | 100,000-999,999<br>1,000,000+<br>All Sizes                                                                                   | \$<br>\$<br>\$                                  | 30.69<br>60.59<br>6.98<br>409.82                                                         | \$<br>\$<br>\$<br>\$                                     | 30.70<br>60.61<br>6.98<br>409.97                                                         | \$<br>\$<br>\$                   | 26.84<br>52.61<br>5.95<br>355.04                                                 | \$ \$ \$                               | 135.41<br>34.51<br>68.58<br>8.00<br>464.46<br>5.52                                                 | \$ \$ \$ \$                                              | 10.74<br>2.78<br>6.16<br>0.94<br>33.42                                         | \$ \$ \$                                                 | 10.74<br>2.78<br>6.16<br>0.94<br>33.42                                         | \$ 10.08<br>\$ 2.58<br>\$ 5.67<br>\$ 0.86<br>\$ 31.11                                                                                                    | \$ \$ \$                                                 | 2.98<br>6.65<br>1.02<br>35.74<br>0.43                                         |
|                  |                | 100,000-999,999<br>1,000,000+<br>All Sizes<br><100<br>100-499                                                                | \$<br>\$<br>\$<br>\$                            | 30.69<br>60.59<br>6.98<br>409.82<br>4.86<br>5.84                                         | \$<br>\$<br>\$<br>\$                                     | 30.70<br>60.61<br>6.98<br>409.97<br>4.87<br>5.84                                         | \$<br>\$<br>\$<br>\$             | 26.84<br>52.61<br>5.95<br>355.04<br>4.20<br>5.05                                 | \$ \$ \$ \$                            | 135.41<br>34.51<br>68.58<br>8.00<br>464.46<br>5.52<br>6.62                                         | \$ \$ \$                                                 | 10.74<br>2.78<br>6.16<br>0.94<br>33.42<br>0.40<br>0.52                         | \$ \$ \$ \$ \$                                           | 10.74<br>2.78<br>6.16<br>0.94<br>33.42<br>0.40<br>0.52                         | \$ 10.08<br>\$ 2.58<br>\$ 5.67<br>\$ 0.86<br>\$ 31.11<br>\$ 0.38<br>\$ 0.48                                                                              | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                            | 2.98<br>6.65<br>1.02<br>35.74<br>0.43<br>0.55                                 |
|                  |                | 100,000-999,999<br>1,000,000+<br>All Sizes<br><100<br>100-499<br>500-999                                                     | \$<br>\$<br>\$<br>\$                            | 30.69<br>60.59<br>6.98<br>409.82<br>4.86<br>5.84<br>2.59                                 | \$<br>\$<br>\$<br>\$<br>\$                               | 30.70<br>60.61<br>6.98<br>409.97<br>4.87<br>5.84<br>2.59                                 | \$ \$ \$                         | 26.84<br>52.61<br>5.95<br>355.04<br>4.20<br>5.05                                 | \$ \$ \$ \$                            | 135.41<br>34.51<br>68.58<br>8.00<br>464.46<br>5.52<br>6.62<br>2.95                                 | \$ \$ \$                                                 | 10.74<br>2.78<br>6.16<br>0.94<br>33.42<br>0.40<br>0.52                         | \$ \$ \$                                                 | 10.74<br>2.78<br>6.16<br>0.94<br>33.42<br>0.40<br>0.52                         | \$ 10.08<br>\$ 2.58<br>\$ 5.67<br>\$ 0.86<br>\$ 31.11<br>\$ 0.38<br>\$ 0.48<br>\$ 0.20                                                                   | \$ \$ \$ \$                                              | 2.98<br>6.65<br>1.02<br>35.74<br>0.43<br>0.55                                 |
|                  |                | 100,000-999,999<br>1,000,000+<br>All Sizes<br><100<br>100-499                                                                | \$ \$ \$ \$ \$ \$ \$                            | 30.69<br>60.59<br>6.98<br>409.82<br>4.86<br>5.84                                         | \$<br>\$<br>\$<br>\$                                     | 30.70<br>60.61<br>6.98<br>409.97<br>4.87<br>5.84<br>2.59                                 | \$ \$ \$ \$                      | 26.84<br>52.61<br>5.95<br>355.04<br>4.20<br>5.05<br>2.23<br>1.54                 | \$ \$ \$ \$                            | 135.41<br>34.51<br>68.58<br>8.00<br>464.46<br>5.52<br>6.62                                         | \$ \$ \$ \$                                              | 10.74<br>2.78<br>6.16<br>0.94<br>33.42<br>0.40<br>0.52                         | \$ \$ \$ \$ \$ \$                                        | 10.74<br>2.78<br>6.16<br>0.94<br>33.42<br>0.40<br>0.52<br>0.22                 | \$ 10.08<br>\$ 2.58<br>\$ 5.67<br>\$ 0.86<br>\$ 31.11<br>\$ 0.38<br>\$ 0.48<br>\$ 0.20<br>\$ 0.11                                                        | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 2.98<br>6.65<br>1.02<br>35.74<br>0.43<br>0.55<br>0.23                         |
|                  | NTNCWSs        | 100,000-999,999 1,000,000+ All Sizes <100 100-499 500-999 1,000-3,299 3,300-9,999                                            | \$<br>\$<br>\$<br>\$<br>\$                      | 30.69<br>60.59<br>6.98<br>409.82<br>4.86<br>5.84<br>2.59<br>1.82<br>0.49                 | \$<br>\$<br>\$<br>\$<br>\$<br>\$                         | 30.70<br>60.61<br>6.98<br>409.97<br>4.87<br>5.84<br>2.59<br>1.82                         | \$ \$ \$ \$                      | 26.84<br>52.61<br>5.95<br>355.04<br>4.20<br>5.05<br>2.23<br>1.54<br>0.41         | \$ \$ \$ \$ \$                         | 135.41<br>34.51<br>68.58<br>8.00<br>464.46<br>5.52<br>6.62<br>2.95<br>2.10                         | \$ \$ \$ \$ \$                                           | 10.74<br>2.78<br>6.16<br>0.94<br>33.42<br>0.40<br>0.52<br>0.22<br>0.12         | \$ \$ \$ \$ \$                                           | 10.74<br>2.78<br>6.16<br>0.94<br>33.42<br>0.40<br>0.52<br>0.22<br>0.12         | \$ 10.08<br>\$ 2.58<br>\$ 5.67<br>\$ 0.86<br>\$ 31.11<br>\$ 0.38<br>\$ 0.48<br>\$ 0.20<br>\$ 0.11<br>\$ 0.02                                             | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                | 2.98<br>6.65<br>1.02<br>35.74<br>0.43<br>0.55<br>0.23<br>0.13                 |
|                  | NTNCWSs        | 100,000-999,999 1,000,000+ All Sizes <100 100-499 500-999 1,000-3,299 3,300-9,999 10,000-49,999                              | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$          | 30.69<br>60.59<br>6.98<br>409.82<br>4.86<br>5.84<br>2.59<br>1.82<br>0.49                 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$       | 30.70<br>60.61<br>6.98<br>409.97<br>4.87<br>5.84<br>2.59<br>1.82<br>0.49                 | \$ \$ \$ \$ \$                   | 26.84<br>52.61<br>5.95<br>355.04<br>4.20<br>5.05<br>2.23<br>1.54<br>0.41<br>0.17 | \$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$ | 135.41<br>34.51<br>68.58<br>8.00<br>464.46<br>5.52<br>6.62<br>2.95<br>2.10<br>0.57                 | \$ \$ \$ \$ \$ \$                                        | 10.74<br>2.78<br>6.16<br>0.94<br>33.42<br>0.40<br>0.52<br>0.22<br>0.12<br>0.02 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                      | 10.74<br>2.78<br>6.16<br>0.94<br>33.42<br>0.40<br>0.52<br>0.22<br>0.12<br>0.02 | \$ 10.08<br>\$ 2.58<br>\$ 5.67<br>\$ 0.86<br>\$ 31.11<br>\$ 0.38<br>\$ 0.48<br>\$ 0.20<br>\$ 0.11<br>\$ 0.02                                             | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$             | 2.98<br>6.65<br>1.02<br>35.74<br>0.43<br>0.55<br>0.23<br>0.13<br>0.02         |
|                  | NTNCWSs        | 100,000-999,999 1,000,000+ All Sizes <100 100-499 500-999 1,000-3,299 3,300-9,999 10,000-49,999 50,000-99,999                | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$    | 30.69<br>60.59<br>6.98<br>409.82<br>4.86<br>5.84<br>2.59<br>1.82<br>0.49                 | \$<br>\$<br>\$<br>\$<br>\$<br>\$                         | 30.70<br>60.61<br>6.98<br>409.97<br>4.87<br>5.84<br>2.59<br>1.82                         | \$ \$ \$ \$                      | 26.84<br>52.61<br>5.95<br>355.04<br>4.20<br>5.05<br>2.23<br>1.54<br>0.41         | \$ \$ \$ \$ \$                         | 135.41<br>34.51<br>68.58<br>8.00<br>464.46<br>5.52<br>6.62<br>2.95<br>2.10                         | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$       | 10.74<br>2.78<br>6.16<br>0.94<br>33.42<br>0.40<br>0.52<br>0.22<br>0.12         | \$ \$ \$ \$ \$                                           | 10.74<br>2.78<br>6.16<br>0.94<br>33.42<br>0.40<br>0.52<br>0.22<br>0.12         | \$ 10.08<br>\$ 2.58<br>\$ 5.67<br>\$ 0.86<br>\$ 31.11<br>\$ 0.38<br>\$ 0.48<br>\$ 0.20<br>\$ 0.11<br>\$ 0.02                                             | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                | 2.98<br>6.65<br>1.02<br>35.74<br>0.43<br>0.55<br>0.23<br>0.13                 |
|                  | NTNCWSs        | 100,000-999,999 1,000,000+ All Sizes <100 100-499 500-999 1,000-3,299 3,300-9,999 10,000-49,999                              | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$          | 30.69<br>60.59<br>6.98<br>409.82<br>4.86<br>5.84<br>2.59<br>1.82<br>0.49                 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$       | 30.70<br>60.61<br>6.98<br>409.97<br>4.87<br>5.84<br>2.59<br>1.82<br>0.49                 | \$ \$ \$ \$ \$                   | 26.84<br>52.61<br>5.95<br>355.04<br>4.20<br>5.05<br>2.23<br>1.54<br>0.41<br>0.17 | \$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$ | 135.41<br>34.51<br>68.58<br>8.00<br>464.46<br>5.52<br>6.62<br>2.95<br>2.10<br>0.57                 | \$ \$ \$ \$ \$ \$                                        | 10.74<br>2.78<br>6.16<br>0.94<br>33.42<br>0.40<br>0.52<br>0.22<br>0.12<br>0.02 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                      | 10.74<br>2.78<br>6.16<br>0.94<br>33.42<br>0.40<br>0.52<br>0.22<br>0.12<br>0.02 | \$ 10.08<br>\$ 2.58<br>\$ 5.67<br>\$ 0.86<br>\$ 31.11<br>\$ 0.38<br>\$ 0.48<br>\$ 0.20<br>\$ 0.11<br>\$ 0.02                                             | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$             | 2.98<br>6.65<br>1.02<br>35.74<br>0.43<br>0.55<br>0.23<br>0.13<br>0.02         |
|                  | NTNCWSs        | 100,000-999,999 1,000,000+ All Sizes <100 100-499 500-999 1,000-3,299 3,300-9,999 10,000-49,999 50,000-99,999                | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 30.69<br>60.59<br>6.98<br>409.82<br>4.86<br>5.84<br>2.59<br>1.82<br>0.49<br>0.20         | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 30.70<br>60.61<br>6.98<br>409.97<br>4.87<br>5.84<br>2.59<br>1.82<br>0.49<br>0.20         | \$ \$ \$ \$ \$ \$                | 26.84<br>52.61<br>5.95<br>355.04<br>4.20<br>5.05<br>2.23<br>1.54<br>0.41<br>0.17 | \$ \$ \$ \$ \$ \$ \$                   | 135.41<br>34.51<br>68.58<br>8.00<br>464.46<br>5.52<br>6.62<br>2.95<br>2.10<br>0.57<br>0.22         | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$       | 10.74<br>2.78<br>6.16<br>0.94<br>33.42<br>0.40<br>0.52<br>0.22<br>0.12<br>0.02 | \$ \$ \$ \$ \$                                           | 10.74<br>2.78<br>6.16<br>0.94<br>33.42<br>0.40<br>0.52<br>0.22<br>0.12<br>0.02 | \$ 10.08<br>\$ 2.58<br>\$ 5.67<br>\$ 0.86<br>\$ 31.11<br>\$ 0.38<br>\$ 0.48<br>\$ 0.20<br>\$ 0.11<br>\$ 0.02<br>\$ 0.02                                  | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 2.98<br>6.65<br>1.02<br>35.74<br>0.43<br>0.55<br>0.23<br>0.13<br>0.02<br>0.02 |
|                  | NTNCWSs        | 100,000-999,999 1,000,000+ All Sizes <100 100-499 500-999 1,000-3,299 10,000-49,999 10,000-999,999 100,000-999,999           | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$    | 30.69<br>60.59<br>6.98<br>409.82<br>4.86<br>5.84<br>2.59<br>1.82<br>0.49<br>0.20         | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$          | 30.70<br>60.61<br>6.98<br>409.97<br>4.87<br>5.84<br>2.59<br>1.82<br>0.49<br>0.20         | \$ \$ \$ \$ \$ \$ \$             | 26.84<br>52.61<br>5.95<br>355.04<br>4.20<br>5.05<br>2.23<br>1.54<br>0.41<br>0.17 | \$ \$ \$ \$ \$ \$ \$                   | 135.41<br>34.51<br>68.58<br>8.00<br>464.46<br>5.52<br>6.62<br>2.95<br>2.10<br>0.57<br>0.22         | \$ \$ \$ \$ \$ \$                                        | 10.74<br>2.78<br>6.16<br>0.94<br>33.42<br>0.40<br>0.52<br>0.22<br>0.12<br>0.02 | \$ \$ \$ \$ \$ \$                                        | 10.74<br>2.78<br>6.16<br>0.94<br>33.42<br>0.40<br>0.52<br>0.22<br>0.12<br>0.02 | \$ 10.08<br>\$ 2.58<br>\$ 5.67<br>\$ 0.86<br>\$ 31.11<br>\$ 0.38<br>\$ 0.48<br>\$ 0.20<br>\$ 0.11<br>\$ 0.02<br>\$ 0.02<br>\$ 0.00<br>\$ 0.00            | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 2.98<br>6.65<br>1.02<br>35.74<br>0.43<br>0.55<br>0.23<br>0.13<br>0.02<br>0.02 |
|                  | NTNCWSs        | 100,000-999,999 1,000,000+ All Sizes <100 100-499 500-999 1,000-3,299 10,000-49,999 10,000-999,999 10,000-999,999 1,000,000+ | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 30.69<br>60.59<br>6.98<br>409.82<br>4.86<br>5.84<br>2.59<br>1.82<br>0.49<br>0.20<br>0.05 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 30.70<br>60.61<br>6.98<br>409.97<br>4.87<br>5.84<br>2.59<br>1.82<br>0.49<br>0.20<br>0.05 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 26.84 52.61 5.95 355.04 4.20 5.05 2.23 1.54 0.41 0.17 0.04 0.05                  | \$ \$ \$ \$ \$ \$ \$ \$                | 135.41<br>34.51<br>68.58<br>8.00<br>464.46<br>5.52<br>6.62<br>2.95<br>2.10<br>0.57<br>0.22<br>0.05 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 10.74 2.78 6.16 0.94 33.42 0.40 0.52 0.22 0.12 0.02 0.00 0.01                  | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 10.74 2.78 6.16 0.94 33.42 0.40 0.52 0.22 0.12 0.02 0.00 0.01                  | \$ 10.08<br>\$ 2.58<br>\$ 5.67<br>\$ 0.86<br>\$ 31.11<br>\$ 0.38<br>\$ 0.48<br>\$ 0.20<br>\$ 0.11<br>\$ 0.02<br>\$ 0.02<br>\$ 0.00<br>\$ 0.00<br>\$ 0.01 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 2.98<br>6.65<br>1.02<br>35.74<br>0.43<br>0.55<br>0.23<br>0.13<br>0.02<br>0.02 |

All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

Source: Derived by multiplying unit costs in Exhibits 7.10 and 7.11 by Technology Selection Deltas in in Appendix C (results for Alternative 2), summed for all technologies.

Exhibit J.1d Total Stage 2 DBPR Capital and O&M Costs - PWSs

#### Alternative 3

| Alternati        |                          |                            |    |                                |    | Capita          | l Co | sts          |      |             |    |               |                                | O&M             | l Cos | ts                |       |            |
|------------------|--------------------------|----------------------------|----|--------------------------------|----|-----------------|------|--------------|------|-------------|----|---------------|--------------------------------|-----------------|-------|-------------------|-------|------------|
|                  |                          | System                     |    | 90 Percent<br>Confidence Bound |    |                 |      |              |      |             |    |               | 90 Percent<br>Confidence Bound |                 |       |                   |       |            |
|                  |                          | Size                       |    |                                |    |                 |      | Lower        | ce E | Upper       | ł  |               |                                |                 |       | Confider<br>Lower | ice B | Upper      |
| Source           | System<br>Classification | (population served)        |    | Mean<br>Value                  |    | Median<br>Value | (    | 5th %tile)   | (    | 95th %tile) |    | Mean<br>Value |                                | Median<br>Value |       | h %tile)          | (9:   | 5th %tile) |
|                  |                          | <100                       | \$ | 11.85                          | \$ | 11.81           | \$   | 9.62         | \$   | 14.24       | \$ | 2.29          | \$                             | 2.29            | \$    | 1.90              | \$    | 2.69       |
|                  |                          | 100-499                    | \$ | 61.17                          | \$ | 60.93           | \$   | 49.94        | \$   | 73.08       | \$ | 11.68         | \$                             | 11.67           | \$    | 9.68              | \$    | 13.74      |
|                  |                          | 500-999                    | \$ | 76.59                          | \$ | 76.53           | \$   | 62.44        | \$   | 91.40       | \$ | 9.81          | \$                             | 9.81            | \$    | 8.14              | \$    | 11.54      |
|                  |                          | 1,000-3,299                | \$ | 344.17                         | \$ | 343.27          | \$   | 279.97       | \$   | 412.40      | \$ | 48.35         | \$                             | 48.32           | \$    | 39.99             | \$    | 56.97      |
|                  | CWSs                     | 3,300-9,999                | \$ | 904.77                         | \$ | 902.12          | \$   | 734.57       | \$   | 1,085.68    | \$ | 83.92         | \$                             | 83.87           | \$    | 69.64             | \$    | 98.71      |
|                  | CWSS                     | 10,000-49,999              | \$ | 1,314.36                       | \$ | 1,310.33        | \$   | 1,071.04     | \$   | 1,574.96    | \$ | 63.96         | \$                             | 63.92           | \$    | 53.19             | \$    | 74.93      |
|                  |                          | 50,000-99,999              | \$ | 805.55                         | \$ | 803.16          | \$   | 656.40       | \$   | 962.97      | \$ | 39.02         | \$                             | 39.02           | \$    | 32.44             | \$    | 45.66      |
|                  |                          | 100,000-999,999            | \$ | 2,200.88                       | \$ | 2,201.54        | \$   | 1,797.25     | \$   | 2,625.64    | \$ | 109.12        | \$                             | 109.11          | \$    | 90.67             | \$    | 127.84     |
|                  |                          | 1,000,000+                 | \$ | 1,154.39                       | \$ | 1,151.09        | \$   | 945.23       | \$   | 1,376.52    | \$ | 74.56         | \$                             | 74.56           | \$    | 62.02             | \$    | 87.40      |
|                  |                          | All Sizes                  | \$ | 6,873.73                       | \$ | 6,860.77        | \$   | 5,606.47     | \$   | 8,216.89    | \$ | 442.70        | \$                             | 442.57          | \$    | 367.67            | \$    | 519.47     |
| Surface<br>Water |                          | <100                       | \$ | 7.14                           | \$ | 7.12            | \$   | 5.79         | \$   | 8.58        | \$ | 1.36          | \$                             | 1.36            | \$    | 1.13              | \$    | 1.60       |
|                  |                          | 100-499                    | \$ | 24.68                          | \$ | 24.63           | \$   | 20.14        | \$   | 29.55       | \$ | 4.75          | \$                             | 4.74            | \$    | 3.93              | \$    | 5.59       |
|                  |                          | 500-999                    | \$ | 16.93                          | \$ | 16.90           | \$   | 13.81        | \$   | 20.23       | \$ | 2.16          | \$                             | 2.16            | \$    | 1.79              | \$    | 2.54       |
|                  |                          | 1,000-3,299                | \$ | 26.51                          | \$ | 26.43           | \$   | 21.59        | \$   | 31.84       | \$ | 3.72          | \$                             | 3.72            | \$    | 3.08              | \$    | 4.38       |
|                  | NTNCWSs                  | 3,300-9,999                | \$ | 19.01                          | \$ | 18.92           | \$   | 15.50        | \$   | 22.88       | \$ | 1.70          | \$                             | 1.70            | \$    | 1.40              | \$    | 2.00       |
|                  |                          | 10,000-49,999              | \$ | 6.54                           | \$ | 6.53            | \$   | 5.33         | \$   | 7.80        | \$ | 0.31          | \$                             | 0.31            | \$    | 0.26              | \$    | 0.36       |
|                  |                          | 50,000-99,999              | \$ | -                              | \$ | -               | \$   | -            | \$   | -           | \$ | -             | \$                             | -               | \$    | -                 | \$    |            |
|                  |                          | 100,000-999,999            | \$ | 5.13                           | \$ | 5.12            | \$   | 4.19         | \$   | 6.11        | \$ | 0.26          | \$                             | 0.26            | \$    | 0.21              | \$    | 0.30       |
|                  |                          | 1,000,000+                 | \$ | -                              | \$ | -               | \$   | -            | \$   | -           | \$ | -             | \$                             | -               | \$    | -                 | \$    | -          |
|                  |                          | All Sizes                  | \$ | 105.94                         | \$ | 105.65          | \$   | 86.36        | \$   | 126.99      | \$ | 14.25         | \$                             | 14.24           | \$    | 11.81             | \$    | 16.77      |
|                  |                          | Subtotal                   | \$ | 6,979.66                       | \$ | 6,966.42        | \$   | 5,692.82     | \$   | 8,343.88    | \$ | 456.95        | \$                             | 456.81          | \$    | 379.47            | \$    | 536.24     |
|                  |                          | <100                       | \$ | 9.36                           | \$ | 9.35            | \$   | 8.17         | \$   | 10.59       | \$ | 0.93          | \$                             | 0.93            | \$    | 0.87              | \$    | 0.99       |
|                  |                          | 100-499                    | \$ | 34.90                          | \$ | 34.91           | \$   | 29.83        | \$   | 40.04       | \$ | 3.48          | \$                             | 3.48            | \$    | 3.22              | \$    | 3.75       |
|                  |                          | 500-999                    | \$ | 20.56                          | \$ | 20.56           | \$   | 17.49        | \$   | 23.60       | \$ | 1.84          | \$                             | 1.84            | \$    | 1.70              | \$    | 1.99       |
|                  |                          | 1,000-3,299                | \$ | 47.38                          | \$ | 47.39           | \$   | 39.95        | \$   | 54.84       | \$ | 3.66          | \$                             | 3.66            | \$    | 3.39              | \$    | 3.93       |
|                  | CWSs                     | 3,300-9,999                | \$ | 77.23                          | \$ | 77.18           | \$   | 64.42        | \$   | 90.18       | \$ | 3.32          | \$                             | 3.32            | \$    | 3.09              | \$    | 3.55       |
|                  |                          | 10,000-49,999              | \$ | 135.39                         | \$ | 135.36          | \$   | 119.21       | \$   | 151.65      | \$ | 11.77         | \$                             | 11.76           | \$    | 11.01             | \$    | 12.52      |
|                  |                          | 50,000-99,999              | \$ | 35.74                          | \$ | 35.76           | \$   | 31.04        | \$   | 40.38       | \$ | 3.06          | \$                             | 3.06            | \$    | 2.84              | \$    | 3.29       |
|                  |                          | 100,000-999,999            | \$ | 69.97                          | \$ | 69.97           | \$   | 60.64        | \$   | 79.29       | \$ | 6.67          | \$                             | 6.67            | \$    | 6.14              | \$    | 7.20       |
|                  |                          | 1,000,000+                 | \$ | 8.14                           | \$ | 8.14            | \$   | 6.98         | \$   | 9.30        | \$ | 1.03          | \$                             | 1.03            | \$    | 0.94              | \$    | 1.12       |
| Ground           |                          | All Sizes                  |    | 438.68                         | Ť  | 438.62          | Ť    | 377.72       | Ť    | 499.87      | Ť  | 35.76         | Ť                              | 35.76           | \$    | 33.20             | Ť     | 38.32      |
| Water            |                          | <100                       | \$ | 3.57<br>5.25                   | \$ | 3.57<br>5.25    | \$   | 3.11         | \$   | 6.01        | \$ | 0.35          | \$                             | 0.35            | \$    | 0.33              | \$    | 0.38       |
|                  |                          | 100-499                    | \$ | 2.50                           | \$ | 2.50            | \$   | 4.49<br>2.12 | \$   | 2.88        | \$ | 0.52          | \$                             | 0.52            | \$    | 0.48              | \$    | 0.56       |
|                  |                          |                            | \$ |                                | \$ |                 | \$   |              | Ė    |             | \$ |               |                                |                 |       |                   | \$    |            |
|                  |                          | 1,000-3,299<br>3,300-9,999 | \$ | 0.54                           | \$ | 1.92<br>0.54    | \$   | 1.62<br>0.45 | \$   | 0.63        | \$ | 0.13          | \$                             | 0.13            | \$    | 0.12              | \$    | 0.14       |
|                  | NTNCWSs                  |                            | \$ | 0.54                           | \$ | 0.34            | \$   | 0.45         | \$   | 0.03        | \$ | 0.02          | \$                             | 0.02            | \$    | 0.02              | \$    | 0.02       |
|                  |                          | 10,000-49,999              | \$ | 0.23                           | \$ | 0.23            | \$   | 0.20         | \$   | 0.26        | \$ | 0.02          | \$                             | 0.02            | \$    | 0.02              | \$    | 0.02       |
|                  |                          | 100,000-999,999            | \$ | 0.05                           | \$ | 0.05            | \$   | 0.05         | \$   | 0.08        | \$ | 0.00          | \$                             | 0.00            | \$    | 0.00              | \$    | 0.01       |
|                  |                          | 1,000,000+                 | \$ | - 0.07                         | \$ |                 | \$   | 0.06         | 9 %  | -           | \$ | - 0.01        | \$                             | - 0.01          | \$    | - 0.01            | \$    | 0.01       |
|                  |                          | All Sizes                  | \$ | 14.16                          | \$ | 14.15           | \$   | 12.09        | \$   | 16.20       | \$ | 1.27          | \$                             | 1.27            | \$    | 1.18              | \$    | 1.36       |
|                  |                          |                            | Ť  | 0                              | Ť  |                 | Ť    | .2.00        | Ť    | .0.20       | *  | /             | Ψ.                             | /               | +     | 0                 | Ė     |            |
|                  |                          | Subtotal                   | \$ | 452.84                         | \$ | 452.77          | \$   | 389.81       | \$   | 516.07      | \$ | 37.03         | \$                             | 37.03           | \$    | 34.38             | \$    | 39.69      |

All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

Source: Derived by multiplying unit costs in Exhibits 7.10 and 7.11 by Technology Selection Deltas in in Appendix C (results for Alternative 3), summed for all technologies.

Exhibit J.1e Total Stage 2 DBPR Capital and O&M Costs - PWSs

**Unadjusted Compliance Forecast** 

| Oriaujus         | leu Compila    | nce Forecast            |           |            | Capital | Costs       |            | 1    |            | O&N      | 1 Costs            |              |  |  |
|------------------|----------------|-------------------------|-----------|------------|---------|-------------|------------|------|------------|----------|--------------------|--------------|--|--|
|                  |                | System                  |           | 90 Percent |         |             |            |      |            |          | 90 Percent         |              |  |  |
|                  |                | Size                    |           |            |         | Confiden    | ce Bound   |      |            |          |                    | ce Bound     |  |  |
|                  | System         | (population             | Mean      | Medi       |         | Lower       | Upper      |      | Mean       | Median   | Lower              | Upper        |  |  |
| Source           | Classification | served)                 | Value     | Valu       | ie      | (5th %tile) | (95th %til | e)   | Value      | Value    | (5th %tile)        | (95th %tile) |  |  |
|                  |                | <100                    | \$ 1.19   | \$         | 1.17    | \$ 0.60     | \$         | 1.88 | \$ 0.22    | \$ 0.22  | \$ 0.11            | \$ 0.32      |  |  |
|                  |                | 100-499                 | \$ 3.58   | \$         | 3.55    | \$ 1.81     | \$         | 5.56 | \$ 0.90    | \$ 0.90  | \$ 0.47            | \$ 1.33      |  |  |
|                  |                | 500-999                 | \$ 4.22   | \$         | 4.16    | \$ 2.12     | \$         | 6.59 | \$ 0.67    | \$ 0.67  | \$ 0.35            | \$ 0.99      |  |  |
|                  |                | 1,000-3,299             | \$ 26.71  | \$         | 26.55   | \$ 13.75    | \$ 4       | 0.54 | \$ 3.68    | \$ 3.67  | \$ 1.91            | \$ 5.46      |  |  |
|                  | CWSs           | 3,300-9,999             | \$ 68.17  | \$         | 67.68   | \$ 35.21    | \$ 10      | 2.98 | \$ 5.83    | \$ 5.84  | \$ 3.03            | \$ 8.66      |  |  |
|                  |                | 10,000-49,999           | \$ 114.89 | \$         | 114.39  | \$ 59.42    | \$ 17      | 3.88 | \$ 6.81    | \$ 6.81  | \$ 3.54            | \$ 10.11     |  |  |
|                  |                | 50,000-99,999           | \$ 68.34  | \$         | 68.02   | \$ 35.19    | \$ 10      | 3.24 | \$ 3.89    | \$ 3.88  | \$ 2.02            | \$ 5.78      |  |  |
|                  |                | 100,000-999,999         | \$ 179.89 | \$         | 179.59  | \$ 92.53    | \$ 27.     | 2.39 | \$ 9.85    | \$ 9.83  | \$ 5.12            | \$ 14.61     |  |  |
|                  |                | 1,000,000+              | \$ 86.18  | \$         | 85.79   | \$ 44.18    | \$ 13      | 1.12 | \$ 6.11    | \$ 6.12  | \$ 3.18            | \$ 9.09      |  |  |
|                  |                | All Sizes               | \$ 553.17 | \$         | 550.90  | \$ 284.81   | \$ 83      | 8.19 | \$ 37.96   | \$ 37.93 | \$ 19.72           | \$ 56.36     |  |  |
| Surface<br>Water |                | <100                    | \$ 0.74   | \$         | 0.72    | \$ 0.37     | \$         | 1.16 | \$ 0.13    | \$ 0.13  | \$ 0.07            | \$ 0.20      |  |  |
|                  |                | 100-499                 | \$ 1.45   | \$         | 1.44    | \$ 0.74     |            | 2.25 | \$ 0.37    | \$ 0.36  | \$ 0.19            | \$ 0.54      |  |  |
|                  |                | 500-999                 | \$ 0.94   | \$         | 0.92    | \$ 0.47     |            | 1.47 | \$ 0.15    | \$ 0.15  | \$ 0.08            | \$ 0.22      |  |  |
|                  |                | 1,000-3,299             | \$ 2.07   | \$         | 2.07    | \$ 1.06     |            | 3.16 | \$ 0.29    | \$ 0.29  | \$ 0.15            | \$ 0.43      |  |  |
|                  |                | 3,300-9,999             | \$ 1.41   | \$         | 1.40    | \$ 0.73     |            | 2.14 | \$ 0.12    | \$ 0.12  | \$ 0.06            | \$ 0.17      |  |  |
|                  | NTNCWSs        | 10,000-49,999           | \$ 0.56   | \$         | 0.55    | \$ 0.29     |            | 0.84 | \$ 0.03    | \$ 0.03  | \$ 0.02            | \$ 0.05      |  |  |
|                  |                | 50,000-99,999           | \$ -      | \$         | -       | \$ -        | \$         | -    | \$ -       | \$ -     | \$ -               | \$ -         |  |  |
|                  |                | 100,000-999,999         | \$ 0.41   | s          | 0.41    | \$ 0.21     |            | 0.62 | \$ 0.02    | \$ 0.02  | \$ 0.01            | \$ 0.03      |  |  |
|                  |                |                         | \$ -      | s          | 0.41    | \$ -        | \$         | 0.02 | \$ 0.02    | \$ 0.02  | \$ -               | \$ 0.03      |  |  |
|                  |                | 1,000,000+<br>All Sizes | \$ -      | a a        | -       | \$ -        | ā.         | -    | <b>3</b> - | \$ -     | <b>5</b> -         | <b>3</b> -   |  |  |
|                  |                | Subtotal                | \$ 553.17 | \$         | 550.90  | \$ 284.81   | \$ 83      | 8.19 | \$ 37.96   | \$ 37.93 | \$ 19.72           | \$ 56.36     |  |  |
|                  |                | <100                    | \$ 8.35   | \$         | 8.34    | \$ 7.19     |            | 9.54 | \$ 0.93    | \$ 0.93  | \$ 0.87            | \$ 1.00      |  |  |
|                  |                | 100-499                 | \$ 33.25  | \$         |         | \$ 28.08    |            | 8.45 | \$ 3.50    | \$ 3.50  |                    | \$ 3.78      |  |  |
|                  |                | 500-999                 | \$ 33.23  | \$         | 20.22   | \$ 17.03    |            | 3.38 | \$ 3.30    | \$ 1.88  | \$ 3.23<br>\$ 1.73 | \$ 2.02      |  |  |
|                  |                |                         |           | 1          |         |             |            |      |            |          |                    |              |  |  |
|                  |                | 1,000-3,299             | \$ 39.43  | \$         | 39.41   | \$ 32.34    |            | 6.55 | \$ 2.83    | \$ 2.83  | \$ 2.58            | \$ 3.08      |  |  |
|                  | CWSs           | 3,300-9,999             | \$ 65.93  | \$         | 65.88   | \$ 53.54    |            | 8.38 | \$ 2.40    | \$ 2.40  | \$ 2.20            | \$ 2.60      |  |  |
|                  |                | 10,000-49,999           | \$ 59.09  | \$         | 59.08   | \$ 53.39    |            | 4.79 | \$ 5.03    | \$ 5.03  | \$ 4.76            | \$ 5.30      |  |  |
|                  |                | 50,000-99,999           | \$ 14.96  | \$         | 14.96   | \$ 13.38    |            | 6.53 | \$ 1.28    | \$ 1.28  | \$ 1.20            | \$ 1.36      |  |  |
|                  |                | 100,000-999,999         | \$ 29.70  | \$         | 29.71   | \$ 26.43    |            | 2.95 | \$ 2.83    | \$ 2.83  | \$ 2.64            | \$ 3.02      |  |  |
|                  |                | 1,000,000+              | \$ 3.38   | \$         | 3.38    | \$ 2.97     |            | 3.79 | \$ 0.43    | \$ 0.43  | \$ 0.40            | \$ 0.46      |  |  |
| Ground           |                | All Sizes               | \$ 274.30 |            | 274.22  | \$ 234.36   |            | 4.36 | \$ 21.11   | \$ 21.11 | \$ 19.60           | \$ 22.63     |  |  |
| Water            |                | <100                    | \$ 3.18   | \$         | 3.17    | \$ 2.73     |            | 3.62 | \$ 0.35    | \$ 0.35  | \$ 0.33            | \$ 0.38      |  |  |
|                  |                | 100-499                 | \$ 5.04   | \$         | 5.05    | \$ 4.26     |            | 5.82 | \$ 0.53    | \$ 0.53  | \$ 0.48            | \$ 0.57      |  |  |
|                  |                | 500-999                 | \$ 2.48   | \$         | 2.48    | \$ 2.08     |            | 2.87 | \$ 0.22    | \$ 0.22  | \$ 0.20            | \$ 0.24      |  |  |
|                  |                | 1,000-3,299             | \$ 1.61   | \$         | 1.61    | \$ 1.32     | \$         | 1.90 | \$ 0.10    | \$ 0.10  | \$ 0.09            | \$ 0.10      |  |  |
|                  | NTNCWSs        | 3,300-9,999             | \$ 0.46   | \$         | 0.46    | \$ 0.38     | \$         | 0.55 | \$ 0.01    | \$ 0.01  | \$ 0.01            | \$ 0.01      |  |  |
|                  |                | 10,000-49,999           | \$ 0.10   | \$         | 0.10    | \$ 0.09     | \$         | 0.11 | \$ 0.01    | \$ 0.01  | \$ 0.01            | \$ 0.01      |  |  |
|                  |                | 50,000-99,999           | \$ 0.02   | \$         | 0.02    | \$ 0.02     | \$         | 0.02 | \$ 0.00    | \$ 0.00  | \$ 0.00            | \$ 0.00      |  |  |
|                  |                | 100,000-999,999         | \$ 0.03   | \$         | 0.03    | \$ 0.03     | \$         | 0.03 | \$ 0.00    | \$ 0.00  | \$ 0.00            | \$ 0.00      |  |  |
|                  |                | 1,000,000+              | \$ -      | \$         | -       | \$ -        | \$         | -    | \$ -       | \$ -     | \$ -               | \$ -         |  |  |
|                  |                | All Sizes               | \$ 12.92  | \$         | 12.92   | \$ 10.88    | \$ 1       | 4.93 | \$ 1.23    | \$ 1.23  | \$ 1.13            | \$ 1.32      |  |  |
|                  |                | Subtotal                | \$ 287.21 | s          | 287.14  | \$ 245.24   | \$ 32      | 9.30 | \$ 22.34   | \$ 22.34 | \$ 20.73           | \$ 23.95     |  |  |
|                  |                |                         |           | _          |         | Ų 2-10.E-1  | •          |      | •          |          |                    |              |  |  |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

Source: Derived by multiplying unit costs in Exhibits 7.10 and 7.11 by Technology Selection Deltas in in Appendix C (results for Alternative 3), summed for all technologies.

Exhibit J.1f Total Stage 2 DBPR Capital and O&M Costs - PWSs

IDSF Alternate Compliance Forecas

|                  |                          |                                                                                                                                                         |                                                             |                                                                                                                     |                                                          | Capita                                                                                                      | Costs                                                    |                                                                                                                     |                                                                                                                                                    |                                                                                                                                   | O&N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Costs                                                                                                                                                                        |                                                                                                                                                         |
|------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |                          | System                                                                                                                                                  |                                                             |                                                                                                                     |                                                          |                                                                                                             |                                                          |                                                                                                                     | ercent                                                                                                                                             |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                              | Percent                                                                                                                                                 |
|                  |                          | Size                                                                                                                                                    |                                                             |                                                                                                                     |                                                          |                                                                                                             |                                                          |                                                                                                                     | ce Bound                                                                                                                                           |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                              | nce Bound                                                                                                                                               |
| Source           | System<br>Classification | (population served)                                                                                                                                     |                                                             | Mean<br>/alue                                                                                                       |                                                          | Median<br>Value                                                                                             | Lowe<br>(5th %t                                          |                                                                                                                     | Upper<br>(95th %tile)                                                                                                                              | Mean<br>Value                                                                                                                     | Median<br>Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lower<br>(5th %tile)                                                                                                                                                         | Upper<br>(95th %tile)                                                                                                                                   |
|                  |                          | <100                                                                                                                                                    | \$                                                          | 1.19                                                                                                                | \$                                                       | 1.17                                                                                                        | \$                                                       | 0.60                                                                                                                | \$ 1.88                                                                                                                                            | \$ 0.22                                                                                                                           | \$ 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 0.11                                                                                                                                                                      | \$ 0.32                                                                                                                                                 |
|                  |                          | 100-499                                                                                                                                                 | \$                                                          | 3.58                                                                                                                | \$                                                       | 3.55                                                                                                        | \$                                                       | 1.81                                                                                                                | \$ 5.56                                                                                                                                            | \$ 0.90                                                                                                                           | \$ 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 0.47                                                                                                                                                                      | \$ 1.33                                                                                                                                                 |
|                  |                          | 500-999                                                                                                                                                 | \$                                                          | 4.22                                                                                                                | \$                                                       | 4.16                                                                                                        | \$                                                       | 2.12                                                                                                                | \$ 6.59                                                                                                                                            | \$ 0.67                                                                                                                           | \$ 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 0.35                                                                                                                                                                      | \$ 0.99                                                                                                                                                 |
|                  |                          | 1,000-3,299                                                                                                                                             | \$                                                          | 26.71                                                                                                               | \$                                                       | 26.55                                                                                                       | \$                                                       | 13.75                                                                                                               | \$ 40.54                                                                                                                                           | \$ 3.68                                                                                                                           | \$ 3.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 1.91                                                                                                                                                                      | \$ 5.46                                                                                                                                                 |
|                  | CWSs                     | 3,300-9,999                                                                                                                                             | \$                                                          | 68.17                                                                                                               | \$                                                       | 67.68                                                                                                       | \$                                                       | 35.21                                                                                                               | \$ 102.98                                                                                                                                          | \$ 5.83                                                                                                                           | \$ 5.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 3.03                                                                                                                                                                      | \$ 8.66                                                                                                                                                 |
|                  | 01103                    | 10,000-49,999                                                                                                                                           | \$                                                          | 133.12                                                                                                              | \$                                                       | 132.68                                                                                                      | \$                                                       | 86.55                                                                                                               | \$ 183.25                                                                                                                                          | \$ 6.43                                                                                                                           | \$ 6.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 4.28                                                                                                                                                                      | \$ 8.58                                                                                                                                                 |
|                  |                          | 50,000-99,999                                                                                                                                           | \$                                                          | 79.40                                                                                                               | \$                                                       | 78.96                                                                                                       | \$                                                       | 51.73                                                                                                               | \$ 109.34                                                                                                                                          | \$ 3.57                                                                                                                           | \$ 3.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 2.38                                                                                                                                                                      | \$ 4.80                                                                                                                                                 |
|                  |                          | 100,000-999,999                                                                                                                                         | \$                                                          | 223.26                                                                                                              | \$                                                       | 221.74                                                                                                      | \$                                                       | 146.40                                                                                                              | \$ 307.42                                                                                                                                          | \$ 8.05                                                                                                                           | \$ 8.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 5.34                                                                                                                                                                      | \$ 10.82                                                                                                                                                |
|                  |                          | 1,000,000+                                                                                                                                              | \$                                                          | 102.51                                                                                                              | \$                                                       | 101.55                                                                                                      | \$                                                       | 66.38                                                                                                               | \$ 141.91                                                                                                                                          | \$ 4.65                                                                                                                           | \$ 4.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 3.08                                                                                                                                                                      | \$ 6.28                                                                                                                                                 |
|                  |                          | All Sizes                                                                                                                                               | \$                                                          | 642.18                                                                                                              | \$                                                       | 638.04                                                                                                      | \$ 4                                                     | 104.55                                                                                                              | \$ 899.47                                                                                                                                          | \$ 34.00                                                                                                                          | \$ 33.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$ 20.95                                                                                                                                                                     | \$ 47.26                                                                                                                                                |
| Surface<br>Water |                          | <100                                                                                                                                                    | \$                                                          | 0.74                                                                                                                | \$                                                       | 0.72                                                                                                        | \$                                                       | 0.37                                                                                                                | \$ 1.16                                                                                                                                            | \$ 0.13                                                                                                                           | \$ 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 0.07                                                                                                                                                                      | \$ 0.20                                                                                                                                                 |
|                  |                          | 100-499                                                                                                                                                 | \$                                                          | 1.45                                                                                                                | \$                                                       | 1.44                                                                                                        | \$                                                       | 0.74                                                                                                                | \$ 2.25                                                                                                                                            | \$ 0.37                                                                                                                           | \$ 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 0.19                                                                                                                                                                      | \$ 0.54                                                                                                                                                 |
|                  |                          | 500-999                                                                                                                                                 | \$                                                          | 0.94                                                                                                                | \$                                                       | 0.92                                                                                                        | \$                                                       | 0.47                                                                                                                | \$ 1.47                                                                                                                                            | \$ 0.15                                                                                                                           | \$ 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 0.08                                                                                                                                                                      | \$ 0.22                                                                                                                                                 |
|                  |                          | 1,000-3,299                                                                                                                                             | \$                                                          | 2.07                                                                                                                | \$                                                       | 2.07                                                                                                        | \$                                                       | 1.06                                                                                                                | \$ 3.16                                                                                                                                            | \$ 0.29                                                                                                                           | \$ 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 0.15                                                                                                                                                                      | \$ 0.43                                                                                                                                                 |
|                  | NTNCWSs                  | 3,300-9,999                                                                                                                                             | \$                                                          | 1.41                                                                                                                | \$                                                       | 1.40                                                                                                        | \$                                                       | 0.73                                                                                                                | \$ 2.14                                                                                                                                            | \$ 0.12                                                                                                                           | \$ 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 0.06                                                                                                                                                                      | \$ 0.17                                                                                                                                                 |
|                  | NINCWSS                  | 10,000-49,999                                                                                                                                           | \$                                                          | 0.64                                                                                                                | \$                                                       | 0.64                                                                                                        | \$                                                       | 0.42                                                                                                                | \$ 0.88                                                                                                                                            | \$ 0.03                                                                                                                           | \$ 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 0.02                                                                                                                                                                      | \$ 0.04                                                                                                                                                 |
|                  |                          | 50,000-99,999                                                                                                                                           | \$                                                          |                                                                                                                     | \$                                                       | -                                                                                                           | \$                                                       |                                                                                                                     | \$ -                                                                                                                                               | \$ -                                                                                                                              | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ -                                                                                                                                                                         | \$ -                                                                                                                                                    |
|                  |                          | 100,000-999,999                                                                                                                                         | \$                                                          | 0.49                                                                                                                | \$                                                       | 0.49                                                                                                        | \$                                                       | 0.32                                                                                                                | \$ 0.67                                                                                                                                            | \$ 0.02                                                                                                                           | \$ 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 0.01                                                                                                                                                                      | \$ 0.02                                                                                                                                                 |
|                  |                          | 1,000,000+                                                                                                                                              | \$                                                          | -                                                                                                                   | \$                                                       | -                                                                                                           | \$                                                       |                                                                                                                     | \$ -                                                                                                                                               | \$ -                                                                                                                              | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ -                                                                                                                                                                         | \$ -                                                                                                                                                    |
|                  |                          | All Sizes                                                                                                                                               | \$                                                          | 7.74                                                                                                                | \$                                                       | 7.68                                                                                                        | \$                                                       | 4.11                                                                                                                | \$ 11.74                                                                                                                                           | \$ 1.10                                                                                                                           | \$ 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 0.58                                                                                                                                                                      | \$ 1.62                                                                                                                                                 |
|                  |                          | Subtotal                                                                                                                                                | \$                                                          | 649.92                                                                                                              | \$                                                       | 645.72                                                                                                      | \$ 4                                                     | 108.66                                                                                                              | \$ 911.20                                                                                                                                          | \$ 35.09                                                                                                                          | \$ 35.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$ 21.52                                                                                                                                                                     | \$ 48.89                                                                                                                                                |
|                  |                          | <100                                                                                                                                                    | \$                                                          | 8.35                                                                                                                | \$                                                       | 8.34                                                                                                        | \$                                                       | 7.19                                                                                                                | \$ 9.54                                                                                                                                            | \$ 0.93                                                                                                                           | \$ 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 0.87                                                                                                                                                                      | \$ 1.00                                                                                                                                                 |
|                  |                          | 100-499                                                                                                                                                 | \$                                                          | 33.25                                                                                                               | \$                                                       | 33.24                                                                                                       | \$                                                       | 28.08                                                                                                               | \$ 38.45                                                                                                                                           | \$ 3.50                                                                                                                           | \$ 3.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 3.23                                                                                                                                                                      | \$ 3.78                                                                                                                                                 |
|                  |                          | 500-999                                                                                                                                                 | \$                                                          |                                                                                                                     | _                                                        |                                                                                                             |                                                          |                                                                                                                     |                                                                                                                                                    |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ψ 0.20                                                                                                                                                                       | 4 0                                                                                                                                                     |
|                  |                          |                                                                                                                                                         |                                                             | 20.22                                                                                                               | \$                                                       | 20.22                                                                                                       | \$                                                       | 17.03                                                                                                               | \$ 23.38                                                                                                                                           | \$ 1.88                                                                                                                           | \$ 1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 1.73                                                                                                                                                                      | \$ 2.02                                                                                                                                                 |
|                  |                          | 1,000-3,299                                                                                                                                             | \$                                                          | 39.43                                                                                                               | \$                                                       | 20.22                                                                                                       | \$                                                       | 17.03<br>32.34                                                                                                      | \$ 23.38<br>\$ 46.55                                                                                                                               | \$ 1.88<br>\$ 2.83                                                                                                                | \$ 1.88<br>\$ 2.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                              |                                                                                                                                                         |
|                  | CWSs                     | 1,000-3,299<br>3,300-9,999                                                                                                                              | \$                                                          |                                                                                                                     |                                                          |                                                                                                             | *                                                        |                                                                                                                     |                                                                                                                                                    |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$ 1.73                                                                                                                                                                      | \$ 2.02                                                                                                                                                 |
|                  | CWSs                     |                                                                                                                                                         |                                                             | 39.43                                                                                                               | \$                                                       | 39.41                                                                                                       | \$                                                       | 32.34                                                                                                               | \$ 46.55                                                                                                                                           | \$ 2.83                                                                                                                           | \$ 2.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 1.73<br>\$ 2.58                                                                                                                                                           | \$ 2.02<br>\$ 3.08                                                                                                                                      |
|                  | CWSs                     | 3,300-9,999                                                                                                                                             | \$                                                          | 39.43<br>65.93                                                                                                      | \$                                                       | 39.41<br>65.88                                                                                              | \$                                                       | 32.34<br>53.54                                                                                                      | \$ 46.55<br>\$ 78.38                                                                                                                               | \$ 2.83<br>\$ 2.40                                                                                                                | \$ 2.83<br>\$ 2.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ 1.73<br>\$ 2.58<br>\$ 2.20                                                                                                                                                | \$ 2.02<br>\$ 3.08<br>\$ 2.60                                                                                                                           |
|                  | CWSs                     | 3,300-9,999                                                                                                                                             | \$                                                          | 39.43<br>65.93<br>59.09                                                                                             | \$<br>\$<br>\$                                           | 39.41<br>65.88<br>59.08                                                                                     | \$ \$                                                    | 32.34<br>53.54<br>53.39                                                                                             | \$ 46.55<br>\$ 78.38<br>\$ 64.79                                                                                                                   | \$ 2.83<br>\$ 2.40<br>\$ 5.03                                                                                                     | \$ 2.83<br>\$ 2.40<br>\$ 5.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$ 1.73<br>\$ 2.58<br>\$ 2.20<br>\$ 4.76                                                                                                                                     | \$ 2.02<br>\$ 3.08<br>\$ 2.60<br>\$ 5.30                                                                                                                |
|                  | CWSs                     | 3,300-9,999<br>10,000-49,999<br>50,000-99,999                                                                                                           | \$<br>\$                                                    | 39.43<br>65.93<br>59.09<br>14.96                                                                                    | \$<br>\$<br>\$                                           | 39.41<br>65.88<br>59.08<br>14.96                                                                            | \$<br>\$<br>\$<br>\$                                     | 32.34<br>53.54<br>53.39<br>13.38                                                                                    | \$ 46.55<br>\$ 78.38<br>\$ 64.79<br>\$ 16.53                                                                                                       | \$ 2.83<br>\$ 2.40<br>\$ 5.03<br>\$ 1.28                                                                                          | \$ 2.83<br>\$ 2.40<br>\$ 5.03<br>\$ 1.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$ 1.73<br>\$ 2.58<br>\$ 2.20<br>\$ 4.76<br>\$ 1.20                                                                                                                          | \$ 2.02<br>\$ 3.08<br>\$ 2.60<br>\$ 5.30<br>\$ 1.36                                                                                                     |
| Count            | CWSs                     | 3,300-9,999<br>10,000-49,999<br>50,000-99,999<br>100,000-999,999                                                                                        | \$<br>\$                                                    | 39.43<br>65.93<br>59.09<br>14.96<br>29.70                                                                           | \$<br>\$<br>\$<br>\$                                     | 39.41<br>65.88<br>59.08<br>14.96<br>29.71                                                                   | \$ \$ \$                                                 | 32.34<br>53.54<br>53.39<br>13.38<br>26.43                                                                           | \$ 46.55<br>\$ 78.38<br>\$ 64.79<br>\$ 16.53<br>\$ 32.95                                                                                           | \$ 2.83<br>\$ 2.40<br>\$ 5.03<br>\$ 1.28<br>\$ 2.83                                                                               | \$ 2.83<br>\$ 2.40<br>\$ 5.03<br>\$ 1.28<br>\$ 2.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$ 1.73<br>\$ 2.58<br>\$ 2.20<br>\$ 4.76<br>\$ 1.20<br>\$ 2.64                                                                                                               | \$ 2.02<br>\$ 3.08<br>\$ 2.60<br>\$ 5.30<br>\$ 1.36<br>\$ 3.02                                                                                          |
| Ground<br>Water  | CWSs                     | 3,300-9,999<br>10,000-49,999<br>50,000-99,999<br>100,000-999,999<br>1,000,000+                                                                          | \$<br>\$<br>\$                                              | 39.43<br>65.93<br>59.09<br>14.96<br>29.70                                                                           | \$<br>\$<br>\$<br>\$                                     | 39.41<br>65.88<br>59.08<br>14.96<br>29.71                                                                   | \$ \$ \$                                                 | 32.34<br>53.54<br>53.39<br>13.38<br>26.43<br>2.97                                                                   | \$ 46.55<br>\$ 78.38<br>\$ 64.79<br>\$ 16.53<br>\$ 32.95<br>\$ 3.79                                                                                | \$ 2.83<br>\$ 2.40<br>\$ 5.03<br>\$ 1.28<br>\$ 2.83<br>\$ 0.43                                                                    | \$ 2.83<br>\$ 2.40<br>\$ 5.03<br>\$ 1.28<br>\$ 2.83<br>\$ 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ 1.73<br>\$ 2.58<br>\$ 2.20<br>\$ 4.76<br>\$ 1.20<br>\$ 2.64                                                                                                               | \$ 2.02<br>\$ 3.08<br>\$ 2.60<br>\$ 5.30<br>\$ 1.36<br>\$ 3.02<br>\$ 0.46                                                                               |
|                  | CWSs                     | 3,300-9,999<br>10,000-49,999<br>50,000-99,999<br>100,000-99,999<br>1,000,000+<br>All Sizes                                                              | \$ \$ \$                                                    | 39.43<br>65.93<br>59.09<br>14.96<br>29.70<br>3.38<br>274.30                                                         | \$<br>\$<br>\$<br>\$<br>\$                               | 39.41<br>65.88<br>59.08<br>14.96<br>29.71<br>3.38<br>274.22                                                 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                   | 32.34<br>53.54<br>53.39<br>13.38<br>26.43<br>2.97<br>234.36                                                         | \$ 46.55<br>\$ 78.38<br>\$ 64.79<br>\$ 16.53<br>\$ 32.95<br>\$ 3.79<br>\$ 314.36                                                                   | \$ 2.83<br>\$ 2.40<br>\$ 5.03<br>\$ 1.28<br>\$ 2.83<br>\$ 0.43<br>\$ 21.11                                                        | \$ 2.83<br>\$ 2.40<br>\$ 5.03<br>\$ 1.28<br>\$ 2.83<br>\$ 0.43<br>\$ 21.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$ 1.73<br>\$ 2.58<br>\$ 2.20<br>\$ 4.76<br>\$ 1.20<br>\$ 2.64<br>\$ 0.40<br>\$ 19.60                                                                                        | \$ 2.02<br>\$ 3.08<br>\$ 2.60<br>\$ 5.30<br>\$ 1.36<br>\$ 3.02<br>\$ 0.46<br>\$ 22.63                                                                   |
|                  | CWSs                     | 3,300-9,999<br>10,000-49,999<br>50,000-99,999<br>100,000-99,999<br>1,000,000+<br>All Sizes<br><100                                                      | \$ \$ \$ \$ \$ \$ \$                                        | 39.43<br>65.93<br>59.09<br>14.96<br>29.70<br>3.38<br>274.30                                                         | \$<br>\$<br>\$<br>\$<br>\$                               | 39.41<br>65.88<br>59.08<br>14.96<br>29.71<br>3.38<br>274.22                                                 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 32.34<br>53.54<br>53.39<br>13.38<br>26.43<br>2.97<br>234.36                                                         | \$ 46.55<br>\$ 78.38<br>\$ 64.79<br>\$ 16.53<br>\$ 32.95<br>\$ 3.79<br>\$ 314.36                                                                   | \$ 2.83<br>\$ 2.40<br>\$ 5.03<br>\$ 1.28<br>\$ 2.83<br>\$ 0.43<br>\$ 21.11<br>\$ 0.35                                             | \$ 2.83<br>\$ 2.40<br>\$ 5.03<br>\$ 1.28<br>\$ 2.83<br>\$ 0.43<br>\$ 21.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$ 1.73<br>\$ 2.58<br>\$ 2.20<br>\$ 4.76<br>\$ 1.20<br>\$ 2.64<br>\$ 0.40<br>\$ 19.60                                                                                        | \$ 2.02<br>\$ 3.08<br>\$ 2.60<br>\$ 5.30<br>\$ 1.36<br>\$ 3.02<br>\$ 0.46<br>\$ 22.63                                                                   |
|                  | CWSs                     | 3,300-9,999<br>10,000-49,999<br>50,000-99,999<br>100,000-999,999<br>1,000,000+<br>All Sizes<br><100<br>100-499                                          | \$ \$ \$ \$ \$                                              | 39.43<br>65.93<br>59.09<br>14.96<br>29.70<br>3.38<br>274.30<br>3.18                                                 | \$<br>\$<br>\$<br>\$<br>\$<br>\$                         | 39.41<br>65.88<br>59.08<br>14.96<br>29.71<br>3.38<br>274.22<br>3.17<br>5.05                                 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 32.34<br>53.54<br>53.39<br>13.38<br>26.43<br>2.97<br>234.36<br>2.73<br>4.26                                         | \$ 46.55<br>\$ 76.38<br>\$ 64.79<br>\$ 16.53<br>\$ 32.95<br>\$ 3.79<br>\$ 314.36<br>\$ 3.62<br>\$ 5.82                                             | \$ 2.83<br>\$ 2.40<br>\$ 5.03<br>\$ 1.28<br>\$ 2.83<br>\$ 0.43<br>\$ 21.11<br>\$ 0.35<br>\$ 0.53                                  | \$ 2.83<br>\$ 2.40<br>\$ 5.03<br>\$ 1.28<br>\$ 2.83<br>\$ 0.43<br>\$ 21.11<br>\$ 0.35<br>\$ 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 1.73<br>\$ 2.58<br>\$ 2.20<br>\$ 4.76<br>\$ 1.20<br>\$ 2.64<br>\$ 0.40<br>\$ 19.60<br>\$ 0.33                                                                             | \$ 2.02<br>\$ 3.08<br>\$ 2.60<br>\$ 5.30<br>\$ 1.36<br>\$ 3.02<br>\$ 0.46<br>\$ 22.63<br>\$ 0.38<br>\$ 0.57                                             |
|                  | CWSs                     | 3,300-9,999 10,000-49,999 50,000-99,999 100,000-999,999 1,000,000+ All Sizes <100 100-499 500-999                                                       | \$ \$ \$ \$ \$                                              | 39.43<br>65.93<br>59.09<br>14.96<br>29.70<br>3.38<br>274.30<br>3.18<br>5.04                                         | \$<br>\$<br>\$<br>\$<br>\$<br>\$                         | 39.41<br>65.88<br>59.08<br>14.96<br>29.71<br>3.38<br>274.22<br>3.17<br>5.05                                 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 32.34<br>53.54<br>53.39<br>13.38<br>26.43<br>2.97<br>234.36<br>2.73<br>4.26<br>2.08                                 | \$ 46.55<br>\$ 76.38<br>\$ 64.79<br>\$ 16.53<br>\$ 32.95<br>\$ 3.79<br>\$ 314.36<br>\$ 3.62<br>\$ 5.82<br>\$ 2.87                                  | \$ 2.83<br>\$ 2.40<br>\$ 5.03<br>\$ 1.28<br>\$ 2.83<br>\$ 0.43<br>\$ 21.11<br>\$ 0.35<br>\$ 0.53<br>\$ 0.22                       | \$ 2.83<br>\$ 2.40<br>\$ 5.03<br>\$ 1.28<br>\$ 2.83<br>\$ 0.43<br>\$ 21.11<br>\$ 0.35<br>\$ 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 1.73<br>\$ 2.58<br>\$ 2.20<br>\$ 4.76<br>\$ 1.20<br>\$ 2.64<br>\$ 0.40<br>\$ 19.60<br>\$ 0.33<br>\$ 0.48<br>\$ 0.20                                                       | \$ 2.02<br>\$ 3.08<br>\$ 2.60<br>\$ 5.30<br>\$ 1.36<br>\$ 3.02<br>\$ 0.46<br>\$ 22.63<br>\$ 0.38<br>\$ 0.57<br>\$ 0.24                                  |
|                  |                          | 3,300-9,999 10,000-49,999 50,000-99,999 100,000-999,999 1,000,000+ All Sizes <100 100-499 500-999 1,000-3,299                                           | \$ \$ \$ \$ \$                                              | 39.43<br>65.93<br>59.09<br>14.96<br>29.70<br>3.38<br>274.30<br>3.18<br>5.04<br>2.48                                 | \$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$                   | 39.41<br>65.88<br>59.08<br>14.96<br>29.71<br>3.38<br>274.22<br>3.17<br>5.05<br>2.48                         | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 32.34<br>53.54<br>53.39<br>13.38<br>26.43<br>2.97<br>234.36<br>2.73<br>4.26<br>2.08                                 | \$ 46.55<br>\$ 76.38<br>\$ 64.79<br>\$ 16.53<br>\$ 32.95<br>\$ 3.79<br>\$ 314.36<br>\$ 3.62<br>\$ 5.82<br>\$ 2.87<br>\$ 1.90                       | \$ 2.83<br>\$ 2.40<br>\$ 5.03<br>\$ 1.28<br>\$ 2.83<br>\$ 0.43<br>\$ 21.11<br>\$ 0.35<br>\$ 0.53<br>\$ 0.22<br>\$ 0.10            | \$ 2.83<br>\$ 2.40<br>\$ 5.03<br>\$ 1.28<br>\$ 2.83<br>\$ 0.43<br>\$ 21.11<br>\$ 0.35<br>\$ 0.53<br>\$ 0.22<br>\$ 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$ 1.73<br>\$ 2.58<br>\$ 220<br>\$ 4.76<br>\$ 120<br>\$ 2.64<br>\$ 0.40<br>\$ 19.60<br>\$ 0.33<br>\$ 0.48<br>\$ 0.20<br>\$ 0.09                                              | \$ 2.02<br>\$ 3.08<br>\$ 2.60<br>\$ 1.36<br>\$ 3.02<br>\$ 0.46<br>\$ 22.63<br>\$ 0.38<br>\$ 0.57<br>\$ 0.24<br>\$ 0.10                                  |
|                  |                          | 3,300-9,999 10,000-49,999 50,000-99,999 10,000-999,999 1,000,000+ All Sizes <100 100-499 500-999 1,000-3,299 3,300-9,999                                | \$ \$ \$ \$ \$ \$ \$                                        | 39.43<br>65.93<br>59.09<br>14.96<br>29.70<br>3.38<br>274.30<br>3.18<br>5.04<br>2.48<br>1.61                         | \$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$             | 39.41<br>65.88<br>59.08<br>14.96<br>29.71<br>3.38<br>274.22<br>3.17<br>5.05<br>2.48<br>1.61                 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 32.34<br>53.54<br>53.39<br>13.38<br>26.43<br>2.97<br>2.73<br>4.26<br>2.08<br>1.32<br>0.38                           | \$ 46.55<br>\$ 76.38<br>\$ 64.79<br>\$ 16.53<br>\$ 32.95<br>\$ 3.79<br>\$ 314.36<br>\$ 5.82<br>\$ 5.82<br>\$ 1.90<br>\$ 0.55                       | \$ 2.83<br>\$ 1.28<br>\$ 2.83<br>\$ 2.83<br>\$ 2.111<br>\$ 0.35<br>\$ 0.22<br>\$ 0.10<br>\$ 0.01                                  | \$ 283<br>\$ 128<br>\$ 128<br>\$ 283<br>\$ 2111<br>\$ 0.35<br>\$ 0.53<br>\$ 0.22<br>\$ 0.10<br>\$ 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$ 1.73<br>\$ 2.58<br>\$ 220<br>\$ 4.76<br>\$ 120<br>\$ 2.64<br>\$ 0.40<br>\$ 19.60<br>\$ 0.33<br>\$ 0.48<br>\$ 0.20<br>\$ 0.09<br>\$ 0.01                                   | \$ 2.02<br>\$ 3.08<br>\$ 2.60<br>\$ 1.36<br>\$ 0.46<br>\$ 22.63<br>\$ 0.24<br>\$ 0.24<br>\$ 0.10<br>\$ 0.01                                             |
|                  |                          | 3,300-9,999 10,000-49,999 50,000-99,999 10,000,000-99,999 1,000,000+ All Sizes <100 100-499 500-999 1,000-3,299 3,300-9,999 10,000-49,999               | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$          | 39.43<br>65.93<br>59.09<br>14.96<br>29.70<br>3.38<br>274.30<br>3.18<br>5.04<br>2.48<br>1.61<br>0.46                 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                            | 39.41<br>65.88<br>59.08<br>14.96<br>29.71<br>3.38<br>274.22<br>3.17<br>5.05<br>2.48<br>1.61<br>0.46         | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 32.34<br>53.54<br>53.39<br>13.38<br>26.43<br>2.97<br>234.36<br>2.73<br>4.26<br>2.08<br>1.32<br>0.38                 | \$ 46.55<br>\$ 76.38<br>\$ 64.79<br>\$ 16.53<br>\$ 32.95<br>\$ 3.79<br>\$ 314.36<br>\$ 5.82<br>\$ 5.82<br>\$ 1.90<br>\$ 0.55<br>\$ 0.11            | \$ 2.83<br>\$ 2.83<br>\$ 2.83<br>\$ 2.83<br>\$ 2.111<br>\$ 0.35<br>\$ 0.22<br>\$ 0.10<br>\$ 0.01                                  | \$ 283<br>\$ 128<br>\$ 128<br>\$ 283<br>\$ 0.43<br>\$ 21.11<br>\$ 0.35<br>\$ 0.53<br>\$ 0.22<br>\$ 0.10<br>\$ 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ 1.73<br>\$ 2.58<br>\$ 2.20<br>\$ 4.76<br>\$ 120<br>\$ 2.64<br>\$ 0.40<br>\$ 19.60<br>\$ 0.33<br>\$ 0.48<br>\$ 0.20<br>\$ 0.09<br>\$ 0.01<br>\$ 0.01                       | \$ 2.02<br>\$ 3.08<br>\$ 2.60<br>\$ 1.36<br>\$ 0.46<br>\$ 22.63<br>\$ 0.24<br>\$ 0.10<br>\$ 0.10<br>\$ 0.01<br>\$ 0.01                                  |
|                  |                          | 3,300-9,999 10,000-49,999 50,000-99,999 10,000-999,999 1,000,000-49,999 410,000-49,999 1,000-3,299 10,000-49,999 50,000-99,999                          | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$    | 39.43<br>65.93<br>59.09<br>14.96<br>29.70<br>3.38<br>274.30<br>3.18<br>5.04<br>2.48<br>1.61<br>0.46<br>0.10         | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 39.41<br>65.88<br>59.08<br>14.96<br>29.71<br>3.38<br>274.22<br>3.17<br>5.05<br>2.48<br>1.61<br>0.46         | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 32.34<br>53.54<br>53.39<br>13.38<br>26.43<br>2.97<br>234.36<br>2.73<br>4.26<br>2.08<br>1.32<br>0.38<br>0.09         | \$ 46.55<br>\$ 76.38<br>\$ 64.79<br>\$ 16.53<br>\$ 32.95<br>\$ 3.79<br>\$ 314.36<br>\$ 5.82<br>\$ 5.82<br>\$ 1.90<br>\$ 0.55<br>\$ 0.11<br>\$ 0.02 | \$ 283<br>\$ 5.03<br>\$ 1.28<br>\$ 2.83<br>\$ 0.43<br>\$ 21.11<br>\$ 0.35<br>\$ 0.53<br>\$ 0.01<br>\$ 0.01<br>\$ 0.01             | \$ 283<br>\$ 128<br>\$ 283<br>\$ 0.43<br>\$ 21.11<br>\$ 0.35<br>\$ 0.53<br>\$ 0.22<br>\$ 0.10<br>\$ 0.01<br>\$ 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$ 1.73<br>\$ 2.58<br>\$ 2.20<br>\$ 4.76<br>\$ 120<br>\$ 2.64<br>\$ 0.40<br>\$ 19.60<br>\$ 0.33<br>\$ 0.48<br>\$ 0.20<br>\$ 0.09<br>\$ 0.01<br>\$ 0.01                       | \$ 2.02<br>\$ 3.08<br>\$ 2.60<br>\$ 1.36<br>\$ 0.46<br>\$ 22.63<br>\$ 0.24<br>\$ 0.10<br>\$ 0.10<br>\$ 0.01<br>\$ 0.01                                  |
|                  |                          | 3,300-9,999 10,000-49,999 50,000-99,999 1,000,000-999,999 1,000,000- 100-499 500-999 1,000-3,299 10,000-49,999 10,000-99,999 100,000-999,999            | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 39.43<br>65.93<br>59.09<br>14.96<br>29.70<br>3.38<br>274.30<br>3.18<br>5.04<br>2.48<br>1.61<br>0.46<br>0.10         | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$          | 39.41<br>65.88<br>59.08<br>14.96<br>29.71<br>3.38<br>274.22<br>3.17<br>5.05<br>2.48<br>1.61<br>0.46         | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 32.34<br>53.54<br>53.39<br>13.38<br>26.43<br>2.97<br>234.36<br>2.73<br>4.26<br>2.08<br>1.32<br>0.38<br>0.09         | \$ 46.55 \$ 76.38 \$ 64.79 \$ 16.53 \$ 32.95 \$ 3.79 \$ 314.36 \$ 5.82 \$ 5.82 \$ 1.90 \$ 0.55 \$ 0.11 \$ 0.02 \$ 0.03                             | \$ 2,83<br>\$ 5,03<br>\$ 1,28<br>\$ 2,83<br>\$ 21,11<br>\$ 0,35<br>\$ 0,53<br>\$ 0,01<br>\$ 0,01<br>\$ 0,01<br>\$ 0,00<br>\$ 0,00 | \$ 283<br>\$ 240<br>\$ 5.03<br>\$ 1.28<br>\$ 283<br>\$ 0.43<br>\$ 21.11<br>\$ 0.35<br>\$ 0.53<br>\$ 0.22<br>\$ 0.10<br>\$ 0.01<br>\$ 0.01<br>\$ 0.00<br>\$ 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$ 1.73<br>\$ 2.58<br>\$ 2.20<br>\$ 4.76<br>\$ 120<br>\$ 2.64<br>\$ 19.60<br>\$ 0.40<br>\$ 0.33<br>\$ 0.48<br>\$ 0.20<br>\$ 0.01<br>\$ 0.01<br>\$ 0.01                       | \$ 2.02<br>\$ 3.08<br>\$ 2.60<br>\$ 5.30<br>\$ 1.36<br>\$ 0.46<br>\$ 22.63<br>\$ 0.38<br>\$ 0.57<br>\$ 0.24<br>\$ 0.10<br>\$ 0.01<br>\$ 0.01            |
|                  |                          | 3,300-9,999 10,000-49,999 50,000-99,999 10,000-999,999 1,000,000-49,999 10,000-3,299 10,000-49,999 10,000-49,999 10,000-99,999 10,000-99,999 1,000,000+ | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$    | 39.43<br>65.93<br>59.09<br>14.96<br>29.70<br>3.38<br>274.30<br>3.18<br>5.04<br>2.48<br>1.61<br>0.46<br>0.10<br>0.02 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$             | 39.41<br>65.88<br>59.08<br>14.96<br>29.71<br>3.38<br>274.22<br>3.17<br>5.05<br>2.48<br>1.61<br>0.10<br>0.02 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 32.34<br>53.54<br>53.39<br>13.38<br>26.43<br>2.97<br>23.436<br>2.73<br>4.26<br>2.08<br>1.32<br>0.38<br>0.09<br>0.02 | \$ 46.55 \$ 76.38 \$ 64.79 \$ 16.53 \$ 32.95 \$ 3.79 \$ 314.36 \$ 3.62 \$ 5.82 \$ 2.87 \$ 1.90 \$ 0.55 \$ 0.11 \$ 0.02 \$ 0.03 \$ -                | \$ 2.83 \$ 2.40 \$ 5.03 \$ 1.28 \$ 2.83 \$ 2.111 \$ 0.35 \$ 0.53 \$ 0.01 \$ 0.01 \$ 0.01 \$ 0.00 \$ 0.00 \$ 0.00                  | \$ 283<br>\$ 240<br>\$ 5.03<br>\$ 1.28<br>\$ 2.83<br>\$ 0.43<br>\$ 21.11<br>\$ 0.35<br>\$ 0.53<br>\$ 0.22<br>\$ 0.10<br>\$ 0.01<br>\$ 0.01<br>\$ 0.00<br>\$ 0 | \$ 1.73<br>\$ 2.58<br>\$ 2.20<br>\$ 4.76<br>\$ 120<br>\$ 2.64<br>\$ 0.40<br>\$ 19.60<br>\$ 0.33<br>\$ 0.48<br>\$ 0.20<br>\$ 0.01<br>\$ 0.01<br>\$ 0.01<br>\$ 0.00<br>\$ 0.00 | \$ 2.02<br>\$ 3.08<br>\$ 2.60<br>\$ 1.36<br>\$ 0.46<br>\$ 22.63<br>\$ 0.38<br>\$ 0.57<br>\$ 0.24<br>\$ 0.10<br>\$ 0.01<br>\$ 0.01<br>\$ 0.00<br>\$ 0.00 |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

Source: Derived by multiplying unit costs in Exhibits 7.10 and 7.11 by Technology Selection Deltas in in Appendix C (results for Alternative 3), summed for all technologies.

Exhibit J.1g Total Stage 2 DBPR Implementation, IDSE, Additional Routine Monitoring, and Significant Excursion Evaluation Costs - PWSs

## All Alternatives

| Source  | System<br>Classification | System Size (population served) | Total<br>Implementation<br>Costs | Total IDSE Costs   | Total Stage 2<br>Monitoring Plan<br>Costs | Annual Additional<br>Routine Monitoring<br>Costs | Annual Significant<br>Excursion<br>Evaluation<br>Costs |
|---------|--------------------------|---------------------------------|----------------------------------|--------------------|-------------------------------------------|--------------------------------------------------|--------------------------------------------------------|
|         |                          | <100                            | \$ 0.24                          | \$ 0.45            | \$ 0.09                                   | \$ (0.05)                                        | \$ 0.00                                                |
|         |                          | 100-499                         | \$ 0.50                          | \$ 0.91            | \$ 0.19                                   | \$ (0.11)                                        | \$ 0.00                                                |
|         |                          | 500-999                         | \$ 0.36                          | \$ 3.14            | \$ 0.18                                   | \$ (0.33)                                        | \$ 0.00                                                |
|         |                          | 1,000-3,299                     | \$ 0.64                          | \$ 5.53            | \$ 0.32                                   | \$ (0.58)                                        | \$ 0.01                                                |
|         | CWSs                     | 3,300-9,999                     | \$ 0.62                          | \$ 8.38            | \$ 0.26                                   | \$ 0.95                                          | \$ 0.02                                                |
|         |                          | 10,000-49,999                   | \$ 1.21                          | \$ 17.85           | \$ 0.46                                   | \$ (2.48)                                        | \$ 0.10                                                |
|         |                          | 50,000-99,999                   | \$ 0.24                          | \$ 6.43            | \$ 0.09                                   | \$ 0.22                                          | \$ 0.04                                                |
|         |                          | 100,000-999,999                 | \$ 0.21                          | \$ 6.11            | \$ 0.09                                   | \$ 0.28                                          | \$ 0.04                                                |
|         |                          | 1,000,000+                      | \$ 0.02                          | \$ 0.73            | \$ 0.01                                   | \$ 0.04                                          | \$ 0.01                                                |
| Surface |                          | All Sizes                       | \$ 4.05                          | \$ 49.53           | \$ 1.71                                   | \$ (2.07)                                        | \$ 0.21                                                |
| Water   |                          | <100                            | \$ 0.05                          | \$ -               | \$ 0.01                                   | \$ -                                             | \$ -                                                   |
|         |                          | 100-499                         | \$ 0.06                          | \$ -               | \$ 0.01                                   | \$ -                                             | \$ -                                                   |
|         |                          | 500-999                         | \$ 0.02                          | \$ -               | \$ 0.01                                   | \$ -                                             | \$ -                                                   |
|         |                          | 1,000-3,299                     | \$ 0.02                          | \$ -               | \$ 0.00                                   | \$ -                                             | \$ -                                                   |
|         | NTNCWSs                  | 3,300-9,999                     | \$ 0.01                          | \$ -               | \$ 0.00                                   | \$ 0.03                                          | \$ -                                                   |
|         |                          | 10,000-49,999                   | \$ 0.00                          | \$ 0.05            | \$ 0.00                                   | \$ -                                             | \$ -                                                   |
|         |                          | 50,000-99,999                   | \$ -                             | \$ -               | \$ -                                      | \$ -                                             | \$ -                                                   |
|         |                          | 100,000-999,999                 | \$ 0.00                          | \$ 0.02            | \$ 0.00                                   | \$ 0.00                                          | \$ -                                                   |
|         |                          | 1,000,000+                      | \$ -                             | \$ -               | \$ -                                      | \$ -                                             | \$ -                                                   |
|         |                          | All Sizes                       | \$ 0.17                          | \$ 0.07            | \$ 0.04                                   | \$ 0.03                                          | \$ -                                                   |
|         |                          | Subtotal                        | \$ 4.22                          | \$ 49.60           | \$ 1.75                                   | \$ (2.04)                                        | \$ 0.21                                                |
|         |                          | <100                            | \$ 1.60                          | \$ 0.22            | \$ 0.42                                   | \$ 0.10                                          | \$ -                                                   |
|         |                          | 100-499                         | \$ 1.98                          | \$ 0.27            | \$ 0.52                                   | \$ 0.12                                          | \$ -                                                   |
|         |                          | 500-999                         | \$ 0.89<br>\$ 1.09               | \$ 1.93            | \$ 0.51                                   | \$ 0.55                                          | \$ -                                                   |
|         |                          | 1,000-3,299<br>3,300-9,999      | \$ 1.09<br>\$ 0.49               | \$ 2.34<br>\$ 1.06 | \$ 0.62<br>\$ 0.28                        | \$ 0.67<br>\$ 0.30                               | \$ -                                                   |
|         | CWSs                     |                                 | \$ 0.49                          | \$ 1.06            | \$ 0.28                                   | \$ 0.30                                          | \$ -                                                   |
|         |                          | 10,000-49,999                   | \$ 0.09                          | \$ 0.18            | \$ 0.04                                   | \$ 0.39                                          | \$ -                                                   |
|         |                          | 100,000-999,999                 | \$ 0.05                          | \$ 0.17            | \$ 0.03                                   | \$ (0.09)                                        | \$ -                                                   |
|         |                          | 1,000,000+                      | \$ 0.00                          | \$ 0.17            | \$ 0.00                                   | \$ (0.03)                                        | \$ -                                                   |
|         |                          | All Sizes                       | \$ 6.98                          | \$ 7.83            | \$ 2.72                                   | \$ 5.54                                          | \$ -                                                   |
| Ground  |                          | <100                            | \$ 0.50                          | \$ -               | \$ 0.18                                   | \$ 0.18                                          | \$ -                                                   |
| Water   |                          | 100-499                         | \$ 0.43                          | \$ -               | \$ 0.16                                   | \$ 0.15                                          | \$ -                                                   |
|         |                          | 500-999                         | \$ 0.13                          | \$ -               | \$ 0.05                                   | \$ 0.25                                          | \$ -                                                   |
|         |                          | 1,000-3,299                     | \$ 0.06                          | \$ -               | \$ 0.02                                   | \$ 0.11                                          | \$ -                                                   |
|         |                          | 3,300-9,999                     | \$ 0.00                          | \$ -               | \$ 0.00                                   | \$ 0.01                                          | s -                                                    |
|         | NTNCWSs                  | 10,000-49,999                   | \$ 0.00                          | \$ 0.00            | \$ 0.00                                   | \$ 0.02                                          | \$ -                                                   |
|         |                          | 50,000-99,999                   | \$ 0.00                          | \$ 0.00            | \$ 0.00                                   | \$ 0.00                                          | \$ -                                                   |
|         |                          | 100,000-999,999                 | \$ 0.00                          | \$ -               | \$ 0.00                                   | \$ 0.00                                          | \$ -                                                   |
|         |                          | 1,000,000+                      | \$ -                             | \$ -               | \$ -                                      | \$ -                                             | \$ -                                                   |
|         |                          | All Sizes                       | \$ 1.12                          | \$ 0.00            | \$ 0.42                                   | \$ 0.71                                          | \$ -                                                   |
|         |                          | Subtotal                        | \$ 8.10                          | \$ 7.83            | \$ 3.14                                   | \$ 6.25                                          | \$ -                                                   |
|         | _                        | Total                           | \$ 12.31                         | \$ 57.44           | \$ 4.89                                   | \$ 4.21                                          | \$ 0.21                                                |

Notes: All values in millions of year 2003 dollars.

Detail may not add exactly to totals due to independent rounding.

Source: Derived from Exhibits H.12 and H.13.

Exhibit J.1h Total Implementaion, IDSE, and Compliance Monitoring Costs - Primacy Agencies

## All Alternatives

| Total                | Total      | Total Stage 2 Monitoring | Annual Compliance | Annual Significant     |
|----------------------|------------|--------------------------|-------------------|------------------------|
| Implementation Costs | IDSE Costs | Plan Costs               | Monitoring Costs  | Excursion Report Costs |
| \$ 7.77              | \$ 2.23    | \$ 0.93                  | \$ 1.59           |                        |

Notes: All values in millions of year 2003 dollars.

Source: Exhibit H.11.

Section J.2
Cost Projections (Preferred Alternative)

## Exhibit J.2a Projections of Stage 2 DBPR PWS Costs

(Surface Water CWSs Serving <100 People)

### Preferred Alternative

| Preferr | ed | Alter        | natı | ve               |       |                          |                   |      |                        |       |                        |    |               |           |      |      |                     |     |            |    |                       |               | _   |                         |      | ,                        |
|---------|----|--------------|------|------------------|-------|--------------------------|-------------------|------|------------------------|-------|------------------------|----|---------------|-----------|------|------|---------------------|-----|------------|----|-----------------------|---------------|-----|-------------------------|------|--------------------------|
|         |    | Treat        | nent | Capita           | al Co | osts                     | Treatn            | nent | O&M (                  | Costs | 5                      |    |               |           | N    | on-1 | Freatment Co        | sts |            |    |                       | All Stage     | 2 [ | DBPR (                  | Cost | ts                       |
|         |    |              | Co   | 90 Pe            |       |                          |                   | Co   | 90 Pe                  |       |                        |    |               |           |      |      |                     |     |            |    |                       |               | Cı  | 90 Pe                   |      |                          |
| Year    |    | lean<br>alue | _    | ower<br>1 %tile) | (     | Jpper<br>(95th<br>%tile) | <br>Mean<br>'alue | (    | ower<br>(5th<br>6tile) | (9    | pper<br>95th<br>stile) | lr | mplementation |           | IDSE | ,    | Monitoring<br>Plans | ı   | Monitoring |    | gnificant<br>ccursion | Mean<br>Value |     | _ower<br>(5th<br>%tile) | (    | Jpper<br>(95th<br>%tile) |
| 2005    | \$ | -            | \$   | -                | \$    | -                        | \$<br>-           | \$   | -                      | \$    | -                      | \$ | 0.03          | \$        | -    | \$   | -                   | \$  | -          | \$ | -                     | \$<br>0.03    | \$  | 0.03                    | \$   | 0.03                     |
| 2006    | \$ | -            | \$   | -                | \$    | -                        | \$<br>-           | \$   | -                      | \$    | -                      | \$ | 0.10          | \$        | 0.04 | \$   | ÷                   | \$  |            | \$ | -                     | \$<br>0.13    | \$  | 0.13                    | \$   | 0.13                     |
| 2007    | \$ | -            | \$   | -                | \$    | -                        | \$<br>-           | \$   | -                      | \$    | -                      | \$ | -             | <b>\$</b> | 0.10 | \$   | 0.01                | \$  | -          | \$ | -                     | \$<br>0.11    | \$  | 0.11                    | \$   | 0.11                     |
| 2008    | \$ | -            | \$   | -                | \$    | -                        | \$<br>-           | \$   | -                      | \$    | -                      | \$ | 0.02          | <b>\$</b> | 0.31 | \$   | 0.02                | \$  | -          | \$ | -                     | \$<br>0.35    | \$  | 0.35                    | \$   | 0.35                     |
| 2009    | \$ | 0.12         | \$   | 0.06             | \$    | 0.19                     | \$<br>-           | \$   | -                      | \$    | -                      | \$ | 0.05          | 69        |      | \$   | 0.07                | \$  | -          | \$ | -                     | \$<br>0.24    | \$  | 0.18                    | \$   | 0.31                     |
| 2010    | \$ | 0.24         | \$   | 0.12             | \$    | 0.38                     | \$<br>0.02        | \$   | 0.01                   | \$    | 0.03                   | \$ | 0.05          | 69        |      | \$   |                     | \$  | -          | \$ | -                     | \$<br>0.31    | \$  | 0.18                    | \$   | 0.46                     |
| 2011    | \$ | 0.24         | \$   | 0.12             | \$    | 0.38                     | \$<br>0.07        | \$   | 0.03                   | \$    | 0.10                   | \$ | -             | 69        |      | \$   |                     | \$  | -          | \$ | -                     | \$<br>0.30    | \$  | 0.15                    | \$   | 0.48                     |
| 2012    | 69 | 0.24         | \$   | 0.12             | \$    | 0.38                     | \$<br>0.11        | \$   | 0.06                   | \$    | 0.16                   | \$ | -             | 69        | -    | 69   |                     | \$  | (0.03)     | \$ | -                     | \$<br>0.32    | \$  | 0.15                    | \$   | 0.51                     |
| 2013    | \$ | 0.24         | \$   | 0.12             | \$    | 0.38                     | \$<br>0.15        | \$   | 0.08                   | \$    | 0.23                   | \$ | -             | \$        | -    | \$   | -                   | \$  | (0.05)     | \$ | 0.00                  | \$<br>0.34    | \$  | 0.15                    | \$   | 0.55                     |
| 2014    | \$ | 0.12         | \$   | 0.06             | \$    | 0.19                     | \$<br>0.20        | \$   | 0.10                   | \$    | 0.29                   | \$ | -             | \$        | -    | \$   | -                   | \$  | (0.05)     | \$ | 0.00                  | \$<br>0.26    | \$  | 0.11                    | \$   | 0.43                     |
| 2015    | \$ | -            | \$   | -                | \$    | -                        | \$<br>0.22        | \$   | 0.11                   | \$    | 0.32                   | \$ | -             | \$        | -    | \$   | -                   | \$  | (0.05)     | \$ | 0.00                  | \$<br>0.17    | \$  | 0.06                    | \$   | 0.27                     |
| 2016    | \$ | -            | \$   | -                | \$    | -                        | \$<br>0.22        | \$   | 0.11                   | \$    | 0.32                   | \$ | -             | \$        | -    | \$   | -                   | \$  | (0.05)     | \$ | 0.00                  | \$<br>0.17    | \$  | 0.06                    | \$   | 0.27                     |
| 2017    | \$ | -            | \$   | -                | \$    | -                        | \$<br>0.22        | \$   | 0.11                   | \$    | 0.32                   | \$ | -             | \$        | -    | \$   | -                   | \$  | (0.05)     | \$ | 0.00                  | \$<br>0.17    | \$  | 0.06                    | \$   | 0.27                     |
| 2018    | \$ | -            | \$   | -                | \$    | -                        | \$<br>0.22        | \$   | 0.11                   | \$    | 0.32                   | \$ | -             | \$        | -    | \$   | -                   | \$  | (0.05)     | \$ | 0.00                  | \$<br>0.17    | \$  | 0.06                    | \$   | 0.27                     |
| 2019    | \$ | -            | \$   | -                | \$    | -                        | \$<br>0.22        | \$   | 0.11                   | \$    | 0.32                   | \$ | -             | \$        | -    | \$   | -                   | \$  | (0.05)     | \$ | 0.00                  | \$<br>0.17    | \$  | 0.06                    | \$   | 0.27                     |
| 2020    | \$ | -            | \$   | -                | \$    | -                        | \$<br>0.22        | \$   | 0.11                   | \$    | 0.32                   | \$ | -             | \$        | -    | \$   | -                   | \$  | (0.05)     | \$ | 0.00                  | \$<br>0.17    | \$  | 0.06                    | \$   | 0.27                     |
| 2021    | \$ | -            | \$   | -                | \$    | -                        | \$<br>0.22        | \$   | 0.11                   | \$    | 0.32                   | \$ | -             | \$        | -    | \$   | -                   | \$  | (0.05)     | \$ | 0.00                  | \$<br>0.17    | \$  | 0.06                    | \$   | 0.27                     |
| 2022    | \$ | -            | \$   | -                | \$    | -                        | \$<br>0.22        | \$   | 0.11                   | \$    | 0.32                   | \$ | -             | \$        | -    | \$   | -                   | \$  | (0.05)     | \$ | 0.00                  | \$<br>0.17    | \$  | 0.06                    | \$   | 0.27                     |
| 2023    | \$ | -            | \$   | -                | \$    | -                        | \$<br>0.22        | \$   | 0.11                   | \$    | 0.32                   | \$ | -             | \$        | -    | \$   | -                   | \$  | (0.05)     | _  | 0.00                  | \$<br>0.17    | \$  | 0.06                    | \$   | 0.27                     |
| 2024    | \$ | -            | \$   | -                | \$    | -                        | \$<br>0.22        | \$   | 0.11                   | \$    | 0.32                   | \$ | -             | \$        | -    | \$   | -                   | \$  | (0.05)     | \$ | 0.00                  | \$<br>0.17    | \$  | 0.06                    | \$   | 0.27                     |
| 2025    | \$ | -            | \$   | -                | \$    | -                        | \$<br>0.22        | \$   | 0.11                   | \$    | 0.32                   | \$ | -             | \$        | -    | \$   |                     | \$  | (0.05)     | \$ | 0.00                  | \$<br>0.17    | \$  | 0.06                    | \$   | 0.27                     |
| 2026    | \$ | -            | \$   | -                | \$    | -                        | \$<br>0.22        | \$   | 0.11                   | \$    | 0.32                   | \$ | -             | \$        | -    | \$   |                     | \$  | (0.05)     | _  | 0.00                  | \$<br>0.17    | \$  | 0.06                    | \$   | 0.27                     |
| 2027    | \$ | -            | \$   | -                | \$    | -                        | \$<br>0.22        | \$   | 0.11                   | \$    | 0.32                   | \$ | -             | \$        | -    | \$   | -                   | \$  | (0.05)     | \$ | 0.00                  | \$<br>0.17    | \$  | 0.06                    | \$   | 0.27                     |
| 2028    | \$ | -            | \$   | -                | \$    | -                        | \$<br>0.22        | \$   | 0.11                   | \$    | 0.32                   | \$ | -             | \$        | -    | \$   | -                   | \$  | (0.05)     | \$ | 0.00                  | \$<br>0.17    | \$  | 0.06                    | \$   | 0.27                     |
| 2029    | \$ | -            | \$   | -                | \$    | -                        | \$<br>0.22        | \$   | 0.11                   | \$    | 0.32                   | \$ | -             | \$        | -    | \$   | -                   | \$  | (0.05)     | \$ | 0.00                  | \$<br>0.17    | \$  | 0.06                    | \$   | 0.27                     |

# Exhibit J.2b Projections of Stage 2 DBPR PWS Costs

(Surface Water CWSs Serving 100-499 People)

## Preferred Alternative

| Preferred | Alte | ernati       | ve   |                |        |                |               |       |                |       |                |                 |            |    |                   |       |           |    |                     |          |        |       |                |      |                   |
|-----------|------|--------------|------|----------------|--------|----------------|---------------|-------|----------------|-------|----------------|-----------------|------------|----|-------------------|-------|-----------|----|---------------------|----------|--------|-------|----------------|------|-------------------|
|           |      | Treat        | ment | Capita         | l Cost | s              | Tr            | eatme | ent O&         | / Cos | ts             |                 |            | No | n-Treatmen        | t Cos | sts       |    |                     |          | All St | age 2 | DBPR           | Cost | s                 |
|           |      |              | C    | 90 Ponfiden    | ercent |                |               | С     | 90 F           | ercen | -              |                 |            |    |                   |       |           |    |                     |          |        | C     | 90 Pe          |      |                   |
| Year      |      | lean<br>alue |      | ower<br>%tile) |        | pper<br>%tile) | Mean<br>Value | _     | ower<br>%tile) |       | pper<br>%tile) | lement<br>ation | DSE        |    | nitoring<br>Plans | М     | onitoring | _  | nificant<br>cursion | Me<br>Va |        |       | ower<br>%tile) |      | lpper<br>n %tile) |
| 2005      | \$   | -            | \$   | -              | \$     | -              | \$ -          | \$    | -              | \$    | -              | \$<br>0.05      | \$<br>-    | \$ | -                 | \$    | -         | \$ | -                   | \$       | 0.05   | \$    | 0.05           | \$   | 0.05              |
| 2006      | \$   | -            | \$   | -              | \$     | -              | \$ -          | \$    | -              | \$    | -              | \$<br>0.20      | \$<br>0.07 | \$ | -                 | \$    | -         | \$ | -                   | \$       | 0.27   | \$    | 0.27           | \$   | 0.27              |
| 2007      | \$   | -            | \$   | -              | \$     | -              | \$ -          | \$    | -              | \$    | -              | \$<br>-         | \$<br>0.21 | \$ | 0.02              | \$    | -         | \$ | -                   | \$       | 0.23   | \$    | 0.23           | \$   | 0.23              |
| 2008      | \$   | -            | \$   | -              | \$     | -              | \$ -          | \$    | -              | \$    | -              | \$<br>0.05      | \$<br>0.63 | \$ | 0.04              | \$    | -         | \$ | -                   | \$       | 0.72   | \$    | 0.72           | \$   | 0.72              |
| 2009      | \$   | 0.36         | \$   | 0.18           | \$     | 0.56           | \$ -          | \$    | -              | \$    | -              | \$<br>0.10      | \$<br>-    | \$ | 0.13              | \$    | -         | \$ | -                   | \$       | 0.60   | \$    | 0.42           | \$   | 0.79              |
| 2010      | \$   | 0.72         | \$   | 0.36           | \$     | 1.12           | \$ 0.09       | \$    | 0.05           | \$    | 0.13           | \$<br>0.10      | \$<br>-    | \$ | -                 | \$    | -         | \$ | -                   | \$       | 0.91   | \$    | 0.51           | \$   | 1.35              |
| 2011      | \$   | 0.72         | \$   | 0.36           | \$     | 1.12           | \$ 0.27       | \$    | 0.14           | \$    | 0.40           | \$<br>-         | \$<br>-    | \$ | -                 | \$    | -         | \$ | -                   | \$       | 0.99   | \$    | 0.50           | \$   | 1.52              |
| 2012      | \$   | 0.72         | \$   | 0.36           | \$     | 1.12           | \$ 0.45       | \$    | 0.23           | \$    | 0.67           | \$<br>-         | \$<br>-    | \$ | -                 | \$    | (0.05)    | \$ | -                   | \$       | 1.11   | \$    | 0.54           | \$   | 1.73              |
| 2013      | \$   | 0.72         | \$   | 0.36           | \$     | 1.12           | \$ 0.63       | \$    | 0.33           | \$    | 0.94           | \$<br>-         | \$<br>-    | \$ | -                 | \$    | (0.11)    | \$ | 0.00                | \$       | 1.24   | \$    | 0.58           | \$   | 1.95              |
| 2014      | \$   | 0.36         | \$   | 0.18           | \$     | 0.56           | \$ 0.81       | \$    | 0.42           | \$    | 1.21           | \$<br>-         | \$<br>-    | \$ | -                 | \$    | (0.11)    | \$ | 0.00                | \$       | 1.06   | \$    | 0.49           | \$   | 1.66              |
| 2015      | \$   | -            | \$   | -              | \$     | -              | \$ 0.90       | \$    | 0.47           | \$    | 1.34           | \$<br>-         | \$<br>-    | \$ | -                 | \$    | (0.11)    | \$ | 0.00                | \$       | 0.80   | \$    | 0.36           | \$   | 1.24              |
| 2016      | \$   | -            | \$   | -              | \$     | -              | \$ 0.90       | \$    | 0.47           | \$    | 1.34           | \$<br>-         | \$<br>-    | \$ | -                 | \$    | (0.11)    | \$ | 0.00                | \$       | 0.80   | \$    | 0.36           | \$   | 1.24              |
| 2017      | \$   | -            | \$   | -              | \$     | -              | \$ 0.90       | \$    | 0.47           | \$    | 1.34           | \$<br>-         | \$<br>-    | \$ | -                 | \$    | (0.11)    | \$ | 0.00                | \$       | 0.80   | \$    | 0.36           | \$   | 1.24              |
| 2018      | \$   | -            | \$   | -              | \$     | -              | \$ 0.90       | \$    | 0.47           | \$    | 1.34           | \$<br>-         | \$<br>-    | \$ | -                 | \$    | (0.11)    | \$ | 0.00                | \$       | 0.80   | \$    | 0.36           | \$   | 1.24              |
| 2019      | \$   | -            | \$   | -              | \$     | -              | \$ 0.90       | \$    | 0.47           | \$    | 1.34           | \$<br>-         | \$<br>-    | \$ | -                 | \$    | (0.11)    | \$ | 0.00                | \$       | 0.80   | \$    | 0.36           | \$   | 1.24              |
| 2020      | \$   | -            | \$   | -              | \$     | -              | \$ 0.90       | \$    | 0.47           | \$    | 1.34           | \$<br>-         | \$<br>-    | \$ | -                 | \$    | (0.11)    | \$ | 0.00                | \$       | 0.80   | \$    | 0.36           | \$   | 1.24              |
| 2021      | \$   | -            | \$   | -              | \$     | -              | \$ 0.90       | \$    | 0.47           | \$    | 1.34           | \$<br>-         | \$<br>-    | \$ | -                 | \$    | (0.11)    | \$ | 0.00                | \$       | 0.80   | \$    | 0.36           | \$   | 1.24              |
| 2022      | \$   | -            | \$   | -              | \$     | -              | \$ 0.90       | \$    | 0.47           | \$    | 1.34           | \$<br>-         | \$<br>-    | \$ | -                 | \$    | (0.11)    | \$ | 0.00                | \$       | 0.80   | \$    | 0.36           | \$   | 1.24              |
| 2023      | \$   | -            | \$   | -              | \$     | -              | \$ 0.90       | \$    | 0.47           | \$    | 1.34           | \$<br>-         | \$<br>-    | \$ | -                 | \$    | (0.11)    | \$ | 0.00                | \$       | 0.80   | \$    | 0.36           | \$   | 1.24              |
| 2024      | \$   | -            | \$   | -              | \$     | -              | \$ 0.90       | \$    | 0.47           | \$    | 1.34           | \$<br>-         | \$<br>-    | \$ | -                 | \$    | (0.11)    | \$ | 0.00                | \$       | 0.80   | \$    | 0.36           | \$   | 1.24              |
| 2025      | \$   | -            | \$   | -              | \$     | -              | \$ 0.90       | \$    | 0.47           | \$    | 1.34           | \$<br>-         | \$<br>-    | \$ | -                 | \$    | (0.11)    | \$ | 0.00                | \$       | 0.80   | \$    | 0.36           | \$   | 1.24              |
| 2026      | \$   | -            | \$   | -              | \$     | -              | \$ 0.90       | \$    | 0.47           | \$    | 1.34           | \$<br>-         | \$<br>-    | \$ | -                 | \$    | (0.11)    | \$ | 0.00                | \$       | 0.80   | \$    | 0.36           | \$   | 1.24              |
| 2027      | \$   | -            | \$   | -              | \$     | -              | \$ 0.90       | \$    | 0.47           | \$    | 1.34           | \$<br>-         | \$<br>-    | \$ | -                 | \$    | (0.11)    | \$ | 0.00                | \$       | 0.80   | \$    | 0.36           | \$   | 1.24              |
| 2028      | \$   | -            | \$   | -              | \$     | -              | \$ 0.90       | \$    | 0.47           | \$    | 1.34           | \$<br>-         | \$<br>-    | \$ | -                 | \$    | (0.11)    | \$ | 0.00                | \$       | 0.80   | \$    | 0.36           | \$   | 1.24              |
| 2029      | \$   | -            | \$   | -              | \$     | -              | \$ 0.90       | \$    | 0.47           | \$    | 1.34           | \$<br>-         | \$<br>-    | \$ | -                 | \$    | (0.11)    | \$ | 0.00                | \$       | 0.80   | \$    | 0.36           | \$   | 1.24              |

## Exhibit J.2c Projections of Stage 2 DBPR PWS Costs

(Surface Water CWSs Serving 500-999 People)

### Preferred Alternative

|      | Treatn        | nent Capita             | I Costs                  | Treatn        | nent O&N                | l Costs                  |                | N       | Ion-Treatment C     | osts       |                          | All St        | age 2 DBPR           | Costs                 |
|------|---------------|-------------------------|--------------------------|---------------|-------------------------|--------------------------|----------------|---------|---------------------|------------|--------------------------|---------------|----------------------|-----------------------|
|      |               | 90 Per<br>Confid<br>Bou | ence                     |               | 90 Pe<br>Confid<br>Bot  | dence                    |                |         |                     |            |                          |               |                      | ercent<br>ace Bound   |
| Year | Mean<br>Value | Lower<br>(5th<br>%tile) | Upper<br>(95th<br>%tile) | Mean<br>Value | Lower<br>(5th<br>%tile) | Upper<br>(95th<br>%tile) | Implementation | IDSE    | Monitoring<br>Plans | Monitoring | Significant<br>Excursion | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) |
| 2005 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ 0.04        | \$ -    | \$ -                | \$ -       | \$ -                     | \$ 0.04       | \$ 0.04              | \$ 0.04               |
| 2006 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ 0.14        | \$ 0.26 | \$ -                | \$ -       | \$ -                     | \$ 0.40       | \$ 0.40              | \$ 0.40               |
| 2007 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ 0.73 | \$ 0.01             | \$ -       | \$ -                     | \$ 0.74       | \$ 0.74              | \$ 0.74               |
| 2008 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ 0.03        | \$ 2.16 | \$ 0.04             | \$ -       | \$ -                     | \$ 2.24       | \$ 2.24              | \$ 2.24               |
| 2009 | \$ 0.42       | \$ 0.21                 | \$ 0.66                  | \$ -          | \$ -                    | \$ -                     | \$ 0.08        | \$ -    | \$ 0.13             | \$ -       | \$ -                     | \$ 0.62       | \$ 0.41              | \$ 0.86               |
| 2010 | \$ 0.85       | \$ 0.43                 | \$ 1.33                  | \$ 0.07       | \$ 0.03                 | \$ 0.10                  | \$ 0.07        | \$ -    | \$ -                | \$ -       | \$ -                     | \$ 0.99       | \$ 0.53              | \$ 1.50               |
| 2011 | \$ 0.85       | \$ 0.43                 | \$ 1.33                  | \$ 0.20       | \$ 0.10                 | \$ 0.30                  | \$ -           | \$ -    | \$ -                | \$ -       | \$ -                     | \$ 1.05       | \$ 0.53              | \$ 1.63               |
| 2012 | \$ 0.85       | \$ 0.43                 | \$ 1.33                  | \$ 0.34       | \$ 0.17                 | \$ 0.50                  | \$ -           | \$ -    | \$ -                | \$ (0.17)  | \$ -                     | \$ 1.02       | \$ 0.43              | \$ 1.66               |
| 2013 | \$ 0.85       | \$ 0.43                 | \$ 1.33                  | \$ 0.47       | \$ 0.24                 | \$ 0.70                  | \$ -           | \$ -    | \$ -                | \$ (0.33)  | \$ 0.00                  | \$ 0.99       | \$ 0.34              | \$ 1.70               |
| 2014 | \$ 0.42       | \$ 0.21                 | \$ 0.66                  | \$ 0.60       | \$ 0.31                 | \$ 0.90                  | \$ -           | \$ -    | \$ -                | \$ (0.33)  | \$ 0.00                  | \$ 0.70       | \$ 0.19              | \$ 1.23               |
| 2015 | \$ -          | \$ -                    | \$ -                     | \$ 0.67       | \$ 0.35                 | \$ 1.00                  | \$ -           | \$ -    | \$ -                | \$ (0.33)  | \$ 0.00                  | \$ 0.34       | \$ 0.02              | \$ 0.67               |
| 2016 | \$ -          | \$ -                    | \$ -                     | \$ 0.67       | \$ 0.35                 | \$ 1.00                  | \$ -           | \$ -    | \$ -                | \$ (0.33)  | \$ 0.00                  | \$ 0.34       | \$ 0.02              | \$ 0.67               |
| 2017 | \$ -          | \$ -                    | \$ -                     | \$ 0.67       | \$ 0.35                 | \$ 1.00                  | \$ -           | \$ -    | \$ -                | \$ (0.33)  | \$ 0.00                  | \$ 0.34       | \$ 0.02              | \$ 0.67               |
| 2018 | \$ -          | \$ -                    | \$ -                     | \$ 0.67       | \$ 0.35                 | \$ 1.00                  | \$ -           | \$ -    | \$ -                | \$ (0.33)  | \$ 0.00                  | \$ 0.34       | \$ 0.02              | \$ 0.67               |
| 2019 | \$ -          | \$ -                    | \$ -                     | \$ 0.67       | \$ 0.35                 | \$ 1.00                  | \$ -           | \$ -    | \$ -                | \$ (0.33)  | \$ 0.00                  | \$ 0.34       | \$ 0.02              | \$ 0.67               |
| 2020 | \$ -          | \$ -                    | \$ -                     | \$ 0.67       | \$ 0.35                 | \$ 1.00                  | \$ -           | \$ -    | \$ -                | \$ (0.33)  | \$ 0.00                  | \$ 0.34       | \$ 0.02              | \$ 0.67               |
| 2021 | \$ -          | \$ -                    | \$ -                     | \$ 0.67       | \$ 0.35                 | \$ 1.00                  | \$ -           | \$ -    | \$ -                | \$ (0.33)  | \$ 0.00                  | \$ 0.34       | \$ 0.02              | \$ 0.67               |
| 2022 | \$ -          | \$ -                    | \$ -                     | \$ 0.67       | \$ 0.35                 | \$ 1.00                  | \$ -           | \$ -    | \$ -                | \$ (0.33)  | \$ 0.00                  | \$ 0.34       | \$ 0.02              | \$ 0.67               |
| 2023 | \$ -          | \$ -                    | \$ -                     | \$ 0.67       | \$ 0.35                 | \$ 1.00                  | \$ -           | \$ -    | \$ -                | \$ (0.33)  | \$ 0.00                  | \$ 0.34       | \$ 0.02              | \$ 0.67               |
| 2024 | \$ -          | \$ -                    | \$ -                     | \$ 0.67       | \$ 0.35                 | \$ 1.00                  | \$ -           | \$ -    | \$ -                | \$ (0.33)  | \$ 0.00                  | \$ 0.34       | \$ 0.02              | \$ 0.67               |
| 2025 | \$ -          | \$ -                    | \$ -                     | \$ 0.67       | \$ 0.35                 | \$ 1.00                  | \$ -           | \$ -    | \$ -                | \$ (0.33)  | \$ 0.00                  | \$ 0.34       | \$ 0.02              | \$ 0.67               |
| 2026 | \$ -          | \$ -                    | \$ -                     | \$ 0.67       | \$ 0.35                 | \$ 1.00                  | \$ -           | \$ -    | \$ -                | \$ (0.33)  | \$ 0.00                  | \$ 0.34       | \$ 0.02              | \$ 0.67               |
| 2027 | \$ -          | \$ -                    | \$ -                     | \$ 0.67       | \$ 0.35                 | \$ 1.00                  | \$ -           | \$ -    | \$ -                | \$ (0.33)  | \$ 0.00                  | \$ 0.34       | \$ 0.02              | \$ 0.67               |
| 2028 | \$ -          | \$ -                    | \$ -                     | \$ 0.67       | \$ 0.35                 | \$ 1.00                  | \$ -           | \$ -    | \$ -                | \$ (0.33)  | \$ 0.00                  | \$ 0.34       | \$ 0.02              | \$ 0.67               |
| 2029 | \$ -          | \$ -                    | \$ -                     | \$ 0.67       | \$ 0.35                 | \$ 1.00                  | \$ -           | \$ -    | \$ -                | \$ (0.33)  | \$ 0.00                  | \$ 0.34       | \$ 0.02              | \$ 0.67               |

Note: All values in millions of year 2003 dollars.

## Exhibit J.2d Projections of Stage 2 DBPR PWS Costs

(Surface Water CWSs Serving 1,000-3,299 People)

## Preferred Alternative

| Preferred | Alterna       | ative                   |                          |            |        |              |      |                          |                  |         |       |                   |       |          |    |          |    |               |       |                |      |                   |
|-----------|---------------|-------------------------|--------------------------|------------|--------|--------------|------|--------------------------|------------------|---------|-------|-------------------|-------|----------|----|----------|----|---------------|-------|----------------|------|-------------------|
|           | Treatm        | ent Capita              | al Costs                 | 1          | Freatr | nent O       | &М ( | Costs                    |                  | No      | n-Tre | eatment (         | Costs |          |    |          |    | All St        | age 2 | DBPR           | Cost | s                 |
|           |               | Confi                   | ercent<br>dence<br>und   |            |        |              |      | cent<br>e Bound          |                  |         |       |                   |       |          |    |          |    |               | Co    | 90 Pe          |      | -                 |
| Year      | Mean<br>Value | Lower<br>(5th<br>%tile) | Upper<br>(95th<br>%tile) | Me:<br>Val |        | Lowe<br>(5th | 1    | Upper<br>(95th<br>%tile) | <br>plementation | IDSE    |       | nitoring<br>Plans | Mo    | nitoring | _  | nificant | -  | Mean<br>'alue | _     | ower<br>%tile) |      | Jpper<br>h %tile) |
| 2005      | \$ -          | \$ -                    | ,                        | \$         | ue     | \$ -         | _    | \$ -                     | \$               |         | \$    | -ians             | \$    |          | \$ |          | \$ |               | \$    | 0.07           | \$   | 0.07              |
| 2005      | \$ -          | \$ -                    | \$ -<br>\$ -             | \$         | -      | \$ -         |      | \$ -                     | \$<br>0.07       | \$ -    | \$    |                   | \$    |          | \$ | -        | \$ | 0.07          | \$    | 0.07           | \$   | 0.07              |
| 2007      | \$ -          | \$ -                    | \$ -                     | \$         | •      | \$ -         |      | \$ -                     | \$<br>0.25       | \$ 1.28 | \$    | 0.03              | \$    | -        | \$ | -        | \$ | 1.30          | \$    | 1.30           | \$   | 1.30              |
| 2008      | \$ -          | \$ -                    | \$ -                     | \$         | -      | \$ -         |      | \$ -                     | \$<br>0.06       | \$ 3.80 | \$    | 0.03              | \$    | -        | \$ |          | \$ | 3.94          | \$    | 3.94           | \$   | 3.94              |
| 2009      | \$ 2.68       | \$ 1.37                 | \$ 4.07                  | \$         |        | \$ -         | _    | \$ -                     | \$<br>0.13       | \$ -    | \$    | 0.22              | \$    |          | \$ |          | \$ | 3.03          | \$    | 1.72           | \$   | 4.42              |
| 2010      | \$ 5.36       | \$ 2.73                 | \$ 8.14                  | <u> </u>   | 0.37   |              | .19  | \$ 0.55                  | \$<br>0.13       | \$ -    | \$    | -                 | \$    | -        | \$ | -        | \$ | 5.85          | \$    | 3.05           | \$   | 8.81              |
| 2011      | \$ 5.36       | \$ 2.73                 | \$ 8.14                  | _          | 1.11   |              | .57  | \$ 1.65                  | \$<br>-          | \$ -    | \$    |                   | \$    | -        | \$ | -        | \$ | 6.46          | \$    | 3.30           | \$   | 9.78              |
| 2012      | \$ 5.36       | \$ 2.73                 | \$ 8.14                  |            | 1.84   | \$ 0.        | .95  | \$ 2.75                  | \$               | \$ -    | \$    | -                 | \$    | (0.29)   | \$ | -        | \$ | 6.91          | \$    | 3.39           | \$   | 10.59             |
| 2013      | \$ 5.36       | \$ 2.73                 | \$ 8.14                  | \$ 2       | 2.58   | \$ 1.        | .34  | \$ 3.85                  | \$<br>-          | \$ -    | \$    |                   | \$    | (0.58)   | \$ | 0.00     | \$ | 7.36          | \$    | 3.48           | \$   | 11.40             |
| 2014      | \$ 2.68       | \$ 1.37                 | \$ 4.07                  | \$ 3       | 3.32   | \$ 1.        | .72  | \$ 4.94                  | \$<br>-          | \$ -    | \$    | -                 | \$    | (0.58)   | \$ | 0.01     | \$ | 5.42          | \$    | 2.50           | \$   | 8.43              |
| 2015      | \$ -          | \$ -                    | \$ -                     | \$ 3       | 3.69   | \$ 1.        | .91  | \$ 5.49                  | \$<br>-          | \$ -    | \$    | -                 | \$    | (0.58)   | \$ | 0.01     | \$ | 3.11          | \$    | 1.33           | \$   | 4.91              |
| 2016      | \$ -          | \$ -                    | \$ -                     | \$ 3       | 3.69   | \$ 1.        | .91  | \$ 5.49                  | \$<br>-          | \$ -    | \$    | -                 | \$    | (0.58)   | \$ | 0.01     | \$ | 3.11          | \$    | 1.33           | \$   | 4.91              |
| 2017      | \$ -          | \$ -                    | \$ -                     | \$         | 3.69   | \$ 1.        | .91  | \$ 5.49                  | \$<br>-          | \$ -    | \$    | -                 | \$    | (0.58)   | \$ | 0.01     | \$ | 3.11          | \$    | 1.33           | \$   | 4.91              |
| 2018      | \$ -          | \$ -                    | \$ -                     | \$         | 3.69   | \$ 1.        | .91  | \$ 5.49                  | \$<br>-          | \$ -    | \$    | -                 | \$    | (0.58)   | \$ | 0.01     | \$ | 3.11          | \$    | 1.33           | \$   | 4.91              |
| 2019      | \$ -          | \$ -                    | \$ -                     | \$ 3       | 3.69   | \$ 1.        | .91  | \$ 5.49                  | \$<br>-          | \$ -    | \$    | -                 | \$    | (0.58)   | \$ | 0.01     | \$ | 3.11          | \$    | 1.33           | \$   | 4.91              |
| 2020      | \$ -          | \$ -                    | \$ -                     | \$ 3       | 3.69   | \$ 1.        | .91  | \$ 5.49                  | \$<br>-          | \$ -    | \$    | -                 | \$    | (0.58)   | \$ | 0.01     | \$ | 3.11          | \$    | 1.33           | \$   | 4.91              |
| 2021      | \$ -          | \$ -                    | \$ -                     | \$ 3       | 3.69   | \$ 1.        | .91  | \$ 5.49                  | \$<br>-          | \$ -    | \$    | -                 | \$    | (0.58)   | \$ | 0.01     | \$ | 3.11          | \$    | 1.33           | \$   | 4.91              |
| 2022      | \$ -          | \$ -                    | \$ -                     | \$ 3       | 3.69   | \$ 1.        | .91  | \$ 5.49                  | \$<br>-          | \$ -    | \$    | -                 | \$    | (0.58)   | \$ | 0.01     | \$ | 3.11          | \$    | 1.33           | \$   | 4.91              |
| 2023      | \$ -          | \$ -                    | \$ -                     | \$ 3       | 3.69   | \$ 1.        | .91  | \$ 5.49                  | \$<br>-          | \$ -    | \$    | -                 | \$    | (0.58)   | \$ | 0.01     | \$ | 3.11          | \$    | 1.33           | \$   | 4.91              |
| 2024      | \$ -          | \$ -                    | \$ -                     | \$ 3       | 3.69   | \$ 1.        | .91  | \$ 5.49                  | \$<br>-          | \$ -    | \$    | -                 | \$    | (0.58)   | \$ | 0.01     | \$ | 3.11          | \$    | 1.33           | \$   | 4.91              |
| 2025      | \$ -          | \$ -                    | \$ -                     | _          | 3.69   |              | .91  | \$ 5.49                  | \$<br>-          | \$ -    | \$    | -                 | \$    | (0.58)   | \$ | 0.01     | \$ | 3.11          | \$    | 1.33           | \$   | 4.91              |
| 2026      | \$ -          | \$ -                    | \$ -                     | _          | 3.69   | \$ 1.        |      | \$ 5.49                  | \$<br>-          | \$ -    | \$    | -                 | \$    | (0.58)   | \$ | 0.01     | \$ | 3.11          | \$    | 1.33           | \$   | 4.91              |
| 2027      | \$ -          | \$ -                    | \$ -                     | _          | 3.69   |              | .91  | \$ 5.49                  | \$<br>-          | \$ -    | \$    | -                 | \$    | (0.58)   | \$ | 0.01     | \$ | 3.11          | \$    | 1.33           | \$   | 4.91              |
| 2028      | \$ -          | \$ -                    | \$ -                     | _          | 3.69   |              | .91  | \$ 5.49                  | \$<br>-          | \$ -    | \$    | -                 | \$    | (0.58)   | \$ | 0.01     | \$ | 3.11          | \$    | 1.33           | \$   | 4.91              |
| 2029      | \$ -          | \$ -                    | \$ -                     | \$ 3       | 3.69   | \$ 1.        | .91  | \$ 5.49                  | \$<br>-          | \$ -    | \$    | -                 | \$    | (0.58)   | \$ | 0.01     | \$ | 3.11          | \$    | 1.33           | \$   | 4.91              |

Note: All values in millions of year 2003 dollars.

## Exhibit J.2e Projections of Stage 2 DBPR PWS Costs

(Surface Water CWSs Serving 3,300-9,999 People)

### Preferred Alternative

| Preferred | Aiterna       | tive                    |                          |               |                         |                          |      |            |    |      |     |                     |     |          |            |           |               |       |                |           |                   |
|-----------|---------------|-------------------------|--------------------------|---------------|-------------------------|--------------------------|------|------------|----|------|-----|---------------------|-----|----------|------------|-----------|---------------|-------|----------------|-----------|-------------------|
|           | Treatme       | ent Capita              | I Costs                  | Treati        | ment O&M                | Costs                    |      |            |    | No   | n-T | Treatment Co        | sts |          |            |           | All St        | age 2 | DBPR           | Cost      | s                 |
|           |               | 90 Pe<br>Confid<br>Bot  | dence                    |               | 90 Pe<br>Confic<br>Bot  | dence                    |      |            |    |      |     |                     |     |          |            |           |               | Cı    | 90 Pe          |           | -                 |
| Year      | Mean<br>Value | Lower<br>(5th<br>%tile) | Upper<br>(95th<br>%tile) | Mean<br>Value | Lower<br>(5th<br>%tile) | Upper<br>(95th<br>%tile) | Impl | ementation | =  | DSE  | N   | Monitoring<br>Plans | Мо  | nitoring | nificant   |           | Mean<br>Value |       | ower<br>%tile) |           | Jpper<br>h %tile) |
| 2005      | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$   | 0.07       | \$ | -    | \$  | \$ -                | \$  | -        | \$         | \$        | 0.07          | \$    | 0.07           | \$        | 0.07              |
| 2006      | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$   | 0.25       | \$ | 0.68 | \$  | \$ -                | \$  | -        | \$<br>-    | \$        | 0.93          | \$    | 0.93           | \$        | 0.93              |
| 2007      | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$   | -          | \$ | 1.93 | \$  | 0.02                | \$  | -        | \$<br>-    | \$        | 1.96          | \$    | 1.96           | \$        | 1.96              |
| 2008      | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$   | 0.06       | \$ | 5.76 | \$  | 0.06                | \$  | -        | \$<br>-    | \$        | 5.88          | \$    | 5.88           | \$        | 5.88              |
| 2009      | \$ 6.84       | \$ 3.51                 | \$ 10.35                 | \$ -          | \$ -                    | \$ -                     | \$   | 0.13       | \$ | -    | \$  | 0.18                | \$  | -        | \$<br>-    | \$        | 7.14          | \$    | 3.81           | \$        | 10.66             |
| 2010      | \$ 13.67      | \$ 7.01                 | \$ 20.70                 | \$ 0.58       | \$ 0.30                 | \$ 0.87                  | \$   | 0.12       | \$ | -    | \$  | - 4                 | \$  | -        | \$<br>-    | \$        | 14.38         | \$    | 7.44           | \$        | 21.69             |
| 2011      | \$ 13.67      | \$ 7.01                 | \$ 20.70                 | \$ 1.75       | \$ 0.91                 | \$ 2.61                  | \$   | -          | \$ | -    | \$  | - 4                 | \$  | -        | \$<br>-    | \$        | 15.43         | \$    | 7.92           | \$        | 23.31             |
| 2012      | \$ 13.67      | \$ 7.01                 | \$ 20.70                 | \$ 2.92       | \$ 1.51                 | \$ 4.35                  | \$   | -          | \$ | -    | \$  |                     | \$  | 0.48     | \$<br>-    | \$        | 17.07         | \$    | 9.00           | \$        | 25.52             |
| 2013      | \$ 13.67      | \$ 7.01                 | \$ 20.70                 | \$ 4.09       | \$ 2.12                 | \$ 6.09                  | \$   | -          | \$ | -    | \$  | \$ -                | \$  | 0.95     | \$<br>0.01 | \$        | 18.73         | \$    | 10.10          | \$        | 27.75             |
| 2014      | \$ 6.84       | \$ 3.51                 | \$ 10.35                 | \$ 5.26       | \$ 2.72                 | \$ 7.83                  | \$   | -          | \$ | -    | \$  | \$ -                | \$  | 0.95     | \$<br>0.02 | \$        | 13.07         | \$    | 7.20           | \$        | 19.15             |
| 2015      | \$ -          | \$ -                    | \$ -                     | \$ 5.85       | \$ 3.03                 | \$ 8.69                  | \$   | -          | \$ | -    | \$  | \$ -                | \$  | 0.95     | \$<br>0.02 | \$        | 6.82          | \$    | 4.00           | \$        | 9.67              |
| 2016      | \$ -          | \$ -                    | \$ -                     | \$ 5.85       | \$ 3.03                 | \$ 8.69                  | \$   | -          | \$ | -    | \$  | \$ -                | \$  | 0.95     | \$<br>0.02 | \$        | 6.82          | \$    | 4.00           | \$        | 9.67              |
| 2017      | \$ -          | \$ -                    | \$ -                     | \$ 5.85       | \$ 3.03                 | \$ 8.69                  | \$   | -          | \$ | -    | \$  | \$ -                | \$  | 0.95     | \$<br>0.02 | \$        | 6.82          | \$    | 4.00           | \$        | 9.67              |
| 2018      | \$ -          | \$ -                    | \$ -                     | \$ 5.85       | \$ 3.03                 | \$ 8.69                  | \$   | -          | \$ | -    | \$  | - 4                 | \$  | 0.95     | \$<br>0.02 | \$        | 6.82          | \$    | 4.00           | \$        | 9.67              |
| 2019      | \$ -          | \$ -                    | \$ -                     | \$ 5.85       | \$ 3.03                 | \$ 8.69                  | \$   | -          | \$ | -    | \$  | - 4                 | \$  | 0.95     | \$<br>0.02 | \$        | 6.82          | \$    | 4.00           | \$        | 9.67              |
| 2020      | \$ -          | \$ -                    | \$ -                     | \$ 5.85       | \$ 3.03                 | \$ 8.69                  | \$   | -          | \$ | -    | \$  | - 4                 | \$  | 0.95     | \$<br>0.02 | \$        | 6.82          | \$    | 4.00           | \$        | 9.67              |
| 2021      | \$ -          | \$ -                    | \$ -                     | \$ 5.85       | \$ 3.03                 | \$ 8.69                  | \$   | -          | \$ | -    | \$  | -                   | \$  | 0.95     | \$<br>0.02 | <b>\$</b> | 6.82          | \$    | 4.00           | <b>\$</b> | 9.67              |
| 2022      | \$ -          | \$ -                    | \$ -                     | \$ 5.85       | \$ 3.03                 | \$ 8.69                  | \$   | -          | \$ | -    | \$  | -                   | \$  | 0.95     | \$<br>0.02 | <b>\$</b> | 6.82          | \$    | 4.00           | <b>\$</b> | 9.67              |
| 2023      | \$ -          | \$ -                    | \$ -                     | \$ 5.85       | \$ 3.03                 | \$ 8.69                  | \$   | -          | \$ | -    | \$  | -                   | \$  | 0.95     | \$<br>0.02 | <b>\$</b> | 6.82          | \$    | 4.00           | <b>\$</b> | 9.67              |
| 2024      | \$ -          | \$ -                    | \$ -                     | \$ 5.85       | \$ 3.03                 | \$ 8.69                  | \$   | -          | \$ | -    | \$  | -                   | \$  | 0.95     | \$<br>0.02 | \$        | 6.82          | \$    | 4.00           | \$        | 9.67              |
| 2025      | \$ -          | \$ -                    | \$ -                     | \$ 5.85       | \$ 3.03                 | \$ 8.69                  | \$   |            | \$ | -    | \$  | \$ -                | \$  | 0.95     | \$<br>0.02 | \$        | 6.82          | \$    | 4.00           | \$        | 9.67              |
| 2026      | \$ -          | \$ -                    | \$ -                     | \$ 5.85       | \$ 3.03                 | \$ 8.69                  | \$   | -          | \$ |      | \$  | -                   | \$  | 0.95     | \$<br>0.02 | \$        | 6.82          | \$    | 4.00           | \$        | 9.67              |
| 2027      | \$ -          | \$ -                    | \$ -                     | \$ 5.85       | \$ 3.03                 | \$ 8.69                  | \$   | -          | \$ | -    | \$  | -                   | \$  | 0.95     | \$<br>0.02 | \$        | 6.82          | \$    | 4.00           | \$        | 9.67              |
| 2028      | \$ -          | \$ -                    | \$ -                     | \$ 5.85       | \$ 3.03                 | \$ 8.69                  | \$   | -          | \$ | -    | \$  | -                   | \$  | 0.95     | \$<br>0.02 | \$        | 6.82          | \$    | 4.00           | \$        | 9.67              |
| 2029      | \$ -          | \$ -                    | \$ -                     | \$ 5.85       | \$ 3.03                 | \$ 8.69                  | \$   | -          | \$ | -    | \$  | -                   | \$  | 0.95     | \$<br>0.02 | \$        | 6.82          | \$    | 4.00           | \$        | 9.67              |

Note: All values in millions of year 2003 dollars.

## Exhibit J.2f Projections of Stage 2 DBPR PWS Costs

(Surface Water CWSs Serving 10,000-49,999 People)

### Preferred Alternative

| Preferred | Aiterna  |                         |                          |         |                         |                          |                |           |               |            |                          |          |             |                       |
|-----------|----------|-------------------------|--------------------------|---------|-------------------------|--------------------------|----------------|-----------|---------------|------------|--------------------------|----------|-------------|-----------------------|
|           | All St   | age 2 DBPI              | R Costs                  | All Sta | age 2 DBPI              | R Costs                  |                | Stage 2 D | BPR Non-Treat | ment Costs |                          | All Si   | tage 2 DBPR | Costs                 |
|           |          |                         | ercent<br>ice Bound      |         | Confid                  | ercent<br>dence<br>und   |                |           |               |            |                          |          |             | ercent<br>ce Bound    |
|           | Mean     | Lower<br>(5th<br>%tile) | Upper<br>(95th<br>%tile) | Mean    | Lower<br>(5th<br>%tile) | Upper<br>(95th<br>%tile) |                |           | Monitoring    | Monitoring | Significant<br>Excursion | Mean     | Lower       | Upper<br>(95th %tile) |
| Year      | Value    | ,                       | ,                        | Value   |                         | ,                        | Implementation | IDSE      | Plans         |            |                          | Value    | <u>'</u>    | -                     |
| 2005      | \$ -     | \$ -                    | \$ -                     | \$ -    | \$ -                    | \$ -                     | \$ 0.20        | \$ -      | \$ -          | \$ -       | \$ -                     | \$ 0.20  | \$ 0.20     | \$ 0.20               |
| 2006      | \$ -     | \$ -                    | \$ -                     | \$ -    | \$ -                    | \$ -                     | \$ 0.40        | \$ 2.56   | \$ -          | \$ -       | \$ -                     | \$ 2.96  | \$ 2.96     | \$ 2.96               |
| 2007      | \$ -     | \$ -                    | \$ -                     | \$ -    | \$ -                    | \$ -                     | \$ -           | \$ 9.33   | \$ 0.07       | \$ -       | \$ -                     | \$ 9.40  | \$ 9.40     | \$ 9.40               |
| 2008      | \$ -     | \$ -                    | \$ -                     | \$ -    | \$ -                    | \$ -                     | \$ 0.19        | \$ 5.96   | \$ 0.24       | \$ -       | \$ -                     | \$ 6.39  | \$ 6.39     | \$ 6.39               |
| 2009      | \$ 12.41 | \$ 6.46                 | \$ 17.95                 | \$ -    | \$ -                    | \$ -                     | \$ 0.22        | \$ -      | \$ 0.15       | \$ -       | \$ -                     | \$ 12.78 | \$ 6.83     | \$ 18.32              |
| 2010      | \$ 24.83 | \$ 12.92                | \$ 35.90                 | \$ 0.66 | \$ 0.38                 | \$ 0.98                  | \$ 0.20        | \$ -      | \$ -          | \$ -       | \$ -                     | \$ 25.69 | \$ 13.50    | \$ 37.08              |
| 2011      | \$ 24.83 | \$ 12.92                | \$ 35.90                 | \$ 1.99 | \$ 1.15                 | \$ 2.93                  | \$ -           | \$ -      | \$ -          | \$ -       | \$ -                     | \$ 26.82 | \$ 14.07    | \$ 38.83              |
| 2012      | \$ 24.83 | \$ 12.92                | \$ 35.90                 | \$ 3.31 | \$ 1.92                 | \$ 4.89                  | \$ -           | \$ -      | \$ -          | \$ (1.24)  | \$ -                     | \$ 26.90 | \$ 13.60    | \$ 39.54              |
| 2013      | \$ 24.83 | \$ 12.92                | \$ 35.90                 | \$ 4.64 | \$ 2.69                 | \$ 6.84                  | \$ -           | \$ -      | \$ -          | \$ (2.48)  | \$ 0.05                  | \$ 27.04 | \$ 13.18    | \$ 40.31              |
| 2014      | \$ 12.41 | \$ 6.46                 | \$ 17.95                 | \$ 5.97 | \$ 3.46                 | \$ 8.79                  | \$ -           | \$ -      | \$ -          | \$ (2.48)  | \$ 0.10                  | \$ 16.00 | \$ 7.54     | \$ 24.36              |
| 2015      | \$ -     | \$ -                    | \$ -                     | \$ 6.63 | \$ 3.85                 | \$ 9.77                  | \$ -           | \$ -      | \$ -          | \$ (2.48)  | \$ 0.10                  | \$ 4.25  | \$ 1.47     | \$ 7.39               |
| 2016      | \$ -     | \$ -                    | \$ -                     | \$ 6.63 | \$ 3.85                 | \$ 9.77                  | \$ -           | \$ -      | \$ -          | \$ (2.48)  | \$ 0.10                  | \$ 4.25  | \$ 1.47     | \$ 7.39               |
| 2017      | \$ -     | \$ -                    | \$ -                     | \$ 6.63 | \$ 3.85                 | \$ 9.77                  | \$ -           | \$ -      | \$ -          | \$ (2.48)  | \$ 0.10                  | \$ 4.25  | \$ 1.47     | \$ 7.39               |
| 2018      | \$ -     | \$ -                    | \$ -                     | \$ 6.63 | \$ 3.85                 | \$ 9.77                  | \$ -           | \$ -      | \$ -          | \$ (2.48)  | \$ 0.10                  | \$ 4.25  | \$ 1.47     | \$ 7.39               |
| 2019      | \$ -     | \$ -                    | \$ -                     | \$ 6.63 | \$ 3.85                 | \$ 9.77                  | \$ -           | \$ -      | \$ -          | \$ (2.48)  | \$ 0.10                  | \$ 4.25  | \$ 1.47     | \$ 7.39               |
| 2020      | \$ -     | \$ -                    | \$ -                     | \$ 6.63 | \$ 3.85                 | \$ 9.77                  | \$ -           | \$ -      | \$ -          | \$ (2.48)  | \$ 0.10                  | \$ 4.25  | \$ 1.47     | \$ 7.39               |
| 2021      | \$ -     | \$ -                    | \$ -                     | \$ 6.63 | \$ 3.85                 | \$ 9.77                  | \$ -           | \$ -      | \$ -          | \$ (2.48)  | \$ 0.10                  | \$ 4.25  | \$ 1.47     | \$ 7.39               |
| 2022      | \$ -     | \$ -                    | \$ -                     | \$ 6.63 | \$ 3.85                 | \$ 9.77                  | \$ -           | \$ -      | \$ -          | \$ (2.48)  | \$ 0.10                  | \$ 4.25  | \$ 1.47     | \$ 7.39               |
| 2023      | \$ -     | \$ -                    | \$ -                     | \$ 6.63 | \$ 3.85                 | \$ 9.77                  | \$ -           | \$ -      | \$ -          | \$ (2.48)  | \$ 0.10                  | \$ 4.25  | \$ 1.47     | \$ 7.39               |
| 2024      | \$ -     | \$ -                    | \$ -                     | \$ 6.63 | \$ 3.85                 | \$ 9.77                  | \$ -           | \$ -      | \$ -          | \$ (2.48)  | \$ 0.10                  | \$ 4.25  | \$ 1.47     | \$ 7.39               |
| 2025      | \$ -     | \$ -                    | \$ -                     | \$ 6.63 | \$ 3.85                 | \$ 9.77                  | \$ -           | \$ -      | \$ -          | \$ (2.48)  | \$ 0.10                  | \$ 4.25  | \$ 1.47     | \$ 7.39               |
| 2026      | \$ -     | \$ -                    | \$ -                     | \$ 6.63 | \$ 3.85                 | \$ 9.77                  | \$ -           | \$ -      | \$ -          | \$ (2.48)  | \$ 0.10                  | \$ 4.25  | \$ 1.47     | \$ 7.39               |
| 2027      | \$ -     | \$ -                    | \$ -                     | \$ 6.63 | \$ 3.85                 | \$ 9.77                  | \$ -           | \$ -      | \$ -          | \$ (2.48)  | \$ 0.10                  | \$ 4.25  | \$ 1.47     | \$ 7.39               |
| 2028      | \$ -     | \$ -                    | \$ -                     | \$ 6.63 | \$ 3.85                 | \$ 9.77                  | \$ -           | \$ -      | \$ -          | \$ (2.48)  | \$ 0.10                  | \$ 4.25  | \$ 1.47     | \$ 7.39               |
| 2029      | \$ -     | \$ -                    | \$ -                     | \$ 6.63 | \$ 3.85                 | \$ 9.77                  | \$ -           | \$ -      | \$ -          | \$ (2.48)  | \$ 0.10                  | \$ 4.25  | \$ 1.47     | \$ 7.39               |

## Exhibit J.2g Projections of Stage 2 DBPR PWS Costs

(Surface Water CWSs Serving 50,000-99,999 People)

## Preferred Alternative

| Preterred | Alternat | ive        |          |         |          |         |    |             |    |      |     |               |     |            |           |           |    |        |       |         |       |          |
|-----------|----------|------------|----------|---------|----------|---------|----|-------------|----|------|-----|---------------|-----|------------|-----------|-----------|----|--------|-------|---------|-------|----------|
|           | Treatme  | ent Capita | I Costs  | Treati  | ment O&N | I Costs |    |             |    | N    | on- | -Treatment Co | sts |            |           |           |    | All St | age 2 | DBPR    | Cost  | ts       |
|           |          | 90 P       | ercent   |         | 90 P     | ercent  |    |             |    |      |     |               |     |            |           |           |    |        |       |         |       |          |
|           |          | Confi      | idence   |         | Confi    | idence  |    |             |    |      |     |               |     |            |           |           |    |        |       | 90 P    | ercen | ıt       |
|           |          |            | und      |         |          | und     |    |             |    |      |     |               |     |            |           |           |    |        | Co    | onfiden | ce B  | ound     |
|           |          | Lower      | Upper    |         | Lower    | Upper   |    |             |    |      |     |               |     |            | ١         |           |    |        |       |         | ١.    |          |
|           | Mean     | (5th       | (95th    | Mean    | (5th     | (95th   |    |             |    |      | - 1 | Monitoring    | ١.  | •          |           | gnificant |    | Mean   |       | ower    |       | Upper    |
| Year      | Value    | %tile)     | %tile)   | Value   | %tile)   | %tile)  | _  | lementation |    | OSE  | L   | Plans         | -   | Monitoring | _         | cursion   |    | /alue  | ·     |         | ÷     | h %tile) |
| 2005      | \$ -     | \$ -       | \$ -     | \$ -    | \$ -     | \$ -    | \$ | 0.12        | \$ | -    | \$  |               | \$  | -          | \$        | -         | \$ | 0.12   | \$    | 0.12    | \$    | 0.12     |
| 2006      | \$ -     | \$ -       | \$ -     | \$ -    | \$ -     | \$ -    | \$ | -           | \$ | 0.98 | \$  | -             | \$  | -          | \$        | -         | \$ | 0.98   | \$    | 0.98    | \$    | 0.98     |
| 2007      | \$ -     | \$ -       | \$ -     | \$ -    | \$ -     | \$ -    | \$ | -           | \$ | 5.44 | \$  | 0.01          | \$  | -          | \$        | -         | \$ | 5.46   | \$    | 5.46    | \$    | 5.46     |
| 2008      | \$ 7.39  | \$ 3.84    | \$ 10.67 | \$ -    | \$ -     | \$ -    | \$ | 0.08        | \$ | -    | \$  | 0.08          | \$  | -          | \$        | -         | \$ | 7.55   | \$    | 4.00    | \$    | 10.83    |
| 2009      | \$ 14.78 | \$ 7.69    | \$ 21.35 | \$ 0.37 | \$ 0.22  | \$ 0.56 | \$ | 0.04        | \$ | -    | \$  | -             | \$  | -          | \$        | -         | \$ | 15.20  | \$    | 7.95    | \$    | 21.95    |
| 2010      | \$ 14.78 | \$ 7.69    | \$ 21.35 | \$ 1.12 | \$ 0.65  | \$ 1.67 | \$ | -           | \$ | -    | \$  | -             | \$  | -          | \$        | -         | \$ | 15.90  | \$    | 8.34    | \$    | 23.02    |
| 2011      | \$ 14.78 | \$ 7.69    | \$ 21.35 | \$ 1.87 | \$ 1.09  | \$ 2.79 | \$ | -           | \$ | -    | \$  | -             | \$  | 0.11       | \$        | -         | \$ | 16.76  | \$    | 8.89    | \$    | 24.25    |
| 2012      | \$ 14.78 | \$ 7.69    | \$ 21.35 | \$ 2.61 | \$ 1.53  | \$ 3.90 | \$ | -           | \$ | -    | \$  | -             | \$  | 0.22       | \$        | 0.02      | \$ | 17.63  | \$    | 9.45    | \$    | 25.49    |
| 2013      | \$ 7.39  | \$ 3.84    | \$ 10.67 | \$ 3.36 | \$ 1.96  | \$ 5.02 | \$ | -           | \$ | -    | \$  | -             | \$  | 0.22       | \$        | 0.04      | \$ | 11.01  | \$    | 6.06    | \$    | 15.95    |
| 2014      | \$ -     | \$ -       | \$ -     | \$ 3.74 | \$ 2.18  | \$ 5.58 | \$ | -           | \$ | -    | \$  | -             | \$  | 0.22       | \$        | 0.04      | \$ | 3.99   | \$    | 2.43    | \$    | 5.83     |
| 2015      | \$ -     | \$ -       | \$ -     | \$ 3.74 | \$ 2.18  | \$ 5.58 | \$ | -           | \$ | -    | \$  | -             | \$  | 0.22       | \$        | 0.04      | \$ | 3.99   | \$    | 2.43    | \$    | 5.83     |
| 2016      | \$ -     | \$ -       | \$ -     | \$ 3.74 | \$ 2.18  | \$ 5.58 | \$ | -           | \$ | -    | \$  | -             | \$  | 0.22       | \$        | 0.04      | \$ | 3.99   | \$    | 2.43    | \$    | 5.83     |
| 2017      | \$ -     | \$ -       | \$ -     | \$ 3.74 | \$ 2.18  | \$ 5.58 | \$ | -           | \$ | -    | \$  | -             | \$  | 0.22       | \$        | 0.04      | \$ | 3.99   | \$    | 2.43    | \$    | 5.83     |
| 2018      | \$ -     | \$ -       | \$ -     | \$ 3.74 | \$ 2.18  | \$ 5.58 | \$ | -           | \$ | -    | \$  | -             | \$  | 0.22       | \$        | 0.04      | \$ | 3.99   | \$    | 2.43    | \$    | 5.83     |
| 2019      | \$ -     | \$ -       | \$ -     | \$ 3.74 | \$ 2.18  | \$ 5.58 | \$ |             | 69 | -    | \$  | -             | \$  | 0.22       | <b>\$</b> | 0.04      | 69 | 3.99   | \$    | 2.43    | \$    | 5.83     |
| 2020      | \$ -     | \$ -       | \$ -     | \$ 3.74 | \$ 2.18  | \$ 5.58 | \$ | -           | \$ | -    | \$  | -             | \$  | 0.22       | \$        | 0.04      | \$ | 3.99   | \$    | 2.43    | \$    | 5.83     |
| 2021      | \$ -     | \$ -       | \$ -     | \$ 3.74 | \$ 2.18  | \$ 5.58 | \$ | -           | \$ | -    | \$  | -             | \$  | 0.22       | \$        | 0.04      | \$ | 3.99   | \$    | 2.43    | \$    | 5.83     |
| 2022      | \$ -     | \$ -       | \$ -     | \$ 3.74 | \$ 2.18  | \$ 5.58 | \$ | -           | \$ |      | \$  | -             | \$  | 0.22       | \$        | 0.04      | \$ | 3.99   | \$    | 2.43    | \$    | 5.83     |
| 2023      | \$ -     | \$ -       | \$ -     | \$ 3.74 | \$ 2.18  | \$ 5.58 | \$ | -           | \$ |      | \$  | -             | \$  | 0.22       | \$        | 0.04      | \$ | 3.99   | \$    | 2.43    | \$    | 5.83     |
| 2024      | \$ -     | \$ -       | \$ -     | \$ 3.74 | \$ 2.18  | \$ 5.58 | \$ | -           | \$ | -    | \$  | -             | \$  | 0.22       | \$        | 0.04      | \$ | 3.99   | \$    | 2.43    | \$    | 5.83     |
| 2025      | \$ -     | \$ -       | \$ -     | \$ 3.74 | \$ 2.18  | \$ 5.58 | \$ | -           | \$ | -    | \$  | -             | \$  | 0.22       | \$        | 0.04      | \$ | 3.99   | \$    | 2.43    | \$    | 5.83     |
| 2026      | \$ -     | \$ -       | \$ -     | \$ 3.74 | \$ 2.18  | \$ 5.58 | \$ | -           | \$ | -    | \$  | -             | \$  | 0.22       | \$        | 0.04      | \$ | 3.99   | \$    | 2.43    | \$    | 5.83     |
| 2027      | \$ -     | \$ -       | \$ -     | \$ 3.74 | \$ 2.18  | \$ 5.58 | \$ | -           | \$ |      | \$  | -             | \$  | 0.22       | \$        | 0.04      | \$ | 3.99   | \$    | 2.43    | \$    | 5.83     |
| 2028      | \$ -     | \$ -       | \$ -     | \$ 3.74 | \$ 2.18  | \$ 5.58 | \$ | -           | \$ |      | \$  | -             | \$  | 0.22       | \$        | 0.04      | \$ | 3.99   | \$    | 2.43    | \$    | 5.83     |
| 2029      | \$ -     | \$ -       | \$ -     | \$ 3.74 | \$ 2.18  | \$ 5.58 | \$ | -           | \$ |      | \$  | -             | \$  | 0.22       | \$        | 0.04      | \$ | 3.99   | \$    | 2.43    | \$    | 5.83     |

# Exhibit J.2h Projections of Stage 2 DBPR PWS Costs

(Surface Water CWSs Serving 100,000-999,999)

### Preferred Alternative

|      | Alternati | V C        |                |         |            |                |                |         |               |             |             | 1        |             |              |
|------|-----------|------------|----------------|---------|------------|----------------|----------------|---------|---------------|-------------|-------------|----------|-------------|--------------|
|      | Treatme   | ent Capita | al Costs       | Treat   | tment O&M  | Costs          |                | Stage 2 | DBPR Non-Trea | tment Costs |             | All S    | tage 2 DBPR | Costs        |
|      |           |            | ercent         |         |            |                |                |         |               |             |             |          |             |              |
|      |           |            | dence          |         | 90 Pe      |                |                |         |               |             |             |          |             | ercent       |
|      |           | Lower      | und            |         | Confidence |                |                |         |               |             |             |          | Confiden    | ce Bound     |
|      |           | (5th       | Upper<br>(95th |         | (5th       | Upper<br>(95th |                |         |               |             | Significant |          | Lower       | Upper        |
| Year | Mean      | %tile)     | %tile)         | Mean    | %tile)     | %tile)         |                |         | Monitoring    | Monitoring  | Excursion   | Mean     | (5th %tile) | (95th %tile) |
|      | Value     | ,          | ,              | Value   | ,          | ,              | Implementation | IDSE    | Plans         | _           |             | Value    | ,,          |              |
| 2005 | \$ -      | \$ -       | \$ -           | \$ -    | \$ -       | \$ -           | \$ 0.11        | \$ -    | \$ -          | \$ -        | \$ -        | \$ 0.11  | \$ 0.11     | \$ 0.11      |
| 2006 | \$ -      | \$ -       | \$ -           | \$ -    | \$ -       | \$ -           | \$ -           | \$ 3.06 | \$ -          | \$ -        | \$ -        | \$ 3.06  | \$ 3.06     | \$ 3.06      |
| 2007 | \$ -      | \$ -       | \$ -           | \$ -    | \$ -       | \$ -           | \$ -           | \$ 3.06 | \$ 0.05       | \$ -        | \$ -        | \$ 3.10  | \$ 3.10     | \$ 3.10      |
| 2008 | \$ 40.35  | \$ 20.24   | \$ 58.90       | \$ -    | \$ -       | \$ -           | \$ 0.11        | \$ -    | \$ 0.05       | \$ -        | \$ -        | \$ 40.50 | \$ 20.40    | \$ 59.05     |
| 2009 | \$ 40.35  | \$ 20.24   | \$ 58.90       | \$ 1.79 | \$ 1.05    | \$ 2.82        | \$ -           | \$ -    | \$ -          | \$ -        | \$ -        | \$ 42.14 | \$ 21.29    | \$ 61.72     |
| 2010 | \$ 40.35  | \$ 20.24   | \$ 58.90       | \$ 3.59 | \$ 2.09    | \$ 5.64        | \$ -           | \$ -    | \$ -          | \$ -        | \$ -        | \$ 43.93 | \$ 22.34    | \$ 64.54     |
| 2011 | \$ 40.35  | \$ 20.24   | \$ 58.90       | \$ 5.38 | \$ 3.14    | \$ 8.46        | \$ -           | \$ -    | \$ -          | \$ 0.28     | \$ -        | \$ 46.00 | \$ 23.66    | \$ 67.64     |
| 2012 | \$ 40.35  | \$ 20.24   | \$ 58.90       | \$ 7.17 | \$ 4.19    | \$ 11.28       | \$ -           | \$ -    | \$ -          | \$ 0.28     | \$ 0.04     | \$ 47.83 | \$ 24.75    | \$ 70.50     |
| 2013 | \$ -      | \$ -       | \$ -           | \$ 8.96 | \$ 5.24    | \$ 14.10       | \$ -           | \$ -    | \$ -          | \$ 0.28     | \$ 0.04     | \$ 9.28  | \$ 5.55     | \$ 14.42     |
| 2014 | \$ -      | \$ -       | \$ -           | \$ 8.96 | \$ 5.24    | \$ 14.10       | \$ -           | \$ -    | \$ -          | \$ 0.28     | \$ 0.04     | \$ 9.28  | \$ 5.55     | \$ 14.42     |
| 2015 | \$ -      | \$ -       | \$ -           | \$ 8.96 | \$ 5.24    | \$ 14.10       | \$ -           | \$ -    | \$ -          | \$ 0.28     | \$ 0.04     | \$ 9.28  | \$ 5.55     | \$ 14.42     |
| 2016 | \$ -      | \$ -       | \$ -           | \$ 8.96 | \$ 5.24    | \$ 14.10       | \$ -           | \$ -    | \$ -          | \$ 0.28     | \$ 0.04     | \$ 9.28  | \$ 5.55     | \$ 14.42     |
| 2017 | \$ -      | \$ -       | \$ -           | \$ 8.96 | \$ 5.24    | \$ 14.10       | \$ -           | \$ -    | \$ -          | \$ 0.28     | \$ 0.04     | \$ 9.28  | \$ 5.55     | \$ 14.42     |
| 2018 | \$ -      | \$ -       | \$ -           | \$ 8.96 | \$ 5.24    | \$ 14.10       | \$ -           | \$ -    | \$ -          | \$ 0.28     | \$ 0.04     | \$ 9.28  | \$ 5.55     | \$ 14.42     |
| 2019 | \$ -      | \$ -       | \$ -           | \$ 8.96 | \$ 5.24    | \$ 14.10       | \$ -           | \$ -    | \$ -          | \$ 0.28     | \$ 0.04     | \$ 9.28  | \$ 5.55     | \$ 14.42     |
| 2020 | \$ -      | \$ -       | \$ -           | \$ 8.96 | \$ 5.24    | \$ 14.10       | \$ -           | \$ -    | \$ -          | \$ 0.28     | \$ 0.04     | \$ 9.28  | \$ 5.55     | \$ 14.42     |
| 2021 | \$ -      | \$ -       | \$ -           | \$ 8.96 | \$ 5.24    | \$ 14.10       | \$ -           | \$ -    | \$ -          | \$ 0.28     | \$ 0.04     | \$ 9.28  | \$ 5.55     | \$ 14.42     |
| 2022 | \$ -      | \$ -       | \$ -           | \$ 8.96 | \$ 5.24    | \$ 14.10       | \$ -           | \$ -    | \$ -          | \$ 0.28     | \$ 0.04     | \$ 9.28  | \$ 5.55     | \$ 14.42     |
| 2023 | \$ -      | \$ -       | \$ -           | \$ 8.96 | \$ 5.24    | \$ 14.10       | \$ -           | \$ -    | \$ -          | \$ 0.28     | \$ 0.04     | \$ 9.28  | \$ 5.55     | \$ 14.42     |
| 2024 | \$ -      | \$ -       | \$ -           | \$ 8.96 | \$ 5.24    | \$ 14.10       | \$ -           | \$ -    | \$ -          | \$ 0.28     | \$ 0.04     | \$ 9.28  | \$ 5.55     | \$ 14.42     |
| 2025 | \$ -      | \$ -       | \$ -           | \$ 8.96 | \$ 5.24    | \$ 14.10       | \$ -           | \$ -    | \$ -          | \$ 0.28     | \$ 0.04     | \$ 9.28  | \$ 5.55     | \$ 14.42     |
| 2026 | \$ -      | \$ -       | \$ -           | \$ 8.96 | \$ 5.24    | \$ 14.10       | \$ -           | \$ -    | \$ -          | \$ 0.28     | \$ 0.04     | \$ 9.28  | \$ 5.55     | \$ 14.42     |
| 2027 | \$ -      | \$ -       | \$ -           | \$ 8.96 | \$ 5.24    | \$ 14.10       | \$ -           | \$ -    | \$ -          | \$ 0.28     | \$ 0.04     | \$ 9.28  | \$ 5.55     | \$ 14.42     |
| 2028 | \$ -      | \$ -       | \$ -           | \$ 8.96 | \$ 5.24    | \$ 14.10       | \$ -           | \$ -    | \$ -          | \$ 0.28     | \$ 0.04     | \$ 9.28  | \$ 5.55     | \$ 14.42     |
| 2029 | \$ -      | \$ -       | \$ -           | \$ 8.96 | \$ 5.24    | \$ 14.10       | \$ -           | \$ -    | \$ -          | \$ 0.28     | \$ 0.04     | \$ 9.28  | \$ 5.55     | \$ 14.42     |

Note: All values in millions of year 2003 dollars.

# Exhibit J.2i Projections of Stage 2 DBPR PWS Costs

(Surface Water CWSs Serving 1,000,000+)

### Preferred Alternative

| . iciciica | Alterna  | LIVE       |          |         |          |         |                |           |            |       |            |             |          |            |                |
|------------|----------|------------|----------|---------|----------|---------|----------------|-----------|------------|-------|------------|-------------|----------|------------|----------------|
|            | Treatm   | ent Capita |          | Treatr  | nent O&M |         |                | Stage 2 I | OBPR Non-T | reatm | ent Costs  |             | All Si   | age 2 DBP  | R Costs        |
|            | _        |            | ercent   |         | 90 Pe    |         |                |           |            |       |            |             |          |            |                |
|            |          | Confid     |          |         | Confid   |         |                | 1         |            |       |            |             |          |            | Percent        |
|            |          |            | und      | l       |          | und     |                | 1         |            |       |            |             |          | Confide    | nce Bound      |
|            |          | Lower      | Upper    |         | Lower    | Upper   |                |           |            |       |            |             |          |            |                |
|            | Mean     | (5th       | (95th    | Mean    | (5th     | (95th   |                |           | Monitorin  |       |            | Significant | Mean     | Lower      | Upper          |
| Year       | Value    | %tile)     | %tile)   | Value   | %tile)   | %tile)  | Implementation | IDSE      | Plans      |       | Monitoring | Excursion   | Value    | (5th %tile | ) (95th %tile) |
| 2005       | \$ -     | \$ -       | \$ -     | \$ -    | \$ -     | \$ -    | \$ 0.0         | \$ -      | \$ -       | \$    | -          | \$ -        | \$ 0.01  | \$ 0.0     | 1 \$ 0.01      |
| 2006       | \$ -     | \$ -       | \$ -     | \$ -    | \$ -     | \$ -    | \$ -           | \$ 0.37   | \$ -       | \$    | -          | \$ -        | \$ 0.37  | \$ 0.3     | 7 \$ 0.37      |
| 2007       | \$ -     | \$ -       | \$ -     | \$ -    | \$ -     | \$ -    | \$ -           | \$ 0.37   | \$ 0.0     | 1 \$  | -          | \$ -        | \$ 0.37  | \$ 0.3     | 7 \$ 0.37      |
| 2008       | \$ 18.87 | \$ 9.73    | \$ 27.53 | \$ -    | \$ -     | \$ -    | \$ 0.0         | \$ -      | \$ 0.0     | 1 \$  | -          | \$ -        | \$ 18.88 | \$ 9.7     | 5 \$ 27.55     |
| 2009       | \$ 18.87 | \$ 9.73    | \$ 27.53 | \$ 1.08 | \$ 0.62  | \$ 1.74 | \$ -           | \$ -      | \$ -       | \$    | -          | \$ -        | \$ 19.95 | \$ 10.3    | 6 \$ 29.28     |
| 2010       | \$ 18.87 | \$ 9.73    | \$ 27.53 | \$ 2.16 | \$ 1.25  | \$ 3.48 | \$ -           | \$ -      | \$ -       | \$    | -          | \$ -        | \$ 21.03 | \$ 10.9    | 8 \$ 31.02     |
| 2011       | \$ 18.87 | \$ 9.73    | \$ 27.53 | \$ 3.23 | \$ 1.87  | \$ 5.23 | \$ -           | \$ -      | \$ -       | \$    | 0.04       | \$ -        | \$ 22.14 | \$ 11.6    | 4 \$ 32.80     |
| 2012       | \$ 18.87 | \$ 9.73    | \$ 27.53 | \$ 4.31 | \$ 2.50  | \$ 6.97 | \$ -           | \$ -      | \$ -       | \$    | 0.04       | \$ 0.01     | \$ 23.22 | \$ 12.2    | 7 \$ 34.54     |
| 2013       | \$ -     | \$ -       | \$ -     | \$ 5.39 | \$ 3.12  | \$ 8.71 | \$ -           | \$ -      | \$ -       | \$    | 0.04       | \$ 0.01     | \$ 5.43  | \$ 3.1     | 7 \$ 8.75      |
| 2014       | \$ -     | \$ -       | \$ -     | \$ 5.39 | \$ 3.12  | \$ 8.71 | \$ -           | \$ -      | \$ -       | \$    | 0.04       | \$ 0.01     | \$ 5.43  | \$ 3.1     | 7 \$ 8.75      |
| 2015       | \$ -     | \$ -       | \$ -     | \$ 5.39 | \$ 3.12  | \$ 8.71 | \$ -           | \$ -      | \$ -       | \$    | 0.04       | \$ 0.01     | \$ 5.43  | \$ 3.1     | 7 \$ 8.75      |
| 2016       | \$ -     | \$ -       | \$ -     | \$ 5.39 | \$ 3.12  | \$ 8.71 | \$ -           | \$ -      | \$ -       | \$    | 0.04       | \$ 0.01     | \$ 5.43  | \$ 3.1     | 7 \$ 8.75      |
| 2017       | \$ -     | \$ -       | \$ -     | \$ 5.39 | \$ 3.12  | \$ 8.71 | \$ -           | \$ -      | \$ -       | \$    | 0.04       | \$ 0.01     | \$ 5.43  | \$ 3.1     | 7 \$ 8.75      |
| 2018       | \$ -     | \$ -       | \$ -     | \$ 5.39 | \$ 3.12  | \$ 8.71 | \$ -           | \$ -      | \$ -       | \$    | 0.04       | \$ 0.01     | \$ 5.43  | \$ 3.1     | 7 \$ 8.75      |
| 2019       | \$ -     | \$ -       | \$ -     | \$ 5.39 | \$ 3.12  | \$ 8.71 | \$ -           | \$ -      | \$ -       | \$    | 0.04       | \$ 0.01     | \$ 5.43  | \$ 3.1     | 7 \$ 8.75      |
| 2020       | \$ -     | \$ -       | \$ -     | \$ 5.39 | \$ 3.12  | \$ 8.71 | \$ -           | \$ -      | \$ -       | \$    | 0.04       | \$ 0.01     | \$ 5.43  | \$ 3.1     | 7 \$ 8.75      |
| 2021       | \$ -     | \$ -       | \$ -     | \$ 5.39 | \$ 3.12  | \$ 8.71 | \$ -           | \$ -      | \$ -       | \$    | 0.04       | \$ 0.01     | \$ 5.43  | \$ 3.1     | 7 \$ 8.75      |
| 2022       | \$ -     | \$ -       | \$ -     | \$ 5.39 | \$ 3.12  | \$ 8.71 | \$ -           | \$ -      | \$ -       | \$    | 0.04       | \$ 0.01     | \$ 5.43  | \$ 3.1     | 7 \$ 8.75      |
| 2023       | \$ -     | \$ -       | \$ -     | \$ 5.39 | \$ 3.12  | \$ 8.71 | \$ -           | \$ -      | \$ -       | \$    | 0.04       | \$ 0.01     | \$ 5.43  | \$ 3.1     | 7 \$ 8.75      |
| 2024       | \$ -     | \$ -       | \$ -     | \$ 5.39 | \$ 3.12  | \$ 8.71 | \$ -           | \$ -      | \$ -       | \$    | 0.04       | \$ 0.01     | \$ 5.43  | \$ 3.1     | 7 \$ 8.75      |
| 2025       | \$ -     | \$ -       | \$ -     | \$ 5.39 | \$ 3.12  | \$ 8.71 | \$ -           | \$ -      | \$ -       | \$    | 0.04       | \$ 0.01     | \$ 5.43  | \$ 3.1     | 7 \$ 8.75      |
| 2026       | \$ -     | \$ -       | \$ -     | \$ 5.39 | \$ 3.12  | \$ 8.71 | \$ -           | \$ -      | \$ -       | \$    | 0.04       | \$ 0.01     | \$ 5.43  | \$ 3.1     | 7 \$ 8.75      |
| 2027       | \$ -     | \$ -       | \$ -     | \$ 5.39 | \$ 3.12  | \$ 8.71 | \$ -           | \$ -      | \$ -       | \$    | 0.04       | \$ 0.01     | \$ 5.43  | \$ 3.1     | 7 \$ 8.75      |
| 2028       | \$ -     | \$ -       | \$ -     | \$ 5.39 | \$ 3.12  | \$ 8.71 | \$ -           | \$ -      | \$ -       | \$    | 0.04       | \$ 0.01     | \$ 5.43  | \$ 3.1     | 7 \$ 8.75      |
| 2029       | \$ -     | \$ -       | \$ -     | \$ 5.39 | \$ 3.12  | \$ 8.71 | \$ -           | \$ -      | \$ -       | \$    | 0.04       | \$ 0.01     | \$ 5.43  | \$ 3.1     | 7 \$ 8.75      |

# Exhibit J.2j Projections of Stage 2 DBPR PWS Costs

(All Surface Water CWSs)

## Preferred Alternative

| Preferred    | Alternat  | ive         |                    |          |          |                     |                |          |                 |            |             |           |             |                     |
|--------------|-----------|-------------|--------------------|----------|----------|---------------------|----------------|----------|-----------------|------------|-------------|-----------|-------------|---------------------|
|              | Treatn    | nent Capita | l Costs            | Treat    | ment O&N | // Costs            |                | N        | Ion-Treatment C | osts       |             | All Si    | age 2 DBPR  | Costs               |
|              |           |             | ercent<br>ce Bound |          |          | ercent<br>nce Bound |                |          |                 |            |             |           |             | ercent<br>ice Bound |
|              |           | Lower       | Upper              |          | Lower    | Upper               |                |          |                 |            |             |           |             |                     |
|              | Mean      | (5th        | (95th              | Mean     | (5th     | (95th               |                |          | Monitoring      |            | Significant | Mean      | Lower       | Upper               |
| Year         | Value     | %tile)      | %tile)             | Value    | %tile)   | %tile)              | Implementation | IDSE     | Plans           | Monitoring | Excursion   | Value     | (5th %tile) | (95th %tile)        |
| 2005         | \$ -      | \$ -        | \$ -               | \$ -     | \$ -     | \$ -                | \$ 0.69        | \$ -     | \$ -            | \$ -       | \$ -        | \$ 0.69   | \$ 0.69     | \$ 0.69             |
| 2006         | \$ -      | \$ -        | \$ -               | \$ -     | \$ -     | \$ -                | \$ 1.34        | \$ 8.46  | \$ -            | \$ -       | \$ -        | \$ 9.80   | \$ 9.80     | \$ 9.80             |
| 2007         | \$ -      | \$ -        | \$ -               | \$ -     | \$ -     | \$ -                | \$ -           | \$ 22.45 | \$ 0.22         | \$ -       | \$ -        | \$ 22.67  | \$ 22.67    | \$ 22.67            |
| 2008         | \$ 66.61  | \$ 33.82    | \$ 97.11           | \$ -     | \$ -     | \$                  | \$ 0.60        | \$ 18.62 | \$ 0.62         | \$ -       | \$ -        | \$ 86.45  | \$ 53.65    | \$ 116.94           |
| 2009         | \$ 96.83  | \$ 49.45    | \$ 141.56          | \$ 3.24  | \$ 1.89  | \$ 5.12             | \$ 0.75        | \$ -     | \$ 0.88         | \$ -       | \$ -        | \$ 101.71 | \$ 52.97    | \$ 148.31           |
| 2010         | \$ 119.66 | \$ 61.23    | \$ 175.33          | \$ 8.66  | \$ 4.97  | \$ 13.46            | \$ 0.67        | \$ -     | \$ -            | \$ -       | \$ -        | \$ 128.99 | \$ 66.87    | \$ 189.46           |
| 2011         | \$ 119.66 | \$ 61.23    | \$ 175.33          | \$ 15.87 | \$ 9.02  | \$ 24.46            | \$ -           | \$ -     | \$ -            | \$ 0.42    | \$ -        | \$ 135.95 | \$ 70.67    | \$ 200.22           |
| 2012         | \$ 119.66 | \$ 61.23    | \$ 175.33          | \$ 23.07 | \$ 13.07 | \$ 35.47            | \$ -           | \$ -     | \$ -            | \$ (0.77)  | \$ 0.06     | \$ 142.03 | \$ 73.59    | \$ 210.10           |
| 2013         | \$ 53.05  | \$ 27.41    | \$ 78.23           | \$ 30.28 | \$ 17.12 | \$ 46.47            | \$ -           | \$ -     | \$ -            | \$ (2.07)  | \$ 0.15     | \$ 81.41  | \$ 42.61    | \$ 122.78           |
| 2014         | \$ 22.83  | \$ 11.78    | \$ 33.78           | \$ 34.25 | \$ 19.27 | \$ 52.35            | \$ -           | \$ -     | \$ -            | \$ (2.07)  | \$ 0.21     | \$ 55.22  | \$ 29.20    | \$ 84.27            |
| 2015         | \$ -      | \$ -        | \$ -               | \$ 36.04 | \$ 20.24 | \$ 55.02            | \$ -           | \$ -     | \$ -            | \$ (2.07)  | \$ 0.21     | \$ 34.18  | \$ 18.39    | \$ 53.16            |
| 2016         | \$ -      | \$ -        | \$ -               | \$ 36.04 | \$ 20.24 | \$ 55.02            | \$ -           | \$ -     | \$ -            | \$ (2.07)  | \$ 0.21     | \$ 34.18  | \$ 18.39    | \$ 53.16            |
| 2017         | \$ -      | \$ -        | \$ -               | \$ 36.04 | \$ 20.24 | \$ 55.02            | \$ -           | \$ -     | \$ -            | \$ (2.07)  | \$ 0.21     | \$ 34.18  | \$ 18.39    | \$ 53.16            |
| 2018         | \$ -      | \$ -        | \$ -               | \$ 36.04 | \$ 20.24 | \$ 55.02            | \$ -           | \$ -     | \$ -            | \$ (2.07)  | \$ 0.21     | \$ 34.18  | \$ 18.39    | \$ 53.16            |
| 2019         | \$ -      | \$ -        | \$ -               | \$ 36.04 | \$ 20.24 | \$ 55.02            | \$ -           | \$ -     | \$ -            | \$ (2.07)  | \$ 0.21     | \$ 34.18  | \$ 18.39    | \$ 53.16            |
| 2020         | \$ -      | \$ -        | \$ -               | \$ 36.04 | \$ 20.24 | \$ 55.02            | \$ -           | \$ -     | \$ -            | \$ (2.07)  | \$ 0.21     | \$ 34.18  | \$ 18.39    | \$ 53.16            |
| 2021         | \$ -      | \$ -        | \$ -               | \$ 36.04 | \$ 20.24 | \$ 55.02            | \$ -           | \$ -     | \$ -            | \$ (2.07)  | •           | \$ 34.18  | \$ 18.39    | \$ 53.16            |
| 2022         | \$ -      | \$ -        | \$ -               | \$ 36.04 | \$ 20.24 | \$ 55.02            | \$ -           | \$ -     | \$ -            | \$ (2.07)  | \$ 0.21     | \$ 34.18  | \$ 18.39    | \$ 53.16            |
|              | \$ -      | \$ -        | \$ -               | \$ 36.04 | \$ 20.24 | \$ 55.02            | \$ -           | \$ -     | \$ -            | \$ (2.07)  | \$ 0.21     | \$ 34.18  | \$ 18.39    | \$ 53.16            |
| 2024<br>2025 | \$ -      | \$ -        | \$ -               | \$ 36.04 | \$ 20.24 | \$ 55.02            | \$ -           | \$ -     | \$ -            | \$ (2.07)  | \$ 0.21     | \$ 34.18  | \$ 18.39    | \$ 53.16            |
| 2025         | \$ -      | \$ -        | \$ -               | \$ 36.04 | \$ 20.24 | \$ 55.02            | \$ -           | \$ -     | \$ -            | \$ (2.07)  | \$ 0.21     | \$ 34.18  | \$ 18.39    | \$ 53.16            |
| 2026         | \$ -      | \$ -        | \$ -               | \$ 36.04 | \$ 20.24 | \$ 55.02            | \$ -           | \$ -     | \$ -            | \$ (2.07)  | \$ 0.21     | \$ 34.18  | \$ 18.39    | \$ 53.16            |
| 2027         | \$ -      | \$ -        | \$ -               | \$ 36.04 | \$ 20.24 | \$ 55.02            | \$ -           | \$ -     | \$ -            | \$ (2.07)  | \$ 0.21     | \$ 34.18  | \$ 18.39    | \$ 53.16            |
| 2028         | \$ -      | \$ -        | \$ -               | \$ 36.04 | \$ 20.24 | \$ 55.02            | \$ -           | \$ -     | \$ -            | \$ (2.07)  | \$ 0.21     | \$ 34.18  | \$ 18.39    | \$ 53.16            |
| 2029         | \$ -      | \$ -        | \$ -               | \$ 36.04 | \$ 20.24 | \$ 55.02            | \$ -           | \$ -     | \$ -            | \$ (2.07)  | \$ 0.21     | \$ 34.18  | \$ 18.39    | \$ 53.16            |

# Exhibit J.2k Projections of Stage 2 DBPR PWS Costs

(Surface Water NTNCWSs Serving <100 People)

## Preferred Alternative

| Preferred |               |                         |                          | 1             |                      |                       |                |         |                     |            |                          |               |                      |                       |
|-----------|---------------|-------------------------|--------------------------|---------------|----------------------|-----------------------|----------------|---------|---------------------|------------|--------------------------|---------------|----------------------|-----------------------|
|           | Treat         | ment Capita             | al Costs                 | Tre           | atment O&M           | Costs                 |                | Stage 2 | DBPR Non-Treat      | nent Costs |                          | All S         | age 2 DBPR           | Costs                 |
|           |               | 90 Pe                   | ce Bound                 |               |                      | ercent<br>ce Bound    |                |         |                     |            |                          |               |                      | ercent<br>ace Bound   |
| Year      | Mean<br>Value | Lower<br>(5th<br>%tile) | Upper<br>(95th<br>%tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Implementation | IDSE    | Monitoring<br>Plans | Monitoring | Significant<br>Excursion | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) |
| 2005      | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                 | \$ -                  | \$ -           | \$ -    | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2006      | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                 | \$ -                  | \$ 0.02        | \$ -    | \$ -                | \$ -       | \$ -                     | \$ 0.02       | \$ 0.02              | \$ 0.02               |
| 2007      | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                 | \$ -                  | \$ -           | \$ -    | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2008      | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                 | \$ -                  | \$ -           | \$ -    | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2009      | \$ 0.07       | \$ 0.04                 | \$ 0.12                  | \$ -          | \$ -                 | \$ -                  | \$ 0.01        | \$ -    | \$ 0.01             | \$ -       | \$ -                     | \$ 0.10       | \$ 0.06              | \$ 0.14               |
| 2010      | \$ 0.15       | \$ 0.07                 | \$ 0.23                  | \$ 0.01       | \$ 0.01              | \$ 0.02               | \$ 0.01        | \$ -    | \$ -                | \$ -       | \$ -                     | \$ 0.17       | \$ 0.09              | \$ 0.26               |
| 2011      | \$ 0.15       | \$ 0.07                 | \$ 0.23                  | \$ 0.04       | \$ 0.02              | \$ 0.06               | \$ -           | \$ -    | \$ -                | \$ -       | \$ -                     | \$ 0.19       | \$ 0.09              | \$ 0.29               |
| 2012      | \$ 0.15       | \$ 0.07                 | \$ 0.23                  | \$ 0.07       | \$ 0.03              | \$ 0.10               | \$ -           | \$ -    | \$ -                | \$ -       | \$ -                     | \$ 0.21       | \$ 0.11              | \$ 0.33               |
| 2013      | \$ 0.15       | \$ 0.07                 | \$ 0.23                  | \$ 0.09       | \$ 0.05              | \$ 0.14               | \$ -           | \$ -    | \$ -                | \$ -       | \$ -                     | \$ 0.24       | \$ 0.12              | \$ 0.37               |
| 2014      | \$ 0.07       | \$ 0.04                 | \$ 0.12                  | \$ 0.12       | \$ 0.06              | \$ 0.18               | \$ -           | \$ -    | \$ -                | \$ -       | \$ -                     | \$ 0.19       | \$ 0.10              | \$ 0.29               |
| 2015      | \$ -          | \$ -                    | \$ -                     | \$ 0.13       | \$ 0.07              | \$ 0.20               | \$ -           | \$ -    | \$ -                | \$ -       | \$ -                     | \$ 0.13       | \$ 0.07              | \$ 0.20               |
| 2016      | \$ -          | \$ -                    | \$ -                     | \$ 0.13       | \$ 0.07              | \$ 0.20               | \$ -           | \$ -    | \$ -                | \$ -       | \$ -                     | \$ 0.13       | \$ 0.07              | \$ 0.20               |
| 2017      | \$ -          | \$ -                    | \$ -                     | \$ 0.13       | \$ 0.07              | \$ 0.20               | \$ -           | \$ -    | \$ -                | \$ -       | \$ -                     | \$ 0.13       | \$ 0.07              | \$ 0.20               |
| 2018      | \$ -          | \$ -                    | \$ -                     | \$ 0.13       | \$ 0.07              | \$ 0.20               | \$ -           | \$ -    | \$ -                | \$ -       | \$ -                     | \$ 0.13       | \$ 0.07              | \$ 0.20               |
| 2019      | \$ -          | \$ -                    | \$ -                     | \$ 0.13       | \$ 0.07              | \$ 0.20               | \$ -           | \$ -    | \$ -                | \$ -       | \$ -                     | \$ 0.13       | \$ 0.07              | \$ 0.20               |
| 2020      | \$ -          | \$ -                    | \$ -                     | \$ 0.13       | \$ 0.07              | \$ 0.20               | \$ -           | \$ -    | \$ -                | \$ -       | \$ -                     | \$ 0.13       | \$ 0.07              | \$ 0.20               |
| 2021      | \$ -          | \$ -                    | \$ -                     | \$ 0.13       | \$ 0.07              | \$ 0.20               | \$ -           | \$ -    | \$ -                | \$ -       | \$ -                     | \$ 0.13       | \$ 0.07              | \$ 0.20               |
| 2022      | \$ -          | \$ -                    | \$ -                     | \$ 0.13       | \$ 0.07              | \$ 0.20               | \$ -           | \$ -    | \$ -                | \$ -       | \$ -                     | \$ 0.13       | \$ 0.07              | \$ 0.20               |
| 2023      | \$ -          | \$ -                    | \$ -                     | \$ 0.13       | \$ 0.07              | \$ 0.20               | \$ -           | \$ -    | \$ -                | \$ -       | \$ -                     | \$ 0.13       | \$ 0.07              | \$ 0.20               |
| 2024      | \$ -          | \$ -                    | \$ -                     | \$ 0.13       | \$ 0.07              | \$ 0.20               | \$ -           | \$ -    | \$ -                | \$ -       | \$ -                     | \$ 0.13       | \$ 0.07              | \$ 0.20               |
| 2025      | \$ -          | \$ -                    | \$ -                     | \$ 0.13       | \$ 0.07              | \$ 0.20               | \$ -           | \$ -    | \$ -                | \$ -       | \$ -                     | \$ 0.13       | \$ 0.07              | \$ 0.20               |
| 2026      | \$ -          | \$ -                    | \$ -                     | \$ 0.13       | \$ 0.07              | \$ 0.20               | \$ -           | \$ -    | \$ -                | \$ -       | \$ -                     | \$ 0.13       | \$ 0.07              | \$ 0.20               |
| 2027      | \$ -          | \$ -                    | \$ -                     | \$ 0.13       | \$ 0.07              | \$ 0.20               | \$ -           | \$ -    | \$ -                | \$ -       | \$ -                     | \$ 0.13       | \$ 0.07              | \$ 0.20               |
| 2028      | \$ -          | \$ -                    | \$ -                     | \$ 0.13       | \$ 0.07              | \$ 0.20               | \$ -           | \$ -    | \$ -                | \$ -       | \$ -                     | \$ 0.13       | \$ 0.07              | \$ 0.20               |
| 2029      | \$ -          | \$ -                    | \$ -                     | \$ 0.13       | \$ 0.07              | \$ 0.20               | \$ -           | \$ -    | \$ -                | \$ -       | \$ -                     | \$ 0.13       | \$ 0.07              | \$ 0.20               |

Note: All values in millions of year 2003 dollars.

# Exhibit J.2I Projections of Stage 2 DBPR PWS Costs

(Surface Water NTNCWSs Serving 100-499 People)

## Preferred Alternative

| Preferred | Aitei | rnat | ive                     |                          |               |                         |                          |                |           |                     |             |                          |               |           |                       |
|-----------|-------|------|-------------------------|--------------------------|---------------|-------------------------|--------------------------|----------------|-----------|---------------------|-------------|--------------------------|---------------|-----------|-----------------------|
|           | Tre   | eatm | ent Capital             | l Costs                  | Treatr        | nent O&M                | Costs                    | :              | Stage 2 D | BPR Non-Trea        | tment Costs |                          | All St        | age 2 DBI | PR Costs              |
|           |       |      | 90 Pe                   | ce Bound                 |               | 90 Pe<br>Confid<br>Bot  | lence<br>ind             |                |           |                     |             |                          |               |           | Percent<br>ence Bound |
| Year      | Mea   |      | Lower<br>(5th<br>%tile) | Upper<br>(95th<br>%tile) | Mean<br>Value | Lower<br>(5th<br>%tile) | Upper<br>(95th<br>%tile) | Implementation | IDSE      | Monitoring<br>Plans | Monitoring  | Significant<br>Excursion | Mean<br>Value | Lower     |                       |
| 2005      | \$    |      | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -      | \$ -                | \$ -        | \$ -                     | \$ -          | \$ -      | s -                   |
| 2006      | \$    |      | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ 0.03        | \$ -      | \$ -                | \$ -        | \$ -                     | \$ 0.03       | \$ 0.0    |                       |
| 2007      | \$    |      | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -      | \$ -                | \$ -        | \$ -                     | \$ -          | \$ -      | \$ -                  |
| 2008      | \$    |      | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -      | \$ -                | \$ -        | \$ -                     | \$ -          | \$ -      | \$ -                  |
| 2009      | _     | 0.15 | \$ 0.07                 | \$ 0.23                  | \$ -          | \$ -                    | \$ -                     | \$ 0.02        | \$ -      | \$ 0.01             | \$ -        | \$ -                     | \$ 0.18       | \$ 0.1    |                       |
| 2010      | _     | 0.29 | \$ 0.15                 | \$ 0.45                  | \$ 0.04       | \$ 0.02                 | \$ 0.05                  | \$ 0.02        | \$ -      | \$ -                | \$ -        | \$ -                     | \$ 0.34       | \$ 0.1    |                       |
| 2011      | \$ 0  | 0.29 | \$ 0.15                 | \$ 0.45                  | \$ 0.11       | \$ 0.06                 | \$ 0.16                  | \$ -           | \$ -      | s -                 | \$ -        | \$ -                     | \$ 0.40       | \$ 0.2    |                       |
| 2012      | \$ 0  | 0.29 | \$ 0.15                 | \$ 0.45                  | \$ 0.18       | \$ 0.09                 | \$ 0.27                  | \$ -           | \$ -      | \$ -                | \$ -        | \$ -                     | \$ 0.47       | \$ 0.2    |                       |
| 2013      | \$ 0  | 0.29 | \$ 0.15                 | \$ 0.45                  | \$ 0.26       | \$ 0.13                 | \$ 0.38                  | \$ -           | \$ -      | \$ -                | \$ -        | \$ -                     | \$ 0.55       | \$ 0.2    | 28 \$ 0.83            |
| 2014      | \$ 0  | ).15 | \$ 0.07                 | \$ 0.23                  | \$ 0.33       | \$ 0.17                 | \$ 0.49                  | \$ -           | \$ -      | \$ -                | \$ -        | \$ -                     | \$ 0.48       | \$ 0.2    | 24 \$ 0.72            |
| 2015      | \$    | -    | \$ -                    | \$ -                     | \$ 0.37       | \$ 0.19                 | \$ 0.55                  | \$ -           | \$ -      | \$ -                | \$ -        | \$ -                     | \$ 0.37       | \$ 0.1    | 9 \$ 0.55             |
| 2016      | \$    | -    | \$ -                    | \$ -                     | \$ 0.37       | \$ 0.19                 | \$ 0.55                  | \$ -           | \$ -      | \$ -                | \$ -        | \$ -                     | \$ 0.37       | \$ 0.1    | 9 \$ 0.55             |
| 2017      | \$    | -    | \$ -                    | \$ -                     | \$ 0.37       | \$ 0.19                 | \$ 0.55                  | \$ -           | \$ -      | \$ -                | \$ -        | \$ -                     | \$ 0.37       | \$ 0.1    | 9 \$ 0.55             |
| 2018      | \$    | -    | \$ -                    | \$ -                     | \$ 0.37       | \$ 0.19                 | \$ 0.55                  | \$ -           | \$ -      | \$ -                | \$ -        | \$ -                     | \$ 0.37       | \$ 0.1    | 9 \$ 0.55             |
| 2019      | \$    |      | \$ -                    | \$ -                     | \$ 0.37       | \$ 0.19                 | \$ 0.55                  | \$ -           | \$ -      | \$ -                | \$ -        | \$ -                     | \$ 0.37       | \$ 0.1    | 9 \$ 0.55             |
| 2020      | \$    | -    | \$ -                    | \$ -                     | \$ 0.37       | \$ 0.19                 | \$ 0.55                  | \$ -           | \$ -      | \$ -                | \$ -        | \$ -                     | \$ 0.37       | \$ 0.1    | 9 \$ 0.55             |
| 2021      | \$    |      | \$ -                    | \$ -                     | \$ 0.37       | \$ 0.19                 | \$ 0.55                  | \$ -           | \$ -      | \$ -                | \$ -        | \$ -                     | \$ 0.37       | \$ 0.1    | 9 \$ 0.55             |
| 2022      | \$    | -    | \$ -                    | \$ -                     | \$ 0.37       | \$ 0.19                 | \$ 0.55                  | \$ -           | \$ -      | \$ -                | \$ -        | \$ -                     | \$ 0.37       | \$ 0.1    | 9 \$ 0.55             |
| 2023      | \$    | -    | \$ -                    | \$ -                     | \$ 0.37       | \$ 0.19                 | \$ 0.55                  | \$ -           | \$ -      | \$ -                | \$ -        | \$ -                     | \$ 0.37       | \$ 0.1    | 9 \$ 0.55             |
| 2024      | \$    | -    | \$ -                    | \$ -                     | \$ 0.37       | \$ 0.19                 | \$ 0.55                  | \$ -           | \$ -      | \$ -                | \$ -        | \$ -                     | \$ 0.37       | \$ 0.1    | 9 \$ 0.55             |
| 2025      | \$    | -    | \$ -                    | \$ -                     | \$ 0.37       | \$ 0.19                 | \$ 0.55                  | \$ -           | \$ -      | \$ -                | \$ -        | \$ -                     | \$ 0.37       | \$ 0.1    | 9 \$ 0.55             |
| 2026      | \$    | -    | \$ -                    | \$ -                     | \$ 0.37       | \$ 0.19                 | \$ 0.55                  | \$ -           | \$ -      | \$ -                | \$ -        | \$ -                     | \$ 0.37       | \$ 0.1    | 9 \$ 0.55             |
| 2027      | \$    | -    | \$ -                    | \$ -                     | \$ 0.37       | \$ 0.19                 | \$ 0.55                  | \$ -           | \$ -      | \$ -                | \$ -        | \$ -                     | \$ 0.37       | \$ 0.1    | 9 \$ 0.55             |
| 2028      | \$    | -    | \$ -                    | \$ -                     | \$ 0.37       | \$ 0.19                 | \$ 0.55                  | \$ -           | \$ -      | \$ -                | \$ -        | \$ -                     | \$ 0.37       | \$ 0.1    | 9 \$ 0.55             |
| 2029      | \$    | -    | \$ -                    | \$ -                     | \$ 0.37       | \$ 0.19                 | \$ 0.55                  | \$ -           | \$ -      | \$ -                | \$ -        | \$ -                     | \$ 0.37       | \$ 0.1    | 9 \$ 0.55             |

Note: All values in millions of year 2003 dollars.

## Exhibit J.2m Projections of Stage 2 DBPR PWS Costs

(Surface Water NTNCWSs Serving 500-999 People)

## Preferred Alternative

| Preferred | AII | erna         | (IV | е                       |      |                         |                   |                         |      |                        |       |            |      |        |       |                 |     |          |    |                   |                  |       |                |        |                   |
|-----------|-----|--------------|-----|-------------------------|------|-------------------------|-------------------|-------------------------|------|------------------------|-------|------------|------|--------|-------|-----------------|-----|----------|----|-------------------|------------------|-------|----------------|--------|-------------------|
|           | 1   | Treatm       | ent | Capita                  | l Co | sts                     | Treatm            | nent O&N                | l Co | sts                    |       | ;          | Stag | e 2 Di | BPR N | on-Treat        | men | t Costs  |    |                   | All St           | age 2 | DBPR           | Cost   | s                 |
|           |     |              | Co  | 90 Pe                   |      |                         |                   | 90 Pe<br>Confi<br>Bo    |      | ce                     |       |            |      |        |       |                 |     |          |    |                   |                  | Co    | 90 Pe          | ercent |                   |
| Year      |     | Mean<br>alue |     | Lower<br>(5th<br>%tile) | (    | lpper<br>95th<br>6tile) | <br>Mean<br>/alue | Lower<br>(5th<br>%tile) | (9   | pper<br>95th<br>stile) | Imple | ementation |      | DSE    |       | itoring<br>lans | Мо  | nitoring | _  | ificant<br>ırsion | <br>lean<br>alue |       | ower<br>%tile) |        | Jpper<br>n %tile) |
| 2005      | \$  | -            | \$  | -                       | \$   | -                       | \$<br>-           | \$ -                    | \$   | -                      | \$    | -          | \$   | -      | \$    | -               | \$  | -        | \$ | -                 | \$<br>-          | \$    | -              | \$     | -                 |
| 2006      | \$  | -            | \$  | -                       | \$   | -                       | \$<br>-           | \$ -                    | \$   | -                      | \$    | 0.01       | \$   | -      | \$    | -               | \$  | -        | \$ | -                 | \$<br>0.01       | \$    | 0.01           | \$     | 0.01              |
| 2007      | \$  | -            | \$  | -                       | \$   | -                       | \$<br>-           | \$ -                    | \$   | -                      | \$    | -          | \$   | -      | \$    | -               | \$  | -        | \$ | -                 | \$<br>-          | \$    | -              | \$     | -                 |
| 2008      | \$  | -            | \$  | -                       | \$   | -                       | \$<br>-           | \$ -                    | \$   | -                      | \$    | -          | \$   | -      | \$    | -               | \$  | -        | \$ | -                 | \$<br>-          | \$    | -              | \$     | -                 |
| 2009      | \$  | 0.09         | \$  | 0.05                    | \$   | 0.15                    | \$<br>-           | \$ -                    | \$   | -                      | \$    | 0.01       | \$   |        | \$    | 0.01            | \$  | -        | \$ | -                 | \$<br>0.10       | \$    | 0.06           | \$     | 0.16              |
| 2010      | \$  | 0.19         | \$  | 0.09                    | \$   | 0.29                    | \$<br>0.01        | \$ 0.01                 | \$   | 0.02                   | \$    | 0.01       | \$   | -      | \$    | -               | \$  | -        | \$ | -                 | \$<br>0.21       | \$    | 0.11           | \$     | 0.32              |
| 2011      | \$  | 0.19         | \$  | 0.09                    | \$   | 0.29                    | \$<br>0.04        | \$ 0.02                 | \$   | 0.07                   | \$    | -          | \$   | -      | \$    | -               | \$  | -        | \$ | -                 | \$<br>0.23       | \$    | 0.12           | \$     | 0.36              |
| 2012      | \$  | 0.19         | \$  | 0.09                    | \$   | 0.29                    | \$<br>0.07        | \$ 0.04                 | \$   | 0.11                   | \$    | -          | \$   | -      | \$    | -               | \$  | -        | \$ | -                 | \$<br>0.26       | \$    | 0.13           | \$     | 0.40              |
| 2013      | \$  | 0.19         | \$  | 0.09                    | \$   | 0.29                    | \$<br>0.10        | \$ 0.05                 | \$   | 0.15                   | \$    | -          | \$   | -      | \$    | -               | \$  | -        | \$ | -                 | \$<br>0.29       | \$    | 0.15           | \$     | 0.45              |
| 2014      | \$  | 0.09         | \$  | 0.05                    | \$   | 0.15                    | \$<br>0.13        | \$ 0.07                 | \$   | 0.20                   | \$    | -          | \$   | -      | \$    | -               | \$  | -        | \$ | -                 | \$<br>0.23       | \$    | 0.12           | \$     | 0.34              |
| 2015      | \$  | -            | \$  | -                       | \$   | -                       | \$<br>0.15        | \$ 0.08                 | \$   | 0.22                   | \$    | -          | \$   | -      | \$    | -               | \$  | -        | \$ | -                 | \$<br>0.15       | \$    | 0.08           | \$     | 0.22              |
| 2016      | \$  | -            | \$  | -                       | \$   | -                       | \$<br>0.15        | \$ 0.08                 | \$   | 0.22                   | \$    | -          | \$   | -      | \$    | -               | \$  | -        | \$ | -                 | \$<br>0.15       | \$    | 0.08           | \$     | 0.22              |
| 2017      | \$  | -            | \$  | -                       | \$   | -                       | \$<br>0.15        | \$ 0.08                 | \$   | 0.22                   | \$    | -          | \$   | -      | \$    | -               | \$  | -        | \$ | -                 | \$<br>0.15       | \$    | 0.08           | \$     | 0.22              |
| 2018      | \$  | -            | \$  | -                       | \$   | -                       | \$<br>0.15        | \$ 0.08                 | \$   | 0.22                   | \$    | -          | \$   | -      | \$    | -               | \$  | -        | \$ | -                 | \$<br>0.15       | \$    | 0.08           | \$     | 0.22              |
| 2019      | \$  | -            | \$  | -                       | \$   | -                       | \$<br>0.15        | \$ 0.08                 | \$   | 0.22                   | \$    | -          | \$   | -      | \$    | -               | \$  | -        | \$ | -                 | \$<br>0.15       | \$    | 0.08           | \$     | 0.22              |
| 2020      | \$  | -            | \$  | -                       | \$   | -                       | \$<br>0.15        | \$ 0.08                 | \$   | 0.22                   | \$    | -          | \$   | -      | \$    | -               | \$  | -        | \$ | -                 | \$<br>0.15       | \$    | 0.08           | \$     | 0.22              |
| 2021      | \$  | -            | \$  | -                       | \$   | -                       | \$<br>0.15        | \$ 0.08                 | \$   | 0.22                   | \$    | -          | \$   | -      | \$    | -               | \$  | -        | \$ | -                 | \$<br>0.15       | \$    | 0.08           | \$     | 0.22              |
| 2022      | \$  | -            | \$  | -                       | \$   | -                       | \$<br>0.15        | \$ 0.08                 | \$   | 0.22                   | \$    | -          | \$   | -      | \$    | -               | \$  | -        | \$ | -                 | \$<br>0.15       | \$    | 0.08           | \$     | 0.22              |
| 2023      | \$  | -            | \$  |                         | \$   | -                       | \$<br>0.15        | \$ 0.08                 | \$   | 0.22                   | \$    | -          | \$   | -      | \$    | -               | \$  | -        | \$ | -                 | \$<br>0.15       | \$    | 0.08           | \$     | 0.22              |
| 2024      | \$  | -            | \$  |                         | \$   | -                       | \$<br>0.15        | \$ 0.08                 | \$   | 0.22                   | \$    | -          | \$   | -      | \$    | -               | \$  | -        | \$ | -                 | \$<br>0.15       | \$    | 0.08           | \$     | 0.22              |
| 2025      | \$  | -            | \$  | -                       | \$   | -                       | \$<br>0.15        | \$ 0.08                 | \$   | 0.22                   | \$    | -          | \$   | -      | \$    | -               | \$  | -        | \$ | -                 | \$<br>0.15       | \$    | 0.08           | \$     | 0.22              |
| 2026      | \$  | -            | \$  |                         | \$   | -                       | \$<br>0.15        | \$ 0.08                 | ·    | 0.22                   | \$    | -          | \$   | -      | \$    | -               | \$  | -        | \$ | -                 | \$<br>0.15       | \$    | 0.08           | \$     | 0.22              |
| 2027      | \$  | -            | \$  |                         | \$   | -                       | \$<br>0.15        | \$ 0.08                 | \$   | 0.22                   | \$    | -          | \$   | -      | \$    | -               | \$  | -        | \$ | -                 | \$<br>0.15       | \$    | 0.08           | \$     | 0.22              |
| 2028      | \$  | -            | \$  |                         | \$   | -                       | \$<br>0.15        | \$ 0.08                 | \$   | 0.22                   | \$    | -          | \$   | -      | \$    | -               | \$  | -        | \$ | -                 | \$<br>0.15       | \$    | 0.08           | \$     | 0.22              |
| 2029      | \$  | -            | \$  | -                       | \$   | -                       | \$<br>0.15        | \$ 0.08                 | \$   | 0.22                   | \$    | -          | \$   | -      | \$    | -               | \$  | -        | \$ | -                 | \$<br>0.15       | \$    | 0.08           | \$     | 0.22              |

Note: All values in millions of year 2003 dollars.

## Exhibit J.2n Projections of Stage 2 DBPR PWS Costs

(Surface Water NTNCWSs Serving 1,000-3,299 People)

### Preferred Alternative

|      |    | ernati       |                         |                          |               |                         |                          |     |              |      |        |     |                    |             |          |                         |              |       |                |        |                   |
|------|----|--------------|-------------------------|--------------------------|---------------|-------------------------|--------------------------|-----|--------------|------|--------|-----|--------------------|-------------|----------|-------------------------|--------------|-------|----------------|--------|-------------------|
|      | L  | reatme       | nt Capital              | Costs                    | Treatr        | nent O&M                | Costs                    |     |              | Stag | ge 2 D | BPR | Non-Treatm         | ent C       | osts     |                         | All St       | age 2 | 2 DBPR         | Costs  | s                 |
|      |    |              | Confi                   | ercent<br>dence<br>und   |               | Confi                   | und                      |     |              |      |        |     |                    |             |          |                         |              | Co    | 90 Po          | ercent |                   |
| Year |    | lean<br>alue | Lower<br>(5th<br>%tile) | Upper<br>(95th<br>%tile) | Mean<br>Value | Lower<br>(5th<br>%tile) | Upper<br>(95th<br>%tile) | lmį | olementation |      | DSE    | M   | onitoring<br>Plans | Мо          | nitoring | <br>nificant<br>cursion | Mean<br>alue | _     | ower<br>%tile) |        | lpper<br>n %tile) |
| 2005 | \$ | -            | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$  | -            | \$   | -      | \$  | -                  | \$          | -        | \$<br>-                 | \$<br>-      | \$    | -              | \$     | -                 |
| 2006 | \$ |              | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$  | 0.01         | \$   | -      | \$  | -                  | \$          | -        | \$<br>-                 | \$<br>0.01   | \$    | 0.01           | \$     | 0.01              |
| 2007 | \$ | -            | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$  | -            | \$   | -      | \$  | -                  | \$          | -        | \$<br>-                 | \$<br>-      | \$    | -              | \$     | -                 |
| 2008 | \$ | -            | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$  | -            | \$   | -      | \$  | -                  | \$          | -        | \$<br>-                 | \$<br>-      | \$    | -              | \$     | -                 |
| 2009 | \$ | 0.21         | \$ 0.11                 | \$ 0.32                  | \$ -          | \$ -                    | \$ -                     | \$  | 0.01         | \$   | -      | \$  | 0.00               | \$          | -        | \$<br>-                 | \$<br>0.22   | \$    | 0.12           | \$     | 0.33              |
| 2010 | \$ | 0.42         | \$ 0.21                 | \$ 0.63                  | \$ 0.03       | \$ 0.01                 | \$ 0.04                  | \$  | 0.01         | \$   | -      | \$  |                    | \$          | -        | \$<br>-                 | \$<br>0.45   | \$    | 0.23           | \$     | 0.68              |
| 2011 | \$ | 0.42         | \$ 0.21                 | \$ 0.63                  | \$ 0.09       | \$ 0.04                 | \$ 0.13                  | \$  | -            | \$   | -      | \$  |                    | \$          | -        | \$<br>-                 | \$<br>0.50   | \$    | 0.26           | \$     | 0.76              |
| 2012 | \$ | 0.42         | \$ 0.21                 | \$ 0.63                  | \$ 0.14       | \$ 0.07                 | \$ 0.22                  | \$  | -            | \$   | -      | \$  |                    | \$          | -        | \$<br>-                 | \$<br>0.56   | \$    | 0.29           | \$     | 0.85              |
| 2013 | \$ | 0.42         | \$ 0.21                 | \$ 0.63                  | \$ 0.20       | \$ 0.10                 | \$ 0.30                  | \$  | -            | \$   | -      | \$  |                    | \$          | -        | \$<br>-                 | \$<br>0.62   | \$    | 0.32           | \$     | 0.93              |
| 2014 | \$ | 0.21         | \$ 0.11                 | \$ 0.32                  | \$ 0.26       | \$ 0.13                 | \$ 0.39                  | \$  | -            | \$   | -      | \$  |                    | \$          | -        | \$<br>-                 | \$<br>0.47   | \$    | 0.24           | \$     | 0.70              |
| 2015 | \$ | -            | \$ -                    | \$ -                     | \$ 0.29       | \$ 0.15                 | \$ 0.43                  | \$  | -            | \$   | -      | \$  |                    | <b>\$</b> 3 | -        | \$<br>-                 | \$<br>0.29   | \$    | 0.15           | \$     | 0.43              |
| 2016 | \$ | -            | \$ -                    | \$ -                     | \$ 0.29       | \$ 0.15                 | \$ 0.43                  | \$  | -            | \$   | -      | \$  |                    | <b>\$</b> 3 | -        | \$<br>-                 | \$<br>0.29   | \$    | 0.15           | \$     | 0.43              |
| 2017 | \$ | -            | \$ -                    | \$ -                     | \$ 0.29       | \$ 0.15                 | \$ 0.43                  | \$  | -            | \$   | -      | \$  | -                  | \$          | -        | \$<br>-                 | \$<br>0.29   | \$    | 0.15           | \$     | 0.43              |
| 2018 | \$ | -            | \$ -                    | \$ -                     | \$ 0.29       | \$ 0.15                 | \$ 0.43                  | \$  |              | \$   | -      | \$  | -                  | \$          | -        | \$<br>-                 | \$<br>0.29   | \$    | 0.15           | \$     | 0.43              |
| 2019 | \$ | -            | \$ -                    | \$ -                     | \$ 0.29       | \$ 0.15                 | \$ 0.43                  | \$  |              | \$   | -      | \$  | -                  | \$          | -        | \$<br>-                 | \$<br>0.29   | \$    | 0.15           | \$     | 0.43              |
| 2020 | \$ |              | \$ -                    | \$ -                     | \$ 0.29       | \$ 0.15                 | \$ 0.43                  | \$  | -            | \$   | -      | \$  | -                  | \$          | -        | \$<br>-                 | \$<br>0.29   | \$    | 0.15           | \$     | 0.43              |
| 2021 | \$ | -            | \$ -                    | \$ -                     | \$ 0.29       | \$ 0.15                 | \$ 0.43                  | \$  | -            | \$   | -      | \$  | -                  | \$          | -        | \$<br>-                 | \$<br>0.29   | \$    | 0.15           | \$     | 0.43              |
| 2022 | \$ | -            | \$ -                    | \$ -                     | \$ 0.29       | \$ 0.15                 | \$ 0.43                  | \$  | -            | \$   | -      | \$  | -                  | \$          | -        | \$<br>-                 | \$<br>0.29   | \$    | 0.15           | \$     | 0.43              |
| 2023 | \$ | -            | \$ -                    | \$ -                     | \$ 0.29       | \$ 0.15                 | \$ 0.43                  | \$  | -            | \$   | -      | \$  | -                  | \$          | -        | \$<br>-                 | \$<br>0.29   | \$    | 0.15           | \$     | 0.43              |
| 2024 | \$ | -            | \$ -                    | \$ -                     | \$ 0.29       | \$ 0.15                 | \$ 0.43                  | \$  | -            | \$   | -      | \$  | -                  | \$          | -        | \$<br>-                 | \$<br>0.29   | \$    | 0.15           | \$     | 0.43              |
| 2025 | \$ | -            | \$ -                    | \$ -                     | \$ 0.29       | \$ 0.15                 | \$ 0.43                  | \$  | -            | \$   | -      | \$  | -                  | \$          | -        | \$<br>-                 | \$<br>0.29   | \$    | 0.15           | \$     | 0.43              |
| 2026 | \$ | -            | \$ -                    | \$ -                     | \$ 0.29       | \$ 0.15                 | \$ 0.43                  | \$  | -            | \$   | -      | \$  | -                  | \$          | -        | \$<br>-                 | \$<br>0.29   | \$    | 0.15           | \$     | 0.43              |
| 2027 | \$ | -            | \$ -                    | \$ -                     | \$ 0.29       | \$ 0.15                 | \$ 0.43                  | \$  | -            | \$   | -      | \$  | -                  | \$          | -        | \$<br>-                 | \$<br>0.29   | \$    | 0.15           | \$     | 0.43              |
| 2028 | \$ | -            | \$ -                    | \$ -                     | \$ 0.29       | \$ 0.15                 | \$ 0.43                  | \$  | -            | \$   | -      | \$  | -                  | \$          | -        | \$<br>-                 | \$<br>0.29   | \$    | 0.15           | \$     | 0.43              |
| 2029 | \$ | -            | \$ -                    | \$ -                     | \$ 0.29       | \$ 0.15                 | \$ 0.43                  | \$  | -            | \$   | -      | \$  | -                  | \$          | -        | \$<br>-                 | \$<br>0.29   | \$    | 0.15           | \$     | 0.43              |

# Exhibit J.2o Projections of Stage 2 DBPR PWS Costs

(Surface Water NTNCWSs Serving 3,300-9,999 People)

## Preferred Alternative

| Preferred | Alternat      | ive                     |                          |               |                         |                          |                |         |      |                    |            |                          |               |                      |                       |
|-----------|---------------|-------------------------|--------------------------|---------------|-------------------------|--------------------------|----------------|---------|------|--------------------|------------|--------------------------|---------------|----------------------|-----------------------|
|           | Treatm        | ent Capital             | l Costs                  | Treatr        | nent O&N                | 1 Costs                  |                | Stage 2 | DBPF | R Non-Treati       | ment Costs |                          | All Si        | age 2 DBPR           | Costs                 |
|           |               | 90 Pe<br>Confid<br>Bot  | dence                    |               | Confi                   | ercent<br>dence<br>und   |                |         |      |                    |            |                          |               |                      | ercent<br>ce Bound    |
| Year      | Mean<br>Value | Lower<br>(5th<br>%tile) | Upper<br>(95th<br>%tile) | Mean<br>Value | Lower<br>(5th<br>%tile) | Upper<br>(95th<br>%tile) | Implementation | IDSE    | Мс   | onitoring<br>Plans | Monitoring | Significant<br>Excursion | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) |
| 2005      | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -    | \$   |                    | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2006      | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ 0.00        | \$ -    | \$   |                    | \$ -       | \$ -                     | \$ 0.00       | \$ 0.00              | \$ 0.00               |
| 2007      | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -    | \$   |                    | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2008      | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -    | \$   |                    | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2009      | \$ 0.14       | \$ 0.07                 | \$ 0.21                  | \$ -          | \$ -                    | \$ -                     | \$ 0.00        | \$ -    | \$   | 0.00               | \$ -       | \$ -                     | \$ 0.14       | \$ 0.08              | \$ 0.22               |
| 2010      | \$ 0.28       | \$ 0.15                 | \$ 0.43                  | \$ 0.01       | \$ 0.01                 | \$ 0.02                  | \$ 0.00        | \$ -    | \$   |                    | \$ -       | \$ -                     | \$ 0.30       | \$ 0.15              | \$ 0.45               |
| 2011      | \$ 0.28       | \$ 0.15                 | \$ 0.43                  | \$ 0.04       | \$ 0.02                 | \$ 0.05                  | \$ -           | \$ -    | \$   |                    | \$ -       | \$ -                     | \$ 0.32       | \$ 0.16              | \$ 0.48               |
| 2012      | \$ 0.28       | \$ 0.15                 | \$ 0.43                  | \$ 0.06       | \$ 0.03                 | \$ 0.09                  | \$ -           | \$ -    | \$   |                    | \$ 0.01    | \$ -                     | \$ 0.35       | \$ 0.19              | \$ 0.53               |
| 2013      | \$ 0.28       | \$ 0.15                 | \$ 0.43                  | \$ 0.08       | \$ 0.04                 | \$ 0.12                  | \$ -           | \$ -    | \$   |                    | \$ 0.03    | \$ -                     | \$ 0.39       | \$ 0.21              | \$ 0.58               |
| 2014      | \$ 0.14       | \$ 0.07                 | \$ 0.21                  | \$ 0.11       | \$ 0.05                 | \$ 0.16                  | \$ -           | \$ -    | \$   |                    | \$ 0.03    | \$ -                     | \$ 0.27       | \$ 0.15              | \$ 0.40               |
| 2015      | \$ -          | \$ -                    | \$ -                     | \$ 0.12       | \$ 0.06                 | \$ 0.18                  | \$ -           | \$ -    | \$   |                    | \$ 0.03    | \$ -                     | \$ 0.14       | \$ 0.09              | \$ 0.20               |
| 2016      | \$ -          | \$ -                    | \$ -                     | \$ 0.12       | \$ 0.06                 | \$ 0.18                  | \$ -           | \$ -    | \$   | -                  | \$ 0.03    | \$ -                     | \$ 0.14       | \$ 0.09              | \$ 0.20               |
| 2017      | \$ -          | \$ -                    | \$ -                     | \$ 0.12       | \$ 0.06                 | \$ 0.18                  | \$ -           | \$ -    | \$   | -                  | \$ 0.03    | \$ -                     | \$ 0.14       | \$ 0.09              | \$ 0.20               |
| 2018      | \$ -          | \$ -                    | \$ -                     | \$ 0.12       | \$ 0.06                 | \$ 0.18                  | \$ -           | \$ -    | \$   | -                  | \$ 0.03    | \$ -                     | \$ 0.14       | \$ 0.09              | \$ 0.20               |
| 2019      | \$ -          | \$ -                    | \$ -                     | \$ 0.12       | \$ 0.06                 | \$ 0.18                  | \$ -           | \$ -    | \$   | -                  | \$ 0.03    | \$ -                     | \$ 0.14       | \$ 0.09              | \$ 0.20               |
| 2020      | \$ -          | \$ -                    | \$ -                     | \$ 0.12       | \$ 0.06                 | \$ 0.18                  | \$ -           | \$ -    | \$   | -                  | \$ 0.03    | \$ -                     | \$ 0.14       | \$ 0.09              | \$ 0.20               |
| 2021      | \$ -          | \$ -                    | \$ -                     | \$ 0.12       | \$ 0.06                 | \$ 0.18                  | \$ -           | \$ -    | \$   | -                  | \$ 0.03    | \$ -                     | \$ 0.14       | \$ 0.09              | \$ 0.20               |
| 2022      | \$ -          | \$ -                    | \$ -                     | \$ 0.12       | \$ 0.06                 | \$ 0.18                  | \$ -           | \$ -    | \$   | -                  | \$ 0.03    | \$ -                     | \$ 0.14       | \$ 0.09              | \$ 0.20               |
| 2023      | \$ -          | \$ -                    | \$ -                     | \$ 0.12       | \$ 0.06                 | \$ 0.18                  | \$ -           | \$ -    | \$   | -                  | \$ 0.03    | \$ -                     | \$ 0.14       | \$ 0.09              | \$ 0.20               |
| 2024      | \$ -          | \$ -                    | \$ -                     | \$ 0.12       | \$ 0.06                 | \$ 0.18                  | \$ -           | \$ -    | \$   | -                  | \$ 0.03    | \$ -                     | \$ 0.14       | \$ 0.09              | \$ 0.20               |
| 2025      | \$ -          | \$ -                    | \$ -                     | \$ 0.12       | \$ 0.06                 | \$ 0.18                  | \$ -           | \$ -    | \$   | -                  | \$ 0.03    | \$ -                     | \$ 0.14       | \$ 0.09              | \$ 0.20               |
| 2026      | \$ -          | \$ -                    | \$ -                     | \$ 0.12       | \$ 0.06                 | \$ 0.18                  | \$ -           | \$ -    | \$   | -                  | \$ 0.03    | \$ -                     | \$ 0.14       | \$ 0.09              | \$ 0.20               |
| 2027      | \$ -          | \$ -                    | \$ -                     | \$ 0.12       | \$ 0.06                 | \$ 0.18                  | \$ -           | \$ -    | \$   | -                  | \$ 0.03    | \$ -                     | \$ 0.14       | \$ 0.09              | \$ 0.20               |
| 2028      | \$ -          | \$ -                    | \$ -                     | \$ 0.12       | \$ 0.06                 | \$ 0.18                  | \$ -           | \$ -    | \$   | -                  | \$ 0.03    | \$ -                     | \$ 0.14       | \$ 0.09              | \$ 0.20               |
| 2029      | \$ -          | \$ -                    | \$ -                     | \$ 0.12       | \$ 0.06                 | \$ 0.18                  | \$ -           | \$ -    | \$   | -                  | \$ 0.03    | \$ -                     | \$ 0.14       | \$ 0.09              | \$ 0.20               |

## Exhibit J.2p Projections of Stage 2 DBPR PWS Costs

(Surface Water NTNCWSs Serving 10,000-49,999 People)

## Preferred Alternative

| Preferred | AIL | erna   | ive   |         |     |        |         |                        |          |    |              |           |        |           |             |     |           |       |         |    |        |       |        |        |          |
|-----------|-----|--------|-------|---------|-----|--------|---------|------------------------|----------|----|--------------|-----------|--------|-----------|-------------|-----|-----------|-------|---------|----|--------|-------|--------|--------|----------|
|           |     | Treatm | ent ( | Capital | Cos | sts    | Treatn  | nent O&N               | // Costs |    | •            | Stag      | ge 2 D | BP        | R Non-Treat | men | t Costs   |       |         |    | All St | age 2 | DBPR   | Cost   | s        |
|           |     |        | Con   | 90 Pe   |     |        |         | 90 Pe<br>Confid<br>Bot | dence    |    |              |           |        |           |             |     |           |       |         |    |        | Co    | 90 P   | ercent |          |
|           |     |        | L     | ower    | U   | lpper  |         | Lower                  | Upper    |    |              |           |        |           |             |     |           |       |         |    |        |       |        |        |          |
|           | N   | lean   | (     | (5th    | (   | 95th   | Mean    | (5th                   | (95th    |    |              |           |        | N         | Monitoring  |     |           | Signi | ificant |    | /lean  | L     | ower   |        | Jpper    |
| Year      | V   | alue   | %     | stile)  | %   | itile) | Value   | %tile)                 | %tile)   | lm | olementation | -         | DSE    |           | Plans       | М   | onitoring | Excu  | ırsion  | ٧  | alue   | (5th  | %tile) | (95th  | h %tile) |
| 2005      | \$  | -      | \$    | -       | \$  | -      | \$ -    | \$ -                   | \$ -     | \$ | -            | \$        | -      | \$        | -           | \$  | -         | \$    | -       | \$ | -      | \$    | -      | \$     | -        |
| 2006      | \$  | -      | \$    | -       | \$  | -      | \$ -    | \$ -                   | \$ -     | \$ | 0.00         | \$        | -      | \$        | -           | \$  | -         | \$    | -       | \$ | 0.00   | \$    | 0.00   | \$     | 0.00     |
| 2007      | \$  | -      | \$    | -       | \$  | -      | \$ -    | \$ -                   | \$ -     | \$ |              | \$        | 0.02   | \$        | -           | \$  | -         | \$    | -       | \$ | 0.02   | \$    | 0.02   | \$     | 0.02     |
| 2008      | \$  | -      | \$    | -       | \$  | -      | \$ -    | \$ -                   | \$ -     | \$ |              | <b>\$</b> | 0.02   | <b>\$</b> | 0.00        | 69  |           | \$    | -       | \$ | 0.02   | 69    | 0.02   | \$     | 0.02     |
| 2009      | \$  | 0.06   | \$    | 0.03    | \$  | 0.09   | \$ -    | \$ -                   | \$ -     | \$ | 0.00         | \$        | -      | <b>\$</b> | 0.00        | 69  |           | \$    | -       | \$ | 0.06   | 69    | 0.03   | \$     | 0.09     |
| 2010      | \$  | 0.12   | \$    | 0.06    | \$  | 0.17   | \$ 0.00 | \$ 0.00                | \$ 0.00  | \$ | 0.00         | \$        | -      | \$        | -           | 69  |           | \$    | -       | \$ | 0.12   | 69    | 0.07   | \$     | 0.18     |
| 2011      | \$  | 0.12   | \$    | 0.06    | \$  | 0.17   | \$ 0.01 | \$ 0.01                | \$ 0.01  | \$ |              | \$        | -      | \$        | -           | 69  |           | \$    | -       | \$ | 0.13   | 69    | 0.07   | \$     | 0.19     |
| 2012      | \$  | 0.12   | \$    | 0.06    | \$  | 0.17   | \$ 0.02 | \$ 0.01                | \$ 0.02  | \$ |              | \$        | -      | \$        | -           | 69  |           | \$    | -       | \$ | 0.14   | 69    | 0.07   | \$     | 0.20     |
| 2013      | \$  | 0.12   | \$    | 0.06    | \$  | 0.17   | \$ 0.02 | \$ 0.01                | \$ 0.03  | \$ |              | \$        |        | \$        | -           | \$  |           | \$    | -       | \$ | 0.14   | \$    | 0.07   | \$     | 0.20     |
| 2014      | \$  | 0.06   | \$    | 0.03    | \$  | 0.09   | \$ 0.03 | \$ 0.02                | \$ 0.04  | \$ |              | \$        | -      | \$        |             | \$  |           | \$    | -       | \$ | 0.09   | \$    | 0.05   | \$     | 0.13     |
| 2015      | \$  | -      | \$    | -       | \$  | -      | \$ 0.03 | \$ 0.02                | \$ 0.04  | \$ |              | \$        | -      | \$        |             | \$  |           | \$    | -       | \$ | 0.03   | \$    | 0.02   | \$     | 0.04     |
| 2016      | \$  | -      | \$    | -       | \$  | -      | \$ 0.03 | \$ 0.02                | \$ 0.04  | \$ |              | \$        | -      | \$        |             | \$  |           | \$    | -       | \$ | 0.03   | \$    | 0.02   | \$     | 0.04     |
| 2017      | \$  | -      | \$    | -       | \$  | -      | \$ 0.03 | \$ 0.02                | \$ 0.04  | \$ |              | \$        | -      | \$        |             | \$  |           | \$    | -       | \$ | 0.03   | \$    | 0.02   | \$     | 0.04     |
| 2018      | \$  | -      | \$    | -       | \$  | -      | \$ 0.03 | \$ 0.02                | \$ 0.04  | \$ |              | \$        | -      | \$        |             | \$  |           | \$    | -       | \$ | 0.03   | \$    | 0.02   | \$     | 0.04     |
| 2019      | \$  | -      | \$    | -       | \$  | -      | \$ 0.03 | \$ 0.02                | \$ 0.04  | \$ |              | \$        | -      | \$        |             | \$  |           | \$    | -       | \$ | 0.03   | \$    | 0.02   | \$     | 0.04     |
| 2020      | \$  | -      | \$    | -       | \$  | -      | \$ 0.03 | \$ 0.02                | \$ 0.04  | \$ | -            | \$        | -      | \$        | -           | \$  | -         | \$    | -       | \$ | 0.03   | \$    | 0.02   | \$     | 0.04     |
| 2021      | \$  | -      | \$    | -       | \$  | -      | \$ 0.03 | \$ 0.02                | \$ 0.04  | \$ | -            | \$        | -      | \$        |             | \$  |           | \$    | -       | \$ | 0.03   | \$    | 0.02   | \$     | 0.04     |
| 2022      | \$  | -      | \$    | -       | \$  | -      | \$ 0.03 | \$ 0.02                | \$ 0.04  | \$ | -            | \$        | -      | \$        | -           | \$  | -         | \$    | -       | \$ | 0.03   | \$    | 0.02   | \$     | 0.04     |
| 2023      | \$  | -      | \$    | -       | \$  | -      | \$ 0.03 | \$ 0.02                | \$ 0.04  | \$ | -            | \$        | -      | \$        |             | \$  | -         | \$    | -       | \$ | 0.03   | \$    | 0.02   | \$     | 0.04     |
| 2024      | \$  | -      | \$    | -       | \$  | -      | \$ 0.03 | \$ 0.02                | \$ 0.04  | \$ | -            | \$        | -      | \$        | -           | \$  | -         | \$    | -       | \$ | 0.03   | \$    | 0.02   | \$     | 0.04     |
| 2025      | \$  | -      | \$    | -       | \$  | -      | \$ 0.03 | \$ 0.02                | \$ 0.04  | \$ | -            | \$        | -      | \$        | -           | \$  | -         | \$    | -       | \$ | 0.03   | \$    | 0.02   | \$     | 0.04     |
| 2026      | \$  | -      | \$    | -       | \$  | -      | \$ 0.03 | \$ 0.02                | \$ 0.04  | \$ | -            | \$        | -      | \$        | -           | \$  | -         | \$    | -       | \$ | 0.03   | \$    | 0.02   | \$     | 0.04     |
| 2027      | \$  | -      | \$    | -       | \$  | -      | \$ 0.03 | \$ 0.02                | \$ 0.04  | \$ | -            | \$        | -      | \$        | -           | \$  | -         | \$    | -       | \$ | 0.03   | \$    | 0.02   | \$     | 0.04     |
| 2028      | \$  | -      | \$    | -       | \$  | -      | \$ 0.03 | \$ 0.02                | \$ 0.04  | \$ | -            | \$        | -      | \$        | -           | \$  | -         | \$    | -       | \$ | 0.03   | \$    | 0.02   | \$     | 0.04     |
| 2029      | \$  | -      | \$    | -       | \$  | -      | \$ 0.03 | \$ 0.02                | \$ 0.04  | \$ |              | \$        | -      | \$        | -           | \$  | -         | \$    | -       | \$ | 0.03   | \$    | 0.02   | \$     | 0.04     |

Note: All values in millions of year 2003 dollars.

## Exhibit J.2q Projections of Stage 2 DBPR PWS Costs

(Surface Water NTNCWSs Serving 50,000-99,999 People)

### Preferred Alternative

|      | Alterna       | 1146                    |                          |               |                         |                          |                |           |                     |            |                          |               |                      |                       |
|------|---------------|-------------------------|--------------------------|---------------|-------------------------|--------------------------|----------------|-----------|---------------------|------------|--------------------------|---------------|----------------------|-----------------------|
|      | Treatme       | ent Capita              | l Costs                  | Treati        | nent O&M                | Costs                    |                | Stage 2 [ | BPR Non-Treat       | ment Costs |                          | All S         | tage 2 DBPR          | Costs                 |
|      |               | Confi                   | ercent<br>idence<br>und  |               | 90 Pe<br>Confi<br>Bo    |                          |                |           |                     |            |                          |               |                      | ercent<br>ce Bound    |
| Year | Mean<br>Value | Lower<br>(5th<br>%tile) | Upper<br>(95th<br>%tile) | Mean<br>Value | Lower<br>(5th<br>%tile) | Upper<br>(95th<br>%tile) | Implementation | IDSE      | Monitoring<br>Plans | Monitoring | Significant<br>Excursion | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) |
| 2005 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -      | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2006 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -      | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2007 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -      | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2008 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -      | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2009 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -      | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2010 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -      | s -                 | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2011 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -      | s -                 | \$ -       | \$ -                     | \$ -          | s -                  | \$ -                  |
| 2012 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -      | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2013 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -      | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2014 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -      | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2015 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -      | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2016 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -      | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2017 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -      | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2018 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -      | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2019 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -      | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2020 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -      | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2021 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -      | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2022 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -      | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2023 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -      | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2024 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -      | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2025 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -      | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2026 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -      | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2027 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -      | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2028 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -      | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2029 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -      | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |

Note: All values in millions of year 2003 dollars.

# Exhibit J.2r Projections of Stage 2 DBPR PWS Costs

(Surface Water NTNCWSs Serving 100,000-999,999 People)

## Preferred Alternative

| Preferred | Αιτε | ernat  | ive | !       |      |       |    |        |     |        |       |       |    |              |     |      |      |                |     |            |     |          |    |        |       |         |        |          |
|-----------|------|--------|-----|---------|------|-------|----|--------|-----|--------|-------|-------|----|--------------|-----|------|------|----------------|-----|------------|-----|----------|----|--------|-------|---------|--------|----------|
|           | 1    | Γreatm | ent | Capital | l Co | sts   |    | Treate | men | t O&M  | Cos   | sts   |    |              |     |      | No   | n-Treatment Co | ost | ts         |     |          |    | All St | age 2 | DBPR    | Costs  | 5        |
|           |      |        |     | 90 Pe   | rcer | nt    |    |        |     |        |       |       |    |              |     |      |      |                |     |            |     |          |    |        |       |         |        |          |
|           |      |        |     | Confid  | dend | ce    |    |        |     | 90 Pe  | ercei | nt    |    |              |     |      |      |                |     |            |     |          |    |        |       | 90 P    | ercent | :        |
|           |      |        |     | Βοι     | _    |       |    |        | -   | nfiden |       |       |    |              |     |      |      |                |     |            |     |          |    |        | C     | onfiden | ce Bo  | ound     |
|           |      |        | _   | ower    |      | pper  |    |        |     | ower   |       | pper  |    |              |     |      |      |                |     |            |     |          |    |        |       |         |        |          |
|           | M    | ean    |     | (5th    | ٠,   | 95th  | M  | lean   | ٠,  | 5th    | •     | 95th  |    |              |     |      |      | Monitoring     |     |            | Sig | nificant | N  | lean   |       | ower    |        | lpper    |
| Year      | ٧a   | alue   | %   | itile)  | %    | tile) | V  | alue   | %   | tile)  | %     | tile) | Im | plementation | - 1 | DSE  |      | Plans          |     | Monitoring | Exc | cursion  | ٧  | alue   | (5th  | %tile)  | (95th  | n %tile) |
| 2005      | \$   | -      | \$  | -       | \$   | -     | \$ | -      | \$  | -      | \$    | -     | \$ | 0.00         | \$  | -    |      | \$ -           | \$  | -          | \$  | -        | \$ | 0.00   | \$    | 0.00    | \$     | 0.00     |
| 2006      | \$   | -      | \$  | -       | \$   | -     | \$ | -      | \$  | -      | \$    | -     | \$ | -            | \$  | 0.01 | 1    | \$ -           | \$  | -          | \$  | -        | \$ | 0.01   | \$    | 0.01    | \$     | 0.01     |
| 2007      | \$   | -      | \$  | -       | \$   | -     | \$ | -      | \$  | -      | \$    | -     | \$ | -            | \$  | 0.01 |      | \$ 0.00        | \$  | -          | \$  | -        | \$ | 0.01   | \$    | 0.01    | \$     | 0.01     |
| 2008      | \$   | 0.09   | \$  | 0.05    | \$   | 0.13  | \$ | -      | \$  | -      | \$    | -     | \$ | 0.00         | \$  | -    |      | \$ 0.00        | \$  | -          | \$  | -        | \$ | 0.09   | \$    | 0.05    | \$     | 0.13     |
| 2009      | \$   | 0.09   | \$  | 0.05    | \$   | 0.13  | \$ | 0.00   | \$  | 0.00   | \$    | 0.01  | \$ | -            | \$  | -    |      | \$ -           | \$  | -          | \$  | -        | \$ | 0.09   | \$    | 0.05    | \$     | 0.14     |
| 2010      | \$   | 0.09   | \$  | 0.05    | \$   | 0.13  | \$ | 0.01   | \$  | 0.00   | \$    | 0.01  | \$ | -            | \$  | -    |      | \$ -           | \$  | -          | \$  | -        | \$ | 0.10   | \$    | 0.05    | \$     | 0.14     |
| 2011      | \$   | 0.09   | \$  | 0.05    | \$   | 0.13  | \$ | 0.01   | \$  | 0.01   | \$    | 0.02  | \$ | -            | \$  | -    |      | \$ -           | 9   | \$ 0.00    | \$  | -        | \$ | 0.11   | \$    | 0.06    | \$     | 0.15     |
| 2012      | \$   | 0.09   | \$  | 0.05    | \$   | 0.13  | \$ | 0.02   | \$  | 0.01   | \$    | 0.03  | \$ | -            | \$  | -    |      | \$ -           | \$  | \$ 0.00    | \$  | -        | \$ | 0.11   | \$    | 0.06    | \$     | 0.16     |
| 2013      | \$   | -      | \$  | -       | \$   | -     | \$ | 0.02   | \$  | 0.01   | \$    | 0.03  | \$ | -            | \$  | -    |      | \$ -           | \$  | \$ 0.00    | \$  | -        | \$ | 0.02   | \$    | 0.02    | \$     | 0.04     |
| 2014      | \$   | -      | \$  | -       | \$   | -     | \$ | 0.02   | \$  | 0.01   | \$    | 0.03  | \$ | -            | \$  | -    |      | \$ -           | \$  | \$ 0.00    | \$  | -        | \$ | 0.02   | \$    | 0.02    | \$     | 0.04     |
| 2015      | \$   | -      | \$  | -       | \$   | -     | \$ | 0.02   | \$  | 0.01   | \$    | 0.03  | \$ | -            | \$  | -    |      | \$ -           | \$  | \$ 0.00    | \$  | -        | \$ | 0.02   | \$    | 0.02    | \$     | 0.04     |
| 2016      | \$   | -      | \$  | -       | \$   | -     | \$ | 0.02   | \$  | 0.01   | \$    | 0.03  | \$ | -            | \$  | -    |      | \$ -           | \$  | \$ 0.00    | \$  | -        | \$ | 0.02   | \$    | 0.02    | \$     | 0.04     |
| 2017      | \$   | -      | \$  | -       | \$   | -     | \$ | 0.02   | \$  | 0.01   | \$    | 0.03  | \$ | -            | \$  | -    |      | \$ -           | 9   | \$ 0.00    | \$  | -        | \$ | 0.02   | \$    | 0.02    | \$     | 0.04     |
| 2018      | \$   | -      | \$  | -       | \$   | -     | \$ | 0.02   | \$  | 0.01   | \$    | 0.03  | \$ | -            | \$  | -    |      | \$ -           | 9   | \$ 0.00    | \$  | -        | \$ | 0.02   | \$    | 0.02    | \$     | 0.04     |
| 2019      | \$   | -      | \$  | -       | \$   | -     | \$ | 0.02   | \$  | 0.01   | \$    | 0.03  | \$ | -            | \$  | -    |      | \$ -           | 9   | \$ 0.00    | \$  | -        | \$ | 0.02   | \$    | 0.02    | \$     | 0.04     |
| 2020      | \$   | -      | \$  | -       | \$   | -     | \$ | 0.02   | \$  | 0.01   | \$    | 0.03  | \$ | -            | \$  | -    |      | \$ -           | \$  | \$ 0.00    | \$  | -        | \$ | 0.02   | \$    | 0.02    | \$     | 0.04     |
| 2021      | \$   | -      | \$  | -       | \$   | -     | \$ | 0.02   | \$  | 0.01   | \$    | 0.03  | \$ | -            | \$  | -    |      | \$ -           | \$  | \$ 0.00    | \$  | -        | \$ | 0.02   | \$    | 0.02    | \$     | 0.04     |
| 2022      | \$   | -      | \$  | -       | \$   | -     | \$ | 0.02   | \$  | 0.01   | \$    | 0.03  | \$ | -            | \$  | -    |      | \$ -           | \$  | \$ 0.00    | \$  | -        | \$ | 0.02   | \$    | 0.02    | \$     | 0.04     |
| 2023      | \$   | -      | \$  | -       | \$   | -     | \$ | 0.02   | \$  | 0.01   | \$    | 0.03  | \$ | -            | \$  | -    |      | \$ -           | \$  | \$ 0.00    | \$  | -        | \$ | 0.02   | \$    | 0.02    | \$     | 0.04     |
| 2024      | \$   | -      | \$  | -       | \$   | -     | \$ | 0.02   | \$  | 0.01   | \$    | 0.03  | \$ | -            | \$  | -    |      | \$ -           | \$  | \$ 0.00    | \$  | -        | \$ | 0.02   | \$    | 0.02    | \$     | 0.04     |
| 2025      | \$   | -      | \$  | -       | \$   | -     | \$ | 0.02   | \$  | 0.01   | \$    | 0.03  | \$ | -            | \$  | -    |      | \$ -           | \$  | \$ 0.00    | \$  | -        | \$ | 0.02   | \$    | 0.02    | \$     | 0.04     |
| 2026      | \$   | -      | \$  | -       | \$   | -     | \$ | 0.02   | \$  | 0.01   | \$    | 0.03  | \$ | -            | \$  | -    |      | \$ -           | \$  | \$ 0.00    | \$  | -        | \$ | 0.02   | \$    | 0.02    | \$     | 0.04     |
| 2027      | \$   | -      | \$  | -       | \$   | -     | \$ | 0.02   | \$  | 0.01   | \$    | 0.03  | \$ | -            | \$  | -    | _ :  | \$ -           | 9   | \$ 0.00    | \$  | -        | \$ | 0.02   | \$    | 0.02    | \$     | 0.04     |
| 2028      | \$   | -      | \$  | -       | \$   | -     | \$ | 0.02   | \$  | 0.01   | \$    | 0.03  | \$ | -            | \$  | -    | _ :  | \$ -           | 9   | \$ 0.00    | \$  | -        | \$ | 0.02   | \$    | 0.02    | \$     | 0.04     |
| 2029      | \$   | -      | \$  | -       | \$   | -     | \$ | 0.02   | \$  | 0.01   | \$    | 0.03  | \$ | -            | \$  | -    | - 1: | \$ -           | \$  | \$ 0.00    | \$  | -        | \$ | 0.02   | \$    | 0.02    | \$     | 0.04     |

Note: All values in millions of year 2003 dollars.

## Exhibit J.2s Projections of Stage 2 DBPR PWS Costs

(Surface Water NTNCWSs Serving 1,000,000+ People)

### Preferred Alternative

|      | Treatn        | nent Capita             | al Costs                 | Treati        | ment O&N                | I Costs                  |                | N    | Ion-Treatment (     | Costs      |                          | All St        | age 2 DBPR           | Costs                 |
|------|---------------|-------------------------|--------------------------|---------------|-------------------------|--------------------------|----------------|------|---------------------|------------|--------------------------|---------------|----------------------|-----------------------|
|      |               | 90 Pe<br>Confid<br>Bot  |                          |               | Confi                   | ercent<br>dence<br>und   |                |      |                     |            |                          |               |                      | ercent<br>ace Bound   |
| Year | Mean<br>Value | Lower<br>(5th<br>%tile) | Upper<br>(95th<br>%tile) | Mean<br>Value | Lower<br>(5th<br>%tile) | Upper<br>(95th<br>%tile) | Implementation | IDSE | Monitoring<br>Plans | Monitoring | Significant<br>Excursion | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) |
| 2005 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2006 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2007 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2008 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2009 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2010 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2011 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2012 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2013 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2014 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2015 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2016 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2017 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2018 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2019 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2020 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2021 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2022 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2023 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2024 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2025 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2026 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2027 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2028 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |
| 2029 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                  |

# Exhibit J.2t Projections of Stage 2 DBPR PWS Costs

(All Surface Water NTNCWSs)

#### Droforrod Altornative

| Treatment Capital Costs   Preatment Capital Costs   Preatment Capital Costs   Preatment Capital Costs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    | 90 Percent Confidence Bound  Lower Upper (5th %tile) (95th %tile |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------|
| Confidence   Bound   Lower   Upper   Wean   Value    | <b>Value</b><br>\$ 0.00<br>\$ 0.09 | Confidence Bound  Lower Upper (5th %tile) (95th %tile)           |
| Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note    | <b>Value</b><br>\$ 0.00<br>\$ 0.09 | Confidence Bound  Lower Upper (5th %tile) (95th %tile)           |
| Note   Continue   Co | <b>Value</b><br>\$ 0.00<br>\$ 0.09 | Lower Upper (5th %tile) (95th %tile                              |
| Mean   Value   <b>Value</b><br>\$ 0.00<br>\$ 0.09 | (5th %tile) (95th %tile                                          |
| Year         Value         %tile)         %tile)         Value         %tile)         %tile)         wile)         wile)         wile)         lmplementation         IDSE         Plans         Monitoring         Excursion           2005         \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>Value</b><br>\$ 0.00<br>\$ 0.09 | (5th %tile) (95th %tile                                          |
| 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 0.00<br>\$ 0.09                 | ` ,                                                              |
| 2006       \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ 0.08 \$ 0.01 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ 0.09                            |                                                                  |
| 2007         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ - <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                                                                  |
| 2008         \$ 0.09         \$ 0.05         \$ 0.13         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         \$ -         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$ 0.04                            |                                                                  |
| 2009       \$ 0.81       \$ 0.41       \$ 1.23       \$ 0.00       \$ 0.01       \$ 0.04       \$ - \$ 0.04       \$ - \$ 0.04       \$ - \$ 0.04       \$ - \$ 0.04       \$ - \$ 0.04       \$ - \$ 0.04       \$ - \$ 0.04       \$ - \$ 0.04       \$ - \$ 0.04       \$ - \$ 0.04       \$ - \$ 0.04       \$ - \$ 0.04       \$ - \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04       \$ 0.04<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |                                                                  |
| 2010       \$ 1.53       \$ 0.78       \$ 2.34       \$ 0.12       \$ 0.06       \$ 0.17       \$ 0.04       \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$ 0.11                            |                                                                  |
| 2011         \$ 1.53         \$ 0.78         \$ 2.34         \$ 0.34         \$ 0.17         \$ 0.50         \$ -         \$ -         \$ -         \$ 0.00         \$ -           2012         \$ 1.53         \$ 0.78         \$ 2.34         \$ 0.56         \$ 0.29         \$ 0.83         \$ -         \$ -         \$ -         \$ 0.02         \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ 0.89                            | 1                                                                |
| <b>2012</b> \$ 1.53 \$ 0.78 \$ 2.34 \$ 0.56 \$ 0.29 \$ 0.83 \$ - \$ - \$ - \$ 0.02 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$ 1.69                            |                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ 1.88                            | + +                                                              |
| <b>2013</b> \$ 1.44 \$ 0.73 \$ 2.21 \$ 0.78 \$ 0.40 \$ 1.16 \$ - \$ - \$ - \$ 0.03 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$ 2.11                            |                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ 2.25                            | +                                                                |
| <b>2014</b> \$ 0.72 \$ 0.37 \$ 1.10 \$ 1.00 \$ 0.52 \$ 1.48 \$ - \$ - \$ - \$ 0.03 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$ 1.75                            |                                                                  |
| <b>2015</b> \$ - \$ - \$ 1.10 \$ 0.57 \$ 1.65 \$ - \$ - \$ - \$ 0.03 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$ 1.13                            | + +                                                              |
| <b>2016</b> \$ - \$ - \$ 1.10 \$ 0.57 \$ 1.65 \$ - \$ - \$ - \$ 0.03 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$ 1.13                            |                                                                  |
| <b>2017</b> \$ - \$ - \$ 1.10 \$ 0.57 \$ 1.65 \$ - \$ - \$ - \$ 0.03 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$ 1.13                            | \$ \$ 0.60 \$ 1.67                                               |
| <b>2018</b> \$ - \$ - \$ 1.10 \$ 0.57 \$ 1.65 \$ - \$ - \$ - \$ 0.03 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$ 1.13                            |                                                                  |
| <b>2019</b> \$ - \$ - \$ 1.10 \$ 0.57 \$ 1.65 \$ - \$ - \$ - \$ 0.03 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$ 1.13                            | + +                                                              |
| <b>2020</b> \$ - \$ - \$ 1.10 \$ 0.57 \$ 1.65 \$ - \$ - \$ - \$ 0.03 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$ 1.13                            | \$ \$ 0.60 \$ 1.67                                               |
| <b>2021</b> \$ - \$ - \$ 1.10 \$ 0.57 \$ 1.65 \$ - \$ - \$ - \$ 0.03 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$ 1.13                            |                                                                  |
| <b>2022</b> \$ - \$ - \$ 1.10 \$ 0.57 \$ 1.65 \$ - \$ - \$ - \$ 0.03 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$ 1.13                            | \$ \$ 0.60 \$ 1.67                                               |
| <b>2023</b> \$ - \$ - \$ 1.10 \$ 0.57 \$ 1.65 \$ - \$ - \$ - \$ 0.03 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$ 1.13                            |                                                                  |
| <b>2024</b> \$ - \$ - \$ 1.10 \$ 0.57 \$ 1.65 \$ - \$ - \$ - \$ 0.03 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$ 1.13                            | \$ \$ 0.60 \$ 1.67                                               |
| <b>2025</b> \$ - \$ - \$ 1.10 \$ 0.57 \$ 1.65 \$ - \$ - \$ - \$ 0.03 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$ 1.13                            | \$ \$ 0.60 \$ 1.67                                               |
| <b>2026</b> \$ - \$ - \$ 1.10 \$ 0.57 \$ 1.65 \$ - \$ - \$ - \$ 0.03 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$ 1.13                            | \$ \$ 0.60 \$ 1.67                                               |
| <b>2027</b> \$ - \$ - \$ 1.10 \$ 0.57 \$ 1.65 \$ - \$ - \$ - \$ 0.03 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$ 1.13                            | \$ \$ 0.60 \$ 1.67                                               |
| <b>2028</b> \$ - \$ - \$ 1.10 \$ 0.57 \$ 1.65 \$ - \$ - \$ - \$ 0.03 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$ 1.13                            | \$ \$ 0.60 \$ 1.67                                               |
| <b>2029</b> \$ - \$ - \$ 1.10 \$ 0.57 \$ 1.65 \$ - \$ - \$ - \$ 0.03 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                                                                  |

# Exhibit J.2u Projections of Stage 2 DBPR PWS Costs

(All Surface Water Systems)

## Preferred Alternative

| Treferred | AIL | ernativ         | /e  |                |      |                 |             |                        |                      |    |             |    |       |      |             |      |            |    |                      |                       |     |                |     |                    |
|-----------|-----|-----------------|-----|----------------|------|-----------------|-------------|------------------------|----------------------|----|-------------|----|-------|------|-------------|------|------------|----|----------------------|-----------------------|-----|----------------|-----|--------------------|
|           |     | Treatm          | ent | t Capital      | l Co | sts             | Treatr      | nent O&M               | Costs                |    |             |    | N     | on-1 | reatment Co | osts |            |    |                      | All St                | age | 2 DBPR         | Cos | its                |
|           |     |                 | С   | 90 P           |      |                 |             | 90 Pe<br>Confid<br>Bot | dence                |    |             |    |       |      |             |      |            |    |                      |                       | С   | 90 Po          |     |                    |
|           |     |                 | 1   | Lower          |      | Jpper           |             | Lower                  | Upper                |    |             |    |       |      |             |      |            |    |                      |                       |     |                |     |                    |
| V         |     | Mean            | ١,  | (5th<br>%tile) |      | (95th<br>%tile) | Mean        | (5th<br>%tile)         | (95th<br>%tile)      |    |             |    |       | М    | onitoring   |      | Ionitorina |    | gnificant<br>cursion | Mean                  |     | ower<br>%tile) |     | Upper<br>th %tile) |
| Year      | _   | /alue           | H   |                | -    | /otile)         | /alue       |                        |                      | _  | lementation |    | IDSE  | -    | Plans       | -    | ionitoring |    | cursion              | Value                 | ÷   |                | ÷   |                    |
| 2005      | \$  | -               | \$  |                | \$   |                 | \$<br>-     | \$ -                   | \$ -                 | \$ | 0.69        | \$ |       | \$   | -           | \$   | -          | \$ | -                    | \$<br>0.69            | \$  | 0.69           | \$  | 0.69               |
| 2006      | \$  | -               | \$  |                | \$   |                 | \$<br>-     | \$ -                   | \$ -                 | \$ | 1.42        | \$ | 8.48  | \$   | -           | \$   | -          | \$ | -                    | \$<br>9.90            | \$  | 9.90           | \$  | 9.90               |
| 2007      | \$  | -               | \$  |                | \$   |                 | \$<br>-     | \$ -                   | \$ -                 | \$ | -           | ÷  | 22.49 | \$   | 0.22        | \$   | -          | \$ | -                    | \$<br>22.71           | \$  | 22.71          | \$  | 22.71              |
| 2008      | \$  | 66.70           | \$  |                | \$   | 97.24           | \$<br>-     | \$ -                   | \$ -                 | \$ | 0.60        | ÷  | 18.64 | \$   | 0.62        | \$   | -          | \$ | -                    | \$<br>86.56           | \$  | 53.73          | \$  | 117.10             |
| 2009      | \$  | 97.64           | \$  |                | \$   | 142.79          | \$<br>3.25  | \$ 1.89                | \$ 5.13              | \$ | 0.79        | \$ |       | \$   | 0.91        | \$   | -          | \$ | -                    | \$<br>102.60          | \$  | 53.46          | \$  | 149.63             |
| 2010      | \$  | 121.20          | \$  |                | \$   | 177.67          | \$<br>8.77  | \$ 5.03                | \$ 13.64             | \$ | 0.71        | \$ |       | \$   | -           | \$   | -          | \$ | -                    | \$<br>130.68          | \$  | 67.75          | \$  | 192.02             |
| 2011      | \$  | 121.20          | \$  |                | ÷    | 177.67          | \$<br>16.20 | \$ 9.19                | \$ 24.97             | \$ | -           | \$ |       | \$   | -           | \$   | 0.42       | \$ |                      | \$<br>137.82          | \$  | 71.63          | \$  | 203.07             |
| 2012      | \$  | 121.20<br>54.50 | \$  |                | \$   | 177.67<br>80.44 | \$<br>23.63 | \$ 13.36<br>\$ 17.52   | \$ 36.30<br>\$ 47.63 | \$ | -           | \$ |       | ·    | -           | \$   | (0.75)     | _  | 0.06                 | \$<br>144.14<br>83.66 | \$  | 74.68          | \$  | 213.28<br>126.18   |
| 2013      | \$  | 23.55           | \$  |                | \$   | 34.88           | \$<br>35.24 | •                      |                      | \$ | -           | \$ |       | \$   | -           | \$   | (2.04)     | \$ |                      | \$<br>56.97           | \$  | 43.77<br>30.11 | \$  | 86.89              |
| 2015      | \$  | 23.55           | \$  |                | \$   | 34.00           | \$          | \$ 19.79<br>\$ 20.82   | \$ 53.84<br>\$ 56.66 | \$ |             | \$ |       | \$   |             | \$   | (2.04)     | \$ | 0.21                 | \$<br>35.32           | \$  | 18.99          | \$  | 54.84              |
| 2016      | \$  | -               | \$  |                | \$   |                 | \$          | \$ 20.82               | \$ 56.66             | \$ | -           | \$ |       | \$   | -           | \$   | (2.04)     | \$ | 0.21                 | \$<br>35.32           | \$  | 18.99          | \$  | 54.84              |
| 2017      | \$  | -               | \$  |                | \$   |                 | \$<br>37.14 | \$ 20.82               | \$ 56.66             | \$ | -           | \$ |       | \$   | -           | \$   | (2.04)     | \$ | 0.21                 | \$<br>35.32           | \$  | 18.99          | \$  | 54.84              |
| 2018      | \$  | _               | \$  |                | \$   |                 | \$<br>37.14 | \$ 20.82               | \$ 56.66             | \$ | -           | \$ |       | \$   |             | 9 %  | (2.04)     | \$ | 0.21                 | \$<br>35.32           | 9 % | 18.99          | \$  | 54.84              |
| 2019      | \$  | -               | \$  |                | \$   |                 | \$          | \$ 20.82               | \$ 56.66             | \$ |             | \$ |       | \$   | -           | 9 %  | (2.04)     | \$ | 0.21                 | \$<br>35.32           | 9 % | 18.99          | \$  | 54.84              |
| 2020      | \$  |                 | \$  |                | \$   |                 | \$          | \$ 20.82               | \$ 56.66             | \$ |             | \$ |       | \$   |             | \$   | (2.04)     | \$ | 0.21                 | \$<br>35.32           | \$  | 18.99          | \$  | 54.84              |
| 2021      | \$  |                 | \$  |                | \$   |                 | \$          | \$ 20.82               | \$ 56.66             | \$ |             | \$ |       | \$   |             | \$   | (2.04)     | \$ | 0.21                 | \$<br>35.32           | \$  | 18.99          | \$  | 54.84              |
| 2022      | \$  | -               | \$  |                | \$   | -               | \$          | \$ 20.82               | \$ 56.66             | \$ | _           | \$ |       | \$   | _           | \$   | (2.04)     | \$ | 0.21                 | \$<br>35.32           | \$  | 18.99          | \$  | 54.84              |
| 2023      | \$  | -               | \$  |                | \$   | -               | \$          | \$ 20.82               | \$ 56.66             | \$ |             | \$ |       | \$   | _           | \$   | (2.04)     | \$ | 0.21                 | \$<br>35.32           | \$  | 18.99          | \$  | 54.84              |
| 2024      | \$  | -               | \$  | -              | \$   | -               | \$<br>37.14 | \$ 20.82               | \$ 56.66             | \$ | -           | \$ |       | \$   | -           | \$   | (2.04)     | \$ | 0.21                 | \$<br>35.32           | \$  | 18.99          | \$  | 54.84              |
| 2025      | \$  | -               | \$  | -              | \$   | -               | \$<br>37.14 | \$ 20.82               | \$ 56.66             | \$ | -           | \$ |       | \$   | -           | \$   | (2.04)     | \$ | 0.21                 | \$<br>35.32           | \$  | 18.99          | \$  | 54.84              |
| 2026      | \$  | -               | \$  | -              | \$   | -               | \$<br>37.14 | \$ 20.82               | \$ 56.66             | \$ | -           | \$ | -     | \$   | -           | \$   | (2.04)     | \$ | 0.21                 | \$<br>35.32           | \$  | 18.99          | \$  | 54.84              |
| 2027      | \$  | -               | \$  |                | \$   | -               | \$<br>37.14 | \$ 20.82               | \$ 56.66             | \$ | -           | \$ |       | \$   | -           | \$   | (2.04)     | \$ | 0.21                 | \$<br>35.32           | \$  | 18.99          | \$  | 54.84              |
| 2028      | \$  | -               | \$  | -              | \$   | -               | \$<br>37.14 | \$ 20.82               | \$ 56.66             | \$ | -           | \$ | -     | \$   | -           | \$   | (2.04)     | \$ | 0.21                 | \$<br>35.32           | \$  | 18.99          | \$  | 54.84              |
| 2029      | \$  | -               | \$  | -              | \$   | -               | \$<br>37.14 | \$ 20.82               | \$ 56.66             | \$ | -           | \$ | -     | \$   | -           | \$   | (2.04)     | \$ | 0.21                 | \$<br>35.32           | \$  | 18.99          | \$  | 54.84              |

## Exhibit J.2v Projections of Stage 2 DBPR PWS Costs

(Ground Water CWSs Serving <100 People)

### Preferred Alternative

| Preferred | ΑIT | ernat        | ive |                         |                          |               |                         |                          |     |              |    |      |      |                     |      |           |                       |               |       |                |      |                   |
|-----------|-----|--------------|-----|-------------------------|--------------------------|---------------|-------------------------|--------------------------|-----|--------------|----|------|------|---------------------|------|-----------|-----------------------|---------------|-------|----------------|------|-------------------|
|           |     | Treatm       | ent | Capital                 | Costs                    | Treati        | ment O&N                | I Costs                  |     |              |    | N    | lon- | Treatment Co        | osts |           |                       | All St        | age 2 | 2 DBPR         | Cost | s                 |
|           |     |              |     | 90 Per<br>Confid<br>Bou | lence                    |               | 90 Pe<br>Confi<br>Bo    |                          |     |              |    |      |      |                     |      |           |                       |               | C     | 90 Pe          |      |                   |
| Year      |     | lean<br>alue |     | ower<br>(5th<br>6tile)  | Upper<br>(95th<br>%tile) | Mean<br>Value | Lower<br>(5th<br>%tile) | Upper<br>(95th<br>%tile) | lmj | olementation | IC | SE   | N    | Monitoring<br>Plans | M    | onitoring | gnificant<br>ccursion | Mean<br>'alue | _     | ower<br>%tile) |      | Jpper<br>h %tile) |
| 2005      | \$  | -            | \$  | -                       | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$  |              | \$ |      | \$   |                     | \$   | -         | \$<br>-               | \$<br>-       | \$    | -              | \$   | -                 |
| 2006      | \$  | -            | \$  | -                       | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$  | 0.80         | \$ |      | \$   | -                   | \$   | -         | \$<br>-               | \$<br>0.80    | \$    | 0.80           | \$   | 0.80              |
| 2007      | \$  | -            | \$  | -                       | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$  | -            | \$ |      | \$   | -                   | \$   | -         | \$<br>-               | \$<br>-       | \$    | -              | \$   | -                 |
| 2008      | \$  | -            | \$  | -                       | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$  | -            | \$ | 0.22 | \$   | -                   | \$   | -         | \$<br>-               | \$<br>0.22    | \$    | 0.22           | \$   | 0.22              |
| 2009      | \$  | 0.83         | \$  | 0.72                    | \$ 0.95                  | \$ -          | \$ -                    | \$ -                     | \$  | 0.40         | \$ | -    | \$   | 0.44                | \$   | -         | \$<br>-               | \$<br>1.67    | \$    | 1.56           | \$   | 1.79              |
| 2010      | \$  | 1.67         | \$  | 1.44                    | \$ 1.91                  | \$ 0.09       | \$ 0.09                 | \$ 0.10                  | \$  | 0.40         | \$ | -    | \$   | -                   | \$   | -         | \$<br>-               | \$<br>2.16    | \$    | 1.92           | \$   | 2.41              |
| 2011      | \$  | 1.67         | \$  | 1.44                    | \$ 1.91                  | \$ 0.28       | \$ 0.26                 | \$ 0.30                  | \$  | -            | \$ |      | \$   | -                   | \$   | -         | \$<br>-               | \$<br>1.95    | \$    | 1.70           | \$   | 2.21              |
| 2012      | \$  | 1.67         | \$  | 1.44                    | \$ 1.91                  | \$ 0.47       | \$ 0.43                 | \$ 0.50                  | \$  | -            | \$ |      | \$   | -                   | \$   | 0.05      | \$<br>-               | \$<br>2.18    | \$    | 1.92           | \$   | 2.46              |
| 2013      | \$  | 1.67         | \$  | 1.44                    | \$ 1.91                  | \$ 0.65       | \$ 0.61                 | \$ 0.70                  | \$  | -            | \$ |      | \$   | -                   | \$   | 0.10      | \$<br>-               | \$<br>2.42    | \$    | 2.14           | \$   | 2.71              |
| 2014      | \$  | 0.83         | \$  | 0.72                    | \$ 0.95                  | \$ 0.84       | \$ 0.78                 | \$ 0.90                  | \$  |              | \$ | -    | \$   |                     | \$   | 0.10      | \$<br>-               | \$<br>1.77    | \$    | 1.60           | \$   | 1.95              |
| 2015      | \$  | -            | \$  | -                       | \$ -                     | \$ 0.93       | \$ 0.87                 | \$ 1.00                  | \$  | -            | \$ | -    | \$   | -                   | \$   | 0.10      | \$<br>-               | \$<br>1.03    | \$    | 0.96           | \$   | 1.10              |
| 2016      | \$  | -            | \$  | -                       | \$ -                     | \$ 0.93       | \$ 0.87                 | \$ 1.00                  | \$  | -            | \$ | -    | \$   | -                   | \$   | 0.10      | \$<br>-               | \$<br>1.03    | \$    | 0.96           | \$   | 1.10              |
| 2017      | \$  | -            | \$  | -                       | \$ -                     | \$ 0.93       | \$ 0.87                 | \$ 1.00                  | \$  | -            | \$ | -    | \$   | -                   | \$   | 0.10      | \$<br>-               | \$<br>1.03    | \$    | 0.96           | \$   | 1.10              |
| 2018      | \$  | -            | \$  | -                       | \$ -                     | \$ 0.93       | \$ 0.87                 | \$ 1.00                  | \$  | -            | \$ | -    | \$   | -                   | \$   | 0.10      | \$<br>-               | \$<br>1.03    | \$    | 0.96           | \$   | 1.10              |
| 2019      | \$  | -            | \$  | -                       | \$ -                     | \$ 0.93       | \$ 0.87                 | \$ 1.00                  | \$  | -            | \$ | -    | \$   | -                   | \$   | 0.10      | \$<br>-               | \$<br>1.03    | \$    | 0.96           | \$   | 1.10              |
| 2020      | \$  | -            | \$  | -                       | \$ -                     | \$ 0.93       | \$ 0.87                 | \$ 1.00                  | \$  | -            | \$ | -    | \$   | -                   | \$   | 0.10      | \$<br>-               | \$<br>1.03    | \$    | 0.96           | \$   | 1.10              |
| 2021      | \$  | -            | \$  | -                       | \$ -                     | \$ 0.93       | \$ 0.87                 | \$ 1.00                  | \$  | -            | \$ | -    | \$   |                     | \$   | 0.10      | \$<br>-               | \$<br>1.03    | \$    | 0.96           | \$   | 1.10              |
| 2022      | \$  | -            | \$  | -                       | \$ -                     | \$ 0.93       | \$ 0.87                 | \$ 1.00                  | \$  | -            | \$ |      | \$   | -                   | \$   | 0.10      | \$<br>-               | \$<br>1.03    | \$    | 0.96           | \$   | 1.10              |
| 2023      | \$  | -            | \$  | -                       | \$ -                     | \$ 0.93       | \$ 0.87                 | \$ 1.00                  | \$  | -            | \$ |      | \$   | -                   | \$   | 0.10      | \$<br>-               | \$<br>1.03    | \$    | 0.96           | \$   | 1.10              |
| 2024      | \$  | -            | \$  | -                       | \$ -                     | \$ 0.93       | \$ 0.87                 | \$ 1.00                  | \$  | -            | \$ |      | \$   | -                   | \$   | 0.10      | \$<br>-               | \$<br>1.03    | \$    | 0.96           | \$   | 1.10              |
| 2025      | \$  | -            | \$  | -                       | \$ -                     | \$ 0.93       | \$ 0.87                 | \$ 1.00                  | \$  | -            | \$ |      | \$   | -                   | \$   | 0.10      | \$<br>-               | \$<br>1.03    | \$    | 0.96           | \$   | 1.10              |
| 2026      | \$  | -            | \$  | -                       | \$ -                     | \$ 0.93       | \$ 0.87                 | \$ 1.00                  | \$  | -            | \$ | -    | \$   | -                   | \$   | 0.10      | \$<br>-               | \$<br>1.03    | \$    | 0.96           | \$   | 1.10              |
| 2027      | \$  | -            | \$  | -                       | \$ -                     | \$ 0.93       | \$ 0.87                 | \$ 1.00                  | \$  | -            | \$ | -    | \$   | -                   | \$   | 0.10      | \$<br>-               | \$<br>1.03    | \$    | 0.96           | \$   | 1.10              |
| 2028      | \$  | -            | \$  | -                       | \$ -                     | \$ 0.93       | \$ 0.87                 | \$ 1.00                  | \$  | -            | \$ | -    | \$   | -                   | \$   | 0.10      | \$<br>-               | \$<br>1.03    | \$    | 0.96           | \$   | 1.10              |
| 2029      | \$  | -            | \$  | -                       | \$ -                     | \$ 0.93       | \$ 0.87                 | \$ 1.00                  | \$  | -            | \$ |      | \$   | -                   | \$   | 0.10      | \$<br>-               | \$<br>1.03    | \$    | 0.96           | \$   | 1.10              |

## Exhibit J.2w Projections of Stage 2 DBPR PWS Costs

(Ground Water CWSs Serving 100-499 People)

### Preferred Alternative

| Preferred | AII | ernat        | tive | •                      |       |                        |               |                         |                          |     |             |         |             |                    |      |           |                     |              |       |                |      |                 |
|-----------|-----|--------------|------|------------------------|-------|------------------------|---------------|-------------------------|--------------------------|-----|-------------|---------|-------------|--------------------|------|-----------|---------------------|--------------|-------|----------------|------|-----------------|
|           |     | Treatm       | ent  | Capita                 | al Co | osts                   | Treatr        | nent O&N                | l Costs                  |     |             | N       | on-         | Freatment Co       | osts |           |                     | All St       | age 2 | DBPR           | Cost | 5               |
|           |     |              |      | 90 Pe<br>Confi<br>Bo   |       | ce                     |               | Confi                   | ercent<br>dence<br>und   |     |             |         |             |                    |      |           |                     |              | Co    | 90 Pe          |      |                 |
| Year      | ı   | lean<br>alue |      | ower<br>(5th<br>stile) | (9    | pper<br>95th<br>stile) | Mean<br>Value | Lower<br>(5th<br>%tile) | Upper<br>(95th<br>%tile) | lmp | lementation | IDSE    | м           | onitoring<br>Plans | Mo   | onitoring | nificant<br>cursion | Mean<br>alue | _     | ower<br>%tile) |      | pper<br>vetile) |
| 2005      | \$  | -            | \$   | -                      | \$    |                        | \$ -          | \$ -                    | \$ -                     | \$  |             | \$ -    | \$          |                    | \$   |           | \$<br>-             | \$<br>-      | \$    | -              | \$   | -               |
| 2006      | \$  |              | \$   | -                      | \$    | -                      | \$ -          | \$ -                    | \$ -                     | \$  | 0.99        | \$ -    | \$          | -                  | \$   | -         | \$<br>-             | \$<br>0.99   | \$    | 0.99           | \$   | 0.99            |
| 2007      | \$  | -            | \$   | -                      | \$    | -                      | \$ -          | \$ -                    | \$ -                     | \$  | -           | \$ -    | \$          | -                  | \$   |           | \$<br>-             | \$<br>-      | \$    | -              | \$   | -               |
| 2008      | \$  | -            | \$   | -                      | \$    | -                      | \$ -          | \$ -                    | \$ -                     | \$  | -           | \$ 0.27 | \$          | -                  | \$   | -         | \$<br>-             | \$<br>0.27   | \$    | 0.27           | \$   | 0.27            |
| 2009      | \$  | 3.32         | \$   | 2.81                   | \$    | 3.84                   | \$ -          | \$ -                    | \$ -                     | \$  | 0.49        | \$ -    | \$          | 0.55               | \$   | -         | \$<br>-             | \$<br>4.36   | \$    | 3.85           | \$   | 4.88            |
| 2010      | \$  | 6.65         | \$   | 5.62                   | \$    | 7.69                   | \$ 0.35       | \$ 0.32                 | \$ 0.38                  | \$  | 0.49        | \$ -    | \$          | -                  | \$   | -         | \$<br>-             | \$<br>7.49   | \$    | 6.43           | \$   | 8.56            |
| 2011      | \$  | 6.65         | \$   | 5.62                   | \$    | 7.69                   | \$ 1.05       | \$ 0.97                 | \$ 1.14                  | \$  | -           | \$ -    | \$          | -                  | \$   | -         | \$<br>-             | \$<br>7.70   | \$    | 6.58           | \$   | 8.82            |
| 2012      | \$  | 6.65         | \$   | 5.62                   | \$    | 7.69                   | \$ 1.75       | \$ 1.61                 | \$ 1.89                  | \$  | -           | \$ -    | \$          | -                  | \$   | 0.06      | \$<br>-             | \$<br>8.46   | \$    | 7.29           | \$   | 9.64            |
| 2013      | \$  | 6.65         | \$   | 5.62                   | \$    | 7.69                   | \$ 2.45       | \$ 2.26                 | \$ 2.65                  | \$  | -           | \$ -    | \$          | -                  | \$   | 0.12      | \$<br>-             | \$<br>9.22   | \$    | 7.99           | \$   | 10.46           |
| 2014      | \$  | 3.32         | \$   | 2.81                   | \$    | 3.84                   | \$ 3.15       | \$ 2.90                 | \$ 3.41                  | \$  | -           | \$ -    | \$          | -                  | \$   | 0.12      | \$<br>-             | \$<br>6.60   | \$    | 5.83           | \$   | 7.37            |
| 2015      | \$  | -            | \$   | -                      | \$    | -                      | \$ 3.50       | \$ 3.23                 | \$ 3.78                  | \$  | -           | \$ -    | \$          | -                  | \$   | 0.12      | \$<br>-             | \$<br>3.62   | \$    | 3.35           | \$   | 3.90            |
| 2016      | \$  | -            | \$   | -                      | \$    | -                      | \$ 3.50       | \$ 3.23                 | \$ 3.78                  | \$  | -           | \$ -    | \$          | -                  | \$   | 0.12      | \$<br>-             | \$<br>3.62   | \$    | 3.35           | \$   | 3.90            |
| 2017      | \$  | -            | \$   | -                      | \$    | -                      | \$ 3.50       | \$ 3.23                 | \$ 3.78                  | \$  | -           | \$ -    | \$          | -                  | \$   | 0.12      | \$<br>-             | \$<br>3.62   | \$    | 3.35           | \$   | 3.90            |
| 2018      | \$  | -            | \$   | -                      | \$    | -                      | \$ 3.50       | \$ 3.23                 | \$ 3.78                  | \$  | -           | \$ -    | \$          | -                  | \$   | 0.12      | \$<br>-             | \$<br>3.62   | \$    | 3.35           | \$   | 3.90            |
| 2019      | \$  | -            | \$   | -                      | \$    | -                      | \$ 3.50       | \$ 3.23                 | \$ 3.78                  | \$  | -           | \$ -    | \$          | -                  | \$   | 0.12      | \$<br>-             | \$<br>3.62   | \$    | 3.35           | \$   | 3.90            |
| 2020      | \$  | -            | \$   | -                      | \$    | -                      | \$ 3.50       | \$ 3.23                 | \$ 3.78                  | \$  | -           | \$ -    | \$          | -                  | \$   | 0.12      | \$<br>-             | \$<br>3.62   | \$    | 3.35           | \$   | 3.90            |
| 2021      | \$  | -            | \$   | -                      | \$    | -                      | \$ 3.50       | \$ 3.23                 | \$ 3.78                  | \$  | -           | \$ -    | \$          | -                  | \$   | 0.12      | \$<br>-             | \$<br>3.62   | \$    | 3.35           | \$   | 3.90            |
| 2022      | \$  | -            | \$   | -                      | \$    | -                      | \$ 3.50       | \$ 3.23                 | \$ 3.78                  | \$  | -           | \$ -    | \$          | -                  | \$   | 0.12      | \$<br>-             | \$<br>3.62   | \$    | 3.35           | \$   | 3.90            |
| 2023      | \$  | -            | \$   | -                      | \$    | -                      | \$ 3.50       | \$ 3.23                 | \$ 3.78                  | \$  | -           | \$ -    | <b>\$</b> 3 | -                  | \$   | 0.12      | \$<br>-             | \$<br>3.62   | \$    | 3.35           | \$   | 3.90            |
| 2024      | \$  | -            | \$   | -                      | \$    | -                      | \$ 3.50       | \$ 3.23                 | \$ 3.78                  | \$  | -           | \$ -    | <b>\$</b> 3 | -                  | \$   | 0.12      | \$<br>-             | \$<br>3.62   | \$    | 3.35           | \$   | 3.90            |
| 2025      | \$  | -            | \$   | -                      | \$    | -                      | \$ 3.50       | \$ 3.23                 | \$ 3.78                  | \$  | -           | \$ -    | <b>\$</b> 3 | -                  | \$   | 0.12      | \$<br>-             | \$<br>3.62   | \$    | 3.35           | \$   | 3.90            |
| 2026      | \$  | -            | \$   | -                      | \$    | -                      | \$ 3.50       | \$ 3.23                 | \$ 3.78                  | \$  | -           | \$ -    | \$          | -                  | \$   | 0.12      | \$<br>-             | \$<br>3.62   | \$    | 3.35           | \$   | 3.90            |
| 2027      | \$  | -            | \$   | -                      | \$    | -                      | \$ 3.50       | \$ 3.23                 | \$ 3.78                  | \$  | -           | \$ -    | <b>\$</b> 3 | -                  | \$   | 0.12      | \$<br>-             | \$<br>3.62   | \$    | 3.35           | \$   | 3.90            |
| 2028      | \$  | -            | \$   | -                      | \$    | -                      | \$ 3.50       | \$ 3.23                 | \$ 3.78                  | \$  | -           | \$ -    | <b>\$</b> 3 | -                  | \$   | 0.12      | \$<br>-             | \$<br>3.62   | \$    | 3.35           | \$   | 3.90            |
| 2029      | \$  | -            | \$   | -                      | \$    | -                      | \$ 3.50       | \$ 3.23                 | \$ 3.78                  | \$  | -           | \$ -    | \$          | -                  | \$   | 0.12      | \$<br>-             | \$<br>3.62   | \$    | 3.35           | \$   | 3.90            |

# Exhibit J.2x Projections of Stage 2 DBPR PWS Costs

(Ground Water CWSs Serving 500-999 People)

### Preferred Alternative

| 1 Teleffed   | Alterna      |                         |                          |                    |                         |                          | ı  |            |    |          |      |             |      |          |    |          | 1  |        |       |         |               |                   |
|--------------|--------------|-------------------------|--------------------------|--------------------|-------------------------|--------------------------|----|------------|----|----------|------|-------------|------|----------|----|----------|----|--------|-------|---------|---------------|-------------------|
|              | Treatm       | ent Capita              | I Costs                  | Treatr             | nent O&N                | I Costs                  |    |            |    | No       | on-T | Freatment C | osts |          |    |          |    | All St | age 2 | 2 DBPR  | Cost          | s                 |
|              |              | 90 Pe<br>Confidence     |                          |                    | Confi                   | ercent<br>dence<br>und   |    |            |    |          |      |             |      |          |    |          |    |        | C     | 90 P    | ercen<br>ce B | -                 |
| Vee          | Mean         | Lower<br>(5th<br>%tile) | Upper<br>(95th<br>%tile) | Mean               | Lower<br>(5th<br>%tile) | Upper<br>(95th<br>%tile) |    |            |    |          | м    | onitoring   | Mari | nitoring | -  | nificant |    | Wean   | _     | ower    | ı             | Jpper<br>h %tile) |
| Year         | Value        |                         |                          | Value              | ,                       |                          | _  | ementation |    | OSE      | -    | Plans       | _    | _        |    |          |    | /alue  | ÷     | /otile) | ÷             | 700110)           |
| 2005         | \$ -         | \$ -                    | \$ -                     | \$ -               | \$ -                    | \$ -                     | \$ | -          | -  | -        | \$   |             | \$   | -        | \$ | -        | \$ |        | \$    | -       | \$            |                   |
| 2006         | \$ -         | \$ -                    | \$ -                     | \$ -               | \$ -                    | \$ -                     | \$ | 0.45       | \$ | -        | \$   |             | \$   | -        | \$ | -        | \$ | 0.45   | \$    | 0.45    | \$            | 0.45              |
| 2007         | \$ -         | \$ -                    | \$ -                     | \$ -               | \$ -                    | \$ -                     | \$ | -          | \$ | -        | \$   |             | \$   | -        | \$ | -        | \$ |        | \$    | -       | \$            |                   |
| 2008         | \$ -         | \$ -                    | \$ -                     | \$ -               | \$ -                    | \$ -                     | \$ | -          | ·  | 1.93     | \$   |             | \$   | -        | \$ | -        | \$ | 1.93   | \$    | 1.93    | \$            | 1.93              |
| 2009<br>2010 | \$ 2.02      | \$ 1.70                 | \$ 2.34                  | \$ -               | \$ -                    | \$ -                     | \$ | 0.22       | \$ | -        | \$   | 0.52        | \$   | -        | \$ |          | \$ | 2.76   | \$    | 2.44    | \$            | 3.08              |
|              | \$ 4.04      | \$ 3.41                 | \$ 4.68                  | \$ 0.19            | \$ 0.17                 | \$ 0.20                  | \$ | 0.22       | \$ | -        | \$   |             | \$   | -        | \$ | -        | \$ | 4.46   | \$    | 3.80    | \$            | 5.10              |
| 2011<br>2012 | \$ 4.04      | \$ 3.41                 | \$ 4.68                  | \$ 0.56            | \$ 0.52                 | \$ 0.61                  | \$ | -          | \$ | -        | \$   |             | \$   | -        | \$ |          | \$ | 4.61   | \$    | 3.93    | \$            | 5.28              |
| 2012         | \$ 4.04      | \$ 3.41                 | \$ 4.68                  | \$ 0.94            | \$ 0.86                 | \$ 1.01                  | \$ | -          | \$ | -        | \$   |             | \$   | 0.28     | \$ | -        | \$ | 5.26   | \$    | 4.55    | \$            | 5.97              |
| 2013         | \$ 4.04      | \$ 3.41                 | \$ 4.68                  | \$ 1.31            | \$ 1.21                 | \$ 1.42                  | \$ | -          | \$ | -        | \$   |             | \$   | 0.56     | \$ |          | \$ | 5.92   | \$    | 5.18    | \$            | 6.66              |
| 2014         | \$ 2.02      | \$ 1.70                 | \$ 2.34                  | \$ 1.69            | \$ 1.55                 | \$ 1.82                  | \$ | -          | \$ | -        | \$   |             | \$   | 0.56     | \$ | -        | \$ | 4.27   | \$    | 3.82    | \$            | 4.72              |
| 2015         | \$ -         | \$ -                    | \$ -                     | \$ 1.88            | \$ 1.73                 | \$ 2.02                  | \$ | -          | \$ | -        | \$   |             | \$   | 0.56     | \$ |          | \$ | 2.44   | \$    | 2.29    | \$            | 2.59              |
| 2016         | \$ -         | \$ -                    | \$ -                     | \$ 1.88            | \$ 1.73                 | \$ 2.02                  | \$ | -          | \$ | -        | \$   |             | \$   | 0.56     | \$ | -        | \$ | 2.44   | \$    | 2.29    | \$            | 2.59              |
| 2017         | \$ -<br>\$ - | \$ -                    | \$ -                     | \$ 1.88            | \$ 1.73                 | \$ 2.02                  | \$ | -          | \$ | -        | \$   |             | \$   | 0.56     | \$ |          | \$ | 2.44   | \$    | 2.29    | \$            | 2.59              |
| 2019         | \$ -         | \$ -<br>\$ -            | \$ -<br>\$ -             | \$ 1.88<br>\$ 1.88 | \$ 1.73<br>\$ 1.73      | \$ 2.02<br>\$ 2.02       | \$ | -          | \$ | _        | \$   |             | \$   | 0.56     | \$ | -        | \$ | 2.44   | \$    | 2.29    | \$            | 2.59              |
| 2019         | \$ -         | \$ -                    | \$ -                     | \$ 1.88            | \$ 1.73                 | \$ 2.02                  | \$ | -          | \$ | -        | \$   |             | \$   | 0.56     | \$ |          | \$ | 2.44   | \$    | 2.29    | \$            | 2.59              |
| 2020         | \$ -         | \$ -                    | \$ -                     | \$ 1.88            | \$ 1.73                 | \$ 2.02                  | \$ | -          | \$ | -        | \$   |             | \$   | 0.56     | \$ |          | \$ | 2.44   | \$    | 2.29    | \$            | 2.59              |
| 2021         | \$ -         | \$ -                    | \$ -                     | \$ 1.88            | \$ 1.73                 | \$ 2.02                  | \$ |            | \$ | •        | \$   |             | \$   | 0.56     | \$ |          | \$ | 2.44   | \$    | 2.29    | \$            | 2.59              |
| 2023         | \$ -         | \$ -                    | \$ -                     | \$ 1.88            | \$ 1.73                 | \$ 2.02                  | \$ | -          | \$ | <u> </u> | \$   |             | \$   | 0.56     | \$ |          | \$ | 2.44   | \$    | 2.29    | \$            | 2.59              |
| 2024         | \$ -         | \$ -                    | \$ -                     | \$ 1.88            | \$ 1.73                 | \$ 2.02                  | \$ | -          | \$ | -        | \$   |             | \$   | 0.56     | \$ |          | \$ | 2.44   | \$    | 2.29    | \$            | 2.59              |
| 2025         | \$ -         | \$ -                    | \$ -                     | \$ 1.88            | \$ 1.73                 | \$ 2.02                  | \$ | -          | \$ | ÷        | \$   |             | \$   | 0.56     | \$ |          | \$ | 2.44   | \$    | 2.29    | \$            | 2.59              |
| 2026         | \$ -         | \$ -                    | \$ -                     | \$ 1.88            | \$ 1.73                 | \$ 2.02                  | \$ | -          | \$ | -        | \$   |             | \$   | 0.56     | \$ |          | \$ | 2.44   | \$    | 2.29    | \$            | 2.59              |
| 2027         | \$ -         | \$ -                    | \$ -                     | \$ 1.88            | \$ 1.73                 | \$ 2.02                  | \$ | -          | \$ | <u> </u> | \$   |             | \$   | 0.56     | \$ |          | \$ | 2.44   | \$    | 2.29    | \$            | 2.59              |
| 2028         | \$ -         | \$ -                    | \$ -                     | \$ 1.88            | \$ 1.73                 | \$ 2.02                  | \$ | -          | \$ | -        | \$   |             | \$   | 0.56     | \$ |          | \$ | 2.44   | \$    | 2.29    | \$            | 2.59              |
| 2029         | \$ -         | \$ -                    | \$ -                     | \$ 1.88            | \$ 1.73                 | •                        | \$ | -          | \$ | •        | \$   |             | \$   | 0.56     | \$ |          | \$ | 2.44   | \$    | 2.29    | \$            | 2.59              |
| 2029         | <b>»</b> -   | \$ -                    | <b>\$</b> -              | \$ 1.88            | \$ 1./3                 | \$ 2.02                  | \$ | -          | \$ | -        | \$   | -           | \$   | 0.56     | \$ | -        | \$ | 2.44   | \$    | 2.29    | \$            | 2.59              |

# Exhibit J.2y Projections of Stage 2 DBPR PWS Costs

(Ground Water CWSs Serving 1,000-3,299 People)

## Preferred Alternative

| Preferred | Aite | ernati       | ve                      |                     |      |               |                         |                          |                |         |                     |            |                          |               |               |        |                     |
|-----------|------|--------------|-------------------------|---------------------|------|---------------|-------------------------|--------------------------|----------------|---------|---------------------|------------|--------------------------|---------------|---------------|--------|---------------------|
|           |      | Treatm       | ent Capita              | l Costs             | ,    | Treatm        | ent O&M                 | Costs                    |                | N       | on-Treatment C      | osts       |                          | All Si        | age 2 D       | BPR (  | osts                |
|           |      |              | Confider                |                     |      |               |                         | dence<br>und             |                |         |                     |            |                          |               |               | 90 Per | cent<br>e Bound     |
| Year      |      | lean<br>alue | Lower<br>(5th<br>%tile) | Upp<br>(956<br>%til | th   | Mean<br>Value | Lower<br>(5th<br>%tile) | Upper<br>(95th<br>%tile) | Implementation | IDSE    | Monitoring<br>Plans | Monitoring | Significant<br>Excursion | Mean<br>Value | Low<br>(5th % |        | Upper<br>(95th %til |
| 2005      | \$   | -            | \$ -                    | \$                  |      | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -    | \$ -                | \$ -       | \$ -                     | \$ -          | \$            | -      | \$ -                |
| 2006      | \$   | -            | \$ -                    | \$                  |      | \$ -          | \$ -                    | \$ -                     | \$ 0.54        | \$ -    | \$ -                | \$ -       | \$ -                     | \$ 0.54       | \$            | 0.54   | \$ 0.5              |
| 2007      | \$   | -            | \$ -                    | \$                  |      | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ -    | \$ -                | \$ -       | \$ -                     | \$ -          | \$            | -      | \$ -                |
| 2008      | \$   | -            | \$ -                    | \$                  |      | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ 2.34 | \$ -                | \$ -       | \$ -                     | \$ 2.34       | \$            | 2.34   | \$ 2.3              |
| 2009      | \$   | 3.94         | \$ 3.23                 | \$ 4                | 4.66 | \$ -          | \$ -                    | \$ -                     | \$ 0.27        | \$ -    | \$ 0.63             | \$ -       | \$ -                     | \$ 4.84       | \$            | 4.13   | \$ 5.5              |
| 2010      | \$   | 7.89         | \$ 6.47                 | \$ 9                | 9.31 | \$ 0.28       | \$ 0.26                 | \$ 0.31                  | \$ 0.27        | \$ -    | \$ -                | \$ -       | \$ -                     | \$ 8.44       | \$            | 7.00   | \$ 9.8              |
| 2011      | \$   | 7.89         | \$ 6.47                 | \$ 9                | 9.31 | \$ 0.85       | \$ 0.78                 | \$ 0.92                  | \$ -           | \$ -    | \$ -                | \$ -       | \$ -                     | \$ 8.74       | \$            | 7.24   | \$ 10.2             |
| 2012      | \$   | 7.89         | \$ 6.47                 | \$ 9                | 9.31 | \$ 1.42       | \$ 1.29                 | \$ 1.54                  | \$ -           | \$ -    | \$ -                | \$ 0.34    | \$ -                     | \$ 9.64       | \$            | 8.10   | \$ 11.1             |
| 2013      | \$   | 7.89         | \$ 6.47                 | \$ 9                | 9.31 | \$ 1.98       | \$ 1.81                 | \$ 2.15                  | \$ -           | \$ -    | \$ -                | \$ 0.68    | \$ -                     | \$ 10.55      | \$            | 8.96   | \$ 12.1             |
| 2014      | \$   | 3.94         | \$ 3.23                 | \$ 4                | 4.66 | \$ 2.55       | \$ 2.33                 | \$ 2.77                  | \$ -           | \$ -    | \$ -                | \$ 0.68    | \$ -                     | \$ 7.17       | \$            | 6.24   | \$ 8.1              |
| 2015      | \$   | -            | \$ -                    | \$                  |      | \$ 2.83       | \$ 2.58                 | \$ 3.08                  | \$ -           | \$ -    | \$ -                | \$ 0.68    | \$ -                     | \$ 3.51       | \$            | 3.27   | \$ 3.7              |
| 2016      | \$   | -            | \$ -                    | \$                  |      | \$ 2.83       | \$ 2.58                 | \$ 3.08                  | \$ -           | \$ -    | \$ -                | \$ 0.68    | \$ -                     | \$ 3.51       | \$            | 3.27   | \$ 3.7              |
| 2017      | \$   | -            | \$ -                    | \$                  |      | \$ 2.83       | \$ 2.58                 | \$ 3.08                  | \$ -           | \$ -    | \$ -                | \$ 0.68    | \$ -                     | \$ 3.51       | \$            | 3.27   | \$ 3.7              |
| 2018      | \$   | -            | \$ -                    | \$                  |      | \$ 2.83       | \$ 2.58                 | \$ 3.08                  | \$ -           | \$ -    | \$ -                | \$ 0.68    | \$ -                     | \$ 3.51       | \$            | 3.27   | \$ 3.7              |
| 2019      | \$   | -            | \$ -                    | \$                  |      | \$ 2.83       | \$ 2.58                 | \$ 3.08                  | \$ -           | \$ -    | \$ -                | \$ 0.68    | \$ -                     | \$ 3.51       | \$            | 3.27   | \$ 3.7              |
| 2020      | \$   | -            | \$ -                    | \$                  |      | \$ 2.83       | \$ 2.58                 | \$ 3.08                  | \$ -           | \$ -    | \$ -                | \$ 0.68    | \$ -                     | \$ 3.51       | \$            | 3.27   | \$ 3.7              |
| 2021      | \$   | -            | \$ -                    | \$                  |      | \$ 2.83       | \$ 2.58                 | \$ 3.08                  | \$ -           | \$ -    | \$ -                | \$ 0.68    | \$ -                     | \$ 3.51       | \$            | 3.27   | \$ 3.7              |
| 2022      | \$   | -            | \$ -                    | \$                  | -    | \$ 2.83       | \$ 2.58                 | \$ 3.08                  | \$ -           | \$ -    | \$ -                | \$ 0.68    | \$ -                     | \$ 3.51       | \$            | 3.27   | \$ 3.7              |
| 2023      | \$   | -            | \$ -                    | \$                  |      | \$ 2.83       | \$ 2.58                 | \$ 3.08                  | \$ -           | \$ -    | \$ -                | \$ 0.68    | \$ -                     | \$ 3.51       | \$            | 3.27   | \$ 3.7              |
| 2024      | \$   | -            | \$ -                    | \$                  | -    | \$ 2.83       | \$ 2.58                 | \$ 3.08                  | \$ -           | \$ -    | \$ -                | \$ 0.68    | \$ -                     | \$ 3.51       | \$            | 3.27   | \$ 3.7              |
| 2025      | \$   | -            | \$ -                    | \$                  | -    | \$ 2.83       | \$ 2.58                 | \$ 3.08                  | \$ -           | \$ -    | \$ -                | \$ 0.68    | \$ -                     | \$ 3.51       | \$            | 3.27   | \$ 3.7              |
| 2026      | \$   | -            | \$ -                    | \$                  | -    | \$ 2.83       | \$ 2.58                 | \$ 3.08                  | \$ -           | \$ -    | \$ -                | \$ 0.68    | \$ -                     | \$ 3.51       | \$            | 3.27   | \$ 3.7              |
| 2027      | \$   | -            | \$ -                    | \$                  |      | \$ 2.83       | \$ 2.58                 | \$ 3.08                  | \$ -           | \$ -    | \$ -                | \$ 0.68    | \$ -                     | \$ 3.51       | \$            | 3.27   | \$ 3.7              |
| 2028      | \$   | -            | \$ -                    | \$                  |      | \$ 2.83       | \$ 2.58                 | \$ 3.08                  | \$ -           | \$ -    | \$ -                | \$ 0.68    | \$ -                     | \$ 3.51       | \$            | 3.27   | \$ 3.7              |
| 2029      | \$   | -            | \$ -                    | \$                  | -    | \$ 2.83       | \$ 2.58                 | \$ 3.08                  | \$ -           | \$ -    | \$ -                | \$ 0.68    | \$ -                     | \$ 3.51       | \$            | 3.27   | \$ 3.7              |

# Exhibit J.2z Projections of Stage 2 DBPR PWSCosts

(Ground Water CWSs Serving 3,300-9,999 People)

## Preferred Alternative

| FIEIGITEU | Alternati | ve          |          |         |          |          |        |           |    |      |      |              |     |           |     |          |    |        |       |          |       |           |
|-----------|-----------|-------------|----------|---------|----------|----------|--------|-----------|----|------|------|--------------|-----|-----------|-----|----------|----|--------|-------|----------|-------|-----------|
|           | Treatme   | ent Capital | Costs    | Treatr  | nent O&N | // Costs |        |           |    | N    | on-1 | Treatment Co | sts |           |     |          |    | All St | age : | 2 DBPR   | Cost  | is        |
|           |           | 90 Pe       | rcent    |         | 90 P     | ercent   |        |           |    |      |      |              |     |           |     |          |    |        |       |          |       |           |
|           |           | Confid      | dence    |         | Confi    | idence   |        |           |    |      |      |              |     |           |     |          |    |        |       | 90 P     | ercen | ıt        |
|           |           | Воц         | und      |         | Во       | und      |        |           |    |      |      |              |     |           |     |          |    |        | С     | onfiden  | ce B  | ound      |
|           |           | Lower       | Upper    |         | Lower    | Upper    |        |           |    |      |      |              |     |           |     |          |    |        |       |          |       |           |
|           | Mean      | (5th        | (95th    | Mean    | (5th     | (95th    |        |           |    |      | N    | Monitoring   |     |           | -   | nificant | 1  | Mean   |       | .ower    | ı     | Upper     |
| Year      | Value     | %tile)      | %tile)   | Value   | %tile)   | %tile)   | Implen | nentation | Ш  | DSE  |      | Plans        | Мс  | onitoring | Exc | cursion  | ١  | /alue  | (5th  | 1 %tile) | (95t  | th %tile) |
| 2005      | \$ -      | \$ -        | \$ -     | \$ -    | \$ -     | \$ -     | \$     | -         | \$ | -    | \$   | -            | \$  | -         | \$  | -        | \$ | -      | \$    | -        | \$    | -         |
| 2006      | \$ -      | \$ -        | \$ -     | \$ -    | \$ -     | \$ -     | \$     | 0.25      | \$ | -    | \$   | -            | \$  | -         | \$  | -        | \$ | 0.25   | \$    | 0.25     | \$    | 0.25      |
| 2007      | \$ -      | \$ -        | \$ -     | \$ -    | \$ -     | \$ -     | \$     | -         | \$ | -    | \$   | -            | \$  | -         | \$  | -        | \$ | -      | \$    | -        | \$    | -         |
| 2008      | \$ -      | \$ -        | \$ -     | \$ -    | \$ -     | \$ -     | \$     | -         | \$ | 1.06 | \$   | -            | \$  | -         | \$  | -        | \$ | 1.06   | \$    | 1.06     | \$    | 1.06      |
| 2009      | \$ 6.59   | \$ 5.35     | \$ 7.84  | \$ -    | \$ -     | \$ -     | \$     | 0.12      | \$ | -    | \$   | 0.28         | \$  | -         | \$  | -        | \$ | 7.00   | \$    | 5.76     | \$    | 8.25      |
| 2010      | \$ 13.19  | \$ 10.71    | \$ 15.68 | \$ 0.24 | \$ 0.22  | \$ 0.26  | \$     | 0.12      | \$ | -    | \$   | -            | \$  |           | \$  | -        | \$ | 13.55  | 69    | 11.05    | \$    | 16.06     |
| 2011      | \$ 13.19  | \$ 10.71    | \$ 15.68 | \$ 0.72 | \$ 0.66  | \$ 0.78  | \$     | -         | \$ | -    | \$   | -            | \$  |           | \$  | -        | \$ | 13.91  | 69    | 11.37    | \$    | 16.45     |
| 2012      | \$ 13.19  | \$ 10.71    | \$ 15.68 | \$ 1.20 | \$ 1.10  | \$ 1.30  | \$     | -         | \$ | -    | \$   | -            | \$  | 0.15      | \$  | -        | \$ | 14.54  | 69    | 11.96    | \$    | 17.13     |
| 2013      | \$ 13.19  | \$ 10.71    | \$ 15.68 | \$ 1.68 | \$ 1.54  | \$ 1.82  | \$     | -         | \$ | -    | \$   | -            | \$  | 0.31      | \$  | -        | \$ | 15.18  | \$    | 12.56    | \$    | 17.80     |
| 2014      | \$ 6.59   | \$ 5.35     | \$ 7.84  | \$ 2.16 | \$ 1.98  | \$ 2.34  | \$     | -         | \$ | -    | \$   | -            | \$  | 0.31      | \$  | -        | \$ | 9.06   | 69    | 7.64     | \$    | 10.48     |
| 2015      | \$ -      | \$ -        | \$ -     | \$ 2.40 | \$ 2.20  | \$ 2.60  | \$     | -         | \$ | -    | \$   | -            | \$  | 0.31      | \$  | -        | \$ | 2.71   | 69    | 2.51     | \$    | 2.91      |
| 2016      | \$ -      | \$ -        | \$ -     | \$ 2.40 | \$ 2.20  | \$ 2.60  | \$     | -         | \$ | -    | \$   | -            | \$  | 0.31      | \$  | -        | \$ | 2.71   | 69    | 2.51     | \$    | 2.91      |
| 2017      | \$ -      | \$ -        | \$ -     | \$ 2.40 | \$ 2.20  | \$ 2.60  | \$     | -         | \$ | -    | \$   | -            | \$  | 0.31      | \$  | -        | \$ | 2.71   | 69    | 2.51     | \$    | 2.91      |
| 2018      | \$ -      | \$ -        | \$ -     | \$ 2.40 | \$ 2.20  | \$ 2.60  | \$     | -         | \$ | -    | \$   | -            | \$  | 0.31      | \$  | -        | \$ | 2.71   | \$    | 2.51     | \$    | 2.91      |
| 2019      | \$ -      | \$ -        | \$ -     | \$ 2.40 | \$ 2.20  | \$ 2.60  | \$     | -         | \$ | -    | \$   | -            | \$  | 0.31      | \$  | -        | \$ | 2.71   | \$    | 2.51     | \$    | 2.91      |
| 2020      | \$ -      | \$ -        | \$ -     | \$ 2.40 | \$ 2.20  | \$ 2.60  | \$     | -         | \$ | -    | \$   | -            | \$  | 0.31      | \$  | -        | \$ | 2.71   | \$    | 2.51     | \$    | 2.91      |
| 2021      | \$ -      | \$ -        | \$ -     | \$ 2.40 | \$ 2.20  | \$ 2.60  | \$     | -         | \$ | -    | \$   | -            | \$  | 0.31      | \$  | -        | \$ | 2.71   | \$    | 2.51     | \$    | 2.91      |
| 2022      | \$ -      | \$ -        | \$ -     | \$ 2.40 | \$ 2.20  | \$ 2.60  | \$     | -         | \$ | -    | \$   | -            | \$  | 0.31      | \$  | -        | \$ | 2.71   | \$    | 2.51     | \$    | 2.91      |
| 2023      | \$ -      | \$ -        | \$ -     | \$ 2.40 | \$ 2.20  | \$ 2.60  | \$     | -         | \$ | -    | \$   | -            | \$  | 0.31      | \$  | -        | \$ | 2.71   | \$    | 2.51     | \$    | 2.91      |
| 2024      | \$ -      | \$ -        | \$ -     | \$ 2.40 | \$ 2.20  | \$ 2.60  | \$     | -         | \$ | -    | \$   | -            | \$  | 0.31      | \$  | -        | \$ | 2.71   | \$    | 2.51     | \$    | 2.91      |
| 2025      | \$ -      | \$ -        | \$ -     | \$ 2.40 | \$ 2.20  | \$ 2.60  | \$     | -         | \$ | -    | \$   | -            | \$  | 0.31      | \$  | -        | \$ | 2.71   | \$    | 2.51     | \$    | 2.91      |
| 2026      | \$ -      | \$ -        | \$ -     | \$ 2.40 | \$ 2.20  | \$ 2.60  | \$     | -         | \$ | -    | \$   | -            | \$  | 0.31      | \$  | -        | \$ | 2.71   | \$    | 2.51     | \$    | 2.91      |
| 2027      | \$ -      | \$ -        | \$ -     | \$ 2.40 | \$ 2.20  | \$ 2.60  | \$     | -         | \$ | -    | \$   | -            | \$  | 0.31      | \$  | -        | \$ | 2.71   | \$    | 2.51     | \$    | 2.91      |
| 2028      | \$ -      | \$ -        | \$ -     | \$ 2.40 | \$ 2.20  | \$ 2.60  | \$     | -         | \$ | -    | \$   | -            | \$  | 0.31      | \$  | -        | \$ | 2.71   | \$    | 2.51     | \$    | 2.91      |
| 2029      | \$ -      | \$ -        | \$ -     | \$ 2.40 | \$ 2.20  | \$ 2.60  | \$     | -         | \$ | -    | \$   | -            | \$  | 0.31      | \$  | -        | \$ | 2.71   | \$    | 2.51     | \$    | 2.91      |

## Exhibit J.2aa Projections of Stage 2 DBPR PWS Costs

(Ground Water CWSs Serving 10,000-49,999 People)

### Preferred Alternative

| Preferred | ΑII | ernat         | IVE | •                       |      |                          |               |                         |      |                        |    |            |    |      |        |                   |       |           |    |          |               |       |       |      |                   |
|-----------|-----|---------------|-----|-------------------------|------|--------------------------|---------------|-------------------------|------|------------------------|----|------------|----|------|--------|-------------------|-------|-----------|----|----------|---------------|-------|-------|------|-------------------|
|           |     | Treatm        | ent | Capital                 | l Co | sts                      | Treat         | ment O&N                | l Co | sts                    |    |            |    | No   | on-Tre | eatment (         | Costs | 1         |    |          | All St        | age 2 | DBPR  | Cost | s                 |
|           |     |               | Co  | 90 Pe                   |      |                          |               | 90 Pe<br>Confid<br>Bo   | den  | се                     |    |            |    |      |        |                   |       |           |    |          |               | C     | 90 Pe |      |                   |
| Year      |     | Mean<br>'alue |     | _ower<br>(5th<br>%tile) | (    | Jpper<br>(95th<br>%tile) | Mean<br>Value | Lower<br>(5th<br>%tile) | (9   | pper<br>95th<br>stile) | I  |            |    | OSE  |        | nitoring<br>Plans | Mo    | nitoring  | -  | nificant | Mean<br>/alue | _     | ower  |      | Jpper<br>h %tile) |
| 2005      |     | aiue          | H   | ,                       | -    |                          |               | ,                       | _    |                        |    | ementation |    |      |        |                   | _     | intorning |    |          | alue          | ·     | ,,    | ÷    | ,,,,,,            |
| 2005      | \$  | _             | \$  | _                       | \$   | -                        | \$ -          | \$ -                    | \$   | -                      | \$ | -          | \$ | -    | \$     | -                 | \$    |           | \$ |          | \$<br>        | \$    |       | \$   |                   |
| 2006      | \$  |               | \$  |                         | \$   |                          | \$ -          | \$ -                    | \$   |                        | \$ | 0.40       | \$ | -    | \$     | _                 | \$    |           | \$ |          | \$<br>0.40    | \$    | 0.40  | \$   | 0.40              |
| 2007      | \$  |               | \$  | -                       | \$   |                          | \$ -          | \$ -                    | \$   |                        | \$ | -          | _  | 0.82 | \$     | -                 | \$    |           | \$ |          | \$<br>0.82    | \$    | 0.82  | \$   | 0.82              |
| 2008      | \$  | -             | \$  | -                       | \$   | - 0.45                   | \$ -          | \$ -                    | \$   | -                      | \$ | -          | _  | 0.82 | \$     | 0.16              | \$    |           | \$ |          | \$<br>0.98    | \$    | 0.98  | \$   | 0.98              |
| 2010      | \$  | 5.91          | \$  | 5.34                    | \$   | 6.48                     | \$ -          | \$ -                    | \$   | -                      | \$ | 0.20       | \$ | -    | \$     | 0.16              | \$    |           | \$ |          | \$<br>6.27    | \$    | 5.70  | \$   | 6.84              |
| 2010      | ·   | 11.82         | \$  | 10.68                   | \$   | 12.96                    | \$ 0.50       | \$ 0.48                 | \$   | 0.53                   | \$ | 0.20       | \$ | -    | \$     | _                 | \$    |           | \$ |          | \$<br>12.52   | \$    | 11.35 | \$   | 13.69             |
| 2012      | \$  | 11.82         | \$  | 10.68                   | \$   | 12.96                    | \$ 1.51       | \$ 1.43                 | \$   | 1.59                   | \$ | -          | \$ | -    | \$     | -                 | \$    | -         | \$ |          | \$<br>13.33   | \$    | 12.11 | \$   | 14.55             |
| 2012      | \$  | 11.82         | \$  | 10.68                   | \$   | 12.96                    | \$ 2.52       | \$ 2.38                 | \$   | 2.65                   | \$ | -          | \$ | -    | \$     | -                 | \$    | 1.79      | \$ |          | \$<br>16.12   | \$    | 14.85 | \$   | 17.40             |
|           | \$  | 11.82         | \$  | 10.68                   | \$   | 12.96                    | \$ 3.52       | \$ 3.33                 | Ė    | 3.71                   | \$ | -          | \$ | -    | \$     | -                 | \$    | 3.58      | \$ |          | \$<br>18.92   | \$    | 17.59 | \$   | 20.25             |
| 2014      | \$  | 5.91          | \$  | 5.34                    | \$   | 6.48                     | \$ 4.53       | \$ 4.28                 | \$   | 4.77                   | \$ | -          | \$ | -    | \$     | -                 | \$    | 3.58      | \$ |          | \$<br>14.02   | \$    | 13.20 | \$   | 14.83             |
| 2015      | \$  |               | \$  |                         | \$   |                          | \$ 5.03       | \$ 4.76                 | \$   | 5.30                   | \$ | -          | \$ | -    | \$     | -                 | \$    | 3.58      | \$ | -        | \$<br>8.61    | \$    | 8.34  | \$   | 8.88              |
| 2016      | \$  |               | \$  |                         | \$   |                          | \$ 5.03       | \$ 4.76                 | \$   | 5.30                   | \$ | -          | \$ | -    | \$     | -                 | \$    | 3.58      | \$ | -        | \$<br>8.61    | \$    | 8.34  | \$   | 8.88              |
| 2017      | \$  |               | \$  |                         | \$   |                          | \$ 5.03       | \$ 4.76                 | \$   | 5.30                   | \$ | -          | \$ | -    | \$     | -                 | \$    | 3.58      | \$ | -        | \$<br>8.61    | \$    | 8.34  | \$   | 8.88              |
| 2018      | \$  |               | \$  |                         | \$   |                          | \$ 5.03       | \$ 4.76                 | \$   | 5.30                   | \$ | -          | \$ | -    | \$     | -                 | \$    | 3.58      | \$ | -        | \$<br>8.61    | \$    | 8.34  | \$   | 8.88              |
| 2019      | \$  | -             | \$  | -                       | \$   | -                        | \$ 5.03       | \$ 4.76                 | _    | 5.30                   | \$ | -          | \$ | -    | \$     | -                 | \$    | 3.58      | \$ | -        | \$<br>8.61    | \$    | 8.34  | \$   | 8.88              |
| 2020      | \$  | -             | \$  | -                       | \$   | -                        | \$ 5.03       | \$ 4.76                 | \$   | 5.30                   | \$ | -          | \$ | -    | \$     | -                 | \$    | 3.58      | \$ | -        | \$<br>8.61    | \$    | 8.34  | \$   | 8.88              |
| 2021      | \$  | -             | \$  | -                       | \$   | -                        | \$ 5.03       | \$ 4.76                 | \$   | 5.30                   | \$ | -          | \$ | -    | \$     | -                 | \$    | 3.58      | \$ | -        | \$<br>8.61    | \$    | 8.34  | \$   | 8.88              |
| 2022      | \$  | -             | \$  | -                       | \$   | -                        | \$ 5.03       | \$ 4.76                 | \$   | 5.30                   | \$ | -          | \$ | -    | \$     | -                 | \$    | 3.58      | \$ | -        | \$<br>8.61    | \$    | 8.34  | \$   | 8.88              |
| 2023      | \$  | -             | \$  | -                       | \$   | -                        | \$ 5.03       | \$ 4.76                 | \$   | 5.30                   | \$ | -          | \$ | -    | \$     | -                 | \$    | 3.58      | \$ | -        | \$<br>8.61    | \$    | 8.34  | \$   | 8.88              |
| 2024      | \$  | -             | \$  | -                       | \$   | -                        | \$ 5.03       | \$ 4.76                 | \$   | 5.30                   | \$ | -          | \$ | -    | \$     | -                 | \$    | 3.58      | \$ | -        | \$<br>8.61    | \$    | 8.34  | \$   | 8.88              |
| 2025      | \$  | -             | \$  | -                       | \$   | -                        | \$ 5.03       | \$ 4.76                 | \$   | 5.30                   | \$ | -          | \$ | -    | \$     | -                 | \$    | 3.58      | \$ | -        | \$<br>8.61    | \$    | 8.34  | \$   | 8.88              |
| 2026      | \$  | -             | \$  | -                       | \$   | -                        | \$ 5.03       | \$ 4.76                 | \$   | 5.30                   | \$ | -          | \$ | -    | \$     | -                 | \$    | 3.58      | \$ | -        | \$<br>8.61    | \$    | 8.34  | \$   | 8.88              |
| 2027      | \$  | -             | \$  | -                       | \$   | -                        | \$ 5.03       | \$ 4.76                 | \$   | 5.30                   | \$ | -          | \$ | -    | \$     | -                 | \$    | 3.58      | \$ | -        | \$<br>8.61    | \$    | 8.34  | \$   | 8.88              |
| 2028      | \$  | -             | \$  | -                       | \$   | -                        | \$ 5.03       | \$ 4.76                 | \$   | 5.30                   | \$ | -          | \$ | -    | \$     | -                 | \$    | 3.58      | \$ | -        | \$<br>8.61    | \$    | 8.34  | \$   | 8.88              |
| 2029      | \$  | -             | \$  | -                       | \$   | -                        | \$ 5.03       | \$ 4.76                 | \$   | 5.30                   | \$ | -          | \$ | -    | \$     | -                 | \$    | 3.58      | \$ | -        | \$<br>8.61    | \$    | 8.34  | \$   | 8.88              |

## Exhibit J.2ab Projections of Stage 2 DBPR PWS Costs

(Ground Water CWSs Serving 50,000-99,999 People)

### Preferred Alternative

| Preferred | Aite | ernati | ve        |         |     |       |         |                        |         | 1  |              |     |      |      |             |     |           |    |           | _  |              |      |        |      |          |
|-----------|------|--------|-----------|---------|-----|-------|---------|------------------------|---------|----|--------------|-----|------|------|-------------|-----|-----------|----|-----------|----|--------------|------|--------|------|----------|
|           | 1    | Freatm | ent (     | Capital | Cos | its   | Treatn  | nent O&M               | Costs   |    |              |     | N    | on-T | reatment Co | sts |           |    |           |    | All St       | age  | 2 DBPR | Cost | ts       |
|           |      |        | Cor       | 90 Pe   |     |       |         | 90 Pe<br>Confid<br>Bot | dence   |    |              |     |      |      |             |     |           |    |           |    |              | С    | 90 Pe  |      |          |
|           |      |        | Ĺ         | ower    | U   | pper  |         | Lower                  | Upper   | 1  |              |     |      |      |             |     |           |    |           |    |              |      |        |      |          |
|           | м    | ean    | (         | 5th     | (9  | 95th  | Mean    | (5th                   | (95th   |    |              |     |      | м    | onitoring   |     |           | Si | gnificant |    | <b>M</b> ean | L    | .ower  | ι    | Upper    |
| Year      | Va   | alue   | %         | tile)   | %   | tile) | Value   | %tile)                 | %tile)  | In | plementation | - 1 | DSE  |      | Plans       | Мс  | onitoring | E  | cursion   | ٧  | alue         | (5th | %tile) | (95t | th %tile |
| 2005      | \$   | -      | <b>\$</b> | -       | \$  | -     | \$ -    | \$ -                   | \$ -    | \$ | 0.04         | \$  | -    | 69   | -           | \$  | -         | 69 | -         | \$ | 0.04         | 69   | 0.04   | \$   | 0.04     |
| 2006      | \$   | -      | <b>\$</b> | -       | \$  | -     | \$ -    | \$ -                   | \$ -    | \$ | -            | \$  | -    | 69   | -           | \$  | -         | 69 | -         | \$ | -            | 69   | -      | \$   | -        |
| 2007      | \$   | -      | \$        | -       | \$  | -     | \$ -    | \$ -                   | \$ -    | \$ | -            | \$  | 0.18 | \$   | -           | \$  | -         | \$ | -         | \$ | 0.18         | \$   | 0.18   | \$   | 0.18     |
| 2008      | \$   | 1.50   | \$        | 1.34    | \$  | 1.65  | \$ -    | \$ -                   | \$ -    | \$ | 0.02         | \$  | -    | \$   | 0.04        | \$  | -         | \$ | -         | \$ | 1.55         | \$   | 1.40   | \$   | 1.71     |
| 2009      | \$   | 2.99   | \$        | 2.68    | \$  | 3.31  | \$ 0.13 | \$ 0.12                | \$ 0.14 | \$ | 0.02         | \$  | -    | \$   | -           | \$  | -         | \$ | -         | \$ | 3.14         | \$   | 2.82   | \$   | 3.46     |
| 2010      | \$   | 2.99   | \$        | 2.68    | \$  | 3.31  | \$ 0.38 | \$ 0.36                | \$ 0.41 | \$ | -            | \$  | -    | \$   | -           | \$  | -         | \$ | -         | \$ | 3.38         | \$   | 3.04   | \$   | 3.71     |
| 2011      | \$   | 2.99   | \$        | 2.68    | \$  | 3.31  | \$ 0.64 | \$ 0.60                | \$ 0.68 | \$ | -            | \$  | -    | \$   | -           | \$  | 0.20      | \$ | -         | \$ | 3.83         | \$   | 3.47   | \$   | 4.18     |
| 2012      | \$   | 2.99   | \$        | 2.68    | \$  | 3.31  | \$ 0.89 | \$ 0.84                | \$ 0.95 | \$ | -            | \$  | -    | \$   | -           | \$  | 0.40      | \$ | -         | \$ | 4.28         | \$   | 3.91   | \$   | 4.65     |
| 2013      | \$   | 1.50   | \$        | 1.34    | \$  | 1.65  | \$ 1.15 | \$ 1.08                | \$ 1.22 | \$ | -            | \$  | -    | \$   | -           | \$  | 0.40      | \$ | -         | \$ | 3.04         | \$   | 2.81   | \$   | 3.27     |
| 2014      | \$   | -      | \$        | -       | \$  | -     | \$ 1.28 | \$ 1.20                | \$ 1.36 | \$ | -            | \$  | -    | \$   | -           | \$  | 0.40      | \$ | -         | \$ | 1.68         | \$   | 1.60   | \$   | 1.76     |
| 2015      | \$   | -      | \$        | -       | \$  | -     | \$ 1.28 | \$ 1.20                | \$ 1.36 | \$ | -            | \$  | -    | \$   | -           | \$  | 0.40      | \$ | -         | \$ | 1.68         | \$   | 1.60   | \$   | 1.76     |
| 2016      | \$   | -      | <b>\$</b> | -       | \$  | -     | \$ 1.28 | \$ 1.20                | \$ 1.36 | \$ | -            | \$  | -    | 69   | -           | \$  | 0.40      | 69 | -         | \$ | 1.68         | 69   | 1.60   | \$   | 1.76     |
| 2017      | \$   | -      | \$        | -       | \$  | -     | \$ 1.28 | \$ 1.20                | \$ 1.36 | \$ | -            | \$  | -    | \$   | -           | \$  | 0.40      | \$ | -         | \$ | 1.68         | \$   | 1.60   | \$   | 1.76     |
| 2018      | \$   | -      | \$        | -       | \$  | -     | \$ 1.28 | \$ 1.20                | \$ 1.36 | \$ | -            | \$  | -    | \$   | -           | \$  | 0.40      | \$ | -         | \$ | 1.68         | \$   | 1.60   | \$   | 1.76     |
| 2019      | \$   | -      | \$        | -       | \$  | -     | \$ 1.28 | \$ 1.20                | \$ 1.36 | \$ | -            | \$  | -    | \$   | -           | \$  | 0.40      | \$ | -         | \$ | 1.68         | \$   | 1.60   | \$   | 1.76     |
| 2020      | \$   | -      | \$        | -       | \$  |       | \$ 1.28 | \$ 1.20                | \$ 1.36 | \$ | -            | \$  | -    | \$   | -           | \$  | 0.40      | \$ | -         | \$ | 1.68         | \$   | 1.60   | \$   | 1.76     |
| 2021      | \$   | -      | \$        | -       | \$  | -     | \$ 1.28 | \$ 1.20                | \$ 1.36 | \$ | -            | \$  | -    | \$   | -           | \$  | 0.40      | \$ | -         | \$ | 1.68         | \$   | 1.60   | \$   | 1.76     |
| 2022      | \$   | -      | \$        | -       | \$  |       | \$ 1.28 | \$ 1.20                | \$ 1.36 | \$ | -            | \$  | -    | \$   | -           | \$  | 0.40      | \$ | -         | \$ | 1.68         | \$   | 1.60   | \$   | 1.76     |
| 2023      | \$   | -      | \$        | -       | \$  | -     | \$ 1.28 | \$ 1.20                | \$ 1.36 | \$ | -            | \$  | -    | \$   | -           | \$  | 0.40      | \$ | -         | \$ | 1.68         | \$   | 1.60   | \$   | 1.76     |
| 2024      | \$   | -      | \$        | -       | \$  |       | \$ 1.28 | \$ 1.20                | \$ 1.36 | \$ | -            | \$  | -    | \$   | -           | \$  | 0.40      | \$ | -         | \$ | 1.68         | \$   | 1.60   | \$   | 1.76     |
| 2025      | \$   | -      | \$        | -       | \$  | -     | \$ 1.28 | \$ 1.20                | \$ 1.36 | \$ | -            | \$  | -    | \$   | -           | \$  | 0.40      | \$ | -         | \$ | 1.68         | \$   | 1.60   | \$   | 1.76     |
| 2026      | \$   | -      | \$        | -       | \$  | -     | \$ 1.28 | \$ 1.20                | \$ 1.36 | \$ | -            | \$  | -    | \$   | -           | \$  | 0.40      | \$ | -         | \$ | 1.68         | \$   | 1.60   | \$   | 1.76     |
| 2027      | \$   | -      | \$        | -       | \$  | -     | \$ 1.28 | \$ 1.20                | \$ 1.36 | \$ | -            | \$  | -    | \$   | -           | \$  | 0.40      | \$ | -         | \$ | 1.68         | \$   | 1.60   | \$   | 1.76     |
| 2028      | \$   | -      | \$        | -       | \$  | -     | \$ 1.28 | \$ 1.20                | \$ 1.36 | \$ |              | \$  | -    | \$   | -           | \$  | 0.40      | \$ | -         | \$ | 1.68         | \$   | 1.60   | \$   | 1.76     |
| 2029      | \$   | -      | \$        | -       | \$  | -     | \$ 1.28 | \$ 1.20                | \$ 1.36 | \$ | -            | \$  | -    | \$   | -           | \$  | 0.40      | \$ | -         | \$ | 1.68         | \$   | 1.60   | \$   | 1.76     |

# Exhibit J.2ac Projections of Stage 2 DBPR PWS Costs

(Ground Water CWSs Serving 100,000-999,999 People)

### Preferred Alternative

| Preterred | A11 | emai    | ive        |      |        |                                 |         |         |    |              |         |             |           |    |          |     |          |        |               |        |         |       |          |
|-----------|-----|---------|------------|------|--------|---------------------------------|---------|---------|----|--------------|---------|-------------|-----------|----|----------|-----|----------|--------|---------------|--------|---------|-------|----------|
|           | 1   | Freatme | ent Capita | l Co | osts   | Treatment O&M Costs  90 Percent |         |         |    | N            | on-1    | Freatment C | osts      |    |          |     |          | All St | age 2         | 2 DBPR | Cost    | s     |          |
|           |     |         | 90 P       | erce | ent    |                                 | 90 Pe   | ercent  |    |              |         |             |           |    |          |     |          |        |               |        |         |       |          |
|           |     |         | Confi      | iden | ice    |                                 | Confi   | dence   |    |              |         |             |           |    |          |     |          |        |               |        | 90 Pe   | ercen | t        |
|           |     |         |            | und  |        |                                 |         | und     |    |              |         |             |           |    |          |     |          |        |               | C      | onfiden | ce B  | ound     |
|           |     |         | Lower      |      | Jpper  |                                 | Lower   | Upper   |    |              |         |             |           |    |          |     |          |        |               |        |         | ١.    |          |
|           |     | /lean   | (5th       | ٠,   | 95th   | Mean                            | (5th    | (95th   |    |              |         | M           | onitoring |    |          | -   | nificant |        | <i>l</i> lean |        | ower    |       | Jpper    |
| Year      | _   | alue    | %tile)     | %    | 6tile) | Value                           | %tile)  | %tile)  | lm | plementation | IDSE    |             | Plans     | Мо | nitoring | Exc | ursion   | ٧      | alue          | (5th   | %tile)  | (95ti | h %tile) |
| 2005      | \$  | -       | \$ -       | \$   | -      | \$ -                            | \$ -    | \$ -    | \$ | 0.02         | \$ -    | \$          | -         | \$ | -        | \$  | -        | \$     | 0.02          | \$     | 0.02    | \$    | 0.02     |
| 2006      | \$  | -       | \$ -       | \$   | -      | \$ -                            | \$ -    | \$ -    | \$ | -            | \$ 0.08 | \$          | -         | \$ | -        | \$  | -        | \$     | 0.08          | \$     | 0.08    | \$    | 0.08     |
| 2007      | \$  | -       | \$ -       | \$   | -      | \$ -                            | \$ -    | \$ -    | \$ | -            | \$ 0.08 | \$          | 0.02      | \$ | -        | \$  | -        | \$     | 0.10          | \$     | 0.10    | \$    | 0.10     |
| 2008      | \$  | 5.94    | \$ 5.29    | \$   | 6.59   | \$ -                            | \$ -    | \$ -    | \$ | 0.02         | \$ -    | \$          | 0.02      | \$ | -        | \$  | -        | \$     | 5.98          | \$     | 5.33    | \$    | 6.63     |
| 2009      | \$  | 5.94    | \$ 5.29    | \$   | 6.59   | \$ 0.57                         | \$ 0.53 | \$ 0.60 | \$ | -            | \$ -    | \$          | -         | \$ | -        | \$  | -        | \$     | 6.50          | \$     | 5.81    | \$    | 7.20     |
| 2010      | \$  | 5.94    | \$ 5.29    | \$   | 6.59   | \$ 1.13                         | \$ 1.05 | \$ 1.21 | \$ |              | \$ -    | \$          | -         | \$ | -        | \$  | -        | \$     | 7.07          | \$     | 6.34    | \$    | 7.80     |
| 2011      | \$  | 5.94    | \$ 5.29    | \$   | 6.59   | \$ 1.70                         | \$ 1.58 | \$ 1.81 | \$ | -            | \$ -    | \$          | -         | \$ | (0.10)   | \$  | -        | \$     | 7.54          | \$     | 6.77    | \$    | 8.31     |
| 2012      | \$  | 5.94    | \$ 5.29    | \$   | 6.59   | \$ 2.26                         | \$ 2.11 | \$ 2.42 | \$ | -            | \$ -    | \$          | -         | \$ | (0.10)   | \$  | -        | \$     | 8.11          | \$     | 7.30    | \$    | 8.92     |
| 2013      | \$  | -       | \$ -       | \$   | -      | \$ 2.83                         | \$ 2.64 | \$ 3.02 | \$ | -            | \$ -    | \$          | -         | \$ | (0.10)   | \$  | -        | \$     | 2.73          | \$     | 2.54    | \$    | 2.93     |
| 2014      | \$  | -       | \$ -       | \$   | -      | \$ 2.83                         | \$ 2.64 | \$ 3.02 | \$ | -            | \$ -    | \$          | -         | \$ | (0.10)   | \$  | -        | \$     | 2.73          | \$     | 2.54    | \$    | 2.93     |
| 2015      | \$  | -       | \$ -       | \$   | -      | \$ 2.83                         | \$ 2.64 | \$ 3.02 | \$ | -            | \$ -    | \$          | -         | \$ | (0.10)   | \$  | -        | \$     | 2.73          | \$     | 2.54    | \$    | 2.93     |
| 2016      | \$  | -       | \$ -       | \$   | -      | \$ 2.83                         | \$ 2.64 | \$ 3.02 | \$ | -            | \$ -    | \$          | -         | \$ | (0.10)   | \$  | -        | \$     | 2.73          | \$     | 2.54    | \$    | 2.93     |
| 2017      | \$  | -       | \$ -       | \$   | -      | \$ 2.83                         | \$ 2.64 | \$ 3.02 | \$ | -            | \$ -    | \$          | -         | \$ | (0.10)   | \$  | -        | \$     | 2.73          | \$     | 2.54    | \$    | 2.93     |
| 2018      | \$  | -       | \$ -       | \$   | -      | \$ 2.83                         | \$ 2.64 | \$ 3.02 | \$ | -            | \$ -    | \$          | -         | \$ | (0.10)   | \$  | -        | \$     | 2.73          | \$     | 2.54    | \$    | 2.93     |
| 2019      | \$  | -       | \$ -       | \$   | -      | \$ 2.83                         | \$ 2.64 | \$ 3.02 | \$ | -            | \$ -    | \$          | -         | \$ | (0.10)   | \$  | -        | \$     | 2.73          | \$     | 2.54    | \$    | 2.93     |
| 2020      | \$  | -       | \$ -       | \$   | -      | \$ 2.83                         | \$ 2.64 | \$ 3.02 | \$ | -            | \$ -    | \$          | -         | \$ | (0.10)   | \$  | -        | \$     | 2.73          | \$     | 2.54    | \$    | 2.93     |
| 2021      | \$  | -       | \$ -       | \$   | -      | \$ 2.83                         | \$ 2.64 | \$ 3.02 | \$ |              | \$ -    | \$          | -         | \$ | (0.10)   | \$  | -        | \$     | 2.73          | \$     | 2.54    | \$    | 2.93     |
| 2022      | \$  | -       | \$ -       | \$   | -      | \$ 2.83                         | \$ 2.64 | \$ 3.02 | \$ |              | \$ -    | \$          | -         | \$ | (0.10)   | \$  | -        | \$     | 2.73          | \$     | 2.54    | \$    | 2.93     |
| 2023      | \$  | -       | \$ -       | \$   | -      | \$ 2.83                         | \$ 2.64 | \$ 3.02 | \$ |              | \$ -    | \$          | -         | \$ | (0.10)   | \$  | -        | \$     | 2.73          | \$     | 2.54    | \$    | 2.93     |
| 2024      | \$  | -       | \$ -       | \$   | -      | \$ 2.83                         | \$ 2.64 | \$ 3.02 | \$ | -            | \$ -    | \$          | -         | \$ | (0.10)   | \$  | -        | \$     | 2.73          | \$     | 2.54    | \$    | 2.93     |
| 2025      | \$  | -       | \$ -       | \$   | -      | \$ 2.83                         | \$ 2.64 | \$ 3.02 | \$ | -            | \$ -    | \$          | -         | \$ | (0.10)   | \$  | -        | \$     | 2.73          | \$     | 2.54    | \$    | 2.93     |
| 2026      | \$  | -       | \$ -       | \$   |        | \$ 2.83                         | \$ 2.64 | \$ 3.02 | \$ | -            | \$ -    | \$          | -         | \$ | (0.10)   | \$  | -        | \$     | 2.73          | \$     | 2.54    | \$    | 2.93     |
| 2027      | \$  | -       | \$ -       | \$   | -      | \$ 2.83                         | \$ 2.64 | \$ 3.02 | \$ | -            | \$ -    | \$          | -         | \$ | (0.10)   | \$  | -        | \$     | 2.73          | \$     | 2.54    | \$    | 2.93     |
| 2028      | \$  | -       | \$ -       | \$   | -      | \$ 2.83                         | \$ 2.64 | \$ 3.02 | \$ | -            | \$ -    | \$          | -         | \$ | (0.10)   | \$  | -        | \$     | 2.73          | \$     | 2.54    | \$    | 2.93     |
| 2029      | \$  | -       | \$ -       | \$   | -      | \$ 2.83                         | \$ 2.64 | \$ 3.02 | \$ | -            | \$ -    | \$          | -         | \$ | (0.10)   | \$  | -        | \$     | 2.73          | \$     | 2.54    | \$    | 2.93     |
|           |     |         |            |      |        |                                 |         |         |    |              |         |             |           |    |          |     |          |        |               |        |         |       |          |

### Exhibit J.2ad Projections of Stage 2 DBPR PWS Costs

(Ground Water CWSs Serving 1,000,000+ People)

#### Preferred Alternative

| Preferred    | Alt | ernat         | ive | 9              |    |                 |              |     |                        |      |                |              |              |     |                |     |            |           |               |       |                |      |                   |
|--------------|-----|---------------|-----|----------------|----|-----------------|--------------|-----|------------------------|------|----------------|--------------|--------------|-----|----------------|-----|------------|-----------|---------------|-------|----------------|------|-------------------|
|              |     | Treatm        | ent | Capital        | Co | osts            | Treat        | mei | nt O&N                 | I Co | sts            |              | N            | lor | n-Treatment Co | ost | s          |           | All St        | age 2 | DBPR           | Cost | s                 |
|              |     |               | Co  | 90 Pe          |    |                 |              |     | 90 Pe<br>Confid<br>Bot |      | ce             |              |              |     |                |     |            |           |               | Co    | 90 Pe          |      | -                 |
|              |     |               | ı   | Lower          |    | Jpper           |              |     | ower                   |      | pper           |              |              |     |                |     |            |           |               |       |                |      |                   |
| .,           |     | <i>l</i> lean | ١.  | (5th<br>%tile) |    | (95th<br>%tile) | Mean         |     | (5th<br>Stile)         | ٠,   | 95th<br>6tile) |              |              |     | Monitoring     | ١.  |            | gnificant | <i>l</i> lean |       | ower<br>%tile) |      | Jpper<br>h %tile) |
| Year<br>2005 |     | alue          | H   | ,              | H  | ,               | Value        | H   | otile)                 | ÷    | otile)         | plementation | IDSE         | t   | Plans          | -   | Monitoring | cursion   | alue          | ÷     |                | ÷    |                   |
| 2005         | \$  | -             | \$  |                | \$ |                 | \$ -         | \$  | -                      | \$   |                | \$<br>0.00   | \$ -         | +   | \$ -           | \$  |            | \$<br>    | \$<br>0.00    | \$    | 0.00           | \$   | 0.00              |
| 2006         | \$  | -             | \$  |                | \$ |                 | \$ -<br>\$ - | \$  | -                      | \$   | -              | \$<br>-      | \$ 0.00      | 9   | \$ -           | \$  |            | \$<br>    | \$<br>0.00    | \$    | 0.00           | \$   | 0.00              |
| 2007         | \$  | 0.68          | ·   |                | ·  | 0.76            | _            | ·   | -                      | ·    | -              | \$<br>0.00   | \$ 0.00      | 9   |                | \$  |            | \$<br>    | \$<br>0.00    | \$    | 0.00           | \$   | 0.00              |
| 2009         | \$  | 0.68          | \$  |                | \$ | 0.76            | \$ 0.09      | \$  | 0.08                   | \$   | 0.09           | \$<br>0.00   | \$ -<br>\$ - | +   | \$ -           | \$  |            | \$<br>    | \$<br>0.68    | \$    | 0.60           | \$   | 0.76              |
| 2010         | \$  | 0.68          | \$  |                | \$ | 0.76            | \$ 0.09      | \$  |                        | \$   | 0.09           | \$           | \$ -         | -   | s -            | \$  |            | \$<br>    | \$<br>0.76    | \$    | 0.67           | \$   | 0.65              |
| 2011         | \$  | 0.68          | \$  |                | \$ | 0.76            | \$ 0.26      | ·   | 0.10                   | \$   | 0.13           | \$<br>       | \$ -         | -   | \$ -           | \$  |            | \$<br>    | \$<br>0.03    | \$    | 0.81           | \$   | 1.01              |
| 2012         | \$  | 0.68          | \$  |                | \$ | 0.76            | \$ 0.35      | \$  |                        | \$   | 0.37           | \$           | \$ -         | -   | \$ -           | \$  | (/         | \$<br>-   | \$<br>1.00    | \$    | 0.89           | \$   | 1.10              |
| 2013         | \$  | -             | \$  |                | \$ |                 | \$ 0.43      | \$  |                        | \$   | 0.46           | \$           | \$ -         | -   | \$ -           | \$  | (/         | \$<br>-   | \$<br>0.41    | \$    | 0.37           | \$   | 0.44              |
| 2014         | \$  | -             | \$  |                | \$ | -               | \$ 0.43      | \$  | 0.40                   | \$   | 0.46           | \$           | \$ -         | -   | \$ -           | \$  | (0.03)     | \$<br>-   | \$<br>0.41    | \$    | 0.37           | \$   | 0.44              |
| 2015         | \$  | -             | \$  | -              | \$ | -               | \$ 0.43      | \$  | 0.40                   | \$   | 0.46           | \$<br>-      | \$ -         | :   | \$ -           | \$  | (0.03)     | \$<br>-   | \$<br>0.41    | \$    | 0.37           | \$   | 0.44              |
| 2016         | \$  | -             | \$  | -              | \$ | -               | \$ 0.43      | \$  | 0.40                   | \$   | 0.46           | \$<br>-      | \$ -         | ;   | \$ -           | \$  | (0.03)     | \$<br>-   | \$<br>0.41    | \$    | 0.37           | \$   | 0.44              |
| 2017         | \$  | -             | \$  | -              | \$ | -               | \$ 0.43      | \$  | 0.40                   | \$   | 0.46           | \$<br>-      | \$ -         | :   | \$ -           | \$  | (0.03)     | \$<br>-   | \$<br>0.41    | \$    | 0.37           | \$   | 0.44              |
| 2018         | \$  | -             | \$  | -              | \$ | -               | \$ 0.43      | \$  | 0.40                   | \$   | 0.46           | \$<br>-      | \$ -         | ;   | \$ -           | \$  | (0.03)     | \$<br>-   | \$<br>0.41    | \$    | 0.37           | \$   | 0.44              |
| 2019         | \$  | -             | \$  | -              | \$ | -               | \$ 0.43      | \$  | 0.40                   | \$   | 0.46           | \$<br>-      | \$ -         | **  | \$ -           | \$  | (0.03)     | \$<br>-   | \$<br>0.41    | \$    | 0.37           | \$   | 0.44              |
| 2020         | \$  | -             | \$  | -              | \$ | -               | \$ 0.43      | \$  | 0.40                   | \$   | 0.46           | \$<br>-      | \$ -         | :   | \$ -           | \$  | (0.03)     | \$<br>-   | \$<br>0.41    | \$    | 0.37           | \$   | 0.44              |
| 2021         | \$  | -             | \$  | -              | \$ | -               | \$ 0.43      | \$  | 0.40                   | \$   | 0.46           | \$<br>-      | \$ -         | 1   | \$ -           | \$  | (0.03)     | \$<br>-   | \$<br>0.41    | \$    | 0.37           | \$   | 0.44              |
| 2022         | \$  | -             | \$  | -              | \$ | -               | \$ 0.43      | \$  | 0.40                   | \$   | 0.46           | \$<br>-      | \$ -         | 1   | \$ -           | \$  | (0.03)     | \$<br>-   | \$<br>0.41    | \$    | 0.37           | \$   | 0.44              |
| 2023         | \$  | -             | \$  | -              | \$ | -               | \$ 0.43      | \$  | 0.40                   | \$   | 0.46           | \$<br>-      | \$ -         | Ŀ   | \$ -           | \$  | (0.03)     | \$<br>-   | \$<br>0.41    | \$    | 0.37           | \$   | 0.44              |
| 2024         | \$  | -             | \$  |                | \$ |                 | \$ 0.43      | \$  | 0.40                   | \$   | 0.46           | \$<br>-      | \$ -         | -   | \$ -           | \$  | (/         | \$<br>-   | \$<br>0.41    | \$    | 0.37           | \$   | 0.44              |
| 2025         | \$  | -             | \$  |                | \$ | -               | \$ 0.43      | \$  | 0.40                   | \$   | 0.46           | \$<br>-      | \$ -         | -   | \$ -           | \$  | (0.03)     | \$<br>-   | \$<br>0.41    | \$    | 0.37           | \$   | 0.44              |
| 2026         | \$  | -             | \$  |                | \$ |                 | \$ 0.43      | \$  |                        | \$   | 0.46           | \$<br>-      | \$ -         | -   | \$ -           | \$  | (/         | \$<br>-   | \$<br>0.41    | \$    | 0.37           | \$   | 0.44              |
| 2027         | \$  | -             | \$  |                | \$ |                 | \$ 0.43      | \$  |                        | \$   | 0.46           | \$<br>-      | \$ -         | -   | \$ -           | \$  | (/         | \$<br>-   | \$<br>0.41    | \$    | 0.37           | \$   | 0.44              |
| 2028         | \$  | -             | \$  |                | \$ |                 | \$ 0.43      | \$  |                        | \$   | 0.46           | \$<br>-      | \$ -         | -   | \$ -           | \$  | (/         | \$<br>-   | \$<br>0.41    | \$    | 0.37           | \$   | 0.44              |
| 2029         | \$  | -             | \$  | -              | \$ | -               | \$ 0.43      | \$  | 0.40                   | \$   | 0.46           | \$<br>-      | \$ -         | :   | \$ -           | \$  | (0.03)     | \$<br>-   | \$<br>0.41    | \$    | 0.37           | \$   | 0.44              |

# Exhibit J.2ae Projections of Stage 2 DBPR PWS Costs

(All Ground Water CWSs)

#### Professed Alternative

| Preferred | Alt | ernati       | ve               |      |                |                  |                   |      |        |              |            |      |                     |     |          |     |           |               |     |             |     |          |
|-----------|-----|--------------|------------------|------|----------------|------------------|-------------------|------|--------|--------------|------------|------|---------------------|-----|----------|-----|-----------|---------------|-----|-------------|-----|----------|
|           |     | Treatm       | ent Capita       | l Co | osts           | Treatr           | nent O&M          | Cos  | ts     |              | N          | on-T | Freatment Co        | sts |          |     |           | All S         | age | 2 DBPR      | Cos | ts       |
|           |     |              | 90 P<br>Confider | ice  |                |                  | 90 Pe<br>Confiden | ce E |        |              |            |      |                     |     |          |     |           |               | c   | 90 Ponfiden |     | -        |
|           | ١.  | •            | (5th             |      | эрреі<br>(95th | •                | (5th              | l    | 95th   |              |            | ١.   |                     |     |          | Sid | gnificant |               | ١,  | ower        | ١.  | Jpper    |
| Year      | -   | Mean<br>alue | %tile)           |      | %tile)         | <br>Mean<br>alue | %tile)            | ٠,   | itile) | lementation  | IDSE       | IV   | Monitoring<br>Plans | Mo  | nitoring |     | cursion   | Mean<br>Value | -   |             |     | h %tile) |
| 2005      | \$  | aiue         | \$ -             | \$   |                | \$<br>aiue       | \$ -              | \$   | -      | \$<br>0.07   | \$<br>DSE  | \$   | rialis              | \$  |          | \$  |           | \$<br>0.07    | \$  | 0.07        | \$  | 0.07     |
| 2006      | \$  |              | \$ -             | \$   |                | \$<br>           | \$ -              | \$   |        | \$<br>3.42   | \$<br>0.09 | 9    |                     | \$  |          | \$  |           | \$<br>3.51    | \$  | 3.51        | \$  | 3.51     |
| 2007      | \$  |              | \$ -             | \$   |                | \$<br>           | \$ -              | \$   |        | \$<br>3.42   | \$         | 9    | 0.02                | \$  |          | \$  |           | \$<br>1.11    | \$  | 1.11        | \$  | 1.11     |
| 2007      | \$  | 8,11         | \$ 7.22          | \$   | 9.00           | \$<br>-          | \$ -              | \$   |        | \$<br>0.05   | \$         | 9    | 0.02                | \$  |          | \$  |           | \$<br>15.03   | \$  | 14.14       | \$  | 15.92    |
| 2009      | \$  | 32.23        | \$ 27.71         | \$   | 36.76          | \$<br>0.78       | \$ 0.73           | \$   | 0.83   | \$<br>1.73   | \$<br>0.00 | 9    | 2.58                | \$  | <u> </u> | \$  |           | \$<br>37.32   | \$  | 32.75       | \$  | 41.91    |
| 2010      | \$  | 54.86        | \$ 46.87         | \$   | 62.87          | \$<br>3.35       | \$ 3.11           | \$   | 3.58   | \$<br>1.73   | \$<br>-    | \$   | 2.30                | \$  | <u> </u> | \$  |           | \$<br>59.91   | \$  | 51.69       | \$  | 68.16    |
| 2011      | \$  | 54.86        | \$ 46.87         | \$   | 62.87          | \$<br>7.57       | \$ 7.03           | \$   | 8.11   | \$<br>- 1.71 | \$<br>     | \$   |                     | \$  | 0.08     | \$  |           | \$<br>62.50   | \$  | 53.98       | \$  | 71.06    |
| 2012      | \$  | 54.86        | \$ 46.87         | \$   | 62.87          | \$<br>11.79      | \$ 10.95          | \$   | 12.63  | \$<br>-      | \$<br>-    | \$   | -                   | \$  | 2.95     | \$  |           | \$<br>69.60   | \$  | 60.77       | \$  | 78.46    |
| 2013      | \$  | 46.75        | \$ 39.65         | \$   | 53.87          | \$<br>16.01      | \$ 14.87          | \$   | 17.16  | \$<br>_      | \$         | \$   | -                   | \$  | 5.63     | \$  | -         | \$<br>68.39   | \$  | 60.15       | \$  | 76.66    |
| 2014      | \$  | 22.63        | \$ 19.16         | \$   | 26.11          | \$<br>19.46      | \$ 18.06          | \$   | 20.85  | \$<br>-      | \$<br>-    | \$   | -                   | \$  | 5.63     | \$  | -         | \$<br>47.71   | \$  | 42.85       | \$  | 52.59    |
| 2015      | \$  | -            | \$ -             | \$   | -              | \$<br>21.11      | \$ 19.60          | \$   | 22.63  | \$<br>-      | \$<br>-    | \$   | -                   | \$  | 5.63     | \$  | -         | \$<br>26.74   | \$  | 25.23       | \$  | 28.26    |
| 2016      | \$  | -            | \$ -             | \$   | -              | \$<br>21.11      | \$ 19.60          | \$   | 22.63  | \$<br>-      | \$<br>-    | \$   | -                   | \$  | 5.63     | \$  | -         | \$<br>26.74   | \$  | 25.23       | \$  | 28.26    |
| 2017      | \$  | -            | \$ -             | \$   | -              | \$<br>21.11      | \$ 19.60          | \$   | 22.63  | \$<br>-      | \$<br>-    | \$   | -                   | \$  | 5.63     | \$  | -         | \$<br>26.74   | \$  | 25.23       | \$  | 28.26    |
| 2018      | \$  | -            | \$ -             | \$   | -              | \$<br>21.11      | \$ 19.60          | \$   | 22.63  | \$<br>-      | \$<br>-    | \$   | -                   | \$  | 5.63     | \$  | -         | \$<br>26.74   | \$  | 25.23       | \$  | 28.26    |
| 2019      | \$  | -            | \$ -             | \$   | -              | \$<br>21.11      | \$ 19.60          | \$   | 22.63  | \$<br>-      | \$<br>-    | \$   | -                   | \$  | 5.63     | \$  | -         | \$<br>26.74   | \$  | 25.23       | \$  | 28.26    |
| 2020      | \$  | -            | \$ -             | \$   | -              | \$<br>21.11      | \$ 19.60          | \$   | 22.63  | \$           | \$<br>-    | \$   | -                   | \$  | 5.63     | \$  | -         | \$<br>26.74   | \$  | 25.23       | \$  | 28.26    |
| 2021      | \$  | -            | \$ -             | \$   | -              | \$<br>21.11      | \$ 19.60          | \$   | 22.63  | \$<br>-      | \$<br>-    | \$   | -                   | \$  | 5.63     | \$  | -         | \$<br>26.74   | \$  | 25.23       | \$  | 28.26    |
| 2022      | \$  | -            | \$ -             | \$   | -              | \$<br>21.11      | \$ 19.60          | \$   | 22.63  | \$<br>-      | \$<br>-    | \$   | -                   | \$  | 5.63     | \$  | -         | \$<br>26.74   | \$  | 25.23       | \$  | 28.26    |
| 2023      | \$  | -            | \$ -             | \$   | -              | \$<br>21.11      | \$ 19.60          | \$   | 22.63  | \$<br>-      | \$<br>-    | \$   | -                   | \$  | 5.63     | \$  | -         | \$<br>26.74   | \$  | 25.23       | \$  | 28.26    |
| 2024      | \$  | -            | \$ -             | \$   | -              | \$<br>21.11      | \$ 19.60          | \$   | 22.63  | \$<br>-      | \$<br>-    | \$   | -                   | \$  | 5.63     | \$  | -         | \$<br>26.74   | \$  | 25.23       | \$  | 28.26    |
| 2025      | \$  | -            | \$ -             | \$   | -              | \$<br>21.11      | \$ 19.60          | \$   | 22.63  | \$<br>-      | \$<br>-    | \$   | -                   | \$  | 5.63     | \$  | -         | \$<br>26.74   | \$  | 25.23       | \$  | 28.26    |
| 2026      | \$  | -            | \$ -             | \$   | -              | \$<br>21.11      | \$ 19.60          | \$   | 22.63  | \$<br>-      | \$<br>-    | \$   | -                   | \$  | 5.63     | \$  | -         | \$<br>26.74   | \$  | 25.23       | \$  | 28.26    |
| 2027      | \$  | -            | \$ -             | \$   | -              | \$<br>21.11      | \$ 19.60          | \$   | 22.63  | \$<br>-      | \$<br>-    | \$   | -                   | \$  | 5.63     | \$  | -         | \$<br>26.74   | \$  | 25.23       | \$  | 28.26    |
| 2028      | \$  | -            | \$ -             | \$   | -              | \$<br>21.11      | \$ 19.60          | \$   | 22.63  | \$<br>-      | \$<br>-    | \$   | -                   | \$  | 5.63     | \$  | -         | \$<br>26.74   | \$  | 25.23       | \$  | 28.26    |
| 2029      | \$  | -            | \$ -             | \$   | -              | \$<br>21.11      | \$ 19.60          | \$   | 22.63  | \$<br>-      | \$<br>-    | \$   | -                   | \$  | 5.63     | \$  | -         | \$<br>26.74   | \$  | 25.23       | \$  | 28.26    |

Note: All values in millions of year 2003 dollars.

## Exhibit J.2af Projections of Stage 2 DBPR PWS Costs

(Ground Water NTNCWSs Serving <100 People)

### Preferred Alternative

| Preferred    | П  |        |      |                   | 0                        | T            | 0011                    | 0                        |                |    |     |       |           | 2       |      |          |   | 411.01       |       | DDDD           | 0              |                |
|--------------|----|--------|------|-------------------|--------------------------|--------------|-------------------------|--------------------------|----------------|----|-----|-------|-----------|---------|------|----------|---|--------------|-------|----------------|----------------|----------------|
|              |    | Treatn | nent | Capital           | Costs                    | Treatr       | nent O&M                | Costs                    |                |    | No  | on-Tr | eatment ( | Costs   |      |          |   | All St       | age 2 | DBPR           | Costs          | •              |
|              |    |        | Co   | 90 Per<br>nfidenc | cent<br>e Bound          |              | 90 Pe<br>Confid<br>Bot  |                          |                |    |     |       |           |         |      |          |   |              | Co    | 90 Pe          | rcent<br>ce Bo |                |
| V            |    | Mean   | _    | ower              | Upper<br>(95th<br>%tile) | Mean         | Lower<br>(5th<br>%tile) | Upper<br>(95th<br>%tile) |                |    |     |       | nitoring  | Monitor |      | Signific |   | <b>M</b> ean |       | ower<br>%tile) |                | pper<br>%tile) |
| Year<br>2005 |    | alue   | ÷    |                   | ,                        | Value        | ,                       |                          | Implementation | _  | OSE | _     | Plans     |         | Ť    |          |   | alue         | •     |                | -              | /otile)        |
| 2005         | \$ | -      | \$   | -                 | \$ -                     | \$ -         | \$ -                    | \$ -                     | \$ -           | \$ | -   | \$    | -         | \$      | -    | \$       | - | \$<br>-      | \$    | -              | \$             | -              |
| 2006         | \$ | -      | \$   |                   | \$ -                     | \$ -         | \$ -                    | \$ -                     | \$ 0.25        | \$ | -   | \$    | -         | \$      | -    | \$       | - | \$<br>0.25   | \$    | 0.25           | \$             | 0.25           |
| 2007         | \$ | -      | \$   | -                 | \$ -<br>\$ -             | \$ -<br>\$ - | \$ -<br>\$ -            | \$ -<br>\$ -             | \$ -<br>\$ -   | \$ | -   | \$    | -         | \$      | -    | \$       | - | \$<br>-      | \$    | -              | \$             | -              |
| 2008         | \$ | 0.32   | \$   | 0.27              | \$ -                     | \$ -<br>\$ - | \$ -                    | \$ -<br>\$ -             | \$ 0.12        | \$ | -   | \$    | 0.20      | \$      | -    | \$       | - | \$<br>0.65   | \$    | 0.60           | \$             | 0.69           |
| 2010         | \$ | 0.64   | \$   | 0.27              | \$ 0.36                  | \$ 0.04      | \$ 0.03                 | \$ 0.04                  | \$ 0.12        | ·  | -   | \$    | 0.20      | \$      | •    | \$       | - | \$<br>0.80   | \$    | 0.60           | \$             | 0.89           |
| 2011         | \$ | 0.64   | \$   | 0.55              | \$ 0.72                  | \$ 0.04      | \$ 0.03                 | \$ 0.04                  | \$ 0.12        | \$ | ÷   | \$    | -         | \$      | -    | \$       | ÷ | \$<br>0.74   | \$    | 0.70           | \$             | 0.84           |
| 2012         | \$ | 0.64   | \$   | 0.55              | \$ 0.72                  | \$ 0.11      | \$ 0.16                 | \$ 0.19                  | \$ -           | \$ | -   | \$    |           | \$      | 0.09 | \$       | - | \$<br>0.90   | \$    | 0.80           | \$             | 1.00           |
| 2013         | \$ | 0.64   | \$   | 0.55              | \$ 0.72                  | \$ 0.25      | \$ 0.23                 | \$ 0.27                  | \$ -           | \$ |     | \$    |           | \$      | 0.18 | \$       |   | \$<br>1.06   | \$    | 0.95           | \$             | 1.17           |
| 2014         | \$ | 0.32   | \$   | 0.27              | \$ 0.36                  | \$ 0.32      | \$ 0.30                 | \$ 0.34                  | \$ -           | \$ |     | \$    |           | \$      | 0.18 | \$       |   | \$<br>0.81   | \$    | 0.74           | \$             | 0.88           |
| 2015         | \$ | -      | \$   | -                 | \$ -                     | \$ 0.35      | \$ 0.33                 | \$ 0.38                  | \$ -           | \$ |     | \$    |           | \$      | 0.18 | \$       |   | \$<br>0.53   | \$    | 0.50           | \$             | 0.56           |
| 2016         | \$ | -      | \$   | -                 | \$ -                     | \$ 0.35      | \$ 0.33                 | \$ 0.38                  | \$ -           | \$ |     | \$    | -         | \$      | 0.18 | \$       |   | \$<br>0.53   | \$    | 0.50           | \$             | 0.56           |
| 2017         | \$ | -      | \$   | -                 | \$ -                     | \$ 0.35      | \$ 0.33                 | \$ 0.38                  | \$ -           | \$ | -   | \$    | -         | \$      | 0.18 | \$       | - | \$<br>0.53   | \$    | 0.50           | \$             | 0.56           |
| 2018         | \$ | -      | \$   | -                 | \$ -                     | \$ 0.35      | \$ 0.33                 | \$ 0.38                  | \$ -           | \$ | -   | \$    | -         | \$      | 0.18 | \$       | - | \$<br>0.53   | \$    | 0.50           | \$             | 0.56           |
| 2019         | \$ | -      | \$   | -                 | \$ -                     | \$ 0.35      | \$ 0.33                 | \$ 0.38                  | \$ -           | \$ |     | \$    | -         | \$      | 0.18 | \$       |   | \$<br>0.53   | \$    | 0.50           | \$             | 0.56           |
| 2020         | \$ | -      | \$   | -                 | \$ -                     | \$ 0.35      | \$ 0.33                 | \$ 0.38                  | \$ -           | \$ | -   | \$    | -         | \$      | 0.18 | \$       |   | \$<br>0.53   | \$    | 0.50           | \$             | 0.56           |
| 2021         | \$ | -      | \$   | -                 | \$ -                     | \$ 0.35      | \$ 0.33                 | \$ 0.38                  | \$ -           | \$ | -   | \$    | -         | \$      | 0.18 | \$       | - | \$<br>0.53   | \$    | 0.50           | \$             | 0.56           |
| 2022         | \$ | -      | \$   | -                 | \$ -                     | \$ 0.35      | \$ 0.33                 | \$ 0.38                  | \$ -           | \$ | -   | \$    | -         | \$      | 0.18 | \$       |   | \$<br>0.53   | \$    | 0.50           | \$             | 0.56           |
| 2023         | \$ | -      | \$   | -                 | \$ -                     | \$ 0.35      | \$ 0.33                 | \$ 0.38                  | \$ -           | \$ | -   | \$    | -         | \$      | 0.18 | \$       |   | \$<br>0.53   | \$    | 0.50           | \$             | 0.56           |
| 2024         | \$ | -      | \$   | -                 | \$ -                     | \$ 0.35      | \$ 0.33                 | \$ 0.38                  | \$ -           | \$ | -   | \$    | -         | \$      | 0.18 | \$       |   | \$<br>0.53   | \$    | 0.50           | \$             | 0.56           |
| 2025         | \$ | -      | \$   | -                 | \$ -                     | \$ 0.35      | \$ 0.33                 | \$ 0.38                  | \$ -           | \$ | -   | \$    | -         | \$      | 0.18 | \$       | - | \$<br>0.53   | \$    | 0.50           | \$             | 0.56           |
| 2026         | \$ | -      | \$   | -                 | \$ -                     | \$ 0.35      | \$ 0.33                 | \$ 0.38                  | \$ -           | \$ | -   | \$    | -         | \$      | 0.18 | \$       | - | \$<br>0.53   | \$    | 0.50           | \$             | 0.56           |
| 2027         | \$ | -      | \$   | -                 | \$ -                     | \$ 0.35      | \$ 0.33                 | \$ 0.38                  | \$ -           | \$ | -   | \$    | -         | \$      | 0.18 | \$       | - | \$<br>0.53   | \$    | 0.50           | \$             | 0.56           |
| 2028         | \$ | -      | \$   | -                 | \$ -                     | \$ 0.35      | \$ 0.33                 | \$ 0.38                  | \$ -           | \$ | -   | \$    | -         | \$      | 0.18 | \$       | - | \$<br>0.53   | \$    | 0.50           | \$             | 0.56           |
| 2029         | \$ | -      | \$   | -                 | \$ -                     | \$ 0.35      | \$ 0.33                 | \$ 0.38                  | \$ -           | \$ | -   | \$    | -         | \$      | 0.18 | \$       | - | \$<br>0.53   | \$    | 0.50           | \$             | 0.56           |

Note: All values in millions of year 2003 dollars.

Source: Derived from Exhibits J.1a and Exhibits D.1 through D.6.

## Exhibit J.2ag Projections of Stage 2 DBPR PWS Costs

(Ground Water NTNCWSs Serving 100-499 People)

### Preferred Alternative

| riciciica    | Aite | rnativ | /6                      |       |                       |            |                         |     |                        |    |              |         |      |                    |     |              |    |          |               |       |              |      |                                         |
|--------------|------|--------|-------------------------|-------|-----------------------|------------|-------------------------|-----|------------------------|----|--------------|---------|------|--------------------|-----|--------------|----|----------|---------------|-------|--------------|------|-----------------------------------------|
|              | 1    | reatme | nt Capital              | Cost  | ts                    | Treatn     | nent O&M                | Cos | sts                    |    |              | N       | on-T | reatment Co        | sts |              |    |          | All St        | age 2 | 2 DBPR       | Cost | s                                       |
|              |      |        | 90 P<br>Confider        | ercen |                       |            | 90 Pe<br>Confi<br>Bo    |     | се                     |    |              |         |      |                    |     |              |    |          |               | Cı    | 90 Pe        |      | -                                       |
| Year         |      | lean   | Lower<br>(5th<br>%tile) | (9    | pper<br>95th<br>tile) | <br>lean   | Lower<br>(5th<br>%tile) | (9  | pper<br>95th<br>stile) |    |              | DSE     | м    | onitoring<br>Plans | Mo  | nitorina     | _  | nificant | Mean<br>/alue | _     | ower         |      | Jpper<br>h %tile)                       |
| 2005         |      | alue   |                         | ┢     |                       | alue       |                         | _   |                        |    | plementation | DSE     |      |                    |     |              |    |          | aiue          | ÷     | 701110)      | ÷    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| 2005         | \$   | -      | \$ -                    | \$    | -                     | \$<br>-    | \$ -                    | \$  | -                      | \$ | -            | \$<br>- | \$   | -                  | \$  | -            | \$ | -        | \$<br>-       | \$    |              | \$   |                                         |
|              | \$   | -      | \$ -                    | \$    | -                     | \$<br>-    | \$ -                    | \$  | -                      | \$ | 0.21         | \$<br>- | \$   | -                  | \$  | -            | \$ | -        | \$<br>0.21    | \$    | 0.21         | \$   | 0.21                                    |
| 2007         | \$   | -      | \$ -                    | \$    | -                     | \$<br>-    | \$ -                    | \$  | -                      | \$ | -            | \$<br>- | \$   | -                  | \$  | -            | \$ | -        | \$<br>-       | \$    | -            | \$   | -                                       |
| 2008         | \$   | -      | \$ -                    | \$    | -                     | \$<br>-    | \$ -                    | \$  | -                      | \$ | -            | \$<br>- | \$   | -                  | \$  | -            | \$ | -        | \$<br>        | \$    | -            | \$   | -                                       |
|              | \$   | 0.50   | \$ 0.43                 | \$    | 0.58                  | \$<br>-    | \$ -                    | \$  | -                      | \$ | 0.11         | \$<br>- | \$   | 0.17               | \$  | -            | \$ | -        | \$<br>0.79    | \$    | 0.71         | \$   | 0.86                                    |
| 2010<br>2011 | \$   | 1.01   | \$ 0.85                 | \$    | 1.16                  | \$<br>0.05 | \$ 0.05                 | \$  | 0.06                   | \$ | 0.11         | \$<br>- | \$   | -                  | \$  | -            | \$ |          | \$<br>1.17    | \$    | 1.01         | \$   | 1.33                                    |
| 2011         | \$   | 1.01   | \$ 0.85                 | \$    | 1.16                  | \$<br>0.16 | \$ 0.15                 | \$  | 0.17                   | \$ | -            | \$<br>- | \$   | -                  | \$  | 0.07         | \$ |          | \$<br>1.17    | \$    | 1.00         | \$   | 1.34                                    |
| 2012         | \$   | 1.01   | \$ 0.85<br>\$ 0.85      | \$    | 1.16                  | \$<br>0.26 | \$ 0.24<br>\$ 0.34      | \$  | 0.28                   | \$ | -            | \$<br>_ | \$   | -                  | \$  |              | \$ | -        | \$<br>1.35    | \$    | 1.17         | \$   | 1.52                                    |
| 2013         | \$   | 0.50   |                         | \$    | 0.58                  | \$         |                         | \$  | 0.40                   | _  |              | \$<br>÷ | \$   | -                  | \$  | 0.15         | \$ |          | \$<br>1.53    | \$    |              | \$   | 1.71                                    |
| 2015         | \$   | 0.50   | \$ 0.43                 | \$    | 0.56                  | \$<br>0.47 | \$ 0.44<br>\$ 0.48      | \$  | 0.51                   | \$ |              | \$<br>  | \$   |                    | \$  | 0.15<br>0.15 | \$ | -        | \$<br>0.68    | \$    | 1.01<br>0.63 | \$   | 0.72                                    |
| 2016         | \$   | -      | \$ -                    | \$    | -                     | \$<br>0.53 | \$ 0.48                 | \$  | 0.57                   | \$ |              | \$<br>- | \$   | -                  | \$  | 0.15         | \$ |          | \$<br>0.68    | \$    | 0.63         | \$   | 0.72                                    |
| 2017         | \$   | _      | \$ -                    | \$    | _                     | \$<br>0.53 | \$ 0.48                 | \$  | 0.57                   | \$ | -            | \$<br>_ | \$   |                    | \$  | 0.15         | \$ |          | \$<br>0.68    | \$    | 0.63         | \$   | 0.72                                    |
| 2018         | \$   |        | \$ -                    | \$    | -                     | \$<br>0.53 | \$ 0.48                 | \$  | 0.57                   | \$ |              | \$<br>  | \$   |                    | \$  | 0.15         | \$ |          | \$<br>0.68    | \$    | 0.63         | \$   | 0.72                                    |
| 2019         | \$   |        | \$ -                    | \$    | -                     | \$<br>0.53 | \$ 0.48                 | \$  | 0.57                   | \$ |              | \$<br>  | \$   |                    | \$  | 0.15         | \$ |          | \$<br>0.68    | \$    | 0.63         | \$   | 0.72                                    |
| 2020         | \$   |        | \$ -                    | \$    | -                     | \$<br>0.53 | \$ 0.48                 | \$  | 0.57                   | \$ |              | \$<br>- | \$   |                    | \$  | 0.15         | \$ |          | \$<br>0.68    | \$    | 0.63         | \$   | 0.72                                    |
| 2021         | \$   | -      | \$ -                    | \$    | _                     | \$<br>0.53 | \$ 0.48                 | \$  | 0.57                   | \$ |              | \$<br>- | \$   | -                  | \$  | 0.15         | \$ | -        | \$<br>0.68    | \$    | 0.63         | \$   | 0.72                                    |
| 2022         | \$   | -      | \$ -                    | \$    | -                     | \$<br>0.53 | \$ 0.48                 | \$  | 0.57                   | \$ | _            | \$<br>- | \$   | -                  | \$  | 0.15         | \$ | -        | \$<br>0.68    | \$    | 0.63         | \$   | 0.72                                    |
| 2023         | \$   | -      | \$ -                    | \$    | -                     | \$<br>0.53 | \$ 0.48                 | \$  | 0.57                   | \$ | -            | \$<br>- | \$   | -                  | \$  | 0.15         | \$ |          | \$<br>0.68    | \$    | 0.63         | \$   | 0.72                                    |
| 2024         | \$   | -      | \$ -                    | \$    | -                     | \$<br>0.53 | \$ 0.48                 | \$  | 0.57                   | \$ | -            | \$<br>- | \$   | -                  | \$  | 0.15         | \$ | -        | \$<br>0.68    | \$    | 0.63         | \$   | 0.72                                    |
| 2025         | \$   | -      | \$ -                    | \$    | -                     | \$<br>0.53 | \$ 0.48                 | \$  | 0.57                   | \$ | -            | \$<br>- | \$   | -                  | \$  | 0.15         | \$ |          | \$<br>0.68    | \$    | 0.63         | \$   | 0.72                                    |
| 2026         | \$   | -      | \$ -                    | \$    | -                     | \$<br>0.53 | \$ 0.48                 | \$  | 0.57                   | \$ | -            | \$<br>- | \$   | -                  | \$  | 0.15         | \$ |          | \$<br>0.68    | \$    | 0.63         | \$   | 0.72                                    |
| 2027         | \$   | -      | \$ -                    | \$    | -                     | \$<br>0.53 | \$ 0.48                 | \$  | 0.57                   | \$ | -            | \$<br>- | \$   | -                  | \$  | 0.15         | \$ | -        | \$<br>0.68    | \$    | 0.63         | \$   | 0.72                                    |
| 2028         | \$   | -      | \$ -                    | \$    | -                     | \$<br>0.53 | \$ 0.48                 | \$  | 0.57                   | \$ | -            | \$<br>- | \$   | -                  | \$  | 0.15         | \$ |          | \$<br>0.68    | \$    | 0.63         | \$   | 0.72                                    |
| 2029         | \$   | -      | \$ -                    | \$    | -                     | \$<br>0.53 | \$ 0.48                 | \$  | 0.57                   | \$ | -            | \$<br>- | \$   | -                  | \$  | 0.15         | \$ | -        | \$<br>0.68    | \$    | 0.63         | \$   | 0.72                                    |

## Exhibit J.2ah Projections of Stage 2 DBPR PWS Costs

(Ground Water NTNCWSs Serving 500-999 People)

#### Preferred Alternative

| Preferred | Alte | ernati       | ive |                        |    |                         |               |                         |                          |                    |    |     |     |                     |      |           |           |    |              |       |        |        |       |
|-----------|------|--------------|-----|------------------------|----|-------------------------|---------------|-------------------------|--------------------------|--------------------|----|-----|-----|---------------------|------|-----------|-----------|----|--------------|-------|--------|--------|-------|
|           |      | Treatm       | ent | Capital                | Co | sts                     | Treatn        | nent O&N                | I Costs                  |                    |    | ١   | lon | -Treatment Co       | osts |           |           |    | All St       | age 2 | 2 DBPR | Cost   | s     |
|           |      |              | Co  | 90 Pe                  |    |                         |               | Confi                   | ercent<br>dence<br>und   |                    |    |     |     |                     |      |           |           |    |              | C     | 90 Pe  | ercent | -     |
| Year      |      | Mean<br>alue |     | ower<br>(5th<br>%tile) | (  | Jpper<br>95th<br>6tile) | Mean<br>Value | Lower<br>(5th<br>%tile) | Upper<br>(95th<br>%tile) | <br>plementation   |    | DSE | ,   | Monitoring<br>Plans | м    | onitoring | gnificant |    | Mean<br>alue | _     | ower   |        | Jpper |
| 2005      | s    | aiue         | \$  | ,                      | \$ |                         | \$ -          | \$ -                    | \$ -                     | \$<br>Diementation | \$ | -   | 9   |                     | \$   | omtoring  | \$        | s  | aiue         | \$    | ,,     | \$     | . , , |
| 2005      | \$   | -            | \$  | _                      | \$ | -                       |               | \$ -                    | \$ -                     | \$<br>             | _  | _   | 3   |                     | _    |           | \$<br>    | ·  | 0.07         | \$    |        | \$     | 0.07  |
| 2007      | \$   | -            | \$  | _                      | ·  | -                       | \$ -          |                         | •                        | \$<br>0.07         | \$ | _   | 3   |                     | \$   |           | \$        | \$ | 0.07         | ·     | 0.07   | i i    | 0.07  |
| 2007      | \$   | -            | \$  |                        | \$ | -                       | \$ -<br>\$ -  | \$ -<br>\$ -            | \$ -<br>\$ -             | \$<br>-            | \$ | -   | 3   |                     | \$   |           | \$<br>    | \$ | -            | \$    | -      | \$     | -     |
| 2009      | \$   | 0.25         | \$  | 0.21                   | \$ | 0.29                    | \$ -          | \$ -                    | \$ -                     | \$<br>0.03         | \$ | -   | \$  |                     | \$   |           | \$<br>    | \$ | 0.34         | \$    | 0.30   | \$     | 0.38  |
| 2010      | \$   | 0.50         | \$  |                        | \$ | 0.29                    | \$ 0.02       | \$ 0.02                 | \$ 0.02                  | \$<br>0.03         | \$ | -   | 9   |                     | \$   |           | \$<br>    | \$ | 0.55         | \$    | 0.30   | \$     | 0.63  |
| 2011      | \$   | 0.50         | \$  |                        | \$ | 0.57                    | \$ 0.02       | \$ 0.02                 | \$ 0.07                  | \$<br>0.03         | \$ | -   | 9   |                     | \$   |           | \$<br>    | \$ | 0.56         | \$    | 0.48   | \$     | 0.65  |
| 2012      | \$   | 0.50         | \$  |                        | \$ | 0.57                    | \$ 0.11       | \$ 0.10                 | \$ 0.12                  | \$                 | \$ |     | 9   |                     | \$   | 0.13      | \$<br>-   | \$ | 0.74         | \$    | 0.65   | \$     | 0.83  |
| 2013      | \$   | 0.50         | \$  |                        | \$ | 0.57                    | \$ 0.16       | \$ 0.14                 | \$ 0.17                  | \$                 | \$ | -   | 9   |                     | \$   | 0.26      | \$<br>-   | \$ | 0.91         | \$    | 0.82   | \$     | 1.00  |
| 2014      | \$   | 0.25         | \$  | _                      | \$ | 0.29                    | \$ 0.20       | \$ 0.18                 | \$ 0.21                  | \$                 | \$ | -   | 9   |                     | \$   | 0.26      | \$<br>-   | \$ | 0.71         | \$    | 0.65   | \$     | 0.77  |
| 2015      | \$   | -            | \$  | -                      | \$ |                         | \$ 0.22       | \$ 0.20                 | \$ 0.24                  | \$                 | \$ |     | \$  |                     | \$   | 0.26      | \$<br>-   | \$ | 0.48         | \$    | 0.47   | \$     | 0.50  |
| 2016      | \$   | -            | \$  | -                      | \$ | -                       | \$ 0.22       | \$ 0.20                 | \$ 0.24                  | \$<br>-            | \$ | -   | \$  | -                   | \$   | 0.26      | \$<br>-   | \$ | 0.48         | \$    | 0.47   | \$     | 0.50  |
| 2017      | \$   | -            | \$  | -                      | \$ | -                       | \$ 0.22       | \$ 0.20                 | \$ 0.24                  | \$<br>-            | \$ | -   | \$  | -                   | \$   | 0.26      | \$<br>-   | \$ | 0.48         | \$    | 0.47   | \$     | 0.50  |
| 2018      | \$   | -            | \$  | -                      | \$ | -                       | \$ 0.22       | \$ 0.20                 | \$ 0.24                  | \$<br>-            | \$ | -   | \$  | -                   | \$   | 0.26      | \$<br>-   | \$ | 0.48         | \$    | 0.47   | \$     | 0.50  |
| 2019      | \$   | -            | \$  | -                      | \$ | -                       | \$ 0.22       | \$ 0.20                 | \$ 0.24                  | \$<br>-            | \$ | -   | \$  | -                   | \$   | 0.26      | \$<br>-   | \$ | 0.48         | \$    | 0.47   | \$     | 0.50  |
| 2020      | \$   | -            | \$  | -                      | \$ | -                       | \$ 0.22       | \$ 0.20                 | \$ 0.24                  | \$<br>-            | \$ | -   | \$  | -                   | \$   | 0.26      | \$<br>-   | \$ | 0.48         | \$    | 0.47   | \$     | 0.50  |
| 2021      | \$   | -            | \$  | -                      | \$ | -                       | \$ 0.22       | \$ 0.20                 | \$ 0.24                  | \$<br>-            | \$ | -   | \$  | -                   | \$   | 0.26      | \$<br>-   | \$ | 0.48         | \$    | 0.47   | \$     | 0.50  |
| 2022      | \$   | -            | \$  | -                      | \$ | -                       | \$ 0.22       | \$ 0.20                 | \$ 0.24                  | \$<br>-            | \$ | -   | \$  | -                   | \$   | 0.26      | \$<br>-   | \$ | 0.48         | \$    | 0.47   | \$     | 0.50  |
| 2023      | \$   | -            | \$  | -                      | \$ | -                       | \$ 0.22       | \$ 0.20                 | \$ 0.24                  | \$<br>-            | \$ | -   | \$  | -                   | \$   | 0.26      | \$<br>-   | \$ | 0.48         | \$    | 0.47   | \$     | 0.50  |
| 2024      | \$   | -            | \$  | -                      | \$ | -                       | \$ 0.22       | \$ 0.20                 | \$ 0.24                  | \$<br>-            | \$ | -   | \$  | -                   | \$   | 0.26      | \$<br>-   | \$ | 0.48         | \$    | 0.47   | \$     | 0.50  |
| 2025      | \$   | -            | \$  | -                      | \$ | -                       | \$ 0.22       | \$ 0.20                 | \$ 0.24                  | \$<br>-            | \$ | -   | \$  | -                   | \$   | 0.26      | \$<br>-   | \$ | 0.48         | \$    | 0.47   | \$     | 0.50  |
| 2026      | \$   | -            | \$  | -                      | \$ | -                       | \$ 0.22       | \$ 0.20                 | \$ 0.24                  | \$<br>-            | \$ | -   | \$  | -                   | \$   | 0.26      | \$<br>-   | \$ | 0.48         | \$    | 0.47   | \$     | 0.50  |
| 2027      | \$   | -            | \$  | -                      | \$ | -                       | \$ 0.22       | \$ 0.20                 | \$ 0.24                  | \$<br>-            | \$ | -   | \$  | -                   | \$   | 0.26      | \$<br>-   | \$ | 0.48         | \$    | 0.47   | \$     | 0.50  |
| 2028      | \$   | -            | \$  | -                      | \$ | -                       | \$ 0.22       | \$ 0.20                 | \$ 0.24                  | \$<br>-            | \$ | -   | \$  | -                   | \$   | 0.26      | \$<br>-   | \$ | 0.48         | \$    | 0.47   | \$     | 0.50  |
| 2029      | \$   | -            | \$  |                        | \$ |                         | \$ 0.22       | \$ 0.20                 | \$ 0.24                  | \$<br>-            | \$ | -   | \$  | -                   | \$   | 0.26      | \$<br>-   | \$ | 0.48         | \$    | 0.47   | \$     | 0.50  |

## Exhibit J.2ai Projections of Stage 2 DBPR PWS Costs

(Ground Water NTNCWSs Serving 1,000-3,299 People)

### Preferred Alternative

| Preferred | AIL | ernai  | ive |                        |     |                       |         |                         |      |                        |    |            |      |       |           |       |           |    |          | _  |        |       |        |        |                   |
|-----------|-----|--------|-----|------------------------|-----|-----------------------|---------|-------------------------|------|------------------------|----|------------|------|-------|-----------|-------|-----------|----|----------|----|--------|-------|--------|--------|-------------------|
|           |     | Treatm | ent | Capital                | Cos | sts                   | Treat   | ment O&                 | M Co | sts                    |    |            | No   | n-Tre | eatment C | costs | :         |    |          |    | All St | age 2 | DBPR   | Cost   | s                 |
|           |     |        | Co  | 90 Pe                  |     | -                     |         | 90 P<br>Conf<br>Bo      | iden | ice<br>i               |    |            |      |       |           |       |           |    |          |    |        | Co    | 90 Pe  | ercent | -                 |
|           |     | lean   |     | ower<br>(5th<br>6tile) | (9  | pper<br>95th<br>tile) | Mean    | Lower<br>(5th<br>%tile) | (9   | pper<br>95th<br>stile) |    |            |      |       | nitoring  |       |           | -  | nificant |    | Mean   |       | ower   |        | Jpper<br>h %tile) |
| Year      | _   | alue   | Ė   | otile)                 | H   | ille)                 | Value   |                         | H.   | ille)                  | _  | ementation | IDSE |       | Plans     | _     | onitoring |    | ursion   |    | /alue  | ·     | %tile) | ÷      | i %tile)          |
| 2005      | \$  | -      | \$  | -                      | \$  | -                     | \$ -    | \$ -                    | \$   | -                      | \$ | -          | \$ - | \$    | -         | \$    | -         | \$ | -        | \$ | -      | \$    | -      | \$     | -                 |
| 2006      | \$  | -      | \$  | -                      | \$  | -                     | \$ -    | \$ -                    | \$   | -                      | \$ | 0.03       | \$ - | \$    | -         | \$    | -         | \$ | -        | \$ | 0.03   | \$    | 0.03   | \$     | 0.03              |
| 2007      | \$  | -      | \$  | -                      | \$  | -                     | \$ -    | \$ -                    | \$   | -                      | \$ | -          | \$ - | \$    | -         | \$    | -         | \$ | -        | \$ | -      | \$    | -      | \$     | -                 |
| 2008      | \$  | -      | \$  | -                      | \$  | -                     | \$ -    | \$ -                    | \$   | -                      | \$ | -          | \$ - | \$    | -         | \$    | -         | \$ | -        | \$ | -      | \$    | -      | \$     | -                 |
| 2009      | \$  | 0.16   | \$  | 0.13                   | \$  | 0.19                  | \$ -    | \$ -                    | \$   | -                      | \$ | 0.01       | \$ - | \$    | 0.02      | \$    | -         | \$ | -        | \$ | 0.20   | \$    | 0.17   | \$     | 0.23              |
| 2010      | \$  | 0.32   | \$  | 0.26                   | \$  | 0.38                  | \$ 0.01 | \$ 0.01                 | \$   | 0.01                   | \$ | 0.01       | \$ - | \$    | -         | \$    | -         | \$ | -        | \$ | 0.34   | \$    | 0.29   | \$     | 0.40              |
| 2011      | \$  | 0.32   | \$  | 0.26                   | \$  | 0.38                  | \$ 0.03 | \$ 0.03                 | \$   | 0.03                   | \$ | -          | \$ - | \$    | -         | \$    | -         | \$ | -        | \$ | 0.35   | \$    | 0.29   | \$     | 0.41              |
| 2012      | \$  | 0.32   | \$  | 0.26                   | \$  | 0.38                  | \$ 0.05 | \$ 0.04                 | \$   | 0.05                   | \$ | -          | \$ - | \$    | -         | \$    | 0.06      | \$ | -        | \$ | 0.42   | \$    | 0.36   | \$     | 0.49              |
| 2013      | \$  | 0.32   | \$  | 0.26                   | \$  | 0.38                  | \$ 0.07 | \$ 0.06                 | \$   | 0.07                   | \$ | -          | \$ - | \$    | -         | \$    | 0.11      | \$ | -        | \$ | 0.50   | \$    | 0.44   | \$     | 0.56              |
| 2014      | \$  | 0.16   | \$  | 0.13                   | \$  | 0.19                  | \$ 0.09 | \$ 0.08                 | \$   | 0.09                   | \$ | -          | \$ - | \$    | -         | \$    | 0.11      | \$ | -        | \$ | 0.36   | \$    | 0.32   | \$     | 0.39              |
| 2015      | \$  | -      | \$  | -                      | \$  | -                     | \$ 0.10 | \$ 0.09                 | \$   | 0.10                   | \$ | -          | \$ - | \$    | -         | \$    | 0.11      | \$ | -        | \$ | 0.21   | \$    | 0.20   | \$     | 0.22              |
| 2016      | \$  | -      | \$  | -                      | \$  | -                     | \$ 0.10 | \$ 0.09                 | \$   | 0.10                   | \$ | -          | \$ - | \$    | -         | \$    | 0.11      | \$ | -        | \$ | 0.21   | \$    | 0.20   | \$     | 0.22              |
| 2017      | \$  | -      | \$  | -                      | \$  | -                     | \$ 0.10 | \$ 0.09                 | \$   | 0.10                   | \$ | -          | \$ - | \$    | -         | \$    | 0.11      | \$ | -        | \$ | 0.21   | \$    | 0.20   | \$     | 0.22              |
| 2018      | \$  | -      | \$  | -                      | \$  | -                     | \$ 0.10 | \$ 0.09                 | \$   | 0.10                   | \$ | -          | \$ - | \$    | -         | \$    | 0.11      | \$ | -        | \$ | 0.21   | \$    | 0.20   | \$     | 0.22              |
| 2019      | \$  | -      | \$  | -                      | \$  | -                     | \$ 0.10 | \$ 0.09                 | \$   | 0.10                   | \$ | -          | \$ - | \$    | -         | \$    | 0.11      | \$ | -        | \$ | 0.21   | \$    | 0.20   | \$     | 0.22              |
| 2020      | \$  | -      | \$  | -                      | \$  | -                     | \$ 0.10 | \$ 0.09                 | \$   | 0.10                   | \$ | -          | \$ - | \$    | -         | \$    | 0.11      | \$ | -        | \$ | 0.21   | \$    | 0.20   | \$     | 0.22              |
| 2021      | \$  | -      | \$  | -                      | \$  | -                     | \$ 0.10 | \$ 0.09                 | \$   | 0.10                   | \$ | -          | \$ - | \$    | -         | \$    | 0.11      | \$ | -        | \$ | 0.21   | \$    | 0.20   | \$     | 0.22              |
| 2022      | \$  | -      | \$  | -                      | \$  | -                     | \$ 0.10 | \$ 0.09                 | \$   | 0.10                   | \$ | -          | \$ - | \$    | -         | \$    | 0.11      | \$ | -        | \$ | 0.21   | \$    | 0.20   | \$     | 0.22              |
| 2023      | \$  | -      | \$  | -                      | \$  | -                     | \$ 0.10 | \$ 0.09                 | \$   | 0.10                   | \$ | -          | \$ - | \$    | -         | \$    | 0.11      | \$ | -        | \$ | 0.21   | \$    | 0.20   | \$     | 0.22              |
| 2024      | \$  | -      | \$  | -                      | \$  | -                     | \$ 0.10 | \$ 0.09                 | \$   | 0.10                   | \$ | -          | \$ - | \$    | -         | \$    | 0.11      | \$ | -        | \$ | 0.21   | \$    | 0.20   | \$     | 0.22              |
| 2025      | \$  | -      | \$  | -                      | \$  | -                     | \$ 0.10 | \$ 0.09                 | \$   | 0.10                   | \$ | -          | \$ - | \$    | -         | \$    | 0.11      | \$ | -        | \$ | 0.21   | \$    | 0.20   | \$     | 0.22              |
| 2026      | \$  | -      | \$  | -                      | \$  | -                     | \$ 0.10 | \$ 0.09                 | \$   | 0.10                   | \$ | -          | \$ - | \$    | -         | \$    | 0.11      | \$ | -        | \$ | 0.21   | \$    | 0.20   | \$     | 0.22              |
| 2027      | \$  | -      | \$  | -                      | \$  | -                     | \$ 0.10 | \$ 0.09                 | \$   | 0.10                   | \$ | -          | \$ - | \$    | -         | \$    | 0.11      | \$ | -        | \$ | 0.21   | \$    | 0.20   | \$     | 0.22              |
| 2028      | \$  | -      | \$  | -                      | \$  | -                     | \$ 0.10 | \$ 0.09                 | \$   | 0.10                   | \$ | -          | \$ - | \$    | -         | \$    | 0.11      | \$ | -        | \$ | 0.21   | \$    | 0.20   | \$     | 0.22              |
| 2029      | \$  | -      | \$  | -                      | \$  | -                     | \$ 0.10 | \$ 0.09                 | \$   | 0.10                   | \$ | -          | \$ - | \$    | -         | \$    | 0.11      | \$ | -        | \$ | 0.21   | \$    | 0.20   | \$     | 0.22              |

Note: All values in millions of year 2003 dollars.

Source: Derived from Exhibits J.1a and Exhibits D.1 through D.6.

## Exhibit J.2aj Projections of Stage 2 DBPR PWSCosts

(Ground Water NTNCWSs Serving 3,300-9,999 People)

#### Preferred Alternative

| Preferred | Alt | ernat        | ive | 9                       |             |                        |              |      |                |       |                |     |             |    |     |       |                    |    |          |    |          |           |               |       |                |        |                   |
|-----------|-----|--------------|-----|-------------------------|-------------|------------------------|--------------|------|----------------|-------|----------------|-----|-------------|----|-----|-------|--------------------|----|----------|----|----------|-----------|---------------|-------|----------------|--------|-------------------|
|           | T   | reatm        | ent | Capital                 | Cos         | sts                    | Trea         | tmen | t O&M (        | Costs |                |     |             |    | No  | n-Tre | eatment Cos        | ts |          |    |          |           | All St        | age 2 | DBPR           | Costs  | s                 |
|           |     |              |     | 90 Pe<br>Confid<br>Bot  | lenc<br>ind | e                      |              | Cı   | 90 Pe          |       |                |     |             |    |     |       |                    |    |          |    |          |           |               | Cı    | 90 Pe          | ercent | -                 |
| Year      |     | lean<br>alue |     | Lower<br>(5th<br>%tile) | (9          | pper<br>95th<br>stile) | Mean<br>alue | _    | ower<br>%tile) |       | pper<br>%tile) | Imp | lementation | ı  | DSE | м     | onitoring<br>Plans | Мо | nitoring | _  | nificant |           | Wean<br>/alue | _     | ower<br>%tile) |        | Jpper<br>n %tile) |
| 2005      | \$  | -            | \$  | -                       | \$          | -                      | \$<br>-      | \$   | -              | \$    | -              | \$  | -           | \$ | -   | \$    | -                  | \$ | -        | \$ | -        | \$        | -             | \$    | -              | \$     | -                 |
| 2006      | \$  | -            | \$  | -                       | \$          | -                      | \$<br>-      | \$   | -              | \$    | -              | \$  | 0.00        | \$ | -   | \$    | -                  | \$ | -        | \$ | -        | \$        | 0.00          | \$    | 0.00           | \$     | 0.00              |
| 2007      | \$  | -            | \$  | -                       | \$          | -                      | \$<br>-      | \$   | -              | \$    | -              | \$  | -           | \$ | -   | \$    | -                  | \$ | -        | \$ | -        | \$        | -             | \$    | -              | \$     | -                 |
| 2008      | \$  | -            | \$  | -                       | \$          | -                      | \$<br>-      | \$   | -              | \$    | -              | \$  | -           | \$ | -   | \$    | -                  | \$ | -        | \$ | -        | \$        | -             | \$    | -              | \$     | -                 |
| 2009      | \$  | 0.05         | \$  | 0.04                    | \$          | 0.06                   | \$<br>-      | \$   | -              | \$    | -              | \$  | 0.00        | \$ | -   | \$    | 0.00               | \$ | -        | \$ | -        | \$        | 0.05          | \$    | 0.04           | \$     | 0.06              |
| 2010      | \$  | 0.09         | \$  | 0.08                    | \$          | 0.11                   | \$<br>0.00   | \$   | 0.00           | \$    | 0.00           | \$  | 0.00        | \$ | -   | \$    | -                  | \$ | -        | \$ | -        | \$        | 0.10          | \$    | 0.08           | \$     | 0.11              |
| 2011      | \$  | 0.09         | \$  | 0.08                    | \$          | 0.11                   | \$<br>0.00   | \$   | 0.00           | \$    | 0.00           | \$  | -           | \$ | -   | \$    | -                  | \$ | -        | \$ | -        | \$        | 0.10          | \$    | 0.08           | \$     | 0.11              |
| 2012      | \$  | 0.09         | \$  | 0.08                    | \$          | 0.11                   | \$<br>0.01   | \$   | 0.01           | \$    | 0.01           | \$  | -           | \$ | -   | \$    | -                  | \$ | 0.00     | \$ | -        | \$        | 0.10          | \$    | 0.09           | \$     | 0.12              |
| 2013      | \$  | 0.09         | \$  | 0.08                    | \$          | 0.11                   | \$<br>0.01   | \$   | 0.01           | \$    | 0.01           | \$  | -           | \$ | -   | \$    |                    | \$ | 0.01     | \$ | -        | \$        | 0.11          | \$    | 0.09           | \$     | 0.13              |
| 2014      | \$  | 0.05         | \$  | 0.04                    | \$          | 0.06                   | \$<br>0.01   | \$   | 0.01           | \$    | 0.01           | \$  | -           | \$ | -   | \$    |                    | \$ | 0.01     | \$ | -        | \$        | 0.07          | \$    | 0.06           | \$     | 0.08              |
| 2015      | \$  | -            | \$  | -                       | \$          | -                      | \$<br>0.01   | \$   | 0.01           | \$    | 0.01           | \$  |             | \$ | -   | \$    |                    | \$ | 0.01     | \$ | -        | \$        | 0.02          | \$    | 0.02           | \$     | 0.02              |
| 2016      | \$  | -            | \$  | -                       | \$          | -                      | \$<br>0.01   | \$   | 0.01           | \$    | 0.01           | \$  |             | \$ | -   | \$    |                    | \$ | 0.01     | \$ | -        | \$        | 0.02          | \$    | 0.02           | \$     | 0.02              |
| 2017      | \$  | -            | \$  | -                       | \$          | -                      | \$<br>0.01   | \$   | 0.01           | \$    | 0.01           | \$  | -           | \$ | -   | \$    |                    | \$ | 0.01     | \$ |          | <b>\$</b> | 0.02          | \$    | 0.02           | \$     | 0.02              |
| 2018      | \$  | -            | \$  | -                       | \$          | -                      | \$<br>0.01   | \$   | 0.01           | \$    | 0.01           | \$  | -           | \$ | -   | \$    |                    | \$ | 0.01     | \$ |          | <b>\$</b> | 0.02          | \$    | 0.02           | \$     | 0.02              |
| 2019      | \$  | -            | \$  | -                       | \$          | -                      | \$<br>0.01   | \$   | 0.01           | \$    | 0.01           | \$  | -           | \$ | -   | \$    | -                  | \$ | 0.01     | \$ | -        | \$        | 0.02          | \$    | 0.02           | \$     | 0.02              |
| 2020      | \$  | -            | \$  | -                       | \$          | -                      | \$<br>0.01   | \$   | 0.01           | \$    | 0.01           | \$  | -           | \$ | -   | \$    | -                  | \$ | 0.01     | \$ | -        | \$        | 0.02          | \$    | 0.02           | \$     | 0.02              |
| 2021      | \$  | -            | \$  | -                       | \$          | -                      | \$<br>0.01   | \$   | 0.01           | \$    | 0.01           | \$  | -           | \$ | -   | \$    | -                  | \$ | 0.01     | \$ | -        | \$        | 0.02          | \$    | 0.02           | \$     | 0.02              |
| 2022      | \$  | -            | \$  | -                       | \$          | -                      | \$<br>0.01   | \$   | 0.01           | \$    | 0.01           | \$  | -           | \$ | -   | \$    | -                  | \$ | 0.01     | \$ | -        | \$        | 0.02          | \$    | 0.02           | \$     | 0.02              |
| 2023      | \$  | -            | \$  | -                       | \$          | -                      | \$<br>0.01   | \$   | 0.01           | \$    | 0.01           | \$  | -           | \$ | -   | \$    | -                  | \$ | 0.01     | \$ | -        | \$        | 0.02          | \$    | 0.02           | \$     | 0.02              |
| 2024      | \$  | -            | \$  | -                       | \$          | -                      | \$<br>0.01   | \$   | 0.01           | \$    | 0.01           | \$  | -           | \$ | -   | \$    | -                  | \$ | 0.01     | \$ | -        | \$        | 0.02          | \$    | 0.02           | \$     | 0.02              |
| 2025      | \$  | -            | \$  | -                       | \$          | -                      | \$<br>0.01   | \$   | 0.01           | \$    | 0.01           | \$  | -           | \$ | -   | \$    | -                  | \$ | 0.01     | \$ | -        | \$        | 0.02          | \$    | 0.02           | \$     | 0.02              |
| 2026      | \$  | -            | \$  | -                       | \$          | -                      | \$<br>0.01   | \$   | 0.01           | \$    | 0.01           | \$  | -           | \$ | -   | \$    | -                  | \$ | 0.01     | \$ | -        | \$        | 0.02          | \$    | 0.02           | \$     | 0.02              |
| 2027      | \$  | -            | \$  | -                       | \$          | -                      | \$<br>0.01   | \$   | 0.01           | \$    | 0.01           | \$  | -           | \$ | -   | \$    | -                  | \$ | 0.01     | \$ | -        | \$        | 0.02          | \$    | 0.02           | \$     | 0.02              |
| 2028      | \$  | -            | \$  | -                       | \$          | -                      | \$<br>0.01   | \$   | 0.01           | \$    | 0.01           | \$  | -           | \$ | -   | \$    | -                  | \$ | 0.01     | \$ | -        | \$        | 0.02          | \$    | 0.02           | \$     | 0.02              |
| 2029      | \$  | -            | \$  | -                       | \$          | -                      | \$<br>0.01   | \$   | 0.01           | \$    | 0.01           | \$  | -           | \$ | -   | \$    | -                  | \$ | 0.01     | \$ | -        | \$        | 0.02          | \$    | 0.02           | \$     | 0.02              |

## Exhibit J.2ak Projections of Stage 2 DBPR PWS Costs

(Ground Water NTNCWSs Serving 10,000-49,999 People)

### Preferred Alternative

|      |    | Treatm       | nent | Capital      | l Co | sts           | Tre          | atme | ent O&M                | Costs          |    |               | N          | on- | -Treatment Co       | osts | 6          |    |           |    | All St        | age 2 | 2 DBPR          | Cos | ts        |
|------|----|--------------|------|--------------|------|---------------|--------------|------|------------------------|----------------|----|---------------|------------|-----|---------------------|------|------------|----|-----------|----|---------------|-------|-----------------|-----|-----------|
|      |    |              | Со   | 90 Pe        |      |               |              |      | 90 Pe<br>Confid<br>Bot | dence          |    |               |            |     |                     |      |            |    |           |    |               | C     | 90 P<br>onfider |     |           |
|      | ١. | •            | 1    | ower<br>(5th |      | Jpper<br>95th |              |      | Lower<br>(5th          | Upper<br>(95th |    |               |            |     |                     |      |            | Si | gnificant | ١. |               |       | ower            |     | Upper     |
| Year |    | lean<br>alue |      | tile)        | ,    | 6tile)        | Mear<br>Valu |      | %tile)                 | %tile)         | In | nplementation | IDSE       | IN  | Monitoring<br>Plans | N    | lonitoring |    | cursion   |    | Mean<br>'alue | _     | %tile)          |     | th %tile) |
| 2005 | \$ | -            | \$   | -            | \$   | -             | \$ -         | T    | \$ -                   | \$ -           | \$ | -             | \$<br>-    | \$  | - 8                 | \$   | -          | \$ | -         | \$ | -             | \$    | -               | \$  | -         |
| 2006 | \$ | -            | \$   | -            | \$   | -             | \$ -         |      | \$ -                   | \$ -           | \$ | 0.00          | \$<br>-    | \$  | -                   | \$   | -          | \$ | -         | \$ | 0.00          | \$    | 0.00            | \$  | 0.00      |
| 2007 | \$ | -            | \$   | -            | \$   | -             | \$ -         |      | \$ -                   | \$ -           | \$ | -             | \$<br>0.00 | \$  | -                   | \$   | -          | \$ | -         | \$ | 0.00          | \$    | 0.00            | \$  | 0.00      |
| 2008 | \$ | -            | \$   | -            | \$   | -             | \$ -         |      | \$ -                   | \$ -           | \$ | -             | \$<br>0.00 | \$  | 0.00                | \$   | -          | \$ | -         | \$ | 0.00          | \$    | 0.00            | \$  | 0.00      |
| 2009 | \$ | 0.01         | \$   | 0.01         | \$   | 0.01          | \$ -         |      | \$ -                   | \$ -           | \$ | 0.00          | \$<br>-    | \$  | 0.00                | \$   |            | \$ | -         | \$ | 0.01          | \$    | 0.01            | \$  | 0.01      |
| 2010 | \$ | 0.02         | \$   | 0.02         | \$   | 0.02          | \$ 0.0       | 00 3 | 0.00                   | \$ 0.00        | \$ | 0.00          | \$<br>-    | \$  | -                   | \$   | -          | \$ | -         | \$ | 0.02          | \$    | 0.02            | \$  | 0.02      |
| 2011 | \$ | 0.02         | \$   | 0.02         | \$   | 0.02          | \$ 0.0       | 00 3 | 0.00                   | \$ 0.00        | \$ | -             | \$<br>-    | \$  | -                   | \$   | -          | \$ | -         | \$ | 0.02          | \$    | 0.02            | \$  | 0.02      |
| 2012 | \$ | 0.02         | \$   | 0.02         | \$   | 0.02          | \$ 0.0       | 00 3 | 0.00                   | \$ 0.00        | \$ | -             | \$<br>-    | \$  | -                   | \$   | 0.01       | \$ | -         | \$ | 0.03          | \$    | 0.03            | \$  | 0.03      |
| 2013 | \$ | 0.02         | \$   | 0.02         | \$   | 0.02          | \$ 0.0       | 01 3 | \$ 0.00                | \$ 0.01        | \$ | -             | \$<br>-    | \$  | -                   | \$   | 0.02       | \$ | -         | \$ | 0.04          | \$    | 0.04            | \$  | 0.04      |
| 2014 | \$ | 0.01         | \$   | 0.01         | \$   | 0.01          | \$ 0.0       | 01 3 | \$ 0.01                | \$ 0.01        | \$ | -             | \$<br>-    | \$  | -                   | \$   | 0.02       | \$ | -         | \$ | 0.03          | \$    | 0.03            | \$  | 0.03      |
| 2015 | \$ | -            | \$   | -            | \$   | -             | \$ 0.0       | )1 : | 0.01                   | \$ 0.01        | \$ | -             | \$<br>-    | \$  | -                   | \$   | 0.02       | \$ | -         | \$ | 0.02          | \$    | 0.02            | \$  | 0.02      |
| 2016 | \$ | -            | \$   | -            | \$   | -             | \$ 0.0       | )1 : | 0.01                   | \$ 0.01        | \$ | -             | \$<br>-    | \$  | -                   | \$   | 0.02       | \$ | -         | \$ | 0.02          | \$    | 0.02            | \$  | 0.02      |
| 2017 | \$ | -            | \$   | -            | \$   | -             | \$ 0.0       | )1 : | 0.01                   | \$ 0.01        | \$ | -             | \$<br>-    | \$  | -                   | \$   | 0.02       | \$ | -         | \$ | 0.02          | \$    | 0.02            | \$  | 0.02      |
| 2018 | \$ | -            | \$   | -            | \$   | -             | \$ 0.0       | )1 : | 0.01                   | \$ 0.01        | \$ | -             | \$<br>-    | \$  | -                   | \$   | 0.02       | \$ | -         | \$ | 0.02          | \$    | 0.02            | \$  | 0.02      |
| 2019 | \$ | -            | \$   | -            | \$   | -             | \$ 0.0       | )1 : | 0.01                   | \$ 0.01        | \$ | -             | \$<br>-    | \$  | -                   | \$   | 0.02       | \$ | -         | \$ | 0.02          | \$    | 0.02            | \$  | 0.02      |
| 2020 | \$ | -            | \$   | -            | \$   | -             | \$ 0.0       | )1 : | 0.01                   | \$ 0.01        | \$ | -             | \$<br>-    | \$  | -                   | \$   | 0.02       | \$ | -         | \$ | 0.02          | \$    | 0.02            | \$  | 0.02      |
| 2021 | \$ | -            | \$   | -            | \$   | -             | \$ 0.0       | _    | 0.01                   | \$ 0.01        | \$ | -             | \$         | \$  |                     | \$   | 0.02       | \$ | -         | \$ | 0.02          | \$    | 0.02            | \$  | 0.02      |
| 2022 | \$ | -            | \$   | -            | \$   | -             | \$ 0.0       | _    | 0.01                   | \$ 0.01        | \$ | -             | \$         | \$  |                     | \$   | 0.02       | \$ | -         | \$ | 0.02          | \$    | 0.02            | \$  | 0.02      |
| 2023 | \$ | -            | \$   | -            | \$   | -             | \$ 0.0       | _    |                        | \$ 0.01        | \$ | -             | \$         | \$  |                     | \$   | 0.02       | \$ | -         | \$ | 0.02          | \$    | 0.02            | \$  | 0.02      |
| 2024 | \$ | -            | \$   | -            | \$   | -             | \$ 0.0       | _    |                        | \$ 0.01        | \$ | -             | \$         | \$  |                     | \$   | 0.02       | \$ | -         | \$ | 0.02          | \$    | 0.02            | \$  | 0.02      |
| 2025 | \$ | -            | \$   | -            | \$   | -             | \$ 0.0       | _    |                        | \$ 0.01        | \$ | -             | \$         | \$  |                     | \$   | 0.02       | \$ | -         | \$ | 0.02          | \$    | 0.02            | \$  | 0.02      |
| 2026 | \$ | -            | \$   | -            | \$   | -             | \$ 0.0       | _    |                        | \$ 0.01        | \$ | -             | \$         | \$  |                     | \$   | 0.02       | \$ | -         | \$ | 0.02          | \$    | 0.02            | \$  | 0.02      |
| 2027 | \$ | -            | \$   | -            | \$   | -             | \$ 0.0       | _    |                        | \$ 0.01        | \$ | -             | \$         | \$  |                     | \$   | 0.02       | \$ | -         | \$ | 0.02          | \$    | 0.02            | \$  | 0.02      |
| 2028 | \$ | -            | \$   | -            | \$   | -             | \$ 0.0       | _    |                        | \$ 0.01        | \$ | -             | \$         | \$  |                     | \$   | 0.02       | \$ | -         | \$ | 0.02          | \$    | 0.02            | \$  | 0.02      |
| 2029 | \$ | -            | \$   | -            | \$   | -             | \$ 0.0       | 01 3 | 0.01                   | \$ 0.01        | \$ | -             | \$<br>-    | \$  | - 8                 | \$   | 0.02       | \$ | -         | \$ | 0.02          | \$    | 0.02            | \$  | 0.02      |

## Exhibit J.2al Projections of Stage 2 DBPR PWS Costs

(Ground Water NTNCWSs Serving 50,000-99,999 People)

### Preferred Alternative

| Preferred | AIT | ernat        | ive | •                       |    |                         |               |     |                        |                          |    |              |    |      |      |                     |      |           |    |                        |               |       |                |        |                   |
|-----------|-----|--------------|-----|-------------------------|----|-------------------------|---------------|-----|------------------------|--------------------------|----|--------------|----|------|------|---------------------|------|-----------|----|------------------------|---------------|-------|----------------|--------|-------------------|
|           | -   | Treatm       | ent | Capital                 | Co | sts                     | Treat         | men | t O&M                  | Costs                    |    |              |    | N    | lon- | Treatment C         | osts | 3         |    |                        | All St        | age 2 | DBPR           | Cost   | s                 |
|           |     |              | Co  | 90 Pe                   |    |                         |               |     | 90 Pe<br>Confid<br>Bot | dence                    |    |              |    |      |      |                     |      |           |    |                        |               | C     | 90 Pe          | ercent |                   |
| Year      |     | lean<br>alue |     | Lower<br>(5th<br>%tile) | (  | Jpper<br>95th<br>6tile) | Mean<br>Value |     | ower<br>(5th<br>stile) | Upper<br>(95th<br>%tile) | lm | plementation |    | DSE  | м    | Ionitoring<br>Plans | м    | onitoring |    | ignificant<br>xcursion | Mean<br>'alue | _     | ower<br>%tile) |        | Jpper<br>n %tile) |
| 2005      | \$  | -            | \$  | -                       | \$ | -                       | \$ -          | \$  | -                      | \$ -                     | \$ | 0.00         | \$ |      | \$   |                     | \$   | -         | \$ | -                      | \$<br>0.00    | \$    | 0.00           | \$     | 0.00              |
| 2006      | \$  | -            | \$  | -                       | \$ |                         | \$ -          | \$  | -                      | \$ -                     | \$ | -            | \$ | -    | \$   |                     | \$   | -         | \$ | -                      | \$<br>-       | \$    | -              | \$     | -                 |
| 2007      | \$  | -            | \$  | -                       | \$ |                         | \$ -          | \$  | -                      | \$ -                     | \$ |              | _  | 0.00 | \$   |                     | \$   | -         | \$ | -                      | \$<br>0.00    | \$    | 0.00           | \$     | 0.00              |
| 2008      | \$  | 0.00         | \$  | 0.00                    | \$ | 0.00                    | \$ -          | \$  | -                      | \$ -                     | \$ | 0.00         | \$ | -    | \$   | 0.00                | \$   | -         | \$ | -                      | \$<br>0.00    | \$    | 0.00           | \$     | 0.00              |
| 2009      | \$  | 0.00         | \$  | 0.00                    | \$ | 0.00                    | \$ 0.00       | \$  | 0.00                   | \$ 0.00                  | \$ | 0.00         | \$ | -    | \$   | -                   | \$   | -         | \$ | -                      | \$<br>0.00    | \$    | 0.00           | \$     | 0.01              |
| 2010      | \$  | 0.00         | \$  | 0.00                    | \$ | 0.00                    | \$ 0.00       | \$  | 0.00                   | \$ 0.00                  | \$ | -            | \$ | -    | \$   | -                   | \$   | -         | \$ | -                      | \$<br>0.00    | \$    | 0.00           | \$     | 0.01              |
| 2011      | \$  | 0.00         | \$  | 0.00                    | \$ | 0.00                    | \$ 0.00       | \$  | 0.00                   | \$ 0.00                  | \$ | -            | \$ | -    | \$   | -                   | \$   | 0.00      | \$ | -                      | \$<br>0.01    | \$    | 0.01           | \$     | 0.01              |
| 2012      | \$  | 0.00         | \$  | 0.00                    | \$ | 0.00                    | \$ 0.00       | \$  | 0.00                   | \$ 0.00                  | \$ | -            | \$ | -    | \$   | -                   | \$   | 0.00      | \$ | -                      | \$<br>0.01    | \$    | 0.01           | \$     | 0.01              |
| 2013      | \$  | 0.00         | \$  | 0.00                    | \$ | 0.00                    | \$ 0.00       | \$  | 0.00                   | \$ 0.00                  | \$ | -            | \$ | -    | \$   | -                   | \$   | 0.00      | \$ | -                      | \$<br>0.01    | \$    | 0.01           | \$     | 0.01              |
| 2014      | \$  | -            | \$  | -                       | \$ | -                       | \$ 0.00       | \$  | 0.00                   | \$ 0.00                  | \$ | -            | \$ | -    | \$   | -                   | \$   | 0.00      | \$ | -                      | \$<br>0.00    | \$    | 0.00           | \$     | 0.00              |
| 2015      | \$  | -            | \$  | -                       | \$ | -                       | \$ 0.00       | \$  | 0.00                   | \$ 0.00                  | \$ | -            | \$ | -    | \$   | -                   | \$   | 0.00      | \$ | -                      | \$<br>0.00    | \$    | 0.00           | \$     | 0.00              |
| 2016      | \$  | -            | \$  | -                       | \$ | -                       | \$ 0.00       | \$  | 0.00                   | \$ 0.00                  | \$ |              | \$ | -    | \$   |                     | \$   | 0.00      | \$ | -                      | \$<br>0.00    | \$    | 0.00           | \$     | 0.00              |
| 2017      | \$  | -            | \$  | -                       | \$ | -                       | \$ 0.00       | \$  | 0.00                   | \$ 0.00                  | \$ | -            | \$ | -    | \$   |                     | \$   | 0.00      | \$ | -                      | \$<br>0.00    | \$    | 0.00           | \$     | 0.00              |
| 2018      | \$  | -            | \$  | -                       | \$ | -                       | \$ 0.00       | \$  | 0.00                   | \$ 0.00                  | \$ | -            | \$ | -    | \$   | -                   | 69   | 0.00      | 69 | -                      | \$<br>0.00    | \$    | 0.00           | \$     | 0.00              |
| 2019      | \$  | -            | \$  | -                       | \$ | -                       | \$ 0.00       | \$  | 0.00                   | \$ 0.00                  | \$ | -            | \$ | -    | \$   | -                   | \$   | 0.00      | \$ | -                      | \$<br>0.00    | \$    | 0.00           | \$     | 0.00              |
| 2020      | \$  | -            | \$  | -                       | \$ | -                       | \$ 0.00       | \$  | 0.00                   | \$ 0.00                  | \$ | -            | \$ | -    | \$   | -                   | \$   | 0.00      | \$ | -                      | \$<br>0.00    | \$    | 0.00           | \$     | 0.00              |
| 2021      | \$  | -            | \$  | -                       | \$ | -                       | \$ 0.00       | \$  | 0.00                   | \$ 0.00                  | \$ | -            | \$ | -    | \$   | -                   | \$   | 0.00      | \$ | -                      | \$<br>0.00    | \$    | 0.00           | \$     | 0.00              |
| 2022      | \$  | -            | \$  | -                       | \$ | -                       | \$ 0.00       | \$  | 0.00                   | \$ 0.00                  | \$ | -            | \$ | -    | \$   | -                   | \$   | 0.00      | \$ | -                      | \$<br>0.00    | \$    | 0.00           | \$     | 0.00              |
| 2023      | \$  | -            | \$  | -                       | \$ | -                       | \$ 0.00       | \$  | 0.00                   | \$ 0.00                  | \$ | -            | \$ | -    | \$   | -                   | \$   | 0.00      | \$ | -                      | \$<br>0.00    | \$    | 0.00           | \$     | 0.00              |
| 2024      | \$  | -            | \$  | -                       | \$ | -                       | \$ 0.00       | \$  | 0.00                   | \$ 0.00                  | \$ | -            | \$ | -    | \$   | -                   | \$   | 0.00      | \$ | -                      | \$<br>0.00    | \$    | 0.00           | \$     | 0.00              |
| 2025      | \$  | -            | \$  | -                       | \$ | -                       | \$ 0.00       | \$  | 0.00                   | \$ 0.00                  | \$ | -            | \$ | -    | \$   | -                   | \$   | 0.00      | \$ | -                      | \$<br>0.00    | \$    | 0.00           | \$     | 0.00              |
| 2026      | \$  | -            | \$  | -                       | \$ | -                       | \$ 0.00       | \$  | 0.00                   | \$ 0.00                  | \$ | -            | \$ | -    | \$   | -                   | \$   | 0.00      | \$ | -                      | \$<br>0.00    | \$    | 0.00           | \$     | 0.00              |
| 2027      | \$  | -            | \$  | -                       | \$ | -                       | \$ 0.00       | \$  | 0.00                   | \$ 0.00                  | \$ | -            | \$ | -    | \$   | -                   | \$   | 0.00      | \$ | -                      | \$<br>0.00    | \$    | 0.00           | \$     | 0.00              |
| 2028      | \$  | -            | \$  | -                       | \$ | -                       | \$ 0.00       | \$  | 0.00                   | \$ 0.00                  | \$ | -            | \$ | -    | \$   | -                   | \$   | 0.00      | \$ | -                      | \$<br>0.00    | \$    | 0.00           | \$     | 0.00              |
| 2029      | \$  | -            | \$  | -                       | \$ | -                       | \$ 0.00       | \$  | 0.00                   | \$ 0.00                  | \$ | -            | \$ | -    | \$   | -                   | \$   | 0.00      | \$ | -                      | \$<br>0.00    | \$    | 0.00           | \$     | 0.00              |

## Exhibit J.2am Projections of Stage 2 DBPR PWS Costs

(Ground Water NTNCWSs Serving 100,000-999,999 People)

#### Preferred Alternative

| 2006   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -                                                                                                                                                                                                                                                                                                             | Preferred | 1       | ent Capita | l Costs | Treatm  | ent O&M | Costs   |    |      |    | No | n-Tr | eatment ( | Costs |          |    |         |    | All St | age 2 | DBPR | Costs | 5    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|------------|---------|---------|---------|---------|----|------|----|----|------|-----------|-------|----------|----|---------|----|--------|-------|------|-------|------|
| Year   Value   Wile                                                                                                                                                                                                                                                                                                               |           |         | Confid     | dence   |         | Confi   | dence   |    |      |    |    |      |           |       |          |    |         |    |        | Co    |      |       |      |
| 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .,        |         | (5th       | (95th   |         | (5th    | (95th   |    |      |    |    |      |           |       |          |    |         |    |        |       |      |       |      |
| 2006   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -                                                                                                                                                                                                                                                                                                             |           |         |            |         |         |         |         |    |      |    | SE |      | Plans     | _     | ittoring |    | 1151011 |    |        | ÷     |      | _     |      |
| 2007   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -                                                                                                                                                                                                                                                                                                             |           | · -     | _          |         |         | •       |         | _  | 0.00 | ·  |    | · ·  | -         | _     | -        | _  |         | _  | 0.00   | _     | 0.00 | -     | 0.00 |
| 2008   S   0.01   S                                                                                                                                                                                                                                                                                                              |           | · -     | \$ -       |         | \$ -    | \$ -    | \$ -    | _  | -    | \$ | -  | \$   | -         | _     | -        | _  | -       | ·  | -      | _     | -    | _     | -    |
| 2019   S   0.01   S   0.01   S   0.01   S   0.01   S   0.00   S   0.00   S   0.00   S   0.00   S   0.01   S                                                                                                                                                                                                                                                                                                              |           | \$ -    | \$ -       | \$ -    | \$ -    | \$ -    | \$ -    | \$ | -    | \$ | -  | \$   | 0.00      | \$    | -        | \$ | -       | \$ | 0.00   | \$    | 0.00 | \$    | 0.00 |
| 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | \$ 0.01 | \$ 0.01    | \$ 0.01 | \$ -    | \$ -    | \$ -    | \$ | 0.00 | \$ | -  | \$   | 0.00      | \$    | -        | \$ | -       | \$ | 0.01   | \$    | 0.01 | \$    | 0.01 |
| 2011   S   0.01   S   0.01   S   0.01   S   0.01   S   0.00   S                                                                                                                                                                                                                                                                                                              |           | \$ 0.01 | \$ 0.01    | \$ 0.01 | \$ 0.00 | \$ 0.00 | \$ 0.00 | \$ | -    | \$ | -  | \$   | -         | \$    | -        | \$ | -       | \$ | 0.01   | \$    | 0.01 | \$    | 0.01 |
| 2012   S   0.01   S   0.01   S   0.01   S   0.01   S   0.00   S                                                                                                                                                                                                                                                                                                              | 2010      | \$ 0.01 | \$ 0.01    | \$ 0.01 | \$ 0.00 | \$ 0.00 | \$ 0.00 | \$ | -    | \$ | -  | \$   | -         | \$    | -        | \$ | -       | \$ | 0.01   | \$    | 0.01 | \$    | 0.01 |
| 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2011      | \$ 0.01 | \$ 0.01    | \$ 0.01 | \$ 0.00 | \$ 0.00 | \$ 0.00 | \$ | -    | \$ | -  | \$   | -         | \$    | 0.00     | \$ |         | \$ | 0.01   | \$    | 0.01 | \$    | 0.01 |
| 2014 \$ - \$ - \$ - \$ - \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ - \$ - \$ 0.00 \$ - \$ 0.01 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ - \$ - \$ 0.00 \$ - \$ 0.01 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ - \$ 0.00 \$ - \$ 0.00 \$ - \$ 0.01 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ | 2012      | \$ 0.01 | \$ 0.01    | \$ 0.01 | \$ 0.00 | \$ 0.00 | \$ 0.00 | \$ | -    | \$ | -  | \$   | -         | \$    | 0.00     | \$ | -       | \$ | 0.01   | \$    | 0.01 | \$    | 0.01 |
| 2015  \$ - \$ - \$ - \$ \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0     | 2013      | \$ -    | \$ -       | \$ -    | \$ 0.00 | \$ 0.00 | \$ 0.00 | \$ | -    | \$ | -  | \$   | -         | \$    | 0.00     | \$ | -       | \$ | 0.01   | \$    | 0.00 | \$    | 0.01 |
| 2016 S - S - S - S S 0.00 S 0.00 S 0.00 S - S - S S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.                                                                                                                                                                                                                                                                                                           | 2014      | \$ -    | \$ -       | \$ -    | \$ 0.00 | \$ 0.00 | \$ 0.00 | \$ | -    | \$ | -  | \$   | -         | \$    | 0.00     | \$ | -       | \$ | 0.01   | \$    | 0.00 | \$    | 0.01 |
| 2017 S - S - S - S - S 0.00 S 0.00 S 0.00 S - S - S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.                                                                                                                                                                                                                                                                                                           | 2015      | \$ -    | \$ -       | \$ -    | \$ 0.00 | \$ 0.00 | \$ 0.00 | \$ | -    | \$ | -  | \$   | -         | \$    | 0.00     | \$ | -       | \$ | 0.01   | \$    | 0.00 | \$    | 0.01 |
| 2018 S - S - S - S 0.00 S 0.00 S 0.00 S - S - S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00                                                                                                                                                                                                                                                                                                           | 2016      | \$ -    | \$ -       | \$ -    | \$ 0.00 | \$ 0.00 | \$ 0.00 | \$ | -    | \$ | -  | \$   | -         | \$    | 0.00     | \$ | -       | \$ | 0.01   | \$    | 0.00 | \$    | 0.01 |
| 2019 S - S - S - S 0.00 S 0.00 S 0.00 S - S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.                                                                                                                                                                                                                                                                                                           | 2017      | \$ -    | \$ -       | \$ -    | \$ 0.00 | \$ 0.00 | \$ 0.00 | \$ | -    | \$ | -  | \$   | -         | \$    | 0.00     | \$ | -       | \$ | 0.01   | \$    | 0.00 | \$    | 0.01 |
| 2020 S - S - S - S 0.00 S 0.00 S 0.00 S - S - S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.                                                                                                                                                                                                                                                                                                           | 2018      | \$ -    | \$ -       | \$ -    | \$ 0.00 | \$ 0.00 | \$ 0.00 | \$ | -    | \$ | -  | \$   | -         | \$    | 0.00     | \$ | -       | \$ | 0.01   | \$    | 0.00 | \$    | 0.01 |
| 2021 S - S - S S 0.00 S 0.00 S 0.00 S - S - S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S                                                                                                                                                                                                                                                                                                           | 2019      | \$ -    | \$ -       | \$ -    | \$ 0.00 | \$ 0.00 | \$ 0.00 | \$ | -    | \$ | -  | \$   | -         | \$    | 0.00     | \$ | -       | \$ | 0.01   | \$    | 0.00 | \$    | 0.01 |
| 2022 S - S - S - S 0.00 S 0.00 S 0.00 S - S - S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.                                                                                                                                                                                                                                                                                                           | 2020      | \$ -    | \$ -       | \$ -    | \$ 0.00 | \$ 0.00 | \$ 0.00 | \$ | -    | \$ |    | \$   | -         | \$    | 0.00     | \$ | -       | \$ | 0.01   | \$    | 0.00 | \$    | 0.01 |
| 2023 \$ - \$ - \$ - \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ - \$ - \$ 0.00 \$ - \$ 0.01 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$    | 2021      | \$ -    | \$ -       | \$ -    | \$ 0.00 | \$ 0.00 | \$ 0.00 | \$ | -    | \$ | _  | \$   | -         | \$    | 0.00     | \$ |         | \$ | 0.01   | \$    | 0.00 | \$    | 0.01 |
| 2024 \$ - \$ - \$ - \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ - \$ - \$ 0.00 \$ - \$ 0.01 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$    | 2022      | \$ -    | \$ -       | \$ -    | \$ 0.00 | \$ 0.00 | \$ 0.00 | \$ | -    | \$ | -  | \$   | -         | \$    | 0.00     | \$ | -       | \$ | 0.01   | \$    | 0.00 | \$    | 0.01 |
| 2024         \$ - \$ \$ - \$ \$ - \$ \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ \$ 0.00 \$ \$ - \$ \$ 0.00 \$ \$ - \$ \$ 0.01 \$ \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0                                    | 2023      | \$ -    | \$ -       | \$ -    | \$ 0.00 | \$ 0.00 | \$ 0.00 | \$ | -    | \$ | -  | \$   | -         | \$    | 0.00     | \$ | -       | \$ | 0.01   | \$    | 0.00 | \$    | 0.01 |
| 2025         S         S         S         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2024      | \$ -    | \$ -       | \$ -    | \$ 0.00 | \$ 0.00 | \$ 0.00 | _  |      | \$ | _  | \$   | -         | \$    | 0.00     |    | -       | \$ | 0.01   | \$    | 0.00 | \$    | 0.01 |
| 2026 S - S - S - S 0.00 S 0.00 S 0.00 S - S - S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.01 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S - S 0.00 S - S 0.00 S - S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0.00 S 0                                                                                                                                                                                                                                                                                                           | 2025      | · -     | _          |         |         |         |         | _  | -    | ·  | _  | -    | _         | _     |          | _  |         | _  |        | · ·   |      | _     | 0.01 |
| 2027     \$ - \$ - \$ - \$ - \$ - \$ - \$ 0.00     \$ 0.00     \$ 0.00     \$ - \$ - \$ - \$ - \$ 0.00     \$ - \$ 0.00     \$ 0.00     \$ 0.00       2028     \$ - \$ - \$ - \$ - \$ - \$ - \$ 0.00     \$ 0.00     \$ 0.00     \$ - \$ - \$ - \$ 0.00     \$ - \$ 0.00     \$ 0.00     \$ 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | · -     | _          | •       |         |         |         | _  | -    | ·  | _  | · ·  | -         | _     |          | _  |         | _  |        | · ·   |      | _     | 0.01 |
| 2028 S - S - S - S 0.00 S 0.00 S 0.00 S - S - S 0.00 S - S 0.01 S 0.00 S 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | · -     |            |         |         |         |         | _  |      | ·  | _  | · ·  |           | Ť     |          | -  |         | _  |        | _     |      | _     | 0.01 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | 1       |            |         |         |         |         | _  |      | ·  |    | ·    |           | _     |          |    |         | _  |        | · ·   |      | _     | 0.01 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2029      | \$ -    | \$ -       | \$ -    | \$ 0.00 | \$ 0.00 | \$ 0.00 | \$ |      | \$ | -  | \$   |           | \$    | 0.00     | \$ |         | \$ | 0.01   | \$    | 0.00 | \$    | 0.01 |

Note: All values in millions of year 2003 dollars.

Source: Derived from Exhibits J.1a and Exhibits D.1 through D.6.

## Exhibit J.2an Projections of Stage 2 DBPR PWS Costs

(Ground Water NTNCWSs Serving 1,000,000+ People)

### Preferred Alternative

|      | Treatme       | ent Capita              | l Costs                  | Treati        | ment O&N                | 1 Costs                  |                | No   | n-Treatment (       | Costs      |                          | All S         | tage 2 DBPR          | Costs               |
|------|---------------|-------------------------|--------------------------|---------------|-------------------------|--------------------------|----------------|------|---------------------|------------|--------------------------|---------------|----------------------|---------------------|
|      |               | Confi                   | ercent<br>dence<br>und   |               | Confi                   | ercent<br>dence<br>und   |                |      |                     |            |                          |               |                      | ercent<br>nce Bound |
| Year | Mean<br>Value | Lower<br>(5th<br>%tile) | Upper<br>(95th<br>%tile) | Mean<br>Value | Lower<br>(5th<br>%tile) | Upper<br>(95th<br>%tile) | Implementation | IDSE | Monitoring<br>Plans | Monitoring | Significant<br>Excursion | Mean<br>Value | Lower<br>(5th %tile) | Upper               |
| 2005 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | s -                      | S -           | \$ -                 | \$ -                |
| 2006 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                |
| 2007 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                |
| 2008 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                |
| 2009 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                |
| 2010 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                |
| 2011 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                |
| 2012 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                |
| 2013 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                |
| 2014 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                |
| 2015 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                |
| 2016 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                |
| 2017 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                |
| 2018 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                |
| 2019 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                |
| 2020 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                |
| 2021 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                |
| 2022 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                |
| 2023 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                |
| 2024 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                |
| 2025 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                |
| 2026 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                |
| 2027 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                |
| 2028 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                |
| 2029 | \$ -          | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ - | \$ -                | \$ -       | \$ -                     | \$ -          | \$ -                 | \$ -                |

## Exhibit J.2ao Projections of Stage 2 DBPR PWS Costs

(All Ground Water NTNCWSs)

### Preferred Alternative

| Preferred | Alte | ernati  | ve  |         |      |        |    |        |          |      |       |    |               |         |      |              |      |           |    |           |    |              |       |         |        |          |
|-----------|------|---------|-----|---------|------|--------|----|--------|----------|------|-------|----|---------------|---------|------|--------------|------|-----------|----|-----------|----|--------------|-------|---------|--------|----------|
|           | -    | Treatme | ent | Capital | Co   | sts    |    | Treatn | nent O&M | Co   | sts   |    |               | N       | lon- | Treatment Co | osts |           |    |           |    | All St       | age : | 2 DBPR  | Cost   | s        |
|           |      |         |     | 90 Pe   | rcei | nt     |    |        | 90 P     | erce | nt    |    |               |         |      |              |      |           |    |           |    |              |       |         |        |          |
|           |      |         |     | Confic  | den  | ce     |    |        | Confi    | den  | ice   |    |               |         |      |              |      |           |    |           |    |              |       | 90 P    | ercent | 1        |
|           |      |         | _   | Βοι     |      |        |    |        |          | unc  |       |    |               |         |      |              |      |           |    |           |    |              | С     | onfiden | ce Bo  | ound     |
|           |      |         |     | .ower   |      | Jpper  |    |        | Lower    |      | pper  |    |               |         |      |              |      |           |    |           |    |              | ١.    |         |        |          |
|           | N    | lean    |     | (5th    | ٠,   | 95th   | N  | lean   | (5th     | ٠,   | 95th  |    |               |         | N    | Monitoring   |      |           |    | gnificant |    | <b>M</b> ean |       | .ower   |        | Jpper    |
| Year      | ٧    | alue    | 9   | %tile)  | %    | %tile) | ٧  | alue   | %tile)   | %    | tile) | In | nplementation | IDSE    |      | Plans        | M    | onitoring | Ex | cursion   | ٧  | alue         | (5th  | %tile)  | (95th  | n %tile) |
| 2005      | \$   | -       | \$  | -       | \$   | -      | \$ | -      | \$ -     | \$   | -     | \$ | 0.00          | \$ -    | \$   | -            | \$   | -         | \$ | -         | \$ | 0.00         | \$    | 0.00    | \$     | 0.00     |
| 2006      | \$   | -       | \$  | -       | \$   | -      | \$ | -      | \$ -     | \$   | -     | \$ | 0.56          | \$ -    | \$   | -            | \$   | -         | \$ | -         | \$ | 0.56         | \$    | 0.56    | \$     | 0.56     |
| 2007      | \$   | -       | \$  | -       | \$   | -      | \$ | -      | \$ -     | \$   | -     | \$ | -             | \$ 0.00 | \$   | 0.00         | \$   | -         | \$ | -         | \$ | 0.00         | \$    | 0.00    | \$     | 0.00     |
| 2008      | \$   | 0.01    | \$  | 0.01    | \$   | 0.01   | \$ | -      | \$ -     | \$   | -     | \$ | 0.00          | \$ 0.00 | \$   | 0.00         | \$   | -         | \$ | -         | \$ | 0.01         | \$    | 0.01    | \$     | 0.01     |
| 2009      | \$   | 1.30    | \$  | 1.09    | \$   | 1.50   | \$ | 0.00   | \$ 0.00  | \$   | 0.00  | \$ | 0.28          | \$ -    | \$   | 0.46         | \$   | -         | \$ | -         | \$ | 2.04         | \$    | 1.84    | \$     | 2.24     |
| 2010      | \$   | 2.58    | \$  | 2.18    | \$   | 2.99   | \$ | 0.12   | \$ 0.11  | \$   | 0.13  | \$ | 0.28          | \$ -    | \$   | -            | \$   | -         | \$ | -         | \$ | 2.99         | \$    | 2.57    | \$     | 3.40     |
| 2011      | \$   | 2.58    | \$  | 2.18    | \$   | 2.99   | \$ | 0.37   | \$ 0.34  | \$   | 0.40  | \$ | -             | \$ -    | \$   | -            | \$   | 0.00      | \$ | -         | \$ | 2.96         | \$    | 2.52    | \$     | 3.39     |
| 2012      | \$   | 2.58    | \$  | 2.18    | \$   | 2.99   | \$ | 0.61   | \$ 0.57  | \$   | 0.66  | \$ | -             | \$ -    | \$   | -            | \$   | 0.37      | \$ | -         | \$ | 3.56         | \$    | 3.11    | \$     | 4.01     |
| 2013      | \$   | 2.58    | \$  | 2.17    | \$   | 2.98   | \$ | 0.86   | \$ 0.79  | \$   | 0.93  | \$ | -             | \$ -    | \$   | -            | \$   | 0.73      | \$ | -         | \$ | 4.16         | \$    | 3.69    | \$     | 4.63     |
| 2014      | \$   | 1.29    | \$  | 1.08    | \$   | 1.49   | \$ | 1.10   | \$ 1.02  | \$   | 1.19  | \$ | -             | \$ -    | \$   | -            | \$   | 0.73      | \$ | -         | \$ | 3.12         | \$    | 2.83    | \$     | 3.40     |
| 2015      | \$   | -       | \$  | -       | \$   | -      | \$ | 1.23   | \$ 1.13  | \$   | 1.32  | \$ | -             | \$ -    | \$   | -            | \$   | 0.73      | \$ | -         | \$ | 1.95         | \$    | 1.86    | \$     | 2.05     |
| 2016      | \$   | -       | \$  | -       | \$   | -      | \$ | 1.23   | \$ 1.13  | \$   | 1.32  | \$ | -             | \$ -    | \$   | -            | \$   | 0.73      | \$ | -         | \$ | 1.95         | \$    | 1.86    | \$     | 2.05     |
| 2017      | \$   | -       | \$  | -       | \$   | -      | \$ | 1.23   | \$ 1.13  | \$   | 1.32  | \$ | -             | \$ -    | \$   | -            | \$   | 0.73      | \$ | -         | \$ | 1.95         | \$    | 1.86    | \$     | 2.05     |
| 2018      | \$   | -       | \$  | -       | \$   | -      | \$ | 1.23   | \$ 1.13  | \$   | 1.32  | \$ | -             | \$ -    | \$   | -            | \$   | 0.73      | \$ | -         | \$ | 1.95         | \$    | 1.86    | \$     | 2.05     |
| 2019      | \$   | -       | \$  | -       | \$   | -      | \$ | 1.23   | \$ 1.13  | \$   | 1.32  | \$ | -             | \$ -    | \$   | -            | \$   | 0.73      | \$ | -         | \$ | 1.95         | \$    | 1.86    | \$     | 2.05     |
| 2020      | \$   | -       | \$  | -       | \$   | -      | \$ | 1.23   | \$ 1.13  | \$   | 1.32  | \$ | -             | \$ -    | \$   | -            | \$   | 0.73      | \$ | -         | \$ | 1.95         | \$    | 1.86    | \$     | 2.05     |
| 2021      | \$   | -       | \$  | -       | \$   | -      | \$ | 1.23   | \$ 1.13  | \$   | 1.32  | \$ | -             | \$ -    | \$   | -            | \$   | 0.73      | \$ | -         | \$ | 1.95         | \$    | 1.86    | \$     | 2.05     |
| 2022      | \$   | -       | \$  | -       | \$   | -      | \$ | 1.23   | \$ 1.13  | \$   | 1.32  | \$ | -             | \$ -    | \$   | -            | \$   | 0.73      | \$ | -         | \$ | 1.95         | \$    | 1.86    | \$     | 2.05     |
| 2023      | \$   | -       | \$  | -       | \$   | -      | \$ | 1.23   | \$ 1.13  | \$   | 1.32  | \$ | -             | \$ -    | \$   | -            | \$   | 0.73      | \$ | -         | \$ | 1.95         | \$    | 1.86    | \$     | 2.05     |
| 2024      | \$   | -       | \$  | -       | \$   | -      | \$ | 1.23   | \$ 1.13  | \$   | 1.32  | \$ | -             | \$ -    | \$   | -            | \$   | 0.73      | \$ | -         | \$ | 1.95         | \$    | 1.86    | \$     | 2.05     |
| 2025      | \$   | -       | \$  | -       | \$   | -      | \$ | 1.23   | \$ 1.13  | \$   | 1.32  | \$ | -             | \$ -    | \$   | -            | \$   | 0.73      | \$ | -         | \$ | 1.95         | \$    | 1.86    | \$     | 2.05     |
| 2026      | \$   | -       | \$  | -       | \$   | -      | \$ | 1.23   | \$ 1.13  | \$   | 1.32  | \$ | -             | \$ -    | \$   | -            | \$   | 0.73      | \$ | -         | \$ | 1.95         | \$    | 1.86    | \$     | 2.05     |
| 2027      | \$   | -       | \$  | -       | \$   | -      | \$ | 1.23   | \$ 1.13  | \$   | 1.32  | \$ | -             | \$ -    | \$   | -            | \$   | 0.73      | \$ | -         | \$ | 1.95         | \$    | 1.86    | \$     | 2.05     |
| 2028      | \$   | -       | \$  | -       | \$   | -      | \$ | 1.23   | \$ 1.13  | \$   | 1.32  | \$ | -             | \$ -    | \$   | -            | \$   | 0.73      | \$ | -         | \$ | 1.95         | \$    | 1.86    | \$     | 2.05     |
| 2029      | \$   | -       | \$  | -       | \$   | -      | \$ | 1.23   | \$ 1.13  | \$   | 1.32  | \$ | -             | \$ -    | \$   | -            | \$   | 0.73      | \$ | -         | \$ | 1.95         | \$    | 1.86    | \$     | 2.05     |

## Exhibit J.2ap Projections of Stage 2 DBPR PWS Costs

(All Ground Water Systems)

#### Preferred Alternative

| Preferred | AII |               | _   |                         |      |                          |               |                         |                          |    |              |            | _    |                    |           |            |                          |           |               |     |        | _   |                   |
|-----------|-----|---------------|-----|-------------------------|------|--------------------------|---------------|-------------------------|--------------------------|----|--------------|------------|------|--------------------|-----------|------------|--------------------------|-----------|---------------|-----|--------|-----|-------------------|
|           |     | Treatn        | nen | nt Capita               | I Co | osts                     | Treatn        | nent O&M                | Costs                    |    |              | N          | on-T | reatment Co        | osts      |            |                          |           | All St        | age | 2 DBPR | Cos | .s                |
|           |     |               | С   | 90 Pe                   |      |                          |               | Confi                   | ercent<br>dence<br>und   |    |              |            |      |                    |           |            |                          |           |               | C   | 90 Pe  |     | -                 |
| Year      |     | Mean<br>'alue |     | Lower<br>(5th<br>%tile) |      | Jpper<br>(95th<br>%tile) | Mean<br>Value | Lower<br>(5th<br>%tile) | Upper<br>(95th<br>%tile) | Im | plementation | DSE        | Мо   | onitoring<br>Plans | м         | lonitoring | iginificant<br>Excursion |           | Mean<br>Value | _   | ower   |     | Upper<br>h %tile) |
| 2005      | \$  |               | \$  | -                       | \$   | -                        | \$ -          | \$ -                    | \$ -                     | \$ | 0.07         | \$         | \$   | -                  | \$        | -          | \$                       | \$        | 0.07          | \$  | 0.07   | \$  | 0.07              |
| 2006      | \$  | -             | \$  |                         | \$   | -                        | \$ -          | \$ -                    | \$ -                     | \$ | 3.98         | \$<br>0.09 | \$   | -                  | \$        | -          | \$<br>-                  | \$        | 4.07          | \$  | 4.07   | \$  | 4.07              |
| 2007      | \$  | -             | \$  | -                       | \$   | -                        | \$ -          | \$ -                    | \$ -                     | \$ |              | \$<br>1.09 | \$   | 0.02               | \$        | -          | \$<br>-                  | \$        | 1.11          | \$  | 1.11   | \$  | 1.11              |
| 2008      | \$  | 8.12          | \$  | 7.23                    | \$   | 9.01                     | \$ -          | \$ -                    | \$ -                     | \$ | 0.05         | \$<br>6.66 | \$   | 0.22               | \$        | -          | \$<br>-                  | \$        | 15.04         | \$  | 14.15  | \$  | 15.93             |
| 2009      | \$  | 33.53         | \$  | 28.81                   | \$   | 38.26                    | \$ 0.78       | \$ 0.73                 | \$ 0.83                  | \$ | 2.01         | \$<br>-    | \$   | 3.04               | \$        | -          | \$<br>-                  | \$        | 39.36         | \$  | 34.59  | \$  | 44.15             |
| 2010      | \$  | 57.44         | \$  | 49.05                   | \$   | 65.86                    | \$ 3.47       | \$ 3.22                 | \$ 3.71                  | \$ | 1.99         | \$<br>-    | \$   | -                  | \$        | -          | \$<br>-                  | \$        | 62.90         | \$  | 54.26  | \$  | 71.56             |
| 2011      | \$  | 57.44         | \$  | 49.05                   | \$   | 65.86                    | \$ 7.94       | \$ 7.37                 | \$ 8.51                  | \$ | -            | \$<br>-    | \$   | -                  | \$        | 0.08       | \$<br>-                  | \$        | 65.46         | \$  | 56.50  | \$  | 74.45             |
| 2012      | \$  | 57.44         | \$  | 49.05                   | \$   | 65.86                    | \$ 12.40      | \$ 11.52                | \$ 13.30                 | \$ | -            | \$<br>-    | \$   |                    | \$        | 3.32       | \$<br>-                  | \$        | 73.17         | \$  | 63.88  | \$  | 82.47             |
| 2013      | \$  | 49.32         | \$  | 41.82                   | 69   | 56.85                    | \$ 16.87      | \$ 15.66                | \$ 18.09                 | \$ | -            | \$<br>-    | \$   |                    | 69        | 6.36       | \$<br>-                  | <b>\$</b> | 72.55         | 69  | 63.84  | \$  | 81.29             |
| 2014      | \$  | 23.91         | \$  | 20.24                   | \$   | 27.60                    | \$ 20.56      | \$ 19.08                | \$ 22.04                 | \$ | -            | \$<br>-    | \$   | -                  | <b>\$</b> | 6.36       | \$<br>-                  | \$        | 50.83         | \$  | 45.68  | \$  | 56.00             |
| 2015      | \$  | -             | \$  | -                       | \$   | -                        | \$ 22.34      | \$ 20.73                | \$ 23.95                 | \$ | -            | \$<br>-    | \$   | -                  | <b>\$</b> | 6.36       | \$<br>-                  | \$        | 28.70         | \$  | 27.09  | \$  | 30.31             |
| 2016      | \$  | -             | \$  | -                       | \$   | -                        | \$ 22.34      | \$ 20.73                | \$ 23.95                 | \$ | -            | \$<br>-    | \$   | -                  | \$        | 6.36       | \$<br>-                  | \$        | 28.70         | \$  | 27.09  | \$  | 30.31             |
| 2017      | \$  | -             | \$  | -                       | \$   | -                        | \$ 22.34      | \$ 20.73                | \$ 23.95                 | \$ | -            | \$<br>-    | \$   | -                  | \$        | 6.36       | \$<br>-                  | \$        | 28.70         | \$  | 27.09  | \$  | 30.31             |
| 2018      | \$  | -             | \$  | -                       | \$   | -                        | \$ 22.34      | \$ 20.73                | \$ 23.95                 | \$ | -            | \$<br>-    | \$   | -                  | \$        | 6.36       | \$<br>-                  | \$        | 28.70         | \$  | 27.09  | \$  | 30.31             |
| 2019      | \$  | -             | \$  | -                       | \$   | -                        | \$ 22.34      | \$ 20.73                | \$ 23.95                 | \$ | -            | \$<br>-    | \$   | -                  | \$        | 6.36       | \$<br>-                  | \$        | 28.70         | \$  | 27.09  | \$  | 30.31             |
| 2020      | \$  | -             | \$  | -                       | \$   | -                        | \$ 22.34      | \$ 20.73                | \$ 23.95                 | \$ | -            | \$<br>-    | \$   | -                  | \$        | 6.36       | \$<br>-                  | \$        | 28.70         | \$  | 27.09  | \$  | 30.31             |
| 2021      | \$  | -             | \$  | -                       | \$   | -                        | \$ 22.34      | \$ 20.73                | \$ 23.95                 | \$ | -            | \$<br>-    | \$   | -                  | \$        | 6.36       | \$<br>-                  | \$        | 28.70         | \$  | 27.09  | \$  | 30.31             |
| 2022      | \$  | -             | \$  | -                       | \$   | -                        | \$ 22.34      | \$ 20.73                | \$ 23.95                 | \$ | -            | \$<br>-    | \$   | -                  | \$        | 6.36       | \$<br>-                  | \$        | 28.70         | \$  | 27.09  | \$  | 30.31             |
| 2023      | \$  | -             | \$  | -                       | \$   | -                        | \$ 22.34      | \$ 20.73                | \$ 23.95                 | \$ | -            | \$<br>-    | \$   | -                  | \$        | 6.36       | \$<br>-                  | \$        | 28.70         | \$  | 27.09  | \$  | 30.31             |
| 2024      | \$  | -             | \$  | -                       | \$   | -                        | \$ 22.34      | \$ 20.73                | \$ 23.95                 | \$ | -            | \$<br>-    | \$   | -                  | \$        | 6.36       | \$<br>-                  | \$        | 28.70         | \$  | 27.09  | \$  | 30.31             |
| 2025      | \$  | -             | \$  | -                       | \$   | -                        | \$ 22.34      | \$ 20.73                | \$ 23.95                 | \$ | -            | \$<br>-    | \$   | -                  | \$        | 6.36       | \$<br>-                  | \$        | 28.70         | \$  | 27.09  | \$  | 30.31             |
| 2026      | \$  | -             | \$  | -                       | \$   | -                        | \$ 22.34      | \$ 20.73                | \$ 23.95                 | \$ | -            | \$<br>-    | \$   | -                  | \$        | 6.36       | \$<br>-                  | \$        | 28.70         | \$  | 27.09  | \$  | 30.31             |
| 2027      | \$  | -             | \$  | -                       | \$   | -                        | \$ 22.34      | \$ 20.73                | \$ 23.95                 | \$ | -            | \$<br>-    | \$   | -                  | \$        | 6.36       | \$<br>-                  | \$        | 28.70         | \$  | 27.09  | \$  | 30.31             |
| 2028      | \$  | -             | \$  | -                       | \$   | -                        | \$ 22.34      | \$ 20.73                | \$ 23.95                 | \$ | -            | \$<br>-    | \$   | -                  | \$        | 6.36       | \$<br>-                  | \$        | 28.70         | \$  | 27.09  | \$  | 30.31             |
| 2029      | \$  | -             | \$  | -                       | \$   | -                        | \$ 22.34      | \$ 20.73                | \$ 23.95                 | \$ | -            | \$<br>-    | \$   | -                  | \$        | 6.36       | \$<br>-                  | \$        | 28.70         | \$  | 27.09  | \$  | 30.31             |

## Exhibit J.2aq Projections of Stage 2 DBPR PWS Costs

(All Systems)

## Preferred Alternative

| Preferred | Alt | ternativ      | /e  |                   |     |        |             |               |             |                        |           |                        |    |               |    |       |        |                  |      |            |              |               |      |                  |      |                    |
|-----------|-----|---------------|-----|-------------------|-----|--------|-------------|---------------|-------------|------------------------|-----------|------------------------|----|---------------|----|-------|--------|------------------|------|------------|--------------|---------------|------|------------------|------|--------------------|
|           |     | Treat         | mer | nt Capital        | Cos | ts     |             | Treati        | men         | t O&M                  | Cost      | s                      |    |               |    | No    | n-Trea | atment C         | osts | 3          |              | All Sta       | ge 2 | DBPR (           | Cost | s                  |
|           |     |               |     | 90 Pe<br>Confiden |     |        |             |               | Co          | 90 Pe                  |           |                        |    |               |    |       |        |                  |      |            |              |               | c    | 90 P             |      |                    |
| Year      |     | Mean<br>Value | (5  | Lower             | l   | Upper  |             | Mean<br>/alue |             | ower<br>(5th<br>6tile) | (         | pper<br>95th<br>stile) |    | mplementation |    | DSE   |        | itoring<br>Plans | м    | lonitoring | <br>nificant | Mean<br>Value |      | ower<br>1 %tile) |      | Upper<br>th %tile) |
| 2005      | \$  | -             | \$  | -                 | \$  | -      | \$          | -             | \$          | -                      | \$        | -                      | ,  | 0.76          | \$ | -     | \$     | -                | \$   |            | \$<br>-      | \$<br>0.76    | \$   | 0.76             | \$   | 0.76               |
| 2006      | \$  | -             | \$  | -                 | \$  | -      | \$          | -             | \$          | -                      | \$        | -                      | ,  | 5.40          | \$ | 8.56  | \$     | -                | \$   |            | \$<br>-      | \$<br>13.96   | \$   | 13.96            | \$   | 13.96              |
| 2007      | \$  | -             | \$  | -                 | \$  | -      | \$          | -             | \$          | -                      | \$        | -                      | \$ | -             | \$ | 23.58 | \$     | 0.24             | \$   | -          | \$<br>-      | \$<br>23.81   | \$   | 23.81            | \$   | 23.81              |
| 2008      | \$  | 74.82         | \$  | 41.09             | \$  | 106.25 | \$          | -             | \$          | -                      | \$        | -                      | ,  | 0.65          | \$ | 25.30 | \$     | 0.83             | \$   | -          | \$<br>-      | \$<br>101.60  | \$   | 67.87            | \$   | 133.03             |
| 2009      | \$  | 131.17        | \$  | 78.67             | \$  | 181.06 | \$          | 4.03          | \$          | 2.62                   | \$        | 5.96                   | ,  | 2.81          | \$ | -     | \$     | 3.95             | \$   | -          | \$<br>-      | \$<br>141.96  | \$   | 88.05            | \$   | 193.78             |
| 2010      | \$  | 178.64        | \$  | 111.06            | \$  | 243.53 | \$          | 12.24         | \$          | 8.25                   | \$        | 17.35                  | ,  | 2.70          | \$ | -     | \$     | -                | \$   |            | \$<br>-      | \$<br>193.58  | \$   | 122.01           | \$   | 263.58             |
| 2011      | \$  | 178.64        | \$  | 111.06            | \$  | 243.53 | 69          | 24.14         | 69          | 16.56                  | <b>\$</b> | 33.47                  | \$ | -             | 69 | -     | \$     | -                | \$   | 0.51       | \$           | \$<br>203.28  | \$   | 128.13           | \$   | 277.51             |
| 2012      | \$  | 178.64        | \$  | 111.06            | \$  | 243.53 | <b>\$</b> 3 | 36.04         | <b>\$</b> 3 | 24.87                  | \$        | 49.60                  | \$ | -             | \$ | -     | \$     | -                | \$   | 2.57       | \$<br>0.06   | \$<br>217.30  | \$   | 138.56           | \$   | 295.76             |
| 2013      | \$  | 103.82        | \$  | 69.97             | \$  | 137.28 | \$          | 47.93         | \$          | 33.18                  | \$        | 65.72                  | \$ | -             | \$ | -     | \$     | -                | \$   | 4.32       | \$<br>0.15   | \$<br>156.22  | \$   | 107.62           | \$   | 207.47             |
| 2014      | \$  | 47.47         | \$  | 32.39             | \$  | 62.48  | \$          | 55.80         | \$          | 38.87                  | \$        | 75.88                  | \$ | -             | \$ | -     | \$     | -                | \$   | 4.32       | \$<br>0.21   | \$<br>107.80  | \$   | 75.79            | \$   | 142.89             |
| 2015      | \$  |               | \$  | -                 | \$  | -      | \$          | 59.48         | \$          | 41.55                  | \$        | 80.61                  | \$ | -             | \$ | -     | \$     | -                | \$   | 4.32       | \$<br>0.21   | \$<br>64.01   | \$   | 46.08            | \$   | 85.15              |
| 2016      | \$  |               | \$  | -                 | \$  | -      | \$          | 59.48         | \$          | 41.55                  | \$        | 80.61                  | \$ | -             | \$ | -     | \$     | -                | \$   | 4.32       | \$<br>0.21   | \$<br>64.01   | \$   | 46.08            | \$   | 85.15              |
| 2017      | \$  | -             | \$  | -                 | \$  | -      | \$          | 59.48         | \$          | 41.55                  | \$        | 80.61                  | \$ | -             | \$ | -     | \$     | -                | \$   | 4.32       | \$<br>0.21   | \$<br>64.01   | \$   | 46.08            | \$   | 85.15              |
| 2018      | \$  | -             | \$  | -                 | \$  | -      | \$          | 59.48         | \$          | 41.55                  | \$        | 80.61                  | \$ | -             | \$ | -     | \$     | -                | \$   | 4.32       | \$<br>0.21   | \$<br>64.01   | \$   | 46.08            | \$   | 85.15              |
| 2019      | \$  | -             | \$  | -                 | \$  | -      | \$          | 59.48         | \$          | 41.55                  | \$        | 80.61                  | \$ | -             | \$ | -     | \$     | -                | \$   | 4.32       | \$<br>0.21   | \$<br>64.01   | \$   | 46.08            | \$   | 85.15              |
| 2020      | \$  | -             | \$  | -                 | \$  | -      | \$          | 59.48         | \$          | 41.55                  | \$        | 80.61                  | \$ | -             | \$ | -     | \$     | -                | \$   | 4.32       | \$<br>0.21   | \$<br>64.01   | \$   | 46.08            | \$   | 85.15              |
| 2021      | \$  | -             | \$  | -                 | \$  | -      | \$          | 59.48         | \$          | 41.55                  | \$        | 80.61                  | \$ | -             | \$ | -     | \$     | -                | \$   | 4.32       | \$<br>0.21   | \$<br>64.01   | \$   | 46.08            | \$   | 85.15              |
| 2022      | \$  | -             | \$  | -                 | \$  | -      | \$          | 59.48         | \$          | 41.55                  | \$        | 80.61                  | \$ | -             | \$ | -     | \$     | -                | \$   | 4.32       | \$<br>0.21   | \$<br>64.01   | \$   | 46.08            | \$   | 85.15              |
| 2023      | \$  | -             | \$  | -                 | \$  | -      | \$          | 59.48         | \$          | 41.55                  | \$        | 80.61                  | \$ | -             | \$ | -     | \$     | -                | \$   | 4.32       | \$<br>0.21   | \$<br>64.01   | \$   | 46.08            | \$   | 85.15              |
| 2024      | \$  | -             | \$  | -                 | \$  | -      | \$          | 59.48         | \$          | 41.55                  | \$        | 80.61                  | \$ |               | \$ | -     | \$     | -                | \$   | 4.32       | \$<br>0.21   | \$<br>64.01   | \$   | 46.08            | \$   | 85.15              |
| 2025      | \$  | -             | \$  | -                 | \$  | -      | \$          | 59.48         | \$          | 41.55                  | \$        | 80.61                  | \$ | -             | \$ | -     | \$     | -                | \$   | 4.32       | \$<br>0.21   | \$<br>64.01   | \$   | 46.08            | \$   | 85.15              |
| 2026      | \$  | -             | \$  | -                 | \$  | -      | \$          | 59.48         | \$          | 41.55                  | \$        | 80.61                  | \$ | -             | \$ | -     | \$     | -                | \$   | 4.32       | \$<br>0.21   | \$<br>64.01   | \$   | 46.08            | \$   | 85.15              |
| 2027      | \$  | -             | \$  | -                 | \$  | -      | \$          | 59.48         | \$          | 41.55                  | \$        | 80.61                  | \$ | -             | \$ | -     | \$     | -                | \$   | 4.32       | \$<br>0.21   | \$<br>64.01   | \$   | 46.08            | \$   | 85.15              |
| 2028      | \$  | -             | \$  | -                 | \$  | -      | \$          | 59.48         | \$          | 41.55                  | \$        | 80.61                  | \$ | -             | \$ | -     | \$     | -                | \$   | 4.32       | \$<br>0.21   | \$<br>64.01   | \$   | 46.08            | \$   | 85.15              |
| 2029      | \$  | -             | \$  | -                 | \$  | -      | \$          | 59.48         | \$          | 41.55                  | \$        | 80.61                  | \$ | -             | \$ | -     | \$     | -                | \$   | 4.32       | \$<br>0.21   | \$<br>64.01   | \$   | 46.08            | \$   | 85.15              |

Exhibit J.2ar Projections of Stage 2 DBPR Primacy Agency Costs

## Preferred Alternative

| Preferred Alter | native               |            |                 |                                |                                          |
|-----------------|----------------------|------------|-----------------|--------------------------------|------------------------------------------|
| Year            | Implementation Costs | IDSE Costs | Monitoring Plan | Compliance<br>Monitoring Costs | Significant<br>Excursion Report<br>Costs |
| 2005            | \$ 3.88              | \$ -       | \$ -            | \$ -                           | \$ -                                     |
| 2006            | \$ 3.88              | \$ 0.04    | \$ -            | \$ -                           | \$ -                                     |
| 2007            | \$ -                 | \$ 0.13    | \$ 0.02         | \$ -                           | \$ -                                     |
| 2008            | \$ -                 | \$ 2.06    | \$ 0.06         | \$ -                           | \$ -                                     |
| 2009            | \$ -                 | \$ -       | \$ 0.85         | \$ -                           | \$ -                                     |
| 2010            | \$ -                 | \$ -       | \$ -            | \$ -                           | \$ -                                     |
| 2011            | \$ -                 | \$ -       | \$ -            | \$ 1.59                        | \$ 0.11                                  |
| 2012            | \$ -                 | \$ -       | \$ -            | \$ 1.59                        | \$ 0.11                                  |
| 2013            | \$ -                 | \$ -       | \$ -            | \$ 1.59                        | \$ 0.11                                  |
| 2014            | \$ -                 | \$ -       | \$ -            | \$ 1.59                        | \$ 0.11                                  |
| 2015            | \$ -                 | \$ -       | \$ -            | \$ 1.59                        | \$ 0.11                                  |
| 2016            | \$ -                 | \$ -       | \$ -            | \$ 1.59                        | \$ 0.11                                  |
| 2017            | \$ -                 | \$ -       | \$ -            | \$ 1.59                        | \$ 0.11                                  |
| 2018            | \$ -                 | \$ -       | \$ -            | \$ 1.59                        | \$ 0.11                                  |
| 2019            | \$ -                 | \$ -       | \$ -            | \$ 1.59                        | \$ 0.11                                  |
| 2020            | \$ -                 | \$ -       | \$ -            | \$ 1.59                        | \$ 0.11                                  |
| 2021            | \$ -                 | \$ -       | \$ -            | \$ 1.59                        | \$ 0.11                                  |
| 2022            | \$ -                 | \$ -       | \$ -            | \$ 1.59                        | \$ 0.11                                  |
| 2023            | \$ -                 | \$ -       | \$ -            | \$ 1.59                        | \$ 0.11                                  |
| 2024            | \$ -                 | \$ -       | \$ -            | \$ 1.59                        | \$ 0.11                                  |
| 2025            | \$ -                 | \$ -       | \$ -            | \$ 1.59                        | \$ 0.11                                  |
| 2026            | \$ -                 | \$ -       | \$ -            | \$ 1.59                        | \$ 0.11                                  |
| 2027            | \$ -                 | \$ -       | \$ -            | \$ 1.59                        | \$ 0.11                                  |
| 2028            | \$ -                 | \$ -       | \$ -            | \$ 1.59                        | \$ 0.11                                  |
| 2029            | \$ -                 | \$ -       | \$ -            | \$ 1.59                        | \$ 0.11                                  |

Note: All values in millions of year 2003 dollars.

Source: Derived from Exhibits J.1h and D.7.

## Exhibit J.2as Present Value of Annual Cost Projections at 3% Discount Rate (All Systems and Primacy Agencies)

#### Preferred Alternative

|       |             | Surface Water CWS            |                                      |    |         | Surf       | ace Wat | er N | TNCWS                 | Disinfecti    | ing G | round \        | Vater CW           | s   | Dis      | infecting | g Groui | nd Wate       | r NTN | ncws               | Primacy Agencies |               | 1  | Total             |                 |                   |
|-------|-------------|------------------------------|--------------------------------------|----|---------|------------|---------|------|-----------------------|---------------|-------|----------------|--------------------|-----|----------|-----------|---------|---------------|-------|--------------------|------------------|---------------|----|-------------------|-----------------|-------------------|
|       |             | 90 Percent  Confidence Bound |                                      |    |         |            |         |      | ercent<br>ce Bound    |               | С     |                | ercent<br>ce Bound | ı   |          |           | C       | 90 Pe         |       |                    |                  |               |    | 90 Pe<br>Confiden | ercent<br>ce Bo | und               |
|       | Mea<br>Valu |                              | Lower Upper (5th %tile) (95th %tile) |    |         | ean<br>Iue | Lowe    |      | Upper<br>(95th %tile) | Mean<br>Value |       | ower<br>%tile) | Uppe<br>(95th %ti  |     | Me<br>Va |           |         | wer<br>%tile) | l     | Upper<br>th %tile) | Point Estimate   | Mean<br>/alue |    | ower<br>%tile)    |                 | lpper<br>n %tile) |
| 2005  | \$          | 0.6                          | \$ 0.6                               | \$ | 0.6     | \$<br>0.0  | \$      | 0.0  | \$ 0.0                | \$<br>0.1     | \$    | 0.1            | \$                 | 0.1 | \$       | 0.0       | \$      | 0.0           | \$    | 0.0                | \$ 3.7           | \$<br>4.4     | \$ | 4.4               | \$              | 4.4               |
| 2006  | \$          | 9.0                          | \$ 9.0                               | \$ | 9.0     | \$<br>0.1  | \$      | 0.1  | \$ 0.1                | \$<br>3.2     | \$    | 3.2            | \$                 | 3.2 | \$       | 0.5       | \$      | 0.5           | \$    | 0.5                | \$ 3.6           | \$<br>16.4    | \$ | 16.4              | \$              | 16.4              |
| 2007  | \$          | 20.1                         | \$ 20.1                              | \$ | 20.1    | \$<br>0.0  | \$      | 0.0  | \$ 0.0                | \$<br>1.0     | \$    | 1.0            | \$                 | 1.0 | \$       | 0.0       | \$      | 0.0           | \$    | 0.0                | \$ 0.1           | \$<br>21.3    | \$ | 21.3              | \$              | 21.3              |
| 2008  | \$          | 74.6                         | \$ 46.3                              | \$ | 100.9   | \$<br>0.1  | \$      | 0.1  | \$ 0.1                | \$<br>13.0    | \$    | 12.2           | \$ 1               | 3.7 | \$       | 0.0       | \$      | 0.0           | \$    | 0.0                | \$ 1.8           | \$<br>89.5    | \$ | 60.4              | \$              | 116.6             |
| 2009  | \$          | 85.2                         | \$ 44.4                              | \$ | 124.2   | \$<br>0.7  | \$      | 0.4  | \$ 1.1                | \$<br>31.3    | \$    | 27.4           | \$ 3               | 5.1 | \$       | 1.7       | \$      | 1.5           | \$    | 1.9                | \$ 0.7           | \$<br>119.6   | \$ | 74.5              | \$              | 163.0             |
| 2010  | \$          | 104.9                        | \$ 54.4                              | \$ | 154.1   | \$<br>1.4  | \$      | 0.7  | \$ 2.1                | \$<br>48.7    | \$    | 42.0           | \$ 5               | 5.4 | \$       | 2.4       | \$      | 2.1           | \$    | 2.8                | \$ -             | \$<br>157.4   | \$ | 99.2              | \$              | 214.3             |
| 2011  | \$          | 107.3                        | \$ 55.8                              | \$ | 158.1   | \$<br>1.5  | \$      | 0.8  | \$ 2.2                | \$<br>49.3    | \$    | 42.6           | \$ 5               | 6.1 | \$       | 2.3       | \$      | 2.0           | \$    | 2.7                | \$ 1.3           | \$<br>161.8   | \$ | 102.5             | \$              | 220.4             |
| 2012  | \$          | 108.9                        | \$ 56.4                              | \$ | 161.0   | \$<br>1.6  | \$      | 0.8  | \$ 2.4                | \$<br>53.3    | \$    | 46.6           | \$ 6               | 0.1 | \$       | 2.7       | \$      | 2.4           | \$    | 3.1                | \$ 1.3           | \$<br>167.9   | \$ | 107.5             | \$              | 228.0             |
| 2013  | \$          | 60.6                         | \$ 31.7                              | \$ | 91.4    | \$<br>1.7  | \$      | 0.9  | \$ 2.5                | \$<br>50.9    | \$    | 44.8           | \$ 5               | 7.0 | \$       | 3.1       | \$      | 2.7           | \$    | 3.4                | \$ 1.3           | \$<br>117.5   | \$ | 81.3              | \$              | 155.6             |
| 2014  | \$          | 39.9                         | \$ 21.1                              | \$ | 60.9    | \$<br>1.3  | \$      | 0.7  | \$ 1.9                | \$<br>34.5    | \$    | 31.0           | \$ 3               | 8.0 | \$       | 2.3       | \$      | 2.0           | \$    | 2.5                | \$ 1.2           | \$<br>79.1    | \$ | 56.0              | \$              | 104.5             |
| 2015  | \$          | 24.0                         | \$ 12.9                              | \$ | 37.3    | \$<br>0.8  | \$      | 0.4  | \$ 1.2                | \$<br>18.8    | \$    | 17.7           | \$ 1               | 9.8 | \$       | 1.4       | \$      | 1.3           | \$    | 1.4                | \$ 1.2           | \$<br>46.1    | \$ | 33.5              | \$              | 60.9              |
| 2016  | \$          | 23.3                         | \$ 12.5                              | \$ | 36.2    | \$<br>0.8  | \$      | 0.4  | \$ 1.1                | \$<br>18.2    | \$    | 17.2           | \$ 1               | 9.2 | \$       | 1.3       | \$      | 1.3           | \$    | 1.4                | \$ 1.2           | \$<br>44.8    | \$ | 32.5              | \$              | 59.1              |
| 2017  | \$          | 22.6                         | \$ 12.2                              | \$ | 35.1    | \$<br>0.7  | \$      | 0.4  | \$ 1.1                | \$<br>17.7    | \$    | 16.7           | \$ 1               | 8.7 | \$       | 1.3       | \$      | 1.2           | \$    | 1.4                | \$ 1.1           | \$<br>43.5    | \$ | 31.6              | \$              | 57.4              |
| 2018  | \$          | 21.9                         | \$ 11.8                              | \$ | 34.1    | \$<br>0.7  | \$      | 0.4  | \$ 1.1                | \$<br>17.2    | \$    | 16.2           | \$ 1               | 8.1 | \$       | 1.3       | \$      | 1.2           | \$    | 1.3                | \$ 1.1           | \$<br>42.2    | \$ | 30.7              | \$              | 55.7              |
| 2019  | \$          | 21.3                         | \$ 11.5                              | \$ | 33.1    | \$<br>0.7  | \$      | 0.4  | \$ 1.0                | \$<br>16.7    | \$    | 15.7           | \$ 1               | 7.6 | \$       | 1.2       | \$      | 1.2           | \$    | 1.3                | \$ 1.1           | \$<br>41.0    | \$ | 29.8              | \$              | 54.1              |
| 2020  | \$          | 20.7                         | \$ 11.1                              | \$ | 32.2    | \$<br>0.7  | \$      | 0.4  | \$ 1.0                | \$<br>16.2    | \$    | 15.3           | \$ 1               | 7.1 | \$       | 1.2       | \$      | 1.1           | \$    | 1.2                | \$ 1.0           | \$<br>39.8    | \$ | 28.9              | \$              | 52.5              |
| 2021  | \$          | 20.1                         | \$ 10.8                              | \$ | 31.2    | \$<br>0.7  | \$      | 0.4  | \$ 1.0                | \$<br>15.7    | \$    | 14.8           | \$ 1               | 6.6 | \$       | 1.1       | \$      | 1.1           | \$    | 1.2                | \$ 1.0           | \$<br>38.6    | \$ | 28.1              | \$              | 51.0              |
| 2022  | \$          | 19.5                         | \$ 10.5                              | \$ | 30.3    | \$<br>0.6  | \$      | 0.3  | \$ 1.0                | \$<br>15.3    | \$    | 14.4           | \$ 1               | 6.1 | \$       | 1.1       | \$      | 1.1           | \$    | 1.2                | \$ 1.0           | \$<br>37.5    | \$ | 27.3              | \$              | 49.5              |
| 2023  | \$          | 18.9                         | \$ 10.2                              | \$ | 29.4    | \$<br>0.6  | \$      | 0.3  | \$ 0.9                | \$<br>14.8    | \$    | 14.0           | \$ 1               | 5.6 | \$       | 1.1       | \$      | 1.0           | \$    | 1.1                | \$ 0.9           | \$<br>36.4    | \$ | 26.5              | \$              | 48.1              |
| 2024  | \$          | 18.4                         | \$ 9.9                               | \$ | 28.6    | \$<br>0.6  | \$      | 0.3  | \$ 0.9                | \$<br>14.4    | \$    | 13.6           | \$ 1               | 5.2 | \$       | 1.1       | \$      | 1.0           | \$    | 1.1                | \$ 0.9           | \$<br>35.3    | \$ | 25.7              | \$              | 46.7              |
| 2025  | \$          | 17.8                         | \$ 9.6                               | \$ | 27.7    | \$<br>0.6  | \$      | 0.3  | \$ 0.9                | \$<br>14.0    | \$    | 13.2           | \$ 1               | 4.7 | \$       | 1.0       | \$      | 1.0           | \$    | 1.1                | \$ 0.9           | \$<br>34.3    | \$ | 24.9              | \$              | 45.3              |
| 2026  | \$          | 17.3                         | \$ 9.3                               | \$ | 26.9    | \$<br>0.6  | \$      | 0.3  | \$ 0.8                | \$<br>13.6    | \$    | 12.8           | \$ 1               | 4.3 | \$       | 1.0       | \$      | 0.9           | \$    | 1.0                | \$ 0.9           | \$<br>33.3    | \$ | 24.2              | \$              | 44.0              |
| 2027  | \$          | 16.8                         | \$ 9.0                               | \$ | 26.2    | \$<br>0.6  | \$      | 0.3  | \$ 0.8                | \$<br>13.2    | \$    | 12.4           | \$ 1               | 3.9 | \$       | 1.0       | \$      | 0.9           | \$    | 1.0                | \$ 0.8           | \$<br>32.3    | \$ | 23.5              | \$              | 42.7              |
| 2028  | \$          | 16.3                         | \$ 8.8                               | \$ | 25.4    | \$<br>0.5  | \$      | 0.3  | \$ 0.8                | \$<br>12.8    | \$    | 12.0           | \$ 1               | 3.5 | \$       | 0.9       | \$      | 0.9           | \$    | 1.0                | \$ 0.8           | \$<br>31.4    | \$ | 22.8              | \$              | 41.5              |
| 2029  | \$          | 15.9                         | \$ 8.5                               | \$ | 24.7    | \$<br>0.5  | \$      | 0.3  | \$ 0.8                | \$<br>12.4    | \$    | 11.7           | \$ 1               | 3.1 | \$       | 0.9       | \$      | 0.9           | \$    | 0.9                | \$ 0.8           | \$<br>30.5    | \$ | 22.2              | \$              | 40.3              |
| Total | \$          | 905.8                        | \$ 498.3                             | \$ | 1,338.7 | \$<br>18.1 | \$      | 9.6  | \$ 27.0               | \$<br>515.9   | \$    | 468.4          | \$ 56              | 3.5 | \$       | 31.9      | \$      | 29.3          | \$    | 34.5               | \$ 29.8          | \$<br>1,501.6 | \$ | 1,035.5           | \$              | 1,993.5           |
| Ann.  | \$          | 52.0                         | \$ 28.6                              | \$ | 76.9    | \$<br>1.0  | \$      | 0.6  | \$ 1.5                | \$<br>29.6    | \$    | 26.9           | \$ 3               | 2.4 | \$       | 1.8       | \$      | 1.7           | \$    | 2.0                | \$ 1.7           | \$<br>86.2    | \$ | 59.5              | \$              | 114.5             |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

# Exhibit J.2at Present Value of Annual Treatment Cost Projections at 3% Discount Rate (All Systems)

### Preferred Alternative

| FIEIGII | eu | Alternativ    | itive                          |                     |    |                      |              |                  |                  |     | П                  |    |               |                   |                    |      | Г                    |    |               |                   |                  |       |                    |                 |                   |    |                    |
|---------|----|---------------|--------------------------------|---------------------|----|----------------------|--------------|------------------|------------------|-----|--------------------|----|---------------|-------------------|--------------------|------|----------------------|----|---------------|-------------------|------------------|-------|--------------------|-----------------|-------------------|----|--------------------|
|         |    | Sı            | Surface Water CWS              |                     |    |                      | Su           | rface            | Water N          | TNC | ws                 |    | Disinfect     | ting              | Ground V           | Vate | er CWS               |    | Disinfecting  | g Gro             | und Wate         | er NT | NCWS               |                 | Total             |    |                    |
|         |    |               | 90 Percent<br>Confidence Bound |                     |    |                      |              | 90 P<br>Confider |                  |     |                    |    |               | 90 Po<br>Confider |                    |      |                      |    | (             | 90 Pe<br>Confiden |                  |       |                    | 90 F<br>Confide | erce<br>nce E     |    |                    |
|         |    | Mean<br>Value | (5                             | Lower<br>5th %tile) | (9 | Upper<br>95th %tile) | lean<br>alue |                  | ower<br>h %tile) |     | Upper<br>th %tile) |    | Mean<br>Value |                   | Lower<br>th %tile) | (9   | Upper<br>95th %tile) |    | Mean<br>Value |                   | ower<br>n %tile) |       | Upper<br>th %tile) | Mean<br>Value   | _ower<br>h %tile) |    | Upper<br>th %tile) |
| 2005    | \$ | -             | \$                             |                     | \$ |                      | \$<br>-      | \$               |                  | \$  | -                  | \$ | -             | \$                | -                  | \$   |                      | \$ |               | \$                |                  | \$    |                    | \$<br>-         | \$<br>-           | \$ | -                  |
| 2006    | \$ | -             | \$                             | -                   | \$ | -                    | \$<br>-      | \$               | -                | \$  | -                  | \$ | -             | \$                | -                  | \$   | -                    | \$ | -             | \$                | -                | \$    | -                  | \$<br>-         | \$<br>-           | \$ | -                  |
| 2007    | \$ | -             | \$                             | -                   | \$ | -                    | \$<br>-      | \$               | -                | \$  | -                  | \$ | -             | \$                | -                  | \$   | -                    | \$ | -             | \$                | -                | \$    | -                  | \$<br>-         | \$<br>-           | \$ | -                  |
| 2008    | \$ | 57.5          | \$                             | 29.2                | \$ | 83.8                 | \$<br>0.1    | \$               | 0.0              | \$  | 0.1                | \$ | 7.0           | \$                | 6.2                | \$   | 7.8                  | \$ | 0.0           | \$                | 0.0              | \$    | 0.0                | \$<br>64.5      | \$<br>35.4        | \$ | 91.7               |
| 2009    | \$ | 81.1          | \$                             | 41.4                | \$ | 118.6                | \$<br>0.7    | \$               | 0.3              | \$  | 1.0                | \$ | 27.0          | \$                | 23.2               | \$   | 30.8                 | \$ | 1.1           | \$                | 0.9              | \$    | 1.3                | \$<br>109.9     | \$<br>65.9        | \$ | 151.6              |
| 2010    | \$ | 97.3          | \$                             | 49.8                | \$ | 142.6                | \$<br>1.2    | \$               | 0.6              | \$  | 1.9                | \$ | 44.6          | \$                | 38.1               | \$   | 51.1                 | \$ | 2.1           | \$                | 1.8              | \$    | 2.4                | \$<br>145.3     | \$<br>90.3        | \$ | 198.0              |
| 2011    | \$ | 94.5          | \$                             | 48.3                | \$ | 138.4                | \$<br>1.2    | \$               | 0.6              | \$  | 1.8                | \$ | 43.3          | \$                | 37.0               | \$   | 49.6                 | \$ | 2.0           | \$                | 1.7              | \$    | 2.4                | \$<br>141.0     | \$<br>87.7        | \$ | 192.2              |
| 2012    | \$ | 91.7          | \$                             | 46.9                | \$ | 134.4                | \$<br>1.2    | \$               | 0.6              | \$  | 1.8                | \$ | 42.0          | \$                | 35.9               | \$   | 48.2                 | \$ | 2.0           | \$                | 1.7              | \$    | 2.3                | \$<br>136.9     | \$<br>85.1        | \$ | 186.6              |
| 2013    | \$ | 39.5          | \$                             | 20.4                | \$ | 58.2                 | \$<br>1.1    | \$               | 0.5              | \$  | 1.6                | \$ | 34.8          | \$                | 29.5               | \$   | 40.1                 | \$ | 1.9           | \$                | 1.6              | \$    | 2.2                | \$<br>77.3      | \$<br>52.1        | \$ | 102.2              |
| 2014    | \$ | 16.5          | \$                             | 8.5                 | \$ | 24.4                 | \$<br>0.5    | \$               | 0.3              | \$  | 0.8                | \$ | 16.3          | \$                | 13.8               | \$   | 18.9                 | \$ | 0.9           | \$                | 8.0              | \$    | 1.1                | \$<br>34.3      | \$<br>23.4        | \$ | 45.1               |
| 2015    | \$ | -             | \$                             | -                   | \$ | -                    | \$<br>-      | \$               | -                | \$  | -                  | \$ | -             | \$                | -                  | \$   | -                    | \$ | -             | \$                | -                | \$    | -                  | \$<br>-         | \$<br>-           | \$ | -                  |
| 2016    | \$ | -             | \$                             | -                   | \$ | -                    | \$<br>-      | \$               | -                | \$  | -                  | \$ | -             | \$                | -                  | \$   | -                    | \$ | -             | \$                | -                | \$    | -                  | \$<br>-         | \$<br>-           | \$ | -                  |
| 2017    | \$ | -             | \$                             | -                   | \$ | -                    | \$<br>-      | \$               | -                | \$  | -                  | \$ | -             | \$                | -                  | \$   | -                    | \$ | -             | \$                | -                | \$    | -                  | \$<br>-         | \$<br>-           | \$ | -                  |
| 2018    | \$ | -             | \$                             | -                   | \$ | -                    | \$<br>-      | \$               | -                | \$  | -                  | \$ | -             | \$                | -                  | \$   | -                    | \$ | -             | \$                | -                | \$    | -                  | \$<br>-         | \$<br>-           | \$ | -                  |
| 2019    | \$ | -             | \$                             | -                   | \$ | -                    | \$<br>-      | \$               | -                | \$  | -                  | \$ | -             | \$                | -                  | \$   | -                    | \$ | -             | \$                | -                | \$    | -                  | \$<br>-         | \$<br>-           | \$ | -                  |
| 2020    | \$ | -             | \$                             | -                   | \$ | -                    | \$<br>-      | \$               | -                | \$  | -                  | \$ | -             | \$                | -                  | \$   | -                    | \$ | -             | \$                | -                | \$    | -                  | \$<br>-         | \$<br>-           | \$ | -                  |
| 2021    | \$ | -             | \$                             | -                   | \$ | -                    | \$<br>-      | \$               | -                | \$  | -                  | \$ | -             | \$                | -                  | \$   | -                    | \$ | -             | \$                | -                | \$    | -                  | \$<br>-         | \$<br>-           | \$ | -                  |
| 2022    | \$ | -             | \$                             | -                   | \$ | -                    | \$<br>-      | \$               | -                | \$  | -                  | \$ | -             | \$                | -                  | \$   | -                    | \$ | -             | \$                | -                | \$    | -                  | \$<br>-         | \$<br>-           | \$ | -                  |
| 2023    | \$ | -             | \$                             | -                   | \$ | -                    | \$<br>-      | \$               | -                | \$  | -                  | \$ | -             | \$                | -                  | \$   | -                    | \$ | -             | \$                | -                | \$    | -                  | \$<br>-         | \$<br>-           | \$ |                    |
| 2024    | \$ | -             | \$                             | -                   | \$ | -                    | \$<br>-      | \$               | -                | \$  | -                  | \$ | -             | \$                | -                  | \$   | -                    | \$ | -             | \$                | -                | \$    | -                  | \$<br>-         | \$<br>-           | \$ | -                  |
| 2025    | \$ | -             | \$                             | -                   | \$ | -                    | \$<br>-      | \$               | -                | \$  | -                  | \$ | -             | \$                | -                  | \$   | -                    | \$ | -             | \$                | -                | \$    | -                  | \$<br>-         | \$<br>-           | \$ | -                  |
| 2026    | \$ | -             | \$                             | -                   | \$ | -                    | \$<br>-      | \$               | -                | \$  | -                  | \$ | -             | \$                | -                  | \$   | -                    | \$ | -             | \$                | -                | \$    | -                  | \$<br>-         | \$<br>-           | \$ | -                  |
| 2027    | \$ | -             | \$                             | -                   | \$ | -                    | \$<br>-      | \$               | -                | \$  | -                  | \$ | -             | \$                | -                  | \$   | -                    | \$ | -             | \$                | -                | \$    | -                  | \$<br>-         | \$<br>-           | \$ | -                  |
| 2028    | \$ | -             | \$                             | -                   | \$ | -                    | \$<br>-      | \$               | -                | \$  | -                  | \$ | -             | \$                | -                  | \$   | -                    | \$ | -             | \$                | -                | \$    | -                  | \$<br>-         | \$<br>-           | \$ | -                  |
| 2029    | \$ | -             | \$                             | -                   | \$ | -                    | \$<br>-      | \$               | -                | \$  | -                  | \$ | -             | \$                | -                  | \$   | -                    | \$ | -             | \$                | -                | \$    | -                  | \$<br>-         | \$<br>-           | \$ | -                  |
| Total   | \$ | 478.0         | \$                             | 244.5               | \$ | 700.3                | \$<br>6.0    | \$               | 3.0              | \$  | 9.1                | \$ | 215.1         | \$                | 183.8              | \$   | 246.4                | \$ | 10.1          | \$                | 8.5              | \$    | 11.6               | \$<br>709.1     | \$<br>439.9       | \$ | 967.5              |
| Ann.    | \$ | 27.5          | \$                             | 14.0                | \$ | 40.2                 | \$<br>0.3    | \$               | 0.2              | \$  | 0.5                | \$ | 12.4          | \$                | 10.6               | \$   | 14.2                 | \$ | 0.6           | \$                | 0.5              | \$    | 0.7                | \$<br>40.7      | \$<br>25.3        | \$ | 55.6               |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

Source: Derived from Exhibits J.2a through rr.

Exhibit J.2au Present Value of Annual Treatment Cost Projections at 3% Discount Rate (All Systems)

### Preferred Alternative

|       |                   | Alternative   |    |                     |    |                     |             |            |               |                |                   |               |        |                  |        |                      |               |                      |       |                      |                |                   |       |                   |
|-------|-------------------|---------------|----|---------------------|----|---------------------|-------------|------------|---------------|----------------|-------------------|---------------|--------|------------------|--------|----------------------|---------------|----------------------|-------|----------------------|----------------|-------------------|-------|-------------------|
|       | Surface Water CWS |               |    |                     |    | Sur                 | face V      | Vater N    | TNC           | WS             | Disinfe           | ting          | Ground | Wat              | er CWS | Disinfecting         | g Ground Wa   | ter N                | TNCWS |                      | Total          |                   |       |                   |
|       |                   |               |    | 90 Pe<br>Confidence |    |                     |             | С          | 90 Ponfider   | ercen<br>nce B |                   |               |        | 90 F<br>Confide  |        |                      |               | 90 F<br>Confide      | erce  |                      |                | 90 F<br>Confide   | ercen |                   |
|       |                   | Mean<br>/alue |    | Lower<br>th %tile)  |    | Upper<br>5th %tile) | ean<br>alue | Lo<br>(5th | wer<br>%tile) |                | Jpper<br>h %tile) | Mean<br>Value |        | ower<br>1 %tile) | (:     | Upper<br>95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | (9    | Upper<br>95th %tile) | /lean<br>/alue | Lower<br>h %tile) |       | Jpper<br>h %tile) |
| 2005  | \$                | -             | \$ | -                   | \$ | -                   | \$          | \$         |               | \$             | -                 | \$            | \$     | -                | \$     | -                    | \$<br>-       | \$ -                 | \$    | -                    | \$<br>-        | \$<br>-           | \$    | -                 |
| 2006  | \$                | -             | \$ | -                   | \$ | -                   | \$<br>-     | \$         | -             | \$             | -                 | \$<br>-       | \$     | -                | \$     | -                    | \$<br>-       | \$ -                 | \$    | -                    | \$<br>-        | \$<br>-           | \$    | -                 |
| 2007  | \$                | -             | \$ | -                   | \$ | -                   | \$<br>-     | \$         | -             | \$             | -                 | \$<br>-       | \$     | -                | \$     | -                    | \$<br>-       | \$ -                 | \$    | -                    | \$<br>-        | \$<br>-           | \$    | -                 |
| 2008  | \$                | -             | \$ | -                   | \$ | -                   | \$<br>-     | \$         | -             | \$             | -                 | \$<br>-       | \$     | -                | \$     | -                    | \$<br>-       | \$ -                 | \$    | -                    | \$<br>-        | \$<br>-           | \$    | -                 |
| 2009  | \$                | 2.7           | \$ | 1.6                 | \$ | 4.3                 | \$<br>0.0   | \$         | 0.0           | \$             | 0.0               | \$<br>0.7     | \$     | 0.6              | \$     | 0.7                  | \$<br>0.0     | \$ 0.0               | \$    | 0.0                  | \$<br>3.4      | \$<br>2.2         | \$    | 5.0               |
| 2010  | \$                | 7.0           | \$ | 4.0                 | \$ | 10.9                | \$<br>0.1   | \$         | 0.0           | \$             | 0.1               | \$<br>2.7     | \$     | 2.5              | \$     | 2.9                  | \$<br>0.1     | \$ 0.1               | \$    | 0.1                  | \$<br>10.0     | \$<br>6.7         | \$    | 14.1              |
| 2011  | \$                | 12.5          | \$ | 7.1                 | \$ | 19.3                | \$<br>0.3   | \$         | 0.1           | \$             | 0.4               | \$<br>6.0     | \$     | 5.5              | \$     | 6.4                  | \$<br>0.3     | \$ 0.3               | \$    | 0.3                  | \$<br>19.1     | \$<br>13.1        | \$    | 26.4              |
| 2012  | \$                | 17.7          | \$ | 10.0                | \$ | 27.2                | \$<br>0.4   | \$         | 0.2           | \$             | 0.6               | \$<br>9.0     | \$     | 8.4              | \$     | 9.7                  | \$<br>0.5     | \$ 0.4               | \$    | 0.5                  | \$<br>27.6     | \$<br>19.1        | \$    | 38.0              |
| 2013  | \$                | 22.5          | \$ | 12.7                | \$ | 34.6                | \$<br>0.6   | \$         | 0.3           | \$             | 0.9               | \$<br>11.9    | \$     | 11.1             | \$     | 12.8                 | \$<br>0.6     | \$ 0.6               | \$    | 0.7                  | \$<br>35.7     | \$<br>24.7        | \$    | 48.9              |
| 2014  | \$                | 24.7          | \$ | 13.9                | \$ | 37.8                | \$<br>0.7   | \$         | 0.4           | \$             | 1.1               | \$<br>14.1    | \$     | 13.0             | \$     | 15.1                 | \$<br>0.8     | \$ 0.7               | \$    | 0.9                  | \$<br>40.3     | \$<br>28.1        | \$    | 54.8              |
| 2015  | \$                | 25.3          | \$ | 14.2                | \$ | 38.6                | \$<br>8.0   | \$         | 0.4           | \$             | 1.2               | \$<br>14.8    | \$     | 13.7             | \$     | 15.9                 | \$<br>0.9     | \$ 0.8               | \$    | 0.9                  | \$<br>41.7     | \$<br>29.1        | \$    | 56.5              |
| 2016  | \$                | 24.5          | \$ | 13.8                | \$ | 37.5                | \$<br>8.0   | \$         | 0.4           | \$             | 1.1               | \$<br>14.4    | \$     | 13.3             | \$     | 15.4                 | \$<br>0.8     | \$ 0.8               | \$    | 0.9                  | \$<br>40.5     | \$<br>28.3        | \$    | 54.9              |
| 2017  | \$                | 23.8          | \$ | 13.4                | \$ | 36.4                | \$<br>0.7   | \$         | 0.4           | \$             | 1.1               | \$<br>14.0    | \$     | 13.0             | \$     | 15.0                 | \$<br>0.8     | \$ 0.7               | \$    | 0.9                  | \$<br>39.3     | \$<br>27.5        | \$    | 53.3              |
| 2018  | \$                | 23.1          | \$ | 13.0                | \$ | 35.3                | \$<br>0.7   | \$         | 0.4           | \$             | 1.1               | \$<br>13.6    | \$     | 12.6             | \$     | 14.5                 | \$<br>0.8     | \$ 0.7               | \$    | 0.8                  | \$<br>38.2     | \$<br>26.7        | \$    | 51.7              |
| 2019  | \$                | 22.5          | \$ | 12.6                | \$ | 34.3                | \$<br>0.7   | \$         | 0.4           | \$             | 1.0               | \$<br>13.2    | \$     | 12.2             | \$     | 14.1                 | \$<br>0.8     | \$ 0.7               | \$    | 0.8                  | \$<br>37.1     | \$<br>25.9        | \$    | 50.2              |
| 2020  | \$                | 21.8          | \$ | 12.2                | \$ | 33.3                | \$<br>0.7   | \$         | 0.3           | \$             | 1.0               | \$<br>12.8    | \$     | 11.9             | \$     | 13.7                 | \$<br>0.7     | \$ 0.7               | \$    | 0.8                  | \$<br>36.0     | \$<br>25.1        | \$    | 48.8              |
| 2021  | \$                | 21.2          | \$ | 11.9                | \$ | 32.3                | \$<br>0.6   | \$         | 0.3           | \$             | 1.0               | \$<br>12.4    | \$     | 11.5             | \$     | 13.3                 | \$<br>0.7     | \$ 0.7               | \$    | 0.8                  | \$<br>34.9     | \$<br>24.4        | \$    | 47.4              |
| 2022  | \$                | 20.6          | \$ | 11.5                | \$ | 31.4                | \$<br>0.6   | \$         | 0.3           | \$             | 0.9               | \$<br>12.0    | \$     | 11.2             | \$     | 12.9                 | \$<br>0.7     | \$ 0.6               | \$    | 0.8                  | \$<br>33.9     | \$<br>23.7        | \$    | 46.0              |
| 2023  | \$                | 20.0          | \$ | 11.2                | \$ | 30.5                | \$<br>0.6   | \$         | 0.3           | \$             | 0.9               | \$<br>11.7    | \$     | 10.9             | \$     | 12.5                 | \$<br>0.7     | \$ 0.6               | \$    | 0.7                  | \$<br>32.9     | \$<br>23.0        | \$    | 44.6              |
| 2024  | \$                | 19.4          | \$ | 10.9                | \$ | 29.6                | \$<br>0.6   | \$         | 0.3           | \$             | 0.9               | \$<br>11.3    | \$     | 10.5             | \$     | 12.2                 | \$<br>0.7     | \$ 0.6               | \$    | 0.7                  | \$<br>32.0     | \$<br>22.3        | \$    | 43.3              |
| 2025  | \$                | 18.8          | \$ | 10.6                | \$ | 28.7                | \$<br>0.6   | \$         | 0.3           | \$             | 0.9               | \$<br>11.0    | \$     | 10.2             | \$     | 11.8                 | \$<br>0.6     | \$ 0.6               | \$    | 0.7                  | \$<br>31.0     | \$<br>21.7        | \$    | 42.1              |
| 2026  | \$                | 18.3          | \$ | 10.3                | \$ | 27.9                | \$<br>0.6   | \$         | 0.3           | \$             | 0.8               | \$<br>10.7    | \$     | 9.9              | \$     | 11.5                 | \$<br>0.6     | \$ 0.6               | \$    | 0.7                  | \$<br>30.1     | \$<br>21.1        | \$    | 40.8              |
| 2027  | \$                | 17.7          | \$ | 10.0                | \$ | 27.1                | \$<br>0.5   | \$         | 0.3           | \$             | 0.8               | \$<br>10.4    | \$     | 9.6              | \$     | 11.1                 | \$<br>0.6     | \$ 0.6               | \$    | 0.6                  | \$<br>29.3     | \$<br>20.4        | \$    | 39.7              |
| 2028  | \$                | 17.2          | \$ | 9.7                 | \$ | 26.3                | \$<br>0.5   | \$         | 0.3           | \$             | 0.8               | \$<br>10.1    | \$     | 9.4              | \$     | 10.8                 | \$<br>0.6     | \$ 0.5               | \$    | 0.6                  | \$<br>28.4     | \$<br>19.8        | \$    | 38.5              |
| 2029  | \$                | 16.7          | \$ | 9.4                 | \$ | 25.5                | \$<br>0.5   | \$         | 0.3           | \$             | 0.8               | \$<br>9.8     | \$     | 9.1              | \$     | 10.5                 | \$<br>0.6     | \$ 0.5               | \$    | 0.6                  | \$<br>27.6     | \$<br>19.3        | \$    | 37.4              |
| Total | \$                | 398.1         | \$ | 224.0               | \$ | 608.6               | \$<br>11.6  | \$         | 6.0           | \$             | 17.3              | \$<br>226.4   | \$     | 210.2            | \$     | 242.7                | \$<br>12.9    | \$ 11.9              | \$    | 13.9                 | \$<br>649.0    | \$<br>452.1       | \$    | 882.5             |
| Ann.  | \$                | 22.9          | \$ | 12.9                | \$ | 35.0                | \$<br>0.7   | \$         | 0.3           | \$             | 1.0               | \$<br>13.0    | \$     | 12.1             | \$     | 13.9                 | \$<br>0.7     | \$ 0.7               | \$    | 0.8                  | \$<br>37.3     | \$<br>26.0        | \$    | 50.7              |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

Source: Derived from Exhibits J.2a through rr.

#### Exhibit J.2av Present Value of Annual Non-Treatment Cost Projections at 3% Discount Rate (All Systems)

| Preferr | red / | Alternati  | ive |         |       |           |       |        |              |               |           |             |       |            |      |         |       |           |        |          |          |          |        |              |              |            |          |           |            |      |         |                |         |      |         |            |             |
|---------|-------|------------|-----|---------|-------|-----------|-------|--------|--------------|---------------|-----------|-------------|-------|------------|------|---------|-------|-----------|--------|----------|----------|----------|--------|--------------|--------------|------------|----------|-----------|------------|------|---------|----------------|---------|------|---------|------------|-------------|
|         |       |            |     | Sı      | urfac | e Water C | ws    |        |              |               | S         | ırface Wate | r NTN | ICWS       |      |         |       |           | Disinf | ecting G | iround W | later CV | ıs     |              |              | Disinfec   | ting Gro | ound Wate | r NTNCWS   |      |         |                |         | T    | otal    |            |             |
|         |       |            |     |         |       | onitoring |       |        | Siginificant |               |           | Monitori    |       |            |      | ificant |       |           |        |          | itoring  |          |        | Siginificant |              |            |          | nitoring  |            |      | ificant |                |         |      | itoring |            | Siginifican |
|         | lm    | plementati | ion | IDSE    | _     | Plans     | Monit | toring | Excursion    | Implementatio | 1 IDSE    | Plans       | _     | Monitoring | Excu | ırsion  | Imple | mentation | IDSE   | Pla      | ans      | Monito   | ring   | Excursion    | Implementati | on IDSE    | PI       | lans      | Monitoring | Excu | ırsion  | Implementation | IDSE    | Pl   | ans     | Monitoring | g Excursion |
| 2005    | \$    |            | 0.6 | \$ -    | \$    | -         | \$    | -      | \$ -         | \$ 0          | .0 \$ -   | \$ -        |       | \$ -       | \$   | -       | \$    | 0.1       | \$ -   | \$       | -        | \$       | - \$   | -            | \$           | 0.0 \$ -   | \$       | - !       | -          | \$   | -       | \$ 0.7         | \$ -    | \$   | -       | \$ -       | \$ -        |
| 2006    | \$    |            | 1.2 | \$ 7.7  | \$    | -         | \$    | -      | \$ -         | \$ 0          | .1 \$ 0.0 | \$ -        |       | \$ -       | \$   | -       | \$    | 3.1       | \$ 0.1 | \$       | -        | \$       | - \$   | -            | \$           | 0.5 \$ -   | \$       | - !       | -          | \$   | -       | \$ 4.9         | \$ 7.8  | 3 \$ | -       | \$ -       | \$ -        |
| 2007    | \$    |            | -   | \$ 19.9 | \$    | 0.2       | \$    | -      | \$ -         | \$ -          | \$ 0.0    | \$          | 0.0   | \$ -       | \$   | -       | \$    | -         | \$ 1.0 | \$       | 0.0      | \$       | - \$   | -            | \$           | - \$ 0.0   | \$       | 0.0       | -          | \$   | -       | \$ -           | \$ 20.9 | \$   | 0.2     | \$ -       | \$ -        |
| 2008    | \$    |            | 0.5 | \$ 16.1 | \$    | 0.5       | \$    | -      | \$ -         | \$ 0          | .0 \$ 0.0 | \$          | 0.0   | \$ -       | \$   |         | \$    | 0.0       | \$ 5.7 | \$       | 0.2      | \$       | - \$   | -            | \$           | 0.0 \$ 0.0 | \$       | 0.0       | -          | \$   |         | \$ 0.6         | \$ 21.8 | 3 \$ | 0.7     | \$ -       | \$ -        |
| 2009    | \$    |            | 0.6 | \$ -    | \$    | 0.7       | \$    | -      | \$ -         | \$ 0          | .0 \$ -   | \$          | 0.0   | \$ -       | \$   | -       | \$    | 1.5       | \$ -   | \$       | 2.2      | \$       | - \$   | -            | \$           | 0.2 \$ -   | \$       | 0.4       | -          | \$   | -       | \$ 2.4         | \$ -    | \$   | 3.3     | \$ -       | \$ -        |
| 2010    | \$    |            | 0.5 | \$ -    | \$    | -         | \$    | -      | \$ -         | \$ 0          | .0 \$ -   | \$ -        | . :   | \$ -       | \$   | -       | \$    | 1.4       | \$ -   | \$       | -        | \$       | - \$   | -            | \$           | 0.2 \$ -   | \$       | - :       | -          | \$   | -       | \$ 2.2         | \$ -    | \$   | -       | \$ -       | \$ -        |
| 2011    | \$    |            | -   | \$ -    | \$    | -         | \$    | 0.3    | \$ -         | \$ -          | \$ -      | \$ -        | . :   | \$ 0.0     | \$   | -       | \$    | -         | \$ -   | \$       | -        | \$       | 0.1    | -            | \$           | - \$ -     | \$       | - :       | 0.0        | \$   | -       | \$ -           | \$ -    | \$   | -       | \$ 0.      | .4 \$ -     |
| 2012    | \$    |            | -   | \$ -    | \$    | -         | \$    | (0.6)  | \$ 0.0       | \$ -          | \$ -      | \$ -        | . :   | \$ 0.0     | \$   | -       | \$    | -         | \$ -   | \$       | -        | \$       | 2.3    | -            | \$           | - \$ -     | \$       | - :       | 0.3        | \$   | -       | \$ -           | \$ -    | \$   | -       | \$ 2.      | .0 \$ 0.    |
| 2013    | \$    |            | -   | \$ -    | \$    | -         | \$    | (1.5)  | \$ 0.1       | \$ -          | \$ -      | \$ -        | . :   | \$ 0.0     | \$   | -       | \$    | -         | \$ -   | \$       | -        | \$       | 4.2    | -            | \$           | - \$ -     | \$       | - :       | 0.5        | \$   | -       | \$ -           | \$ -    | \$   | -       | \$ 3.      | .2 \$ 0.    |
| 2014    | \$    |            | -   | \$ -    | \$    | -         | \$    | (1.5)  | \$ 0.2       | s -           | \$ -      | \$ -        | . :   | \$ 0.0     | \$   |         | \$    | -         | \$ -   | \$       | -        | \$       | 4.1 \$ | -            | \$           | - \$ -     | \$       | - !       | 0.5        | \$   |         | \$ -           | \$ -    | \$   | -       | \$ 3.      | .1 \$ 0.    |
| 2015    | \$    |            | -   | \$ -    | \$    | -         | \$    | (1.5)  | \$ 0.1       | s -           | \$ -      | \$ -        | . :   | \$ 0.0     | \$   |         | \$    | -         | \$ -   | \$       | -        | \$       | 3.9    | -            | \$           | - \$ -     | \$       | - !       | 0.5        | \$   |         | \$ -           | \$ -    | \$   | -       | \$ 3.      | .0 \$ 0.    |
| 2016    | \$    |            | -   | \$ -    | \$    | -         | \$    | (1.4)  | \$ 0.1       | s -           | \$ -      | \$ -        | . :   | \$ 0.0     | \$   |         | \$    | -         | \$ -   | \$       | -        | \$       | 3.8    | -            | \$           | - \$ -     | \$       | - !       | 0.5        | \$   |         | \$ -           | \$ -    | \$   | -       | \$ 2.      | .9 \$ 0.    |
| 2017    | \$    |            | -   | \$ -    | \$    | -         | \$    | (1.4)  | \$ 0.1       | \$ -          | \$ -      | \$ -        | . :   | \$ 0.0     | \$   | -       | \$    | -         | \$ -   | \$       | -        | \$       | 3.7    | -            | \$           | - \$-      | \$       | - :       | 0.5        | \$   | -       | \$ -           | \$ -    | \$   | -       | \$ 2.      | .9 \$ 0.    |
| 2018    | \$    |            | -   | \$ -    | \$    | -         | \$    | (1.3)  | \$ 0.1       | s -           | \$ -      | \$ -        | . :   | \$ 0.0     | \$   |         | \$    | -         | \$ -   | \$       | -        | \$       | 3.6    | -            | \$           | - \$ -     | \$       | - !       | 0.5        | \$   | -       | \$ -           | \$ -    | \$   | -       | \$ 2.      | .8 \$ 0.    |
| 2019    | \$    |            | -   | \$ -    | \$    | -         | \$    | (1.3)  | \$ 0.1       | s -           | \$ -      | \$ -        | . :   | \$ 0.0     | \$   |         | \$    | -         | \$ -   | \$       | -        | \$       | 3.5    | -            | \$           | - \$ -     | \$       | - !       | 0.5        | \$   | -       | \$ -           | \$ -    | \$   | -       | \$ 2.      | .7 \$ 0.    |
| 2020    | \$    |            | -   | \$ -    | \$    | -         | \$    | (1.3)  | \$ 0.1       | s -           | \$ -      | \$ -        | . :   | \$ 0.0     | \$   |         | \$    | -         | \$ -   | \$       | -        | \$       | 3.4    | -            | \$           | - \$ -     | \$       | - !       | 0.4        | \$   | -       | \$ -           | \$ -    | \$   | -       | \$ 2.      | .6 \$ 0.    |
| 2021    | \$    |            | -   | \$ -    | \$    | -         | \$    | (1.2)  | \$ 0.1       | s -           | \$ -      | \$ -        | . :   | \$ 0.0     | \$   |         | \$    | -         | \$ -   | \$       | -        | \$       | 3.3    | -            | \$           | - \$ -     | \$       | - !       | 0.4        | \$   | -       | \$ -           | \$ -    | \$   | -       | \$ 2.      | .5 \$ 0.    |
| 2022    | \$    |            | -   | \$ -    | \$    | -         | \$    | (1.2)  | \$ 0.1       | s -           | \$ -      | \$ -        | . :   | \$ 0.0     | \$   |         | \$    | -         | \$ -   | \$       | -        | \$       | 3.2    | -            | \$           | - \$ -     | \$       | - !       | 0.4        | \$   | -       | \$ -           | \$ -    | \$   | -       | \$ 2.      | .5 \$ 0.    |
| 2023    | \$    |            | -   | \$ -    | \$    | -         | \$    | (1.1)  | \$ 0.1       | \$ -          | \$ -      | \$ .        | . :   | \$ 0.0     | \$   | -       | \$    | -         | \$ -   | \$       | -        | \$       | 3.1 \$ | -            | \$           | - \$-      | \$       | - :       | 0.4        | \$   | -       | \$ -           | \$ -    | \$   |         | \$ 2.      | .4 \$ 0.    |
| 2024    | \$    |            | -   | \$ -    | \$    | -         | \$    | (1.1)  | \$ 0.1       | \$ -          | \$ -      | \$ .        | . :   | \$ 0.0     | \$   | -       | \$    | -         | \$ -   | \$       | -        | \$       | 3.0 \$ | -            | \$           | - \$-      | \$       | - :       | 0.4        | \$   | -       | \$ -           | \$ -    | \$   |         | \$ 2.      | .3 \$ 0.    |
| 2025    | \$    |            | -   | \$ -    | \$    | -         | \$    | (1.1)  | \$ 0.1       | \$ -          | \$ -      | \$ .        | . :   | \$ 0.0     | \$   | -       | \$    | -         | \$ -   | \$       | -        | \$       | 2.9    | -            | \$           | - \$-      | \$       | - :       | 0.4        | \$   | -       | \$ -           | \$ -    | \$   |         | \$ 2.      | .3 \$ 0.    |
| 2026    | \$    |            | -   | \$ -    | \$    | -         | \$    | (1.0)  | \$ 0.1       | \$ -          | \$ -      | \$ .        | . :   | \$ 0.0     | \$   | -       | \$    | -         | \$ -   | \$       | -        | \$       | 2.9    | -            | \$           | - \$-      | \$       | - :       | 0.4        | \$   | -       | \$ -           | \$ -    | \$   |         | \$ 2.      | .2 \$ 0.    |
| 2027    | \$    |            | -   | \$ -    | \$    | -         | \$    | (1.0)  | \$ 0.1       | \$ -          | \$ -      | \$ .        | . :   | \$ 0.0     | \$   | -       | \$    | -         | \$ -   | \$       | -        | \$       | 2.8    | -            | \$           | - \$-      | \$       | - :       | 0.4        | \$   | -       | \$ -           | \$ -    | \$   |         | \$ 2.      | .1 \$ 0.    |
| 2028    | \$    |            | -   | \$ -    | \$    |           | \$    | (1.0)  | \$ 0.1       | s -           | \$ -      | \$ -        |       | \$ 0.0     | \$   | -       | \$    |           | \$ -   | \$       | -        | \$       | 2.7    |              | \$           | - \$-      | \$       | - :       | 0.3        | \$   | -       | \$ -           | \$ -    | \$   |         | \$ 2.      | .1 \$ 0.    |
| 2029    | \$    |            | -   | \$ -    | \$    | -         | \$    | (1.0)  | \$ 0.1       | \$ -          | \$ -      | \$ .        | . :   | \$ 0.0     | \$   |         | \$    | -         | \$ -   | \$       | -        | \$       | 2.6    |              | \$           | - \$-      | \$       | - :       | \$ 0.3     | \$   | -       | \$ -           | \$ -    | \$   |         | \$ 2.      | .0 \$ 0.    |
| Total   | \$    |            | 3.6 | \$ 43.8 | \$    | 1.5       | \$    | (21.1) | \$ 2.1       | \$ 0          | .1 \$ 0.1 | \$          | 0.0   | \$ 0.3     | \$   | -       | \$    | 6.1       | \$ 6.8 | \$       | 2.4      | \$       | 59.1   |              | \$           | 1.0 \$ 0.0 | \$       | 0.4       | 7.6        | \$   | -       | \$ 10.8        | \$ 50.6 | 5 \$ | 4.2     | \$ 45.     | .9 \$ 2.    |
| Ann.    | \$    |            | 0.2 | \$ 2.5  | 5 \$  | 0.1       | \$    | (1.2)  | \$ 0.1       | \$ 0          | .0 \$ 0.0 | \$          | 0.0   | \$ 0.0     | \$   |         | \$    | 0.3       | \$ 0.4 | \$       | 0.1      | \$       | 3.4 \$ |              | \$           | 0.1 \$ 0.0 | \$       | 0.0       | 5 0.4      | \$   |         | \$ 0.6         | \$ 2.9  | \$   | 0.2     | \$ 2.      | .6 \$ 0.    |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005. Detail may not add exactly to totals due to independent rounding. Ann = value of total annualized at discount rate. Source: Derived from Exhibits J.Za through rr.

## Exhibit J.2aw Present Value of Annual Cost Projections at 7% Discount Rate (All Systems and Primacy Agencies)

#### Preferred Alternative

|       |                                | Surface Water CWS |                      | cws                   | S             | urfa               | ce Water N          | TNCWS                 | Disir         | fect               | ing Ground V         | later CWS            |     | Disinfectin   | g Ground Wat         | ter N | ITNCWS                | Primacy Agencies |               | Total             |    |                   |
|-------|--------------------------------|-------------------|----------------------|-----------------------|---------------|--------------------|---------------------|-----------------------|---------------|--------------------|----------------------|----------------------|-----|---------------|----------------------|-------|-----------------------|------------------|---------------|-------------------|----|-------------------|
|       | 90 Percent<br>Confidence Bound |                   |                      |                       |               | ercent<br>ce Bound |                     |                       |               | ercent<br>ce Bound |                      |                      |     | Perc          | ent<br>Bound         |       |                       | 90<br>Confide    | Percer        |                   |    |                   |
|       | Weari                          |                   | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | (5                 | Lower<br>5th %tile) | Upper<br>(95th %tile) | Mean<br>Value |                    | Lower<br>(5th %tile) | Upper<br>(95th %tile | )   | Mean<br>Value | Lower<br>(5th %tile) |       | Upper<br>(95th %tile) | Point Estimate   | Mean<br>Value | Lower<br>h %tile) |    | Upper<br>h %tile) |
| 2005  | \$                             | 0.6               | \$ 0.6               | \$ 0.6                | \$ 0.0        | 5                  | \$ 0.0              | \$ 0.0                | \$ 0          | .1                 | \$ 0.1               | \$ 0                 | .1  | \$ 0.0        | \$ 0.                | 0 :   | \$ 0.0                | \$ 3.4           | \$ 4.1        | \$<br>4.1         | \$ | 4.1               |
| 2006  | \$                             | 8.0               | \$ 8.0               | \$ 8.0                | \$ 0.         | 1 5                | \$ 0.1              | \$ 0.1                | \$ 2          | 9                  | \$ 2.9               | \$ 2                 | .9  | \$ 0.5        | \$ 0.                | 5     | \$ 0.5                | \$ 3.2           | \$ 14.6       | \$<br>14.6        | \$ | 14.6              |
| 2007  | \$                             | 17.3              | \$ 17.3              | \$ 17.3               | \$ 0.0        | 9                  | \$ 0.0              | \$ 0.0                | \$ 0          | 8                  | \$ 0.8               | \$ 0                 | 8.0 | \$ 0.0        | \$ 0.                | 0 :   | \$ 0.0                | \$ 0.1           | \$ 18.3       | \$<br>18.3        | \$ | 18.3              |
| 2008  | \$                             | 61.6              | \$ 38.3              | \$ 83.4               | \$ 0.         | 1 5                | \$ 0.1              | \$ 0.1                | \$ 10         | .7 \$              | \$ 10.1              | \$ 1                 | .4  | \$ 0.0        | \$ 0.                | 0 :   | \$ 0.0                | \$ 1.5           | \$ 73.9       | \$<br>49.9        | \$ | 96.4              |
| 2009  | \$                             | 67.8              | \$ 35.3              | \$ 98.8               | \$ 0.6        | 5 5                | \$ 0.3              | \$ 0.9                | \$ 24         | .9                 | \$ 21.8              | \$ 27                | .9  | \$ 1.4        | \$ 1.                | 2 :   | \$ 1.5                | \$ 0.6           | \$ 95.2       | \$<br>59.2        | \$ | 129.7             |
| 2010  | \$                             | 80.3              | \$ 41.6              | \$ 118.0              | \$ 1.         | 1 \$               | \$ 0.5              | \$ 1.6                | \$ 37         | .3                 | 32.2                 | \$ 42                | 2.4 | \$ 1.9        | \$ 1.                | 6     | \$ 2.1                | \$ -             | \$ 120.6      | \$<br>76.0        | \$ | 164.1             |
| 2011  | \$                             | 79.1              | \$ 41.1              | \$ 116.5              | \$ 1.         | 1 \$               | \$ 0.6              | \$ 1.7                | \$ 36         | .4                 | 31.4                 | \$ 4                 | .4  | \$ 1.7        | \$ 1.                | 5     | \$ 2.0                | \$ 1.0           | \$ 119.3      | \$<br>75.6        | \$ | 162.5             |
| 2012  | \$                             | 77.3              | \$ 40.0              | \$ 114.3              | \$ 1.         | 1 \$               | \$ 0.6              | \$ 1.7                | \$ 37         | .9                 | 33.1                 | \$ 42                | 2.7 | \$ 1.9        | \$ 1.                | 7 :   | \$ 2.2                | \$ 0.9           | \$ 119.1      | \$<br>76.3        | \$ | 161.8             |
| 2013  | \$                             | 41.4              | \$ 21.7              | \$ 62.4               | \$ 1.         | 1 \$               | \$ 0.6              | \$ 1.7                | \$ 34         | .8                 | 30.6                 | \$ 39                | 0.0 | \$ 2.1        | \$ 1.                | 9 :   | \$ 2.4                | \$ 0.9           | \$ 80.3       | \$<br>55.6        | \$ | 106.3             |
| 2014  | \$                             | 26.2              | \$ 13.9              | \$ 40.0               | \$ 0.8        | 3 \$               | \$ 0.4              | \$ 1.2                | \$ 22         | .7                 | \$ 20.4              | \$ 25                | 5.0 | \$ 1.5        | \$ 1.                | 3 3   | \$ 1.6                | \$ 0.8           | \$ 52.0       | \$<br>36.8        | \$ | 68.7              |
| 2015  | \$                             | 15.2              | \$ 8.2               | \$ 23.6               | \$ 0.5        | 5 \$               | \$ 0.3              | \$ 0.7                | \$ 11         | .9                 | 11.2                 | \$ 12                | 2.5 | \$ 0.9        | \$ 0.                | 8 3   | \$ 0.9                | \$ 0.8           | \$ 29.2       | \$<br>21.2        | \$ | 38.6              |
| 2016  | \$                             | 14.2              | \$ 7.6               | \$ 22.1               | \$ 0.5        | 5 \$               | \$ 0.2              | \$ 0.7                | \$ 11         | .1 \$              | 10.5                 | \$ 1                 | .7  | \$ 0.8        | \$ 0.                | 8 3   | \$ 0.9                | \$ 0.7           | \$ 27.3       | \$<br>19.8        | \$ | 36.0              |
| 2017  | \$                             | 13.3              | \$ 7.1               | \$ 20.6               | \$ 0.4        | 4 5                | \$ 0.2              | \$ 0.6                | \$ 10         | .4                 | \$ 9.8               | \$ 1                 | .0  | \$ 0.8        | \$ 0.                | 7 :   | \$ 0.8                | \$ 0.7           | \$ 25.5       | \$<br>18.5        | \$ | 33.7              |
| 2018  | \$                             | 12.4              | \$ 6.7               | \$ 19.3               | \$ 0.4        | 4 5                | \$ 0.2              | \$ 0.6                | \$ 9          | 7                  | \$ 9.1               | \$ 10                | ).2 | \$ 0.7        | \$ 0.                | 7 :   | \$ 0.7                | \$ 0.6           | \$ 23.8       | \$<br>17.3        | \$ | 31.5              |
| 2019  | \$                             | 11.6              | \$ 6.2               | \$ 18.0               | \$ 0.4        | 4 5                | \$ 0.2              | \$ 0.6                | \$ 9          | .1                 | \$ 8.5               | \$ 9                 | .6  | \$ 0.7        | \$ 0.                | 6     | \$ 0.7                | \$ 0.6           | \$ 22.3       | \$<br>16.2        | \$ | 29.4              |
| 2020  | \$                             | 10.8              | \$ 5.8               | \$ 16.8               | \$ 0.4        | 4 5                | \$ 0.2              | \$ 0.5                | \$ 8          | 5                  | \$ 8.0               | \$ 8                 | .9  | \$ 0.6        | \$ 0.                | 6     | \$ 0.6                | \$ 0.5           | \$ 20.8       | \$<br>15.1        | \$ | 27.5              |
| 2021  | \$                             | 10.1              | \$ 5.4               | \$ 15.7               | \$ 0.3        | 3 \$               | \$ 0.2              | \$ 0.5                | \$ 7          | 9                  | \$ 7.5               | \$ 8                 | .4  | \$ 0.6        | \$ 0.                | 5     | \$ 0.6                | \$ 0.5           | \$ 19.4       | \$<br>14.1        | \$ | 25.7              |
| 2022  | \$                             | 9.5               | \$ 5.1               | \$ 14.7               | \$ 0.3        | 3 \$               | \$ 0.2              | \$ 0.5                | \$ 7          | 4                  | \$ 7.0               | \$ 7                 | .8  | \$ 0.5        | \$ 0.                | 5     | \$ 0.6                | \$ 0.5           | \$ 18.2       | \$<br>13.2        | \$ | 24.0              |
| 2023  | \$                             | 8.8               | \$ 4.8               | \$ 13.7               | \$ 0.3        | 3 \$               | \$ 0.2              | \$ 0.4                | \$ 6          | 9                  | \$ 6.5               | \$ 7                 | .3  | \$ 0.5        | \$ 0.                | 5     | \$ 0.5                | \$ 0.4           | \$ 17.0       | \$<br>12.3        | \$ | 22.4              |
| 2024  | \$                             | 8.3               | \$ 4.4               | \$ 12.8               | \$ 0.3        | 3 \$               | \$ 0.1              | \$ 0.4                | \$ 6          | 5                  | \$ 6.1               | \$ 6                 | 8.  | \$ 0.5        | \$ 0.                | 4 :   | \$ 0.5                | \$ 0.4           | \$ 15.9       | \$<br>11.5        | \$ | 21.0              |
| 2025  | \$                             | 7.7               | \$ 4.2               | \$ 12.0               | \$ 0.3        | 3 5                | \$ 0.1              | \$ 0.4                | \$ 6          | .0                 | \$ 5.7               | \$ 6                 | .4  | \$ 0.4        | \$ 0.                | 4 :   | \$ 0.5                | \$ 0.4           | \$ 14.8       | \$<br>10.8        | \$ | 19.6              |
| 2026  | \$                             | 7.2               | \$ 3.9               | \$ 11.2               | \$ 0.2        | 2 5                | \$ 0.1              | \$ 0.4                | \$ 5          | 6                  | \$ 5.3               | \$ 6                 | .0  | \$ 0.4        | \$ 0.                | 4 :   | \$ 0.4                | \$ 0.4           | \$ 13.9       | \$<br>10.1        | \$ | 18.3              |
| 2027  | \$                             | 6.7               | \$ 3.6               | \$ 10.5               | \$ 0.2        | 2 5                | \$ 0.1              | \$ 0.3                | \$ 5          | 3                  | \$ 5.0               | \$ 5                 | .6  | \$ 0.4        | \$ 0.                | 4 :   | \$ 0.4                | \$ 0.3           | \$ 13.0       | \$<br>9.4         | \$ | 17.1              |
| 2028  | \$                             | 6.3               | \$ 3.4               | \$ 9.8                | \$ 0.2        | 2 5                | \$ 0.1              | \$ 0.3                | \$ 4          | 9                  | \$ 4.6               | \$ 5                 | .2  | \$ 0.4        | \$ 0.                | 3 :   | \$ 0.4                | \$ 0.3           | \$ 12.1       | \$<br>8.8         | \$ | 16.0              |
| 2029  | \$                             | 5.9               | \$ 3.2               | \$ 9.2                | \$ 0.2        | 2 5                | \$ 0.1              | \$ 0.3                | \$ 4          | 6                  | \$ 4.3               | \$ 4                 | .9  | \$ 0.3        | \$ 0.                | 3 :   | \$ 0.4                | \$ 0.3           | \$ 11.3       | \$<br>8.2         | \$ | 15.0              |
| Total | \$                             | 607.5             | \$ 337.3             | \$ 889.4              | \$ 11.0       | 9                  | \$ 5.8              | \$ 16.3               | \$ 324        | .1                 | \$ 292.4             | \$ 35                | 5.8 | \$ 19.4       | \$ 17.               | 7 \$  | \$ 21.1               | \$ 19.8          | \$ 981.7      | \$<br>673.1       | \$ | 1,302.3           |
| Ann.  | \$                             | 52.1              | \$ 28.9              | \$ 76.3               | \$ 0.9        | 9 9                | \$ 0.5              | \$ 1.4                | \$ 27         | .8                 | \$ 25.1              | \$ 30                | .5  | \$ 1.7        | \$ 1.                | 5 :   | \$ 1.8                | \$ 1.7           | \$ 84.2       | \$<br>57.8        | \$ | 111.7             |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

### Exhibit J.2ax Present Value of Annual Treatment Cost Projections at 7% Discount Rate (All Systems)

## Preferred Alternative

| Preterr | ea                             | Alterna       | tive  | •                 |    |                      |    |             |                     |               |                    |        |                 |      |                      |             |                       |                   |       |                      |    |                     | _               |                 |                  |    |                     |
|---------|--------------------------------|---------------|-------|-------------------|----|----------------------|----|-------------|---------------------|---------------|--------------------|--------|-----------------|------|----------------------|-------------|-----------------------|-------------------|-------|----------------------|----|---------------------|-----------------|-----------------|------------------|----|---------------------|
|         |                                | Su            | rface | Water C           | ws | Surface Water NTNCWS |    |             |                     |               | Disin              | fectin | g Ground V      | Vate | er CWS               | Disinfectir | ng C                  | Ground Water      | r NTI | NCWS                 |    |                     | Total           |                 |                  |    |                     |
|         | 90 Percent<br>Confidence Bound |               |       |                   |    |                      | Co |             | ercent<br>nce Bound | ı             |                    |        | 90 P<br>Confide |      |                      |             |                       | 90 Pe<br>Confiden |       |                      |    |                     | 90 I<br>Confide | Perce<br>ence E |                  |    |                     |
|         |                                | Mean<br>Value |       | _ower<br>h %tile) |    | Upper<br>5th %tile)  |    | ean<br>alue |                     | wer<br>%tile) | Upper<br>(95th %ti |        | Mean<br>Value   |      | Lower<br>(5th %tile) | (           | Upper<br>(95th %tile) | Mean<br>Value     |       | Lower<br>(5th %tile) | (9 | Upper<br>5th %tile) |                 | Mean<br>Value   | ower<br>1 %tile) |    | Upper<br>5th %tile) |
| 2005    | \$                             | -             | \$    |                   | \$ | -                    | \$ | -           | \$                  | -             | \$                 |        | \$ -            | **   | \$ -                 | \$          | -                     | \$<br>-           | \$    | -                    | \$ | -                   | \$              |                 | \$<br>-          | \$ | -                   |
| 2006    | \$                             | -             | \$    |                   | \$ | -                    | \$ | -           | \$                  | -             | \$                 | -      | \$ -            | :    | \$ -                 | \$          | -                     | \$<br>-           | \$    | -                    | \$ | -                   | \$              |                 | \$               | \$ | _                   |
| 2007    | \$                             | -             | \$    | -                 | \$ | -                    | \$ | -           | \$                  | -             | \$                 | -      | \$ -            | :    | -                    | \$          | -                     | \$<br>-           | \$    | -                    | \$ | -                   | \$              | -               | \$<br>-          | \$ | -                   |
| 2008    | \$                             | 47.5          | \$    | 24.1              | \$ | 69.2                 | \$ | 0.1         | \$                  | 0.0           | \$                 | 0.1    | \$ 5            | .8   | \$ 5.1               | \$          | 6.4                   | \$<br>0.0         | \$    | 0.0                  | \$ | 0.0                 | \$              | 53.3            | \$<br>29.3       | \$ | 75.8                |
| 2009    | \$                             | 64.5          | \$    | 32.9              | \$ | 94.3                 | \$ | 0.5         | \$                  | 0.3           | \$                 | 0.8    | \$ 2            | .5   | \$ 18.5              | \$          | 24.5                  | \$<br>0.9         | \$    | 0.7                  | \$ | 1.0                 | \$              | 87.4            | \$<br>52.4       | \$ | 120.6               |
| 2010    | \$                             | 74.5          | \$    | 38.1              | \$ | 109.2                | \$ | 1.0         | \$                  | 0.5           | \$                 | 1.5    | \$ 34           | .2   | \$ 29.2              | \$          | 39.2                  | \$<br>1.6         | \$    | 1.4                  | \$ | 1.9                 | \$              | 111.2           | \$<br>69.2       | \$ | 151.7               |
| 2011    | \$                             | 69.6          | \$    | 35.6              | \$ | 102.0                | \$ | 0.9         | \$                  | 0.5           | \$                 | 1.4    | \$ 3            | .9   | \$ 27.3              | \$          | 36.6                  | \$<br>1.5         | \$    | 1.3                  | \$ | 1.7                 | \$              | 104.0           | \$<br>64.6       | \$ | 141.7               |
| 2012    | \$                             | 65.1          | \$    | 33.3              | \$ | 95.4                 | \$ | 0.8         | \$                  | 0.4           | \$                 | 1.3    | \$ 29           | .8   | \$ 25.5              | \$          | 34.2                  | \$<br>1.4         | \$    | 1.2                  | \$ | 1.6                 | \$              | 97.2            | \$<br>60.4       | \$ | 132.5               |
| 2013    | \$                             | 27.0          | \$    | 13.9              | \$ | 39.8                 | \$ | 0.7         | \$                  | 0.4           | \$                 | 1.1    | \$ 23           | .8   | \$ 20.2              | \$          | 27.4                  | \$<br>1.3         | \$    | 1.1                  | \$ | 1.5                 | \$              | 52.8            | \$<br>35.6       | \$ | 69.8                |
| 2014    | \$                             | 10.8          | \$    | 5.6               | \$ | 16.0                 | \$ | 0.3         | \$                  | 0.2           | \$                 | 0.5    | \$ 10           | .7   | \$ 9.1               | \$          | 12.4                  | \$<br>0.6         | \$    | 0.5                  | \$ | 0.7                 | \$              | 22.6            | \$<br>15.4       | \$ | 29.7                |
| 2015    | \$                             | -             | \$    | -                 | \$ | -                    | \$ | -           | \$                  | -             | \$                 | -      | \$ -            | :    | -                    | \$          | -                     | \$<br>-           | \$    | -                    | \$ | -                   | \$              | -               | \$<br>-          | \$ | -                   |
| 2016    | \$                             | -             | \$    | -                 | \$ | -                    | \$ | -           | \$                  | -             | \$                 | -      | \$ -            | :    | \$ -                 | \$          | -                     | \$<br>-           | \$    | -                    | \$ | -                   | \$              | -               | \$<br>-          | \$ | -                   |
| 2017    | \$                             | -             | \$    | -                 | \$ | -                    | \$ | -           | \$                  | -             | \$                 | -      | \$ -            | :    | -                    | \$          | -                     | \$<br>-           | \$    | -                    | \$ | -                   | \$              | -               | \$<br>-          | \$ | -                   |
| 2018    | \$                             | -             | \$    | -                 | \$ | -                    | \$ | -           | \$                  | -             | \$                 | -      | \$ -            | :    | -                    | \$          | -                     | \$<br>-           | \$    | -                    | \$ | -                   | \$              | -               | \$<br>-          | \$ | -                   |
| 2019    | \$                             | -             | \$    | -                 | \$ | -                    | \$ | -           | \$                  | -             | \$                 | -      | \$ -            | :    | -                    | \$          | -                     | \$<br>-           | \$    | -                    | \$ | -                   | \$              | -               | \$<br>-          | \$ | -                   |
| 2020    | \$                             | -             | \$    | -                 | \$ | -                    | \$ | -           | \$                  | -             | \$                 | -      | \$ -            | :    | -                    | \$          | -                     | \$<br>-           | \$    | -                    | \$ | -                   | \$              | -               | \$<br>-          | \$ | -                   |
| 2021    | \$                             | -             | \$    | -                 | \$ | -                    | \$ | -           | \$                  | -             | \$                 | -      | \$ -            | :    | -                    | \$          | -                     | \$<br>-           | \$    | -                    | \$ | -                   | \$              | -               | \$<br>-          | \$ | -                   |
| 2022    | \$                             | -             | \$    | -                 | \$ | -                    | \$ | -           | \$                  | -             | \$                 | -      | \$ -            | :    | -                    | \$          | -                     | \$<br>-           | \$    | -                    | \$ | -                   | \$              | -               | \$<br>-          | \$ | -                   |
| 2023    | \$                             | -             | \$    | -                 | \$ | -                    | \$ | -           | \$                  | -             | \$                 | -      | \$ -            | :    | -                    | \$          | -                     | \$<br>-           | \$    | -                    | \$ | -                   | \$              | -               | \$<br>-          | \$ | -                   |
| 2024    | \$                             | -             | \$    | -                 | \$ | -                    | \$ | -           | \$                  | -             | \$                 | -      | \$ -            | :    | -                    | \$          | -                     | \$<br>-           | \$    | -                    | \$ | -                   | \$              | -               | \$<br>-          | \$ | -                   |
| 2025    | \$                             | -             | \$    | -                 | \$ | -                    | \$ | -           | \$                  | -             | \$                 | -      | \$ -            | :    | -                    | \$          | -                     | \$<br>-           | \$    | -                    | \$ | -                   | \$              | -               | \$<br>-          | \$ | -                   |
| 2026    | \$                             | -             | \$    | -                 | \$ | -                    | \$ | -           | \$                  | -             | \$                 | -      | \$ -            | :    | -                    | \$          | -                     | \$<br>-           | \$    | -                    | \$ | -                   | \$              | -               | \$<br>-          | \$ | -                   |
| 2027    | \$                             | -             | \$    | -                 | \$ | -                    | \$ | -           | \$                  | -             | \$                 | -      | \$ -            | :    | -                    | \$          | -                     | \$<br>-           | \$    | -                    | \$ | -                   | \$              | -               | \$<br>-          | \$ | -                   |
| 2028    | \$                             | -             | \$    | -                 | \$ | -                    | \$ | -           | \$                  | -             | \$                 | -      | \$ -            | :    | -                    | \$          | -                     | \$<br>-           | \$    | -                    | \$ | -                   | \$              | -               | \$<br>-          | \$ | -                   |
| 2029    | \$                             | -             | \$    | -                 | \$ | -                    | \$ | -           | \$                  | -             | \$                 | -      | \$ -            |      | \$ -                 | \$          | -                     | \$<br>-           | \$    | -                    | \$ | -                   | \$              | -               | \$<br>-          | \$ |                     |
| Total   | \$                             | 359.1         | \$    | 183.7             | \$ | 526.0                | \$ | 4.4         | \$                  | 2.2           |                    | 6.7    | \$ 157          |      |                      | \$          | 180.6                 | \$<br>7.3         |       | 6.2                  | \$ | 8.4                 | \$              | 528.5           | \$<br>326.9      | \$ | 721.7               |
| Ann.    | \$                             | 30.8          | \$    | 15.8              | \$ | 45.1                 | \$ | 0.4         | \$                  | 0.2           | \$                 | 0.6    | \$ 13           | .5   | \$ 11.6              | \$          | 15.5                  | \$<br>0.6         | \$    | 0.5                  | \$ | 0.7                 | \$              | 45.3            | \$<br>28.1       | \$ | 61.9                |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

Source: Derived from Exhibits J.2a through rr.

## Exhibit J.2ay Present Value of Annual Treatment Cost Projections at 7% Discount Rate (All Systems)

#### Preferred Alternative

| Su            | /S                   | Surfa | ce Water NT          | INCWS                 | Disi        | infecti | ng Ground \          | Water | cws               | Disinfec      | ing | Ground Wate          | er NTNCWS             |               |      | Total                |       |                   |
|---------------|----------------------|-------|----------------------|-----------------------|-------------|---------|----------------------|-------|-------------------|---------------|-----|----------------------|-----------------------|---------------|------|----------------------|-------|-------------------|
|               | ent<br>Bound         |       |                      | ercent<br>ce Bound    |             | -       | 90 P<br>Confider     | ercen |                   |               |     |                      | ercent<br>ce Bound    |               |      | 90 P<br>Confide      | ercen |                   |
| Mean<br>Value | Upper<br>95th %tile) |       | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mea<br>Valu |         | Lower<br>(5th %tile) |       | Jpper<br>h %tile) | Mean<br>Value |     | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value |      | Lower<br>(5th %tile) |       | Jpper<br>h %tile) |
| \$ -          | - 1                  | ; -   | \$ -                 | \$ -                  | \$          | -       | \$ -                 | \$    |                   | \$ -          |     | \$ -                 | \$ -                  | \$ -          |      | \$ -                 | \$    | -                 |
| \$ -          | - :                  | i -   | \$ -                 | \$ -                  | \$          | -       | \$ -                 | \$    | -                 | \$ -          |     | \$ -                 | \$ -                  | \$ -          | :    | \$ -                 | \$    | -                 |
| \$ -          | - :                  | i -   | \$ -                 | \$ -                  | \$          | -       | \$ -                 | \$    | -                 | \$ -          |     | \$ -                 | \$ -                  | \$ -          | :    | \$ -                 | \$    | -                 |
| \$ -          | - :                  | ; -   | \$ -                 | \$ -                  | \$          | -       | \$ -                 | \$    | -                 | \$ -          |     | \$ -                 | \$ -                  | \$ -          | :    | \$ -                 | \$    | -                 |
| \$ 0.0        | 3.4                  | 0.0   | \$ 0.0               | \$ 0.0                | \$          | 0.5     | \$ 0.5               | \$    | 0.6               | \$ 0.         | 0   | \$ 0.0               | \$ 0.0                | \$ 2          | .7   | \$ 1.7               | \$    | 4.0               |
| \$ 0.1        | 8.4                  | 0.1   | \$ 0.0               | \$ 0.1                | \$          | 2.1     | \$ 1.9               | \$    | 2.2               | \$ 0.         | 1   | \$ 0.1               | \$ 0.1                | \$ 7          | .6   | \$ 5.1               | \$    | 10.8              |
| \$ 0.2        | 14.2                 | 0.2   | \$ 0.1               | \$ 0.3                | \$          | 4.4     | \$ 4.1               | \$    | 4.7               | \$ 0.         | 2   | \$ 0.2               | \$ 0.2                | \$ 14         | .0   | \$ 9.6               | \$    | 19.5              |
| \$ 0.3        | 19.3                 | 0.3   | \$ 0.2               | \$ 0.5                | \$          | 6.4     | \$ 6.0               | \$    | 6.9               | \$ 0.         | 3   | \$ 0.3               | \$ 0.4                | \$ 19         | .6   | \$ 13.5              | \$    | 27.0              |
| \$ 0.4        | 23.6                 | 0.4   | \$ 0.2               | \$ 0.6                | \$          | 8.1     | \$ 7.6               | \$    | 8.7               | \$ 0.         | 4   | \$ 0.4               | \$ 0.5                | \$ 24         | .4   | \$ 16.9              | \$    | 33.4              |
| \$ 0.5        | 24.9                 | 0.5   | \$ 0.2               | \$ 0.7                | \$          | 9.2     | \$ 8.6               | \$    | 9.9               | \$ 0.         | 5   | \$ 0.5               | \$ 0.6                | \$ 26         | .5   | \$ 18.5              | \$    | 36.1              |
| \$ 0.5        | 24.4                 | 0.5   | \$ 0.3               | \$ 0.7                | \$          | 9.4     | \$ 8.7               | \$    | 10.0              | \$ 0.         | 5   | \$ 0.5               | \$ 0.6                | \$ 26         | .4 3 | \$ 18.4              | \$    | 35.8              |
| \$ 0.5        | 22.8                 | 0.5   | \$ 0.2               | \$ 0.7                | \$          | 8.8     | \$ 8.1               | \$    | 9.4               | \$ 0.         | 5   | \$ 0.5               | \$ 0.5                | \$ 24         | .7   | \$ 17.2              | \$    | 33.5              |
| \$ 0.4        | 21.3                 | 0.4   |                      | \$ 0.6                | \$          |         | \$ 7.6               | \$    | 8.8               | \$ 0.         |     | \$ 0.4               | l .                   | \$ 23         | .1 3 | \$ 16.1              | \$    | 31.3              |
| \$ 0.4        | 19.9                 | 0.4   |                      | \$ 0.6                | \$          | 7.7     | \$ 7.1               | \$    | 8.2               | \$ 0.         |     | \$ 0.4               |                       | \$ 21         | .6   | \$ 15.1              | \$    | 29.2              |
| \$ 0.4        |                      |       |                      | \$ 0.6                |             |         | \$ 6.6               | \$    | 7.7               | \$ 0.         |     | \$ 0.4               | l .                   | \$ 20         |      | \$ 14.1              | \$    | 27.3              |
|               |                      |       |                      | \$ 0.5                |             |         | \$ 6.2               | \$    | 7.2               | \$ 0.         |     | \$ 0.4               | l .                   | \$ 18         |      | \$ 13.2              | \$    | 25.5              |
|               |                      |       |                      | \$ 0.5                |             |         | \$ 5.8               | \$    | 6.7               | \$ 0.         | - 1 | \$ 0.3               | l .                   | \$ 17         |      | \$ 12.3              | \$    | 23.9              |
|               |                      |       |                      | \$ 0.5                |             |         | \$ 5.4               | \$    | 6.3               | \$ 0.         |     | \$ 0.3               | 1                     | \$ 16         |      | \$ 11.5              | \$    | 22.3              |
|               |                      |       |                      | \$ 0.4                | \$          |         | \$ 5.1               | \$    | 5.8               | \$ 0.         |     | \$ 0.3               | \$ 0.3                | \$ 15         |      | \$ 10.7              | \$    | 20.8              |
|               |                      |       |                      | \$ 0.4                | \$          |         | \$ 4.7               | \$    | 5.5               | \$ 0.         |     | \$ 0.3               | l .                   | \$ 14         |      | \$ 10.0              | \$    | 19.5              |
|               |                      |       |                      | \$ 0.4                |             |         | \$ 4.4               | \$    | 5.1               | \$ 0.         |     | \$ 0.3               |                       | \$ 13         |      | \$ 9.4               | \$    | 18.2              |
|               |                      | l     |                      | \$ 0.3                |             |         | \$ 4.1               | \$    | 4.8               | \$ 0.         |     | \$ 0.2               | l .                   | \$ 12         |      |                      | \$    | 17.0              |
|               |                      |       |                      | \$ 0.3                |             |         | \$ 3.9               | \$    | 4.5               | \$ 0.         |     | \$ 0.2               |                       | \$ 11         |      | \$ 8.2               | \$    | 15.9              |
|               |                      | l     |                      | \$ 0.3                |             |         | \$ 3.6               | \$    | 4.2               | \$ 0.         |     | \$ 0.2               | · .                   | \$ 11         |      | \$ 7.7               | \$    | 14.9              |
|               |                      |       |                      | \$ 0.3                |             |         | \$ 3.4               | \$    | 3.9               | \$ 0.         | 7   | \$ 0.2               |                       | \$ 10         | +    | \$ 7.2               | \$    | 13.9              |
|               |                      |       |                      |                       |             |         |                      | _     |                   |               |     |                      |                       |               | _    |                      | Ť     | 479.5<br>41.1     |
|               |                      |       |                      |                       |             |         |                      |       |                   |               |     |                      |                       |               |      |                      |       |                   |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

Source: Derived from Exhibits J.2a through rr.

#### Exhibit J.2az Present Value of Annual Cost Projections at 7% Discount Rate (All Systems)

#### Preferred Alternative

|       | eu Aiternative | _      |      |        |           |            |              |                |          |                  |            |              |                |         |                 |            |              |                     |          |                    |           |     |                   |      |            |            |              |
|-------|----------------|--------|------|--------|-----------|------------|--------------|----------------|----------|------------------|------------|--------------|----------------|---------|-----------------|------------|--------------|---------------------|----------|--------------------|-----------|-----|-------------------|------|------------|------------|--------------|
|       |                |        | Si   | urface | Water NTN | icws       |              |                | s        | urface Water NTN | cws        |              |                | Disinfe | ecting Ground W | ater CWS   |              | Disinfo             | ecting ( | Ground Water NTNCW | 3         |     |                   |      | Total      |            |              |
|       |                |        |      | Mo     | onitorina |            | Siginificant |                |          | Monitoring       |            | Siginificant |                |         | Monitoring      |            | Siginificant |                     | м        | Monitoring         | Siginific | ant |                   |      | Monitorina |            | Siginificant |
|       | Implementatio  | n      | IDSE |        | Plans     | Monitoring | Excursion    | Implementation | IDSE     | Plans            | Monitoring | Excursion    | Implementation | IDSE    | Plans           | Monitoring | Excursion    | Implementation IDSE |          | Plans Monitori     |           |     | Implementation II | DSE  | Plans      | Monitoring | Excursion    |
| 2005  | \$ 0           | 0.6 \$ | -    | \$     | -         | \$ -       | \$ -         | \$ 0.          | 0 \$ -   | s -              | \$ -       | \$ -         | \$ 0.1         | \$ -    | \$ -            | s -        | s -          | \$ 0.0 \$ -         | \$       | - \$               | - \$      | -   | \$ 0.7 \$         | -    | \$ -       | s -        | \$ -         |
| 2006  | \$             | 1.1 \$ | 6.9  | \$     | -         | \$ -       | \$ -         | \$ 0.          | 1 \$ 0.0 | s -              | \$ -       | \$ -         | \$ 2.8         | \$ 0.1  | \$ -            | s -        | s -          | \$ 0.5 \$ -         | \$       | - \$               | - \$      | -   | \$ 4.4 \$         | 7.0  | \$ -       | s -        | \$ -         |
| 2007  | \$ -           | - \$   | 17.1 | \$     | 0.2       | s -        | s -          | s -            | \$ 0.0   | \$ 0.0           | \$ -       | s -          | s -            | \$ 0.8  | \$ 0.0          | s -        | \$ -         | \$ - \$ 0.          | 0 \$     | 0.0 \$             | - \$      | -   | s - s             | 18.0 | \$ 0.2     | s -        | s -          |
| 2008  | \$ 0           | 0.4 \$ | 13.3 | \$     | 0.4       | \$ -       | \$ -         | \$ 0.          | 0 \$ 0.0 | \$ 0.0           | \$ -       | s -          | \$ 0.0         | \$ 4.7  | \$ 0.2          | s -        | \$ -         | \$ 0.0 \$ 0.        | 0 \$     | 0.0 \$             | - \$      | -   | \$ 0.5            | 18.0 | \$ 0.6     | s -        | s -          |
| 2009  | \$ 0           | 0.5 \$ | - 6  | \$     | 0.6       | \$ -       | \$ -         | \$ 0.          | 0 \$ -   | \$ 0.0           | \$ -       | s -          | \$ 1.2         | \$ -    | \$ 1.7          | s -        | \$ -         | \$ 0.2 \$ -         | \$       | 0.3 \$             | - \$      | -   | \$ 1.9 \$         | -    | \$ 2.6     | s -        | s -          |
| 2010  | \$ 0           | 0.4 \$ | 3 -  | \$     | -         | \$ -       | \$ -         | \$ 0.          | 0 \$ -   | s -              | \$ -       | s -          | \$ 1.1         | \$ -    | s -             | s -        | \$ -         | \$ 0.2 \$ -         | \$       | - s                | - \$      | -   | \$ 1.7 \$         | -    | \$ -       | s -        | s -          |
| 2011  | \$ -           | - \$   | 3 -  | \$     | -         | \$ 0.2     | \$ -         | s -            | s -      | s -              | \$ 0.0     | s -          | \$ -           | \$ -    | s -             | \$ 0.0     | \$ -         | s - s -             | \$       | - s                | 0.0 \$    | -   | s - s             | -    | \$ -       | \$ 0.3     | s -          |
| 2012  | \$ -           | - \$   | - 6  | \$     | -         | \$ (0.4)   | \$ 0.0       | s -            | s -      | s -              | \$ 0.0     | s -          | s -            | \$ -    | \$ -            | \$ 1.6     | \$ -         | s - s -             | \$       | - s                | 0.2 \$    | -   | s - s             | -    | s -        | \$ 1.4     | \$ 0.0       |
| 2013  | \$ -           | - \$   | - 8  | \$     | -         | \$ (1.1)   | \$ 0.1       | \$ -           | s -      | s -              | \$ 0.0     | s -          | \$ -           | \$ -    | \$ -            | \$ 2.9     | \$ -         | s - s -             | \$       | - \$               | 0.4 \$    | -   | s - s             | -    | \$ -       | \$ 2.2     | \$ 0.1       |
| 2014  | \$ -           | - \$   | - 8  | \$     | -         | \$ (1.0)   | \$ 0.1       | \$ -           | \$ -     | \$ -             | \$ 0.0     | s -          | \$ -           | \$ -    | \$ -            | \$ 2.7     | \$ -         | s - s -             | \$       | - \$               | 0.3 \$    | -   | \$ - \$           | -    | \$ -       | \$ 2.1     | \$ 0.1       |
| 2015  | \$ -           | - \$   | - 6  | \$     | -         | \$ (0.9)   | \$ 0.1       | s -            | s -      | s -              | \$ 0.0     | s -          | s -            | \$ -    | \$ -            | \$ 2.5     | \$ -         | s - s -             | \$       | - s                | 0.3 \$    | -   | s - s             | -    | s -        | \$ 1.9     | \$ 0.1       |
| 2016  | \$ -           | - \$   | - 8  | \$     | -         | \$ (0.9)   | \$ 0.1       | \$ -           | s -      | s -              | \$ 0.0     | s -          | \$ -           | \$ -    | \$ -            | \$ 2.3     | \$ -         | s - s -             | \$       | - \$               | 0.3 \$    | -   | s - s             | -    | \$ -       | \$ 1.8     | \$ 0.1       |
| 2017  | \$ -           | - \$   | - 8  | \$     | -         | \$ (0.8)   | \$ 0.1       | \$ -           | s -      | s -              | \$ 0.0     | s -          | \$ -           | \$ -    | \$ -            | \$ 2.2     | \$ -         | s - s -             | \$       | - \$               | 0.3 \$    | -   | s - s             | -    | \$ -       | \$ 1.7     | \$ 0.1       |
| 2018  | \$ -           | - \$   | - 8  | \$     | -         | \$ (0.7)   | \$ 0.1       | \$ -           | \$ -     | \$ -             | \$ 0.0     | s -          | \$ -           | \$ -    | \$ -            | \$ 2.0     | \$ -         | s - s -             | \$       | - \$               | 0.3 \$    | -   | \$ - \$           | -    | \$ -       | \$ 1.6     | \$ 0.1       |
| 2019  | \$ -           | - \$   | - 8  | \$     | -         | \$ (0.7)   | \$ 0.1       | \$ -           | s -      | s -              | \$ 0.0     | s -          | \$ -           | \$ -    | \$ -            | \$ 1.9     | \$ -         | s - s -             | \$       | - \$               | 0.2 \$    | -   | s - s             | -    | \$ -       | \$ 1.5     | \$ 0.1       |
| 2020  | \$ -           | - \$   | - 8  | \$     | -         | \$ (0.7)   | \$ 0.1       | \$ -           | \$ -     | \$ -             | \$ 0.0     | s -          | \$ -           | \$ -    | \$ -            | \$ 1.8     | \$ -         | s - s -             | \$       | - \$               | 0.2 \$    | -   | \$ - \$           | -    | \$ -       | \$ 1.4     | \$ 0.1       |
| 2021  | \$ -           | - \$   | - 8  | \$     | -         | \$ (0.6)   | \$ 0.1       | \$ -           | \$ -     | s -              | \$ 0.0     | \$ -         | \$ -           | \$ -    | \$ -            | \$ 1.7     | \$ -         | s - s -             | \$       | - \$               | 0.2 \$    | -   | s - s             | -    | \$ -       | \$ 1.3     | \$ 0.1       |
| 2022  | \$ -           | - \$   | - 6  | \$     | -         | \$ (0.6)   | \$ 0.1       | s -            | \$ -     | s -              | \$ 0.0     | \$ -         | s -            | \$ -    | \$ -            | \$ 1.6     | \$ -         | s - s -             | \$       | - s                | 0.2 \$    | -   | s - s             | -    | \$ -       | \$ 1.2     | \$ 0.1       |
| 2023  | \$ -           | - \$   | -    | \$     | -         | \$ (0.5)   | \$ 0.1       | \$ -           | \$ -     | \$ -             | \$ 0.0     | \$ -         | s -            | \$ -    | \$ -            | \$ 1.5     | \$ -         | s - s -             | \$       | - \$               | 0.2 \$    | -   | s - s             | -    | \$ -       | \$ 1.1     | \$ 0.1       |
| 2024  | \$ -           | - \$   | - 6  | \$     | -         | \$ (0.5)   | \$ 0.1       | s -            | \$ -     | s -              | \$ 0.0     | \$ -         | s -            | \$ -    | \$ -            | \$ 1.4     | \$ -         | s - s -             | \$       | - s                | 0.2 \$    | -   | s - s             | -    | \$ -       | \$ 1.0     | \$ 0.1       |
| 2025  | \$ -           | - \$   | - 6  | \$     | -         | \$ (0.5)   | \$ 0.0       | s -            | \$ -     | s -              | \$ 0.0     | \$ -         | s -            | \$ -    | \$ -            | \$ 1.3     | \$ -         | s - s -             | \$       | - s                | 0.2 \$    | -   | s - s             | -    | \$ -       | \$ 1.0     | \$ 0.0       |
| 2026  | \$ -           | - \$   | -    | \$     | -         | \$ (0.4)   | \$ 0.0       | \$ -           | s -      | s -              | \$ 0.0     | s -          | s -            | \$ -    | \$ -            | \$ 1.2     | \$ -         | s - s -             | \$       | - s                | 0.2 \$    | -   | s - s             | -    | \$ -       | \$ 0.9     | \$ 0.0       |
| 2027  | \$ -           | - \$   | -    | \$     | -         | \$ (0.4)   | \$ 0.0       | \$ -           | \$ -     | \$ -             | \$ 0.0     | \$ -         | s -            | \$ -    | \$ -            | \$ 1.1     | \$ -         | s - s -             | \$       | - \$               | 0.1 \$    | -   | s - s             | -    | \$ -       | \$ 0.9     | \$ 0.0       |
| 2028  | \$ -           | - \$   | - 6  | \$     | -         | \$ (0.4)   |              | s -            | \$ -     | s -              | \$ 0.0     | \$ -         | s -            | \$ -    | \$ -            | \$ 1.0     | \$ -         | s - s -             | \$       | - s                | 0.1 \$    | -   | s - s             | -    | \$ -       | \$ 0.8     | \$ 0.0       |
| 2029  | \$ -           | - \$   | -    | \$     | -         | \$ (0.4)   | \$ 0.0       | s -            | s -      | s -              | \$ 0.0     | \$ -         | \$ -           | \$ -    | \$ -            | \$ 1.0     | \$ -         | s - s -             | \$       | - \$               | 0.1 \$    | -   | s - s             | -    | \$ -       | \$ 0.7     | \$ 0.0       |
| Total | \$ :           | 3.0 \$ | 37.3 | \$     | 1.2       | \$ (11.2)  | \$ 1.1       | \$ 0.          | 1 \$ 0.1 | \$ 0.0           | \$ 0.2     | \$ -         | \$ 5.1         | \$ 5.6  | \$ 1.9          | \$ 31.5    | \$ -         | \$ 0.8 \$ 0.        | 0 \$     | 0.3 \$             | 4.1 \$    | -   | \$ 9.1 \$         | 43.0 | \$ 3.4     | \$ 24.6    | \$ 1.1       |
| Ann.  | \$ 0           | 0.3 \$ | 3.2  | \$     | 0.1       | \$ (1.0)   | \$ 0.1       | \$ 0.          | 0 \$ 0.0 | \$ 0.0           | \$ 0.0     | \$ -         | \$ 0.4         | \$ 0.5  | \$ 0.2          | \$ 2.7     | \$ -         | \$ 0.1 \$ 0.        | 0 \$     | 0.0 \$             | 0.3 \$    | -   | \$ 0.8 \$         | 3.7  | \$ 0.3     | \$ 2.1     | \$ 0.1       |

J-67

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005. Detail may not add exactly to totals due to independent rounding. Ann = value of total annualized at discount rate. Source: Derived from Exhibits J2a through rr.

## Exhibit J.2ba Present Value of Total Costs at 3% Discount Rate, by System Size (Surface Water CWSs)

|       |        | <100   | )                  |        | 100-49 | 9      |      |         | 500-999 | )       |         | 1,000-3,2 | 99     | -       | 3    | 3,300-9,99 | 9                 |    | 10    | ,000-49,99  | 9                 | -        | 50,000-99,9 | 99       | 10       | 00,000-999, | 999      |          | 1,000,000  | +                  |
|-------|--------|--------|--------------------|--------|--------|--------|------|---------|---------|---------|---------|-----------|--------|---------|------|------------|-------------------|----|-------|-------------|-------------------|----------|-------------|----------|----------|-------------|----------|----------|------------|--------------------|
|       |        |        | Percent            |        |        | ercent |      |         |         | ercent  |         |           | ercent |         |      |            | ercent            |    |       |             | ercent            |          |             | ercent   |          |             | ercent   |          |            | Percent            |
|       |        | Lower  | nce Bound<br>Upper |        | Lower  | Up     |      |         | Lower   | Upper   | ł       | Lower     | Uppe   | _       | -    | Lower      | ce Bound<br>Upper |    | ŀ     | Confiden    | ce Bound<br>Upper | _        | Confider    | Upper    |          | Confide     | Upper    |          | Confide    | nce Bound<br>Upper |
|       | Mean   | (5th   | (95th              | Mean   | (5th   | (95    |      | Mean    | (5th    | (95th   | Mean    | (5th      | (95th  | INIC    | an   | (5th       | (95th             | Me | ean   | Lower       | (95th             | Mean     | Lower       | (95th    | Mean     | Lower       | (95th    | Mean     | Lower      | (95th              |
| Year  | Value  | %tile) | %tile)             | Value  | %tile) | %ti    | ile) | Value   | %tile)  | %tile)  | Value   | %tile)    | %tile) | Val     | lue  | %tile)     | %tile)            | Va | lue   | (5th %tile) | %tile)            | Value    | (5th %tile) | %tile)   | Value    | (5th %tile) | %tile)   | Value    | (5th %tile | ) %tile)           |
| 2005  | \$ 0.0 | \$ 0.0 | \$ 0.0             | \$ 0.1 | \$ 0.1 | \$     | 0.1  | \$ 0.0  | \$ 0.0  | \$ 0.0  | \$ 0.1  | \$ 0.1    | \$ 0   | .1 \$   | 0.1  | \$ 0.1     | \$ 0.1            | \$ | 0.2   | \$ 0.2      | \$ 0.2            | \$ 0.1   | \$ 0.1      | \$ 0.1   | \$ 0.1   | \$ 0.1      | \$ 0.1   | \$ 0.0   | \$ 0.0     | \$ 0.0             |
| 2006  | \$ 0.1 | \$ 0.1 | \$ 0.1             | \$ 0.2 | \$ 0.2 | \$     | 0.2  | \$ 0.4  | \$ 0.4  | \$ 0.4  | \$ 0.6  | \$ 0.6    | \$ 0   | .6 \$   | 0.9  | \$ 0.9     | \$ 0.9            | \$ | 2.7   | \$ 2.7      | \$ 27             | \$ 0.9   | \$ 0.9      | \$ 0.9   | \$ 2.8   | \$ 2.8      | \$ 2.8   | \$ 0.3   | \$ 0.3     | \$ 0.3             |
| 2007  | \$ 0.1 | \$ 0.1 | \$ 0.1             | \$ 0.2 | \$ 0.2 | \$     | 0.2  | \$ 0.7  | \$ 0.7  | \$ 0.7  | \$ 1.2  | \$ 1.2    | \$ 1   | 2 \$    | 1.7  | \$ 1.7     | \$ 1.7            | \$ | 8.4   | \$ 8.4      | \$ 8.4            | \$ 4.9   | \$ 4.9      | \$ 4.9   | \$ 2.8   | \$ 2.8      | \$ 2.8   | \$ 0.3   | \$ 0.3     | \$ 0.3             |
| 2008  | \$ 0.3 | \$ 0.3 | \$ 0.3             | \$ 0.6 | \$ 0.6 | \$     | 0.6  | \$ 1.9  | \$ 1.9  | \$ 1.9  | \$ 3.4  | \$ 3.4    | \$ 3   | 4 \$    | 5.1  | \$ 5.1     | \$ 5.1            | \$ | 5.5   | \$ 5.5      | \$ 5.5            | \$ 6.5   | \$ 3.5      | \$ 9.3   | \$ 34.9  | \$ 17.6     | \$ 50.9  | \$ 16.3  | \$ 8.4     | \$ 23.8            |
| 2009  | \$ 0.2 | \$ 0.1 | \$ 0.3             | \$ 0.5 | \$ 0.4 | \$     | 0.7  | \$ 0.5  | \$ 0.3  | \$ 0.7  | \$ 2.5  | \$ 1.4    | \$ 3   | .7 \$   | 6.0  | \$ 3.2     | \$ 8.9            | \$ | 10.7  | \$ 5.7      | \$ 15.3           | \$ 12.7  | \$ 6.7      | \$ 18.4  | \$ 35.3  | \$ 17.8     | \$ 51.7  | \$ 16.7  | \$ 8.7     | \$ 24.5            |
| 2010  | \$ 0.3 | \$ 0.1 | \$ 0.4             | \$ 0.7 | \$ 0.4 | \$     | 1.1  | \$ 0.8  | \$ 0.4  | \$ 1.2  | \$ 4.8  | \$ 2.5    | \$ 7   | 2 \$ 1  | 11.7 | \$ 6.0     | \$ 17.6           | \$ | 20.9  | \$ 11.0     | \$ 30.1           | \$ 12.9  | \$ 6.8      | \$ 18.7  | \$ 35.7  | \$ 18.2     | \$ 52.5  | \$ 17.1  | \$ 8.9     | \$ 25.2            |
| 2011  | \$ 0.2 | \$ 0.1 | \$ 0.4             | \$ 0.8 | \$ 0.4 | \$     | 1.2  | \$ 0.8  | \$ 0.4  | \$ 1.3  | \$ 5.1  | \$ 2.6    | \$ 7   | 7 \$ 1  | 12.2 | \$ 6.3     | \$ 18.4           | \$ | 21.2  | \$ 11.1     | \$ 30.7           | \$ 13.2  | \$ 7.0      | \$ 19.1  | \$ 36.3  | \$ 18.7     | \$ 53.4  | \$ 17.5  | \$ 9.2     | \$ 25.9            |
| 2012  | \$ 0.2 | \$ 0.1 | \$ 0.4             | \$ 0.9 | \$ 0.4 | \$     | 1.3  | \$ 0.8  | \$ 0.3  | \$ 1.3  | \$ 5.3  | \$ 2.6    | \$ 8   | .1 \$ 1 | 13.1 | \$ 6.9     | \$ 19.6           | \$ | 20.6  | \$ 10.4     | \$ 30.3           | \$ 13.5  | \$ 7.2      | \$ 19.5  | \$ 36.7  | \$ 19.0     | \$ 54.0  | \$ 17.8  | \$ 9.4     | \$ 26.5            |
| 2013  | \$ 0.3 | \$ 0.1 | \$ 0.4             | \$ 0.9 | \$ 0.4 | \$     | 1.5  | \$ 0.7  | \$ 0.3  | \$ 1.3  | \$ 5.5  | \$ 2.6    | \$ 8   | 5 \$ 1  | 13.9 | \$ 7.5     | \$ 20.6           | \$ | 20.1  | \$ 9.8      | \$ 30.0           | \$ 8.2   | \$ 4.5      | \$ 11.9  | \$ 6.9   | \$ 4.1      | \$ 10.7  | \$ 4.0   | \$ 24      | \$ 6.5             |
| 2014  | \$ 0.2 | \$ 0.1 | \$ 0.3             | \$ 0.8 | \$ 0.4 | \$     | 1.2  | \$ 0.5  | \$ 0.1  | \$ 0.9  | \$ 3.9  | \$ 1.8    | \$ 6   | .1 \$   | 9.4  | \$ 5.2     | \$ 13.8           | \$ | 11.6  | \$ 5.4      | \$ 17.6           | \$ 2.9   | \$ 1.8      | \$ 4.2   | \$ 6.7   | \$ 4.0      | \$ 10.4  | \$ 3.9   | \$ 2.3     | \$ 6.3             |
| 2015  | \$ 0.1 | \$ 0.0 | \$ 0.2             | \$ 0.6 | \$ 0.3 | \$     | 0.9  | \$ 0.2  | \$ 0.0  | \$ 0.5  | \$ 22   | \$ 0.9    | \$ 3   | 4 \$    | 4.8  | \$ 2.8     | \$ 6.8            | \$ | 3.0   | \$ 1.0      | \$ 5.2            | \$ 2.8   | \$ 1.7      | \$ 4.1   | \$ 6.5   | \$ 3.9      | \$ 10.1  | \$ 3.8   | \$ 22      | \$ 6.1             |
| 2016  | \$ 0.1 | \$ 0.0 | \$ 0.2             | \$ 0.5 | \$ 0.2 | \$     | 0.8  | \$ 0.2  | \$ 0.0  | \$ 0.5  | \$ 2.1  | \$ 0.9    | \$ 3   | 3 \$    | 4.6  | \$ 2.7     | \$ 6.6            | \$ | 2.9   | \$ 1.0      | \$ 5.0            | \$ 2.7   | \$ 1.7      | \$ 4.0   | \$ 6.3   | \$ 3.8      | \$ 9.8   | \$ 3.7   | \$ 22      | \$ 6.0             |
| 2017  | \$ 0.1 | \$ 0.0 | \$ 0.2             | \$ 0.5 | \$ 0.2 | \$     | 0.8  | \$ 0.2  | \$ 0.0  | \$ 0.4  | \$ 2.1  | \$ 0.9    | \$ 3   | 2 \$    | 4.5  | \$ 2.6     | \$ 6.4            | \$ | 2.8   | \$ 1.0      | \$ 4.9            | \$ 2.6   | \$ 1.6      | \$ 3.9   | \$ 6.1   | \$ 3.7      | \$ 9.5   | \$ 3.6   | \$ 21      | \$ 5.8             |
| 2018  | \$ 0.1 | \$ 0.0 | \$ 0.2             | \$ 0.5 | \$ 0.2 | \$     | 0.8  | \$ 0.2  | \$ 0.0  | \$ 0.4  | \$ 2.0  | \$ 0.9    | \$ 3   | 2 \$    | 4.4  | \$ 2.6     | \$ 6.2            | \$ | 2.7   | \$ 0.9      | \$ 4.7            | \$ 2.6   | \$ 1.6      | \$ 3.7   | \$ 6.0   | \$ 3.6      | \$ 9.3   | \$ 3.5   | \$ 2.0     | \$ 5.6             |
| 2019  | \$ 0.1 | \$ 0.0 | \$ 0.2             | \$ 0.5 | \$ 0.2 | \$     | 0.8  | \$ 0.2  | \$ 0.0  | \$ 0.4  | \$ 1.9  | \$ 0.8    | \$ 3   | .1 \$   | 4.3  | \$ 2.5     | \$ 6.0            | \$ | 2.6   | \$ 0.9      | \$ 4.6            | \$ 25    | \$ 1.5      | \$ 3.6   | \$ 5.8   | \$ 3.5      | \$ 9.0   | \$ 3.4   | \$ 2.0     | \$ 5.5             |
| 2020  | \$ 0.1 | \$ 0.0 | \$ 0.2             | \$ 0.5 | \$ 0.2 | \$     | 0.7  | \$ 0.2  | \$ 0.0  | \$ 0.4  | \$ 1.9  | \$ 0.8    | \$ 3   | .0 \$   | 4.1  | \$ 2.4     | \$ 5.8            | \$ | 2.6   | \$ 0.9      | \$ 4.5            | \$ 2.4   | \$ 1.5      | \$ 3.5   | \$ 5.6   | \$ 3.4      | \$ 8.7   | \$ 3.3   | \$ 1.9     | \$ 5.3             |
| 2021  | \$ 0.1 | \$ 0.0 | \$ 0.2             | \$ 0.5 | \$ 0.2 | \$     | 0.7  | \$ 0.2  | \$ 0.0  | \$ 0.4  | \$ 1.8  | \$ 0.8    | \$ 2   | 9 \$    | 4.0  | \$ 2.3     | \$ 5.7            | \$ | 2.5   | \$ 0.9      | \$ 4.3            | \$ 2.3   | \$ 1.4      | \$ 3.4   | \$ 5.4   | \$ 3.3      | \$ 8.5   | \$ 3.2   | \$ 1.9     | \$ 5.1             |
| 2022  | \$ 0.1 | \$ 0.0 | \$ 0.2             | \$ 0.5 | \$ 0.2 | \$     | 0.7  | \$ 0.2  | \$ 0.0  | \$ 0.4  | \$ 1.8  | \$ 0.8    | \$ 2   | 8 \$    | 3.9  | \$ 2.3     | \$ 5.5            | \$ | 2.4   | \$ 0.8      | \$ 4.2            | \$ 2.3   | \$ 1.4      | \$ 3.3   | \$ 5.3   | \$ 3.2      | \$ 8.2   | \$ 3.1   | \$ 1.8     | \$ 5.0             |
| 2023  | \$ 0.1 | \$ 0.0 | \$ 0.2             | \$ 0.4 | \$ 0.2 | \$     | 0.7  | \$ 0.2  | \$ 0.0  | \$ 0.4  | \$ 1.7  | \$ 0.7    | \$ 2   | 7 \$    | 3.8  | \$ 22      | \$ 5.4            | \$ | 2.4   | \$ 0.8      | \$ 4.1            | \$ 22    | \$ 1.3      | \$ 3.2   | \$ 5.1   | \$ 3.1      | \$ 8.0   | \$ 3.0   | \$ 1.8     | \$ 4.8             |
| 2024  | \$ 0.1 | \$ 0.0 | \$ 0.1             | \$ 0.4 | \$ 0.2 | \$     | 0.7  | \$ 0.2  | \$ 0.0  | \$ 0.4  | \$ 1.7  | \$ 0.7    | \$ 2   | .6 \$   | 3.7  | \$ 22      | \$ 5.2            | \$ | 2.3   | \$ 0.8      | \$ 4.0            | \$ 2.1   | \$ 1.3      | \$ 3.1   | \$ 5.0   | \$ 3.0      | \$ 7.8   | \$ 2.9   | \$ 1.7     | \$ 4.7             |
| 2025  | \$ 0.1 | \$ 0.0 | \$ 0.1             | \$ 0.4 | \$ 0.2 | \$     | 0.6  | \$ 0.2  | \$ 0.0  | \$ 0.3  | \$ 1.6  | \$ 0.7    | \$ 2   | .6 \$   | 3.6  | \$ 2.1     | \$ 5.0            | \$ | 2.2   | \$ 0.8      | \$ 3.9            | \$ 21    | \$ 1.3      | \$ 3.0   | \$ 4.8   | \$ 2.9      | \$ 7.5   | \$ 2.8   | \$ 1.7     | \$ 4.6             |
| 2026  | \$ 0.1 | \$ 0.0 | \$ 0.1             | \$ 0.4 | \$ 0.2 | \$     | 0.6  | \$ 0.2  | \$ 0.0  | \$ 0.3  | \$ 1.6  | \$ 0.7    | \$ 2   | 5 \$    | 3.5  | \$ 2.0     | \$ 4.9            | \$ | 2.2   | \$ 0.7      | \$ 3.7            | \$ 2.0   | \$ 1.2      | \$ 3.0   | \$ 4.7   | \$ 2.8      | \$ 7.3   | \$ 2.8   | \$ 1.6     | \$ 4.4             |
| 2027  | \$ 0.1 | \$ 0.0 | \$ 0.1             | \$ 0.4 | \$ 0.2 | \$     | 0.6  | \$ 0.2  | \$ 0.0  | \$ 0.3  | \$ 1.5  | \$ 0.7    | \$ 2   | 4 \$    | 3.4  | \$ 2.0     | \$ 4.8            | \$ | 2.1   | \$ 0.7      | \$ 3.6            | \$ 2.0   | \$ 1.2      | \$ 2.9   | \$ 4.6   | \$ 2.7      | \$ 7.1   | \$ 2.7   | \$ 1.6     | \$ 4.3             |
| 2028  | \$ 0.1 | \$ 0.0 | \$ 0.1             | \$ 0.4 | \$ 0.2 | \$     | 0.6  | \$ 0.2  | \$ 0.0  | \$ 0.3  | \$ 1.5  | \$ 0.6    | \$ 2   | 3 \$    | 3.3  | \$ 1.9     | \$ 4.6            | \$ | 2.0   | \$ 0.7      | \$ 3.5            | \$ 1.9   | \$ 1.2      | \$ 2.8   | \$ 4.4   | \$ 2.7      | \$ 6.9   | \$ 2.6   | \$ 1.5     | \$ 4.2             |
| 2029  | \$ 0.1 | \$ 0.0 |                    | \$ 0.4 | \$ 0.2 | \$     |      | \$ 0.2  | \$ 0.0  | \$ 0.3  | \$ 1.4  | \$ 0.6    | \$ 2   |         |      | \$ 1.9     | \$ 4.5            | \$ |       | \$ 0.7      | \$ 3.4            | \$ 1.9   | \$ 1.1      | \$ 2.7   | \$ 4.3   | \$ 2.6      | \$ 6.7   | \$ 2.5   |            | \$ 4.1             |
| Total | \$ 3.4 | \$ 1.8 | \$ 5.0             | ####   | \$ 6.6 | \$     | 18.7 | \$ 10.1 | \$ 5.1  | \$ 15.4 | \$ 59.2 | \$ 30.3   | \$ 88  | 9 \$13  | 32.9 | \$ 77.3    | \$ 190.1          | \$ | 158.5 | \$ 82.9     | \$ 234.6          | \$ 110.3 | \$ 64.3     | \$ 157.4 | \$ 278.2 | \$ 152.9    | \$ 413.7 | \$ 140.9 | \$ 77.2    | \$ 214.8           |
| Ann.  | \$ 0.2 | \$ 0.1 | \$ 0.3             | \$ 0.7 | \$ 0.4 | \$     | 1.1  | \$ 0.6  | \$ 0.3  | \$ 0.9  | \$ 3.4  | \$ 1.7    | \$ 5   | 1 \$    | 7.6  | \$ 4.4     | \$ 10.9           | \$ | 9.1   | \$ 4.8      | \$ 13.5           | \$ 6.3   | \$ 3.7      | \$ 9.0   | \$ 16.0  | \$ 8.8      | \$ 23.8  | \$ 8.1   | \$ 4.4     | \$ 12.3            |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

#### Exhibit J.2bb Present Value of Capital Costs at 3% Discount Rate, by System Size (Surface Water CWSs)

|       |               |       | <100                 |                       |               |       | 100-499             | 1           |                |               |       | 500-999            |                       |               | 1,000-3,2            | 299                  |      |               | 3,300-9,9           | 199               |                     |               | 10,000-49,99         | 19                    |               | 5   | 0,000-99,99          | 9                     |               | 100,000-999,9        | 99                    |               | 1,000,000            |                       |
|-------|---------------|-------|----------------------|-----------------------|---------------|-------|---------------------|-------------|----------------|---------------|-------|--------------------|-----------------------|---------------|----------------------|----------------------|------|---------------|---------------------|-------------------|---------------------|---------------|----------------------|-----------------------|---------------|-----|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|
|       |               |       |                      | ercent<br>ice Bound   |               |       | 90 P<br>Confider    | ercent      |                |               |       |                    | ercent<br>nce Bound   |               |                      | Percent<br>ence Bour | nd   |               | 90<br>Confid        | Percer<br>lence B |                     |               |                      | Percent<br>nce Bound  |               |     |                      | ercent<br>nce Bound   |               |                      | ercent<br>nce Bound   |               |                      | Percent<br>ence Bound |
| Year  | Mean<br>Value |       | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mear<br>Value |       | Lower<br>ith %tile) | Up<br>(95th | oper<br>%tile) | Mean<br>Value |       | Lower<br>th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upp<br>(95th %       |      | Mean<br>Value | Lower<br>(5th %tile |                   | Upper<br>5th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mear<br>Value |     | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) |
| 2005  | \$ -          | \$    |                      | \$ -                  | \$ -          | \$    |                     | \$          | -              | \$ -          | \$    |                    | \$ -                  | \$ -          | \$ -                 | \$                   | -    | \$ -          | \$ -                | \$                | -                   | \$ -          | \$ -                 | \$ -                  | \$            | . : | \$ -                 | \$ -                  | s -           | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2006  | \$ -          | \$    | s -                  | \$ -                  | \$ -          | \$    |                     | \$          | -              | \$ -          | \$    |                    | \$ -                  | \$ -          | s -                  | \$                   | -    | \$ -          | \$ -                | \$                | -                   | \$ -          | s -                  | \$ -                  | \$            | . : | s -                  | \$ -                  | s -           | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2007  | \$ -          | \$    | s -                  | \$ -                  | \$ -          | \$    | -                   | \$          | -              | \$ -          | \$    | -                  | ş -                   | \$ -          | s -                  | \$                   |      | \$ -          | \$ -                | \$                | -                   | s -           | \$ -                 | \$ -                  | \$            | - ! | s -                  | \$ -                  | s -           | \$ -                 | s -                   | \$ -          | s -                  | \$ -                  |
| 2008  | \$ -          | \$    |                      | \$ -                  | \$ -          | \$    |                     | \$          | -              | \$ -          | \$    | -                  | s -                   | \$ -          | s -                  | \$                   | -    | \$ -          | \$ -                | \$                | -                   | \$ -          | \$ -                 | \$ -                  | \$            | 6.4 | 3.3                  | \$ 9.2                | \$ 34.8       | \$ 17.5              | \$ 50.8               | \$ 16.        | 8 \$ 8.4             | \$ 23.8               |
| 2009  | \$ 0.         | .1 \$ | \$ 0.1               | \$ 0.2                | \$ 0          | .3 \$ | 0.2                 | \$          | 0.5            | \$ 0.         | 4 \$  | 0.2                | \$ 0.6                | \$ 2.2        | \$ 1.1               | \$                   | 3.4  | \$ 5.7        | \$ 2.               | .9 \$             | 8.7                 | \$ 10.4       | \$ 5.4               | \$ 15.0               | \$ 1          | 2.4 | 6.4                  | \$ 17.9               | \$ 33.8       | \$ 17.0              | \$ 49.3               | \$ 15.        | 8 \$ 8.2             | \$ 23.1               |
| 2010  | \$ 0.2        | .2 \$ | \$ 0.1               | \$ 0.3                | \$ 0          | .6 \$ | 0.3                 | \$          | 0.9            | \$ 0.         | .7 \$ | 0.3                | \$ 1.1                | \$ 4.4        | \$ 2.2               | 2 \$                 | 6.6  | \$ 11.1       | \$ 5.               | 7 \$              | 16.8                | \$ 20.2       | \$ 10.5              | \$ 29.2               | \$ 1          | 2.0 | 6.3                  | \$ 17.4               | \$ 32.8       | \$ 16.5              | \$ 47.9               | \$ 15.3       | \$ 7.9               | \$ 22.4               |
| 2011  | \$ 0.2        | .2 \$ | \$ 0.1               | \$ 0.3                | \$ 0          | .6 \$ | 0.3                 | \$          | 0.9            | \$ 0.         | .7 \$ | 0.3                | \$ 1.0                | \$ 4.2        | \$ 2.2               | 2 \$                 | 6.4  | \$ 10.8       | \$ 5.               | .5 \$             | 16.3                | \$ 19.6       | \$ 10.2              | \$ 28.3               | \$ 1          | 1.7 | 6.1                  | \$ 16.9               | \$ 31.9       | \$ 16.0              | \$ 46.5               | \$ 14.5       | \$ 7.7               | \$ 21.7               |
| 2012  | \$ 0.2        | .2 \$ | \$ 0.1               | \$ 0.3                | \$ 0          | .5 \$ | 0.3                 | \$          | 0.9            | \$ 0.         | .6 \$ | 0.3                | \$ 1.0                | \$ 4.1        | \$ 2.1               | \$                   | 6.2  | \$ 10.5       | \$ 5.               | 4 \$              | 15.9                | \$ 19.0       | \$ 9.9               | \$ 27.5               | \$ 1          | 1.3 | 5.9                  | \$ 16.4               | \$ 30.9       | \$ 15.5              | \$ 45.1               | \$ 14.5       | 5 \$ 7.5             | \$ 21.1               |
| 2013  | \$ 0.2        | .2 \$ | \$ 0.1               | \$ 0.3                | \$ 0          | .5 \$ | 0.3                 | \$          | 0.8            | \$ 0.         | .6 \$ | 0.3                | \$ 1.0                | \$ 4.0        | \$ 2.0               | \$                   | 6.1  | \$ 10.2       | \$ 5.               | 2 \$              | 15.4                | \$ 18.5       | \$ 9.6               | \$ 26.7               | \$            | 5.5 | 2.9                  | \$ 7.9                | ş -           | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2014  | \$ 0.         | .1 \$ | \$ 0.0               | \$ 0.1                | \$ 0          | .3 \$ | 0.1                 | \$          | 0.4            | \$ 0.         | .3 \$ | 0.2                | \$ 0.5                | \$ 1.9        | \$ 1.0               | \$                   | 2.9  | \$ 4.9        | \$ 2.               | .5 \$             | 7.5                 | \$ 9.0        | \$ 4.7               | \$ 13.0               | \$            | . : | \$ -                 | \$ -                  | ş -           | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2015  | \$ -          | \$    | s -                  | \$ -                  | \$ -          | \$    |                     | \$          | -              | \$ -          | \$    | -                  | \$ -                  | \$ -          | s -                  | \$                   | -    | \$ -          | \$ -                | \$                | -                   | \$ -          | \$ -                 | \$ -                  | \$            | . : | \$ -                 | \$ -                  | ş -           | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2016  | \$ -          | \$    | -                    | \$ -                  | \$ -          | \$    |                     | \$          | -              | \$ -          | \$    | -                  | \$ -                  | \$ -          | \$ -                 | \$                   | -    | \$ -          | \$ -                | \$                | -                   | \$ -          | \$ -                 | \$ -                  | \$            | . : | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2017  | \$ -          | \$    | -                    | \$ -                  | \$ -          | \$    |                     | \$          | -              | \$ -          | \$    | -                  | \$ -                  | \$ -          | \$ -                 | \$                   | -    | \$ -          | \$ -                | \$                | -                   | \$ -          | \$ -                 | \$ -                  | \$            | - : | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2018  | \$ -          | \$    | -                    | \$ -                  | \$ -          | \$    | -                   | \$          | -              | \$ -          | \$    | -                  | \$ -                  | \$ -          | \$ -                 | \$                   | -    | \$ -          | \$ -                | \$                | -                   | \$ -          | \$ -                 | \$ -                  | \$            | - : | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2019  | \$ -          | \$    | -                    | \$ -                  | \$ -          | \$    |                     | \$          | -              | \$ -          | \$    | -                  | \$ -                  | \$ -          | \$ -                 | \$                   | -    | \$ -          | \$ -                | \$                | -                   | \$ -          | \$ -                 | \$ -                  | \$            | - : | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2020  | \$ -          | \$    | -                    | \$ -                  | \$ -          | \$    |                     | \$          | -              | \$ -          | \$    | -                  | \$ -                  | \$ -          | \$ -                 | \$                   | -    | \$ -          | \$ -                | \$                | -                   | \$ -          | \$ -                 | \$ -                  | \$            | - : | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2021  | \$ -          | \$    | -                    | \$ -                  | \$ -          | \$    | -                   | \$          | -              | \$ -          | \$    | -                  | \$ -                  | \$ -          | \$ -                 | \$                   | -    | \$ -          | \$ -                | \$                | -                   | \$ -          | \$ -                 | \$ -                  | \$            | - : | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2022  | \$ -          | \$    | -                    | \$ -                  | \$ -          | \$    |                     | \$          | -              | \$ -          | \$    | -                  | \$ -                  | \$ -          | \$ -                 | \$                   | -    | \$ -          | \$ -                | \$                | -                   | \$ -          | \$ -                 | \$ -                  | \$            | - : | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2023  | \$ -          | \$    | -                    | \$ -                  | \$ -          | \$    |                     | \$          | -              | \$ -          | \$    | -                  | \$ -                  | \$ -          | \$ -                 | \$                   | -    | \$ -          | \$ -                | \$                | -                   | \$ -          | \$ -                 | \$ -                  | \$            | - : | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2024  | \$ -          | \$    | s -                  | \$ -                  | \$ -          | \$    |                     | \$          | -              | \$ -          | \$    | -                  | \$ -                  | \$ -          | \$ -                 | \$                   | -    | \$ -          | \$ -                | \$                | -                   | \$ -          | \$ -                 | \$ -                  | \$            | - : | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2025  | \$ -          | \$    | -                    | \$ -                  | \$ -          | \$    |                     | \$          | -              | \$ -          | \$    | -                  | \$ -                  | \$ -          | \$ -                 | \$                   | -    | \$ -          | \$ -                | \$                | -                   | \$ -          | \$ -                 | \$ -                  | \$            | - : | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2026  | \$ -          | \$    | -                    | \$ -                  | \$ -          | \$    | -                   | \$          | -              | \$ -          | \$    | -                  | \$ -                  | \$ -          | \$ -                 | \$                   | -    | \$ -          | \$ -                | \$                | -                   | \$ -          | \$ -                 | \$ -                  | \$            | - : | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2027  | \$ -          | \$    | -                    | \$ -                  | \$ -          | \$    | -                   | \$          | -              | \$ -          | \$    | -                  | \$ -                  | \$ -          | \$ -                 | \$                   | -    | \$ -          | \$ -                | \$                | -                   | \$ -          | \$ -                 | \$ -                  | \$            | - : | \$ -                 | \$ -                  | s -           | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2028  | \$ -          | \$    | -                    | \$ -                  | \$ -          | \$    | -                   | \$          | -              | \$ -          | \$    | -                  | \$ -                  | \$ -          | \$ -                 | \$                   | -    | \$ -          | \$ -                | \$                | -                   | \$ -          | \$ -                 | \$ -                  | \$            | - : | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2029  | \$ -          | \$    | -                    | \$ -                  | \$ -          | \$    |                     | \$          | -              | \$ -          | \$    | -                  | \$ -                  | \$ -          | \$ -                 | \$                   | -    | \$ -          | \$ -                | \$                | -                   | \$ -          | \$ -                 | \$ -                  | \$            |     | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| Total | \$ 0.9        | _     | \$ 0.5               | \$ 1.5                | \$ 2          |       | 1.4                 | \$          | 4.3            | \$ 3.         |       | 1.7                |                       |               |                      |                      | 31.7 | \$ 53.2       |                     | .3 \$             | 80.6                | \$ 96.7       | \$ 50.3              |                       |               | 9.3 | 30.8                 | \$ 85.6               | \$ 164.2      |                      | \$ 239.7              | \$ 76.        |                      |                       |
| Ann.  | \$ 0.         | .1 \$ | \$ 0.0               | \$ 0.1                | \$ 0          | .2 \$ | 0.1                 | \$          | 0.2            | \$ 0.         | .2 \$ | 0.1                | \$ 0.3                | \$ 1.2        | \$ 0.6               | \$                   | 1.8  | \$ 3.1        | \$ 1.               | .6 \$             | 4.6                 | \$ 5.6        | \$ 2.9               | \$ 8.0                | \$            | 3.4 | 1.8                  | \$ 4.9                | \$ 9.4        | \$ 4.7               | \$ 13.8               | \$ 4.         | \$ 2.3               | \$ 6.4                |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

#### Exhibit J.2bc Present Value of O&M Costs at 3% Discount Rate, by System Size (Surface Water CWSs)

|       |                  | <100                 |                       |                  | 100-499              | )                     |                  | 500-999              |                       | 1,000-3,299      |                      |                       | 3,300-9,999      | 9                    |                       | 10,000-49,9      | 199                  |                       | 50,000-99,999    | )                    |                       | 100,000-999,9    | 99                   |                       | 1,000,000+    |                      |                       |
|-------|------------------|----------------------|-----------------------|------------------|----------------------|-----------------------|------------------|----------------------|-----------------------|------------------|----------------------|-----------------------|------------------|----------------------|-----------------------|------------------|----------------------|-----------------------|------------------|----------------------|-----------------------|------------------|----------------------|-----------------------|---------------|----------------------|-----------------------|
|       |                  |                      | ercent<br>nce Bound   |                  |                      | Percent<br>ence Bound |                  |                      | ercent<br>ce Bound    |                  |                      | ercent<br>ice Bound   |               |                      | ercent<br>nce Bound   |
| Year  | Mean<br>Value    | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value    | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value    | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value    | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value    | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value    | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value    | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value    | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) |
| 2005  | \$ -             | \$ -                 | \$ -                  | \$ -             | s -                  | \$ -                  | s -              | s -                  | \$ -                  | \$ -             | s -                  | \$ -                  | \$ -             | s -                  | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ -             | s -                  | \$ -                  | \$ -          | \$ -                 | s -                   |
| 2006  | \$ -             | \$ -                 | \$ -                  | \$ -             | s -                  | \$ -                  | \$ -             | s -                  | \$ -                  | \$ -             | s -                  | \$ -                  | \$ -             | s -                  | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ -             | s -                  | \$ -                  | \$ -          | \$ -                 | s -                   |
| 2007  | \$ -             | \$ -                 | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ -             | s -                  | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ -             | s -                  | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2008  | \$ -             | \$ -                 | \$ -                  | \$ -             | s -                  | \$ -                  | s -              | s -                  | \$ -                  | \$ -             | s -                  | \$ -                  | \$ -             | s -                  | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ -             | s -                  | \$ -                  | \$ -          | \$ -                 | s -                   |
| 2009  | \$ -             | \$ -                 | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ 0.3           | \$ 0.2               | \$ 0.5                | \$ 1.5           | \$ 0.9               | \$ 2.4                | \$ 0.9        | \$ 0.5               | \$ 1.5                |
| 2010  | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ 0.1           | \$ 0.0               | \$ 0.1                | \$ 0.1           | \$ 0.0               | \$ 0.1                | \$ 0.3           | \$ 0.2               | \$ 0.4                | \$ 0.5           | \$ 0.2               | \$ 0.7                | \$ 0.5           | \$ 0.3               | \$ 0.8                | \$ 0.9           | \$ 0.5               | \$ 1.4                | \$ 2.9           | \$ 1.7               | \$ 4.6                | \$ 1.8        | \$ 1.0               | \$ 2.8                |
| 2011  | \$ 0.1           | \$ 0.0               | \$ 0.1                | \$ 0.2           | \$ 0.1               | \$ 0.3                | \$ 0.2           | \$ 0.1               | \$ 0.2                | \$ 0.9           | \$ 0.5               | \$ 1.3                | \$ 1.4           | \$ 0.7               | \$ 2.1                | \$ 1.6           | \$ 0.9               | \$ 2.3                | \$ 1.5           | \$ 0.9               | \$ 2.2                | \$ 4.2           | \$ 2.5               | \$ 6.7                | \$ 2.6        | \$ 1.5               | \$ 4.1                |
| 2012  | \$ 0.1           | \$ 0.0               | \$ 0.1                | \$ 0.3           | \$ 0.2               | \$ 0.5                | \$ 0.3           | \$ 0.1               | \$ 0.4                | \$ 1.4           | \$ 0.7               | \$ 2.1                | \$ 2.2           | \$ 1.2               | \$ 3.3                | \$ 2.5           | \$ 1.5               | \$ 3.7                | \$ 2.0           | \$ 1.2               | \$ 3.0                | \$ 5.5           | \$ 3.2               | \$ 8.6                | \$ 3.3        | \$ 1.9               | \$ 5.3                |
| 2013  | \$ 0.1           | \$ 0.1               | \$ 0.2                | \$ 0.5           | \$ 0.2               | \$ 0.7                | \$ 0.3           | \$ 0.2               | \$ 0.5                | \$ 1.9           | \$ 1.0               | \$ 2.9                | \$ 3.0           | \$ 1.6               | \$ 4.5                | \$ 3.5           | \$ 2.0               | \$ 5.1                | \$ 2.5           | \$ 1.5               | \$ 3.7                | \$ 6.7           | \$ 3.9               | \$ 10.5               | \$ 4.0        | \$ 2.3               | \$ 6.5                |
| 2014  | \$ 0.1           | \$ 0.1               | \$ 0.2                | \$ 0.6           | \$ 0.3               | \$ 0.9                | \$ 0.4           | \$ 0.2               | \$ 0.6                | \$ 2.4           | \$ 1.2               | \$ 3.6                | \$ 3.8           | \$ 2.0               | \$ 5.7                | \$ 4.3           |                      |                       | 1                | \$ 1.6               | \$ 4.0                | \$ 6.5           |                      | \$ 10.2               | \$ 3.9        | \$ 2.3               | \$ 6.3                |
| 2015  | \$ 0.2           | \$ 0.1               | \$ 0.2                | \$ 0.6           | \$ 0.3               | \$ 0.9                | 1                |                      | \$ 0.7                | \$ 2.6           | \$ 1.3               | \$ 3.9                | \$ 4.1           | \$ 2.1               | \$ 6.1                | \$ 4.6           | ·                    |                       | 1                | \$ 1.5               | \$ 3.9                | \$ 6.3           | \$ 3.7               | \$ 9.9                | \$ 3.8        | \$ 2.2               | \$ 6.1                |
| 2016  | \$ 0.1           | \$ 0.1               | \$ 0.2                | \$ 0.6           | \$ 0.3               | I '                   | \$ 0.5           | \$ 0.2               | \$ 0.7                | \$ 2.5           | \$ 1.3               | 1                     | \$ 4.0           | \$ 2.1               | \$ 5.9                | \$ 4.5           | 1                    |                       |                  | \$ 1.5               | \$ 3.8                | \$ 6.1           |                      | \$ 9.6                |               | \$ 2.1               | \$ 5.9                |
| 2017  | \$ 0.1           | \$ 0.1               | \$ 0.2                | \$ 0.6           | \$ 0.3               | 1                     |                  |                      | \$ 0.7                | \$ 2.4           | \$ 1.3               | \$ 3.6                | \$ 3.9           | \$ 2.0               |                       | \$ 4.4           |                      |                       | 1                | \$ 1.4               | \$ 3.7                | \$ 5.9           | \$ 3.5               | \$ 9.3                |               | \$ 2.1               | \$ 5.8                |
| 2018  | \$ 0.1           | \$ 0.1               | \$ 0.2                | \$ 0.6           | \$ 0.3               | \$ 0.9                |                  | \$ 0.2               | \$ 0.6                | \$ 2.4           | \$ 1.2               | \$ 3.5                | \$ 3.8           | \$ 1.9               | 1                     | \$ 4.3           | 1                    |                       |                  | \$ 1.4               | \$ 3.6                | \$ 5.8           | \$ 3.4               | \$ 9.1                | \$ 3.5        | \$ 2.0               | \$ 5.6                |
| 2019  | \$ 0.1           | \$ 0.1               | \$ 0.2                | \$ 0.6           | \$ 0.3               | \$ 0.8                | \$ 0.4           | \$ 0.2               | \$ 0.6                | \$ 2.3           | \$ 1.2               | \$ 3.4                | \$ 3.6           | \$ 1.9               |                       | \$ 4.1           | ·                    |                       | \$ 2.3           | \$ 1.4               | \$ 3.5                | \$ 5.6           | \$ 3.3               | \$ 8.8                | \$ 3.4        | \$ 1.9               |                       |
| 2020  | \$ 0.1           | \$ 0.1               | \$ 0.2                | \$ 0.5           | \$ 0.3               | I '                   |                  | \$ 0.2               | \$ 0.6                | \$ 2.2           | \$ 1.2               | \$ 3.3                | \$ 3.5           | \$ 1.8               | 1                     |                  | 1                    |                       | 1                |                      | \$ 3.4                | \$ 5.4           |                      | \$ 8.5                |               | \$ 1.9               |                       |
| 2021  | \$ 0.1           | \$ 0.1               | \$ 0.2                | \$ 0.5           | \$ 0.3               | 1                     |                  |                      | \$ 0.6                | \$ 2.2           | \$ 1.1               | \$ 3.2                | \$ 3.4           | \$ 1.8               |                       | \$ 3.9           |                      |                       | 1                |                      | \$ 3.3                | \$ 5.3           | \$ 3.1               | \$ 8.3                |               | \$ 1.8               | \$ 5.1                |
| 2022  | \$ 0.1           | \$ 0.1               | \$ 0.2<br>\$ 0.2      | \$ 0.5<br>\$ 0.5 | \$ 0.3               | \$ 0.8<br>\$ 0.7      |                  | \$ 0.2               | \$ 0.6                | \$ 2.1           | \$ 1.1               | \$ 3.1<br>\$ 3.0      | \$ 3.3<br>\$ 3.2 | \$ 1.7<br>\$ 1.7     | \$ 5.0<br>\$ 4.8      | \$ 3.8<br>\$ 3.7 |                      |                       | \$ 2.1<br>\$ 2.1 | \$ 1.2               | \$ 3.2                | \$ 5.1           |                      | \$ 8.0                | \$ 3.1        | \$ 1.8<br>\$ 1.7     | \$ 5.0                |
| 2023  | \$ 0.1<br>\$ 0.1 | \$ 0.1<br>\$ 0.1     |                       | \$ 0.5           | \$ 0.3<br>\$ 0.3     |                       | \$ 0.4<br>\$ 0.4 | \$ 0.2<br>\$ 0.2     | \$ 0.6<br>\$ 0.5      | \$ 2.0<br>\$ 2.0 | \$ 1.1<br>\$ 1.0     |                       | \$ 3.2<br>\$ 3.1 | l i                  |                       |                  | 1                    |                       | -                | \$ 1.2<br>\$ 1.2     | \$ 3.1<br>\$ 3.0      | \$ 5.0<br>\$ 4.8 | \$ 2.9<br>\$ 2.8     | \$ 7.8<br>\$ 7.6      |               | \$ 1.7<br>\$ 1.7     | \$ 4.8<br>\$ 4.7      |
| 2024  | \$ 0.1           | \$ 0.1               | \$ 0.2<br>\$ 0.2      | \$ 0.5           | \$ 0.3               | \$ 0.7                | \$ 0.4           |                      | \$ 0.5                | \$ 1.9           | \$ 1.0               |                       | \$ 3.1           | \$ 1.6<br>\$ 1.6     | l i                   |                  |                      |                       | \$ 1.9           |                      | \$ 3.0                | \$ 4.7           |                      | \$ 7.6                |               | \$ 1.6               | \$ 4.7<br>\$ 4.5      |
| 2025  | \$ 0.1           | \$ 0.1               | \$ 0.2<br>\$ 0.2      | \$ 0.5           | \$ 0.2               |                       | \$ 0.3           |                      | \$ 0.5                | \$ 1.9           | \$ 1.0               | \$ 2.8                | \$ 3.0           | \$ 1.5               | \$ 4.5                | \$ 3.4           |                      |                       |                  |                      | \$ 2.8                | \$ 4.7           | \$ 2.7               | \$ 7.4                | \$ 2.7        | \$ 1.6               | \$ 4.5<br>\$ 4.4      |
| 2026  | \$ 0.1           | \$ 0.1               | \$ 0.2                | \$ 0.5           | \$ 0.2               | \$ 0.7                | \$ 0.3           |                      | \$ 0.5                | \$ 1.8           | \$ 0.9               | \$ 2.7                | \$ 2.9           | \$ 1.5               | \$ 4.4                | \$ 3.4           |                      |                       |                  | \$ 1.1               | \$ 2.7                | \$ 4.4           | \$ 2.6               | \$ 6.9                | \$ 2.7        | \$ 1.5               | \$ 4.4                |
| 2028  | \$ 0.1           | \$ 0.1               |                       | \$ 0.4           | \$ 0.2               |                       |                  |                      | \$ 0.5                |                  | \$ 0.9               | 1                     |                  | \$ 1.4               | 1                     |                  | 1                    | \$ 4.7                |                  |                      |                       | \$ 4.3           | \$ 2.5               |                       | \$ 2.6        | \$ 1.5               |                       |
| 2029  | \$ 0.1           | \$ 0.1               | \$ 0.2                | \$ 0.4           | \$ 0.2               | 1                     |                  |                      | \$ 0.5                |                  | \$ 0.9               | \$ 2.5                | \$ 2.7           | \$ 1.4               | \$ 4.0                | \$ 3.1           |                      |                       |                  | \$ 1.0               | \$ 2.6                | \$ 4.2           | \$ 2.4               | \$ 6.5                | \$ 2.5        |                      | \$ 4.0                |
| Total | \$ 2.3           | \$ 1.2               | \$ 3.4                | \$ 9.5           | \$ 4.9               |                       | \$ 7.0           |                      | \$ 10.5               | \$ 38.7          | \$ 20.0              | \$ 57.7               | \$ 61.4          | \$ 31.8              | \$ 91.3               | \$ 69.6          |                      | \$ 102.6              | \$ 42.1          | \$ 24.6              | \$ 62.9               | \$ 104.6         | \$ 61.1              | \$ 164.6              | \$ 62.9       | \$ 36.5              | \$ 101.6              |
| Ann.  | \$ 0.1           | \$ 0.1               | \$ 0.2                | \$ 0.5           |                      | · ·                   | \$ 0.4           |                      | \$ 0.6                |                  | \$ 1.2               | \$ 3.3                | \$ 3.5           |                      |                       | \$ 4.0           |                      |                       | \$ 2.4           |                      | •                     |                  | \$ 3.5               | \$ 9.5                |               |                      | \$ 5.8                |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

Source: Derived from Exhibits J.2a through rr.

#### Exhibit J.2bd Present Value of Non-Treatment Costs at 3% Discount Rate, by System Size (Surface Water CWSs)

|                                                                                                                         |                                                 | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |                                    | 100-499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500-999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,000-3,299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |                |                | 3,300-9,999    |                    |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------|----------------|----------------|--------------------|
|                                                                                                                         |                                                 | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Significant                                                            |                                    | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    | Significant                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Significant                        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Significant                                                  |                |                | Monitoring     | Significa          |
| Year<br>2005                                                                                                            | Implementation IDSE<br>\$ 0.0 \$ -              | Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Excursion                                                              | Implementation IDSE<br>\$ 0.1 \$ - | Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitoring                                         | Excursion<br>S -                                             | Implementation IDSE 0.0 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Plans .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Excursion I                        | mplementation              | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Excursion                                                    | Implementation | IDSE<br>1 \$ - | Plans Mor      | nitoring Excursion |
| 2005                                                                                                                    | \$ 0.1 \$ 0.0                                   | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ -                                                                   | \$ 0.2 \$ 0.1                      | s .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s -                                                | s -                                                          | 0.1 \$ 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s - s                              |                            | \$ 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s - :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s - :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                            |                | 2 \$ 0.6       | s - s          | - s                |
| 2007                                                                                                                    | s - s 0.1                                       | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ş .                                                                    | \$ - \$ 0.2                        | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s -                                                | s -                                                          | \$ - \$ 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s - s                              | -                          | \$ 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s - :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s -                                                          | s -            | \$ 1.7         | \$ 0.0 \$      | - s                |
| 2008                                                                                                                    | \$ 0.0 \$ 0.3                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                      | \$ 0.0 \$ 0.5                      | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    | -                                                            | 0.0 \$ 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s - s                              | 0.1                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |                | 1 \$ 5.0       |                | - s                |
| 2009                                                                                                                    |                                                 | \$ 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        | \$ 0.1 \$ -                        | \$ 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s - s                              | 0.1                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |                | 1 \$ -         | \$ 0.1 \$      | - \$               |
| 2010                                                                                                                    |                                                 | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *                                                                      |                                    | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    | s -                                                          | 5 0.1 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s - :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    | 0.1                        | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s -<br>s -                                                   | \$ 0.1<br>\$ - | 1 \$ -         | s - s          | - s                |
| 2011                                                                                                                    |                                                 | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *                                                                      | *                                  | s .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                                  | *                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ (0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                            | s .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              | s .            |                | s - s          | 0.4 \$             |
| 2013                                                                                                                    | *                                               | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *                                                                      |                                    | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                            | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s - :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              | *              | s -            | s - s          | 0.7 \$             |
| 2014                                                                                                                    | s - s -                                         | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ (0.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$ 0.0                                                                 | s - s -                            | s ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ (0.1)                                           | \$ 0.0                                                       | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s 0.0 s                            | -                          | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ (0.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 0.0                                                       | s -            | s -            | s - s          | 0.7 \$<br>0.7 \$   |
| 2015                                                                                                                    | 1                                               | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ (0.1)                                           |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | -                          | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |                | s -            | s - s          |                    |
| 2016                                                                                                                    |                                                 | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        | 1.                                 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ (0.1)                                           |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | -                          | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ (0.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              |                | s -            | s - s          | 0.6 \$             |
| 2017                                                                                                                    | *   *                                           | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                        |                                    | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0)                                                |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ (0.2)<br>\$ (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    | -                          | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              |                | s -            | s - s          | 0.6 \$             |
| 2018                                                                                                                    |                                                 | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        | 1.                                 | s .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ (0.2)<br>\$ (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |                            | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |                | s -            | s - s<br>s - s | 0.6 \$<br>0.6 \$   |
| 2019                                                                                                                    | s - s -                                         | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ (0.0)<br>\$ (0.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ (0.1)<br>\$ (0.1)                               |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ (0.2)<br>\$ (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |                            | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ (0.4) :<br>\$ (0.4) :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              |                | s -            | s - s          | 0.6 \$             |
| 2021                                                                                                                    | s - s -                                         | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ (0.1)                                           |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                            | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ (0.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              |                | s -            | s - s          | 0.6 \$             |
| 2022                                                                                                                    | s - s -                                         | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        | s - s -                            | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |                                                              | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$ (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                            | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ (0.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 0.0                                                       | s -            | s -            | s - s          | 0.5 \$             |
| 2023                                                                                                                    |                                                 | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        | 1.                                 | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | -                          | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |                | s -            | s - s          | 0.5 \$             |
| 2024                                                                                                                    |                                                 | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |                                    | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | -                          | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |                | s -            | s - s          | 0.5 \$             |
| 2025<br>2026                                                                                                            | \$ - \$ -                                       | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |                                    | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ (0.1)<br>\$ (0.1)                               |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ (0.2)<br>\$ (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    | -                          | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$ (0.3)<br>\$ (0.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              |                | s -            | s - s<br>s - s | 0.5 \$<br>0.5 \$   |
| 2026                                                                                                                    |                                                 | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ (0.0)<br>\$ (0.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ (0.1)<br>\$ (0.1)                               |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ (0.2) :<br>\$ (0.2) :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ (0.3) :<br>\$ (0.3) :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              |                | s .            | s - s          | 0.5 \$             |
| 2028                                                                                                                    | s - s -                                         | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ (0.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        |                                    | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ (0.1)                                           |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                            | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s (0.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |                | s -            | s - s          | 0.5 \$             |
| 2029                                                                                                                    | s - s -                                         | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ (0.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$ 0.0                                                                 |                                    | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ (0.0)                                           |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ 0.0 \$                          |                            | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s - :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$ (0.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              |                | s -            | s - s          | 0.4 \$             |
| Total                                                                                                                   | \$ 0.2 \$ 0.4                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ (0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$ 0.0                                                                 | \$ 0.4 \$ 0.8                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ (1.1)                                           | \$ 0.0                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ (3.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s 0.0 s                            | 0.6                        | \$ 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ (6.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              |                | 5 \$ 7.3       |                | 10.0 \$            |
|                                                                                                                         |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |                |                |                |                    |
| Ann.                                                                                                                    | \$ 0.0 \$ 0.0                                   | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ (0.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$ 0.0                                                                 | \$ 0.0 \$ 0.0                      | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ (0.1)                                           | \$ 0.0                                                       | 8 0.0 \$ 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ 0.0 \$                          | 0.0                        | \$ 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ (0.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 0.0                                                       | \$ 0.0         | 0 \$ 0.4       | \$ 0.0 \$      | 0.6 \$             |
| Ann.                                                                                                                    | \$ 0.0 \$ 0.0                                   | 10,000-49,999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ (0.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$ 0.0                                                                 | \$ 0.0 \$ 0.0                      | 50,000-99,999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ (0.1)                                           | \$ 0.0                                                       | \$ 0.0 \$ 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100,000-999,99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$ 0.0 \$                          | 0.0                        | \$ 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,000,000+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$ (0.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 0.0                                                       | \$ 0.0         | 0 \$ 0.4       | \$ 0.0 \$      | 0.6 \$             |
| Year                                                                                                                    |                                                 | 10,000-49,999<br>Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$ (0.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        |                                    | 50,000-99,999<br>Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100,000-999,999<br>Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    | 0.0                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,000,000+<br>Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              | \$ 0.0         | 0 \$ 0.4       | s 0.0 s        | 0.6 \$             |
|                                                                                                                         | \$ 0.0 \$ 0.0  Implementation IDSE  \$ 0.2 \$ - | 10,000-49,999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$ 0.0  Significant Excursion \$ -                                     |                                    | 50,000-99,999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ (0.1)  Monitoring  \$ -                         | \$ 0.0 Significant Excursion \$ -                            | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100,000-999,99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$ 0.0 \$  Significant Excursion I |                            | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,000,000+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Significant Excursion                                        | \$ 0.4         | 0 \$ 0.4       | s 0.0 S        | 0.6 \$             |
| Year                                                                                                                    | Implementation IDSE                             | 10,000-49,999  Monitoring Plans S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        | Implementation IDSE                | 50,000-99,999<br>Monitoring<br>Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring<br>S -                                  | Significant<br>Excursion                                     | Implementation IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100,000-999,999<br>Monitoring<br>Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    | mplementation              | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,000,000+  Monitoring Plans  \$ - !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Significant<br>Excursion                                     | \$ 0.4         | 0 \$ 0.4       | s 0.0 S        | 0.6 \$             |
| Year<br>2005                                                                                                            | Implementation                                  | 10,000-49,999  Monitoring Plans  S - S - S - D.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Monitoring S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Significant<br>Excursion<br>\$ -                                       | Implementation   IDSE              | 50,000-99,999  Monitoring Plans  S - S 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monitoring S - S - S -                             | Significant Excursion S - S -                                | Implementation IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring Plans  \$ - \$ - \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Monitoring  S - :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Significant Excursion I            | mplementation<br>0.0<br>-  | IDSE \$ - \$ 0.3 \$ 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,000,000+  Monitoring Plans  \$ - !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring S - !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Significant<br>Excursion                                     | \$ 0.4         | 0 \$ 0.4       | \$ 0.0  \$     | 0.6   \$           |
| Year<br>2005<br>2006<br>2007<br>2008                                                                                    | Implementation   IDSE                           | 10,000-49,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Significant Excursion  \$ - \$ - \$ - \$ -                             | Implementation   IDSE              | 50,000-99,999  Monitoring Plans  S - S - S 0.0 S 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring S - S - S - S -                         | Significant Excursion  S - S - S - S -                       | Implementation   IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitoring<br>Plans  \$ - \$ 0.0 \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Significant Excursion I            | mplementation  0.0  -  0.0 | IDSE \$ - \$ 0.3 \$ 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,000,000+  Monitoring Plans  \$ - ! \$ 0.0 ! \$ 0.0 !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring  \$ - !  \$ - !  \$ - !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Significant Excursion  S - S - S - S -                       | \$ 0.4         | 0 \$ 0.4       | \$ 0.0 \$      | 0.6   \$           |
| Year<br>2005<br>2006<br>2007<br>2008<br>2009                                                                            | Implementation                                  | 10,000-49,999  Monitoring Plans  S - S - S 0.1 S 0.2 S 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monitoring S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Significant Excursion  \$ - \$ - \$ - \$ - \$ - \$ -                   | Implementation   IDSE              | 50,000-99,999  Monitoring Plans  S - S - S 0.0 S 0.1 S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring S - S - S - S - S - S - S - S - S - S - | Significant<br>Excursion  S - S - S - S - S -                | Implementation   IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitoring Plans  \$ - \$ 0.0 \$ 0.00 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring \$ - : \$ - : \$ - : \$ - : \$ - :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Significant   Excursion            | 0.0<br>-<br>-<br>0.0       | IDSE \$ - \$ 0.3 \$ 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,000,000+  Monitoring Plans  \$ - ! \$ 0.0 ! \$ 0.0 ! \$ - !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Monitoring  \$ - !  \$ - !  \$ - !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Significant Excursion  S -  S -  S -  S -  S -               | \$ 0.4         | 0 \$ 0.4       | \$ 0.0 \$      | 0.6   \$           |
| Year<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010                                                                    | Implementation   IDSE   S                       | 10,000-49,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Significant Excursion  \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ | Implementation   IDSE              | 50,000-99,999  Monitoring Plans  \$ - \$ 0.0 \$ 0.1 \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Monitoring  S - S - S - S - S - S - S - S - S - S  | Significant Excursion  S - S - S - S - S - S -               | Implementation IDSE 5 0.1 \$ - \$ 2.8 \$ - \$ 2.7 \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 \$ - \$ 5 0.1 | Monitoring Plans  \$ - \$ 0.0 \$ 0.0 \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monitoring \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Significant   Excursion            | mplementation  0.0  -  0.0 | IDSE \$ - \$ 0.3 \$ 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,000,000+  Monitoring Plans  \$ - ! \$ 0.0 ! \$ 0.0 !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring  \$ - !  \$ - !  \$ - !  \$ - !  \$ - !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Significant Excursion  S - S - S - S - S - S - S - S - S - S | \$ 0.0         | 0 \$ 0.4       | S 0.0 S        | 0.8   \$           |
| Year<br>2005<br>2006<br>2007<br>2008<br>2009                                                                            | Implementation   IDSE                           | 10,000-49,999  Monitoring Plans  S - S - S 0.1 S 0.2 S 0.1 S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring  S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Significant Excursion  S S S S S S S S S S S S S S S S S S             | Implementation   IDSE              | 50,000-99,999  Monitoring Plans  \$ - \$ 0.0 \$ 0.1 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring                                         | Significant Excursion  S - S - S - S - S - S - S - S - S - S | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Monitoring Plans  \$ - \$ 0.0 \$ 0.0 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring  \$ - : \$ - : \$ - : \$ - : \$ - :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Significant   Excursion            | 0.0<br>-<br>-<br>0.0       | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,000,000+  Monitoring Plans  S - : S - : S 0.0 : S - : S - : S - : S - :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monitoring  \$ - ! \$ - ! \$ 5 - ! \$ 5 - ! \$ 5 - ! \$ 5 - !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Significant Excursion  S  S  S  S  S  S  S  S  S  S  S  S  S | \$ 0.0         | 0 8 0.4        | S 0.0 S        | 0.8   \$           |
| Year<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011                                                            | Implementation   IDSE                           | 10,000-49,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Significant Excursion  S S S S S S S S S S S S S S S S S S             | Implementation   IDSE              | 50,000-99,999  Monitoring Plans  \$ - \$ 0.0 \$ 0.1 \$ - \$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Monitoring   S                                     | Significant Excursion  S - S - S - S - S - S - S - S - S - S | Implementation IDSE  5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring Plans  \$ - \$ 0.0 \$ 0.0 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ | Significant   Excursion            | 0.0 0.0                    | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,000,000+  Monitoring Plans  S - : S - : S - : S - : S - : S - : S - : S - : S - : S - :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monitoring  \$ - ! \$ - ! \$ \$ - ! \$ \$ - ! \$ \$ - ! \$ \$ - ! \$ \$ - ! \$ \$ - ! \$ \$ 0.0 !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Significant Excursion  S S S S S S S S S S S S S S S S S S   |                | 0 8 0.4        | S 0.0 S        | 0.6   \$           |
| Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014                                                                  | Implementation   IDSE                           | 10,000-49,999  Monitoring Plans  S - S - S - S 0.1  S 0.2  S 0.1  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Monitoring  \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Significant Excursion                                                  | Implementation   IDSE              | 50,000-99,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring   S                                     | Significant   Excursion                                      | Implementation   IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitoring Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Monitoring \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ | Significant                        | 0.0                        | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,000,000+  Monitoring Plans  S - !  S - 0.0 !  S - 0.0 !  S - 1 !  S - 1 !  S - 1 !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring  \$ - !  \$ - !  \$ 5 - !  \$ 5 - !  \$ 5 - !  \$ 5 - !  \$ 5 - !  \$ 5 - !  \$ 0.0 !  \$ 5 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ 0.0 !  \$ | Significant Excursion  S - S - S - S - S - S - S - S - S - S |                | B S 0.4        | s 0.0 S        | 0.6   \$           |
| Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015                                                             | Implementation                                  | 10,000-49,999  Monitoring Plans  S - S - S 0.1  S 0.2  S 0.1  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Significant                                                            | Implementation   IOSE              | 50,000-99,999  Monitoring Plans S S S O.0 S O.1 S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitoring  S - S - S - S - S - S - S - S - S - S  | Significant   Excursion                                      | Implementation 10SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100,000-999,99  Monitoring Plans  \$ - \$ - \$ 0.0 \$ 0.0 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monitoring  \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Significant   Excursion            | mplementation              | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,000,000+  Monitoring Plans  S - : S - : S - : S - : S - : S - : S - : S - : S - : S - : S - : S - : S - : S - : S - : S - : S - : S - : S - : S - : S - :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Monitoring S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S                                                                                                                                                                                                                                   | Significant   Excursion                                      |                | B S 0.4        | S 0.0 S        | 0.6   \$           |
| Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016                                                        | Implementation                                  | 10,000-49,999  Monkoring Phans  S - S - S 0.1 S 0.1 S 0.1 S - S 0.5 S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Monitoring  S - S - S - S - S - S - S - S (0.9) S (1.8) S (1.7) S (1.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Significant Excursion                                                  | Implementation   IOSE              | \$0,000-99,999  Monitoring Plans  \$ - \$ 0.0 \$ 0.1 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring  S - S - S - S - S - S - S - S - S - S  | Significant   Excursion                                      | Implementation IDSE 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100,000-999,99  Monitoring Plans  \$ - \$ - \$ 0.0 \$ 0.0 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monitoring S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Significant   Excursion   1        | mplementation              | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,000,000+  Monitoring Plans  S - : S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - 0.00 S - | Monitoring S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S - ! S                                                                                                                                                                                                                                   | Significant   Excursion                                      |                | 0 8 0.4        | s 0.0   S      | 0.0   \$           |
| Year<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017            | Implementation                                  | 10,000-49,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring  \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Significant   Execursion                                               | Implementation   IDSE              | \$0,000-99,999  Monitoring Plans \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monitoring  S - S - S - S - S - S - S - S - S - S  | Significant   Excursion                                      | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Monitoring   Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Monitoring  \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - :   | Significant   Excursion            | mplementation              | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,000,000+  Monitoring Plans S - : S - : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Significant   Excursion                                      |                | D S 0.4        | s 0.0   S      | 0.6   \$           |
| Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018                                              | Implementation                                  | 10,000-49,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring  S - S - S - S - S - S - S - S - S (0.9) S (1.8) S (1.7) S (1.7) S (1.6) S (1.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Significant   Excursion                                                | Implementation                     | \$0,000-99,999  Monitoring Plans \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monitoring  S - S - S - S - S - S - S - S - S - S  | Significant   Excursion                                      | Implementation I/OSE 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring   Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Monitoring  \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$ -     \$                                                                                       | Significant   Excursion            | mplementation              | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,000,000+  Monitoring Plans  S - 1  S - 2  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3   | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Significant   Excursion                                      |                | D \$ 0.4       | s 0.0   S      | os  s              |
| Year<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017            | Implementation                                  | 10,000-49,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Significant   Excursion                                                | Implementation   IOSE              | \$0,000-99,999  Monitoring Plans  \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring  S - S - S - S - S - S - S - S - S - S  | Significant   Excursion   S   -                              | Implementation IDSE 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100,000-999,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring  \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - : \$ - :   | Significant   Exemption            | mplementation              | IDSE   \$ - \$ 0.3   \$ 0.3   \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ | 1,000,000+  Monitoring Plans S - : S - : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 : S 0.0 | Monitoring  \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Significant   Excursion                                      |                | 9 \$ 0.4       | s 0.0   S      | os  s              |
| Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018                                              | Implementation                                  | 10,000-49,999  Menhoring Plans  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Monitoring  S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Significant   Excursion                                                | Implementation   IDSE              | \$0,000-99,999  Monitoring Plans  \$ \$ 0.0 \$ 0.1 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring   S                                     | Significant   Excursion                                      | Implementation   IOSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100,000-999,999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Monitoring  \$ -     \$ 5 -   \$ 5 -   \$ 5 -   \$ 5 -   \$ 5 -   \$ 5 -   \$ 5 -   \$ 5 -   \$ 5 -   \$ 5 -   \$ 6 -   \$ 7 -   \$ 7 -   \$ 7 -   \$ 8 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$ 9 -   \$                                                                                       | Significant                        | mplementation              | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,000,000+  Monitoring Plans  S - : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 : S - 0.0 :  | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Significant   Excursion                                      |                | 9 8 0.4        | s 0.0   S      | os  s              |
| Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019                                         | Implementation                                  | 10,000-49,999  Monitoring Please  S - S - O.1  S - O.2  S - O.1  S - O.5  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monitoring  S - S - S - S - S - S - S (1.6) S (1.6) S (1.6) S (1.6) S (1.6) S (1.5) S (1.5) S (1.5) S (1.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Significant   Excursion                                                | Implementation                     | \$0,000-99,999  Monitoring Plans  \$ \$ \$ 0.0 \$ 0.1 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring   S                                     | Significant   Excuration                                     | Implementation 10SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100,000-999,999  Monitoring Plans  \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring  \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Significant   Excursion            | mplementation 0.0 0.0      | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,000,000+  Monitoring Plans  S - 1  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0  S - 0   | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Significant                                                  |                | 9 8 0.4        | s 0.0   S      | os  s              |
| Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023                     | Implementation                                  | 10,000-49,999  Monitoring Plants  S - S - O.1 S - O.2 S - O.1 S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitoring   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Significant   Executation                                              | Implementation                     | \$0,000-99,999  Monitoring Plans  \$ . \$ . \$ 0.0 \$ 0.1 \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Monitoring   S                                     | Significant   Excursion                                      | Implementation IDSE  0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring Plans  \$ - \$ 0.0 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Significant   Excertion            | mplementation              | IDSE S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,000,000+  Monitoring Plans  S - 1  S - 2  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3  S - 3   | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Significant Excursion  S - S - S - S - S - S - S - S - S - S |                | 0 \$ 0.4       | s 0.0   S      | os  s              |
| Year 2005 2006 2007 2008 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021                                    | Implementation                                  | 10,000-49,999  Monitoring Plans  5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring  S - S - S - S - S - S - S - S (0.9) S (1.8) S (1.7) S (1.7) S (1.6) S (1.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Significant   Excursion                                                | Implementation                     | \$0,000-99,599  Monitoring Plans \$ - \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 | Monitoring S - S - S - S - S - S - S - S - S - S   | Significant   Excursion                                      | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Monitoring Phases  \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring  \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Significant   Excursion            | mptementation              | IDSE S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,000,000   Monitoring Plans  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monitoring S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S - 1 S                                                                                                                                                                                                                                   | Significant                                                  |                | 0 \$ 0.4       | s 0.0   S      | os  s              |
| Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023                     | Implementation                                  | 10,000-19,999  Monitoring Plans  S - S - S - O.1  S - O.1  S - O.1  S - O.2  S - O.5   Monitoring  S - S - S - S - S - S - S - S (1.8) S (1.8) S (1.7) S (1.7) S (1.6) S (1.5) S (1.5) S (1.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Significant   Excursion                                                | Implementation                     | \$0,000-99,599  Monitoring Plans \$ . \$ . \$ 0.0 \$ 0.1 \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monitoring   S                                     | Significant                                                  | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Monitoring Plans  S S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Monitoring   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Significant   Excursion            | mplementation              | IDSE S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,000,000+  Monitoring Plans  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monitoring   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Significant                                                  |                | 0   5   0.4    | s 0.0   S      | os  s              |
| Year 2005 2006 2007 2008 2009 2010 2011 2012 2012 2013 2014 2015 2016 2017 2018 2020 2020 2022 2023 2024 2022 2026 2026 | Implementation                                  | 10,000-49,999  Monitoring Plans S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitoring   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Significant   Excursion                                                | Implementation                     | \$0,000-99,599  Monitoring Plans \$ - \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 | Monitoring   S                                     | Significant                                                  | Implementation IDSE  0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring Plans  \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitoring   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Significant   Excursion            | mplementation              | IDSE S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,000,000   Monitoring Plans  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Significant                                                  |                | 0   5   0.4    | s 0.0   S      | os  s              |
| Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023                     | Implementation                                  | 10,000-19,999  Monitoring Plans  S - S - S - O.1  S - O.1  S - O.1  S - O.2  S - O.5   Monitoring  S - S - S - S - S - S - S - S (1.8) S (1.8) S (1.7) S (1.7) S (1.6) S (1.5) S (1.5) S (1.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Significant Excursion                                                  | Implementation                     | \$0,000-99,599  Monitoring Plans \$ . \$ . \$ 0.0 \$ 0.1 \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monitoring   S                                     | Significant                                                  | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Monitoring Plans S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Monitoring   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Significant   Exertation           | mplementation              | IDSE   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,000,000+  Monitoring Plans  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monitoring   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Significant Excursion                                        |                | 0   5 0.4      | s 0.0   S      | os  s              |
| Year 2005 2006 2007 2007 2008 2009 2010 2012 2013 2014 2015 2016 2019 2020 2021 2020 2021 2022 2023 2024 2025 2027      | Implementation                                  | 10,000-49,999    Monitoring Plans   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitoring  S - S - S - S - S - S - S - S (0.9) S (1.8) S (1.7) S (1.7) S (1.5) S (1.5) S (1.5) S (1.5) S (1.4) S (1.3) S (1.3) S (1.3) S (1.3) S (1.3) S (1.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Significant Excursion                                                  | Implementation                     | \$0,000-99,599  Monitoring Plans \$ . \$ . \$ 0.0 \$ 0.1 \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monitoring S - S - S - S - S - S - S - S - S - S   | Significant                                                  | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Monitoring Plans S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Monitoring S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Significant   Exertation           | mptementation              | DSE   S   O.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,000,000+  Monitoring Plans  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Significant                                                  |                | 0   5 0.4      | s 0.0   S      | os  s              |
| Year 2005 2006 2006 2007 2011 2012 2013 2014 2015 2016 2020 2020 2020 2021 2022 2022 2022                               | Implementation                                  | 10,000-49,999  Monitoring Plans  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring  S - S - S - S - S - S - S (1.9) S (1.8) S (1.7) S (1.7) S (1.6) S (1.5) S (1.6) S | Significant                                                            | Implementation                     | \$ 0,000-99,599    Monitoring   Pians                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitoring   S                                     | Significant                                                  | Implementation 108E  5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring Plans S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Monitoring S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Significant   Excursion            | mptementation  0.0  0.0    | DSE   S   O.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,000,000+  Monitoring Plans  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Significant Excursion                                        |                | 0   5 0.4      | s 0.0   S      | os  s              |

Ann. \$ 0.1 | \$ 0.9 | \$ 0.0 | \$ (1.5) | \$
Notes: Present values is millions of 2003 dollars. Estimates are discounted to 2005.
Detail may not add exactly to totals due to independent rounding.
Ann = value of total annualized at discount rate.
Source: Derived from Exhibits J2a through rr.

## Exhibit J.2be Present Value of Total Costs at 3% Discount Rate, by System Size (Surface Water NTNCWSs)

|       | <100 100-499                   |                     |                       | 9             |                      | 500-999               |               |                      | 1,000-3,29            | 9             |                      | 3,300-9,99            | 99            |                      | 10,000-49,99          | 9             |                      | 50,000-99,9           | 999           |                      | 100,000-999           | 999           |                      | 1,000,000             | +             |                      |                       |
|-------|--------------------------------|---------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|
|       | 90 Percent<br>Confidence Bound |                     |                       |               |                      | Percent<br>ence Bound |               |                      | ercent<br>ace Bound   |               |                      | ercent<br>ce Bound    |               |                      | ercent<br>nce Bound   |               | 90 Per<br>Confidenc  |                       |               |                      | ercent<br>nce Bound   |               |                      | ercent<br>nce Bound   |               |                      | ercent<br>nce Bound   |
| Year  | ean<br>ilue                    | Lower<br>(5th %tile | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) |
| 2005  | \$                             | \$ -                | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2006  | \$<br>0.0                      | \$ 0.               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | s -                  | \$ -                  |
| 2007  | \$<br>-                        | \$ -                | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2008  | \$<br>-                        | \$ -                | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ -          | \$ -                 | \$ -                  |
| 2009  | \$<br>0.1                      | \$ 0.               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ -          | \$ -                 | \$ -                  | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ -          | \$ -                 | \$ -                  |
| 2010  | \$<br>0.1                      | \$ 0.               | \$ 0.2                | \$ 0.3        | \$ 0.1               | \$ 0.4                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.4        | \$ 0.2               | \$ 0.6                | \$ 0.2        | \$ 0.1               | \$ 0.4                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ -          | \$ -                 | \$ -                  | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ -          | \$ -                 | \$ -                  |
| 2011  | \$<br>0.1                      | \$ 0.               | \$ 0.2                | \$ 0.3        | \$ 0.2               | \$ 0.5                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.4        | \$ 0.2               | \$ 0.6                | \$ 0.3        | \$ 0.1               | \$ 0.4                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ -          | \$ -                 | \$ -                  | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ -          | \$ -                 | \$ -                  |
| 2012  | \$<br>0.2                      | \$ 0.               | \$ 0.3                | \$ 0.4        | \$ 0.2               | \$ 0.6                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.4        | \$ 0.2               | \$ 0.6                | \$ 0.3        | \$ 0.1               | \$ 0.4                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ -          | \$ -                 | \$ -                  | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ -          | \$ -                 | \$ -                  |
| 2013  | \$<br>0.2                      | \$ 0.               | \$ 0.3                | \$ 0.4        | \$ 0.2               | \$ 0.6                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.5        | \$ 0.2               | \$ 0.7                | \$ 0.3        | \$ 0.2               | \$ 0.4                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2014  | \$<br>0.1                      | \$ 0.               | \$ 0.2                | \$ 0.3        | \$ 0.2               | \$ 0.5                | \$ 0.2        | \$ 0.1               | \$ 0.2                | \$ 0.3        | \$ 0.2               | \$ 0.5                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2015  | \$<br>0.1                      | \$ 0.               | \$ 0.1                | \$ 0.3        | \$ 0.1               | \$ 0.4                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2016  | \$<br>0.1                      | \$ 0.               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.4                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2017  | \$<br>0.1                      | \$ 0.               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.4                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2018  | \$<br>0.1                      | \$ 0.               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.4                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2019  | \$<br>0.1                      | \$ 0.               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2020  | \$<br>0.1                      | \$ 0.               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2021  | \$<br>0.1                      | \$ 0.               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2022  | \$<br>0.1                      | \$ 0.               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2023  | \$<br>0.1                      | \$ 0.               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2024  | \$<br>0.1                      | \$ 0.               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2025  | \$<br>0.1                      | \$ 0.               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2026  | \$<br>0.1                      | \$ 0.               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2027  | \$<br>0.1                      | \$ 0.               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2028  | \$<br>0.1                      | \$ 0.               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2029  | \$<br>0.1                      | \$ 0.               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| Total | \$<br>2.0                      | \$ 1.               |                       |               |                      |                       | \$ 2.3        |                      | \$ 3.5                | \$ 4.7        | \$ 2.4               | \$ 7.0                | \$ 2.6        | \$ 1.5               | \$ 3.8                | \$ 0.8        |                      | \$ 1.2                | \$ -          | \$ -                 | \$ -                  | \$ 0.7        | \$ 0.4               | \$ 1.0                | \$ -          | \$ -                 | \$ -                  |
| Ann.  | \$<br>0.1                      | \$ 0.               | \$ 0.2                | \$ 0.3        | \$ 0.2               | \$ 0.4                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.3        | \$ 0.1               | \$ 0.4                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.0        | \$ 0.0               | \$ 0.1                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.1                | \$ -          | \$ -                 | \$ -                  |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

## Exhibit J.2bf Present Value of Capital Costs at 3% Discount Rate, by System Size (Surface Water NTNCWSs)

|       | <100  |        |            | 100-49              | 9      |            |                    | 500-999  | 1      |             | 1,000-3,29          | 99     |             | 3,300-9,9           | 999    |             | 10,0                  | 000-49,999 | 9     |         | 50,000-99,                              | 999   |             | 100,000-99          | 9,999  |             | 1,000,000            | 0+    |             |                       |
|-------|-------|--------|------------|---------------------|--------|------------|--------------------|----------|--------|-------------|---------------------|--------|-------------|---------------------|--------|-------------|-----------------------|------------|-------|---------|-----------------------------------------|-------|-------------|---------------------|--------|-------------|----------------------|-------|-------------|-----------------------|
|       |       |        |            | ercent<br>ice Bound |        |            | Percent<br>ence Bo |          |        |             | ercent<br>nce Bound |        |             | ercent<br>nce Bound |        |             | Percent<br>ence Bound |            | С     | 90 Pero |                                         |       |             | ercent<br>nce Bound |        |             | Percent<br>nce Bound |       |             | Percent<br>ence Bound |
|       | Meai  |        | Lower      | Upper               | Mean   | Lower      |                    | Ipper    | Mean   | Lower       | Upper               | Mean   | Lower       | Upper               | Mean   | Lower       | Upper                 | Mean       |       | ower    | Upper                                   | Mean  | Lower       | Upper               | Mean   | Lower       | Upper                | Mean  | Lower       | Upper                 |
| Year  | Value | _      | 5th %tile) | (95th %tile)        | Value  | (5th %tile |                    | h %tile) | Value  | (5th %tile) | (95th %tile)        | Value  | (5th %tile) | (95th %tile)        | Value  | (5th %tile) |                       |            |       |         | (95th %tile)                            | Value | (5th %tile) | (95th %tile)        | Value  | (5th %tile) | (95th %tile)         | Value | (5th %tile) |                       |
| 2005  | \$ -  | \$     |            | \$ -                | \$ -   | \$ -       | \$                 | -        | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                  | \$ -       | \$    | - \$    |                                         | \$ -  | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                 | \$ -  | \$ -        | \$ -                  |
| 2006  | \$ -  | \$     |            | \$ -                | \$ -   | \$ -       | \$                 | -        | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                  | \$ -       | \$    | -   \$  | •                                       | \$ -  | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                 | \$ -  | \$ -        | \$ -                  |
| 2007  | \$ -  | \$     | -          | \$ -                | \$ -   | \$ -       | \$                 | -        | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                  | \$ -       | \$    | - 8     | \$ -                                    | \$ -  | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                 | \$ -  | \$ -        | \$ -                  |
| 2008  | \$ -  | \$     |            | \$ -                | \$ -   | \$ -       |                    |          | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                  | \$ -       | . \$  | - \$    | \$ -                                    | \$ -  | \$ -        | \$ -                | \$ 0.1 | \$ 0.0      | I '                  | \$ -  | \$ -        | \$ -                  |
| 2009  | \$ 0  | - 1 '  |            | \$ 0.1              | \$ 0.1 | \$ 0.      | 1                  | 0.2      | \$ 0.1 | \$ 0.0      |                     |        | \$ 0.1      | \$ 0.3              | \$ 0.1 | \$ 0.1      |                       | .2 \$ 0.   |       | 0.0     |                                         | \$ -  | \$ -        | \$ -                | \$ 0.1 | \$ 0.0      | I '                  | \$ -  | \$ -        | \$ -                  |
| 2010  | \$ 0  |        |            | \$ 0.2              |        | \$ 0.      |                    |          | \$ 0.2 | \$ 0.1      |                     |        | \$ 0.2      | \$ 0.5              | \$ 0.2 | 1           |                       | .3 \$ 0.   |       | 0.1     | •                                       | \$ -  | \$ -        | \$ -                | \$ 0.1 | \$ 0.0      | I '                  | \$ -  | \$ -        | \$ -                  |
| 2011  | \$ 0  |        |            | \$ 0.2              |        | \$ 0.      | 1                  | 0.4      | \$ 0.1 | \$ 0.1      | \$ 0.2              |        | \$ 0.2      | \$ 0.5              | \$ 0.2 | 1           |                       | .3 \$ 0.   |       | 0.0     |                                         | \$ -  | \$ -        | \$ -                | \$ 0.1 | \$ 0.0      | \$ 0.1               | \$ -  | \$ -        | \$ -                  |
| 2012  | \$ 0  |        |            | \$ 0.2              | \$ 0.2 | \$ 0.      |                    |          | \$ 0.1 | \$ 0.1      | \$ 0.2              |        | \$ 0.2      | \$ 0.5              | \$ 0.2 | 1           |                       | .3 \$ 0.   |       | 0.0     | • • • • • • • • • • • • • • • • • • • • | \$ -  | \$ -        | \$ -                | \$ 0.1 | \$ 0.0      | \$ 0.1               | \$ -  | \$ -        | \$ -                  |
| 2013  | \$ 0  |        |            | \$ 0.2              |        | \$ 0.      |                    |          | \$ 0.1 | \$ 0.1      | -                   |        | · ·         | \$ 0.5              | \$ 0.2 | \$ 0.1      |                       | .3 \$ 0.   |       | 0.0     | •                                       | \$ -  | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                 | \$ -  | \$ -        | \$ -                  |
| 2014  | \$ 0  |        |            | \$ 0.1              | \$ 0.1 | \$ 0.      | 1 \$               | 0.2      | \$ 0.1 | \$ 0.0      | \$ 0.1              |        | \$ 0.1      | \$ 0.2              | \$ 0.1 | \$ 0.1      |                       | -   * *    | .0 \$ | 0.0     |                                         | \$ -  | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                 | \$ -  | \$ -        | \$ -                  |
| 2015  | \$ -  | \$     |            | \$ -                | \$ -   | \$ -       | \$                 | -        | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                  | \$ -       | \$    | - 18    |                                         | \$ -  | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                 | \$ -  | \$ -        | \$ -                  |
| 2016  | \$ -  | \$     | -          | \$ -                | \$ -   | \$ -       | \$                 | -        | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                  | \$ -       | \$    | - 18    | \$ -                                    | \$ -  | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                 | \$ -  | \$ -        | \$ -                  |
| 2017  | \$ -  | \$     | -          | \$ -                | \$ -   | \$ -       | \$                 | -        | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                  | \$ -       | \$    | - 19    | \$ -                                    | \$ -  | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                 | \$ -  | \$ -        | \$ -                  |
| 2018  | \$ -  | \$     | -          | \$ -                | \$ -   | \$ -       | \$                 | -        | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                  | \$ -       | \$    | - 19    | \$ -                                    | \$ -  | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                 | \$ -  | \$ -        | \$ -                  |
| 2019  | \$ -  | \$     | -          | \$ -                | \$ -   | \$ -       | \$                 | -        | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                  | \$ -       | \$    | - \$    | \$ -                                    | \$ -  | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                 | \$ -  | \$ -        | \$ -                  |
| 2020  | \$ -  | \$     | -          | \$ -                | \$ -   | \$ -       | \$                 | -        | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                  | \$ -       | \$    | - \$    | \$ -                                    | \$ -  | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                 | \$ -  | \$ -        | \$ -                  |
| 2021  | \$ -  | \$     | -          | \$ -                | \$ -   | \$ -       | \$                 | -        | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                  | \$ -       | \$    | - \$    | \$ -                                    | \$ -  | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                 | \$ -  | \$ -        | \$ -                  |
| 2022  | \$ -  | \$     | -          | \$ -                | \$ -   | \$ -       | \$                 | -        | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                  | \$ -       | \$    | - \$    |                                         | \$ -  | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                 | \$ -  | \$ -        | \$ -                  |
| 2023  | \$ -  | \$     | -          | \$ -                | \$ -   | \$ -       | \$                 | -        | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                  | \$ -       | \$    | - \$    | *                                       | \$ -  | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                 | \$ -  | \$ -        | \$ -                  |
| 2024  | \$ -  | \$     | -          | \$ -                | \$ -   | \$ -       | \$                 | -        | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                  | \$ -       | \$    | - \$    | *                                       | \$ -  | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                 | \$ -  | \$ -        | \$ -                  |
| 2025  | \$ -  | \$     | -          | \$ -                | \$ -   | \$ -       | \$                 | -        | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                  | \$ -       | \$    | - \$    | \$ -                                    | \$ -  | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                 | \$ -  | \$ -        | \$ -                  |
| 2026  | \$ -  | \$     | -          | \$ -                | \$ -   | \$ -       | \$                 | -        | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                  | \$ -       | \$    | - \$    | \$ -                                    | \$ -  | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                 | \$ -  | \$ -        | \$ -                  |
| 2027  | \$ -  | \$     | -          | \$ -                | \$ -   | \$ -       | \$                 | -        | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                  | \$ -       | \$    | - \$    | \$ -                                    | \$ -  | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                 | \$ -  | \$ -        | \$ -                  |
| 2028  | \$ -  | \$     | -          | \$ -                | \$ -   | \$ -       | \$                 | -        | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                  | \$ -       | \$    | - \$    | \$ -                                    | \$ -  | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                 | \$ -  | \$ -        | \$ -                  |
| 2029  | \$ -  | \$     | -          | \$ -                | \$ -   | \$ -       | \$                 | -        | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                  | \$ -       | \$    | - \$    | \$ -                                    | \$ -  | \$ -        | \$ -                | \$ -   | \$ -        | \$ -                 | \$ -  | \$ -        | \$ -                  |
| Total | _     | ).6 \$ | 0.3        | \$ 0.9              | \$ 1.1 | \$ 0.0     |                    | 1.8      | \$ 0.7 | \$ 0.4      |                     | -      | \$ 0.8      | \$ 2.5              | \$ 1.1 | \$ 0.6      | +                     | .7 \$ 0.   |       | 0.2     |                                         | \$ -  | \$ -        | \$ -                | \$ 0.4 | \$ 0.2      |                      |       | \$ -        | \$ -                  |
| Ann.  | \$ 0  | 0.0 \$ | 0.0        | \$ 0.1              | \$ 0.1 | \$ 0.0     | 0 \$               | 0.1      | \$ 0.0 | \$ 0.0      | \$ 0.1              | \$ 0.1 | \$ 0.0      | \$ 0.1              | \$ 0.1 | \$ 0.0      | \$ 0                  | .1 \$ 0.   | .0 \$ | 0.0     | \$ 0.0                                  | \$ -  | \$ -        | \$ -                | \$ 0.0 | \$ 0.0      | \$ 0.0               | \$ -  | \$ -        | \$ -                  |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

## Exhibit J.2bg Present Value of O&M Costs at 3% Discount Rate, by System Size (Surface Water NTNCWSs)

|       | <100                           |        |                     |                       | 100-499       |                      |                       | 500-999       |                      |                       | 1,000-3,29    | 99                   |                       | 3,300-9,9     | 99                   |                       | 10,000-49,    | 999                  |                       | 50,000-99,9   | 199                  |                       | 100,000-999      | ,999                 |                       | 1,000,000     | +                    |                       |
|-------|--------------------------------|--------|---------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|------------------|----------------------|-----------------------|---------------|----------------------|-----------------------|
|       | 90 Percent<br>Confidence Bound |        |                     |                       |               |                      | ercent<br>nce Bound   |                  |                      | ercent<br>ice Bound   |               |                      | Percent<br>nce Bound  |
| Year  | Mear<br>Value                  |        | Lower<br>5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value    | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) |
| 2005  | \$ -                           | \$     | -                   | \$ -                  | \$ -          | s -                  | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2006  | \$ -                           | \$     | -                   | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2007  | \$ -                           | \$     | -                   | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2008  | \$ -                           | \$     | -                   | \$ -                  | \$ -          | s -                  | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2009  | \$ -                           | \$     | -                   | \$ -                  | \$ -          | s -                  | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2010  | \$ 0                           | 0.0 \$ | 0.0                 | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2011  | \$ 0                           | 0.0 \$ | 0.0                 | \$ 0.0                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2012  | \$ 0                           | 0.1 \$ | 0.0                 | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.0        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2013  | \$ 0                           | ).1 \$ | 0.0                 | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2014  | \$ 0                           | ).1 \$ | 0.0                 | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.4                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2015  | \$ 0                           | ).1 \$ | 0.0                 | \$ 0.1                | \$ 0.3        | \$ 0.1               | \$ 0.4                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2016  | \$ 0                           | ).1 \$ | 0.0                 | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.4                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2017  | \$ 0                           | ).1 \$ | 0.0                 | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.4                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2018  | \$ 0                           | ).1 \$ | 0.0                 | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.4                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2019  | \$ 0                           | ).1 \$ | 0.0                 | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2020  | \$ 0                           | ).1 \$ | 0.0                 | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                |               | \$ 0.0               |                       | \$ 0.2        | \$ 0.1               | \$ 0.3                |               | \$ 0.0               |                       | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2021  | \$ 0                           | ).1 \$ |                     | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                |               | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2022  | 1                              | ).1 \$ |                     |                       | \$ 0.2        |                      | \$ 0.3                |               | \$ 0.0               |                       | \$ 0.2        | \$ 0.1               |                       |               | \$ 0.0               |                       | l '           |                      | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               |                       | \$ -          | \$ -                 | \$ -                  |
| 2023  | \$ 0                           |        | 0.0                 |                       | \$ 0.2        | *                    | \$ 0.3                |               | \$ 0.0               |                       | \$ 0.2        | \$ 0.1               |                       | \$ 0.1        | \$ 0.0               |                       |               | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2024  | \$ 0                           |        | 0.0                 |                       | \$ 0.2        |                      | \$ 0.3                |               | \$ 0.0               |                       | \$ 0.2        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.0               |                       | l '           |                      | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2025  | \$ 0                           |        | 0.0                 |                       | \$ 0.2        |                      | \$ 0.3                |               | \$ 0.0               |                       | \$ 0.2        | \$ 0.1               |                       |               | \$ 0.0               |                       |               |                      | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               |                       | \$ -          | \$ -                 | \$ -                  |
| 2026  | \$ 0                           |        |                     |                       | \$ 0.2        |                      | \$ 0.3                |               | \$ 0.0               |                       | \$ 0.1        | \$ 0.1               |                       | \$ 0.1        | \$ 0.0               |                       |               |                      | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               |                       | \$ -          | \$ -                 | \$ -                  |
| 2027  | \$ 0                           |        | 0.0                 |                       | \$ 0.2        | *                    | \$ 0.3                |               | \$ 0.0               |                       | \$ 0.1        | \$ 0.1               |                       | \$ 0.1        | \$ 0.0               |                       |               | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               |                       | \$ -          | \$ -                 | \$ -                  |
| 2028  | 1                              | 0.1 \$ |                     |                       | \$ 0.2        |                      | \$ 0.3                |               | \$ 0.0               |                       | \$ 0.1        | \$ 0.1               |                       | \$ 0.1        | \$ 0.0               |                       |               |                      | \$ 0.0                | s -           | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               |                       | \$ -          | s -                  | \$ -                  |
| 2029  |                                |        |                     |                       | \$ 0.1        |                      | \$ 0.1                | \$ 0.0        |                      |                       | \$ 0.1        | \$ 0.2               |                       |               |                      |                       |               |                      |                       | 9 -           | φ -                  | \$ 0.0                | \$ 0.0           |                      |                       | Ť -           | •                    |                       |
| Total | \$ 1                           |        | 0.7                 | \$ 2.1                |               | \$ 2.0               |                       |               | \$ 0.8               | \$ 2.3                |               | \$ 1.6               |                       |               |                      |                       |               |                      | \$ 0.5                | \$ -          | \$ -                 | \$ -                  | \$ 0.2<br>\$ 0.0 | \$ 0.1               | \$ 0.4                |               | \$ -                 | \$ -                  |
| Ann.  | \$ 0                           | J.1 \$ | 0.0                 | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               | \$ 0.0                | <b>&gt;</b> - | <b>&gt;</b> -        | <b>&gt;</b> -         |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

Ann = value of total annualized at discount rate Source: Derived from Exhibits J.2a through rr.

## Exhibit J.2bh Present Value of Non-Treatment Costs at 3% Discount Rate, by System Size (Surface Water NTNCWSs)

|                                                                                                                                                                                                                                                                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                             |                                                                        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100-499                                                                                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 500-999                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | 1,000-3,299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             |                                                              |                |                      | 3,300-9,999            |                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|----------------|----------------------|------------------------|----------------------|
|                                                                                                                                                                                                                                                                              |                                  | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             | Significant                                                            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Monitoring                                                                               |              | Significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Monitoring                                                            | Significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Implementation IDSF   | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                             | Significant                                                  |                | n IDSE               | Monitoring             | Significant          |
| Year<br>2005                                                                                                                                                                                                                                                                 | Implementation                   | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Plans .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Monitoring<br>s .                                           | Excursion S -                                                          | Implementation                     | IDSE s .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Plans S                                                                                  | Monitoring . | Excursion .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IDSE s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Plans .                                                               | Monitoring Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Implementation IDSE   | Plans<br>S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Monitoring<br>S -                                           | Excursion .                                                  | Implementation | n IDSE               | Plans Me               | onitoring Excursion  |
| 2006                                                                                                                                                                                                                                                                         | \$ 0.0                           | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s ·                                                         | s -                                                                    |                                    | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s - s                                                                                    |              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s 0.0 s -             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s -                                                         | s -                                                          | \$             | 0.0 \$ -             | s - s                  | - s -                |
| 2007                                                                                                                                                                                                                                                                         |                                  | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s -                                                         | s -                                                                    | s -                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s - s                                                                                    | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s -                                                         |                                                              |                | s -                  | s - s                  | - s -                |
| 2008                                                                                                                                                                                                                                                                         |                                  | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s -                                                         | -                                                                      | s -                                | \$ -<br>) \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s - s<br>s 0.0 s                                                                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s - s<br>s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | \$ -<br>\$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                           | *                                                            |                | . s -                | s - s                  | - s -                |
| 2010                                                                                                                                                                                                                                                                         | -                                | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s -                                                         |                                                                        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s - s                                                                                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s -                                                         |                                                              | -              | 0.0 \$ -             | s 0.0 s<br>s - s       | - s -                |
| 2011                                                                                                                                                                                                                                                                         | s -                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$ -                                                        | s -                                                                    | s -                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s - s                                                                                    |              | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s -                                                         | s -                                                          | s              |                      | s - s                  | - s -                |
| 2012                                                                                                                                                                                                                                                                         | s -                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s -                                                         |                                                                        | s -                                | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s - s                                                                                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ş -                                                         |                                                              | \$             | · s -                | s - s                  | 0.0 \$ -             |
| 2013                                                                                                                                                                                                                                                                         | s -                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s -                                                         | -                                                                      | s -                                | 1 '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ - \$                                                                                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s -                                                         |                                                              | s              | 1                    | s - s                  | 0.0 \$ -             |
| 2014<br>2015                                                                                                                                                                                                                                                                 | s -                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s -<br>s -                                                  | s -                                                                    | s -                                | s -<br>s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s - s<br>s - s                                                                           |              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s - s<br>s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s -                                                         | s -                                                          | *              | · s -                | s - s<br>s - s         | 0.0 \$ -             |
| 2016                                                                                                                                                                                                                                                                         | s -                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$ -                                                        | s -                                                                    | s -                                | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s - s                                                                                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       | s · s ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s · s ·               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s -                                                         |                                                              | s              | 1                    | s · s                  | 0.0 \$ -             |
| 2017                                                                                                                                                                                                                                                                         | s -                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s -                                                         | s -                                                                    | s -                                | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - s                                                                                    |              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s · s ·               | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s -                                                         | s -                                                          | s              | s -                  | s - s                  | 0.0 \$ -             |
| 2018                                                                                                                                                                                                                                                                         | \$ -                             | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$ -                                                        |                                                                        | s -                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s - s                                                                                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$ -                                                        |                                                              | \$             | 1                    | s - s                  | 0.0 \$ -             |
| 2019<br>2020                                                                                                                                                                                                                                                                 | s -                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s -                                                         |                                                                        | s -                                | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - s<br>s - s                                                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       | s · s ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s -                                                         | s -                                                          |                | s -<br>s -           | s - s<br>s - s         | 0.0 \$ -<br>0.0 \$ - |
| 2020                                                                                                                                                                                                                                                                         | s -                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$ .                                                        | s -                                                                    | s -                                | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - s                                                                                    |              | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s -                                                         | *                                                            | s              | 1                    | s · s                  | 0.0 \$ -             |
| 2022                                                                                                                                                                                                                                                                         | s -                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s ·                                                         | s -                                                                    | s -                                | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - s                                                                                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s -                                                         |                                                              | \$             | · s -                | s - s                  | 0.0 \$ -             |
| 2023                                                                                                                                                                                                                                                                         | s -                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s -                                                         |                                                                        | s -                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s - s                                                                                    | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s -                                                         | s -                                                          | s              | s -                  | s - s                  | 0.0 \$ -             |
| 2024                                                                                                                                                                                                                                                                         | s -                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s -                                                         | s -                                                                    | s -                                | s -<br>s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s - s<br>s - s                                                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s -                                                         |                                                              |                | s -<br>s -           | s - s<br>s - s         | 0.0 \$ -             |
| 2025                                                                                                                                                                                                                                                                         | s -                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s .                                                         | s -                                                                    | s -                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s - s                                                                                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       | s · s ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s · s ·               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s -                                                         | *                                                            | s              |                      | s - s                  | 0.0 \$ -             |
| 2027                                                                                                                                                                                                                                                                         | s -                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$ -                                                        | s -                                                                    | s -                                | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - s                                                                                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s · s ·               | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s -                                                         | s -                                                          | s              | s -                  | s - s                  | 0.0 s -              |
| 2028                                                                                                                                                                                                                                                                         | s -                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s -                                                         | s -                                                                    | s -                                | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - s                                                                                    |              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s · s ·               | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s -                                                         | s -                                                          | s              | s -                  | s - s                  | 0.0 \$ -             |
| 2029                                                                                                                                                                                                                                                                         | \$ -                             | ş -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$ -                                                        | s -                                                                    | s -                                | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$ - \$                                                                                  | -            | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s · s ·               | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$ -                                                        | \$ -                                                         | \$             | · s -                | s · s                  | 0.0 \$ -             |
| Total<br>Ann.                                                                                                                                                                                                                                                                | \$ 0.0<br>\$ 0.0                 | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             | s -                                                                    | \$ 0.1                             | s -<br>s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$ 0.0 \$<br>\$ 0.0 \$                                                                   |              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                   | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$ 0.0 \$ -           | \$ 0.0<br>\$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             | s -                                                          |                | 0.0 \$ -<br>0.0 \$ - | \$ 0.0 \$<br>\$ 0.0 \$ | 0.0 \$ -             |
|                                                                                                                                                                                                                                                                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             |                                                                        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                   | \$ -  \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$ 0.0 \$ -           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |                                                              |                |                      |                        |                      |
|                                                                                                                                                                                                                                                                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10,000-49,999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                             |                                                                        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50,000-99,999                                                                            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ 0.0  \$ -          | 1,000,000+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                             |                                                              |                | 0.0   3 -            |                        | 0.0 \$               |
|                                                                                                                                                                                                                                                                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10,000-49,999<br>Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             | Significant                                                            | 0.0                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50,000-99,999<br>Monitoring                                                              |              | Significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00,000-999,9:<br>Monitorina                                           | 9<br>Significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | 1,000,000+<br>Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             | Significant                                                  |                | 0.0   3              |                        | 0.0 3                |
| Year<br>2005                                                                                                                                                                                                                                                                 | Implementation                   | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,000-49,999<br>Monitoring<br>Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monitoring                                                  | Significant<br>Excursion                                               | Implementation                     | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                        | Monitoring   | Significant<br>Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00,000-999,9<br>Monitoring<br>Plans                                   | 9 Significant Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Implementation IDSE   | 1,000,000+<br>Monitoring<br>Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring                                                  |                                                              |                |                      |                        | 0.0   3              |
| Year<br>2005<br>2006                                                                                                                                                                                                                                                         | Implementation \$ - \$ 0.0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10,000-49,999<br>Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             | Significant                                                            | Implementation S - S -             | IDSE<br>\$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50,000-99,999<br>Monitoring                                                              | Monitoring . | Significant<br>Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00,000-999,9<br>Monitoring<br>Plans                                   | 9<br>Significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | 1,000,000+  Monitoring Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Monitoring S - S -                                          | Significant                                                  |                |                      |                        | 0.0 3                |
| 2005<br>2006<br>2007                                                                                                                                                                                                                                                         | s -                              | ** S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10,000-49,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Monitoring \$ -                                             | Significant<br>Excursion                                               | Implementation                     | IDSE \$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50,000-99,999  Monitoring Plans  \$ - \$                                                 | Monitoring . | Significant<br>Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IDSE S - S S 0.0 S S 0.0 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Monitoring<br>Plans                                                   | 9    Monitoring   Significant   Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Implementation   IDSE | 1,000,000+  Monitoring Plans  \$ -  \$ -  \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Monitoring                                                  | Significant<br>Excursion                                     |                | 0.0 3                | 30                     | 0.0   3              |
| 2005<br>2006<br>2007<br>2008                                                                                                                                                                                                                                                 | s -<br>s -                       | S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10,000-49,999  Monitoring Plans  \$ - \$ - \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - | Monitoring \$ - \$ - \$ - \$ -                              | Significant Excursion  S - S - S - S -                                 | Implementation  S - S - S - S -    | IDSE \$ - \$ - \$ - \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50,000-99,999  Monitoring Plans  \$ - \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | Monitoring   | Significant Excursion  \$ - \$ - \$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IDSE S - S S 0.0 S S 0.0 S S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Monitoring<br>Plans                                                   | Monitoring Significant Excursion S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Implementation   IDSE | 1,000,000+  Monitoring Plans  \$ - \$ - \$ - \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitoring S - S - S - S -                                  | Significant Excursion  \$ - \$ - \$ - \$ -                   |                | 0.0 3                | 30 10                  | 0.0 3                |
| 2005<br>2006<br>2007<br>2008<br>2009                                                                                                                                                                                                                                         | \$ -<br>\$ -<br>\$ 0.0           | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,000-49,999  Monitoring Plans  \$ - \$ - \$ - \$ 0.0 \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring  \$ - \$ - \$ - \$ - \$ -                        | Significant Excursion  \$ - \$ - \$ - \$ - \$ - \$ -                   | Implementation S - S - S - S - S - | IDSE \$ - \$ - \$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50,000-99,999  Monitoring Plans  \$ - \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | Monitoring   | Significant Excursion  \$ - \$ - \$ - \$ - \$ \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Implementation   \$ 0.0   \$   \$   \$   \$ 0.0   \$ .   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$ | IDSE S - S S 0.0 S S - S S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00,000-999,9: Monitoring Plans  0.0 0.0                               | Monitoring   Significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Implementation   IDSE | 1,000,000+  Monitoring Plans  \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Monitoring S - S - S - S - S -                              | Significant<br>Excursion  \$ - \$ -                          |                | 0.0   3              |                        | 0.0 3                |
| 2005<br>2006<br>2007<br>2008                                                                                                                                                                                                                                                 | \$ -<br>\$ -<br>\$ 0.0<br>\$ 0.0 | S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10,000-49,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Monitoring \$ - \$ - \$ - \$ -                              | Significant Excursion  S - S - S - S - S - S - S -                     | Implementation  S - S - S - S -    | IDSE \$ - \$ - \$ - \$ - \$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50,000-99,999  Monitoring Plans  \$ - \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | Monitoring   | Significant Excursion  \$ - \$ - \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IDSE S - S S 0.0 S S 0.0 S S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00,000-999,94 Monitoring Plans 0.0 0.0                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Implementation        | 1,000,000+  Monitoring Plans  \$ - \$ - \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ | Monitoring S - S - S - S -                                  | Significant Excursion  \$ - \$ - \$ - \$ -                   |                | 0.0   3              |                        | 0.0 3                |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012                                                                                                                                                                                                                 | \$ -<br>\$ -<br>\$ 0.0<br>\$ 0.0 | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,000-49,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Monitoring  \$                                              | Significant Excursion  \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ | Implementation   S                 | IDSE \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50,000-99,999  Monitoring Plans  S - S S - S S - S S - S S - S S - S S - S S - S         | Monitoring   | Significant Excursion  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Implementation   \$ 0.0   \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IDSE  \$ - \$ \$ 0.0 \$ \$ 0.0 \$ \$ - \$ \$ \$ - \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00,000-999,9  Monitoring Plans                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Implementation   IDSE | 1,000,000+  Monitoring Plans  \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Monitoring   S                                              | Significant Excursion  S - S - S - S - S - S - S -           |                | 0.00                 |                        | 0.0   3              |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013                                                                                                                                                                                                         | \$ -<br>\$ -<br>\$ 0.0<br>\$ -   | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,000-49,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Monitoring                                                  | Significant Excursion  \$ -  \$ -  \$ -  \$ -  \$ -  \$ -  \$ -  \$    | Implementation   S                 | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50,000-99,999  Monitoring Plans  \$ - \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ \$ \$ \$ \$   | Monitoring   | Significant   Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Implementation   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IDSE  \$ - \$ \$ 0.0 \$ \$ 0.0 \$ \$ - \$ \$ \$ - \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00,000-999,9  Monitoring Plans  0.0                                   | Significant Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Implementation   IDSE | 1,000,000+  Monitoring Plans  \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Monitoring  S - S - S - S - S - S - S - S - S - S           | Significant Excursion  S - S - S - S - S - S - S - S - S - S |                |                      |                        | vo ja -              |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014                                                                                                                                                                                                 | \$ -<br>\$ -<br>\$ 0.0<br>\$ -   | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,000-49,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Monitoring   \$                                             | Significant Excursion  S - S - S - S - S - S - S - S - S - S           | Implementation   S                 | IDSE \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring   Plans                                                                       | Monitoring   | Significant   Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Implementation   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IDSE  S - S S - 0.0 S S - 0.0 S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00,000-999,9: Monitoring Plans                                        | Nonitoring   Significant Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Implementation   IDSE | 1,000,000+  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring  \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ | Significant Excursion  S - S - S - S - S - S - S - S - S - S |                |                      |                        | w j                  |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013                                                                                                                                                                                                         | \$ -<br>\$ -<br>\$ 0.0<br>\$ -   | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,000-49,599  Montoring Plans  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Monitoring                                                  | Significant Excursion  S                                               | Implementation   S                 | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50,000-99,999  Monitoring Plans  \$ - \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ \$ \$ \$ \$   | Monitoring   | Significant Excursion  S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Implementation   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IDSE  \$ - \$ \$ 0.0 \$ \$ 0.0 \$ \$ - \$ \$ \$ - \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00,000-999,9: Monitoring Plans                                        | Significant Excursion   S   Significant Excursion   S   S   S   S   S   S   S   S   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Implementation   IDSE | 1,000,000+  Monitoring Plans S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring  S - S - S - S - S - S - S - S - S - S           | Significant Excursion  S - S - S - S - S - S - S - S - S - S |                | 0.00                 |                        | w j                  |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015                                                                                                                                                                                         | \$                               | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,000-49,599  Montoring Plans  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Monitoring   S   -                                          | Significant Excursion  S S S S S S S S S S S S S S S S S S S           | Implementation                     | IDSE \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50,000-99,999  Monitoring Plans  \$ - \$ \$ \$ \$ - \$ \$ \$ \$ \$ - \$ \$ \$ \$ \$ \$   | Monitoring   | Significant   Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Implementation   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IDSE  S - S S 0.0 S S 0.0 S S - S S - S S S - S S S - S S S - S S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S | 00,000-999,9**  Monitoring Plans                                      | Significant Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Implementation   IDSE | 1,000,000+  Monitoring S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Monitoring  S - S - S - S - S - S - S - S - S - S           | Significant Excursion S S S S S S S S S S S S S S S S S S S  |                |                      | 37,1                   | vo ja                |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2018                                                                                                                                                                 | \$                               | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,000-49,599  Monitoring Plans  S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monitoring  S                                               | Significant   Excursion                                                | Implementation                     | IDSE   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ - | S0,000-99,099                                                                            | Monitoring   | Significant   Execursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Implementation   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1DSE  S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S | 00,000-999,9:  Monitoring Plans  0.0 0.0                              | Significant Excursion   S   Significant Excursion   S   Significant   S   S   S   S   S   S   S   S   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Implementation   IDSE | 1,000,000+  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring   S                                              | Significant   Execursion                                     |                |                      | 200                    | vo ja                |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2018<br>2019                                                                                                                                                         | \$                               | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,000-49,599  Monitoring Plans  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring  S S S S S S S S S S S S S S S S S S S S S S S S | Significant Excursion                                                  | Implementation                     | IDSE \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50,000-99,999                                                                            | Monitoring   | Significant   Executation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Implementation   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00,000-999,9:  Monitoring Plans  0.0 0.0 0.0                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Implementation   IDSE | 1,000,000+  Monitoring Plans S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring   S                                              | Significant   Executation                                    |                |                      | 377                    | vo ja -              |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2018<br>2019                                                                                                                                                         | \$                               | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,000-49,399  Monitoring Plants  5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monitoring  S                                               | Significant Excursion                                                  | Implementation                     | IDSE \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S0,000-99,099                                                                            | Monitoring   | Significant   Executation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Implementation   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1DSE  S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S | 00,000-999,9: Monitoring Plans                                        | Significant   Significant   Securition   Securities   Securition   Securities   S | Implementation   IDSE | 1,000,000+  Monitoring Pilans  S  S  S  S  S  S  S  S  S  S  S  S  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitoring   S                                              | Significant   Execursion                                     |                |                      | 377                    | w a                  |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2018<br>2019                                                                                                                                                         | \$                               | IDSE   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10,000-49,399  Monitoring Plants  5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monitoring                                                  | Significant Excursion                                                  | Implementation                     | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring                                                                               | Monitoring   | Significant   Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Implementation   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00,000-999,9  Monitoring Plans                                        | Significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Implementation   IDSE | 1,000,000+  Monitoring Plans S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring   S                                              | Significant   Excursion                                      |                |                      | 377                    | w j                  |
| 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021                                                                                                                                                                                         | \$                               | IDSE S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10,000-49,399  Monitoring Plants  5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monitoring   S                                              | Significant Excursion                                                  | Implementation                     | IDSE S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50,000-99,999                                                                            | Monitoring   | Stgnificant   Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00,000-999,9: Monitoring Plans  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 | Significant Exercision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Implementation   IDSE | 1,000,000+  Monitoring Prints  5  5  5  5  5  5  5  5  5  5  5  5  5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitoring   S                                              | Significant                                                  |                | oo j                 | 377                    | w j                  |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2018<br>2019<br>2020<br>2021<br>2022<br>2023<br>2024                                                                                                                 | \$                               | IDSE S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10,000-49,599  Monitoring Plans  5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring                                                  | Significant Excursion S                                                | Implementation S                   | DSE   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -     S -   S -     S -     S -     S -     S -     S -       S -       S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50,000-99,999                                                                            | Monitoring   | Significant Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Implementation   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 IDSE  S - S S - S S - S S - S S - S S - S S S - S S S - S S S - S S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - | 00,000-999.99 Monitoring Plans                                        | Significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Implementation   IDSE | 1,000,000+ Monitoring Plans 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring   S                                              | Significant   Excursion                                      |                |                      | 377                    | vo ja                |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2018<br>2019<br>2020<br>2021<br>2022<br>2023<br>2024<br>2025                                                                                                         | \$                               | IDSE   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10,000-49,399  Monitoring Plans  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring   S                                              | Significant Excursion                                                  | Implementation                     | DOSE   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -     S -   S -     S -     S -     S -     S -     S -     S -       S -       S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50,000-99,999                                                                            | Monitoring   | Significant Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S   S   S   S   S   S   S   S   S   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00,000-999,9                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Implementation   IDSE | 1,000,000+  Monitoring Plans  5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Monitoring   S                                              | Significant Excursion                                        |                | 0.00                 |                        | vo ja                |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2018<br>2019<br>2020<br>2021<br>2022<br>2023<br>2024                                                                                                                 | \$                               | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,000-49,599  Monitoring Plans  5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring                                                  | Significant Excursion S                                                | Implementation S                   | DSE   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -     S -   S -     S -     S -     S -     S -     S -       S -       S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50,000-99,999                                                                            | Monitoring   | Significant   Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Implementation   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 IDSE  S - S S - S S - S S - S S - S S - S S S - S S S - S S S - S S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - | 0.00,000-999.99 Plans                                                 | Significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Implementation   IDSE | 1,000,000+  Monitoring Prims  5  - 5  - 5  - 5  - 5  - 5  - 5  - 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring   S                                              | Significant   Excursion                                      |                | w p                  | 377                    | w a                  |
| 2005 2006 2007 2008 2009 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2022 2024 2025 2024 2025                                                                                                                                                                | \$                               | IDSE S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10,000-49,399  Monitoring Plans  5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring                                                  | Significant Excursion                                                  | Implementation                     | 108E   S   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monitoring   Plants                                                                      | Monitoring   | Significant   Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 105E   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00,000-999.99 Monitoring Plans 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Implementation   IDSE | 1,000,000+  Monitoring Prims  5  - 5  - 5  - 5  - 5  - 5  - 5  - 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring   S                                              | Significant Excursion                                        |                | oo p                 | 377                    | w j                  |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2019<br>2020<br>2021<br>2022<br>2022<br>2022<br>2022<br>2024<br>2022<br>2024<br>2022<br>2024<br>2025<br>2026<br>2026<br>2027<br>2026<br>2026<br>2026<br>2026<br>2026 | \$                               | IDSE   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10,000-49,399  Monitoring Plans  5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring                                                  | Significant Excursion                                                  | Implementation                     | DSE   S   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monitoring   Plants                                                                      | Monitoring   | Significant   Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 IDSE   S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00,000-999,9 Menitoring Plans                                         | Significant Execution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Implementation   IDSE | 1,000,000+  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring   S                                              | Significant Excursion                                        |                | oo p                 | 377                    | vo ja -              |
| 2005 2006 2007 2008 2009 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2022 2024 2025 2024 2025                                                                                                                                                                | \$                               | IDSE   S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S | 10,000-49,399  Monitoring Plans  \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monitoring                                                  | Significant Excursion                                                  | Implementation                     | DSE   S   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monitoring   Plants                                                                      | Monitoring   | Significant   Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Implementation   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 105E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00,000-999,9 Monitoring Plans                                         | Significant   Significant   Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Implementation   IDSE | 1,000,000+  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring   S                                              | Significant Excursion                                        |                | w p                  |                        | w j                  |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005. Detail may not add exactly to totals due to independent rounding. Ann + value of total amustized at discount rate. Source: Derived from Exhibits J.2a through rr.

## Exhibit J.2bi Present Value of Total Costs at 3% Discount Rate, by System Size (Ground Water CWSs)

|       |    |                | <1            | <100 100-499 |                       |                   |                    |                     |                       |                   | 500-999 |                     |                       | 1,000-3,29          | 9                    |                       | 3,300-9,99           | )                    |                       | 10,000-49,99        | 19                   |                       | 50,000-99,9         | 99                   |                       | 100,000-999,9       | 99                   |                       | 1,000,000+         |                      |                       |
|-------|----|----------------|---------------|--------------|-----------------------|-------------------|--------------------|---------------------|-----------------------|-------------------|---------|---------------------|-----------------------|---------------------|----------------------|-----------------------|----------------------|----------------------|-----------------------|---------------------|----------------------|-----------------------|---------------------|----------------------|-----------------------|---------------------|----------------------|-----------------------|--------------------|----------------------|-----------------------|
|       |    |                | 90 Percent    |              |                       | 90 Pe<br>Confiden | ercent<br>ce Bound |                     |                       | 90 Pe<br>Confiden |         |                     |                       | ercent<br>nce Bound |                      |                       | Percent<br>nce Bound |                      |                       | ercent<br>nce Bound |                      |                       | ercent<br>nce Bound |                      |                       | ercent<br>ice Bound |                      |                       | ercent<br>ce Bound |                      |                       |
| Year  |    | /lean<br>/alue | Lov<br>(5th % |              | Upper<br>(95th %tile) | Mean<br>Value     | (!                 | Lower<br>5th %tile) | Upper<br>(95th %tile) | Mear<br>Value     |         | Lower<br>5th %tile) | Upper<br>(95th %tile) | Mean<br>Value       | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value        | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value       | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value       | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value       | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value      | Lower<br>(5th %tile) | Upper<br>(95th %tile) |
| 2005  | \$ | -              | \$            | -            | \$ -                  | \$ -              | \$                 | -                   | \$ -                  | \$ -              | \$      | -                   | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                 | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ 0.0              | \$ 0.0               | \$ 0.0                | \$ 0.0              | \$ 0.0               | \$ 0.0                | \$ 0.0             | \$ 0.0               | \$ 0.0                |
| 2006  | \$ | 0.7            | \$            | 0.7          | \$ 0.7                | \$ 0              | 0.9 \$             | 0.9                 | \$ 0.9                | \$ 0              | 0.4 \$  | 0.4                 | \$ 0.4                | \$ 0.5              | \$ 0.5               | \$ 0.5                | \$ 0.2               | \$ 0.2               | \$ 0.2                | \$ 0.4              | \$ 0.4               | \$ 0.4                | \$ -                | \$ -                 | \$ -                  | \$ 0.1              | \$ 0.1               | \$ 0.1                | \$ 0.0             | \$ 0.0               | \$ 0.0                |
| 2007  | \$ | -              | \$            | -            | \$ -                  | \$ -              | \$                 | - 8                 | \$ -                  | \$ -              | \$      | -                   | \$ -                  | \$ -                | \$ -                 | s -                   | \$ -                 | \$ -                 | \$ -                  | \$ 0.7              | \$ 0.7               | \$ 0.7                | \$ 0.2              | \$ 0.2               | \$ 0.2                | \$ 0.1              | \$ 0.1               | \$ 0.1                | \$ 0.0             | \$ 0.0               | \$ 0.0                |
| 2008  | \$ | 0.2            | \$            | 0.2          | \$ 0.2                | \$ 0              | 0.2 \$             | 0.2                 | \$ 0.2                | \$ 1              | .7 \$   | 1.7                 | \$ 1.7                | \$ 2.0              | \$ 2.0               | \$ 2.0                | \$ 0.9               | \$ 0.9               | \$ 0.9                | \$ 0.8              | \$ 0.8               | \$ 0.8                | \$ 1.3              | \$ 1.2               | \$ 1.5                | \$ 5.2              | \$ 4.6               | \$ 5.7                | \$ 0.6             | \$ 0.5               | \$ 0.7                |
| 2009  | \$ | 1.4            | \$            | 1.3          | \$ 1.5                | \$ 3              | 3.7 \$             | 3.2                 | \$ 4.1                | \$ 2              | 2.3 \$  | 2.0                 | \$ 2.6                | \$ 4.1              | \$ 3.5               | \$ 4.7                | \$ 5.9               | \$ 4.8               | \$ 6.9                | \$ 5.3              | \$ 4.8               | \$ 5.7                | \$ 2.6              | \$ 2.4               | \$ 2.9                | \$ 5.4              | \$ 4.9               | \$ 6.0                | \$ 0.6             | \$ 0.6               | \$ 0.7                |
| 2010  | \$ | 1.8            | \$            | 1.6          | \$ 2.0                | \$ 6              | 5.1 \$             | 5.2                 | \$ 7.0                | \$ 3              | 3.6 \$  | 3.1                 | \$ 4.1                | \$ 6.9              | \$ 5.7               | \$ 8.0                | \$ 11.0              | \$ 9.0               | \$ 13.1               | \$ 10.2             | \$ 9.2               | \$ 11.1               | \$ 2.7              | \$ 2.5               | \$ 3.0                | \$ 5.7              | \$ 5.2               | \$ 6.3                | \$ 0.7             | \$ 0.6               | \$ 0.8                |
| 2011  | \$ | 1.5            | \$            | 1.3          | \$ 1.7                | \$ 6              | 5.1 \$             | 5.2                 | \$ 7.0                | \$ 3              | 3.6 \$  | 3.1                 | \$ 4.2                | \$ 6.9              | \$ 5.7               | \$ 8.1                | \$ 11.0              | \$ 9.0               | \$ 13.0               | \$ 10.5             | \$ 9.6               | \$ 11.5               | \$ 3.0              | \$ 2.7               | \$ 3.3                | \$ 6.0              | \$ 5.3               | \$ 6.6                | \$ 0.7             | \$ 0.6               | \$ 0.8                |
| 2012  | \$ | 1.7            | \$            | 1.5          | \$ 1.9                | \$ 6              | 6.5 \$             | 5.6                 | \$ 7.4                | \$ 4              | 1.0 \$  | 3.5                 | \$ 4.6                | \$ 7.4              | \$ 6.2               | \$ 8.6                | \$ 11.1              | \$ 9.2               | \$ 13.1               | \$ 12.4             | \$ 11.4              | \$ 13.3               | \$ 3.3              | \$ 3.0               | \$ 3.6                | \$ 6.2              | \$ 5.6               | \$ 6.8                | \$ 0.8             | \$ 0.7               | \$ 0.8                |
| 2013  | \$ | 1.8            | \$            | 1.6          | \$ 2.0                | \$ 6              | 5.9 \$             | 5.9                 | \$ 7.8                | \$ 4              | 1.4 \$  | 3.9                 | \$ 5.0                | \$ 7.9              | \$ 6.7               | \$ 9.0                | \$ 11.3              | \$ 9.3               | \$ 13.2               | \$ 14.1             | \$ 13.1              | \$ 15.1               | \$ 2.3              | \$ 2.1               | \$ 2.4                | \$ 2.0              | \$ 1.9               | \$ 2.2                | \$ 0.3             | \$ 0.3               | \$ 0.3                |
| 2014  | \$ | 1.3            | \$            | 1.2          | \$ 1.4                | \$ 4              | 8.8                | 4.2                 | \$ 5.3                | \$ 3              | 3.1 \$  | 2.8                 | \$ 3.4                | \$ 5.2              | \$ 4.5               | \$ 5.9                | \$ 6.5               | \$ 5.5               | \$ 7.6                | \$ 10.1             | \$ 9.5               | \$ 10.7               | \$ 1.2              | \$ 1.2               | \$ 1.3                | \$ 2.0              | \$ 1.8               | \$ 2.1                | \$ 0.3             | \$ 0.3               | \$ 0.3                |
| 2015  | \$ | 0.7            | \$            | 0.7          | \$ 0.8                | \$ 2              | 2.5 \$             | 2.3                 | \$ 2.7                | \$ 1              | .7 \$   | 1.6                 | \$ 1.8                | \$ 2.5              | \$ 2.3               | \$ 2.6                | \$ 1.9               | \$ 1.8               | \$ 2.0                | \$ 6.0              | \$ 5.8               | \$ 6.2                | \$ 1.2              | \$ 1.1               | \$ 1.2                | \$ 1.9              | \$ 1.8               | \$ 2.1                | \$ 0.3             | \$ 0.3               | \$ 0.3                |
| 2016  | \$ | 0.7            | \$            | 0.7          | \$ 0.7                | \$ 2              | 2.5 \$             | 2.3                 | \$ 2.7                | \$ 1              | .7 \$   | 1.6                 | \$ 1.8                | \$ 2.4              | \$ 2.2               | \$ 2.6                | \$ 1.8               | \$ 1.7               | \$ 2.0                | \$ 5.9              | \$ 5.7               | \$ 6.0                | \$ 1.1              | \$ 1.1               | \$ 1.2                | \$ 1.9              | \$ 1.7               | \$ 2.0                | \$ 0.3             | \$ 0.3               | \$ 0.3                |
| 2017  | \$ | 0.7            | \$            | 0.6          | \$ 0.7                | \$ 2              | 2.4 \$             | 2.2                 | \$ 2.6                | \$ 1              | .6 \$   | 1.5                 | \$ 1.7                | \$ 2.3              | \$ 2.2               | \$ 2.5                | \$ 1.8               | \$ 1.7               | \$ 1.9                | \$ 5.7              | \$ 5.5               | \$ 5.9                | \$ 1.1              | \$ 1.1               | \$ 1.2                | \$ 1.8              | \$ 1.7               | \$ 1.9                | \$ 0.3             | \$ 0.2               | \$ 0.3                |
| 2018  | \$ | 0.7            | \$            | 0.6          | \$ 0.7                | \$ 2              | 2.3 \$             | 2.1                 | \$ 2.5                | \$ 1              | .6 \$   | 1.5                 | \$ 1.7                | \$ 2.3              | \$ 2.1               | \$ 2.4                | \$ 1.7               | \$ 1.6               | \$ 1.9                | \$ 5.5              | \$ 5.4               | \$ 5.7                | \$ 1.1              | \$ 1.0               | \$ 1.1                | \$ 1.8              | \$ 1.6               | \$ 1.9                | \$ 0.3             | \$ 0.2               | \$ 0.3                |
| 2019  | \$ | 0.6            | \$            | 0.6          | \$ 0.7                | \$ 2              | 2.3 \$             | 2.1                 | \$ 2.4                | \$ 1              | .5 \$   | 1.4                 | \$ 1.6                | \$ 2.2              | \$ 2.0               | \$ 2.3                | \$ 1.7               | \$ 1.6               | \$ 1.8                | \$ 5.4              | \$ 5.2               | \$ 5.5                | \$ 1.0              | \$ 1.0               | \$ 1.1                | \$ 1.7              | \$ 1.6               | \$ 1.8                | \$ 0.3             | \$ 0.2               | \$ 0.3                |
| 2020  | \$ | 0.6            | \$            | 0.6          | \$ 0.7                | \$ 2              | 2.2 \$             | 2.0                 | \$ 2.4                | \$ 1              | .5 \$   | 1.4                 | \$ 1.6                | \$ 2.1              | \$ 2.0               | \$ 2.3                | \$ 1.6               | \$ 1.5               | \$ 1.8                | \$ 5.2              | \$ 5.0               | \$ 5.4                | \$ 1.0              | \$ 1.0               | \$ 1.1                | \$ 1.7              | \$ 1.5               | \$ 1.8                | \$ 0.2             | \$ 0.2               | \$ 0.3                |
| 2021  | \$ | 0.6            | \$            | 0.6          | \$ 0.6                | \$ 2              | 2.1 \$             | 2.0                 | \$ 2.3                | \$ 1              | .4 \$   | 1.3                 | \$ 1.5                | \$ 2.1              | \$ 1.9               | \$ 2.2                | \$ 1.6               | \$ 1.5               | \$ 1.7                | \$ 5.1              | \$ 4.9               | \$ 5.2                | \$ 1.0              | \$ 0.9               | \$ 1.0                | \$ 1.6              | \$ 1.5               | \$ 1.7                | \$ 0.2             | \$ 0.2               | \$ 0.3                |
| 2022  | \$ | 0.6            | \$            | 0.5          | \$ 0.6                | \$ 2              | 2.1 \$             | 1.9                 | \$ 2.2                | \$ 1              | .4 \$   | 1.3                 | \$ 1.5                | \$ 2.0              | \$ 1.9               |                       | \$ 1.5               | \$ 1.4               | · .                   | \$ 4.9              | \$ 4.8               | \$ 5.1                | \$ 1.0              | \$ 0.9               | \$ 1.0                | \$ 1.6              | \$ 1.4               | \$ 1.7                | \$ 0.2             | \$ 0.2               | \$ 0.3                |
| 2023  | \$ | 0.6            | \$            | 0.5          | \$ 0.6                | \$ 2              | 2.0 \$             | 1.9                 | \$ 2.2                | \$ 1              | .4 \$   | 1.3                 | \$ 1.4                | \$ 1.9              | \$ 1.8               | \$ 2.1                | \$ 1.5               | \$ 1.4               | \$ 1.6                | \$ 4.8              | \$ 4.6               | \$ 4.9                | \$ 0.9              | \$ 0.9               | \$ 1.0                | \$ 1.5              | \$ 1.4               | \$ 1.6                | \$ 0.2             | \$ 0.2               | \$ 0.2                |
| 2024  | \$ | 0.6            | \$            | 0.5          | \$ 0.6                |                   | .9 \$              | 1.8                 | \$ 2.1                | \$ 1              | .3 \$   | 1.2                 | \$ 1.4                | \$ 1.9              | \$ 1.8               | \$ 2.0                | \$ 1.5               | \$ 1.3               | \$ 1.6                | \$ 4.6              | \$ 4.5               | \$ 4.8                | \$ 0.9              | \$ 0.9               | \$ 0.9                | \$ 1.5              | \$ 1.4               | \$ 1.6                | \$ 0.2             | \$ 0.2               | \$ 0.2                |
| 2025  | \$ | 0.5            | \$            | 0.5          | \$ 0.6                | \$ 1              | .9 \$              | 1.7                 | \$ 2.0                | \$ 1              | .3 \$   | 1.2                 | \$ 1.4                | \$ 1.8              | \$ 1.7               | \$ 2.0                | \$ 1.4               | \$ 1.3               |                       |                     | \$ 4.4               | \$ 4.6                | \$ 0.9              | \$ 0.8               | \$ 0.9                | \$ 1.4              | \$ 1.3               | \$ 1.5                | \$ 0.2             | \$ 0.2               | \$ 0.2                |
| 2026  | \$ | 0.5            | \$            |              | \$ 0.6                |                   | .8 \$              |                     | \$ 2.0                |                   | .2 \$   |                     | \$ 1.3                | \$ 1.8              | \$ 1.7               | \$ 1.9                |                      | \$ 1.3               | \$ 1.5                |                     | \$ 4.2               |                       | \$ 0.8              | \$ 0.8               | \$ 0.9                | \$ 1.4              | \$ 1.3               | \$ 1.5                | \$ 0.2             | \$ 0.2               | \$ 0.2                |
| 2027  | \$ | 0.5            | \$            |              | \$ 0.5                |                   | .8 \$              | 1.6                 | \$ 1.9                | 1                 | .2 \$   | 1.1                 | \$ 1.3                | \$ 1.7              | \$ 1.6               | 1                     | \$ 1.3               | \$ 1.2               | 1                     | l -                 | 1                    | \$ 4.4                | \$ 0.8              | \$ 0.8               | \$ 0.9                | \$ 1.3              | \$ 1.2               | \$ 1.4                | \$ 0.2             | \$ 0.2               | \$ 0.2                |
| 2028  | \$ | 0.5            | \$            |              | \$ 0.5                | -                 | 1.7 \$             | 1.6                 | \$ 1.9                |                   | .2 \$   | 1.1                 | \$ 1.2                | \$ 1.7              | \$ 1.6               |                       | \$ 1.3               | \$ 1.2               |                       | \$ 4.1              | \$ 4.0               |                       | \$ 0.8              | \$ 0.8               | \$ 0.8                | \$ 1.3              | \$ 1.2               | \$ 1.4                | \$ 0.2             | \$ 0.2               | \$ 0.2                |
| 2029  | 3  | 0.5            | 3             | 0.4          | \$ 0.5                |                   | .7 \$              |                     | \$ 1.8                | +                 | *       | 1.1                 | \$ 1.2                | \$ 1.6              | \$ 1.5               | \$ 1.7                | \$ 1.3               | \$ 1.2               | \$ 1.3                | \$ 4.0              | \$ 3.9               | \$ 4.1                | \$ 0.8              | \$ 0.7               | \$ 0.8                | \$ 1.3              | \$ 1.2               | \$ 1.4                | \$ 0.2             | \$ 0.2               | \$ 0.2                |
| Total | \$ | 19.3           |               | 17.7         | \$ 20.9               | \$ 66             |                    | 59.4                | \$ 73.3               | _                 | - i     | 40.2                | \$ 48.2               | \$ 71.1             | \$ 63.0              |                       | \$ 81.3              | \$ 69.6              |                       | \$ 138.7            |                      | \$ 146.0              | \$ 31.1             | \$ 29.0              | \$ 33.3               | \$ 56.3             | \$ 51.4              | \$ 61.2               | \$ 7.5             | \$ 6.8               | \$ 8.2                |
| Ann.  | \$ | 1.1            | ş             | 1.0          | \$ 1.2                | <b>3</b>          | 3.8 \$             | 3.4                 | <b>a</b> 4.2          | \$ 2              | 2.5 \$  | 2.3                 | \$ 2.8                | \$ 4.1              | \$ 3.6               | \$ 4.5                | \$ 4.7               | \$ 4.0               | \$ 5.3                | ş 8.0               | \$ 7.5               | \$ 8.4                | \$ 1.8              | \$ 1.7               | \$ 1.9                | \$ 3.2              | \$ 3.0               | \$ 3.5                | \$ 0.4             | \$ 0.4               | \$ 0.5                |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005. Detail may not add exactly to totals due to independent rounding. Ann = value of total annualized at discount rate. Source: Derived from Exhibits J2a through rr.

## Exhibit J.2bj Present Value of Capital Costs at 3% Discount Rate, by System Size (Ground Water CWSs)

|       |           |     | <10              | 00      |                       | 100-499                        |      |                      |                 |      | 50            | 0-999         |                   |                       |            | 1,000-3,29      | 9                    |                           |      | 3,            | 300-9,999       | 1                   |             |      | 10,000-4      | 9,999           |                 |                       | 50,000-99,9   | 99                   |                       | 100,000-99    | 99,999           |       |                     | 1,000,0       | 00+                    |          |
|-------|-----------|-----|------------------|---------|-----------------------|--------------------------------|------|----------------------|-----------------|------|---------------|---------------|-------------------|-----------------------|------------|-----------------|----------------------|---------------------------|------|---------------|-----------------|---------------------|-------------|------|---------------|-----------------|-----------------|-----------------------|---------------|----------------------|-----------------------|---------------|------------------|-------|---------------------|---------------|------------------------|----------|
|       |           |     |                  | 90 Pere | cent<br>e Bound       | 90 Percent<br>Confidence Bound |      |                      | nd              |      | Co            | 90 Pe         | rcent<br>ce Bound |                       |            | 90 P<br>Confide | ercent<br>nce Bour   | nd                        |      |               | 90 F<br>Confide | ercent<br>nce Bou   | nd          |      |               | 90 Per          | cent<br>e Bound |                       |               | ercent<br>nce Bound  |                       | 90<br>Confid  | Perce<br>dence I |       |                     |               | Percent<br>lence Bound |          |
| Year  | Me<br>Val |     | Lowe<br>(5th %ti |         | Upper<br>(95th %tile) | Mean<br>Value                  |      | Lower<br>(5th %tile) | Uppe<br>(95th % |      | Mean<br>Value | Lov<br>(5th % |                   | Upper<br>(95th %tile) | Me:<br>Val |                 | Lower<br>(5th %tile) | Upp<br>(95th <sup>9</sup> |      | Mean<br>Value |                 | Lower<br>ith %tile) | Up<br>(95th |      | Mean<br>Value | Lowe<br>(5th %t |                 | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mear<br>Value |                  |       | Upper<br>5th %tile) | Mean<br>Value | Lower<br>(5th %tile    |          |
| 2005  | \$        | -   | \$               | - \$    | -                     | \$ -                           | . :  | \$ -                 | \$              | - :  | \$ -          | \$            | -                 | \$ -                  | \$         | - :             | \$ -                 | \$                        | -    | \$            | - \$            |                     | \$          | -    | \$ -          | \$              | - 5             | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -             | \$    | -                   | \$ -          | \$ -                   | \$ -     |
| 2006  | \$        | -   | \$               | - 9     | -                     | \$ -                           | . :  | \$ -                 | \$              | - :  | \$ -          | \$            | -                 | \$ -                  | \$         | - :             | \$ -                 | \$                        | -    | \$            | - \$            |                     | \$          | -    | \$ -          | \$              | - \$            | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -             | \$    | -                   | \$ -          | \$ -                   | s -      |
| 2007  | \$        | -   | \$               | - \$    | -                     | \$ -                           | . :  | \$ -                 | \$              | - :  | \$ -          | \$            | -                 | \$ -                  | \$         | - :             | \$ -                 | \$                        | -    | \$            | - \$            |                     | \$          | -    | \$ -          | \$              | - \$            | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -             | \$    | -                   | \$ -          | \$ -                   | \$ -     |
| 2008  | \$        | -   | \$               | - \$    | -                     | \$ -                           | . :  | \$ -                 | \$              | - :  | \$ -          | \$            | -                 | \$ -                  | \$         | - :             | \$ -                 | \$                        | -    | \$            | - \$            |                     | \$          | -    | \$ -          | \$              | - \$            | \$ -                  | \$ 1.3        | \$ 1.2               | \$ 1.4                | \$ 5          | .1 \$ 4          | .6 \$ | 5.7                 | \$ 0.6        | \$ 0                   | 5 \$ 0.7 |
| 2009  | \$        | 0.7 | \$               | 0.6     | 0.8                   | \$ 2                           | 2.8  | \$ 2.4               | \$              | 3.2  | \$ 1.7        | 7 \$          | 1.4               | \$ 2.0                | \$         | 3.3             | \$ 2.7               | \$                        | 3.9  | \$            | 5.5 \$          | 4.5                 | \$          | 6.6  | \$ 4.9        | \$              | 4.5             | 5.4                   | \$ 2.5        | \$ 2.2               | \$ 2.8                | 3 \$ 5        | .0 \$ 4          | .4 \$ | 5.5                 | \$ 0.6        | \$ 0                   | 5 \$ 0.6 |
| 2010  | \$        | 1.4 | \$               | 1.2 \$  | 1.6                   | \$ 5                           | 5.4  | \$ 4.6               | \$              | 6.3  | \$ 3.3        | 3 \$          | 2.8               | \$ 3.8                | \$         | 6.4             | \$ 5.3               | \$                        | 7.6  | \$ 1          | 0.7 \$          | 8.7                 | \$          | 12.7 | \$ 9.6        | \$              | 8.7             | 10.5                  | \$ 2.4        | \$ 2.2               | \$ 2.7                | 7 \$ 4        | .8 \$ 4          | .3 \$ | 5.4                 | \$ 0.6        | \$ 0                   | 5 \$ 0.6 |
| 2011  | \$        | 1.3 | \$               | 1.1 \$  | 1.5                   | \$ 5                           | 5.2  | \$ 4.4               | \$              | 6.1  | \$ 3.2        | 2 \$          | 2.7               | \$ 3.7                | \$         | 6.2             | \$ 5.1               | \$                        | 7.3  | \$ 1          | 0.4 \$          | 8.5                 | \$          | 12.4 | \$ 9.3        | \$              | 8.4             | 10.2                  | \$ 2.4        | \$ 2.1               | \$ 2.6                | \$ \$ 4       | .7 \$ 4          | .2 \$ | 5.2                 | \$ 0.5        | \$ 0                   | 5 \$ 0.6 |
| 2012  | \$        | 1.3 | \$               | 1.1 \$  | 1.5                   | \$ 5                           | 5.1  | \$ 4.3               | \$              | 5.9  | \$ 3.         | 1 \$          | 2.6               | \$ 3.6                | \$         | 6.0             | \$ 5.0               | \$                        | 7.1  | \$ 1          | 0.1 \$          | 8.2                 | \$          | 12.0 | \$ 9.1        | \$              | 8.2             | 9.9                   | \$ 2.3        | \$ 2.1               | \$ 2.5                | 5 \$ 4        | .6 \$ 4          | .1 \$ | 5.1                 | \$ 0.5        | \$ 0                   | 5 \$ 0.6 |
| 2013  | \$        | 1.2 | \$               | 1.1 \$  | 1.4                   | \$ 4                           | 4.9  | \$ 4.2               | \$              | 5.7  | \$ 3.0        | 0 \$          | 2.5               | \$ 3.5                | \$         | 5.9             | \$ 4.8               | \$                        | 6.9  | \$            | 9.8 \$          | 8.0                 | \$          | 11.7 | \$ 8.8        | \$              | 7.9             | 9.6                   | \$ 1.1        | \$ 1.0               | \$ 1.2                | 2 \$ -        | \$ -             | \$    | -                   | \$ -          | \$ -                   | \$ -     |
| 2014  | \$        | 0.6 | \$               | 0.5     | 0.7                   | \$ 2                           | 2.4  | \$ 2.0               | \$              | 2.8  | \$ 1.5        | 5 \$          | 1.2               | \$ 1.7                | \$         | 2.8             | \$ 2.3               | \$                        | 3.4  | \$            | 4.8 \$          | 3.9                 | \$          | 5.7  | \$ 4.3        | \$              | 3.9             | \$ 4.7                | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -             | \$    | -                   | \$ -          | \$ -                   | \$ -     |
| 2015  | \$        | -   | \$               | - \$    | -                     | \$ -                           | . :  | \$ -                 | \$              | - :  | \$ -          | \$            | -                 | \$ -                  | \$         | - :             | \$ -                 | \$                        | -    | \$            | - \$            |                     | \$          | -    | \$ -          | \$              | - \$            | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -             | \$    | -                   | \$ -          | \$ -                   | \$ -     |
| 2016  | \$        | -   | \$               | - \$    | -                     | \$ -                           | . :  | \$ -                 | \$              | - :  | \$ -          | \$            | -                 | \$ -                  | \$         | - :             | \$ -                 | \$                        | -    | \$            | - \$            |                     | \$          | -    | \$ -          | \$              | - \$            | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -             | \$    | -                   | \$ -          | \$ -                   | \$ -     |
| 2017  | \$        | -   | \$               | - \$    | -                     | \$ -                           | . :  | \$ -                 | \$              | - :  | \$ -          | \$            | -                 | \$ -                  | \$         | - :             | \$ -                 | \$                        | -    | \$            | - \$            |                     | \$          | -    | \$ -          | \$              | - \$            | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -             | \$    | -                   | \$ -          | \$ -                   | \$ -     |
| 2018  | \$        | -   | \$               | - \$    | -                     | \$ -                           | . :  | \$ -                 | \$              | - :  | \$ -          | \$            | -                 | \$ -                  | \$         | - :             | \$ -                 | \$                        | -    | \$            | - \$            |                     | \$          | -    | \$ -          | \$              | - \$            | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -             | \$    | -                   | \$ -          | \$ -                   | \$ -     |
| 2019  | \$        | -   | \$               | - \$    | -                     | \$ -                           | . :  | \$ -                 | \$              | - :  | \$ -          | \$            | -                 | \$ -                  | \$         | - :             | \$ -                 | \$                        | -    | \$            | - \$            |                     | \$          | -    | \$ -          | \$              | - \$            | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -             | \$    | -                   | \$ -          | \$ -                   | \$ -     |
| 2020  | \$        | -   | \$               | - \$    | -                     | \$ -                           | . :  | \$ -                 | \$              | - :  | \$ -          | \$            | -                 | \$ -                  | \$         | - :             | \$ -                 | \$                        | -    | \$            | - \$            |                     | \$          | -    | \$ -          | \$              | - \$            | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -             | \$    | -                   | \$ -          | \$ -                   | \$ -     |
| 2021  | \$        | -   | \$               | - \$    | -                     | \$ -                           | . :  | \$ -                 | \$              | - :  | \$ -          | \$            | -                 | \$ -                  | \$         | - :             | \$ -                 | \$                        | -    | \$            | - \$            |                     | \$          | -    | \$ -          | \$              | - \$            | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -             | \$    | -                   | \$ -          | \$ -                   | \$ -     |
| 2022  | \$        | -   | \$               | - \$    | -                     | \$ -                           | . :  | \$ -                 | \$              | - :  | \$ -          | \$            | -                 | \$ -                  | \$         | - :             | \$ -                 | \$                        | -    | \$            | - \$            |                     | \$          | -    | \$ -          | \$              | - \$            | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -             | \$    | -                   | \$ -          | \$ -                   | \$ -     |
| 2023  | \$        | -   | \$               | - \$    | -                     | \$ -                           | . :  | \$ -                 | \$              | - :  | \$ -          | \$            | -                 | \$ -                  | \$         | - :             | \$ -                 | \$                        | -    | \$            | - \$            |                     | \$          | -    | \$ -          | \$              | - \$            | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -             | \$    | -                   | \$ -          | \$ -                   | \$ -     |
| 2024  | \$        | -   | \$               | - \$    | -                     | \$ -                           | . :  | \$ -                 | \$              | - :  | \$ -          | \$            | -                 | \$ -                  | \$         | - :             | \$ -                 | \$                        | -    | \$            | - \$            | -                   | \$          | -    | \$ -          | \$              | - \$            | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -             | \$    | -                   | \$ -          | \$ -                   | \$ -     |
| 2025  | \$        | -   | \$               | - \$    | -                     | \$ -                           | . :  | \$ -                 | \$              | - :  | \$ -          | \$            | -                 | \$ -                  | \$         | - :             | \$ -                 | \$                        | -    | \$            | - \$            |                     | \$          | -    | \$ -          | \$              | - \$            | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -             | \$    | -                   | \$ -          | \$ -                   | \$ -     |
| 2026  | \$        | -   | \$               | - \$    | -                     | \$ -                           | . :  | \$ -                 | \$              | - :  | \$ -          | \$            | -                 | \$ -                  | \$         | - :             | \$ -                 | \$                        | -    | \$            | - \$            | -                   | \$          | -    | \$ -          | \$              | - \$            | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -             | \$    | -                   | \$ -          | \$ -                   | \$ -     |
| 2027  | \$        | -   | \$               | - \$    | -                     | \$ -                           | . :  | \$ -                 | \$              | - :  | \$ -          | \$            | -                 | \$ -                  | \$         | - :             | \$ -                 | \$                        | -    | \$            | - \$            | -                   | \$          | -    | \$ -          | \$              | - \$            | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -             | \$    | -                   | \$ -          | \$ -                   | \$ -     |
| 2028  | \$        | -   | \$               | - \$    | -                     | \$ -                           | . :  | \$ -                 | \$              | - :  | \$ -          | \$            | -                 | \$ -                  | \$         | - :             | \$ -                 | \$                        | -    | \$            | - \$            |                     | \$          | -    | \$ -          | \$              | - \$            | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -             | \$    | -                   | \$ -          | \$ -                   | \$ -     |
| 2029  | \$        | -   | \$               | - \$    | -                     | \$ -                           | .  : | \$ -                 | \$              | - :  | \$ -          | \$            | -                 | \$ -                  | \$         | - :             | \$ -                 | \$                        | -    | \$            | - \$            |                     | \$          |      | \$ -          | \$              | - 5             | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -             | \$    | -                   | \$ -          | \$ -                   | \$ -     |
| Total | \$        | 6.5 | \$               | 5.6 \$  | 7.4                   | \$ 25                          | 5.9  | \$ 21.9              | \$              | 29.9 | \$ 15.7       | 7 \$          | 13.3              | \$ 18.2               | \$         | 30.7            | \$ 25.2              | \$                        | 36.2 | \$ 5          | 1.3 \$          | 41.7                | \$          | 61.0 | \$ 46.0       | \$ 4            | 1.6             | \$ 50.4               | \$ 12.0       | \$ 10.7              | \$ 13.3               | 3 \$ 24       | .2 \$ 21         | .5 \$ | 26.8                | \$ 2.8        | \$ 2                   | 4 \$ 3.1 |
| Ann.  | \$        | 0.4 | \$               | 0.3 \$  | 0.4                   | \$ 1                           | 1.5  | \$ 1.3               | \$              | 1.7  | \$ 0.9        | 9 \$          | 0.8               | \$ 1.0                | \$         | 1.8             | \$ 1.4               | \$                        | 2.1  | \$            | 2.9 \$          | 2.4                 | \$          | 3.5  | \$ 2.6        | \$              | 2.4             | \$ 2.9                | \$ 0.7        | \$ 0.6               | \$ 0.8                | 3 \$ 1        | .4 \$ 1.         | .2 \$ | 1.5                 | \$ 0.2        | \$ 0                   | 1 \$ 0.2 |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

#### Exhibit J.2bk Present Value of O&M Costs at 3% Discount Rate, by System Size (Ground Water CWSs)

|       |               | <100 100-499         |                       |               |                      |                       | 500-999       |                      |                       | 1,000-3,299   | )                    |                       | 3,300-9,99    | 9                    |                       | 10,000-49,999 | 9                    |                       | 50,000-99,9   | 199                  |                       | 100,000-999,  | 999                  |                       | 1,000,00      | 0+                   |                       |
|-------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|
|       |               |                      | Percent<br>Ince Bound |               |                      | ercent<br>ice Bound   |               |                      | ercent<br>nce Bound   |               | 90 Pe<br>Confiden    |                       |               |                      | ercent<br>nce Bound   |               | 90 Pe<br>Confiden    |                       |               |                      | Percent<br>nce Bound  |               |                      | Percent<br>nce Bound  |               |                      | Percent<br>ence Bound |
| Year  | Mean<br>/alue | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) |
| 2005  | \$            | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2006  | \$<br>-       | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | s -                  | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2007  | \$<br>-       | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2008  | \$<br>-       | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2009  | \$<br>-       | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.5        | \$ 0.4               | \$ 0.5                | \$ 0.1        | \$ 0.1               | 1 \$ 0.1              |
| 2010  | \$<br>0.1     | \$ 0.1               | \$ 0.1                | \$ 0.3        | \$ 0.3               | \$ 0.3                | \$ 0.3        | \$ 0.1               | \$ 0.2                | \$ 0.2        | \$ 0.2               | \$ 0.3                | \$ 0.2        | \$ 0.2               | \$ 0.2                | \$ 0.4        | \$ 0.4               | \$ 0.4                | \$ 0.3        | \$ 0.3               | \$ 0.3                | \$ 0.9        | \$ 0.9               | \$ 1.0                | \$ 0.1        | \$ 0.1               | 1 \$ 0.2              |
| 2011  | \$<br>0.2     | \$ 0.2               | \$ 0.2                | \$ 0.8        | \$ 0.8               | \$ 0.9                | \$ 0.4        | \$ 0.4               | \$ 0.5                | \$ 0.7        | \$ 0.6               | \$ 0.7                | \$ 0.6        | \$ 0.5               | \$ 0.6                | \$ 1.2        | \$ 1.1               | \$ 1.3                | \$ 0.5        | \$ 0.5               | \$ 0.5                | \$ 1.3        | \$ 1.2               | \$ 1.4                | \$ 0.2        | \$ 0.2               | 2 \$ 0.2              |
| 2012  | \$<br>0.4     | \$ 0.3               | \$ 0.4                | \$ 1.3        | \$ 1.2               | \$ 1.5                | \$ 0.3        | 7 \$ 0.7             | \$ 0.8                | \$ 1.1        | \$ 1.0               | \$ 1.2                | \$ 0.9        | \$ 0.8               | \$ 1.0                | \$ 1.9        | \$ 1.8               | \$ 2.0                | \$ 0.7        | \$ 0.6               | \$ 0.7                | \$ 1.7        | \$ 1.6               | \$ 1.9                | \$ 0.3        | \$ 0.2               | 2 \$ 0.3              |
| 2013  | \$<br>0.5     | \$ 0.5               | \$ 0.5                | \$ 1.8        | \$ 1.7               | \$ 2.0                | \$ 1.0        | \$ 0.9               | \$ 1.1                | \$ 1.5        | \$ 1.3               | \$ 1.6                | \$ 1.2        | \$ 1.1               | \$ 1.4                | \$ 2.6        | \$ 2.5               | \$ 2.8                | \$ 0.9        | \$ 0.8               | \$ 0.9                | \$ 2.1        | \$ 2.0               | \$ 2.3                | \$ 0.3        | \$ 0.3               | 3 \$ 0.3              |
| 2014  | \$<br>0.6     | \$ 0.6               | \$ 0.7                | \$ 2.3        | \$ 2.1               | \$ 2.5                | \$ 1.3        | 2 \$ 1.1             | \$ 1.3                | \$ 1.8        | \$ 1.7               | \$ 2.0                | \$ 1.6        | \$ 1.4               | \$ 1.7                | \$ 3.3        | \$ 3.1               | \$ 3.4                | \$ 0.9        | \$ 0.9               | \$ 1.0                | \$ 2.0        | \$ 1.9               | \$ 2.2                | \$ 0.3        | \$ 0.3               | 3 \$ 0.3              |
| 2015  | \$<br>0.7     | \$ 0.6               | \$ 0.7                | \$ 2.5        | \$ 2.3               | \$ 2.7                | \$ 1.3        | 3 \$ 1.2             | \$ 1.4                | \$ 2.0        | \$ 1.8               | \$ 2.2                | \$ 1.7        | \$ 1.5               | \$ 1.8                | \$ 3.5        | \$ 3.3               | \$ 3.7                | \$ 0.9        | \$ 0.8               | \$ 1.0                | \$ 2.0        | \$ 1.8               | \$ 2.1                | \$ 0.3        | \$ 0.3               | 3 \$ 0.3              |
| 2016  | \$<br>0.6     | \$ 0.6               | \$ 0.7                | \$ 2.4        | \$ 2.2               | \$ 2.6                | \$ 1.3        | 3 \$ 1.2             | \$ 1.4                | \$ 1.9        | \$ 1.8               | \$ 2.1                | \$ 1.6        | \$ 1.5               | \$ 1.8                | \$ 3.4        | \$ 3.2               | \$ 3.6                | \$ 0.9        | \$ 0.8               | \$ 0.9                | \$ 1.9        | \$ 1.8               | \$ 2.1                | \$ 0.3        | \$ 0.3               | 3 \$ 0.3              |
| 2017  | \$<br>0.6     | \$ 0.6               | \$ 0.7                | \$ 2.3        | \$ 2.1               | \$ 2.5                | \$ 1.3        | 2 \$ 1.1             | \$ 1.3                | \$ 1.9        | \$ 1.7               | \$ 2.0                | \$ 1.6        | \$ 1.5               | \$ 1.7                | \$ 3.3        | \$ 3.1               | \$ 3.5                | \$ 0.8        | \$ 0.8               | \$ 0.9                | \$ 1.9        | \$ 1.7               | \$ 2.0                | \$ 0.3        | \$ 0.3               | 3 \$ 0.3              |
| 2018  | \$<br>0.6     | \$ 0.6               | \$ 0.6                | \$ 2.2        | \$ 2.1               | \$ 2.4                | \$ 1.3        | 2 \$ 1.1             | \$ 1.3                | \$ 1.8        | \$ 1.7               | \$ 2.0                | \$ 1.5        | \$ 1.4               | \$ 1.7                | \$ 3.2        | \$ 3.1               | \$ 3.4                | \$ 0.8        | \$ 0.8               | \$ 0.9                | \$ 1.8        | \$ 1.7               | \$ 1.9                | \$ 0.3        | \$ 0.3               | 3 \$ 0.3              |
| 2019  | \$<br>0.6     | \$ 0.5               | \$ 0.6                | \$ 2.2        | \$ 2.0               | \$ 2.4                | \$ 1.3        | 2 \$ 1.1             | \$ 1.3                | \$ 1.8        | \$ 1.6               | \$ 1.9                | \$ 1.5        | \$ 1.4               | \$ 1.6                | \$ 3.1        | \$ 3.0               | \$ 3.3                | \$ 0.8        | \$ 0.7               | \$ 0.8                | \$ 1.8        | \$ 1.6               | \$ 1.9                | \$ 0.3        | \$ 0.2               | 2 \$ 0.3              |
| 2020  | \$<br>0.6     | \$ 0.5               | \$ 0.6                | \$ 2.1        | \$ 2.0               | \$ 2.3                | \$ 1.1        | 1 \$ 1.0             | \$ 1.2                | \$ 1.7        | \$ 1.6               | \$ 1.9                | \$ 1.5        | \$ 1.3               | \$ 1.6                | \$ 3.0        | \$ 2.9               | \$ 3.2                | \$ 0.8        | \$ 0.7               | \$ 0.8                | \$ 1.7        | \$ 1.6               | \$ 1.8                | \$ 0.3        | \$ 0.2               |                       |
| 2021  | \$<br>0.5     | \$ 0.5               | \$ 0.6                | \$ 2.1        | \$ 1.9               | \$ 2.2                | \$ 1.1        | 1 \$ 1.0             | \$ 1.2                | \$ 1.7        | \$ 1.5               | \$ 1.8                | \$ 1.4        | \$ 1.3               | \$ 1.5                | \$ 3.0        | \$ 2.8               | \$ 3.1                | \$ 0.8        | \$ 0.7               | \$ 0.8                | \$ 1.7        | \$ 1.5               | \$ 1.8                | \$ 0.3        | \$ 0.2               | 2 \$ 0.3              |
| 2022  | \$<br>0.5     | \$ 0.5               | \$ 0.6                | \$ 2.0        | \$ 1.8               | \$ 2.2                | \$ 1.         | 1 \$ 1.0             | \$ 1.2                | \$ 1.6        | \$ 1.5               | \$ 1.8                | \$ 1.4        | \$ 1.3               | \$ 1.5                | \$ 2.9        | \$ 2.7               | \$ 3.0                | \$ 0.7        | \$ 0.7               | \$ 0.8                | \$ 1.6        | \$ 1.5               | \$ 1.7                | \$ 0.2        | \$ 0.2               |                       |
| 2023  | \$<br>0.5     | \$ 0.5               | \$ 0.6                | \$ 1.9        | \$ 1.8               | \$ 2.1                | \$ 1.0        | \$ 1.0               | \$ 1.1                | \$ 1.6        | \$ 1.4               | \$ 1.7                | \$ 1.3        | \$ 1.2               | \$ 1.4                | \$ 2.8        | \$ 2.6               | \$ 2.9                | \$ 0.7        | \$ 0.7               | \$ 0.8                | \$ 1.6        | \$ 1.5               | \$ 1.7                | \$ 0.2        | \$ 0.2               | 2 \$ 0.3              |
| 2024  | \$<br>0.5     |                      | \$ 0.5                |               | \$ 1.7               | \$ 2.0                |               | \$ 0.9               | \$ 1.1                | \$ 1.5        | \$ 1.4               | \$ 1.7                | \$ 1.3        | \$ 1.2               | \$ 1.4                | \$ 2.7        | 1                    |                       |               | \$ 0.6               | 1                     |               | \$ 1.4               | \$ 1.6                | \$ 0.2        |                      | 1                     |
| 2025  | \$<br>0.5     | \$ 0.5               | \$ 0.5                | \$ 1.8        | \$ 1.7               | \$ 2.0                | \$ 1.0        | \$ 0.9               | \$ 1.1                | \$ 1.5        | \$ 1.3               | \$ 1.6                | \$ 1.3        | \$ 1.1               | \$ 1.4                | \$ 2.6        | \$ 2.5               | \$ 2.8                | \$ 0.7        | \$ 0.6               | \$ 0.7                | \$ 1.5        | \$ 1.4               | \$ 1.6                | \$ 0.2        | \$ 0.2               | 2 \$ 0.2              |
| 2026  | \$<br>0.5     | \$ 0.4               | \$ 0.5                | \$ 1.8        | \$ 1.6               | \$ 1.9                | \$ 1.0        | \$ 0.9               | \$ 1.0                | \$ 1.4        | \$ 1.3               | \$ 1.6                | \$ 1.2        | \$ 1.1               | \$ 1.3                | \$ 2.5        | \$ 2.4               | \$ 2.7                | \$ 0.6        | \$ 0.6               | \$ 0.7                | \$ 1.4        | \$ 1.3               | \$ 1.5                | \$ 0.2        | \$ 0.2               | 2 \$ 0.2              |
| 2027  | \$<br>0.5     | \$ 0.4               | \$ 0.5                | \$ 1.7        | \$ 1.6               | \$ 1.9                | \$ 0.9        | \$ 0.8               | \$ 1.0                | \$ 1.4        | \$ 1.3               | \$ 1.5                | \$ 1.2        | \$ 1.1               | \$ 1.3                | \$ 2.5        | \$ 2.3               | \$ 2.6                | \$ 0.6        | \$ 0.6               | \$ 0.7                | \$ 1.4        | \$ 1.3               | \$ 1.5                | \$ 0.2        | \$ 0.2               | 2 \$ 0.2              |
| 2028  | \$<br>0.4     |                      | \$ 0.5                |               | \$ 1.5               |                       |               | \$ 0.8               |                       |               | \$ 1.2               | \$ 1.5                | \$ 1.1        | ·                    | \$ 1.2                | \$ 2.4        | 1                    |                       |               | \$ 0.6               | 1                     | 1             | \$ 1.3               | \$ 1.4                | \$ 0.2        |                      |                       |
| 2029  | \$<br>0.4     | \$ 0.4               |                       |               |                      | \$ 1.8                |               |                      |                       |               | \$ 1.2               |                       | \$ 1.1        |                      | \$ 1.2                | \$ 2.3        |                      |                       | \$ 0.6        | \$ 0.6               |                       |               |                      | \$ 1.4                | \$ 0.2        |                      |                       |
| Total | \$<br>9.8     | \$ 9.1               | \$ 10.5               |               | \$ 33.9              | \$ 39.7               | \$ 19.        | 7 \$ 18.1            | \$ 21.2               | \$ 29.7       | \$ 27.1              | \$ 32.3               | \$ 25.2       |                      | \$ 27.2               | \$ 52.8       |                      |                       | \$ 14.4       | \$ 13.5              | \$ 15.3               | \$ 33.0       | \$ 30.8              | \$ 35.3               | \$ 5.0        | -                    | +                     |
| Ann.  | \$<br>0.6     | \$ 0.5               | \$ 0.6                | \$ 2.1        | \$ 1.9               | \$ 2.3                | \$ 1.         | 1.0                  | \$ 1.2                | \$ 1.7        | \$ 1.6               | \$ 1.9                | \$ 1.4        | \$ 1.3               | \$ 1.6                | \$ 3.0        | \$ 2.9               | \$ 3.2                | \$ 0.8        | \$ 0.8               | \$ 0.9                | \$ 1.9        | \$ 1.8               | \$ 2.0                | \$ 0.3        | \$ 0.3               | 3 \$ 0.3              |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

#### Exhibit J.2bl Present Value of Non-Treatment Costs at 3% Discount Rate, by System Size (Ground Water CWSs)

|              |                                                    |                     | ,.4            | 00                                   |                          |                |        | 100-499             |                  |                          |                    |               | 500-999             |                      |                          |                |               | 1,000-3,299         |                      |                          |                  |             | 3,300-9,999    |                   |           |
|--------------|----------------------------------------------------|---------------------|----------------|--------------------------------------|--------------------------|----------------|--------|---------------------|------------------|--------------------------|--------------------|---------------|---------------------|----------------------|--------------------------|----------------|---------------|---------------------|----------------------|--------------------------|------------------|-------------|----------------|-------------------|-----------|
| v.           |                                                    |                     | Monito         | oring                                | Significant              | <u> </u>       |        | Monitoring          | T                | Significant              |                    | IDSE          | Monitoring          |                      | Significant              |                | IDSE          | Monitoring          |                      | Significant              |                  | IDSE        | Monitoring     |                   | Significa |
| Year<br>2005 | Implementation S -                                 | IDSE                | Plan           | ns Monitoring                        | Excursion                | Implementation | IDSE   | Plans<br>S -        | Monitoring       | Excursion S -            | Implementation S - | IDSE<br>s -   | Plans S -           | Monitoring<br>S -    | Excursion<br>S -         | Implementation | IDSE<br>s ·   | Plans               | Monitoring           | Excursion S -            | Implementation   | IDSE<br>s · | Plans          | Monitoring<br>S - | Excursio  |
|              |                                                    | \$ -                | s              | - s -                                | -                        |                | \$ -   | s -                 | s -              | s -                      | -                  | s -           |                     |                      | s -                      | -              | 1             | s -                 | s -                  | s -                      | -                |             |                | s -               | \$        |
| 2007         | s -                                                | \$ -                | s              | - \$ -                               | s -                      | s -            | s -    | s -                 | s -              | s -                      | s -                | \$ -          | s -                 | s -                  | s -                      | s -            | s -           | s -                 | s -                  | s -                      | s -              | s -         | s -            | s -               | \$        |
| 2008         |                                                    | \$ 0.2              | \$             | - \$ -                               |                          |                | \$ 0.2 |                     | s -              | s -                      |                    | \$ 1.7        | \$ -                | \$ -                 | s -                      | s -            | \$ 2.0        |                     | \$ -                 | s -                      |                  | \$ 0.9      |                | s -               | \$        |
|              | \$ 0.3<br>\$ 0.3                                   |                     | s              | 0.4 \$ -<br>- \$ -                   | -                        |                | s -    | \$ 0.5<br>\$ -      | s -              | s -                      | \$ 0.2<br>\$ 0.2   | s -<br>s -    | \$ 0.4              | *                    | s -                      |                | s -           | \$ 0.5<br>\$ -      |                      | s -                      | \$ 0.1<br>\$ 0.1 |             | \$ 0.2<br>\$ - | s -               | s<br>s    |
|              |                                                    | s -                 | s              |                                      |                          |                | \$ -   | s -                 | s -              |                          | s -                | s -           | s -                 |                      | s -                      | s -            | s -           | s -                 |                      | s .                      | s 0.1            |             |                | s -               | s         |
|              |                                                    | s -                 | s              |                                      | .o s -                   |                | \$ -   | s -                 | \$ 0.0           | s -                      | s -                | s -           | s -                 | \$ 0.2               |                          | s -            | s -           | s -                 | \$ 0.3               | s -                      | s -              |             | s -            | \$ 0.1            | \$        |
| 2013         | s -                                                | s -                 | s              | - \$ 0.                              | .1 \$ -                  | s -            | s -    | s -                 | \$ 0.1           | s -                      | s -                | s -           | s -                 | \$ 0.4               | s -                      | s -            | s -           | s -                 | \$ 0.5               | s -                      | s -              | s -         | s -            | \$ 0.2            | \$        |
|              |                                                    | \$ -                | \$             |                                      | .1 \$ -                  | *              | \$ -   | s -                 | \$ 0.1           |                          |                    | \$ -          | \$ -                | \$ 0.4               |                          | s -            | -             | s -                 |                      |                          | s -              | -           |                |                   | \$        |
| 2015<br>2016 |                                                    | s -<br>s -          | \$             | - \$ 0.<br>- \$ 0.                   |                          | s -            | s -    | s -                 | \$ 0.1<br>\$ 0.1 |                          | s -                | s -           | s -                 | \$ 0.4<br>\$ 0.4     | s -                      | s -            | s -           | s -                 | \$ 0.5<br>\$ 0.5     | s -                      | s -              | s -<br>s -  |                |                   | \$        |
|              |                                                    | s -                 | s              |                                      | .1 \$ -                  | •              | \$ .   | s -                 | \$ 0.1           |                          | s -                | s -           | s -                 | \$ 0.4               |                          | s -            | s -           | s -                 |                      | -                        |                  |             |                |                   | \$        |
| 2018         |                                                    | \$ -                | s              | - \$ 0.                              |                          | s -            | s -    | s -                 | \$ 0.1           |                          | s -                | ş -           | s -                 |                      | s -                      | s -            | s -           | s -                 | \$ 0.4               |                          | s -              | s -         |                |                   | \$        |
| 2019         | s -                                                | s -                 | s              |                                      | .1 \$ -                  | s -            | s -    | s -                 | \$ 0.1           |                          | s -                | s -           | s -                 | \$ 0.4               |                          | s -            | s -           | s -                 | \$ 0.4               | s -                      | s -              | s -         | s -            |                   | \$        |
|              |                                                    | \$ -                | \$             |                                      | .1 \$ -                  | -              | s -    | s -                 | \$ 0.1           |                          | s -                | \$ -          | s -                 | \$ 0.3               |                          | s -            | \$ -          | s -                 | \$ 0.4               | -                        | s -              |             |                |                   | \$        |
| 1021<br>1022 |                                                    | s -<br>s -          | s              | - \$ 0.<br>- \$ 0.                   | .1 S -                   | s -            | s -    | s -                 | \$ 0.1<br>\$ 0.1 |                          | s -                | s -<br>s -    | s -                 | \$ 0.3<br>\$ 0.3     | s -<br>s -               | s -<br>s -     | s -           | s -                 | \$ 0.4<br>\$ 0.4     | s -<br>s -               | s -              | s -<br>s -  | -              |                   | \$        |
| 022          |                                                    | s -                 | s              | - \$ 0.                              |                          | s .            | s .    | s -                 | \$ 0.1           |                          | s .                | s .           | s .                 | \$ 0.3               | s -                      | s -            | s -           | s -                 | \$ 0.4<br>\$ 0.4     |                          | s -              | s -         |                |                   | \$        |
|              |                                                    | s -                 | s              |                                      | .1 \$ -                  | s -            | \$ -   | s -                 | \$ 0.1           |                          | s -                | s -           | s -                 | \$ 0.3               |                          | s -            | s -           | s -                 | \$ 0.4               |                          | -                |             |                |                   | \$        |
| 025          | s -                                                | s -                 | s              | - \$ 0.                              | .1 \$ -                  | s -            | s -    | s -                 | \$ 0.1           | s -                      | s -                | s -           | s -                 | \$ 0.3               | s -                      | s -            | s -           | s -                 | \$ 0.4               | s -                      | s -              | s -         | s -            | \$ 0.2            | \$        |
| 2026         |                                                    | \$ -                | s              |                                      | .0 \$ -                  | s -            | \$ -   | s -                 | \$ 0.1           |                          | s -                | \$ -          | s -                 | \$ 0.3               |                          | s -            | \$ -          | s -                 | \$ 0.3               | -                        | s -              | \$ -        |                |                   | \$        |
| 2027<br>2028 |                                                    | s -                 | \$             | - \$ 0.<br>- \$ 0.                   | .o s -                   | s -            | \$ -   | s -                 | \$ 0.1<br>\$ 0.1 |                          | s -                | s -           | s -                 | \$ 0.3<br>\$ 0.3     | s -                      | s -            | \$ -          | s -                 | \$ 0.3<br>\$ 0.3     |                          | s -              | s -         | s -            |                   | \$        |
| 2028         | s -                                                | s -                 | s              | - \$ 0.                              |                          | s -            | \$ -   | s -                 | \$ 0.1           |                          | s -                | s -           | s -                 | \$ 0.3               | s -                      | s -            | \$ -          | s -                 | \$ 0.3               | s -                      | s -              | s -         | s -            | \$ 0.1            |           |
| <b>Fotal</b> | \$ 1.4                                             | \$ 0.2              | s              | 0.4 \$ 1.                            | .0 \$ -                  | \$ 1.7         | \$ 0.2 | \$ 0.5              | \$ 1.3           | ş -                      | \$ 0.8             | \$ 1.7        | \$ 0.4              | \$ 5.9               | ş -                      | \$ 0.9         | \$ 2.0        | \$ 0.5              | \$ 7.2               | s -                      | \$ 0.4           | \$ 0.9      | \$ 0.2         | \$ 3.2            | s         |
| Ann.         | \$ 0.1                                             | \$ 0.0              | \$             | 0.0 \$ 0.                            | .1 \$ -                  | \$ 0.1         | \$ 0.0 | \$ 0.0              | \$ 0.1           | s -                      | \$ 0.0             | \$ 0.1        | \$ 0.0              | \$ 0.3               | s -                      | \$ 0.1         | \$ 0.1        | \$ 0.0              | \$ 0.4               | s -                      | \$ 0.0           | \$ 0.1      | \$ 0.0         | \$ 0.2            | \$        |
| ŀ            |                                                    |                     | 10,000-        | -49,999                              | 1                        |                | 1      | 50,000-99,999       | 1                |                          |                    |               | 100,000-999,99      | •                    |                          |                |               | 1,000,000+          |                      |                          | -                |             |                |                   |           |
| Year         | Implementation                                     | IDSE                | Monito         | oring<br>ns Monitoring               | Significant<br>Excursion | Implementation | IDSE   | Monitoring<br>Plans | Monitoring       | Significant<br>Excursion | Implementation     | IDSE          | Monitoring<br>Plans | Monitoring           | Significant<br>Excursion | Implementation | IDSE          | Monitoring<br>Plans | Monitoring           | Significant<br>Excursion |                  |             |                |                   |           |
| 2005         | s -                                                | s -                 | \$             | · s ·                                | s -                      | \$ 0.0         | s -    | s -                 | s -              | s -                      | \$ 0.0             |               | s -                 | s -                  | s -                      | \$ 0.0         | s -           | s -                 | s -                  | s -                      |                  |             |                |                   |           |
|              |                                                    | \$ -                |                | - \$ -                               |                          | -              | \$ -   | s -                 | •                | s -                      |                    |               | -                   | *                    | s -                      |                | \$ 0.0        |                     | *                    | s -                      |                  |             |                |                   |           |
| 007          |                                                    | \$ 0.7<br>\$ 0.7    |                | - \$ -<br>0.1 \$ -                   |                          |                | \$ 0.2 | s -<br>s 0.0        | s -              | s -                      |                    | \$ 0.1<br>s - | \$ 0.0<br>\$ 0.0    |                      | s -                      | s -<br>s 0.0   | \$ 0.0<br>s - | s 0.0<br>s 0.0      |                      | s -                      |                  |             |                |                   |           |
|              | \$ 0.2                                             |                     | s              | 0.1 \$ -                             | -                        |                | \$ -   | s -                 | s -              |                          | s -                | s -           | \$ 0.0<br>\$ -      |                      | s -                      | \$ 0.0<br>\$ - | 1             | s -                 |                      | s .                      |                  |             |                |                   |           |
|              | \$ 0.2                                             |                     | s              | - s -                                |                          | s -            | \$ -   | s -                 | s -              | s -                      | s -                | \$ -          | s -                 |                      | s -                      | s -            | \$ -          | s -                 | \$                   | s -                      |                  |             |                |                   |           |
| 011          | \$ -                                               | \$ -                | s              | - s -                                | s -                      | s -            | s ·    | \$ -                | \$ 0.2           | s -                      | s -                | \$ -          | s -                 | \$ (0.1)             | s -                      | s -            | \$ -          | s -                 | \$ (0.0)             | s -                      |                  |             |                |                   |           |
| 1012         |                                                    | \$ -                | \$             |                                      | .4 \$ -                  | -              | s -    | s -                 | \$ 0.3           |                          | s -                | \$ -          | s -                 | \$ (0.1)             | s -                      | s -            | \$ -          | s -                 |                      |                          |                  |             |                |                   |           |
| 1013<br>1014 |                                                    | s -<br>s -          | \$             | - \$ 2.<br>- \$ 2.                   | 7 S -                    | s -            | s -    | s -<br>s -          | \$ 0.3<br>\$ 0.3 |                          | s -                | s -<br>s -    | s -                 | \$ (0.1)<br>\$ (0.1) | s -<br>s -               | s -            | \$ -          | s -<br>s -          | \$ (0.0)<br>\$ (0.0) |                          |                  |             |                |                   |           |
|              |                                                    | s -                 | s              |                                      | .5 \$ -                  | s -            | s -    | s -                 | \$ 0.3           |                          | s -                | s -           | s -                 |                      | s -                      | s -            | s ·           | s -                 | \$ (0.0)             |                          |                  |             |                |                   |           |
|              |                                                    | s -                 | s              |                                      | 4 S -                    | *              | \$ -   | s -                 | \$ 0.3           |                          | *                  | s -           | s -                 | \$ (0.1)             |                          | s -            | s -           | s -                 |                      |                          |                  |             |                |                   |           |
| 017          |                                                    | \$ -                | s              |                                      | .4 S -                   | s -            | s -    | s -                 | \$ 0.3           |                          | s -                | s -           | s -                 |                      | s -                      | s -            | s -           | s -                 | \$ (0.0)             |                          |                  |             |                |                   |           |
| 018          |                                                    | \$ -                | \$             |                                      | .3 \$ -                  | s -            | \$ -   | s -                 | \$ 0.3           |                          | s -                | \$ -          | s -                 | * (***)              | s -                      | s -            | s ·           | s -                 | \$ (0.0)             | -                        |                  |             |                |                   |           |
| 19<br>20     |                                                    | s -                 | S              |                                      | 2 S -                    | s -            | s -    | s -                 | \$ 0.2<br>\$ 0.2 |                          | s -                | s -<br>s -    | s -                 | \$ (0.1)<br>\$ (0.1) | s -                      | s -<br>s -     | s -           | s -                 | \$ (0.0)<br>\$ (0.0) |                          |                  |             |                |                   |           |
| 020          |                                                    | s -                 | s              | - \$ 2.                              |                          | s -            | s -    | s -                 | \$ 0.2           |                          | s -                | s -           | s -                 | \$ (0.1)<br>\$ (0.1) | s -                      | s -            | s -           | s -                 | \$ (0.0)             |                          |                  |             |                |                   |           |
|              |                                                    | s -                 | s              |                                      | .o s -                   | -              | \$ -   | s -                 | \$ 0.2           |                          | s -                | s -           | s -                 |                      | s -                      | s -            | s -           | s -                 | \$ (0.0)             |                          |                  |             |                |                   |           |
| 023          | s -                                                | s -                 | s              | - \$ 2.                              | .0 \$ -                  | s -            | s -    | s -                 | \$ 0.2           | s -                      | s -                | s -           | s -                 | \$ (0.1)             | s -                      | s -            | s -           | s -                 | \$ (0.0)             | s -                      |                  |             |                |                   |           |
| 024          |                                                    | \$ -                | \$             |                                      | .9 \$ -                  | s -            | \$ -   | s -                 | \$ 0.2           |                          | s -                | \$ -          | s -                 | \$ (0.1)             | s -                      | s -            | \$            | s -                 | \$ (0.0)             |                          |                  |             |                |                   |           |
| 125          |                                                    | \$ -                | s              |                                      | .9 S -                   | s -            | \$ -   | s -                 | \$ 0.2           |                          | s -                | s -           | s -                 | \$ (0.0)             |                          | s -            | s ·           | s -                 | \$ (0.0)             | -                        |                  |             |                |                   |           |
| 26<br>27     |                                                    | s -                 | s              |                                      | .8 S -                   | s -            | s -    | s -                 | \$ 0.2<br>\$ 0.2 |                          | s -                | s -<br>s -    | s -                 | \$ (0.0)<br>\$ (0.0) |                          | s -<br>s -     | s -           | s -                 | \$ (0.0)<br>\$ (0.0) |                          |                  |             |                |                   |           |
| 128          |                                                    | s -                 | s              | - \$ 1.                              |                          | s -            | s -    | s -                 | \$ 0.2           |                          | s -                | s -           | s -                 | \$ (0.0)             | s -                      | s -            | s -           | s -                 | \$ (0.0)             |                          |                  |             |                |                   |           |
| 129          | ş -                                                | \$ -                | s              | - \$ 1.                              |                          | s -            | s -    | s -                 | \$ 0.2           |                          | s -                | s -           | s -                 | \$ (0.0)             | ş -                      | s -            | s -           | s -                 | \$ (0.0)             |                          |                  |             |                |                   |           |
| otal         | \$ 0.7                                             | _                   | _              |                                      | .5 \$ -                  |                | \$ 0.2 |                     |                  |                          |                    | \$ 0.2        |                     |                      |                          |                | \$ 0.0        |                     |                      |                          |                  |             |                |                   |           |
| Ann.<br>tes: |                                                    | \$ 0.1<br>ns of 200 |                | 0.0 \$ 2.<br>stimates are discounted | 2 \$ -<br>to 2005.       | \$ 0.0         | \$ 0.0 | \$ 0.0              | \$ 0.3           | \$ -                     | \$ 0.0             | \$ 0.0        | \$ 0.0              | \$ (0.1)             | ş -                      | \$ 0.0         | \$ 0.0        | \$ 0.0              | \$ (0.0)             | s -                      |                  |             |                |                   |           |
|              | Detail may not add exa<br>Ann = value of total and | ctly to tota        | als due to inc | dependent rounding.                  |                          |                |        |                     |                  |                          |                    |               |                     |                      |                          |                |               |                     |                      |                          |                  |             |                |                   |           |
|              | erived from Exhibits J.2                           |                     |                | and.                                 |                          |                |        |                     |                  |                          |                    |               |                     |                      |                          |                |               |                     |                      |                          |                  |             |                |                   |           |
|              |                                                    |                     |                |                                      |                          |                |        |                     |                  |                          |                    |               |                     |                      |                          |                |               |                     |                      |                          |                  |             |                |                   |           |

#### Exhibit J.2bm Present Value of Total Costs at 3% Discount Rate, by System Size (Ground Water NTNCWSs)

|       |    |                                | <10                | 0     |                      | 100-499       |                      |                      |      |              | 500-999              |                       |               | 1,000-3,29           | 9                     |               | 3,300-9,9            | 99                    |               | 10,000-49,            | 999                   |               | 50,000-99,9          | 99                    |               | 100,000-999,         | 999                   |               | 1,000,000            | +                     |
|-------|----|--------------------------------|--------------------|-------|----------------------|---------------|----------------------|----------------------|------|--------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|-----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|
|       |    | 90 Percent<br>Confidence Bound |                    |       |                      |               | ercent<br>nce Bound  |                      |      |              | ercent<br>ice Bound  |                       |               | ercent<br>ice Bound  |                       |               | ercent<br>nce Bound  |                       |               | Percent<br>ence Bound |                       |               | ercent<br>nce Bound  |                       |               | ercent<br>nce Bound  |                       |               | Percent<br>nce Bound |                       |
| Year  |    | ean<br>alue                    | Lower<br>(5th %til | e) (9 | Upper<br>95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile |      | lean<br>alue | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile)  | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) |
| 2005  | \$ | -                              | \$ -               | \$    | -                    | \$ -          | \$ -                 | \$ -                 | \$   | -            | \$ -                 | \$ -                  | ş -           | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | s -                   | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2006  | \$ | 0.2                            | \$ 0               | .2 \$ | 0.2                  | \$ 0.2        | \$ 0.2               | \$ 0.:               | 2 \$ | 0.1          | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0                | \$ 0.0                | \$ -          | s -                  | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | s -                   |
| 2007  | \$ | -                              | \$ -               | \$    |                      | \$ -          | \$ -                 | \$ -                 | \$   | -            | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0                | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | s -                   |
| 2008  | \$ | -                              | \$ -               | \$    |                      | \$ -          | \$ -                 | \$ -                 | \$   | -            | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0                | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | s -                   |
| 2009  | \$ | 0.5                            | \$ 0               | .5 \$ | 0.6                  | \$ 0.7        | \$ 0.6               | \$ 0.                | 7 \$ | 0.3          | \$ 0.2               | \$ 0.3                | \$ 0.2        | \$ 0.1               | \$ 0.2                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0                | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2010  | \$ | 0.6                            | \$ 0               | .6 \$ | 0.7                  | \$ 0.9        | \$ 0.8               | \$ 1.                | 1 \$ | 0.4          | \$ 0.4               | \$ 0.5                | \$ 0.3        | \$ 0.2               | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0                | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | s -                   |
| 2011  | \$ | 0.6                            | \$ 0               | .5 \$ | 0.7                  | \$ 0.9        | \$ 0.8               | \$ 1.                | 1 \$ | 0.4          | \$ 0.4               | \$ 0.5                | \$ 0.3        | \$ 0.2               | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0                | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2012  | \$ | 0.7                            | \$ 0               | .6 \$ | 0.8                  | \$ 1.0        | \$ 0.9               | \$ 1.3               | 2 \$ | 0.6          | \$ 0.5               | \$ 0.6                | \$ 0.3        | \$ 0.3               | \$ 0.4                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0                | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2013  | \$ | 8.0                            | \$ 0               | .7 \$ | 0.9                  | \$ 1.1        | \$ 1.0               | \$ 1.3               | 3 \$ | 0.7          | \$ 0.6               | \$ 0.7                | \$ 0.4        | \$ 0.3               | \$ 0.4                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0                | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2014  | \$ | 0.6                            | \$ 0               | .5 \$ | 0.6                  | \$ 0.8        | \$ 0.7               | \$ 0.5               | 9 \$ | 0.5          | \$ 0.5               | \$ 0.6                | \$ 0.3        | \$ 0.2               | \$ 0.3                | \$ 0.0        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0                | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2015  | \$ | 0.4                            | \$ 0               | .4 \$ | 0.4                  | \$ 0.5        | \$ 0.4               | \$ 0.                | 5 \$ | 0.3          | \$ 0.3               | \$ 0.4                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0                | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2016  | \$ | 0.4                            | \$ 0               | .3 \$ | 0.4                  | \$ 0.5        | \$ 0.4               | \$ 0.                | 5 \$ | 0.3          | \$ 0.3               | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0                | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2017  | \$ | 0.4                            | \$ 0               | .3 \$ | 0.4                  | \$ 0.4        | \$ 0.4               | \$ 0.                | 5 \$ | 0.3          | \$ 0.3               | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0                | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2018  | \$ | 0.3                            | \$ 0               | .3 \$ | 0.4                  | \$ 0.4        | \$ 0.4               | \$ 0.                | 5 \$ | 0.3          | \$ 0.3               | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0                | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2019  | \$ | 0.3                            | \$ 0               | .3 \$ | 0.3                  | \$ 0.4        | \$ 0.4               | \$ 0.                | 4 \$ | 0.3          | \$ 0.3               | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0                | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2020  | \$ | 0.3                            | \$ 0               | .3 \$ | 0.3                  | \$ 0.4        | \$ 0.4               | \$ 0.                | 4 \$ | 0.3          | \$ 0.3               | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0                | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2021  | \$ | 0.3                            | \$ 0               | .3 \$ | 0.3                  | \$ 0.4        | \$ 0.4               | \$ 0.                | 4 \$ | 0.3          | \$ 0.3               | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0                | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2022  | \$ | 0.3                            | \$ 0               | .3 \$ |                      | \$ 0.4        | \$ 0.4               |                      |      |              |                      |                       |               | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               |                       | \$ 0.0        |                       | 1                     | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2023  | \$ | 0.3                            | \$ 0               | .3 \$ |                      | \$ 0.4        | \$ 0.4               | 1                    | 4 \$ | 0.3          |                      | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0                |                       | \$ 0.0        | \$ 0.0               | · ·                   | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2024  | \$ |                                |                    | .3 \$ |                      | \$ 0.4        | \$ 0.3               | \$ 0.                | 1    | 0.3          | \$ 0.3               |                       | \$ 0.1        |                      | \$ 0.1                | \$ 0.0        | \$ 0.0               |                       | \$ 0.0        | \$ 0.0                |                       | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2025  | \$ | 0.3                            | \$ 0               | .3 \$ | 0.3                  | \$ 0.4        | \$ 0.3               | \$ 0.                |      | 0.3          | \$ 0.2               |                       | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               |                       | \$ 0.0        | \$ 0.0                | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2026  | \$ |                                |                    | .3 \$ |                      | \$ 0.3        | \$ 0.3               |                      |      | 0.2          | \$ 0.2               |                       |               | *                    | \$ 0.1                | \$ 0.0        | \$ 0.0               |                       | \$ 0.0        |                       | 1                     | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2027  | \$ |                                |                    | .2 \$ |                      | \$ 0.3        | \$ 0.3               |                      | 4 \$ |              | \$ 0.2               |                       |               |                      | \$ 0.1                | \$ 0.0        | \$ 0.0               |                       |               |                       | 1                     | \$ 0.0        | \$ 0.0               |                       | \$ 0.0        | \$ 0.0               | -                     | \$ -          | \$ -                 | \$ -                  |
| 2028  | 1  | 0.3                            |                    | .2 \$ |                      | \$ 0.3        | \$ 0.3               |                      | 3 \$ |              | \$ 0.2               |                       |               |                      | \$ 0.1                | \$ 0.0        | \$ 0.0               |                       |               |                       |                       | \$ 0.0        | \$ 0.0               |                       | \$ 0.0        | \$ 0.0               |                       | \$ -          | \$ -                 | \$ -                  |
| 2029  | +  | 9.12                           |                    | .2 \$ | 0.3                  | \$ 0.3        | \$ 0.3               |                      | ÷    | 0.2          | \$ 0.2               |                       |               | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               |                       | \$ 0.0        |                       |                       |               | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               |                       | \$ -          | \$ -                 | \$ -                  |
| Total |    | 8.6                            |                    | .0 \$ | 9.3                  | \$ 11.5       | \$ 10.5              |                      |      | 7.2          | \$ 6.7               | \$ 7.7                |               | \$ 3.2               | \$ 3.8                | \$ 0.6        | \$ 0.5               |                       | \$ 0.3        | +                     | +                     | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.1        | \$ 0.1               |                       | \$ -          | \$ -                 | \$ -                  |
| Ann.  | \$ | 0.5                            | \$ 0               | .5 \$ | 0.5                  | \$ 0.7        | \$ 0.6               | \$ 0.                | 7 \$ | 0.4          | \$ 0.4               | \$ 0.4                | \$ 0.2        | \$ 0.2               | \$ 0.2                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0                | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

Source: Derived from Exhibits J.2a through rr.

### Exhibit J.2bn Present Value of Capital Costs at 3% Discount Rate, by System Size (Ground Water NTNCWSs)

|       | <100 100-499  |                                |                   |                       | )             |                      | 500-999               | )             |                      | 1,000-3,29            | 9             |                      | 3,300-9,99            | 99            |                      | 10,000-4              | 9,999         |                     | 50,000-99,              | 999           |                      | 100,000-999           | ,999          |                      | 1,000,000             | )+            |                      |                       |
|-------|---------------|--------------------------------|-------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|---------------------|-------------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|
|       |               | 90 Percent<br>Confidence Bound |                   |                       |               |                      | Percent<br>ence Bound |               |                      | ercent<br>nce Bound   |               |                      | ercent<br>nce Bound   |               |                      | ercent<br>nce Bound   |               |                     | Percent<br>ence Bound   |               |                      | Percent<br>nce Bound  |               |                      | ercent<br>nce Bound   |               |                      | Percent<br>nce Bound  |
| Year  | Mean<br>Value |                                | _ower<br>h %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile | Upper<br>) (95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) |
| 2005  | \$ -          | \$                             | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                | \$ -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2006  | \$ -          | \$                             |                   | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                | \$ -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2007  | \$ -          | \$                             |                   | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                | \$ -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2008  | \$ -          | \$                             |                   | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                | \$ -                    | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2009  | \$ 0.3        | \$                             | 0.2               | \$ 0.3                | \$ 0.4        | \$ 0.4               | \$ 0.5                | \$ 0.2        | \$ 0.2               | \$ 0.2                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.               | 0.0                     | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2010  | \$ 0.5        | \$                             | 0.4               | \$ 0.6                | \$ 0.8        | \$ 0.7               | \$ 0.9                | \$ 0.4        | \$ 0.3               | \$ 0.5                | \$ 0.3        | \$ 0.2               | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.               | 0.0                     | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2011  | \$ 0.5        | \$                             | 0.4               | \$ 0.6                | \$ 0.8        | \$ 0.7               | \$ 0.9                | \$ 0.4        | \$ 0.3               | \$ 0.5                | \$ 0.3        | \$ 0.2               | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.               | 0.0                     | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2012  | \$ 0.5        | \$                             | 0.4               | \$ 0.6                | \$ 0.8        | \$ 0.7               | \$ 0.9                | \$ 0.4        | \$ 0.3               | \$ 0.4                | \$ 0.2        | \$ 0.2               | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.               | 0.0                     | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2013  | \$ 0.5        | \$                             | 0.4               | \$ 0.5                | \$ 0.8        | \$ 0.6               | \$ 0.9                | \$ 0.4        | \$ 0.3               | \$ 0.4                | \$ 0.2        | \$ 0.2               | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.               | 0.0                     | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2014  | \$ 0.2        | \$                             | 0.2               | \$ 0.3                | \$ 0.4        | \$ 0.3               | \$ 0.4                | \$ 0.2        | \$ 0.2               | \$ 0.2                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.               | 0.0                     | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2015  | \$ -          | \$                             | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                | \$ -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2016  | \$ -          | \$                             |                   | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                | \$ -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2017  | \$ -          | \$                             | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                | \$ -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2018  | \$ -          | \$                             | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                | \$ -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2019  | \$ -          | \$                             | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                | \$ -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2020  | \$ -          | \$                             | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                | \$ -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2021  | \$ -          | \$                             | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                | \$ -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2022  | \$ -          | \$                             | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                | \$ -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2023  | \$ -          | \$                             | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                | \$ -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2024  | \$ -          | \$                             | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                | \$ -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2025  | \$ -          | \$                             | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                | \$ -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2026  | \$ -          | \$                             | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                | \$ -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2027  | \$ -          | \$                             | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                | \$ -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2028  | \$ -          | \$                             | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                | \$ -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2029  | \$ -          | \$                             |                   | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                | \$ -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| Total | \$ 2.5        | \$                             | 2.1               | \$ 2.8                | \$ 3.9        | \$ 3.3               | \$ 4.5                | \$ 1.9        | \$ 1.6               | \$ 2.2                | \$ 1.3        | \$ 1.0               | \$ 1.5                | \$ 0.4        | \$ 0.3               | \$ 0.4                | \$ 0.1        | \$ 0.               | 1 \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| Ann.  | \$ 0.1        | \$                             | 0.1               | \$ 0.2                | \$ 0.2        | \$ 0.2               | \$ 0.3                | \$ 0.         | \$ 0.1               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.               | 0.0                     | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |

J-81

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005. Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

Source: Derived from Exhibits J.2a through rr.

## Exhibit J.2bo Present Value of O&M Costs at 3% Discount Rate, by System Size (Ground Water NTNCWSs)

|       |               | <100 100-499     |     |                       |               |                      | 500-999               |               |                      | 1,000-3,29            | 9             |                      | 3,300-9,99            | 9             |                      | 10,000-49,9           | 99            |                      | 50,000-99,            | 999           |                      | 100,000-999,          | 999           |                      | 1,000,000             | +             |                      |                       |
|-------|---------------|------------------|-----|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|
|       |               |                  |     | ercent<br>ce Bound    |               |                      | ercent<br>ace Bound   |               |                      | ercent<br>nce Bound   |               |                      | ercent<br>ce Bound    |               |                      | ercent<br>nce Bound   |               |                      | ercent<br>ce Bound    |               |                      | ercent<br>nce Bound   |               |                      | ercent<br>nce Bound   |               |                      | ercent<br>nce Bound   |
| Year  | Meai<br>Value | (50 000) (050 00 |     | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) |
| 2005  | \$ -          | . \$             | -   | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2006  | \$ -          | . \$             |     | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2007  | \$ -          | . \$             |     | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2008  | \$ -          | - \$             | -   | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2009  | \$ -          | . \$             |     | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2010  | \$ (          | 0.0 \$           | 0.0 | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2011  | \$ (          | 0.1 \$           | 0.1 | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2012  | \$ (          | 0.1 \$           | 0.1 | \$ 0.1                | \$ 0.2        | \$ 0.2               | \$ 0.2                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2013  | \$ (          | 0.2 \$           | 0.2 | \$ 0.2                | \$ 0.3        | \$ 0.3               | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2014  | \$ (          | 0.2 \$           | 0.2 | \$ 0.2                | \$ 0.3        | \$ 0.3               | \$ 0.4                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2015  | \$ (          | 0.2 \$           | 0.2 | \$ 0.3                | \$ 0.4        | \$ 0.3               | \$ 0.4                | \$ 0.2        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2016  | \$ (          | 0.2 \$           | 0.2 | \$ 0.3                | \$ 0.4        | \$ 0.3               | \$ 0.4                | \$ 0.2        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2017  | \$ (          | 0.2 \$           | 0.2 | \$ 0.3                | \$ 0.3        | \$ 0.3               | \$ 0.4                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2018  | \$ (          | 0.2 \$           | 0.2 | \$ 0.2                | \$ 0.3        | \$ 0.3               | \$ 0.4                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2019  | \$ (          | 0.2 \$           | 0.2 | \$ 0.2                | \$ 0.3        | \$ 0.3               | \$ 0.4                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2020  | \$ (          | 0.2 \$           | 0.2 | \$ 0.2                | \$ 0.3        | \$ 0.3               | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2021  | \$ (          | 0.2 \$           | 0.2 | \$ 0.2                | \$ 0.3        | \$ 0.3               | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2022  | \$ (          | 0.2 \$           | 0.2 | \$ 0.2                | \$ 0.3        | \$ 0.3               | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2023  | \$ (          | 0.2 \$           | 0.2 | \$ 0.2                | \$ 0.3        | \$ 0.3               | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2024  | \$ (          | 0.2 \$           | 0.2 | \$ 0.2                | \$ 0.3        | \$ 0.3               | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2025  | \$ (          | 0.2 \$           | 0.2 | \$ 0.2                | \$ 0.3        | \$ 0.3               | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2026  | \$ (          | 0.2 \$           | 0.2 | \$ 0.2                | \$ 0.3        | \$ 0.2               | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2027  | \$ (          | 0.2 \$           | 0.2 | \$ 0.2                | \$ 0.3        | \$ 0.2               | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2028  | \$ (          | 0.2 \$           | 0.2 | \$ 0.2                | \$ 0.3        | \$ 0.2               | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2029  | \$ (          | 0.2 \$           | 0.2 | \$ 0.2                | \$ 0.2        | \$ 0.2               | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| Total | \$ :          | 3.7 \$           | 3.5 | \$ 4.0                | \$ 5.5        | \$ 5.1               | •                     | \$ 2.3        | \$ 2.1               | \$ 2.5                | \$ 1.0        | \$ 0.9               | \$ 1.1                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| Ann.  | \$ (          | 0.2 \$           | 0.2 | \$ 0.2                | \$ 0.3        | \$ 0.3               | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

Source: Derived from Exhibits J.2a through rr.

#### Exhibit J.2bp Present Value of Non-Treatment Costs at 3% Discount Rate, by System Size (Ground Water NTNCWSs)

|                                                                                                                                             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                              | 1                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                        |                                                                               |                                                              |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                                     |                                                             |                                                              |                |            |                     |                  |                          |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|----------------|------------|---------------------|------------------|--------------------------|
|                                                                                                                                             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ı                                                  |                                                              |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100-499                                                                |                                                                               |                                                              |                                               | 500-999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                         | 1,000-3,29                                                          |                                                             | 1                                                            |                |            | 3,300-9,999         |                  | ı                        |
| Year                                                                                                                                        | Implementation                  | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Monitoring<br>Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring                                         | Significant<br>Excursion                                     | Implementation                                                                                 | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring<br>Plans                                                    | Monitoring                                                                    | Significant<br>Excursion                                     | Implementation IDSE                           | Monitoring<br>Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Implementation IDS                                        | Monitoring<br>Plans                                                 | Monitoring                                                  | Significant<br>Excursion                                     | Implementation | IDSE       | Monitoring<br>Plans | Monitoring       | Significant<br>Excursion |
| 2005                                                                                                                                        |                                 | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s -                                                | s -                                                          | s -                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s -                                                                    | *                                                                             | s -                                                          | s - s -                                       | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s - s -                                                   |                                                                     | s -                                                         | s -                                                          | s -            | s -        | s -                 | s -              | s -                      |
| 2006                                                                                                                                        |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s -                                                | s -                                                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s -                                                                    |                                                                               | s -                                                          | \$ 0.1 \$ -                                   | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$ 0.0 \$                                                 |                                                                     |                                                             | s -                                                          | \$ 0.0         |            | \$ -                | s -              | \$ -                     |
| 2007                                                                                                                                        |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s -<br>s -                                         | s -                                                          | s -                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s -                                                                    |                                                                               | s -<br>s -                                                   | s - s -                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                           |                                                                     |                                                             | s -                                                          | s -            | s -        | s -                 | s -<br>s -       | s .                      |
| 2009                                                                                                                                        | s 0.1                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    | s .                                                          | *                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S 0.1                                                                  |                                                                               | s -                                                          | s 0.0 s -                                     | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0.0 \$                                                 |                                                                     | .0 \$ -                                                     | s .                                                          | *              | -          | s 0.0               | -                | s -                      |
| 2010                                                                                                                                        | \$ 0.1                          | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s -                                                | s -                                                          | \$ 0.                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s -                                                                    | s -                                                                           | s -                                                          | \$ 0.0 \$ -                                   | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$ 0.0 \$                                                 |                                                                     |                                                             | s -                                                          | \$ 0.0         | 1 .        | s -                 | s -              | s -                      |
| 2011                                                                                                                                        | s -                             | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s -                                                | s -                                                          | s -                                                                                            | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s -                                                                    | s -                                                                           | s -                                                          | s - s -                                       | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s - s -                                                   | s -                                                                 | s -                                                         | s -                                                          | s -            | s -        | s -                 | s -              | s -                      |
| 2012                                                                                                                                        | \$ -                            | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0.1                                             |                                                              | s -                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s -                                                                    |                                                                               |                                                              | s - s -                                       | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ 0.1 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.                                                        |                                                                     |                                                             | s -                                                          | s -            | s -        | s -                 | \$ 0.0           | s -                      |
| 2013                                                                                                                                        | *                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0.1                                             |                                                              | s -                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s -                                                                    |                                                                               |                                                              | s - s -                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ 0.2 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                           | 1 2                                                                 |                                                             |                                                              | s -            | s -        |                     | \$ 0.0           |                          |
| 2014<br>2015                                                                                                                                | *                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s -<br>s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$ 0.1<br>\$ 0.1                                   |                                                              | s -                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s - :                                                                  |                                                                               | s -<br>s -                                                   | s - s -                                       | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ 0.2 \$ -<br>\$ 0.2 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s - s -                                                   |                                                                     |                                                             | s -                                                          | s -            | s -<br>s - | s -                 | \$ 0.0<br>\$ 0.0 |                          |
| 2015                                                                                                                                        | *                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0.1                                             |                                                              | s -                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s - :                                                                  |                                                                               |                                                              | s - s -                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s - s -                                                   |                                                                     |                                                             | s -                                                          | *              | s -        |                     | \$ 0.0<br>\$ 0.0 |                          |
| 2017                                                                                                                                        |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0.1                                             |                                                              | s .                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s -                                                                    |                                                                               |                                                              | s - s -                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S 0.2 S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                           |                                                                     |                                                             |                                                              | s -            | s -        |                     | \$ 0.0           |                          |
| 2018                                                                                                                                        | s -                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0.1                                             |                                                              | s -                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s - :                                                                  |                                                                               |                                                              | s - s -                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0.2 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                           |                                                                     |                                                             |                                                              | s -            | s -        |                     | \$ 0.0           |                          |
| 2019                                                                                                                                        | s -                             | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0.1                                             |                                                              | s -                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s -                                                                    |                                                                               |                                                              | s - s -                                       | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s - s -                                                   |                                                                     |                                                             | s -                                                          | s -            | s -        |                     | \$ 0.0           |                          |
| 2020                                                                                                                                        | s -                             | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ 0.1                                             |                                                              | s -                                                                                            | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s -                                                                    |                                                                               | s -                                                          | s - s -                                       | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ 0.2 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s - s -                                                   |                                                                     |                                                             |                                                              | s -            | s -        | s -                 | \$ 0.0           |                          |
| 2021                                                                                                                                        | \$ -                            | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0.1                                             |                                                              | s -                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s -                                                                    |                                                                               |                                                              | s - s -                                       | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s - s -                                                   | 1 2                                                                 |                                                             | s -                                                          | s -            | s -        |                     | \$ 0.0           |                          |
| 2022                                                                                                                                        | \$ -                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0.1                                             |                                                              | s -                                                                                            | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s -                                                                    |                                                                               |                                                              | s - s -                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0.2 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                           |                                                                     |                                                             |                                                              | s -            | s -        | s -                 | \$ 0.0           |                          |
| 2023                                                                                                                                        | s -                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0.1                                             |                                                              | s -                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s -                                                                    |                                                                               |                                                              | s - s -                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ 0.1 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                           | -                                                                   |                                                             |                                                              | s -            | s -        |                     | \$ 0.0           |                          |
| 2024                                                                                                                                        | *                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |                                                              | s -                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s - :                                                                  |                                                                               | s -                                                          | s - s -                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s - s -                                                   |                                                                     |                                                             | s -                                                          | ľ              | s -        | *                   | \$ 0.0           | 1                        |
| 2025<br>2026                                                                                                                                | s -                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0.1<br>\$ 0.1                                   | -                                                            | s -                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s - :                                                                  |                                                                               |                                                              | s - s -                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ 0.1 \$ -<br>\$ 0.1 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           | s -                                                                 |                                                             | s -                                                          | s -            | s -        | s -                 | \$ 0.0<br>\$ 0.0 |                          |
| 2026                                                                                                                                        | s -                             | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0.1                                             |                                                              | s                                                                                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s - :                                                                  |                                                                               | s -                                                          | s - s -                                       | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ 0.1 \$ -<br>\$ 0.1 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s - s -                                                   | s -                                                                 |                                                             | s -                                                          | s -            | s -        | s -                 | \$ 0.0<br>\$ 0.0 |                          |
| 2028                                                                                                                                        | s -                             | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0.1                                             |                                                              | s .                                                                                            | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s -                                                                    | 0.1                                                                           | s -                                                          | s - s -                                       | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s 0.1 s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s - s -                                                   | s -                                                                 |                                                             |                                                              | s -            | s -        | s -                 | s 0.0            |                          |
| 2029                                                                                                                                        | \$ -                            | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ 0.1                                             |                                                              | s -                                                                                            | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s -                                                                    | 0.1                                                                           | s -                                                          | s - s -                                       | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S 0.1 S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s - s                                                     | s -                                                                 | \$ 0.                                                       |                                                              | \$             | \$         | s -                 | \$ 0.0           |                          |
| Total                                                                                                                                       | \$ 0.4                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$ 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 1.8                                             |                                                              | \$ 0.                                                                                          | 4 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$ 0.1                                                                 | 1.6                                                                           | s -                                                          | \$ 0.1 \$ -                                   | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 2.8 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$ 0.0 \$                                                 |                                                                     |                                                             | s -                                                          | \$ 0.0         | s -        | \$ 0.0              |                  | 1                        |
| Ann.                                                                                                                                        |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                              |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                        |                                                                               |                                                              |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                                     |                                                             |                                                              |                |            |                     |                  |                          |
| Ann.                                                                                                                                        | o 0.0                           | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 0.1                                             | \$ -                                                         | \$ 0.                                                                                          | .0 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$ 0.0                                                                 | 0.1                                                                           | s -                                                          | \$ 0.0 \$ -                                   | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 0.2 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$ 0.0 \$                                                 | \$ 0                                                                | .0 \$ 0.1                                                   | \$ -                                                         | \$ 0.0         | \$ -       | \$ 0.0              | \$ 0.0           | \$ -                     |
| Ann.                                                                                                                                        | • 0.0                           | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10,000-49,999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ 0.1                                             | s -                                                          | \$ 0.                                                                                          | 0 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$ 0.0                                                                 | 8 0.1                                                                         | s -                                                          | \$ 0.0 \$ -                                   | 100,000-999,999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0.2 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$ 0.0 \$                                                 | 1,000,000                                                           |                                                             | s -                                                          | \$ 0.0         | \$ -       | \$ 0.0              | \$ 0.0           | \$ -                     |
|                                                                                                                                             | • 0.0                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,000-49,999<br>Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    |                                                              | \$ 0.                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50,000-99,999<br>Monitoring                                            |                                                                               | Significant                                                  |                                               | 100,000-999,999<br>Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           | 1,000,000<br>Monitoring                                             |                                                             | Significant                                                  | \$ 0.0         | s -        | \$ 0.0              | \$ 0.0           | \$ -                     |
| Year                                                                                                                                        | Implementation                  | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10,000-49,999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ 0.1                                             | Significant<br>Excursion                                     | Implementation                                                                                 | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50,000-99,999<br>Monitoring<br>Plans                                   | Monitoring                                                                    | Significant<br>Excursion                                     | Implementation IDSE                           | 100,000-999,999<br>Monitoring<br>Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Significant Monitoring Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Implementation IDS                                        | 1,000,000<br>Monitoring                                             | Monitoring                                                  |                                                              | \$ 0.0         | s -        | \$ 0.0              | \$ 0.0           | s -                      |
|                                                                                                                                             | Implementation                  | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10,000-49,999  Monitoring Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monitoring                                         |                                                              | Implementation                                                                                 | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50,000-99,999<br>Monitoring                                            | Monitoring<br>S -                                                             | Significant                                                  |                                               | 100,000-999,999<br>Monitoring<br>Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Significant Monitoring Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Implementation IDS                                        | 1,000,000  Monitoring Plans S -                                     | Monitoring<br>\$ -                                          | Significant<br>Excursion                                     | \$ 0.0         | s -        | \$ 0.0              | \$ 0.0           | s -                      |
| Year<br>2005                                                                                                                                | Implementation \$ - \$ 0.0      | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Monitoring Plans  S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monitoring \$                                      | Significant<br>Excursion                                     | Implementation S 0. S -                                                                        | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50,000-99,999  Monitoring Plans  S - S -                               | Monitoring S -                                                                | Significant<br>Excursion                                     | Implementation IDSE \$ 0.0 \$ -               | 100,000-999,999<br>Monitoring<br>Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring Significant Excursion  S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Implementation IDS                                        | 1,000,000  Monitoring Plans  S - S -                                | Monitoring<br>\$ -<br>\$ -                                  | Significant<br>Excursion                                     | \$ 0.0         | s -        | \$ 0.0              | \$ 0.0           | \$ -                     |
| Year<br>2005<br>2006                                                                                                                        | Implementation \$ - \$ 0.0 \$ - | IDSE \$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10,000-49,999  Monitoring Plans  S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring S - S - S -                             | Significant<br>Excursion                                     | Implementation S 0. S - S -                                                                    | IDSE<br>.0 \$ -<br>\$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50,000-99,999  Monitoring Plans  S - S -                               | Monitoring S - S -                                                            | Significant<br>Excursion<br>S -                              | Implementation   IDSE   \$ 0.0 \$ - \$ - \$ - | 100,000-999,999  Monitoring Plans  \$ - \$ - \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring Significant Excursion  S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Implementation IDS S - S - S - S - S - S - S - S - S - S  | 1,000,000  Monitoring Plans  S - S - S -                            | Monitoring \$ - \$ - \$ -                                   | Significant<br>Excursion<br>S -                              | \$ 0.0         | s -        | \$ 0.0              | \$ 0.0           | s -                      |
| Year<br>2005<br>2006<br>2007                                                                                                                | Implementation \$ - \$ 0.0 \$ - | IDSE \$ - \$ - \$ 0.0 \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10,000-49,999  Monitoring Plans  \$ - \$ - \$ - \$ 0.0 \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Monitoring S - S - S - S - S -                     | Significant Excursion  S - S - S - S - S - S -               | Implementation \$ 0. \$ - \$ - \$ 0.                                                           | IDSE<br>0 \$ -<br>\$ -<br>\$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50,000-99,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S | Monitoring S - S - S - S -                                                    | Significant<br>Excursion  S - S - S -                        | Implementation   IDSE     S                   | 100,000-999,999  Monitoring Plans  \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Significant Excursion  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Implementation   IDS                                      | 1,000,000  Monitoring Plans  S - S - S -                            | Monitoring  \$ - \$ - \$ - \$ -                             | Significant Excursion  S - S - S -                           | \$ 0.0         | \$ -       | \$ 0.0              | \$ 0.0           | \$ -                     |
| Year 2005 2006 2007 2008 2009                                                                                                               | Implementation                  | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10,000-49,999  Monitoring Plans  S - S - S - S 0.0 S 0.0 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monitoring                                         | Significant Excursion  S - S - S - S - S - S - S - S - S - S | Implementation   S                                                                             | IDSE   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50,000-99,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S | Monitoring  \$ -  \$ -  \$ -  \$ -  \$ -  \$ -  \$ -  \$                      | Significant Excursion  S - S - S - S - S - S -               | Implementation                                | 100,000-999,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring   Significant   Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Implementation   IDS                                      | 1,000,000  Monitoring Plans  S - S - S - S - S - S - S - S - S - S  | Monitoring  S - S - S - S - S - S - S - S -                 | Significant Excursion  S - S - S - S - S - S - S - S - S - S | s 0.0          | \$ -       | \$ 0.0              | \$ 0.0           |                          |
| Year<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011                                                                                | Implementation                  | IDSE \$ - \$ - \$ 0.0 \$ 0.0 \$ - \$ - \$ 5 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10,000-49,999  Monitoring Plans  S - S - S 0.0 S 0.0 S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Monitoring S - S - S - S - S - S - S -             | Significant Excursion  S - S - S - S - S - S - S - S - S - S | Implementation \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 | IDSE 0 \$ - \$ - \$ 0.0 0 \$ - 0 \$ - 0 \$ - 5 - 5 - 5 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50,000-99,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S | Monitoring  \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$                   | Significant Excursion  S - S - S - S - S - S - S -           | Implementation   IDSE                         | 100,000-999,999  Monitoring Plans  S - S - S 0.0 S 0.0 S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Monitoring   Significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Implementation   IDS                                      | 1,000,000  Monitoring Plans  S - S - S - S - S - S - S - S - S - S  | Monitoring  \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ | Significant Excursion  S - S - S - S - S - S - S - S - S - S | \$ 0.0         | \$ -       | \$ 0.0              | \$ 0.0           |                          |
| Year 2005 2006 2007 2008 2009 2010 2011 2012                                                                                                | Implementation                  | IDSE \$ - \$ - \$ 0.0 \$ 0.0 \$ - \$ - \$ - \$ - \$ 5 - \$ - \$ 5 - \$ - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - | 10,000-49,999  Monitoring Plans  S - S - S - S 0.0 S 0.0 S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Monitoring   S                                     | Significant Excursion  S - S - S - S - S - S - S - S - S - S | Implementation                                                                                 | IDSE 0 \$ - \$ - \$ 0.0 \$ - 0 \$ - 0 \$ - \$ - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$                                                                                                                                                                       | 50,000-99,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S | Monitoring  S - S - S - S - S - S - S - S - S - S                             | Significant Excursion  S - S - S - S - S - S - S - S - S - S | Implementation                                | 100,000-999,990  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring   Significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Implementation   IDS                                      | 1,000,000  Monitoring Plans  S - S - S - S - S - S - S - S - S - S  | Monitoring  \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ | Significant Excursion  S - S - S - S - S - S - S - S - S - S | \$ 0.0         | \$ -       | \$ 0.0              | 8 0.0            |                          |
| Year 2005 2006 2007 2008 2009 2010 2011 2012 2013                                                                                           | Implementation                  | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10,000-49,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring   S                                     | Significant Excursion  S - S - S - S - S - S - S - S - S - S | Implementation \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 | IDSE 0.0 \$ - \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ -                                                                                                     | 50,000-99,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S | Monitoring  \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ 0.0 \$ 0.0 \$ 0.0           | Significant Excursion  S - S - S - S - S - S - S - S - S - S | Implementation   IDSE                         | 100,000-999,996  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant      | Implementation   IDS                                      | 1,000,000  Monitoring Plans  S - S - S - S - S - S - S - S - S - S  | Monitoring   S                                              | Significant Excursion  S - S - S - S - S - S - S - S - S - S | \$ 0.0         | \$ -       |                     | <u>s 0.0</u>     | <u>s</u>                 |
| Year 2005 2006 2007 2008 2009 2010 2011 2012                                                                                                | Implementation                  | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10,000-49,999  Monitoring Plans  S - S - S - S 0.0 S 0.0 S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring   S                                     | Significant Excursion S                                      | Implementation                                                                                 | IDSE 0.0 \$ - \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ -                                                                                                     | 50,000-99,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S | Monitoring  \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ 0.0 \$ 0.0 \$ 0.0           | Significant Excursion  S - S - S - S - S - S - S - S - S - S | Implementation   IDSE                         | 100,000-999,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant      | Implementation   IDS                                      | 1,000,000  Monitoring Plans  S - S - S - S - S - S - S - S - S - S  | Monitoring                                                  | Significant Excursion  S - S - S - S - S - S - S - S - S - S | \$ 0.0         | \$ -       | \$ 0.0              | <u>s 0.0</u>     | \$ .                     |
| Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014                                                                                      | Implementation   S              | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10,000-49,999  Monitoring Plans  S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monitoring   S                                     | Significant Excursion S S S S S S S S S S S S S S S S S S S  | Implementation \$ 0, \$ - \$ 0, \$ 0, \$ 0, \$ 0, \$ 0, \$ 0, \$ 0, \$ 0,                      | IDSE  0 \$ - \$ 0.0 \$ 0.0 \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ - \$ 0 \$ | 50,000-99,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S | Monitoring S - S - S - S - S - S - S - S - S - S -                            | Significant Excursion  S - S - S - S - S - S - S - S - S - S | Implementation   IOSE                         | 100,000-999,990  Monitoring Plants  S - S - S - O.0  S - O.0  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring   Significant   Securation   Se   | Implementation   IDS    S   S   S   S   S   S   S   S   S | 1,000,000    Monitoring Plans   S   -                               | Monitoring                                                  | Significant Excursion  S S S S S S S S S S S S S S S S S S   | \$ 0.0         | \$ -       | \$ 0.0              | 8 0.0            | \$ .                     |
| Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015                                                                                 | Implementation                  | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10,000-49,999  Monitoring Plans  S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring   S   -                                 | Significant Excursion S S S S S S S S S S S S S S S S S S S  | Implementation \$ 0 \$ - \$ - \$ 0 \$ 0 \$ - \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 | IDSE  0 \$ - \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50,000-99,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S | Monitoring  S - S - S - S - S - S - S - S - S - S                             | Significant Excursion  S - S - S - S - S - S - S - S - S - S | Implementation   IDSE                         | 100,000-999,990 Monitoring Plans S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring   Significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Implementation   IDS    S   S   S   S   S   S   S   S   S | 1,00,000    Monitoring Plans   S                                    | Monitoring                                                  | Significant Excursion  S S S S S S S S S S S S S S S S S S S | 5 00           | \$ -       | \$ 0.0              | s 0.0            | Š.                       |
| Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018                                                                  | Implementation                  | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10,000-48,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring   S                                     | Significant Excursion S S S S S S S S S S S S S S S S S S S  | Implementation                                                                                 | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50,000-90,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S | Monitoring  S - S - S - S - S - S - S - D - D - D - D - D - D - D - D - D - D | Significant   Excursion                                      | Implementation   IOSE                         | 100,000-999,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring   Significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Implementation   IDS                                      | 1,00,000  Monitoring Plans  S - S - S - S - S - S - S - S - S - S   | Monitoring                                                  | Significant Excursion  S                                     | 5 00           | \$ -       | \$ 0.0              | 8 0.0            | Š.                       |
| Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018                                                                  | Implementation                  | IDSE \$ - \$ - \$ 0.0 \$ 0.0 \$ - \$ - \$ - \$ - \$ - \$ - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - | 10,000-48,999  Menitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring  S - S - S - S - S - S - S - S - S - S  | Significant   Execursion                                     | Implementation                                                                                 | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50,000-90,999  Monitoring Plans  S S S S S S S S S S S S S S S S S S   | Monitoring  S - S - S - S - S - S - S - S - S - S                             | Significant   Excursion                                      | Implementation   IDSE                         | 100,000-999,999 Monitoring Plans S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring   Significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Implementation   IOS   S                                  | 1,00,000  Monitoring Plans  S - S - S - S - S - S - S - S - S - S   | Monitoring                                                  | Significant   Excursion                                      | 5 00           | \$ -       | \$ 0.0              | 8 0.0            | \$                       |
| Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019                                                             | Implementation                  | IDSE \$ - \$ 0.0 \$ 0.0 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10,000-48,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring   S                                     | Significant   Excursion                                      | Implementation                                                                                 | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50,000-90,999  Monitoring Plants  S S S S S S S S S S S S S S S S S S  | Monitoring  S - S - S - S - S - S - S - S - S - S                             | Significant   Execursion                                     | Implementation   IOSE                         | 100,000-999,999 Monitoring Plans S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring   Significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Implementation   IDS                                      | 1,000,000  Monitoring Plans  S - S - S - S - S - S - S - S - S - S  | Monitoring                                                  | Significant Exertises  S - S - S - S - S - S - S - S - S - S | 5 00           | \$ -       | \$ 0.0              | 8 0.0            | s                        |
| Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2019 2020 2020 2021                                                        | Implementation                  | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10,000-49,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring S - S - S - S - S - S - S - S - S - S - | Significant   Excursion                                      | Implementation                                                                                 | IDSE   0   S   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50,000-90,999  Monitoring Plans  S S S S S S S S S S S S S S S S S S   | Monitoring  S - S - S - S - S - S - S - S - S - S                             | Significant   Execursion                                     | Implementation   IOSE                         | 100,000-999,995 Monitoring Plans S - S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S | Monitoring   Significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Implementation IDS  S - S - S - S - S - S - S - S - S - S | 1,000,000  Monitoring Plants  S - S - S - S - S - S - S - S - S - S | Monitoring   S                                              | Significant   Excursion                                      | 5 00           | \$ -       | \$ 0.0              | 8 0.0            | s                        |
| Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021                                                   | Implementation                  | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10,000-40,999  Monitoring Prients  S - S - S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O.0  S - O | Monitoring   S                                     | Significant   Excursion                                      | Implementation                                                                                 | IDSE 0.0 S . S . S . S . S . S . S . S . S .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50,000-99,999  Monitoring Plans  S                                     | Monitoring S - S - S - S - S - S - S - S - S - S                              | Significant   Excursion                                      | Implementation   IDSE                         | 100,000-999,999 Monitoring Plans S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring   Significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Implementation                                            | 1,000,000    Monitoring Plans   S   S   S   S   S   S   S   S   S   | Monitoring                                                  | Significant Excursion                                        | 5 00           | 8 .        | \$ 0.0              | 8 0.0            | <u> </u>                 |
| Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2019 2020 2020 2021                                                        | Implementation                  | IDSE   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -     S -     S -     S -       S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10,000-40,999  Monitoring Prients  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring   S                                     | Significant   Excursion                                      | Implementation                                                                                 | IDSE   O   S   C   S   C   C   C   C   C   C   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50,000-99,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S | Monitoring                                                                    | Significant   Excursion                                      | Implementation   IOSE                         | 100,000-999,999 Monitoring Plans S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring   Significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Implementation IDS  S - S - S - S - S - S - S - S - S - S | 1,000,000  Monitoring Flans  S - S - S - S - S - S - S - S - S - S  | Monitoring                                                  | Significant Excursion                                        | 5 00           | 8 .        | \$ 0.0              | <u>s 0.0</u>     | <u> </u>                 |
| Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2019 2020 2022 2023                                                             | Implementation                  | IDSE  \$ - \$ - \$ 0.0 \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5    | 10,000-49,999  Monitoring Plants  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Monitoring   S                                     | Significant   Excursion                                      | Implementation                                                                                 | IDSE   0   5   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50,000-96,999  Monitoring Plants  S S S S S S S S S S S S S S S S S S  | Monitoring                                                                    | Significant   Excursion                                      | Implementation   IOSE                         | 100,000-99,999 Monitoring Plans S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Monitoring   Significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Implementation IDS S - S - S - S - S - S - S - S - S - S  | 1,000,000  Monitoring Plans  S - S - S - S - S - S - S - S - S - S  | Monitoring                                                  | Significant Excursion  S                                     | 5 00           | 8 .        | \$ 0.0              | s                | <b> </b>                 |
| Year 2005 2006 2007 2008 2009 2011 2012 2013 2014 2015 2016 2017 2018 2020 2021 2022 2023 2024                                              | Implementation                  | IDSE  \$ - \$ - \$ 0.0 \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5    | 10,000-49,999  Monitoring Plans  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring   S                                     | Significant   Excursion                                      | Implementation                                                                                 | IDSE   0   5   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50,000-99,999  Monitoring Pitans  S                                    | Monitoring                                                                    | Significant   Excursion                                      | Implementation   IDSE                         | 100,000-999,999 Monitoring Plans S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring   Significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Implementation                                            | 1,000,000    Monitoring Plans   S                                   | Monitoring                                                  | Significant Excursion  S                                     | 5 00           | 8 .        | \$ 0.0              | s                | s -                      |
| Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2020 2021 2022 2023                                              | Implementation                  | IDSE   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -     S -     S -     S -       S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10,000-49,999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Monitoring   S                                     | Significant Excursion                                        | Implementation                                                                                 | IDSE   O S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -     S -   S -     S -     S -     S -     S -       S -       S -       S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50,000-99,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S | Monitoring                                                                    | Significant   Excursion                                      | Implementation   IDSE                         | 100,000-999,999  Monitoring Plane  \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Monitoring   Significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Implementation   IOS                                      | 1,000,000    Monitoring Plants   S   S   S   S   S   S   S   S   S  | Monitoring   S                                              | Significant Excursion  S                                     | 5 00           | 8 .        | \$ 0.0              | s 0.0            | 5                        |
| Year 2005 2008 2009 2010 2011 2012 2013 2014 2016 2019 2020 2021 2022 2022 2022 2022 2022                                                   | Implementation                  | IDSE   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -     S -     S -     S -       S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10,000-49,999  Monitoring Plants  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Monitoring   S                                     | Significant   Excursion                                      | Implementation                                                                                 | IDSE   O S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -     S -   S -   S -     S -     S -     S -     S -     S -     S -       S -       S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50,000-90,999  Monitoring Plans  S S S S S S S S S S S S S S S S S S   | Monitoring   S                                                                | Significant   Excursion                                      | Implementation   IOSE                         | 100,000-999,999  Monitoring Plane  \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Monitoring   Significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Implementation   IOS                                      | 1,000,000    Monitoring Plans   S                                   | Monitoring   S                                              | Significant Excursion  S                                     | 5 00           | 8 .        | \$ 0.0              | <u>s</u>         | S -                      |
| Year 2005 2006 2007 2008 2009 2010 2012 2014 2015 2016 2017 2018 2019 2022 2023 2024 2025 2026 2027 2028 2028 2028 2029 2028 2028 2028 2028 | Implementation                  | S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10,000-49,999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Monitoring   S                                     | Significant Excursion                                        | Implementation                                                                                 | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50,000-99,999  Monitoring Plans  S S S S S S S S S S S S S S S S S S   | Monitoring  S - S - S - S - S - S - S - S - S - S                             | Significant                                                  | Implementation   IOSE                         | 100,000-999,999  Monitoring  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Signifi | Implementation IDS S - S - S - S - S - S - S - S - S - S  | 1,000,000    Monitoring Plans   S                                   | Monitoring                                                  | Significant Excursion  S                                     | 5 00           |            | \$ 0.0              | s                | <u> </u>                 |
| Year 2005 2008 2009 2010 2011 2012 2013 2014 2016 2016 2017 2018 2020 2021 2022 2024 2025 2024 2025 2028                                    | Implementation                  | S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10,000-49,999  Monitoring Plants  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring   S                                     | Significant   Excursion                                      | Implementation                                                                                 | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50,000-99,999  Monitoring Pitans  5                                    | Monitoring                                                                    | Significant                                                  | Implementation   IDSE                         | 100,000-99,999 Monitoring Plans S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Monitoring   Significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Implementation IDS S - S - S - S - S - S - S - S - S - S  | 1,000,000    Monitoring Plans   S   -                               | Monitoring                                                  | Significant Excursion  S                                     | 5 00           | 8 .        | \$ 0.0              | s                | S -                      |

Ann. | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 |

# Exhibit J.2bq Present Value of Total Costs at 7% Discount Rate, by System Size (Surface Water CWSs)

|       | <100        |                      |                       |               | 100-499              |                       |               | 500-999              |                       |               | 1,000-3,299          |                       |               | 3,300-9,99           | 9                     |               | 10,000-49,999        |                       |               | 50,000-99,99         | 9                     |               | 100,000-999,9        | 99                    |               | 1,000,000+           |                       |
|-------|-------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|
|       | -           |                      | ercent<br>ice Bound   |               |                      | ercent<br>ice Bound   |               | 90 Pe<br>Confiden    |                       |               | 90 Per<br>Confidence |                       |               |                      | ercent<br>ace Bound   |               |                      | ercent<br>ice Bound   |               |                      | ercent<br>ce Bound    |               |                      | rcent<br>ce Bound     |               |                      | ercent<br>ce Bound    |
| Year  | ean<br>alue | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) |
| 2005  | \$<br>0.0   | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.2        | \$ 0.2               | \$ 0.2                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                |
| 2006  | \$<br>0.1   | \$ 0.1               | \$ 0.1                | \$ 0.2        | \$ 0.2               | \$ 0.2                | \$ 0.3        | \$ 0.3               | \$ 0.3                | \$ 0.6        | \$ 0.6               | \$ 0.6                | \$ 0.8        | \$ 0.8               | \$ 0.8                | \$ 2.4        | \$ 2.4               | \$ 2.4                | \$ 0.8        | \$ 0.8               | \$ 0.8                | \$ 2.5        | \$ 2.5               | \$ 2.5                | \$ 0.3        | \$ 0.3               | \$ 0.3                |
| 2007  | \$<br>0.1   | \$ 0.1               | \$ 0.1                | \$ 0.2        | \$ 0.2               | \$ 0.2                | \$ 0.6        | \$ 0.6               | \$ 0.6                | \$ 1.0        | \$ 1.0               | \$ 1.0                | \$ 1.5        | \$ 1.5               | \$ 1.5                | \$ 7.2        | \$ 7.2               | \$ 7.2                | \$ 4.2        | \$ 4.2               | \$ 4.2                | \$ 2.4        | \$ 2.4               | \$ 2.4                | \$ 0.3        | \$ 0.3               | \$ 0.3                |
| 2008  | \$<br>0.3   | \$ 0.3               | \$ 0.3                | \$ 0.5        | \$ 0.5               | \$ 0.5                | \$ 1.6        | \$ 1.6               | \$ 1.6                | \$ 2.8        | \$ 2.8               | \$ 2.8                | \$ 4.2        | \$ 4.2               | \$ 4.2                | \$ 4.6        | \$ 4.6               | \$ 4.6                | \$ 5.4        | \$ 2.9               | \$ 7.7                | \$ 28.9       | \$ 14.5              | \$ 42.1               | \$ 13.5       | \$ 6.9               | \$ 19.6               |
| 2009  | \$<br>0.2   | \$ 0.1               | \$ 0.2                | \$ 0.4        | \$ 0.3               | \$ 0.5                | \$ 0.4        | \$ 0.3               | \$ 0.6                | \$ 2.0        | \$ 1.1               | \$ 2.9                | \$ 4.8        | \$ 2.5               | \$ 7.1                | \$ 8.5        | \$ 4.6               | \$ 12.2               | \$ 10.1       | \$ 5.3               | \$ 14.6               | \$ 28.1       | \$ 14.2              | \$ 41.1               | \$ 13.3       | \$ 6.9               | \$ 19.5               |
| 2010  | \$<br>0.2   | \$ 0.1               | \$ 0.3                | \$ 0.6        | \$ 0.3               | \$ 0.8                | \$ 0.6        | \$ 0.3               | \$ 0.9                | \$ 3.6        | \$ 1.9               | \$ 5.5                | \$ 9.0        | \$ 4.6               | \$ 13.5               | \$ 16.0       | \$ 8.4               | \$ 23.1               | \$ 9.9        | \$ 5.2               | \$ 14.3               | \$ 27.4       | \$ 13.9              | \$ 40.2               | \$ 13.1       | \$ 6.8               | \$ 19.3               |
| 2011  | \$<br>0.2   | \$ 0.1               | \$ 0.3                | \$ 0.6        | \$ 0.3               | \$ 0.9                | \$ 0.6        | \$ 0.3               | \$ 0.9                | \$ 3.8        | \$ 1.9               | \$ 5.7                | \$ 9.0        | \$ 4.6               | \$ 13.6               | \$ 15.6       | \$ 8.2               | \$ 22.6               | \$ 9.8        | \$ 5.2               | \$ 14.1               | \$ 26.8       | \$ 13.8              | \$ 39.4               | \$ 12.9       | \$ 6.8               | \$ 19.1               |
| 2012  | \$<br>0.2   | \$ 0.1               | \$ 0.3                | \$ 0.6        | \$ 0.3               | \$ 0.9                | \$ 0.6        | \$ 0.2               | \$ 0.9                | \$ 3.8        | \$ 1.8               | \$ 5.8                | \$ 9.3        | \$ 4.9               | \$ 13.9               | \$ 14.6       | \$ 7.4               | \$ 21.5               | \$ 9.6        | \$ 5.1               | \$ 13.9               | \$ 26.0       | \$ 13.5              | \$ 38.3               | \$ 12.6       | \$ 6.7               | \$ 18.8               |
| 2013  | \$<br>0.2   | \$ 0.1               | \$ 0.3                | \$ 0.6        | \$ 0.3               | \$ 1.0                | \$ 0.5        | \$ 0.2               | \$ 0.9                | \$ 3.7        | \$ 1.8               | \$ 5.8                | \$ 9.5        | \$ 5.1               | \$ 14.1               | \$ 13.7       | \$ 6.7               | \$ 20.5               | \$ 5.6        | \$ 3.1               | \$ 8.1                | \$ 4.7        | \$ 2.8               | \$ 7.3                | \$ 2.8        | \$ 1.6               | \$ 4.4                |
| 2014  | \$<br>0.1   | \$ 0.1               | \$ 0.2                | \$ 0.5        | \$ 0.2               | \$ 0.8                | \$ 0.3        | \$ 0.1               | \$ 0.6                | \$ 2.6        | \$ 1.2               | \$ 4.0                | \$ 6.2        | \$ 3.4               | \$ 9.1                | \$ 7.6        | \$ 3.6               | \$ 11.6               | \$ 1.9        | \$ 1.2               | \$ 2.8                | \$ 4.4        | \$ 2.6               | \$ 6.9                | \$ 2.6        | \$ 1.5               | \$ 4.2                |
| 2015  | \$<br>0.1   | \$ 0.0               | \$ 0.1                | \$ 0.4        | \$ 0.2               | \$ 0.6                | \$ 0.2        | \$ 0.0               | \$ 0.3                | \$ 1.4        | \$ 0.6               | \$ 2.2                | \$ 3.0        | \$ 1.8               | \$ 4.3                | \$ 1.9        | \$ 0.7               | \$ 3.3                | \$ 1.8        | \$ 1.1               | \$ 2.6                | \$ 4.1        | \$ 2.5               | \$ 6.4                | \$ 2.4        | \$ 1.4               | \$ 3.9                |
| 2016  | \$<br>0.1   | \$ 0.0               | \$ 0.1                | \$ 0.3        | \$ 0.1               | \$ 0.5                | \$ 0.1        | \$ 0.0               | \$ 0.3                | \$ 1.3        | \$ 0.6               | \$ 2.0                | \$ 2.8        | \$ 1.7               | \$ 4.0                | \$ 1.8        | \$ 0.6               | \$ 3.1                | \$ 1.7        | \$ 1.0               | \$ 2.4                | \$ 3.8        | \$ 2.3               | \$ 6.0                | \$ 2.3        | \$ 1.3               | \$ 3.6                |
| 2017  | \$<br>0.1   | \$ 0.0               | \$ 0.1                | \$ 0.3        | \$ 0.1               | \$ 0.5                | \$ 0.1        | \$ 0.0               | \$ 0.3                | \$ 1.2        | \$ 0.5               | \$ 1.9                | \$ 2.6        | \$ 1.6               | \$ 3.7                | \$ 1.6        | \$ 0.6               | \$ 2.9                | \$ 1.5        | \$ 0.9               | \$ 2.3                | \$ 3.6        | \$ 2.2               | \$ 5.6                | \$ 2.1        | \$ 1.2               | \$ 3.4                |
| 2018  | \$<br>0.1   | \$ 0.0               | \$ 0.1                | \$ 0.3        | \$ 0.1               | \$ 0.4                | \$ 0.1        | \$ 0.0               | \$ 0.2                | \$ 1.1        | \$ 0.5               | \$ 1.8                | \$ 2.5        | \$ 1.4               | \$ 3.5                | \$ 1.5        | \$ 0.5               | \$ 2.7                | \$ 1.4        | \$ 0.9               | \$ 2.1                | \$ 3.4        | \$ 2.0               | \$ 5.2                | \$ 2.0        | \$ 1.1               | \$ 3.2                |
| 2019  | \$<br>0.1   | \$ 0.0               | \$ 0.1                | \$ 0.3        | \$ 0.1               | \$ 0.4                | \$ 0.1        | \$ 0.0               | \$ 0.2                | \$ 1.1        | \$ 0.5               | \$ 1.7                | \$ 2.3        | \$ 1.4               | \$ 3.3                | \$ 1.4        | \$ 0.5               | \$ 2.5                | \$ 1.4        | \$ 0.8               | \$ 2.0                | \$ 3.1        | \$ 1.9               | \$ 4.9                | \$ 1.8        | \$ 1.1               | \$ 3.0                |
| 2020  | \$<br>0.1   | \$ 0.0               | \$ 0.1                | \$ 0.3        | \$ 0.1               | \$ 0.4                | \$ 0.1        | \$ 0.0               | \$ 0.2                | \$ 1.0        | \$ 0.4               | \$ 1.6                | \$ 2.2        | \$ 1.3               | \$ 3.1                | \$ 1.3        | \$ 0.5               | \$ 2.3                | \$ 1.3        | \$ 0.8               | \$ 1.8                | \$ 2.9        | \$ 1.8               | \$ 4.6                | \$ 1.7        | \$ 1.0               | \$ 2.8                |
| 2021  | \$<br>0.0   | \$ 0.0               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.4                | \$ 0.1        | \$ 0.0               | \$ 0.2                | \$ 0.9        | \$ 0.4               | \$ 1.5                | \$ 2.0        | \$ 1.2               | \$ 2.9                | \$ 1.3        | \$ 0.4               | \$ 2.2                | \$ 1.2        | \$ 0.7               | \$ 1.7                | \$ 2.7        | \$ 1.6               | \$ 4.3                | \$ 1.6        | \$ 0.9               | \$ 2.6                |
| 2022  | \$<br>0.0   | \$ 0.0               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.2                | \$ 0.9        | \$ 0.4               | \$ 1.4                | \$ 1.9        | \$ 1.1               | \$ 2.7                | \$ 1.2        | \$ 0.4               | \$ 2.0                | \$ 1.1        | \$ 0.7               | \$ 1.6                | \$ 2.6        | \$ 1.5               | \$ 4.0                | \$ 1.5        | \$ 0.9               | \$ 2.4                |
| 2023  | \$<br>0.0   | \$ 0.0               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.2                | \$ 0.8        | \$ 0.3               | \$ 1.3                | \$ 1.8        | \$ 1.0               | \$ 2.5                | \$ 1.1        | \$ 0.4               | \$ 1.9                | \$ 1.0        | \$ 0.6               | \$ 1.5                | \$ 2.4        | \$ 1.4               | \$ 3.7                | \$ 1.4        | \$ 0.8               | \$ 2.3                |
| 2024  | \$<br>0.0   | \$ 0.0               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.2                | \$ 0.8        | \$ 0.3               | \$ 1.2                | \$ 1.6        | \$ 1.0               | \$ 2.3                | \$ 1.0        | \$ 0.4               | \$ 1.8                | \$ 1.0        | \$ 0.6               | \$ 1.4                | \$ 2.2        | \$ 1.3               | \$ 3.5                | \$ 1.3        | \$ 0.8               | \$ 2.1                |
| 2025  | \$<br>0.0   | \$ 0.0               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.2                | \$ 0.7        | \$ 0.3               | \$ 1.1                | \$ 1.5        | \$ 0.9               | \$ 2.2                | \$ 1.0        | \$ 0.3               | \$ 1.7                | \$ 0.9        | \$ 0.5               | \$ 1.3                | \$ 2.1        | \$ 1.3               | \$ 3.3                | \$ 1.2        | \$ 0.7               | \$ 2.0                |
| 2026  | \$<br>0.0   | \$ 0.0               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.7        | \$ 0.3               | \$ 1.0                | \$ 1.4        | \$ 0.8               | \$ 2.0                | \$ 0.9        | \$ 0.3               | \$ 1.6                | \$ 0.8        | \$ 0.5               | \$ 1.2                | \$ 2.0        | \$ 1.2               | \$ 3.0                | \$ 1.1        | \$ 0.7               | \$ 1.8                |
| 2027  | \$<br>0.0   | \$ 0.0               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.6        | \$ 0.3               | \$ 1.0                | \$ 1.3        | \$ 0.8               | \$ 1.9                | \$ 0.8        | \$ 0.3               | \$ 1.5                | \$ 0.8        | \$ 0.5               | \$ 1.1                | \$ 1.8        | \$ 1.1               | \$ 2.8                | \$ 1.1        | \$ 0.6               | \$ 1.7                |
| 2028  | \$<br>0.0   | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.6        | \$ 0.2               | \$ 0.9                | \$ 1.3        | \$ 0.7               | \$ 1.8                | \$ 0.8        | \$ 0.3               | \$ 1.4                | \$ 0.7        | \$ 0.4               | \$ 1.1                | \$ 1.7        | \$ 1.0               | \$ 2.7                | \$ 1.0        | \$ 0.6               | \$ 1.6                |
| 2029  | \$<br>0.0   | \$ 0.0               | \$ 0.0                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.5        | \$ 0.2               | \$ 0.8                | \$ 1.2        | \$ 0.7               | \$ 1.7                | \$ 0.7        | \$ 0.3               | \$ 1.3                | \$ 0.7        | \$ 0.4               | \$ 1.0                | \$ 1.6        | \$ 1.0               | \$ 2.5                | \$ 0.9        | \$ 0.5               | \$ 1.5                |
| Total | \$<br>2.2   | \$ 1.3               | \$ 3.2                | \$ 7.7        | \$ 4.2               | \$ 11.3               | \$ 7.0        | \$ 4.0               | \$ 10.2               | \$ 37.4       | \$ 20.0              | \$ 55.4               | \$ 83.7       | \$ 49.0              | \$ 119.6              | \$ 108.8      | \$ 59.5              | \$ 157.8              | \$ 74.6       | \$ 43.5              | \$ 105.9              | \$ 191.3      | \$ 104.3             | \$ 282.7              | \$ 94.8       | \$ 51.5              | \$ 143.4              |
| Ann.  | \$<br>0.2   | \$ 0.1               | \$ 0.3                | \$ 0.7        | \$ 0.4               | \$ 1.0                | \$ 0.6        | \$ 0.3               | \$ 0.9                | \$ 3.2        | \$ 1.7               | \$ 4.8                | \$ 7.2        | \$ 4.2               | \$ 10.3               | \$ 9.3        | \$ 5.1               | \$ 13.5               | \$ 6.4        | \$ 3.7               | \$ 9.1                | \$ 16.4       | \$ 9.0               | \$ 24.3               | \$ 8.1        | \$ 4.4               | \$ 12.3               |

J-84

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005. Detail may not add exactly to totals due to independent rounding. Ann = value of total annualized at discount rate. Source: Derived from Exhibits J2a through rr.

August 2005

# Exhibit J.2br Present Value of Capital Costs at 7% Discount Rate, by System Size (Surface Water CWSs)

|       | <100<br>90 Percent |      |                   |                       | 100-499       |                      |                      |       | 500-999 |                     |                       | 1,000-3,29    | 9                    |                       | 3,300-9,99    | 9                    |                       | 10,000-49,9   | 99                   |                       | 50,000-99,9   | 99                   |                       | 100,000-999,9 | 99                   |                       | 1,000,000-    |                      |                       |
|-------|--------------------|------|-------------------|-----------------------|---------------|----------------------|----------------------|-------|---------|---------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|
|       |                    |      | 90 Pe<br>Confiden |                       |               |                      | ercent<br>nce Bound  |       |         | 90 Per<br>Confidenc |                       |               |                      | ercent<br>nce Bound   |               |                      | Percent<br>nce Bound  |               |                      | Percent<br>ence Bound |               |                      | Percent<br>nce Bound  |               |                      | ercent<br>ce Bound    |               |                      | ercent<br>nce Bound   |
| Year  | Mean<br>Value      |      | Lower<br>h %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile | Mea   |         | Lower               | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) |
| 2005  | \$ -               | \$   |                   | \$ -                  | \$ -          | \$ -                 | \$ -                 | \$    | - \$    | - :                 | \$ -                  | \$ -          | \$ -                 | ş -                   | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | s -                   |
| 2006  | \$ -               | \$   |                   | \$ -                  | \$ -          | \$ -                 | \$ -                 | \$    | - \$    | - 1                 | š -                   | \$ -          | \$ -                 | s -                   | \$ -          | \$ -                 | \$ -                  | \$ -          | s -                  | \$ -                  | s -           | \$ -                 | \$ -                  | s -           | \$ -                 | \$ -                  | \$ -          | \$ -                 | s -                   |
| 2007  | \$ -               | \$   |                   | \$ -                  | \$ -          | \$ -                 | \$ -                 | \$    | - \$    | - 3                 | \$ -                  | \$ -          | \$ -                 | s -                   | \$ -          | \$ -                 | \$ -                  | \$ -          | s -                  | \$ -                  | s -           | \$ -                 | \$ -                  | s -           | \$ -                 | \$ -                  | \$ -          | \$ -                 | s -                   |
| 2008  | \$ -               | \$   | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                 | \$    | - \$    | - :                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ 5.3        | \$ 2.7               | \$ 7.6                | \$ 28.8       | \$ 14.4              | \$ 42.0               | \$ 13.5       | \$ 6.9               | \$ 19.6               |
| 2009  | \$ 0.1             | 1 \$ | 0.0               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0                 | .4 \$ | 0.3 \$  | 0.1                 | \$ 0.4                | \$ 1.8        | \$ 0.9               | \$ 2.7                | \$ 4.6        | \$ 2.3               | \$ 6.9                | \$ 8.3        | \$ 4.3               | \$ 12.0               | \$ 9.8        | \$ 5.1               | \$ 14.2               | \$ 26.9       | \$ 13.5              | \$ 39.2               | \$ 12.6       | \$ 6.5               | \$ 18.3               |
| 2010  | \$ 0.1             | 1 \$ | 0.1               | \$ 0.2                | \$ 0.4        | \$ 0.2               | \$ 0                 | .7 \$ | 0.5 \$  | 0.3                 | \$ 0.8                | \$ 3.3        | \$ 1.7               | \$ 5.1                | \$ 8.5        | \$ 4.4               | \$ 12.9               | \$ 15.5       | \$ 8.0               | \$ 22.4               | \$ 9.2        | \$ 4.8               | \$ 13.3               | \$ 25.1       | \$ 12.6              | \$ 36.7               | \$ 11.8       | \$ 6.1               | \$ 17.1               |
| 2011  | \$ 0.1             | 1 \$ | 0.1               | \$ 0.2                | \$ 0.4        | \$ 0.2               | \$ 0                 | .6 \$ | 0.5 \$  | 0.2                 | \$ 0.8                | \$ 3.1        | \$ 1.6               | \$ 4.7                | \$ 8.0        | \$ 4.1               | \$ 12.0               | \$ 14.4       | \$ 7.5               | \$ 20.9               | \$ 8.6        | \$ 4.5               | \$ 12.4               | \$ 23.5       | \$ 11.8              | \$ 34.3               | \$ 11.0       | \$ 5.7               | \$ 16.0               |
| 2012  | \$ 0.1             | 1 \$ | 0.1               | \$ 0.2                | \$ 0.4        | \$ 0.2               | \$ 0                 | .6 \$ | 0.5 \$  | 0.2                 | \$ 0.7                | \$ 2.9        | \$ 1.5               | \$ 4.4                | \$ 7.4        | \$ 3.8               | \$ 11.3               | \$ 13.5       | \$ 7.0               | \$ 19.5               | \$ 8.0        | \$ 4.2               | \$ 11.6               | \$ 21.9       | \$ 11.0              | \$ 32.0               | \$ 10.3       | \$ 5.3               | \$ 15.0               |
| 2013  | \$ 0.1             | 1 \$ | 0.1               | \$ 0.2                | \$ 0.4        | \$ 0.2               | \$ 0                 | .6 \$ | 0.4 \$  | 0.2                 | \$ 0.7                | \$ 2.7        | \$ 1.4               | \$ 4.1                | \$ 6.9        | \$ 3.6               | \$ 10.5               | \$ 12.6       | \$ 6.6               | \$ 18.2               | \$ 3.8        | \$ 2.0               | \$ 5.4                | s -           | \$ -                 | \$ -                  | \$ -          | \$ -                 | s -                   |
| 2014  | \$ 0.1             | 1 \$ | 0.0               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0                 | .3 \$ | 0.2 \$  | 0.1                 | \$ 0.3                | \$ 1.3        | \$ 0.6               | \$ 1.9                | \$ 3.2        | \$ 1.7               | \$ 4.9                | \$ 5.9        | \$ 3.1               | \$ 8.5                | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2015  | \$ -               | \$   |                   | \$ -                  | \$ -          | \$ -                 | \$ -                 | \$    | - \$    | - :                 | -                     | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | s -                   |
| 2016  | \$ -               | \$   | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                 | \$    | - \$    | - :                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2017  | \$ -               | \$   |                   | \$ -                  | \$ -          | \$ -                 | \$ -                 | \$    | - \$    | - :                 | -                     | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | s -                   |
| 2018  | \$ -               | \$   | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                 | \$    | - \$    | - :                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2019  | \$ -               | \$   |                   | \$ -                  | \$ -          | \$ -                 | \$ -                 | \$    | - \$    | - :                 | -                     | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | s -                   |
| 2020  | \$ -               | \$   | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                 | \$    | - \$    | - :                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | s -           | \$ -                 | \$ -                  | s -           | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2021  | \$ -               | \$   | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                 | \$    | - \$    | - :                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2022  | \$ -               | \$   | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                 | \$    | - \$    | - :                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | s -           | \$ -                 | \$ -                  | s -           | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2023  | \$ -               | \$   | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                 | \$    | - \$    | - :                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2024  | \$ -               | \$   | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                 | \$    | - \$    | - 3                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2025  | \$ -               | \$   | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                 | \$    | - \$    | - :                 | š -                   | \$ -          | \$ -                 | s -                   | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | s -           | \$ -                 | s -                   | \$ -          | \$ -                 | s -                   |
| 2026  | \$ -               | \$   | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                 | \$    | - \$    | - 3                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2027  | \$ -               | \$   | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                 | \$    | - \$    | - :                 | š -                   | \$ -          | \$ -                 | s -                   | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | s -           | \$ -                 | s -                   | \$ -          | \$ -                 | s -                   |
| 2028  | \$ -               | \$   |                   | \$ -                  | \$ -          | \$ -                 | \$ -                 | \$    | - \$    | - :                 | -                     | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2029  | \$ -               | \$   | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                 | \$    | - \$    | - :                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| Total | \$ 0.7             | 7 \$ | 0.3               | \$ 1.1                | \$ 2.0        | \$ 1.0               | \$ 3                 | .2 \$ | 2.4 \$  | 1.2                 | \$ 3.8                | \$ 15.2       | \$ 7.7               | \$ 23.0               | \$ 38.7       | \$ 19.8              | \$ 58.5               | \$ 70.2       | \$ 36.5              | \$ 101.5              | \$ 44.7       | \$ 23.3              | \$ 64.6               | \$ 126.2      | \$ 63.3              | \$ 184.2              | \$ 59.0       | \$ 30.4              | \$ 86.1               |
| Ann.  | \$ 0.1             | 1 \$ | 0.0               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0                 | .3 \$ | 0.2 \$  | 0.1                 | \$ 0.3                | \$ 1.3        | \$ 0.7               | \$ 2.0                | \$ 3.3        | \$ 1.7               | \$ 5.0                | \$ 6.0        | \$ 3.1               | \$ 8.7                | \$ 3.8        | \$ 2.0               | \$ 5.5                | \$ 10.8       | \$ 5.4               | \$ 15.8               | \$ 5.1        | \$ 2.6               | \$ 7.4                |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

Source: Derived from Exhibits J.2a through rr.

# Exhibit J.2bs Present Value of O&M Costs at 7% Discount Rate, by System Size (Surface Water CWSs)

|       | <100<br>90 Percent |           |                        |        | 100-499      |                  |                     | 500-999       |                  |                     | 1,000-3,299      | )                |                     | 3,300-9,99       | 9           |                     | 10,000-49,99     | 99          |                      | 50,000-99,99     | 9           |                     | 100,000-999,  | 999              |                     | 1,000,000        | +           |                       |
|-------|--------------------|-----------|------------------------|--------|--------------|------------------|---------------------|---------------|------------------|---------------------|------------------|------------------|---------------------|------------------|-------------|---------------------|------------------|-------------|----------------------|------------------|-------------|---------------------|---------------|------------------|---------------------|------------------|-------------|-----------------------|
|       |                    |           | Percent<br>dence Bound | d      |              |                  | ercent<br>ice Bound |               |                  | ercent<br>ice Bound |                  |                  | ercent<br>ice Bound |                  |             | ercent<br>nce Bound |                  |             | Percent<br>nce Bound |                  |             | ercent<br>nce Bound |               |                  | ercent<br>nce Bound |                  |             | Percent<br>ence Bound |
|       |                    | Lower     | Uppe                   |        |              | Lower            | Upper               |               | Lower            | Upper               |                  | Lower            | Upper               |                  | Lower       | Upper               |                  | Lower       | Upper                |                  | Lower       | Upper               |               | Lower            | Upper               |                  | Lower       | Upper                 |
| Year  | Mean<br>Value      | (5th %til |                        |        | lean<br>alue | (5th %tile)      | (95th %tile)        | Mean<br>Value | (5th %tile)      | (95th %tile)        | Mean<br>Value    | (5th %tile)      | (95th %tile)        | Mean<br>Value    | (5th %tile) | (95th %tile)        | Mean<br>Value    | (5th %tile) | (95th %tile)         | Mean<br>Value    | (5th %tile) | (95th %tile)        | Mean<br>Value | (5th %tile)      | (95th %tile)        | Mean<br>Value    | (5th %tile) | (95th %tile)          |
| 2005  | \$ -               | \$ -      | \$                     | - \$   | -            | \$ -             | \$ -                | \$ -          | \$ -             | \$ -                | \$ -             | \$ -             | \$ -                | \$ -             | \$ -        | \$ -                | \$ -             | \$ -        | \$ -                 | \$ -             | \$ -        | \$ -                | \$ -          | \$ -             | \$ -                | \$ -             | \$ -        | s -                   |
| 2006  | \$ -               | \$ -      | \$                     | - \$   | -            | \$ -             | \$ -                | \$ -          | \$ -             | \$ -                | \$ -             | \$ -             | \$ -                | \$ -             | \$ -        | \$ -                | \$ -             | \$ -        | \$ -                 | \$ -             | \$ -        | \$ -                | \$ -          | \$ -             | \$ -                | \$ -             | \$ -        | \$ -                  |
| 2007  | \$ -               | \$ -      | \$                     | - \$   | -            | \$ -             | \$ -                | \$ -          | \$ -             | \$ -                | \$ -             | \$ -             | \$ -                | \$ -             | \$ -        | \$ -                | \$ -             | \$ -        | \$ -                 | \$ -             | \$ -        | \$ -                | \$ -          | \$ -             | \$ -                | \$ -             | \$ -        | \$ -                  |
| 2008  | \$ -               | \$ -      | \$                     | - \$   | -            | \$ -             | \$ -                | \$ -          | \$ -             | \$ -                | \$ -             | \$ -             | \$ -                | \$ -             | \$ -        | \$ -                | \$ -             | \$ -        | \$ -                 | \$ -             | \$ -        | \$ -                | \$ -          | \$ -             | \$ -                | \$ -             | \$ -        | \$ -                  |
| 2009  | \$ -               | \$ -      | \$                     | - \$   | -            | \$ -             | \$ -                | \$ -          | \$ -             | \$ -                | \$ -             | \$ -             | \$ -                | \$ -             | \$ -        | \$ -                | \$ -             | \$ -        | \$ -                 | \$ 0.2           | \$ 0.1      | \$ 0.4              | \$ 1.2        | \$ 0.7           | \$ 1.9              | \$ 0.7           | \$ 0.4      | \$ 1.2                |
| 2010  | \$ 0.0             | \$ 0      | .0 \$                  | 0.0 \$ | 0.1          | \$ 0.0           | \$ 0.1              | \$ 0.0        | \$ 0.0           | \$ 0.1              | \$ 0.2           | \$ 0.1           | \$ 0.3              | \$ 0.4           | \$ 0.2      | \$ 0.5              | \$ 0.4           | \$ 0.2      | \$ 0.6               | \$ 0.7           | \$ 0.4      | \$ 1.0              | \$ 2.2        | \$ 1.3           | \$ 3.5              | \$ 1.3           | \$ 0.8      | \$ 2.2                |
| 2011  | \$ 0.0             | \$ 0      | .0 \$                  | 0.1 \$ | 0.2          | \$ 0.1           | \$ 0.2              | \$ 0.1        | \$ 0.1           | \$ 0.2              | \$ 0.6           | \$ 0.3           | \$ 1.0              | \$ 1.0           | \$ 0.5      | \$ 1.5              | \$ 1.2           | \$ 0.7      | \$ 1.7               | \$ 1.1           | \$ 0.6      | \$ 1.6              | \$ 3.1        | \$ 1.8           | \$ 4.9              | \$ 1.9           | \$ 1.1      | \$ 3.0                |
| 2012  | \$ 0.1             | \$ 0      | .0 \$                  | 0.1 \$ | 0.2          | \$ 0.1           | \$ 0.4              | \$ 0.2        | \$ 0.1           | \$ 0.3              | \$ 1.0           | \$ 0.5           | \$ 1.5              | \$ 1.6           | \$ 0.8      | \$ 2.4              | \$ 1.8           | \$ 1.0      | \$ 2.7               | \$ 1.4           | \$ 0.8      | \$ 2.1              | \$ 3.9        | \$ 2.3           | \$ 6.1              | \$ 2.3           | \$ 1.4      | \$ 3.8                |
| 2013  | \$ 0.1             | \$ 0      | .0 \$                  | 0.1 \$ | 0.3          | \$ 0.2           | \$ 0.5              | \$ 0.2        | \$ 0.1           | \$ 0.4              | \$ 1.3           | \$ 0.7           | \$ 2.0              | \$ 2.1           | \$ 1.1      | \$ 3.1              | \$ 2.4           | \$ 1.4      | \$ 3.5               | \$ 1.7           | \$ 1.0      | \$ 2.6              | \$ 4.6        | \$ 2.7           | \$ 7.2              | \$ 2.7           | \$ 1.6      | \$ 4.4                |
| 2014  | \$ 0.1             | \$ 0      | .0 \$                  | 0.1 \$ | 0.4          | \$ 0.2           | \$ 0.6              | \$ 0.3        | \$ 0.1           | \$ 0.4              | \$ 1.6           | \$ 0.8           | \$ 2.3              | \$ 2.5           | \$ 1.3      | \$ 3.7              | \$ 2.8           | \$ 1.6      | \$ 4.2               | \$ 1.8           | \$ 1.0      | \$ 2.6              | \$ 4.3        | \$ 2.5           | \$ 6.7              | \$ 2.6           | \$ 1.5      | \$ 4.1                |
| 2015  | \$ 0.1             | \$ (      | .1 \$                  | 0.1 \$ | 0.4          | \$ 0.2           | \$ 0.6              | \$ 0.3        | \$ 0.2           | \$ 0.4              | \$ 1.6           | \$ 0.8           | \$ 2.4              | \$ 2.6           | \$ 1.3      | \$ 3.9              | \$ 2.9           | \$ 1.7      | \$ 4.3               | \$ 1.7           | \$ 1.0      | \$ 2.5              | \$ 4.0        | \$ 2.3           | \$ 6.3              | \$ 2.4           | \$ 1.4      | \$ 3.9                |
| 2016  | \$ 0.1             | \$ (      | .0 \$                  | 0.1 \$ | 0.4          | \$ 0.2           | \$ 0.6              | \$ 0.3        | \$ 0.1           | \$ 0.4              | \$ 1.5           | \$ 0.8           | \$ 2.3              | \$ 2.4           | \$ 1.3      | \$ 3.6              | \$ 2.8           | \$ 1.6      | \$ 4.1               | \$ 1.6           | \$ 0.9      | \$ 2.3              | \$ 3.7        | \$ 2.2           | \$ 5.9              | \$ 2.2           | \$ 1.3      | \$ 3.6                |
| 2017  | \$ 0.1             | \$ 0      | .0 \$                  | 0.1 \$ | 0.3          | \$ 0.2           | \$ 0.5              | \$ 0.3        | \$ 0.1           | \$ 0.4              | \$ 1.4           | \$ 0.7           | \$ 2.1              | \$ 2.3           | \$ 1.2      | \$ 3.4              | \$ 2.6           | \$ 1.5      | \$ 3.8               | \$ 1.4           | \$ 0.8      | \$ 2.2              | \$ 3.5        | \$ 2.0           | \$ 5.5              | \$ 2.1           | \$ 1.2      | \$ 3.4                |
| 2018  | \$ 0.1             | 1         | .0 \$                  | 0.1 \$ | 0.3          | \$ 0.2           | \$ 0.5              | 1 '           | \$ 0.1           | \$ 0.4              | \$ 1.3           | \$ 0.7           | \$ 2.0              | \$ 2.1           | \$ 1.1      | \$ 3.2              | \$ 2.4           | \$ 1.4      |                      | \$ 1.4           |             | \$ 2.0              | \$ 3.2        | \$ 1.9           | \$ 5.1              | \$ 2.0           | \$ 1.1      | \$ 3.2                |
| 2019  | \$ 0.1             | 1         | .0 \$                  | 0.1 \$ |              | \$ 0.2           | \$ 0.5              | 1             | \$ 0.1           | \$ 0.3              | \$ 1.2           | \$ 0.6           | \$ 1.9              | \$ 2.0           | 1           | \$ 2.9              | \$ 2.2           | \$ 1.3      |                      | \$ 1.3           |             | \$ 1.9              | \$ 3.0        | \$ 1.8           | \$ 4.8              | \$ 1.8           | 3 \$ 1.1    | \$ 3.0                |
| 2020  | \$ 0.1             | 1         | .0 \$                  | 0.1 \$ |              | \$ 0.1           | \$ 0.4              | 1.            | \$ 0.1           | \$ 0.3              | \$ 1.2           | \$ 0.6           | \$ 1.7              | \$ 1.9           |             | 1                   | \$ 2.1           | \$ 1.2      |                      | \$ 1.2           |             | \$ 1.8              | \$ 2.8        | \$ 1.7           | \$ 4.5              | \$ 1.7           | \$ 1.0      | \$ 2.8                |
| 2021  | \$ 0.1             | 1         | .0 \$                  | 0.1 \$ | 0.3          | \$ 0.1           | \$ 0.4              | 1.            | \$ 0.1           | \$ 0.3              | \$ 1.1           | \$ 0.6           | \$ 1.6              | \$ 1.7           | \$ 0.9      | \$ 2.6              | \$ 2.0           | \$ 1.1      | \$ 2.9               | \$ 1.1           |             | \$ 1.7              | \$ 2.7        | \$ 1.5           | \$ 4.2              | \$ 1.6           | \$ 0.9      | \$ 2.6                |
| 2022  | \$ 0.1             |           | .0 \$                  | 0.1 \$ | 0.2          | \$ 0.1           | \$ 0.4              |               | \$ 0.1           | \$ 0.3              | \$ 1.0           | \$ 0.5           | \$ 1.5              | \$ 1.6           | \$ 0.8      | \$ 2.4              | \$ 1.8           | \$ 1.1      | \$ 2.7               | \$ 1.0           |             | \$ 1.5              |               | \$ 1.4           | \$ 3.9              | \$ 1.5           |             | \$ 2.4                |
| 2023  | \$ 0.1             |           | .0 \$                  | 0.1 \$ | 0.2          | \$ 0.1           | \$ 0.3              | 1.            | \$ 0.1           | \$ 0.3              | \$ 1.0           | \$ 0.5           | \$ 1.4              | \$ 1.5           | \$ 0.8      | \$ 2.2              | \$ 1.7           | \$ 1.0      |                      | \$ 1.0           |             | \$ 1.4              | \$ 2.3        | \$ 1.4           | \$ 3.6              | \$ 1.4           | \$ 0.8      | \$ 2.3                |
| 2024  | \$ 0.1             |           | .0 \$                  | 0.1 \$ |              | \$ 0.1           | \$ 0.3              |               | \$ 0.1           | \$ 0.2              | \$ 0.9           | \$ 0.5           | \$ 1.3              | \$ 1.4           | \$ 0.7      | \$ 2.1              | \$ 1.6           | \$ 0.9      |                      | \$ 0.9           |             | \$ 1.3              |               | \$ 1.3           | \$ 3.4              | \$ 1.3           |             | \$ 2.1                |
| 2025  | \$ 0.0             | 1         | .0 \$                  | 0.1 \$ | 0.2          | \$ 0.1           | \$ 0.3              | 1             | \$ 0.1           | \$ 0.2              | \$ 0.8           | \$ 0.4           | \$ 1.2              | \$ 1.3           | \$ 0.7      | \$ 2.0              | \$ 1.5           | \$ 0.9      |                      | \$ 0.8           |             | \$ 1.3              | \$ 2.0        | \$ 1.2           | \$ 3.2              | \$ 1.2           |             | \$ 2.0                |
| 2026  | \$ 0.0             | 1         | .0 \$                  | 0.1 \$ | 0.2          | \$ 0.1           | \$ 0.3              | 1             | \$ 0.1           | \$ 0.2              | \$ 0.8           | \$ 0.4           | \$ 1.2              | \$ 1.2           |             | \$ 1.8              | \$ 1.4           | \$ 0.8      |                      | \$ 0.8           | 1           | \$ 1.2              |               | \$ 1.1           | \$ 3.0              | \$ 1.1           | \$ 0.7      | \$ 1.8<br>\$ 1.7      |
| 2027  | \$ 0.0             |           | .0 \$                  | 0.1 \$ |              | \$ 0.1<br>\$ 0.1 | \$ 0.3<br>\$ 0.2    | 1             | \$ 0.1<br>\$ 0.1 | \$ 0.2<br>\$ 0.2    | \$ 0.7<br>\$ 0.7 | \$ 0.4<br>\$ 0.4 | \$ 1.1<br>\$ 1.0    | \$ 1.2<br>\$ 1.1 |             | \$ 1.7<br>\$ 1.6    | \$ 1.3<br>\$ 1.2 |             |                      | \$ 0.7<br>\$ 0.7 |             | \$ 1.1<br>\$ 1.0    |               | \$ 1.0<br>\$ 1.0 | \$ 2.8<br>\$ 2.6    | \$ 1.1<br>\$ 1.0 |             |                       |
| 2028  | \$ 0.0             |           | .0 \$<br>.0 \$         | 0.1 \$ |              | \$ 0.1           | \$ 0.2              | 1             | \$ 0.1           | \$ 0.2              | \$ 0.7           | \$ 0.4           | \$ 0.9              | \$ 1.1           |             | \$ 1.5              | \$ 1.2           | \$ 0.7      |                      | \$ 0.7           |             | \$ 1.0              | 1             | \$ 0.9           | \$ 2.6              | \$ 0.9           |             |                       |
| Total | \$ 1.2             | _         | .6 S                   | 1.8 \$ |              | \$ 2.6           | \$ 7.6              | 1             | \$ 1.9           | \$ 5.6              |                  | \$ 10.7          | \$ 30.9             | \$ 32.9          |             |                     | \$ 37.2          | \$ 21.6     |                      | \$ 23.1          | \$ 13.5     |                     | +             | \$ 33.9          | \$ 91.4             | \$ 34.9          |             |                       |
| Ann.  | \$ 0.1             | +         | .1 \$                  | 0.2 \$ | _            | \$ 0.2           | \$ 0.6              | -             | \$ 0.2           | \$ 0.5              | \$ 20.7          | \$ 0.9           | \$ 2.6              | \$ 2.8           |             |                     | \$ 37.2          |             |                      |                  |             |                     |               | \$ 2.9           |                     | \$ 34.5          |             |                       |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

Source: Derived from Exhibits J.2a through rr.

#### Exhibit J.2bt Present Value of Non-Treatment Costs at 7% Discount Rate, by System Size (Surface Water CWSs)

|                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100-499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |                                                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 500-999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           | 1,000-3,299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                                                              |               |                        | 3,300-9,999 |            |             |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------|---------------|------------------------|-------------|------------|-------------|
|                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Significant                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | Significant                                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                              | Significant                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | Significant                                                  |               |                        | Monitoring  |            | Significant |
| Year                                                                                                                                   | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Excursion                             | Implementation                  | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring                                                      | Excursion                                                    |                           | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Plans M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | onitoring                                                                                                                    | Excursion                   | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IDSE                                                                      | Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring          | Excursion                                                    | Implementatio | n IDSE                 | Plans       | Monitoring | Excursion   |
| 2005<br>2006                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ - \$<br>\$ 0.0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s -<br>s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s - s<br>s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                                 | S -<br>2 S 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s -                                                             | s -                                                          | \$ 0.0 \$                 | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s - s<br>s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - s                                                                                                                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ -<br>\$ 0.4                                                            | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | s -                                                          |               | 0.1 \$ -<br>0.2 \$ 0.6 | s -         |            | s .         |
| 2007                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ 0.1 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                 | \$ 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *                                                               |                                                              |                           | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - s                                                                                                                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 1.0                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | s -                                                          |               | - \$ 1.5               |             |            | s -         |
| 2008                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ 0.2 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                 | \$ 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 | s -                                                          |                           | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - \$                                                                                                                         |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 2.7                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | s -                                                          | \$            | 0.0 \$ 4.1             |             |            | s -         |
| 2009                                                                                                                                   | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | \$ 0.1                          | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s -                                                             | s -                                                          | S 0.1 S                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ 0.1 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - s                                                                                                                          |                             | \$ 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s -                                                                       | \$ 0.1 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                   | s -                                                          | \$            | 0.1 \$ -               | \$ 0.1      |            | s -         |
| 2010                                                                                                                                   | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                     | \$ 0.1                          | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s -                                                             | s -                                                          | s 0.0 s                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - \$                                                                                                                         | -                           | \$ 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s ·                                                                       | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                   | s -                                                          | \$            | 0.1 \$ -               | s -         | -          | s -         |
| 2011                                                                                                                                   | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$ - 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | s -                             | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s -                                                             | s -                                                          | s - s                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - s                                                                                                                          | -                           | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ -                                                                      | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                   | s -                                                          | \$            | - s -                  | s -         | -          | s -         |
| 2012                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$ (0.0) \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | *                               | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ (0.0)                                                        |                                                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.1) \$                                                                                                                     |                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                         | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                                                              | -             | - \$ -                 | s -         |            |             |
| 2013                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$ (0.0) \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                   |                                 | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ (0.1)                                                        |                                                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.2) \$                                                                                                                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ -                                                                      | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                                                              |               | - s -                  |             | 0.5        |             |
| 2014                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S (0.0) S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0                                   |                                 | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ (0.1)<br>\$ (0.0)                                            |                                                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - s<br>s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.2) \$                                                                                                                     |                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           | s - s<br>s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                              |               | - s -                  | s -         |            |             |
| 2015<br>2016                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ (0.0) \$<br>\$ (0.0) \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0                                   |                                 | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ (0.0)<br>\$ (0.0)                                            |                                                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - s<br>s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.1) \$<br>(0.1) \$                                                                                                         |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                                                              |               | . s .                  |             | 0.4        |             |
| 2017                                                                                                                                   | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$ (0.0) \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                   |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s (0.0)                                                         |                                                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s . s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.1) \$                                                                                                                     |                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                         | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                                                              |               | . s .                  | s -         |            |             |
| 2018                                                                                                                                   | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s (0.0) s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0                                   |                                 | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s (0.0)                                                         |                                                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.1) \$                                                                                                                     |                             | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s ·                                                                       | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                                                              |               | - s -                  | s -         |            |             |
| 2019                                                                                                                                   | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$ - 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s (0.0) s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0                                   |                                 | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ (0.0)                                                        | \$ 0.0                                                       | s - s                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.1) \$                                                                                                                     | 0.0                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                                                              |               | - \$ -                 | s -         |            |             |
| 2020                                                                                                                                   | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S (0.0) S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0                                   |                                 | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ (0.0)                                                        |                                                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.1) \$                                                                                                                     | 0.0                         | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s -                                                                       | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                                                              |               | - s -                  | s -         |            |             |
| 2021                                                                                                                                   | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ (0.0) \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                   | s -                             | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ (0.0)                                                        | \$ 0.0                                                       | s - s                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.1) \$                                                                                                                     | 0.0                         | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s -                                                                       | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.2)               | \$ 0.0                                                       | \$            | - s -                  | s -         | 0.3        | \$ 0.0      |
| 2022                                                                                                                                   | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$ (0.0) \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                   |                                 | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ (0.0)                                                        | \$ 0.0                                                       | s - s                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.1) \$                                                                                                                     | 0.0                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                         | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.2)               | \$ 0.0                                                       | \$            | - \$ -                 | s -         | 0.3        | \$ 0.0      |
| 2023                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$ (0.0) \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                   |                                 | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ (0.0)                                                        |                                                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.1) \$                                                                                                                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                                                              |               | - s -                  | s -         |            |             |
| 2024                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S (0.0) S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0                                   |                                 | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ (0.0)                                                        |                                                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.1) \$                                                                                                                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                                                              |               | - s -                  | s -         |            |             |
| 2025                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S (0.0) S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0                                   |                                 | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ (0.0)                                                        |                                                              |                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.1) \$                                                                                                                     |                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                                                              |               | - s -                  | s -         |            |             |
| 2026                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s (0.0) s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0                                   |                                 | s ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ (0.0)                                                        |                                                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - s<br>s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.1) \$                                                                                                                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s -                                                                       | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                                                              |               | · s ·                  | s -         |            |             |
| 2027                                                                                                                                   | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ (0.0) \$<br>\$ (0.0) \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0                                   |                                 | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ (0.0)<br>\$ (0.0)                                            |                                                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.1) \$                                                                                                                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s ·                                                                       | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                                                              |               | · s ·                  | s -         |            |             |
| 2028                                                                                                                                   | s .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ (0.0) \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                   |                                 | s .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ (0.0)<br>\$ (0.0)                                            | \$ 0.0                                                       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s . s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.1) \$                                                                                                                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ .                                                                      | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.1)               |                                                              |               |                        | s -         | 0.2        |             |
| Total                                                                                                                                  | \$ 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$ 0.3 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                   |                                 | \$ 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$ 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 | \$ 0.0                                                       |                           | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$ 0.1 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (1.9) \$                                                                                                                     | 0.0                         | \$ 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 4.1                                                                    | \$ 0.2 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (3.3)               |                                                              |               | 0.5 \$ 6.1             | \$ 0.2      | 5.3        |             |
| Ann.                                                                                                                                   | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$ 0.0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                 | \$ 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ (0.1)                                                        |                                                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0.3                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                                              |               |                        | \$ 0.0      | 0.5        | \$ 0.0      |
| Allii.                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$ (0.0) \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                   | \$ 0.0                          | J \$ U.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ (0.1)                                                        | \$ 0.0                                                       | \$ 0.0 \$                 | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$ 0.0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.2) \$                                                                                                                     | 0.0                         | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ş U.S                                                                     | \$ 0.0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.3)               | \$ 0.0                                                       | •             | 0.0 \$ 0.5             | \$ 0.0      | 0.5        | \$ 0.0      |
| Aill.                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0   c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10,000-49,999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$ (0.0) \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                   | \$ 0.0                          | J   \$ 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50,000-99,999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 | \$ 0.0                                                       | \$ 0.0  \$                | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$ 0.0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.2) \$                                                                                                                     | 6 0.0                       | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 0.3                                                                    | 1,000,000+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0.3)               | \$ 0.0                                                       | •             | 0.0 \$ 0.5             | \$ 0.0      | 0.5        | 3 0.0       |
|                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10,000-49,999<br>Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | \$ 0.6                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50,000-99,999<br>Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                 |                                                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100,000-999,999<br>Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                              |                             | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                           | 1,000,000+<br>Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.3)               |                                                              | •             | 0.0 \$ 0.5             | \$ 0.0      | 0.5        |             |
| Year                                                                                                                                   | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Monitoring E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Significant<br>Excursion              | Implementation                  | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50,000-99,999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 | Significant<br>Excursion                                     | Implementation            | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100,000-999,999<br>Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                              | Significant Excursion       | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IDSE                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (U.3)<br>Monitoring | Significant<br>Excursion                                     | •             | 0.0   \$ 0.5           | \$ 0.0      | 0.5        |             |
| Year<br>2005                                                                                                                           | Implementation \$ 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10,000-49,999  Monitoring Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Monitoring E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Significant<br>Excursion              | Implementation \$ 0.1           | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50,000-99,999<br>Monitoring<br>Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                 | Significant<br>Excursion                                     | Implementation I          | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100,000-999,999  Monitoring Plans M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | onitoring - \$                                                                                                               | Significant<br>Excursion    | Implementation \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IDSE                                                                      | 1,000,000+  Monitoring Plans S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring          |                                                              | •             | 0.0 \$ 0.5             | \$ 0.0      | 0.5        | 3 0.0       |
| Year<br>2005<br>2006                                                                                                                   | Implementation \$ 0.2 \$ 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IDSE \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10,000-49,999  Monitoring Plans  \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Significant<br>Excursion              | Implementation \$ 0.1           | IDSE<br>1 \$ -<br>\$ 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50,000-99,999 Monitoring Plans S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring S - S -                                              | Significant<br>Excursion<br>S -                              | Implementation   S 0.1 \$ | IDSE - 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100,000-999,999  Monitoring Plans M  \$ - \$ \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | onitoring - \$                                                                                                               | Significant<br>Excursion    | Implementation \$ 0.0 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IDSE \$ - \$ 0.3                                                          | 1,000,000+  Monitoring Plans  S - S S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monitoring -        |                                                              | •             | 0.0 \$ 0.5             | S 0.0       | 0.3        | 3 0.0       |
| Year<br>2005<br>2006<br>2007                                                                                                           | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IDSE \$ - \$ \$ 2.1 \$ \$ 7.1 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10,000-49,999  Monitoring Plans  S - S - S 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monitoring E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Significant<br>Excursion<br>-<br>-    | Implementation \$ 0.1 \$ - \$ - | IDSE 1 \$ - \$ 0.8 \$ 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50,000-99,999  Monitoring Plans  \$ - \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monitoring S - S - S -                                          | Significant Excursion  S - S - S -                           | Implementation            | IDSE - 2.5 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Monitoring   Monitoring   Ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | onitoring - s - s - s                                                                                                        | Significant<br>Excursion    | Implementation \$ 0.0 \$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IDSE<br>\$ ·<br>\$ 0.3<br>\$ 0.3                                          | 1,000,000+    Monitoring   Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Monitoring -        |                                                              | 3             | 0.0 \$ 0.5             | S 0.0       | 0.3        | 3 0.0       |
| Year<br>2005<br>2006                                                                                                                   | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IDSE \$ - \$ \$ 2.1 \$ \$ 7.1 \$ \$ 4.2 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,000-49,999  Monitoring Plans  \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring E \$ - \$ \$ - \$ \$ - \$ \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Significant<br>Excursion              | Implementation                  | IDSE<br>1 \$ -<br>\$ 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50,000-99,999  Monitoring Plans  S - S - S 0.0 S 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring  S - S - S - S -                                     | Significant Excursion  S - S - S -                           | Implementation            | IDSE - 2.5 - 2.3 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100,000-999,999  Monitoring Plans M  \$ - \$ \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | onitoring - \$                                                                                                               | Significant<br>Excursion    | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IDSE                                                                      | 1,000,000+  Monitoring Plans  S - S S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monitoring          |                                                              | 3             | 0.0 \$ 0.5             | 3 00        | 0.3        | 3 0.0       |
| Year<br>2005<br>2006<br>2007<br>2008                                                                                                   | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IDSE \$ - \$ \$ 2.1 \$ \$ 7.1 \$ \$ 4.2 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,000-49,999  Monitoring Plans  \$ - \$ - \$ 0.1 \$ 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monitoring E \$ - \$ \$ - \$ \$ - \$ \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Significant<br>Excursion              | Implementation                  | IDSE 1 \$ - 5 0.8 \$ 4.2 1 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50,000-99,999  Monitoring Plans  S - S - S 0.0 S 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring S - S - S - S -                                      | Significant Excursion  S - S - S - S - S -                   | Implementation            | IDSE - 2.5 - 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | onitoring - \$ - \$ - \$ - \$ - \$                                                                                           | Significant<br>Excursion    | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IDSE                                                                      | 1,000,000+  Monitoring Plans  S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S S - S S S S - S S S S - S S S S - S S S S - S S S S - S S S S - S S S S - S S S S - S S S S - S S S S S - S S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring -        |                                                              | 3             | 0.0 \$ 0.5             | \$ 0.0      | 0.3        | 3 0.0       |
| Year<br>2005<br>2006<br>2007<br>2008<br>2009                                                                                           | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring Plans  \$ - \$ 0.1 \$ 0.2 \$ 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Monitoring S E S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - | Significant<br>Excursion              | Implementation                  | IDSE   \$ -   \$ 0.8   \$ 4.2   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ -   \$ 0.5   \$ | 50,000-99,999  Monitoring Plans  S - S - S 0.0 S 0.1 S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monitoring                                                      | Significant Excursion  S - S - S - S - S - S - S - S - S - S | Implementation            | IDSE - 2.5 - 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100,000-999,999    Monitoring   M   M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | onitoring -                                                                                                                  | Significant<br>Excursion    | Implementation   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IDSE<br>\$ -<br>\$ 0.3<br>\$ 0.3<br>\$ -<br>\$ -                          | 1,000,000+    Monitoring   Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Monitoring          | Significant Excursion  S - S - S - S - S - S -               | 3             | 0.0 \$ 0.5             | \$ 0.0      | 0.3        | 3 0.0       |
| Year<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010                                                                                   | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring Plans  S - S - S 0.1 S 0.2 S 0.1 S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring E S - S S - S S - S S - S S - S S - S S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Significant<br>Excursion              | Implementation   S              | IDSE 1 \$ - \$ 0.8 \$ 4.2 1 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50,000-99,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring S - S - S - S - S -                                  | Significant Excursion  S - S - S - S - S - S - S - S - S - S | Implementation            | IDSE - 2.5 - 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100,000-999,999  Monitoring Plans M  \$ - \$ \$ - \$ \$ 0.0 \$ \$ 0.0 \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | onitoring - s - s - s - s - s - s - s - s                                                                                    | Significant<br>Excursion    | Implementation   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | **************************************                                    | 1,000,000+    Monitoring   Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Monitoring          | Significant Excursion  S - S - S - S - S - S - S - S - S - S | 3             | 0.0 \$ 0.5             | \$ 00       | 0.3        |             |
| Year 2005 2006 2007 2008 2009 2010 2011 2012 2013                                                                                      | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring Plans  S - S - S 0.1 S 0.2 S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Monitoring   S   E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Significant<br>Excursion              | Implementation   S              | IDSE    S -   S 0.8   S 4.2   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -     S -   S -     S -     S -     S -       S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50,000-99,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring   S                                                  | Significant Excursion                                        | Implementation            | IDSE - 2.5 - 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Mon   | onitoring - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -                                                                     | Significant Excursion       | Implementation   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | **************************************                                    | 1,000,000+    Monitoring   Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Monitoring          | Significant   Excursion                                      | 3             | 0.0   \$ 0.5           | \$ 00       | 0.3        | 3 00        |
| Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014                                                                                 | Implementation   \$ 0.2   \$ 0.3   \$   \$ 0.1   \$ 0.1   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$   \$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S   S   S   S   S   S   S   S   S   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10,000-49,999  Monitoring Plans  S - S - S 0.1 S 0.2 S 0.1 S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monitoring   S   E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Significant<br>Excursion              | Implementation   S              | IDSE   S - S 0.8   S 4.2   S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$0,000-99,999  Monitoring Plans  \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring   S                                                  | Significant   Excursion                                      | Implementation            | 2.5 - 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100,000-999,999  Monitoring Plans M  \$ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | onitoring - \$ - \$ - \$ - \$ - \$ - \$ - \$ 0.2 \$ - \$ 0.1 \$ 5 - \$ 0.1 \$ 5 - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ | Significant Excursion       | Implementation   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IDSE \$ - \$ 0.3 \$ 0.3 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - | 1,000,000+    Monitoring   Plans   S   S   S   S   S   S   S   S   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitoring          | Significant                                                  | 3             | 0.0   \$ 0.5           | \$ 00       | 0.3        | 3 00        |
| Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015                                                                            | Implementation   \$ 0.2   \$ 0.3   \$ 0.1   \$ 0.1   \$ 0.1   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0 | S   S   S   S   S   S   S   S   S   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10,000-49,999  Monitoring Plans  S - S - S 0.1 S 0.2 S 0.1 S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Manitoring   S   S   S   S   S   S   S   S   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Significant<br>Excursion              | Implementation   S              | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50,000-99,999  Monitoring Plans S S S O.0 S O.1 S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring  S - S - S - S - S - S - S - S 0.1 S 0.1 S 0.1 S 0.1 | Significant Excursion                                        | Implementation            | IDSE - 2.5 - 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring   Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | onitoring - \$ \$ - \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ \$ \$                                                               | Significant Excursion       | Implementation   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IDSE \$ - \$ 0.3 \$ 0.3 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - | 1,000,000+  Monitoring Plans  S - S S - S S - S S - S S - S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S S - S S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring          | Significant                                                  |               | 0.0   \$ 0.5           | \$ 00       | 0.3        |             |
| Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016                                                                       | Implementation   \$ 0.2   \$ 0.3   \$ - 0.1   \$ 0.1   \$ 0.1   \$ 0.1   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ 0.5   \$ | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10,000-49,999  Monitoring Plans  S - S - O.1  S - O.2  S - O.1  S - C.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring   S   S   S   S   S   S   S   S   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Significant<br>Excursion  0.0 0.0 0.0 | Implementation   S              | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50,000-99,999  Monitoring Plans S - S - S - S 0.0 S 0.1 S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Montoring  S - S - S - S - S - S - S - S - S - S                | Significant   Excursion                                      | Implementation            | iDSE : 2.5 : 2.5 : 2.5 : - : : : : : : : : : : : : : : : : :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Monitoring   Plans   Monitoring   Plans   Monitoring   Plans   Monitoring   Monit   | onitoring -                                                                                                                  | Significant Excursion       | Implementation   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IDSE \$ - \$ 0.3 \$ 0.3 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - | 1,000,000+  Monitoring  S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Monitoring          | Significant   Executsion                                     |               | 0.0   \$ 0.5           | \$ 00       | 0.3        | 3 0.0       |
| Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017                                                                  | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10,000-48,999  Monitoring Plans  - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Monitoring   S   S   S   S   S   S   S   S   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Significant Excursion                 | Implementation   S              | IDSE 1 S - S 0.8 S 4.2 1 S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$0,000-99,999  Monitoring Plans \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Monitoring  S - S - S - S - S - S - S - S - S - S               | Significant   Excursion                                      | Implementation            | iDSE 2.5 - 2.5 - 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | onitoring -                                                                                                                  | Significant Excursion       | Implementation   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | #DSE \$ - \$ 0.3 \$ 0.3 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - | 1,000,000+  Monitoring Plans  S - S S - S S - S S - S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S S - S S S S - S S S S - S S S S - S S S S - S S S S - S S S S - S S S S - S S S S - S S S S - S S S S S - S S S S - S S S S - S S S S - S S S S S - S S S S S - S S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Monitoring          | Significant   Execursion                                     | 3             | 0.0   \$ 0.5           | \$ 00]      |            |             |
| Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018                                                             | Implementation S 0.2 S 0.3 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0.1 S 0                                                                                                                                                                                                                                                             | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10,000-49,999  Monitoring Plans  S - S - O.1  S - O.1  S - O.1  S - O.2  S - O.1  S - O.5  S | Monitoring   S   S   S   S   S   S   S   S   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Significant Excursion                 | Implementation                  | IDSE 1 \$ - \$ 0.8 \$ 4.2 \$ 1 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50,000-99,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring  S - S - S - S - S - S - S - S - S - S               | Significant   Excursion                                      | Implementation            | IDSE   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5 | 100,000-999,990  Monitoring Plants S - S S - S S - S S - S S - S S - S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S | onitoring  -                                                                                                                 | Significant   Excursion     | Implementation S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IDSE \$                                                                   | 1,000,000+  Monitoring Plants  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Monitoring          | Significant Excursion                                        |               | 0.0   \$ 0.5           | \$ 00]      | 0.00       |             |
| Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017                                                                  | Implementation   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IDSE  \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - | 10,000-49,999  Monitoring Plans  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring   E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Significant Excursion                 | Implementation                  | IDSE 1 \$ - \$ 0.8 \$ 4.2 1 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$0,000-99,999  Monitoring Plans  \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring  S - S - S - S - S - S - S - S - S - S               | Significant   Excursion                                      | Implementation            | IDSE : 2.5 : 2.3 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100,000-999,990  Monitoring Plants S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S S - S S S S - S S S S - S S S S - S S S S - S S S S S - S S S S S - S S S S S S - S S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | onitoring -                                                                                                                  | Significant Excursion       | Implementation   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IDSE   S   -                                                              | 1,000,000+  Monitoring Plans  S - S S - S S - S S - S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S S - S S S S - S S S S - S S S S - S S S S - S S S S - S S S S - S S S S - S S S S - S S S S - S S S S S - S S S S - S S S S - S S S S - S S S S S - S S S S S - S S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Monitoring          | Significant   Excursion                                      |               | 0.0   \$ 0.5           | s wy        |            | - 0.0       |
| Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018                                                             | Implementation   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -     S -     S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10,000-49,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Monitoring   E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Significant Excursion                 | Implementation                  | IDSE 1 \$ - \$ 0.8 \$ 4.2 1 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$0,000-99,999  Monitoring Prians  \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monkering  S - S - S - S - S - S - S - S - S - S                | Significant   Excursion                                      | Implementation            | IDSE : 2.5 : 2.3 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring   Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | onitoring -                                                                                                                  | Significant Excursion       | Implementation S 0.0 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IDSE                                                                      | 1,000,000+  Monitoring Plans  S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S | Monitoring          | Significant Excursion                                        |               | 0.0   \$ 0.5           | \$ 00]      | 0.00       |             |
| Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019                                                        | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10,000-49,999  Monkoring Plans  S - S 0.1  S 0.2  S 0.1  S - S 0.5  S - S 0.5  S - S 0.5  S - S - S 0.5  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monitoring   S   S   S   S   S   S   S   S   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Significant                           | Implementation                  | IDSE IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$0,000-99,999  Monitoring Plans  \$ . \$ . \$ . \$ 0.0 \$ 0.1 \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Menkering   S                                                   | Significant   Excursion                                      | Implementation            | iDSE : 2.5 : 2.5 : 2.3 : - : : : : : : : : : : : : : : : : :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100,000-999,999  Monitoring Flants S - S S - S S - O.0 S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | onitoring -                                                                                                                  | Significant Excursion       | Implementation S 0.0 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IDSE   S   C   S   C   C   C   C   C   C   C                              | 1,000,000+  Monitoring Phanes  5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Monitoring          | Significant   Excursion                                      | ,             | 0.0   \$ 0.5           | \$ 00]      | v va       |             |
| Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020                                                   | Implementation   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10,000-49,999  Monkoring Plans  S - S 0.1  S 0.2  S 0.1  S - S 0.5  S - S 0.5  S - S 0.5  S - S - S 0.5  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monitoring   E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Significant Excursion                 | Implementation                  | IDSE   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C   S - C                                                                                                                                                                                                                                                                                                       | \$0,000-99,999  Monitoring Plans \$ - \$ \$ 0.0 \$ 0.1 \$ 0.1 \$ 0.2 \$ 0.2 \$ 0.3 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0.5 \$ 0. | Monitoring  S - S - S - S - S - S - S - S - S - S               | Significant   Executation                                    | Implementation            | IDSE : 2.5 : 2.5 : 2.3 : - : : : : : : : : : : : : : : : : :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100,000-099,999   Monitoring   Plans   M   S   S   S   S   S   S   C   S   S   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | onitoring -                                                                                                                  | Significant Excursion       | Implementation   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IDSE                                                                      | 1,000,000 -  Monitoring Plans  5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Monitoring          | Significant   Excursion                                      |               | 0.0   \$ 0.5           | \$ 00]      | V-a        |             |
| Year 2005 2006 2007 2018 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2021                                                        | Implementation   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring   Plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring   E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Significant                           | Implementation                  | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0,000-99,998  Monitoring Plans  \$ . \$ 0.0 \$ 0.1 \$ 0.0 \$ 0.1 \$ 0.0 \$ 0.1 \$ 0.0 \$ 0.1 \$ 0.0 \$ 0.1 \$ 0.0 \$ 0.1 \$ 0.0 \$ 0.1 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0  | Monhoring   S                                                   | Significant   Executation                                    | Implementation            | IDSE : 2.5 : 2.5 : 2.3 : - : : : : : : : : : : : : : : : : :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100,000-099,999  Monitoring Plans M S - S S - S S - O.0 S S - O.0 S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | onitoring  -                                                                                                                 | Significant Excursion       | Implementation   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IDSE                                                                      | 1,000,000+  Monitoring Plans  S - S S - S S - S S - S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring          | Significant   Excersion                                      | ,             | 0.0   \$ 0.5           | \$ 00]      | V-a        |             |
| Year 2005 2006 2007 2008 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025                               | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10,000-49,999  Monitoring Plans  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring   E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Significant                           | Implementation                  | IDSE   S -   S 0.8   S 4.2   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -     S -   S -     S -     S -     S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0,000-99,599  Monitoring Plans  \$ \$ 0.0 \$ 0.1 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monhoring   S                                                   | Significant   Excursion                                      | Implementation            | IDSE : 2.5 : 2.3 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | onitoring  -                                                                                                                 | Significant Excursion       | Implementation   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IDSE S                                                                    | 1,000,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monitoring          | Significant   Excursion                                      |               | 0.0   \$ 0.5           | \$ 00]      | 0.0        |             |
| Year 2005 2006 2007 2010 2011 2011 2011 2015 2017 2018 2019 2020 2021 2022 2023 2024                                                   | Implementation   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 108E   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring   Plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Significant                           | Implementation                  | IDSE   S -   S 0.8   S 42   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -     S -   S -     S -     S -     S -     S -       S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$0,000-9,599  Monitoring Plans  \$ . \$ 0.0 \$ 0.1 \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring   S                                                  | Significant   Excursion                                      | Implementation            | IDSE : 2.5 : 2.3 : : : : : : : : : : : : : : : : : : :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - S - S - S - S - S - S - S - S - S - S                                                                                      | Significant   Excursion     | Implementation   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IDSE   S   -                                                              | 1,000,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monitoring          | Skypinficant   Excursion                                     | ,             | 0.0   \$ 0.5           | s wy        | Val        |             |
| Year 2005 2006 2007 2011 2014 2015 2016 2019 2020 2021 2022 2023 2024 2025 2026 2027                                                   | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 108E   S   C   S   C   S   C   S   C   S   C   S   C   S   C   S   C   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring   Plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring   E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | Implementation                  | IDSE   S   -   S   0.8   S   4.2   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -     S   -     S   -     S   -     S   -     S   -     S   -     S   -       S   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0,000-99,599    Monitoring   Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring  S - S - S - S - S - S - S - S - S - S               | Significant                                                  | Implementation            | IDSE : 2.5 : 2.5 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Mon   | - S - S - S - S - S - S - S - S - S - S                                                                                      | Significant   Excursion   - | Implementation S 0.0 S S 0.0 S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S . | IDSE                                                                      | 1,000,000 -  Monitoring Plane  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Monitoring          | Significant Excursion                                        | ,             | 0.00                   | \$ 00]      |            |             |
| Year 2005 2006 2009 2010 2012 2013 2014 2016 2017 2018 2020 2021 2022 2022 2024 2025 2026 2026 2027 2028 2027 2028 2028 2028 2028 2028 | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 108E   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring   Plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring   S   S   S   S   S   S   S   S   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Significant                           | Implementation                  | IDSE   S -   S 0.8   S 42   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -     S -   S -     S -     S -     S -     S -       S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$0,000-99,599    Monitoring   Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monhoring   S                                                   | Significant   Excursion                                      | Implementation            | IDSE : 2.5 : 2.5 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - S S - S - S - S - S - S - S - S - S -                                                                                      | Significant   Everysion     | Implementation   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IDSE   S   -                                                              | 1,000,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | Significant   Excursion                                      | ,             | 0.00 \$ 0.05           | s wy        |            |             |
| Year 2005 2006 2007 2010 2011 2012 2013 2014 2015 2016 2017 2020 2021 2022 2023 2024 2025 2026 2027 2028 2028 2028 2028                | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring   Plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | Implementation                  | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0,000-9,599  Monitoring Plans  \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Monitoring   S                                                  | Significant   Excursion                                      | Implementation            | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - S - S - S - S - S - S - S - S - S - S                                                                                      | Significant Excursion       | Implementation   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IDSE \$                                                                   | 1,000,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | Stypisficant   Excursion                                     | ,             | 0.00                   | s wy        |            |             |
| Year 2005 2006 2007 2010 2011 2012 2013 2014 2015 2016 2019 2020 2021 2022 2023 2024 2025 2026                                         | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring   Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Significant                           | Implementation                  | IDSE   S   -   S   0.8   S   4.2   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -   S   -     S   -     S   -     S   -     S   -     S   -     S   -     S   -       S   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0,000-99,599    Monitoring   Plans     \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monitoring  S - S - S - S - S - S - S - S - S - S               | Significant                                                  | Implementation   1        | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - S S - S - S - S - S - S - S - S - S -                                                                                      | Significant   Exertises     | Implementation S 0.0 S S 0.0 S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S . | IDSE                                                                      | 1,000,000   Monitoring Plane  5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Monitoring          | Significant                                                  | ,             |                        | s wy        |            |             |

Ann. \$ 0.1 | \$ 1.2 | \$ 0.0 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$ 1.2 | \$

# Exhibit J.2bu Present Value of Total Costs at 7% Discount Rate, by System Size (Surface Water NTNCWSs)

|              | <100<br>90 Percent |      |                     |                       | 100-499          | l                    |                      |        | 500-999       |                      |                       | 1,000-3,29    | 9                    |                       | 3,300-9,99       | 19                   |                       | 10,000-49,9   | 99                   |                       | 50,000-99,9   | 999                  |                       | 100,000-999,     | 999                  |                       | 1,000,000     | l+                   |                       |
|--------------|--------------------|------|---------------------|-----------------------|------------------|----------------------|----------------------|--------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|------------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|------------------|----------------------|-----------------------|---------------|----------------------|-----------------------|
|              |                    | C    | 90 Per<br>Confidenc |                       |                  |                      | Percent<br>nce Bound | d      |               |                      | ercent<br>ce Bound    |               |                      | ercent<br>ce Bound    |                  |                      | ercent<br>nce Bound   |               | 90 Pe<br>Confiden    | ercent<br>ce Bound    |               |                      | ercent<br>nce Bound   |                  |                      | ercent<br>ce Bound    |               |                      | ercent<br>nce Bound   |
| Year         | Mean<br>Value      |      | ower<br>%tile)      | Upper<br>(95th %tile) | Mean<br>Value    | Lower<br>(5th %tile) | Uppe<br>(95th %      |        | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value    | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value    | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) |
| 2005         | \$ -               | \$   | - :                 | \$ -                  | \$ -             | \$ -                 | \$                   | - \$   | -             | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ -          | s -                  | \$ -                  |
| 2006         | \$ 0.0             | \$   | 0.0                 | \$ 0.0                | \$ 0.0           | \$ 0.0               | \$                   | 0.0 \$ | 0.0           | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2007         | \$ -               | \$   | - :                 | \$ -                  | \$ -             | \$ -                 | \$                   | - \$   |               | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2008         | \$ -               | \$   | - :                 | \$ -                  | \$ -             | \$ -                 | \$                   | - \$   | -             | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.1           | \$ 0.0               | \$ 0.1                | \$ -          | \$ -                 | \$ -                  |
| 2009         | \$ 0.1             | 1 \$ | 0.0                 | \$ 0.1                | \$ 0.1           | \$ 0.1               | \$                   | 0.2 \$ | 0.1           | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.1           | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.1                | \$ -          | \$ -                 | \$ -                  | \$ 0.1           | \$ 0.0               | \$ 0.1                | \$ -          | \$ -                 | \$ -                  |
| 2010         | \$ 0.1             | 1 \$ | 0.1                 | \$ 0.2                | \$ 0.2           | \$ 0.1               | \$                   | 0.3 \$ | 0.1           | \$ 0.1               | \$ 0.2                | \$ 0.3        | \$ 0.1               | \$ 0.4                | \$ 0.2           | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ -          | \$ -                 | \$ -                  | \$ 0.1           | \$ 0.0               | \$ 0.1                | \$ -          | \$ -                 | \$ -                  |
| 2011         | \$ 0.1             | 1 \$ | 0.1                 | \$ 0.2                | \$ 0.2           | \$ 0.1               | \$                   | 0.4 \$ | 0.1           | \$ 0.1               | \$ 0.2                | \$ 0.3        | \$ 0.1               | \$ 0.4                | \$ 0.2           | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ -          | \$ -                 | \$ -                  | \$ 0.1           | \$ 0.0               | \$ 0.1                | \$ -          | \$ -                 | \$ -                  |
| 2012         | \$ 0.1             | 1 \$ | 0.1                 | \$ 0.2                | \$ 0.3           | \$ 0.1               | \$                   | 0.4 \$ | 0.1           | \$ 0.1               | \$ 0.2                | \$ 0.3        | \$ 0.2               | \$ 0.5                | \$ 0.2           | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ -          | \$ -                 | \$ -                  | \$ 0.1           | \$ 0.0               | \$ 0.1                | \$ -          | \$ -                 | \$ -                  |
| 2013         | \$ 0.1             | 1 \$ | 0.1                 | \$ 0.2                | \$ 0.3           | \$ 0.1               | \$                   | 0.4 \$ | 0.1           | \$ 0.1               | \$ 0.2                | \$ 0.3        | \$ 0.2               | \$ 0.5                | \$ 0.2           | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ -          | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               |                       |               | \$ -                 | \$ -                  |
| 2014         | \$ 0.1             | 1 \$ | 0.0                 | \$ 0.1                | \$ 0.2           | \$ 0.1               | \$                   | 0.3 \$ | 0.1           | \$ 0.1               | \$ 0.2                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1           | \$ 0.1               | \$ 0.2                | \$ 0.0        | \$ 0.0               | \$ 0.1                | \$ -          | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2015         | \$ 0.1             | 1 \$ | 0.0                 | \$ 0.1                | \$ 0.2           | \$ 0.1               | \$                   | 0.2 \$ | 0.1           | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.1           | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2016         | \$ 0.1             | 1 \$ | 0.0                 | \$ 0.1                | \$ 0.2           | \$ 0.1               | \$                   | 0.2 \$ |               | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.1           | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2017         | \$ 0.1             | 1 \$ | 0.0                 | \$ 0.1                | \$ 0.1           | \$ 0.1               | \$                   | 0.2 \$ | 0.1           | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.1           | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2018         | \$ 0.0             |      | 0.0                 | \$ 0.1                | \$ 0.1           | \$ 0.1               | \$                   | 0.2 \$ |               | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.1           | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               |                       | \$ -          | \$ -                 | \$ -                  |
| 2019         | \$ 0.0             |      |                     | \$ 0.1                |                  | \$ 0.1               | \$                   | 0.2 \$ |               | \$ 0.0               |                       | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0           | \$ 0.0               |                       | \$ 0.0        |                      |                       | 1             | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               | -                     |               | \$ -                 | \$ -                  |
| 2020         | \$ 0.0             |      |                     |                       |                  | \$ 0.1               | \$                   | 0.2 \$ |               | \$ 0.0               |                       | \$ 0.1        | \$ 0.0               | \$ 0.1                |                  | \$ 0.0               |                       |               |                      |                       |               | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               | -                     |               | \$ -                 | \$ -                  |
| 2021         | \$ 0.0             |      |                     | \$ 0.1                | \$ 0.1           | \$ 0.1               | \$                   | 0.2 \$ |               | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0           | \$ 0.0               |                       | \$ 0.0        | \$ 0.0               | \$ 0.0                |               | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               | -                     |               | \$ -                 | \$ -                  |
| 2022         | \$ 0.0             |      | 0.0                 | \$ 0.1                | \$ 0.1           | \$ 0.1               | \$                   | 0.2 \$ |               | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0           | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               |                       | \$ -          | \$ -                 | \$ -                  |
| 2023         | \$ 0.0             |      | 0.0                 | \$ 0.1                | \$ 0.1           | \$ 0.0               |                      | 0.1 \$ |               | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0           | \$ 0.0               |                       | \$ 0.0        |                      | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               | -                     |               | \$ -                 | \$ -                  |
| 2024         | \$ 0.0             |      |                     |                       | \$ 0.1           | \$ 0.0               | i i                  | 0.1 \$ |               | \$ 0.0               |                       | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0           | \$ 0.0               |                       |               | \$ 0.0               |                       |               | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               | -                     | \$ -          | \$ -                 | \$ -                  |
| 2025<br>2026 | \$ 0.0             |      | 0.0                 | \$ 0.0                | \$ 0.1<br>\$ 0.1 | \$ 0.0               | · .                  | 0.1 \$ |               | \$ 0.0<br>\$ 0.0     | \$ 0.0                |               | \$ 0.0<br>\$ 0.0     | \$ 0.1                | \$ 0.0<br>\$ 0.0 | \$ 0.0               |                       |               | \$ 0.0               | \$ 0.0                | \$ -<br>\$ -  | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0<br>\$ 0.0     | -                     |               | \$ -<br>\$ -         | s -                   |
|              | \$ 0.0             |      | 0.0                 | \$ 0.0                |                  | \$ 0.0               | i .                  |        |               |                      | \$ 0.0                | \$ 0.1        |                      | \$ 0.1<br>\$ 0.1      |                  | \$ 0.0               |                       |               | \$ 0.0               | \$ 0.0<br>\$ 0.0      | *             | <b>3</b> -           | \$ -                  | \$ 0.0           | •                    | \$ 0.0                |               | Ĭ.                   | s -                   |
| 2027         | \$ 0.0             |      | 0.0                 |                       |                  | \$ 0.0               | i i                  | 0.1 \$ |               | \$ 0.0               | \$ 0.0<br>\$ 0.0      |               | \$ 0.0               |                       | \$ 0.0           | \$ 0.0               |                       |               |                      |                       |               |                      | s -                   | \$ 0.0           | \$ 0.0               | -                     |               | Ĭ.                   | s -                   |
| 2028         | \$ 0.0             |      | 0.0                 | \$ 0.0<br>\$ 0.0      |                  | \$ 0.0<br>\$ 0.0     |                      | 0.1 \$ |               | \$ 0.0<br>\$ 0.0     | \$ 0.0                |               | \$ 0.0<br>\$ 0.0     | \$ 0.1<br>\$ 0.1      | \$ 0.0<br>\$ 0.0 | \$ 0.0<br>\$ 0.0     | ,                     |               |                      |                       | s -           | \$ -                 | s -                   | \$ 0.0<br>\$ 0.0 | \$ 0.0<br>\$ 0.0     |                       | -             | \$ -                 | s -                   |
| Total        | \$ 1.2             | +    | 0.6                 |                       |                  | \$ 1.5               |                      | 4.4 \$ |               | \$ 0.7               |                       |               | \$ 0.0               | \$ 4.2                |                  | \$ 0.9               |                       |               |                      |                       | -             | s -                  |                       | \$ 0.5           | \$ 0.3               |                       |               | s -                  | s -                   |
| Ann.         | \$ 0.1             | +    | 0.6                 | \$ 1.0                |                  | \$ 0.1               | -                    | 0.4 \$ |               | \$ 0.7               | ·                     | •             | \$ 0.1               |                       |                  | \$ 0.9               |                       |               | -                    | •                     | \$ -          | \$ .                 | \$ .                  | \$ 0.5           | \$ 0.0               | •                     |               | s .                  | \$ .                  |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

# Exhibit J.2bv Present Value of Capital Costs at 7% Discount Rate, by System Size (Surface Water NTNCWSs)

|       | <100 |                                           |        |                       | 100-499     |                      |                       |                     | 500-999 |                     |                       | 1,000-3,2           | 99                   |                     |                      | 3,300-9,99  | 9                    |                       | 10                  | ,000-49,999 |                      |                       | 50,000-99,9   | 199                  |                       | 100,000-999         | 999                  |                       | 1,000,000           | ) <u>.</u>           |                       |                     |
|-------|------|-------------------------------------------|--------|-----------------------|-------------|----------------------|-----------------------|---------------------|---------|---------------------|-----------------------|---------------------|----------------------|---------------------|----------------------|-------------|----------------------|-----------------------|---------------------|-------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------------|----------------------|-----------------------|---------------------|----------------------|-----------------------|---------------------|
|       |      |                                           | 90     | Percent<br>ence Bound |             |                      | 90 P                  | ercent<br>ace Bound |         |                     | 90 Pc                 | ercent<br>ice Bound |                      | 90                  | Percent<br>nce Bound |             |                      | 90 P                  | ercent<br>nce Bound |             | T                    | 90 Perc<br>Confidence | ent           |                      | 90 P                  | ercent<br>nce Bound |                      | 90 F                  | ercent<br>nce Bound |                      | 90 P                  | ercent<br>nce Bound |
| Year  |      | Mean Lower Upper (5th %tile) (95th %tile) |        |                       | ean<br>alue | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mea<br>Valu         |         | Lower<br>5th %tile) | Upper<br>(95th %tile) | Mean<br>Value       | Lower<br>(5th %tile) | Upper<br>(95th %til |                      | ean<br>alue | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value       |             | Lower<br>h %tile) (9 | Upper<br>95th %tile)  | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value       | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value       | Lower<br>(5th %tile) | Upper<br>(95th %tile) |                     |
| 2005  | \$   | -                                         | \$ -   | \$ -                  | \$          |                      | \$ -                  | \$ -                | \$ -    | \$                  | -                     | \$ -                | \$ -                 | \$ -                | \$ -                 | \$          | -                    | \$ -                  | \$ -                | \$ -        | \$                   | - \$                  | -             | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                |
| 2006  | \$   | -                                         | \$ -   | \$ -                  | \$          | -                    | \$ -                  | \$ -                | \$ -    | \$                  | -                     | \$ -                | \$ -                 | \$ -                | \$ -                 | \$          | -                    | \$ -                  | \$ -                | \$ -        | \$                   | - \$                  | -             | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                |
| 2007  | \$   | -                                         | \$ -   | \$ -                  | \$          | -                    | \$ -                  | \$ -                | \$ -    | \$                  | -                     | \$ -                | \$ -                 | \$ -                | \$ -                 | \$          | -                    | \$ -                  | \$ -                | \$ -        | \$                   | - \$                  | -             | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                |
| 2008  | \$   | -                                         | \$ -   | \$ -                  | \$          | -                    | \$ -                  | \$ -                | \$ -    | \$                  | -                     | \$ -                | \$ -                 | \$ -                | \$ -                 | \$          | -                    | \$ -                  | \$ -                | \$ -        | \$                   | - \$                  | -             | \$ -                 | \$ -                  | \$ -                | \$ 0.1               | \$ 0.0                | \$ 0.1              | \$ -                 | \$ -                  | \$ -                |
| 2009  | \$   | 0.0                                       | \$ 0.0 | \$ 0                  | .1 \$       | 0.1                  | \$ 0.0                | \$ 0.2              | \$      | 0.1 \$              | 0.0                   | \$ 0.1              | \$ 0.1               | \$ 0.1              | \$ 0                 | 0.2 \$      | 0.1                  | \$ 0.0                | \$ 0.1              | \$ 0.0      | \$                   | 0.0 \$                | 0.1           | \$ -                 | \$ -                  | \$ -                | \$ 0.1               | \$ 0.0                | \$ 0.1              | \$ -                 | \$ -                  | \$ -                |
| 2010  | \$   | 0.1                                       | \$ 0.0 | \$ 0                  | .1 \$       | 0.2                  | \$ 0.1                | \$ 0.3              | \$      | 0.1 \$              | 0.1                   | \$ 0.2              | \$ 0.3               | \$ 0.1              | \$ 0                 | .4 \$       | 0.2                  | \$ 0.1                | \$ 0.3              | \$ 0.1      | \$                   | 0.0 \$                | 0.1           | \$ -                 | \$ -                  | \$ -                | \$ 0.1               | \$ 0.0                | \$ 0.1              | \$ -                 | \$ -                  | \$ -                |
| 2011  | \$   | 0.1                                       | \$ 0.0 | \$ 0                  | .1 \$       | 0.2                  | \$ 0.1                | \$ 0.3              | \$      | 0.1 \$              | 0.1                   | \$ 0.2              | \$ 0.2               | \$ 0.1              | \$ 0                 | 0.4 \$      | 0.2                  | \$ 0.1                | \$ 0.2              | \$ 0.1      | \$                   | 0.0 \$                | 0.1           | \$ -                 | \$ -                  | \$ -                | \$ 0.1               | \$ 0.0                | \$ 0.1              | \$ -                 | \$ -                  | \$ -                |
| 2012  | \$   | 0.1                                       | \$ 0.0 | \$ 0                  | .1 \$       | 0.2                  | \$ 0.1                | \$ 0.2              | \$      | 0.1 \$              | 0.1                   | \$ 0.2              | \$ 0.2               | \$ 0.1              | \$ 0                 | .3 \$       | 0.2                  | \$ 0.1                | \$ 0.2              | \$ 0.1      | \$                   | 0.0 \$                | 0.1           | \$ -                 | \$ -                  | \$ -                | \$ 0.0               | \$ 0.0                | \$ 0.1              | \$ -                 | \$ -                  | \$ -                |
| 2013  | \$   | 0.1                                       | \$ 0.0 | \$ 0                  | .1 \$       | 0.1                  | \$ 0.1                | \$ 0.2              | \$      | 0.1 \$              | 0.0                   | \$ 0.1              | \$ 0.2               | \$ 0.1              | \$ 0                 | .3 \$       | 0.1                  | \$ 0.1                | \$ 0.2              | \$ 0.1      | \$                   | 0.0 \$                | 0.1           | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                |
| 2014  | \$   | 0.0                                       | \$ 0.0 | \$ 0                  | .1 \$       | 0.1                  | \$ 0.0                | \$ 0.1              | \$      | 0.0 \$              | 0.0                   | \$ 0.1              | \$ 0.1               | \$ 0.1              | \$ 0                 | 0.1 \$      | 0.1                  | \$ 0.0                | \$ 0.1              | \$ 0.0      | \$                   | 0.0 \$                | 0.0           | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                |
| 2015  | \$   | -                                         | \$ -   | \$ -                  | \$          | -                    | \$ -                  | \$ -                | \$ .    | \$                  | -                     | \$ -                | \$ -                 | \$ -                | \$ -                 | \$          | -                    | \$ -                  | \$ -                | \$ -        | \$                   | - \$                  | -             | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                |
| 2016  | \$   | -                                         | \$ -   | \$ -                  | \$          | -                    | \$ -                  | \$ -                | \$ -    | \$                  | -                     | \$ -                | \$ -                 | \$ -                | \$ -                 | \$          | -                    | \$ -                  | \$ -                | \$ -        | \$                   | - \$                  | -             | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                |
| 2017  | \$   | -                                         | \$ -   | \$ -                  | \$          | -                    | \$ -                  | \$ -                | \$ -    | \$                  | -                     | \$ -                | \$ -                 | \$ -                | \$ -                 | \$          | -                    | \$ -                  | \$ -                | \$ -        | \$                   | - \$                  | -             | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                |
| 2018  | \$   | -                                         | \$ -   | \$ -                  | \$          | -                    | \$ -                  | \$ -                | \$ .    | \$                  | -                     | \$ -                | \$ -                 | \$ -                | \$ -                 | \$          | -                    | \$ -                  | \$ -                | \$ -        | \$                   | - \$                  | -             | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                |
| 2019  | \$   | -                                         | \$ -   | \$ -                  | \$          | -                    | \$ -                  | \$ -                | \$ .    | \$                  | -                     | \$ -                | \$ -                 | \$ -                | \$ -                 | \$          | -                    | \$ -                  | \$ -                | \$ -        | \$                   | - \$                  | -             | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                |
| 2020  | \$   | -                                         | \$ -   | \$ -                  | \$          | -                    | \$ -                  | \$ -                | \$ .    | \$                  | -                     | \$ -                | \$ -                 | \$ -                | \$ -                 | \$          | -                    | \$ -                  | \$ -                | \$ -        | \$                   | - \$                  | -             | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                |
| 2021  | \$   | -                                         | \$ -   | \$ -                  | \$          | -                    | \$ -                  | \$ -                | \$ .    | \$                  | -                     | \$ -                | \$ -                 | \$ -                | \$ -                 | \$          | -                    | \$ -                  | \$ -                | \$ -        | \$                   | - \$                  | -             | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                |
| 2022  | \$   | -                                         | \$ -   | \$ -                  | \$          | -                    | \$ -                  | \$ -                | \$ .    | \$                  | -                     | \$ -                | \$ -                 | \$ -                | \$ -                 | \$          | -                    | \$ -                  | \$ -                | \$ -        | \$                   | - \$                  | -             | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                |
| 2023  | \$   | -                                         | \$ -   | \$ -                  | \$          | -                    | \$ -                  | \$ -                | \$ .    | \$                  | -                     | \$ -                | \$ -                 | \$ -                | \$ -                 | \$          | -                    | \$ -                  | \$ -                | \$ -        | \$                   | - \$                  | -             | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                |
| 2024  | \$   | -                                         | \$ -   | \$ -                  | \$          | -                    | \$ -                  | \$ -                | \$ .    | \$                  | -                     | \$ -                | \$ -                 | \$ -                | \$ -                 | \$          | -                    | \$ -                  | \$ -                | \$ -        | \$                   | - \$                  | -             | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                |
| 2025  | \$   | -                                         | \$ -   | \$ -                  | \$          | -                    | \$ -                  | \$ -                | \$ .    | \$                  | -                     | \$ -                | \$ -                 | \$ -                | \$ -                 | \$          | -                    | \$ -                  | \$ -                | \$ -        | \$                   | - \$                  | -             | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                |
| 2026  | \$   | -                                         | \$ -   | \$ -                  | \$          | -                    | \$ -                  | \$ -                | \$ .    | \$                  | -                     | \$ -                | \$ -                 | \$ -                | \$ -                 | \$          | -                    | \$ -                  | \$ -                | \$ -        | \$                   | - \$                  | -             | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                |
| 2027  | \$   | -                                         | \$ -   | \$ -                  | \$          | -                    | \$ -                  | \$ -                | \$ .    | \$                  | -                     | \$ -                | \$ -                 | \$ -                | \$ -                 | \$          | -                    | \$ -                  | \$ -                | \$ -        | \$                   | - \$                  | -             | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                |
| 2028  | \$   | -                                         | \$ -   | \$ -                  | \$          | -                    | \$ -                  | \$ -                | \$ -    | \$                  | -                     | \$ -                | \$ -                 | \$ -                | \$ -                 | \$          | -                    | \$ -                  | \$ -                | \$ -        | \$                   | - \$                  | -             | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                |
| 2029  | \$   | -                                         | \$ -   | \$ -                  | \$          | -                    | \$ -                  | \$ -                | \$ -    | \$                  | -                     | \$ -                | \$ -                 | \$ -                | \$ -                 | \$          | -                    | \$ -                  | \$ -                | \$ -        | \$                   | - \$                  | -             | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                | \$ -                 | \$ -                  | \$ -                |
| Total | \$   | 0.4                                       | \$ 0.2 | 2 \$ 0                | .7 \$       | 0.8                  | \$ 0.4                | \$ 1.3              | \$      | ).5 \$              | 0.3                   | \$ 0.8              | \$ 1.2               | \$ 0.6              | \$ 1                 | .8 \$       | 0.8                  | \$ 0.4                | \$ 1.2              | \$ 0.3      | \$                   | 0.2 \$                | 0.5           | \$ -                 | \$ -                  | \$ -                | \$ 0.3               | \$ 0.1                | \$ 0.4              | \$ -                 | \$ -                  | \$ -                |
| Ann.  | \$   | 0.0                                       | \$ 0.0 | \$ 0                  | .1 \$       | 0.1                  | \$ 0.0                | \$ 0.1              | \$      | 0.0 \$              | 0.0                   | \$ 0.1              | \$ 0.1               | \$ 0.1              | \$ (                 | .2 \$       | 0.1                  | \$ 0.0                | \$ 0.1              | \$ 0.0      | \$                   | 0.0 \$                | 0.0           | \$ -                 | \$ -                  | \$ -                | \$ 0.0               | \$ 0.0                | \$ 0.0              | \$ -                 | \$ -                  | \$ -                |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

# Exhibit J.2bw Present Value of O&M Costs at 7% Discount Rate, by System Size (Surface Water NTNCWSs)

|       |           | <100 90 Percent Confidence Bound |                      |                       |               | 100-499              |                       |               | 500-999              | ı                     |               | 1,000-3,29           | 19                    |               | 3,300-9,99           | 99                    |               | 10,000-49            | ,999                  |               | 50,000-99,9          | 999                   |               | 100,000-999          | ,999                  |               | 1,000,000            | )+                    |
|-------|-----------|----------------------------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|
|       |           |                                  |                      |                       |               |                      | ercent<br>nce Bound   |               |                      | ercent<br>nce Bound   |               |                      | ercent<br>ace Bound   |               |                      | Percent<br>nce Bound  |               |                      | Percent<br>ence Bound |               |                      | ercent<br>nce Bound   |               |                      | ercent<br>nce Bound   |               |                      | Percent<br>nce Bound  |
| Year  | Me<br>Val |                                  | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) |
| 2005  | \$        | -                                | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2006  | \$        | -                                | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2007  | \$        | -                                | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2008  | \$        | -                                | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2009  | \$        | -                                | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2010  | \$        | 0.0                              | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2011  | \$        | 0.0                              | \$ 0.0               | \$ 0.0                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2012  | \$        | 0.0                              | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2013  | \$        | 0.0                              | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.0        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2014  | \$        | 0.1                              | \$ 0.0               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2015  | \$        | 0.1                              | \$ 0.0               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2016  | \$        | 0.1                              | \$ 0.0               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.0        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2017  | \$        | 0.1                              | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.0        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2018  | \$        | 0.0                              | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.0        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2019  | \$        | 0.0                              | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2020  | \$        | 0.0                              | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.0        | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2021  | \$        | 0.0                              | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.0        | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2022  | \$        | 0.0                              | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.0        | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2023  | \$        | 0.0                              | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2024  | \$        | 0.0                              | \$ 0.0               | \$ 0.0                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2025  | \$        | 0.0                              | \$ 0.0               | \$ 0.0                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2026  | \$        | 0.0                              | \$ 0.0               | \$ 0.0                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2027  | \$        | 0.0                              | \$ 0.0               | \$ 0.0                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2028  | \$        | 0.0                              | \$ 0.0               | \$ 0.0                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2029  | \$        | 0.0                              | \$ 0.0               | \$ 0.0                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| Total | \$        | 0.7                              | \$ 0.4               | \$ 1.1                | \$ 2.1        | \$ 1.1               | \$ 3.1                | \$ 0.8        | \$ 0.4               | \$ 1.2                | \$ 1.6        | \$ 0.8               | \$ 2.4                | \$ 0.7        | \$ 0.3               | \$ 1.0                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ -          | \$ -                 | \$ -                  | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ -          | \$ -                 | \$ -                  |
| Ann.  | \$        | 0.1                              | \$ 0.0               | \$ 0.1                | \$ 0.2        | \$ 0.1               | \$ 0.3                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | s -                   |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

Source: Derived from Exhibits J.2a through rr.

# Exhibit J.2bx Present Value of Non-Treatment Costs at 7% Discount Rate, by System Size (Surface Water NTNCWSs)

|                                                                                                                                                                                                      |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <100                                                                   |                                                    |                                                              |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100-499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 500-999                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | 1,000-3,299                                                          |                                                    |                                                                           |               |                      | 3,300-9,999      |                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------|---------------|----------------------|------------------|---------------------|
| w                                                                                                                                                                                                    |                                | IDSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Monitoring                                                             |                                                    | Significant                                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | Significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Monitoring                                              | Significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Implementation IDSF                     | Monitoring                                                           |                                                    | Significant                                                               |               | n IDSF               | Monitoring       | Significant         |
| Year<br>2005                                                                                                                                                                                         | Implementation S -             | IDSE<br>s .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Plans .                                                                | Monitoring<br>S .                                  | Excursion S -                                                | Implementation                             | IDSE s .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Monitoring . | Excursion S .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Implementation                  | IDSE s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Plans .                                                 | Monitoring Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Implementation IDSE                     | Plans -                                                              | Monitoring<br>S -                                  | Excursion .                                                               | Implementatio | n IDSE               | Plans Me         | onitoring Excursion |
| 2006                                                                                                                                                                                                 | \$ 0.0                         | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s .                                                                    | s -                                                | s -                                                          |                                            | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ 0.0                          | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s 0.0 s -                               |                                                                      | s -                                                | s -                                                                       | s             | 0.0 \$ -             | s · s            | - s -               |
| 2007                                                                                                                                                                                                 |                                | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s -                                                                    | s -                                                | s -                                                          | s -                                        | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s -                             | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s · s ·                                 | s -                                                                  | s -                                                | s -                                                                       | s             | · s -                | s · s            | - s -               |
| 2008                                                                                                                                                                                                 |                                | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                      | s -                                                | 1                                                            | s -                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s -                             | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s · s ·                                 |                                                                      | s -                                                | •                                                                         |               | · s -                | s - s            | - s -               |
| 2009<br>2010                                                                                                                                                                                         | \$ 0.0<br>\$ 0.0               | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$ 0.0<br>\$ -                                                         | s -                                                |                                                              |                                            | s -<br>s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$ 0.0 \$<br>\$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 | s - s<br>s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                     | s · s ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$ 0.0 \$ -<br>\$ 0.0 \$ -              | \$ 0.0<br>\$ -                                                       | s -                                                | s -                                                                       | -             | 0.0 \$ -<br>0.0 \$ - | s 0.0 s<br>s - s | - s -               |
| 2011                                                                                                                                                                                                 |                                | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s .                                                                    | \$ -                                               | s -                                                          | s -                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s -                             | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s - s -                                 |                                                                      | s -                                                | s -                                                                       |               | . s -                | s - s            | - s -               |
| 2012                                                                                                                                                                                                 | s -                            | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s -                                                                    | s -                                                | s -                                                          | s -                                        | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ş -                             | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s - s -                                 | s -                                                                  | s -                                                | s -                                                                       | \$            | - s -                | s · s            | 0.0 s -             |
| 2013                                                                                                                                                                                                 | s -                            | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                        | s -                                                | s -                                                          | s -                                        | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s -                             | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s - s -                                 |                                                                      | s -                                                | s -                                                                       | s             | · s -                | s · s            | 0.0 \$ -            |
| 2014<br>2015                                                                                                                                                                                         | s -                            | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                        | s -<br>s -                                         | s -                                                          | s -                                        | s -<br>s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s - s<br>s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ -                            | s - s<br>s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | s · s ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s - s -                                 |                                                                      | s -                                                | *                                                                         | *             | · s ·                | s · s            | 0.0 \$ -            |
| 2015                                                                                                                                                                                                 | *                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s -                                                                    | s -                                                | s -                                                          | s -                                        | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - s<br>s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s -                             | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | s · s ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s · s ·                                 |                                                                      | s -                                                | s -                                                                       |               | · s ·                | s - s<br>s - s   | 0.0 \$ -            |
| 2017                                                                                                                                                                                                 | s -                            | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s -                                                                    | \$ -                                               | s -                                                          | s -                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ -                            | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s · s ·                                 |                                                                      | s -                                                | 1.                                                                        | s             | - s -                | s - s            | 0.0 \$ -            |
| 2018                                                                                                                                                                                                 | s -                            | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s -                                                                    | s -                                                | s -                                                          | s -                                        | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s -                             | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s · s ·                                 | s -                                                                  | s -                                                | s -                                                                       | s             | - s -                | s - s            | 0.0 \$ -            |
| 2019                                                                                                                                                                                                 | s -                            | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                        | s -                                                |                                                              | s -                                        | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s -                             | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s - s -                                 |                                                                      | s -                                                | 1.                                                                        |               | · s -                | s · s            | 0.0 \$ -            |
| 2020                                                                                                                                                                                                 | *                              | s ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                      | s ·                                                | *                                                            | s -                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s -                             | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | *                                                                    | s -                                                | \$ -                                                                      | *             | · s ·                | s · s            | 0.0 \$ -            |
| 2021                                                                                                                                                                                                 | s -                            | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s -                                                                    | s -<br>s -                                         | s -                                                          | s -                                        | s -<br>s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s - s<br>s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s -                             | s - s<br>s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | s · s ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s - s -                                 |                                                                      | s -                                                | s -                                                                       | s             | · s ·                | s - s<br>s - s   | 0.0 \$ -            |
| 2022                                                                                                                                                                                                 | s -                            | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                        | s .                                                |                                                              | s -                                        | 1 '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s -                             | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s · s ·                                 |                                                                      | s -                                                | s -                                                                       | s             | . s .                | s - s            | 0.0 \$ -            |
| 2024                                                                                                                                                                                                 | s -                            | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s -                                                                    | s -                                                | s -                                                          | s -                                        | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s -                             | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s · s ·                                 |                                                                      | s -                                                | s -                                                                       | s             | s -                  | s - s            | 0.0 \$ -            |
| 2025                                                                                                                                                                                                 | •                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *                                                                      | s -                                                | *                                                            | s -                                        | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s -                             | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s - s -                                 |                                                                      | s -                                                | *                                                                         | *             | · s -                | s - s            | 0.0 \$ -            |
| 2026                                                                                                                                                                                                 | s -                            | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s ·                                                                    | s -                                                | s -                                                          | s -                                        | s -<br>s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s -                             | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$ . \$ .                               |                                                                      | \$ -                                               | s -                                                                       | -             | · s ·                | s - s<br>s - s   | 0.0 \$ -            |
| 2027<br>2028                                                                                                                                                                                         |                                | s .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s -                                                                    | s -                                                | s -                                                          | s -                                        | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s -                             | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | s · s ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s - s -                                 | s -                                                                  | s -                                                | s -                                                                       | s             | · s ·                | s - s<br>s - s   | 0.0 \$ -            |
| 2029                                                                                                                                                                                                 | s -                            | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s -                                                                    | \$ -                                               | s -                                                          | s -                                        | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s -                             | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s · s ·                                 | \$ -                                                                 | s -                                                | \$ -                                                                      | s             | . s .                | s - s            | 0.0 \$ -            |
| Total                                                                                                                                                                                                | \$ 0.0                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$ 0.0                                                                 |                                                    | s -                                                          | \$ 0.0                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ 0.0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$ 0.0                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                     | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$ 0.0 \$ -                             | \$ 0.0                                                               |                                                    | s -                                                                       |               | 0.0 \$ -             | \$ 0.0 \$        | 0.1 \$ -            |
| Ann.                                                                                                                                                                                                 | \$ 0.0                         | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$ 0.0                                                                 |                                                    | s -                                                          |                                            | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$ 0.0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -            | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                                                                      |                                                    | \$ -                                                                      | e             | 0.0 \$ -             | \$ 0.0 \$        | 0.0 \$ -            |
|                                                                                                                                                                                                      |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                        |                                                    |                                                              |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | • -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ 0.0 \$ -                             | \$ 0.0                                                               |                                                    |                                                                           |               | 0.0   3 -            | V                | 0.0 3               |
|                                                                                                                                                                                                      |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10,000-49,999                                                          |                                                    |                                                              | 5 U.S                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50,000-99,999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ 0.0 \$ -                             | 1,000,000+                                                           |                                                    |                                                                           |               | 0.0 3                |                  | 0.0 3               |
| Year                                                                                                                                                                                                 | Implementation                 | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                        |                                                    | Significant<br>Excursion                                     | Implementation                             | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring   | Significant<br>Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Implementation                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s 0.0 \$ -                              |                                                                      | Monitoring                                         | Significant<br>Excursion                                                  |               | 0.0   0              |                  | 0.0   \$            |
| 2005                                                                                                                                                                                                 | Implementation                 | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10,000-49,999  Monitoring Plans                                        | Monitoring \$ -                                    | Significant<br>Excursion                                     | Implementation                             | IDSE<br>\$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50,000-99,999  Monitoring Plans  \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monitoring . | Significant<br>Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Implementation \$ 0.0           | IDSE S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Monitoring<br>Plans                                     | Monitoring Significant Excursion S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Implementation IDSE                     | 1,000,000+  Monitoring Plans                                         | Monitoring                                         | Significant<br>Excursion                                                  |               |                      |                  | 0.0 3               |
| 2005<br>2006                                                                                                                                                                                         |                                | IDSE<br>S -<br>S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10,000-49,999  Monitoring Plans  \$ -                                  | Monitoring \$ - \$ -                               | Significant Excursion S - S -                                | Implementation S - S -                     | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50,000-99,999  Monitoring Plans  \$ - \$ \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Monitoring   | Significant<br>Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Implementation \$ 0.0           | IDSE S - S S 0.0 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring<br>Plans                                     | 9  Monitoring Significant Excursion  S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Implementation IDSE \$ - \$ - \$ - \$ - | 1,000,000+  Monitoring Plans  \$ -                                   | Monitoring S - S -                                 | Significant<br>Excursion<br>\$ -                                          |               | 0.0 3                | 3.0   0          | 0.0   3             |
| 2005                                                                                                                                                                                                 | s -                            | IDSE \$ - \$ - \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10,000-49,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S | Monitoring  S - S -                                | Significant<br>Excursion  S - S -                            | Implementation                             | IDSE \$ - \$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50,000-99,999  Monitoring Plans  \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monitoring   | Significant<br>Excursion \$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Implementation \$ 0.0 \$ - \$ - | IDSE S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Monitoring<br>Plans                                     | 9    Monitoring   Significant   Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Implementation   IDSE                   | 1,000,000+  Monitoring Plans  \$ - \$                                | Monitoring                                         | Significant<br>Excursion                                                  |               | 0.0 3                | 3.0   0          | 0.0   3 -           |
| 2005<br>2006<br>2007                                                                                                                                                                                 | s -                            | S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10,000-49,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S | Monitoring \$ - \$ - \$ - \$ -                     | Significant<br>Excursion  S - S -                            | Implementation \$ - \$ - \$ -              | IDSE \$ - \$ - \$ - \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50,000-99,999  Monitoring Plans  \$ - \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monitoring   | Significant<br>Excursion \$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Implementation \$ 0.0 \$ - \$ - | IDSE   S - S S 0.0 S S 0.0 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Monitoring<br>Plans                                     | 9    Monitoring   Significant   Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Implementation   IDSE                   | 1,000,000+  Monitoring Plans  \$ - \$ - \$ - \$ - \$                 | Monitoring S - S -                                 | Significant<br>Excursion  \$ - \$ -                                       |               | 0.0 3                | 3.0   2          | 0.0   \$            |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010                                                                                                                                                         | s -<br>s -<br>s 0.0<br>s 0.0   | IDSE   S -   S -   S -   O.0   S -   O.0   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -     S -   S -     S -     S -     S -     S -       S -                     | 10,000-49,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S | Monitoring  S S S S S S S S S S S S S S S S S S    | Significant Excursion  S - S - S - S - S - S -               | Implementation S - S - S - S - S - S - S - | IDSE \$ - \$ - \$ - \$ - \$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50,000-99,999  Monitoring Plans  S - S S - S S - S S - S S - S S - S S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Monitoring   | Significant Excursion  \$ - \$ - \$ - \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ \$ - \$ \$ \$ \$ \$ - \$ \$ \$ \$ \$ - \$ \$ \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ \$ - \$ \$ \$ \$ \$ - \$ \$ \$ \$ \$ - \$ \$ \$ \$ \$ - \$ \$ \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ \$ - \$ \$ \$ \$ \$ - \$ \$ \$ \$ \$ - \$ \$ \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ \$ - \$ \$ \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ \$ - \$ \$ \$ \$ \$ \$ - \$ \$ \$ \$ \$ \$ \$ - \$ \$ \$ \$ \$ \$ \$ \$ - \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | Implementation   S              | IDSE  \$ - \$ \$ 0.0 \$ \$ 0.0 \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monitoring<br>Plans<br>-                                | Significant   Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Implementation   IDSE                   | 1,000,000+  Monitoring Plans  S - S - S - S - S - S - S - S - S - S  | Monitoring                                         | Significant<br>Excursion  \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ |               | 0.0 3                |                  | 0.0   3             |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011                                                                                                                                                 | \$ -<br>\$ -<br>\$ 0.0<br>\$ - | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10,000-49,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S | Monitoring S - S - S - S - S - S - S - S - S - S - | Significant Excursion  S - S - S - S - S - S - S - S -       | Implementation   S                         | IDSE \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50,000-99,999  Monitoring Plans  \$ - \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monitoring   | Significant Excursion  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Implementation   S              | IDSE  \$ - \$ \$ 0.0 \$ \$ 0.0 \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00,000-999,9: Monitoring Plans  0.0 0.0                 | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tmplementation   LIDSE                  | 1,000,000+  Monitoring Plans  S                                      | Monitoring                                         | Significant Excursion  \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$    | ·             | 0.0 3                |                  | 0.0   3             |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010                                                                                                                                                         | \$                             | IDSE   S -   S -   S -   O.0   S -   O.0   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -     S -   S -     S -     S -     S -     S -       S -                     | 10,000-49,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S | Monitoring  S S S S S S S S S S S S S S S S S S    | Significant Excursion  S - S - S - S - S - S - S - S - S - S | Implementation S - S - S - S - S - S - S - | IDSE \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50,000-99,999  Monitoring Plans  S - S S - S S - S S - S S - S S - S S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Monitoring   | Significant Excursion  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Implementation   S              | IDSE  \$ - \$ \$ 0.0 \$ \$ 0.0 \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00,000-999,9  Monitoring Plans  0.0 0.0                 | Significant   Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Implementation   IDSE                   | 1,000,000+  Monitoring Plans  S - S - S - S - S - S - S - S - S - S  | Monitoring                                         | Significant<br>Excursion  \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ |               | 0.00   3             |                  | ou ja ·             |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012                                                                                                                                         | \$                             | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10,000-49,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S | Monitoring S - S - S - S - S - S - S - S - S - S - | Significant Excursion  S - S - S - S - S - S - S - S - S - S | Implementation   S                         | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50,000-99,999  Monitoring Plans  S - S S - S S - S S - S S - S S - S S - S S - S S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Monitoring   | Significant   Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Implementation   \$ 0.0   \$    | IDSE  \$ - \$ \$ 0.0 \$ \$ 0.0 \$ \$ \$ . \$ \$ \$ . \$ \$ \$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00,000-999,9  Monitoring Plans  0.0 0.0                 | Significant   Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Implementation   IDSE                   | 1,000,000+  Monitoring Plans  \$                                     | Monitoring  S - S - S - S - S - S - S - S - S - S  | Significant Excursion  S - S - S - S - S - S - S - S - S - S              |               | 0.00   3             | 3.7,0            | 00 ja -             |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015                                                                                                                 | \$                             | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10,000-49,599  Montoring Plans  S                                      | Monitoring   S   -                                 | Significant Excursion  S - S - S - S - S - S - S - S - S - S | Implementation   S                         | S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50,000-99,999  Monitoring Plans  \$ - \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ \$ \$ - \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitoring   | Significant Excursion  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Implementation   S              | IDSE  \$ - \$ \$ 0.0 \$ \$ 0.0 \$ \$ \$ 0.0 \$ \$ \$ \$ \$ \$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00,000-999,9: Monitoring Plans  0.0 0.0                 | Significant   Significant   Execution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Implementation   IDSE                   | 1,000,000+  Monitoring Plans  S - S - S - S - S - S - S - S - S - S  | Monitoring S - S - S - S - S - S - S - S - S - S - | Significant Excursion  \$ -  \$ -  \$ -  \$ -  \$ -  \$ -  \$ -  \$       |               | 0.00   3             |                  | 00   a .            |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016                                                                                                         | \$                             | IDSE   S -   S -   O.0   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -     S -     S -     S -     S -     S -       S -                                                                                                                                                                                                                                                                                                                                                                                                                           | 10,000-49,598  Monitoring Plans  S                                     | Monitoring  S                                      | Significante                                                 | Implementation   S                         | IDSE \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50,000-99,999  Monitoring Plans  \$ . \$ \$ . \$ \$ \$ . \$ \$ \$ . \$ \$ \$ . \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ \$ . \$ \$ \$ \$ \$ . \$ \$ \$ \$ \$ . \$ \$ \$ \$ \$ \$ . \$ \$ \$ \$ \$ . \$ \$ \$ \$ \$ . \$ \$ \$ \$ \$ . \$ \$ \$ \$ \$ . \$ \$ \$ \$ \$ . \$ \$ \$ \$ \$ . \$ \$ \$ \$ \$ \$ . \$ \$ \$ \$ \$ \$ . \$ \$ \$ \$ \$ \$ . \$ \$ \$ \$ \$ \$ \$ \$ \$ . \$ \$ \$ \$ \$ \$ \$ \$ . \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | Monitoring   | Significant   Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Implementation                  | IDSE  \$ - \$ \$ 0.0 \$ \$ 0.0 \$ \$ 0.0 \$ \$ \$ 0.0 \$ \$ \$ 0.0 \$ \$ \$ 0.0 \$ \$ \$ 0.0 \$ \$ \$ 0.0 \$ \$ \$ 0.0 \$ \$ \$ 0.0 \$ \$ \$ 0.0 \$ \$ \$ 0.0 \$ \$ \$ 0.0 \$ \$ \$ 0.0 \$ \$ \$ 0.0 \$ \$ \$ 0.0 \$ \$ \$ 0.0 \$ \$ \$ 0.0 \$ \$ \$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00,000-999,9: Monitoring Plans  0.0 0.0                 | Significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Implementation   IDSE                   | 1,000,000+  Monitoring S S S S S S S S S S S S S S S S S S S         | Monitoring S - S - S - S - S - S - S - S - S - S   | Significant Excursion S S S S S S S S S S S S S S S S S S S               |               | 0.00   3             | 300,0            | 200 ja ·            |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017                                                                                                 | \$                             | IDSE   S -   S -   O.0   S -   O.0   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -     S -     S -     S -     S -     S -       S -                                                                                                                                                                                                                                                                                                                                                                                                                           | 10,000-49,599  Monitoring Plans  S S S S S S S S S S S S S S S S S S   | Monitoring   S                                     | Significant   Excursion                                      | Implementation   S                         | IDSE   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ - | 50,000-99,099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring   | Significant   Exeuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Implementation   S              | 11DSE  \$ - \$ \$ 0.0 \$ \$ - \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ \$ \$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00,000-999,9:  Monitoring Plans                         | Monitoring   Significant Exercision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Implementation   IDSE                   | 1,000,000+  Monitoring Plans S                                       | Monitoring S - S - S - S - S - S - S - S - S - S - | Significante   Excursion                                                  |               | 0.00   3             | 300,0            | 200 ja -            |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016                                                                                                         | \$                             | IDSE   S -   S -   O.0   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -     S -     S -     S -     S -     S -       S -                                                                                                                                                                                                                                                                                                                                                                                                                           | 10,000-49,599  Monitoring Plans  S S S S S S S S S S S S S S S S S S   | Monitoring  S                                      | Significant   Excursion                                      | Implementation   S                         | IDSE   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ -   \$ - | 50,000-99,999  Monitoring Plans  \$ . \$ \$ . \$ \$ \$ . \$ \$ \$ . \$ \$ \$ . \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ \$ . \$ \$ \$ \$ \$ . \$ \$ \$ \$ \$ . \$ \$ \$ \$ \$ \$ . \$ \$ \$ \$ \$ . \$ \$ \$ \$ \$ . \$ \$ \$ \$ \$ . \$ \$ \$ \$ \$ . \$ \$ \$ \$ \$ . \$ \$ \$ \$ \$ . \$ \$ \$ \$ \$ \$ . \$ \$ \$ \$ \$ \$ . \$ \$ \$ \$ \$ \$ . \$ \$ \$ \$ \$ \$ \$ \$ \$ . \$ \$ \$ \$ \$ \$ \$ \$ . \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | Monitoring   | Significant   Execursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Implementation   S              | IDSE  \$ - \$ \$ 0.0 \$ \$ 0.0 \$ \$ 0.0 \$ \$ \$ 0.0 \$ \$ \$ 0.0 \$ \$ \$ 0.0 \$ \$ \$ 0.0 \$ \$ \$ 0.0 \$ \$ \$ 0.0 \$ \$ \$ 0.0 \$ \$ \$ 0.0 \$ \$ \$ 0.0 \$ \$ \$ 0.0 \$ \$ \$ 0.0 \$ \$ \$ 0.0 \$ \$ \$ 0.0 \$ \$ \$ 0.0 \$ \$ \$ 0.0 \$ \$ \$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00,000-999,9:  Monitoring Plans                         | Monitoring   Significant Exercision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Implementation   IDSE                   | 1,000,000+  Monitoring Plans S - S - S - S - S - S - S - S - S - S - | Monitoring S - S - S - S - S - S - S - S - S - S   | Significant Excursion S S S S S S S S S S S S S S S S S S S               |               |                      |                  | 200 ja -            |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2018                                                                                         | \$                             | IDSE   S   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10,000-49,599  Monitoring Plans  S                                     | Monitoring S                                       | Significant   Excursion                                      | Implementation                             | IDSE \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S0,000-99,099   Monitoring   Plants   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Monitoring   | Significant   Execursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Implementation   S              | 1DSE  S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00,000-999,9:  Monitoring Plans                         | Significant   Significant   Execution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Implementation   IDSE                   | 1,000,000+  Monitoring Plans  S - S - S - S - S - S - S - S - S - S  | Monitoring S - S - S - S - S - S - S - S - S - S - | Significant   Execursion                                                  |               |                      |                  | 200 ja -            |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2018<br>2019<br>2020<br>2021                                                                 | \$                             | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10,000-49,599  Monitoring Plans  S S S S S S S S S S S S S S S S S S   | Monitoring   S                                     | Significant   Excursion                                      | Implementation 5                           | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50,000-99,999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring   | Significant   Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Implementation   S              | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00,000-999.9: Monitoring Plans  . 0.0 0.0               | Significant   Significant   Execution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Implementation   IDSE                   | 1,000,000+  Monitoring Plans  S S S S S S S S S S S S S S S S S S    | Monitoring S - S - S - S - S - S - S - S - S - S - | Significant   Execursion                                                  |               |                      |                  | 00   a .            |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2018<br>2019<br>2020<br>2021                                                                 | \$                             | IDSE   S   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10,000-49,399  Monitoring Plans  5                                     | Monitoring S                                       | Silgnificant   Excursion                                     | Implementation                             | IDSE  \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50,000-99,999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring   | Significant   Executation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Implementation                  | S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring Plans  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 | Significant   Significant   Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Implementation   IDSE                   | 1,000,000+  Monitoring Plans  5  5  5  5  5  5  5  5  5  5  5  5  5  | Monitoring S S S S S S S S S S S S S S S S S S S   | Significant Executaion                                                    |               | 0.00                 |                  | vo ja ·             |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2018<br>2019<br>2020<br>2021<br>2022                                                         | \$                             | IDSE   S   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10,000-49,399  Monitoring Plants  5                                    | Monitoring   S                                     | Significant Excursion                                        | Implementation                             | IDSE S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring   Plants   S   S   S   S   S   S   S   S   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Monitoring   | Stgnificant   Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Implementation                  | S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S | Monitoring Plans  O O O O O O O O O O O O O O O O O O O | Significant   Exercision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Implementation   IDSE                   | 1,000,000+  Monitoring Prans  S                                      | Monitoring  S - S - S - S - S - S - S - S - S - S  | Significant   Execution                                                   |               | 0.00                 |                  | vo j                |
| 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2020 2021 2022 2023                                                                                                            | \$                             | IDSE   S   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10,000-49,599  Monitoring Plans  5                                     | Monitoring S                                       | Significant   Excursion                                      | Implementation                             | IDSE  \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50,000-99,999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring   | Significant   Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Implementation                  | S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00,000-999.99 99 99 99 99 99 99 99 99 99 99 99        | Significant   Significant   Execution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Implementation   IDSE                   | 1,000,000+  Monitoring Plans  5                                      | Monitoring S S S S S S S S S S S S S S S S S S S   | Significant Executaion                                                    |               | 0.00                 |                  | vo j                |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2018<br>2019<br>2020<br>2021<br>2022                                                         | \$                             | IDSE   S   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10,000-49,599  Monitoring Plans  5                                     | Monitoring                                         | Significant   Excursion                                      | Implementation S                           | DSE   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -     S -   S -     S -     S -     S -     S -     S -       S -       S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50,000-99,999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring   | Significant Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Implementation   S              | S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S | Monitoring Plans  O O O O O O O O O O O O O O O O O O O | Significant   Significant   Execution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Implementation   IDSE                   | 1,000,000+ Monitoring Plans 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5    | Monitoring   S                                     | Significant   Excursion                                                   |               | 0.00                 |                  | VO   4 .            |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2018<br>2019<br>2020<br>2021<br>2021<br>2022<br>2023<br>2024<br>2025                         | \$                             | IDSE   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -     S -   S -     S -     S -     S -     S -       S -                     | 10,000-49,399  Monitoring Plans  S                                     | Monitoring   S                                     | Significant Excursion                                        | Implementation                             | DOSE   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring   Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monitoring   | Significant   Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Implementation                  | IDSE     S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S - S   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0,000-999.99 Monitoring Plans                         | Significant   Significant   Execution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Implementation   IDSE                   | 1,000,000+  Monitoring Prans  S                                      | Monitoring  S                                      | Significant Excursion                                                     |               | vo   8               |                  | VV   4 .            |
| 2005 2006 2007 2008 2009 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028                                                                         | S                              | IDSE   S   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10,000-49,399  Monitoring Plans  5                                     | Monitoring   S                                     | Significant Excursion                                        | Implementation                             | TOSE S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring   Plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monitoring   | Significant   Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Implementation                  | 11 IDSE  S - S S - S S S - S S S - S S S - S S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00,000-999.99 Monitoring Plans                        | Significant   Significant   Execution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Implementation   IDSE                   | 1,000,000+  Monitoring Prans  S                                      | Monitoring  S                                      | Significant Excursion                                                     |               | vo 8                 |                  | vo j                |
| 2005 2006 2007 2008 2009 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029                                                                         | S                              | IDSE   S   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10,000-49,399  Monitoring Plans  5                                     | Monitoring   S                                     | Significant Excursion                                        | Implementation                             | DSE   S   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monitoring   Plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monitoring   | Significant   Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Implementation                  | 11 IDSE   S   S   S   S   S   S   S   S   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | O.O. O.O. O.O. O.O. O.O. O.O. O.O. O.O                  | Significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Implementation   IDSE                   | 1,000,000+  Monitoring Plans  S                                      | Monitoring   S                                     | Significant Excursion                                                     |               | vo (*                |                  | vo j                |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2018<br>2021<br>2022<br>2022<br>2023<br>2024<br>2025<br>2026<br>2026<br>2027<br>2028 | S                              | IDSE   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -     S -   S -     S -     S -     S -     S -       S -       S -       S - | 10,000-49,399  Monitoring Plans  \$                                    | Monitoring                                         | Significant Excursion                                        | Implementation                             | DSE   S   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monitoring   Plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monitoring   | Significant   Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Implementation   S              | 110SE   S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0.000-999.99                                          | Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant   Significant | Implementation   IDSE                   | 1,000,000+  Monitoring Plans  S                                      | Monitoring   S                                     | Significant Excursion                                                     |               | vo (*                |                  | vo j                |

J-91

Notes: Present values in militors of 2003 dollars. Estimates are discounted to 2005. 
Detail may not add exactly to totals due to independent rounding. 
Ann - value of total amusilized at discount rate.

Source: Derived from Enhibits J.2a through rr.

# Exhibit J.2by Present Value of Total Costs at 7% Discount Rate, by System Size (Ground Water CWSs)

|       |               |        | <100                |                       |               | 100-499              |                       |               | 500-999              |                       |               | 1,000-3,299          |                       |               | 3,300-9,999          |                       |               | 10,000-49,99         | 9                     |               | 50,000-99,99         | 99                    |               | 100,000-999,         | 999                   |               | 1,000,000-           | +                     |
|-------|---------------|--------|---------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|
|       |               |        | 90 Pe<br>Confiden   |                       |               |                      | ercent<br>ice Bound   |               |                      | ercent<br>ice Bound   |               | 90 Pe<br>Confiden    |                       |               |                      | ercent<br>nce Bound   |               |                      | ercent<br>ice Bound   |               |                      | ercent<br>nce Bound   |               |                      | ercent<br>nce Bound   |               |                      | ercent<br>nce Bound   |
| Year  | Mear<br>Value |        | Lower<br>5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) |
| 2005  | \$ -          | - \$   | -                   | \$ -                  | \$ -          | s -                  | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | ş -                   | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | s -                   | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                |
| 2006  | \$ 0          | 0.7 \$ | 0.7                 | \$ 0.7                | \$ 0.8        | \$ 0.8               | \$ 0.8                | \$ 0.4        | \$ 0.4               | \$ 0.4                | \$ 0.4        | \$ 0.4               | \$ 0.4                | \$ 0.2        | \$ 0.2               | \$ 0.2                | \$ 0.3        | \$ 0.3               | \$ 0.3                | \$ -          | s -                  | \$ -                  | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                |
| 2007  | \$ -          | - \$   | -                   | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ 0.6        | \$ 0.6               | \$ 0.6                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                |
| 2008  | \$ 0          | 0.2 \$ | 0.2                 | \$ 0.2                | \$ 0.2        | \$ 0.2               | \$ 0.2                | \$ 1.4        | \$ 1.4               | \$ 1.4                | \$ 1.7        | \$ 1.7               | \$ 1.7                | \$ 0.8        | \$ 0.8               | \$ 0.8                | \$ 0.7        | \$ 0.7               | \$ 0.7                | \$ 1.1        | \$ 1.0               | \$ 1.2                | \$ 4.3        | \$ 3.8               | \$ 4.7                | \$ 0.5        | \$ 0.4               | \$ 0.5                |
| 2009  | \$ 1          | 1.1 \$ | 1.0                 | \$ 1.2                | \$ 2.9        | \$ 2.6               | \$ 3.3                | \$ 1.8        | \$ 1.6               | \$ 2.1                | \$ 3.2        | \$ 2.8               | \$ 3.7                | \$ 4.7        | \$ 3.8               | \$ 5.5                | \$ 4.2        | \$ 3.8               | \$ 4.6                | \$ 2.1        | \$ 1.9               | \$ 2.3                | \$ 4.3        | \$ 3.9               | \$ 4.8                | \$ 0.5        | \$ 0.4               | \$ 0.6                |
| 2010  | \$ 1          | 1.3 \$ | 1.2                 | \$ 1.5                | \$ 4.7        | \$ 4.0               | \$ 5.3                | \$ 2.8        | \$ 2.4               | \$ 3.2                | \$ 5.3        | \$ 4.4               | \$ 6.2                | \$ 8.4        | \$ 6.9               | \$ 10.0               | \$ 7.8        | \$ 7.1               | \$ 8.5                | \$ 2.1        | \$ 1.9               | \$ 2.3                | \$ 4.4        | \$ 3.9               | \$ 4.9                | \$ 0.5        | \$ 0.5               | \$ 0.6                |
| 2011  | \$ 1          | 1.1 \$ | 1.0                 | \$ 1.3                | \$ 4.5        | \$ 3.8               | \$ 5.1                | \$ 2.7        | \$ 2.3               | \$ 3.1                | \$ 5.1        | \$ 4.2               | \$ 6.0                | \$ 8.1        | \$ 6.6               | \$ 9.6                | \$ 7.8        | \$ 7.0               | \$ 8.5                | \$ 2.2        | \$ 2.0               | \$ 2.4                | \$ 4.4        | \$ 3.9               | \$ 4.8                | \$ 0.5        | \$ 0.5               | \$ 0.6                |
| 2012  | \$ 1          | 1.2 \$ | 1.0                 | \$ 1.3                | \$ 4.6        | \$ 4.0               | \$ 5.2                | \$ 2.9        | \$ 2.5               | \$ 3.2                | \$ 5.2        | \$ 4.4               | \$ 6.1                | \$ 7.9        | \$ 6.5               | \$ 9.3                | \$ 8.8        | \$ 8.1               | \$ 9.5                | \$ 2.3        | \$ 2.1               | \$ 2.5                | \$ 4.4        | \$ 4.0               | \$ 4.8                | \$ 0.5        | \$ 0.5               | \$ 0.6                |
| 2013  | \$ 1          | 1.2 \$ | 1.1                 | \$ 1.4                | \$ 4.7        | \$ 4.1               | \$ 5.3                | \$ 3.0        | \$ 2.6               | \$ 3.4                | \$ 5.4        | \$ 4.6               | \$ 6.2                | \$ 7.7        | \$ 6.4               | \$ 9.1                | \$ 9.6        | \$ 8.9               | \$ 10.3               | \$ 1.5        | \$ 1.4               | \$ 1.7                | \$ 1.4        | \$ 1.3               | \$ 1.5                | \$ 0.2        | \$ 0.2               | \$ 0.2                |
| 2014  | \$ 0          | 0.8 \$ | 0.8                 | \$ 0.9                | \$ 3.1        | \$ 2.8               | \$ 3.5                | \$ 2.0        | \$ 1.8               | \$ 2.2                | \$ 3.4        | \$ 3.0               | \$ 3.9                | \$ 4.3        | \$ 3.6               | \$ 5.0                | \$ 6.7        | \$ 6.3               | \$ 7.0                | \$ 0.8        | \$ 0.8               | \$ 0.8                | \$ 1.3        | \$ 1.2               | \$ 1.4                | \$ 0.2        | \$ 0.2               | \$ 0.2                |
| 2015  | \$ 0          | 0.5 \$ | 0.4                 | \$ 0.5                | \$ 1.6        | \$ 1.5               | \$ 1.7                | \$ 1.1        | \$ 1.0               | \$ 1.1                | \$ 1.6        | \$ 1.5               | \$ 1.7                | \$ 1.2        | \$ 1.1               | \$ 1.3                | \$ 3.8        | \$ 3.7               | \$ 3.9                | \$ 0.7        | \$ 0.7               | \$ 0.8                | \$ 1.2        | \$ 1.1               | \$ 1.3                | \$ 0.2        | \$ 0.2               | \$ 0.2                |
| 2016  | \$ 0          | 0.4 \$ | 0.4                 | \$ 0.5                | \$ 1.5        | \$ 1.4               | \$ 1.6                | \$ 1.0        | \$ 1.0               | \$ 1.1                | \$ 1.5        | \$ 1.4               | \$ 1.6                | \$ 1.1        | \$ 1.0               | \$ 1.2                | \$ 3.6        | \$ 3.5               | \$ 3.7                | \$ 0.7        | \$ 0.7               | \$ 0.7                | \$ 1.1        | \$ 1.1               | \$ 1.2                | \$ 0.2        | \$ 0.2               | \$ 0.2                |
| 2017  | \$ 0          | 0.4 \$ | 0.4                 | \$ 0.4                | \$ 1.4        | \$ 1.3               | \$ 1.5                | \$ 0.9        | \$ 0.9               | \$ 1.0                | \$ 1.4        | \$ 1.3               | \$ 1.5                | \$ 1.1        | \$ 1.0               | \$ 1.1                | \$ 3.3        | \$ 3.2               | \$ 3.4                | \$ 0.6        | \$ 0.6               | \$ 0.7                | \$ 1.1        | \$ 1.0               | \$ 1.1                | \$ 0.2        | \$ 0.1               | \$ 0.2                |
| 2018  | \$ 0          | 0.4 \$ | 0.3                 | \$ 0.4                | \$ 1.3        | \$ 1.2               | \$ 1.4                | \$ 0.9        | \$ 0.8               | \$ 0.9                | \$ 1.3        | \$ 1.2               | \$ 1.4                | \$ 1.0        | \$ 0.9               | \$ 1.1                | \$ 3.1        | \$ 3.0               | \$ 3.2                | \$ 0.6        | \$ 0.6               | \$ 0.6                | \$ 1.0        | \$ 0.9               | \$ 1.1                | \$ 0.1        | \$ 0.1               | \$ 0.2                |
| 2019  | \$ 0          | 0.3 \$ | 0.3                 | \$ 0.4                | \$ 1.2        | \$ 1.1               | \$ 1.3                | \$ 0.8        | \$ 0.8               | \$ 0.9                | \$ 1.2        | \$ 1.1               | \$ 1.3                | \$ 0.9        | \$ 0.9               | \$ 1.0                | \$ 2.9        | \$ 2.8               | \$ 3.0                | \$ 0.6        | \$ 0.5               | \$ 0.6                | \$ 0.9        | \$ 0.9               | \$ 1.0                | \$ 0.1        | \$ 0.1               | \$ 0.1                |
| 2020  | \$ 0          | 0.3 \$ | 0.3                 | \$ 0.3                | \$ 1.1        | \$ 1.1               | \$ 1.2                | \$ 0.8        | \$ 0.7               | \$ 0.8                | \$ 1.1        | \$ 1.0               | \$ 1.2                | \$ 0.9        | \$ 0.8               | \$ 0.9                | \$ 2.7        | \$ 2.6               | \$ 2.8                | \$ 0.5        | \$ 0.5               | \$ 0.6                | \$ 0.9        | \$ 0.8               | \$ 0.9                | \$ 0.1        | \$ 0.1               | \$ 0.1                |
| 2021  | \$ 0          | 0.3 \$ | 0.3                 | \$ 0.3                | \$ 1.1        | \$ 1.0               | \$ 1.2                | \$ 0.7        | \$ 0.7               | \$ 0.8                | \$ 1.0        | \$ 1.0               | \$ 1.1                | \$ 0.8        | \$ 0.7               | \$ 0.9                | \$ 2.5        | \$ 2.5               | \$ 2.6                | \$ 0.5        | \$ 0.5               | \$ 0.5                | \$ 0.8        | \$ 0.8               | \$ 0.9                | \$ 0.1        | \$ 0.1               | \$ 0.1                |
| 2022  | \$ 0          | 0.3 \$ | 0.3                 | \$ 0.3                | \$ 1.0        | \$ 0.9               | \$ 1.1                | \$ 0.7        | \$ 0.6               | \$ 0.7                | \$ 1.0        | \$ 0.9               | \$ 1.0                | \$ 0.7        | \$ 0.7               | \$ 0.8                | \$ 2.4        | \$ 2.3               | \$ 2.5                | \$ 0.5        | \$ 0.4               | \$ 0.5                | \$ 0.8        | \$ 0.7               | \$ 0.8                | \$ 0.1        | \$ 0.1               | \$ 0.1                |
| 2023  | \$ 0          | 0.3 \$ | 0.2                 | \$ 0.3                | \$ 0.9        | \$ 0.9               | \$ 1.0                | \$ 0.6        | \$ 0.6               | \$ 0.7                | \$ 0.9        | \$ 0.8               | \$ 1.0                | \$ 0.7        | \$ 0.6               | \$ 0.8                | \$ 2.2        | \$ 2.2               | \$ 2.3                | \$ 0.4        | \$ 0.4               | \$ 0.5                | \$ 0.7        | \$ 0.7               | \$ 0.8                | \$ 0.1        | \$ 0.1               | \$ 0.1                |
| 2024  | \$ (          | 0.2 \$ | 0.2                 | \$ 0.3                | \$ 0.9        | \$ 0.8               | \$ 0.9                | \$ 0.6        | \$ 0.6               | \$ 0.6                | \$ 0.8        | \$ 0.8               | \$ 0.9                | \$ 0.7        | \$ 0.6               | \$ 0.7                | \$ 2.1        | \$ 2.0               | \$ 2.1                | \$ 0.4        | \$ 0.4               | \$ 0.4                | \$ 0.7        | \$ 0.6               | \$ 0.7                | \$ 0.1        | \$ 0.1               | \$ 0.1                |
| 2025  | \$ 0          | 0.2 \$ | 0.2                 | \$ 0.2                | \$ 0.8        | \$ 0.8               | \$ 0.9                | \$ 0.6        | \$ 0.5               | \$ 0.6                | \$ 0.8        | \$ 0.7               | \$ 0.8                | \$ 0.6        | \$ 0.6               | \$ 0.7                | \$ 1.9        | \$ 1.9               | \$ 2.0                | \$ 0.4        | \$ 0.4               | \$ 0.4                | \$ 0.6        | \$ 0.6               | \$ 0.7                | \$ 0.1        | \$ 0.1               | \$ 0.1                |
| 2026  | \$ 0          | 0.2 \$ | 0.2                 | \$ 0.2                | \$ 0.8        | \$ 0.7               | \$ 0.8                | \$ 0.5        | \$ 0.5               | \$ 0.5                | \$ 0.7        | \$ 0.7               | \$ 0.8                | \$ 0.6        | \$ 0.5               | \$ 0.6                | \$ 1.8        | \$ 1.8               | \$ 1.9                | \$ 0.4        | \$ 0.3               | \$ 0.4                | \$ 0.6        | \$ 0.5               | \$ 0.6                | \$ 0.1        | \$ 0.1               | \$ 0.1                |
| 2027  | \$ 0          | 0.2 \$ | 0.2                 | \$ 0.2                | \$ 0.7        | \$ 0.7               | \$ 0.8                | \$ 0.5        | \$ 0.5               | \$ 0.5                | \$ 0.7        | \$ 0.6               | \$ 0.7                | \$ 0.5        | \$ 0.5               | \$ 0.6                | \$ 1.7        | \$ 1.6               | \$ 1.8                | \$ 0.3        | \$ 0.3               | \$ 0.3                | \$ 0.5        | \$ 0.5               | \$ 0.6                | \$ 0.1        | \$ 0.1               | \$ 0.1                |
| 2028  | \$ 0          | 0.2 \$ | 0.2                 | \$ 0.2                | \$ 0.7        | \$ 0.6               | \$ 0.7                | \$ 0.4        | \$ 0.4               | \$ 0.5                | \$ 0.6        | \$ 0.6               | \$ 0.7                | \$ 0.5        | \$ 0.5               | \$ 0.5                | \$ 1.6        | \$ 1.5               | \$ 1.6                | \$ 0.3        | \$ 0.3               | \$ 0.3                | \$ 0.5        | \$ 0.5               | \$ 0.5                | \$ 0.1        | \$ 0.1               | \$ 0.1                |
| 2029  | \$ (          | 0.2 \$ | 0.2                 | \$ 0.2                | \$ 0.6        | \$ 0.6               | \$ 0.7                | \$ 0.4        | \$ 0.4               | \$ 0.4                | \$ 0.6        | \$ 0.6               | \$ 0.6                | \$ 0.5        | \$ 0.4               | \$ 0.5                | \$ 1.5        | \$ 1.4               | \$ 1.5                | \$ 0.3        | \$ 0.3               | \$ 0.3                | \$ 0.5        | \$ 0.4               | \$ 0.5                | \$ 0.1        | \$ 0.1               | \$ 0.1                |
| Total | \$ 12         | 2.1 \$ | 11.1                | \$ 13.2               | \$ 41.2       | \$ 36.7              | \$ 45.7               | \$ 27.5       | \$ 24.9              | \$ 30.1               | \$ 44.9       | \$ 39.5              | \$ 50.3               | \$ 53.8       | \$ 45.7              | \$ 62.0               | \$ 83.7       | \$ 78.9              | \$ 88.4               | \$ 19.6       | \$ 18.2              | \$ 21.1               | \$ 36.5       | \$ 33.2              | \$ 39.8               | \$ 4.8        | \$ 4.3               | \$ 5.2                |
| Ann.  | \$ 1          | 1.0 \$ | 1.0                 | \$ 1.1                | \$ 3.5        | \$ 3.1               | \$ 3.9                | \$ 2.4        | \$ 2.1               | \$ 2.6                | \$ 3.9        | \$ 3.4               | \$ 4.3                | \$ 4.6        | \$ 3.9               | \$ 5.3                | \$ 7.2        | \$ 6.8               | \$ 7.6                | \$ 1.7        | \$ 1.6               | \$ 1.8                | \$ 3.1        | \$ 2.8               | \$ 3.4                | \$ 0.4        | \$ 0.4               | \$ 0.4                |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

Source: Derived from Exhibits J.2a through rr.

#### Exhibit J.2bz Present Value of Capital Costs at 7% Discount Rate, by System Size (Ground Water CWSs)

|       |             |        | <100                 |                       |               | 100-499              |                       |             |         | 500-999           |                       |               | 1,000-3,299          | )                     |               | 3,300-9,9            | 99                    |               | 10,    | ,000-49,999         | 1                     |               | 50,000-99,9          | 99                    |               | 100,000-999,         | 999                   |               | 1,000,000            | D+                    |
|-------|-------------|--------|----------------------|-----------------------|---------------|----------------------|-----------------------|-------------|---------|-------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|--------|---------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|
|       |             |        |                      | ercent<br>nce Bound   |               |                      | Percent<br>nce Bound  |             |         | 90 Pe<br>Confiden | ercent<br>ce Bound    |               |                      | ercent<br>ice Bound   |               |                      | Percent<br>ence Bound |               |        | 90 Pe<br>Confidence |                       |               |                      | Percent<br>nce Bound  |               |                      | Percent<br>nce Bound  |               |                      | Percent<br>ince Bound |
| Year  | Mea<br>Valu |        | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mea<br>Valu |         | Lower             | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile  | Mean<br>Value |        | Lower<br>5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) |
| 2005  | \$ -        |        | s -                  | \$ -                  | \$ -          | s -                  | s -                   | \$          | - \$    | -                 | s -                   | \$ -          | \$ -                 | s -                   | \$ -          | s -                  | s -                   | s -           | \$     | -                   | s -                   | \$ -          | \$ -                 | \$ -                  | \$ -          | s -                  | s -                   | \$ -          | s -                  | \$ -                  |
| 2006  | \$ -        | .      | s -                  | \$ -                  | \$ -          | s -                  | \$ -                  | s           | - \$    | -                 | s -                   | s -           | s -                  | s -                   | \$ -          | s -                  | s -                   | s -           | \$     | -                   | \$ -                  | s -           | s -                  | \$ -                  | s -           | \$ -                 | s -                   | \$ -          | s -                  | \$ -                  |
| 2007  | \$ -        |        | s -                  | \$ -                  | \$ -          | s -                  | \$ -                  | s           | - \$    | -                 | s -                   | s -           | s -                  | s -                   | s -           | s -                  | s -                   | s -           | \$     | -                   | \$ -                  | s -           | \$ -                 | \$ -                  | \$ -          | \$ -                 | s -                   | \$ -          | \$ -                 | \$ -                  |
| 2008  | \$ -        |        | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$          | - \$    | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | s -           | \$     |                     | \$ -                  | \$ 1.1        | \$ 1.0               | \$ 1.2                | \$ 4.2        | \$ 3.8               | \$ 4.7                | \$ 0.5        | \$ 0.4               | \$ 0.5                |
| 2009  | \$ (        | 0.6    | \$ 0.5               | \$ 0.6                | \$ 2.2        | \$ 1.9               | \$ 2.6                | 6 \$        | 1.3 \$  | 1.1               | \$ 1.6                | \$ 2.6        | \$ 2.2               | \$ 3.1                | \$ 4.4        | \$ 3.6               | \$ 5.                 | 2 \$ 3        | 3.9 \$ | 3.6                 | \$ 4.3                | \$ 2.0        | \$ 1.8               | \$ 2.2                | \$ 4.0        | \$ 3.5               | \$ 4.4                | \$ 0.5        | \$ 0.4               | \$ 0.5                |
| 2010  | \$ 1        | 1.0 \$ | \$ 0.9               | \$ 1.2                | \$ 4.1        | \$ 3.5               | \$ 4.8                | 3 \$        | 2.5 \$  | 2.1               | \$ 2.9                | \$ 4.9        | \$ 4.0               | \$ 5.8                | \$ 8.2        | \$ 6.7               | \$ 9.                 | в \$ 7        | 7.4 \$ | 6.6                 | \$ 8.1                | \$ 1.9        | \$ 1.7               | \$ 2.1                | \$ 3.7        | \$ 3.3               | \$ 4.1                | \$ 0.4        | \$ 0.4               | \$ 0.5                |
| 2011  | \$ 1        | 1.0 \$ | \$ 0.8               | \$ 1.1                | \$ 3.9        | \$ 3.3               | \$ 4.5                | 5 \$        | 2.4 \$  | 2.0               | \$ 2.7                | \$ 4.6        | \$ 3.8               | \$ 5.4                | \$ 7.7        | \$ 6.2               | \$ 9.                 | 1 \$ 6        | 5.9 \$ | 6.2                 | \$ 7.5                | \$ 1.7        | \$ 1.6               | \$ 1.9                | \$ 3.5        | \$ 3.1               | \$ 3.8                | \$ 0.4        | \$ 0.3               | \$ 0.4                |
| 2012  | \$ (        | 0.9 \$ | \$ 0.8               | \$ 1.0                | \$ 3.6        | \$ 3.1               | \$ 4.2                | 2 \$        | 2.2 \$  | 1.9               | \$ 2.5                | \$ 4.3        | \$ 3.5               | \$ 5.1                | \$ 7.2        | \$ 5.8               | \$ 8.                 | 5 \$ 6        | 5.4 \$ | 5.8                 | \$ 7.0                | \$ 1.6        | \$ 1.5               | \$ 1.8                | \$ 3.2        | \$ 2.9               | \$ 3.6                | \$ 0.4        | \$ 0.3               | \$ 0.4                |
| 2013  | \$ (        | 0.8    | \$ 0.7               | \$ 1.0                | \$ 3.4        | \$ 2.9               | \$ 3.9                | 9 \$        | 2.1 \$  | 1.7               | \$ 2.4                | \$ 4.0        | \$ 3.3               | \$ 4.7                | \$ 6.7        | \$ 5.4               | \$ 8.                 | 0 \$ 6        | 3.0 \$ | 5.4                 | \$ 6.6                | \$ 0.8        | \$ 0.7               | \$ 0.8                | \$ -          | \$ -                 | s -                   | \$ -          | \$ -                 | \$ -                  |
| 2014  | \$ 0        | 0.4 \$ | \$ 0.3               | \$ 0.5                | \$ 1.6        | \$ 1.3               | \$ 1.8                | 3 \$        | 1.0 \$  | 0.8               | \$ 1.1                | \$ 1.9        | \$ 1.5               | \$ 2.2                | \$ 3.1        | \$ 2.5               | \$ 3.                 | 7 \$ 2        | 2.8 \$ | 2.5                 | \$ 3.1                | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2015  | \$ -        |        | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$          | - \$    | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2016  | \$ -        |        | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$          | - \$    | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2017  | \$ -        |        | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$          | - \$    | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2018  | \$ -        |        | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$          | - \$    | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2019  | \$ -        |        | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$          | - \$    | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2020  | \$ -        |        | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$          | - \$    | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2021  | \$ -        |        | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$          | - \$    | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2022  | \$ -        |        | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$          | - \$    | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2023  | \$ -        |        | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$          | - \$    | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2024  | \$ -        |        | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$          | - \$    | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2025  | \$ -        |        | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$          | - \$    | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2026  | \$ -        |        | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$          | - \$    | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2027  | \$ -        |        | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$          | - \$    | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2028  | \$ -        |        | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$          | - \$    | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2029  | \$ -        |        | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$          | - \$    | -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| Total | +           | 4.7 \$ | \$ 4.1               | \$ 5.4                | \$ 18.8       |                      |                       |             | 11.4 \$ | 9.6               |                       |               | \$ 18.3              |                       |               | \$ 30.3              |                       | _             |        | 30.2                | \$ 36.6               |               | \$ 8.1               |                       |               | \$ 16.5              |                       |               | \$ 1.9               | -                     |
| Ann.  | \$ 0        | 0.4 \$ | \$ 0.3               | \$ 0.5                | \$ 1.6        | \$ 1.4               | \$ 1.9                | \$          | 1.0 \$  | 0.8               | \$ 1.1                | \$ 1.9        | \$ 1.6               | \$ 2.3                | \$ 3.2        | \$ 2.6               | \$ 3.                 | 8 \$ 2        | 2.9 \$ | 2.6                 | \$ 3.1                | \$ 0.8        | \$ 0.7               | \$ 0.9                | \$ 1.6        | \$ 1.4               | \$ 1.8                | \$ 0.2        | \$ 0.2               | \$ 0.2                |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005. Notes: Present values in millions of 2003 collars. Estimates are obscound Detail may not add exactly to totals due to independent rounding. Ann = value of total annualized at discount rate. Source: Derived from Exhibits J.2a through rr.

# Exhibit J.2ca Present Value of O&M Costs at 7% Discount Rate, by System Size (Ground Water CWSs)

|       |          | <100<br>90 Percent |            |                       | 100-499 |                      |                       | 500-999          |                      |                       | 1,000-3,299      | 1                    |                       | 3,300-9,99       | 9                    |                       | 10,000-49,99     | 9                    |                       | 50,000-99,9      | 99                   |                       | 100,000-999, | 999                  |                       | 1,000,00         | )O+                  |                       |
|-------|----------|--------------------|------------|-----------------------|---------|----------------------|-----------------------|------------------|----------------------|-----------------------|------------------|----------------------|-----------------------|------------------|----------------------|-----------------------|------------------|----------------------|-----------------------|------------------|----------------------|-----------------------|--------------|----------------------|-----------------------|------------------|----------------------|-----------------------|
|       |          | Confidence Bound   |            |                       |         |                      | ercent<br>ice Bound   |                  |                      | ercent<br>ice Bound   |                  |                      | ercent<br>ce Bound    |                  |                      | ercent<br>nce Bound   |                  |                      | ercent<br>ice Bound   |                  |                      | ercent<br>nce Bound   |              |                      | ercent<br>nce Bound   |                  |                      | Percent<br>ence Bound |
|       | Mea      |                    | Lower      | Upper<br>(95th %tile) | Mean    | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean             | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean             | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean             | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean             | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean             | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean         | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean             | Lower<br>(5th %tile) | Upper<br>(95th %tile) |
| Year  | Valu     | 16 (2              | ith %tile) | (95th %tile)          | Value   |                      | (95th %tile)          | Value            | (5th %tile)          | , ,                   | Value            | (5th %tile)          | (95th %tile)          | Value        | (5th %tile)          |                       | Value            | <u> </u>             | (95th %tile)          |
| 2005  | \$       | - \$               | -          | \$ -                  | \$ -    | s -                  | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ -         | \$ -                 | \$ -                  | \$ -             | \$ -                 | \$ -                  |
| 2006  | 9        | - 3                |            | • -                   | • -     |                      | s -                   |                  | s -                  |                       | • -              | s -                  | • .                   | s -              | s -                  |                       | s -              | \$ -                 |                       | \$ .             | s -                  | s -                   |              | \$ -                 | s -                   | \$ -<br>e .      | 9 -                  |                       |
| 2008  | \$       |                    |            | s .                   | \$ .    | \$ .                 | s .                   | \$ .             | s -                  | s .                   | s .              | s .                  | s .                   | \$ .             | s .                  | s .                   | s .              | \$                   | \$ .                  | s .              | s .                  | s .                   | s -          | s .                  | s .                   | s .              | \$ .                 | \$ .                  |
| 2009  | s .      | - s                | _          | s -                   | s -     | s -                  | s -                   | s -              | s -                  | s -                   | s -              | s -                  | s -                   | s -              | s -                  | s -                   | s -              | s -                  | s -                   | \$ 0.1           | \$ 0.1               | \$ 0.1                | \$ 0.4       | \$ 0.4               | \$ 0.4                | \$ 0.1           | \$ 0.1               | \$ 0.1                |
| 2010  | \$       | 0.1 \$             | 0.1        | \$ 0.1                | \$ 0.2  | \$ 0.2               | \$ 0.2                | \$ 0.1           | \$ 0.1               | \$ 0.1                | \$ 0.2           | \$ 0.2               | \$ 0.2                | \$ 0.1           | \$ 0.1               | \$ 0.2                | \$ 0.3           | \$ 0.3               | \$ 0.3                | \$ 0.2           | \$ 0.2               |                       | \$ 0.7       | \$ 0.7               |                       | \$ 0.1           | 1                    |                       |
| 2011  | \$       | 0.2 \$             | 0.2        | \$ 0.2                | \$ 0.6  | \$ 0.6               | \$ 0.7                | \$ 0.3           | \$ 0.3               | \$ 0.4                | \$ 0.5           | \$ 0.5               | \$ 0.5                | \$ 0.4           | \$ 0.4               | \$ 0.5                | \$ 0.9           | \$ 0.8               | \$ 0.9                | \$ 0.4           | \$ 0.3               | \$ 0.4                | \$ 1.0       | \$ 0.9               | \$ 1.1                | \$ 0.2           | \$ 0.1               | \$ 0.2                |
| 2012  | \$       | 0.3 \$             | 0.2        | \$ 0.3                | \$ 1.0  | \$ 0.9               | \$ 1.0                | \$ 0.5           | \$ 0.5               | \$ 0.6                | \$ 0.8           | \$ 0.7               | \$ 0.8                | \$ 0.7           | \$ 0.6               | \$ 0.7                | \$ 1.4           | \$ 1.3               | \$ 1.4                | \$ 0.5           | \$ 0.5               | \$ 0.5                | \$ 1.2       | \$ 1.1               | \$ 1.3                | \$ 0.2           | \$ 0.2               | \$ 0.2                |
| 2013  | \$       | 0.3 \$             | 0.3        | \$ 0.4                | \$ 1.2  | \$ 1.1               | \$ 1.3                | \$ 0.7           | \$ 0.6               | \$ 0.7                | \$ 1.0           | \$ 0.9               | \$ 1.1                | \$ 0.9           | \$ 0.8               | \$ 0.9                | \$ 1.8           | \$ 1.7               | \$ 1.9                | \$ 0.6           | \$ 0.5               | \$ 0.6                | \$ 1.4       | \$ 1.3               | \$ 1.5                | \$ 0.2           | \$ 0.2               | \$ 0.2                |
| 2014  | \$       | 0.4 \$             | 0.4        | \$ 0.4                | \$ 1.5  | \$ 1.4               | \$ 1.6                | \$ 0.8           | \$ 0.7               | \$ 0.9                | \$ 1.2           | \$ 1.1               | \$ 1.3                | \$ 1.0           | \$ 0.9               | \$ 1.1                | \$ 2.2           | \$ 2.0               | \$ 2.3                | \$ 0.6           | \$ 0.6               | \$ 0.6                | \$ 1.3       | \$ 1.3               | \$ 1.4                | \$ 0.2           | \$ 0.2               | \$ 0.2                |
| 2015  | \$       | 0.4 \$             | 0.4        | \$ 0.4                | \$ 1.6  | \$ 1.4               | \$ 1.7                | \$ 0.8           | \$ 0.8               | \$ 0.9                | \$ 1.3           | \$ 1.1               | \$ 1.4                | \$ 1.1           | \$ 1.0               | \$ 1.2                | \$ 2.2           | \$ 2.1               | \$ 2.4                | \$ 0.6           | \$ 0.5               | \$ 0.6                | \$ 1.3       | \$ 1.2               | \$ 1.3                | \$ 0.2           | \$ 0.2               | \$ 0.2                |
| 2016  | \$       | 0.4 \$             | 0.4        | \$ 0.4                | \$ 1.5  | \$ 1.3               | \$ 1.6                | \$ 0.8           | \$ 0.7               | \$ 0.8                | \$ 1.2           | \$ 1.1               | \$ 1.3                | \$ 1.0           | \$ 0.9               | \$ 1.1                | \$ 2.1           | \$ 2.0               | \$ 2.2                | \$ 0.5           | \$ 0.5               | \$ 0.6                | \$ 1.2       | \$ 1.1               | \$ 1.3                | \$ 0.2           | \$ 0.2               | \$ 0.2                |
| 2017  | \$       | 0.4 \$             | 0.3        | \$ 0.4                | \$ 1.4  | \$ 1.3               | \$ 1.5                | \$ 0.7           | \$ 0.7               | \$ 0.8                | \$ 1.1           | \$ 1.0               | \$ 1.2                | \$ 0.9           | \$ 0.9               | \$ 1.0                | \$ 2.0           | \$ 1.8               | \$ 2.1                | \$ 0.5           | \$ 0.5               | \$ 0.5                | \$ 1.1       | \$ 1.0               | \$ 1.2                | \$ 0.2           | \$ 0.2               | \$ 0.2                |
| 2018  | \$       | 0.3                | 0.3        | \$ 0.4                | \$ 1.3  | \$ 1.2               | \$ 1.4                | \$ 0.7           | \$ 0.6               | \$ 0.7                | \$ 1.0           | \$ 0.9               | \$ 1.1                | \$ 0.9           | \$ 0.8               | \$ 0.9                | \$ 1.8           | \$ 1.7               | \$ 1.9                | \$ 0.5           | \$ 0.4               | \$ 0.5                | \$ 1.0       | \$ 1.0               | \$ 1.1                | \$ 0.2           | \$ 0.1               | \$ 0.2                |
| 2019  | \$       | 0.3                | 0.3        | \$ 0.3                | \$ 1.2  | \$ 1.1               | \$ 1.3                | \$ 0.6           | \$ 0.6               | \$ 0.7                | \$ 1.0           | \$ 0.9               | \$ 1.0                | \$ 0.8           | \$ 0.7               | \$ 0.9                | \$ 1.7           | \$ 1.6               | \$ 1.8                | \$ 0.4           | \$ 0.4               | \$ 0.5                | \$ 1.0       | \$ 0.9               | \$ 1.0                | \$ 0.1           | \$ 0.1               | \$ 0.2                |
| 2020  | \$       | 0.3 \$             | 0.3        | \$ 0.3                | \$ 1.1  | \$ 1.0               | \$ 1.2                | \$ 0.6           | \$ 0.5               | \$ 0.6                | \$ 0.9           | \$ 0.8               | \$ 1.0                | \$ 0.8           | \$ 0.7               | \$ 0.8                | \$ 1.6           | \$ 1.5               | \$ 1.7                | \$ 0.4           | \$ 0.4               | \$ 0.4                | \$ 0.9       | \$ 0.8               | \$ 1.0                | \$ 0.1           | \$ 0.1               | \$ 0.1                |
| 2021  | \$       | 0.3 \$             | 0.3        | \$ 0.3                | \$ 1.0  | \$ 1.0               | \$ 1.1                | \$ 0.6           | \$ 0.5               | \$ 0.6                | \$ 0.8           | \$ 0.8               | \$ 0.9                | \$ 0.7           | \$ 0.7               | \$ 0.8                | \$ 1.5           | \$ 1.4               | \$ 1.6                | \$ 0.4           | \$ 0.4               | \$ 0.4                | \$ 0.8       | \$ 0.8               | \$ 0.9                | \$ 0.1           | \$ 0.1               | \$ 0.1                |
| 2022  | \$       | 0.3 \$             | 0.2        | \$ 0.3                | \$ 1.0  | \$ 0.9               | \$ 1.0                | \$ 0.5           | \$ 0.5               | \$ 0.6                | \$ 0.8           | \$ 0.7               | \$ 0.9                | \$ 0.7           | \$ 0.6               | \$ 0.7                | \$ 1.4           | \$ 1.3               | \$ 1.5                | \$ 0.4           | \$ 0.3               | \$ 0.4                | \$ 0.8       | \$ 0.7               | \$ 0.8                | \$ 0.1           | \$ 0.1               | \$ 0.1                |
| 2023  | i i      | 0.2 \$             | 0.2        | \$ 0.3                |         | \$ 0.8               | *                     | \$ 0.5           | \$ 0.4               |                       | \$ 0.7           | \$ 0.7               |                       | \$ 0.6           |                      | 1                     | \$ 1.3           |                      | \$ 1.4                | \$ 0.3           | \$ 0.3               |                       | \$ 0.7       | \$ 0.7               |                       | \$ 0.1           | \$ 0.1               | \$ 0.1                |
| 2024  |          | 0.2 \$             | 0.2        | \$ 0.2                |         |                      | *                     | \$ 0.5           | \$ 0.4               |                       | \$ 0.7           | \$ 0.6               |                       | \$ 0.6           | \$ 0.5               | \$ 0.6                |                  | \$ 1.1               | \$ 1.3                | \$ 0.3           | \$ 0.3               |                       |              | \$ 0.6               | \$ 0.7                | \$ 0.1           | \$ 0.1               | \$ 0.1                |
| 2025  | i i      | 0.2 \$             | 0.2        | \$ 0.2                | \$ 0.8  | \$ 0.7               |                       | \$ 0.4           | \$ 0.4               | \$ 0.5                | \$ 0.6           | \$ 0.6               |                       | \$ 0.5           | \$ 0.5               | \$ 0.6                | \$ 1.1           | \$ 1.1               | \$ 1.2                | \$ 0.3           | \$ 0.3               |                       |              | \$ 0.6               |                       | \$ 0.1           | \$ 0.1               | \$ 0.1                |
| 2026  |          | 0.2 \$             | 0.2        | \$ 0.2                | \$ 0.7  | \$ 0.7               | \$ 0.8                | \$ 0.4           | \$ 0.4               | \$ 0.4                | \$ 0.6           | \$ 0.5               |                       | \$ 0.5           | \$ 0.5               | \$ 0.5                | \$ 1.1           | \$ 1.0               | \$ 1.1                | \$ 0.3           | \$ 0.3               |                       | \$ 0.6       | \$ 0.6               | \$ 0.6                | \$ 0.1           | \$ 0.1               | \$ 0.1                |
| 2027  |          | 0.2 \$             | 0.2        | \$ 0.2<br>\$ 0.2      | \$ 0.7  | \$ 0.6               | \$ 0.7                | \$ 0.4<br>\$ 0.3 | \$ 0.3<br>\$ 0.3     | \$ 0.4<br>\$ 0.4      | \$ 0.6           | \$ 0.5               |                       | \$ 0.5           | \$ 0.4<br>\$ 0.4     | \$ 0.5                | \$ 1.0<br>\$ 0.9 |                      | \$ 1.0<br>\$ 1.0      | \$ 0.3           | \$ 0.2<br>\$ 0.2     |                       |              | 1                    |                       | \$ 0.1           | \$ 0.1               | \$ 0.1                |
| 2028  |          | 0.2 \$             | 0.2        | \$ 0.2<br>\$ 0.2      |         | \$ 0.6<br>\$ 0.6     | \$ 0.7<br>\$ 0.7      | \$ 0.3<br>\$ 0.3 | \$ 0.3<br>\$ 0.3     | \$ 0.4<br>\$ 0.3      | \$ 0.5<br>\$ 0.5 | \$ 0.5<br>\$ 0.4     |                       | \$ 0.4<br>\$ 0.4 | \$ 0.4<br>\$ 0.4     | \$ 0.5<br>\$ 0.4      |                  |                      | \$ 0.9                | \$ 0.2<br>\$ 0.2 | \$ 0.2<br>\$ 0.2     |                       |              | \$ 0.5<br>\$ 0.5     |                       | \$ 0.1<br>\$ 0.1 | \$ 0.1<br>\$ 0.1     |                       |
| Total |          | 5.3 \$             | 4.9        | \$ 5.6                | \$ 19.7 | \$ 18.1              | \$ 21.3               | \$ 10.5          | \$ 9.7               | \$ 11.4               | \$ 15.9          | \$ 14.5              | \$ 17.3               | \$ 13.5          | \$ 12.4              | \$ 14.6               | \$ 28.3          | \$ 26.7              | \$ 29.8               | \$ 7.9           | \$ 7.4               |                       | \$ 18.3      | \$ 17.1              | \$ 19.6               | \$ 2.8           |                      |                       |
| Ann.  | <u> </u> | 0.5 \$             | 0.4        | \$ 0.5                |         | \$ 1.6               | \$ 1.8                |                  |                      | \$ 1.0                |                  | \$ 14.3              |                       |                  | \$ 1.1               | \$ 1.3                |                  | \$ 20.7              |                       |                  | \$ 0.6               |                       |              | \$ 17.1              |                       | \$ 0.2           |                      | \$ 3.0                |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

Ann = value of total annualized at discount rate. Source: Derived from Exhibits J.2a through rr.

#### Exhibit J.2cb Present Value of Non-Treatment Costs at 7% Discount Rate, by System Size (Ground Water CWSs)

|                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                   | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100-499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 500-999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,000-3,299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                |                | 3,300-9,999 |                  |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------|----------------|-------------|------------------|-------------|
| ŀ                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                   | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | Significant                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Significant              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Significant                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Significant              |                |                | Monitoring  |                  | Significant |
| Year                                                                                                                                                                         | Implementation IDSE                                                                                                                                                                                                                                                                                                                                                                               | Plans M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lonitoring                              | Excursion                        | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Excursion                | Implementation IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitoring Excursion                                                                  | Implementation IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Excursion                | Implementation | IDSE           | Plans       | Monitoring       | Excursion   |
| 2005<br>2006                                                                                                                                                                 | \$ 0.7 \$ -                                                                                                                                                                                                                                                                                                                                                                                       | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 1                                     | s -<br>s -                       | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s -                      | s - s -<br>s 0.4 s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s - s -<br>s - s -                                                                    | s - s -<br>s 0.4 s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s - s<br>s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          | \$ -<br>\$ 0.2 | s - s<br>s - s |             | s -              | s .         |
| 2007                                                                                                                                                                         | s - s -                                                                                                                                                                                                                                                                                                                                                                                           | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 1                                     | s -                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s -                      | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s - s -                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          | s -            | s - s          |             | s -              | s -         |
| 2008                                                                                                                                                                         | \$ - \$ 0.2                                                                                                                                                                                                                                                                                                                                                                                       | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - :                                     | s -                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s -                      | S - \$ 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s - s -                                                                               | s - \$ 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          | s -            | \$ 0.8 \$      | -           | s -              | s -         |
| 2009                                                                                                                                                                         | \$ 0.3 \$ -                                                                                                                                                                                                                                                                                                                                                                                       | \$ 0.3 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - :                                     | s -                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                        | \$ 0.1 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$ 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s - s -                                                                               | \$ 0.2 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$ 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          | \$ 0.1         | 1.             | 0.2         | s -              | s -         |
| 2010                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                   | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - :                                     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                        | \$ 0.1 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s - s -                                                                               | 1 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          | \$ 0.1         |                |             | \$ -             | \$ -        |
| 2011                                                                                                                                                                         | s - s -                                                                                                                                                                                                                                                                                                                                                                                           | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 1                                     | -                                | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                        | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s - s -                                                                               | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | s -            | s - s          |             | s -              | \$ -        |
| 2012<br>2013                                                                                                                                                                 | s - s -                                                                                                                                                                                                                                                                                                                                                                                           | s - s<br>s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                     |                                  | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s -<br>s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0.2 \$ -<br>\$ 0.3 \$ -                                                            | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$ 0.2 \$<br>\$ 0.3 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | s -<br>s -     | s - s<br>s - s |             | \$ 0.1<br>\$ 0.2 |             |
| 2013                                                                                                                                                                         | s - s -                                                                                                                                                                                                                                                                                                                                                                                           | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                     |                                  | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0.3 \$ -                                                                           | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$ 0.3 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | s -            | s - s          |             | \$ 0.1           |             |
| 2015                                                                                                                                                                         | s · s ·                                                                                                                                                                                                                                                                                                                                                                                           | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | s · s ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$ 0.3 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | s -            | s - s          |             |                  |             |
| 2016                                                                                                                                                                         | s - s -                                                                                                                                                                                                                                                                                                                                                                                           | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                     | s -                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s -                      | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ 0.2 \$ -                                                                           | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ 0.3 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | s -            | s - s          |             | \$ 0.1           | s -         |
| 2017                                                                                                                                                                         | s - s -                                                                                                                                                                                                                                                                                                                                                                                           | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                     | s -                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s -                      | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ 0.2 \$ -                                                                           | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ 0.3 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                        | s -            | s - s          | -           | \$ 0.1           | s -         |
| 2018                                                                                                                                                                         | s - s -                                                                                                                                                                                                                                                                                                                                                                                           | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                     |                                  | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0.2 \$ -                                                                           | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$ 0.2 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | s -            | s - s          |             | \$ 0.1           |             |
| 2019                                                                                                                                                                         | s - s -                                                                                                                                                                                                                                                                                                                                                                                           | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                     |                                  | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0.2 \$ -                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | s -            | s - s          |             | \$ 0.1           |             |
| 2020<br>2021                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                   | s - s<br>s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                     |                                  | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s -<br>s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$ 0.2 \$ -<br>\$ 0.2 \$ -                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ 0.2 \$<br>\$ 0.2 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | s -            | s - s<br>s - s |             | \$ 0.1<br>\$ 0.1 | s -         |
| 2021                                                                                                                                                                         | s - s -                                                                                                                                                                                                                                                                                                                                                                                           | s - s<br>s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                     |                                  | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0.0<br>\$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0.2 \$ -<br>\$ 0.2 \$ -                                                            | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | s -<br>s -     | s - s<br>s - s |             | \$ 0.1<br>\$ 0.1 | s .         |
| 2022                                                                                                                                                                         | s - s -                                                                                                                                                                                                                                                                                                                                                                                           | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                     |                                  | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0.1 \$ -                                                                           | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | s -            | s - s          |             | \$ 0.1           |             |
| 2024                                                                                                                                                                         | s - s -                                                                                                                                                                                                                                                                                                                                                                                           | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                     |                                  | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0.1 \$ -                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | s -            | s - s          |             | \$ 0.1           |             |
| 2025                                                                                                                                                                         | s - s -                                                                                                                                                                                                                                                                                                                                                                                           | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                     | s -                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ 0.1 \$ -                                                                           | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ 0.2 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | s -            | s - s          | -           | \$ 0.1           | s -         |
| 2026                                                                                                                                                                         | s - s -                                                                                                                                                                                                                                                                                                                                                                                           | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                     |                                  | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s -                      | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S 0.1 S -                                                                             | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                        | s -            | s - s          | -           | \$ 0.1           | s -         |
| 2027                                                                                                                                                                         | s - s -                                                                                                                                                                                                                                                                                                                                                                                           | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                     |                                  | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0.1 \$ -                                                                           | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$ 0.1 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | s -            | s - s          |             | \$ 0.1           | s -         |
| 2028                                                                                                                                                                         | s - s -                                                                                                                                                                                                                                                                                                                                                                                           | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                     |                                  | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$ 0.0<br>\$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ 0.1 \$ -<br>\$ 0.1 \$ -                                                            | s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ 0.1 \$<br>\$ 0.1 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                        | s -            | s - s          | -           | \$ 0.1<br>\$ 0.1 | \$ .        |
| Total                                                                                                                                                                        | \$ - \$ -<br>\$ 1.2 \$ 0.2                                                                                                                                                                                                                                                                                                                                                                        | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5                                     | \$ -                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 \$ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.2 \$ 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                        | \$ 0.7 \$ 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$ 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       | \$ 0.8 \$ 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$ 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | \$ 0.4         | \$ 0.8 \$      | 0.2         |                  | *           |
| Ann.                                                                                                                                                                         | \$ 0.1 \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                     | s -                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 \$ (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | \$ 0.1 \$ 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                | \$ 0.1 \$      | 0.0         |                  |             |
|                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                   | 10,000-49,999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50,000-99,999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                |                |             |                  |             |
|                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                   | 10,000-45,555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50,000-99,999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100,000-999,99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,000,000+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                |                |             |                  |             |
|                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | o                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0::                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0::                      |                |                |             |                  |             |
| Year                                                                                                                                                                         | Implementation IDSE                                                                                                                                                                                                                                                                                                                                                                               | Monitoring<br>Plans M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lonitoring                              | Significant<br>Excursion         | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring<br>E Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Significant<br>Excursion | Implementation IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring<br>Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Significant<br>Monitoring Excursion                                                   | Implementation IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Monitoring<br>Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Significant<br>Excursion |                |                |             |                  |             |
| 2005                                                                                                                                                                         | s - s -                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring Plans M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ionitoring                              | Excursion .                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Excursion S -            | \$ 0.0 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Monitoring<br>Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring Significant Excursion  S - S -                                             | \$ 0.0 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitoring<br>Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Excursion .              |                |                |             |                  |             |
|                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                   | Monitoring Plans M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lonitoring                              | Significant<br>Excursion S - S - | Implementation \$ 0. \$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitoring Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s -<br>s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | \$ 0.0 \$ -<br>\$ - \$ 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Monitoring<br>Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring Significant Excursion  \$ - \$ - \$ - \$                                   | \$ 0.0 \$ -<br>\$ - \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring<br>Plans<br>S -<br>S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Significant<br>Excursion |                |                |             |                  |             |
| 2005<br>2006<br>2007                                                                                                                                                         | s - s -<br>s 0.3 s -<br>s - s 0.6                                                                                                                                                                                                                                                                                                                                                                 | Monitoring Plans M S - S S - S S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                       | Excursion  S - S - S -           | s -<br>s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 \$ ·<br>\$ ·<br>\$ ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitoring Plans - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s -<br>s -<br>s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S -<br>S -<br>S -        | \$ 0.0 \$ -<br>\$ - \$ 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Monitoring Plans  S - S - S 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monitoring Significant Excursion  S - S - S  S - S - S - S                            | \$ 0.0 \$ -<br>\$ - \$ 0.0<br>\$ - \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring Plans  \$ - \$ - \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring   E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Excursion .              |                |                |             |                  |             |
| 2005<br>2006                                                                                                                                                                 | \$ - \$ -<br>\$ 0.3 \$ -<br>\$ - \$ 0.6                                                                                                                                                                                                                                                                                                                                                           | Monitoring Plans M S - S S - S S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 1                                     | Excursion                        | s -<br>s -<br>s 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 \$ ·<br>\$ ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Monitoring Plans - \$ \$ \$ \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s -<br>s -<br>s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S -<br>S -<br>S -<br>S - | \$ 0.0 \$ -<br>\$ - \$ 0.1<br>\$ - \$ 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Monitoring Plans  S - S - S 0.0 S 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitoring Significant Excursion  S - S - S  S - S - S - S                            | \$ 0.0 \$ -<br>\$ - \$ 0.0<br>\$ - \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring<br>Plans  S - S - S 0.0 S 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monitoring   E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Excursion -              |                |                |             |                  |             |
| 2005<br>2006<br>2007<br>2008                                                                                                                                                 | \$ - \$ -<br>\$ 0.3 \$ -<br>\$ - \$ 0.6<br>\$ - \$ 0.6                                                                                                                                                                                                                                                                                                                                            | Monitoring   M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 1                                     | Excursion                        | s -<br>s -<br>s 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 \$ ·<br>\$ ·<br>\$ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitoring Plans - \$ \$ 0.1 \$ \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s -<br>s -<br>s -<br>s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Excursion                | \$ 0.0 \$ -<br>\$ - \$ 0.1<br>\$ - \$ 0.1<br>\$ 0.0 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Monitoring Plans  \$ - \$ - \$ 0.0 \$ 0.0 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Monitoring Significant Excursion  \$ - \$ - \$  \$ - \$ - \$  \$ - \$ - \$  \$ - \$ - | \$ 0.0 \$ -<br>\$ - \$ 0.0<br>\$ - \$ 0.0<br>\$ 0.0 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring Plans  S - S - S 0.0 S 0.0 S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monitoring   E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Excursion                |                |                |             |                  |             |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011                                                                                                                         | \$ - \$ - \$ - \$ - \$ - \$ 0.6 \$ - \$ 0.1 \$ - \$ 0.5 \$ - \$ 0.6 \$ \$ 0.1 \$ - \$ 0.1 \$ - \$ \$ 0.1 \$ - \$ \$ 0.1 \$ - \$ \$ 0.1 \$ - \$ \$ 0.1 \$ - \$ \$ 0.1 \$ - \$ \$ 0.1 \$ - \$ \$ 0.1 \$ \$ - \$ \$ \$ 0.1 \$ \$ - \$ \$ \$ 0.1 \$ \$ - \$ \$ \$ 0.1 \$ \$ - \$ \$ \$ 0.1 \$ \$ - \$ \$ \$ \$ 0.1 \$ \$ - \$ \$ \$ \$ \$ 0.1 \$ \$ - \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | Monitoring Plans M  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - S  S - | - !<br>- !<br>- !                       | Excursion                        | \$ -<br>\$ 0.0<br>\$ 0.0<br>\$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring   Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s - s - s - s - s - s - s - s 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S                        | \$ 0.0 \$ -<br>\$ - \$ 0.1<br>\$ - \$ 0.1<br>\$ 0.0 \$ -<br>\$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring Plans  \$ - \$ - \$ 0.0 \$ 0.0 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Monitoring   Significant   Execursion                                                 | \$ 0.0 \$ -<br>\$ - \$ 0.0<br>\$ - \$ 0.0<br>\$ 0.0 \$ -<br>\$ - \$ -<br>\$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Monitoring Plans  S - S - S 0.0 S 0.0 S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monitoring   E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Excursion                |                |                |             |                  |             |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012                                                                                                                 | \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -                                                                                                                                                                                                                                                                                                                                                 | Monitoring   MM   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - :                                     | Excursion                        | \$ - \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$                                                                                                                                                                           | 0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring   Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$ -<br>\$ -<br>\$ -<br>\$ -<br>\$ -<br>\$ -<br>\$ 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Excursion                | S 0.0 S -<br>S - S 0.1<br>S - S 0.1<br>S 0.0 S -<br>S - S -<br>S - S -<br>S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring Plans  \$ - \$ - \$ 0.0 \$ 0.0 \$ - \$ - \$ - \$ - \$ - \$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Monitoring   Significant Excursion                                                    | S 0.0 S - S 0.0 S - S 0.0 S - S 0.0 S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring Plans  S - S - S 0.0 S 0.0 S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring   E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Excursion                |                |                |             |                  |             |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013                                                                                                         | \$ - \$ - \$ - \$ - \$   \$ 0.3 \$ - \$ 0.6 \$   \$ - \$ 0.6 \$   \$ 0.1 \$ - \$   \$ 0.1 \$ - \$   \$ - \$ - \$ - \$   \$ - \$ - \$ - \$   \$ - \$ - \$ - \$   \$ - \$ - \$ - \$                                                                                                                                                                                                                 | Monitoring   Plans   M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - :<br>- :<br>- :<br>1.0 :              | Excursion                        | \$ - \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$                                                                                                                                                                           | 0 5 - 0 5 - 0 5 - 5 - 5 - 5 - 5 - 5 - 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring Plans  S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$ - \$ - \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ 0.1 \$ \$ \$ 0.2 \$ \$ \$ 0.2 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Excursion                | S 0.0 S - S 0.1 S - S 0.1 S - S 0.1 S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Monitoring Plans  \$ - \$ - \$ 0.0 \$ 0.0 \$ - \$ - \$ 5 - \$ 5 - \$ 5 - \$ 5 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monitoring   Significant                                                              | \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ 5 - \$ 0.0 \$ 5 - \$ 0.0 \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5  | Monitoring Plans  S - S - S 0.0 S 0.0 S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monitoring   E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Excursion                |                |                |             |                  |             |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014                                                                                                 | S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                           | Monitoring   Plans   M   M   M   M   M   M   S   - S   S   - S   S   - S   S   - S   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - : : : : : : : : : : : : : : : : : : : | Excursion                        | \$ - \$ 00 \$ 5 - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - \$ 5 \$ - | 0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring Plans  S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$ - \$ - \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ 0.1 \$ \$ \$ 0.2 \$ \$ \$ 0.2 \$ \$ \$ 0.2 \$ \$ \$ 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Excursion                | \$ 00 \$ -<br>\$ 0.1 \$ 0.1<br>\$ 0.0 \$ 0.1<br>\$ 0.0 \$ 0.5<br>\$ 0.0 \$ -<br>\$ | Monitoring   Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring   Significant Excursion                                                    | S 00 S - S 00 S - S 00 S - S - S 0 S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring Plans  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Excursion                |                |                |             |                  |             |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015                                                                                         | \$ - \$ - \$ - \$ - \$   \$ 0.3 \$ - \$ 0.6 \$   \$ - \$ 0.6 \$   \$ 0.1 \$ - \$   \$ 0.1 \$ - \$   \$ - \$ - \$ - \$   \$ - \$ - \$ - \$   \$ - \$ - \$ - \$   \$ - \$ - \$ - \$                                                                                                                                                                                                                 | Monitoring   Plans   M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - :<br>- :<br>1.0 :<br>1.8 :            | Excursion                        | s - s - c - s - c - s - c - s - c - s - c - s - c - s - c - s - c - s - c - c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 5 - 0 5 - 0 5 - 5 - 5 - 5 - 5 - 5 - 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$ -<br>\$ -<br>\$ -<br>\$ -<br>\$ -<br>\$ -<br>\$ 0.1<br>\$ 0.2<br>\$ 0.2<br>\$ 0.2<br>\$ 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Excursion                | S 0.0 S - S 0.1 S - S 0.1 S - S 0.1 S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Monitoring   Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring   Significant                                                              | \$ 00 \$ - \$ 00 \$ 5 - \$ 00 \$ 5 - \$ 00 \$ 5 - \$ 00 \$ 5 - \$ 00 \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ | Monitoring   Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S   C   S   S   S   C   S   S   C   S   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Excursion                |                |                |             |                  |             |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014                                                                                                 | S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                           | Monitoring   Plans   M   M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - : : : : : : : : : : : : : : : : : : : | Excursion                        | s - s - c - s - c - s - c - s - c - s - c - s - c - s - c - s - c - s - c - c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 5 - 0 | Monitoring Plans  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ -<br>\$ -<br>\$ -<br>\$ -<br>\$ -<br>\$ -<br>\$ 0.1<br>\$ 0.2<br>\$ 0.2<br>\$ 0.2<br>\$ 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S                        | \$ 0.0 \$ - \$ 0.1 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.0 \$ 5 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring   Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring   Significant                                                              | S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S 00 S - S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 0                                                                                                                                                                                                                                                                                                                                                       | Monitoring   Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ | Excursion                |                |                |             |                  |             |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016                                                                                 | S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                           | Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Monitoring   Mon   | - : : : : : : : : : : : : : : : : : : : | Excursion                        | s - s - s - s - s - s - s - s - s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring   Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ 0.1 \$ 0.2 \$ 0.2 \$ 0.2 \$ 0.2 \$ 0.2 \$ 0.2 \$ 0.2 \$ 0.2 \$ 0.2 \$ 0.2 \$ 0.2 \$ 0.2 \$ 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Excursion                | \$ 00 \$ - \$ 0.1 \$ 0.1 \$ 0.0 \$ - \$ 0.1 \$ 0.1 \$ 0.0 \$ - \$ 0.1 \$ 0.0 \$ - \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring   Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring   Significant Excursion                                                    | S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S                                                                                                                                                                                                                                                                                                                                                       | Monitoring   Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ | Excursion                |                |                |             |                  |             |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2018                                                                 | S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                           | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | Excursion                        | \$ - \$ 0. \$ 0. \$ 0. \$ 0. \$ 0. \$ 0. \$ 0. \$ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Monitoring Plants  S - S - O.1 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 | \$ - \$ - \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ 0.1 \$ \$ \$ 0.2 \$ \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ \$ 0.2 \$ | Excursion                | S 00 S - S 0.1 S - S 0.0 S - S 0.0 S - S 0.0 S - S 0.0 S - S 0.0 S - S 0.0 S - S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Monitoring   Significant Excursion                                                    | S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S                                                                                                                                                                                                                                                                                                                                                       | Monitoring   Plans   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Excursion                |                |                |             |                  |             |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2018<br>2019<br>2020                                                 | S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                           | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - : : : : : : : : : : : : : : : : : : : | Excursion                        | s - s - 0.0 s - s - s - s - s - s - s - s - s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E Monhoring Plans      S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S   -                    | \$ 00 \$ - \$ 0.1 \$ 0.1 \$ 0.0 \$ - \$ 0.1 \$ 0.0 \$ - \$ 0.1 \$ 0.0 \$ - \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Monitoring   Significant                                                              | S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S 00 S - S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 0                                                                                                                                                                                                                                                                                                                                                       | Monitoring Plans   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitoring   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Excursion                |                |                |             |                  |             |
| 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021                                                                                         | S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                           | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - : : : : : : : : : : : : : : : : : : : | Excursion                        | s - s - s - s - s - s - s - s - s - s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Monitoring   Flank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S                        | 5 00 S - S 0.1 S - S 0.0 S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Monitoring   Significant Execution                                                    | S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S 00 S - S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 0                                                                                                                                                                                                                                                                                                                                                       | Monitoring   Prints   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Excursion                |                |                |             |                  |             |
| 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021                                                                                         | S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                           | Monitoring Plans M S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - : : : : : : : : : : : : : : : : : : : | Excursion                        | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E Monitoring Plans  - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S                        | S 00 S - S 0.1 S - S 0.0 S - S 0.0 S - S 0.0 S - S 0.0 S - S 0.0 S - S 0.0 S - S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Monitoring   Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring   Significant Excursion                                                    | S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S 00 S - S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00                                                                                                                                                                                                                                                                                                                                                       | Monitoring   Plans   S   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Newtorking   1   Newtorking   1   Newtorking   1   Newtorking   Newt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Excursion                |                |                |             |                  |             |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2018<br>2019<br>2020<br>2021<br>2022<br>2023                         | S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S                                                                                                                         | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - : : : : : : : : : : : : : : : : : : : | Excursion                        | S O. S . O. S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E Monhoring Phons  5 - 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Execursion               | \$ 00 \$ - \$ 0.1 \$ 0.1 \$ 0.0 \$ - \$ 0.1 \$ 0.1 \$ 0.0 \$ - \$ 0.1 \$ 0.0 \$ - \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring   Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monitoring   Significant                                                              | S OO S - S OO S - S OO S - S OO S - S OO S - S OO S - S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S                                                                                                                                                                                                                                                                                                                                                        | Monitoring Plans  S - S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 S - O.0 | New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Excursion                |                |                |             |                  |             |
| 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021                                                                                         | S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                           | Monitoring Plans M S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - : : : : : : : : : : : : : : : : : : : | Excursion                        | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E Monhoring Plans - S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Execursion               | S 00 S - S 01 S - S 0.1 S 0.0 S - S 0.1 S - S 0.2 S - S 0.2 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3 S 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Monitoring Plans  S - S - O.0  S - O.0  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Monitoring   Significant Excursion                                                    | S OO S - S OO S - S OO S - S OO S - S OO S - S OO S - S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S                                                                                                                                                                                                                                                                                                                                                        | Monitoring   Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Newtorking   1   Newtorking   1   Newtorking   1   Newtorking   Newt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Excursion                |                |                |             |                  |             |
| 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024                                                                          | S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S                                                                                             | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - : : : : : : : : : : : : : : : : : : : | Caccursion                       | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E Monitoring Plans  - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Execursion               | 5 00 S - S 0.1 S - S 0.0 S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Monitoring Plants  S - S - O.0  S - O.0  S - O.0  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Monitoring   Significant Executation                                                  | S OO S - S OO S - S OO S - S OO S - S OO S - S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S                                                                                                                                                                                                                                                                                                                                                       | Monitoring Plants  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Membering   E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Excursion                |                |                |             |                  |             |
| 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025                                                                     | S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                           | Monitoring   Plans   M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | Execursion                       | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E Monhoring Phons  5 - 5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - 0.0   5 - | S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Execursion               | S 00 S - S 0.1 S - S 0.0 S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Monitoring Plans  S - S - O.0  S - O.0  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Monitoring   Significant Excursion                                                    | S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S - S 00 S 00 S - S 00 S 00 S - S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00 S 00                                                                                                                                                                                                                                                                                                                                                       | Monitoring Plants  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Excursion                |                |                |             |                  |             |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2012<br>2014<br>2015<br>2016<br>2017<br>2019<br>2020<br>2021<br>2022<br>2022<br>2022<br>2024<br>2025<br>2028 | S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                           | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - : : : : : : : : : : : : : : : : : : : | Excursion                        | S O. S . O. S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E Monhoring Plans  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Execursion               | \$ 00 \$ - \$ 0.1 \$ 0.0 \$ - \$ 0.1 \$ 0.0 \$ - \$ 0.1 \$ 5 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring Plans  S - S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  S - 0.0  | Monitoring   Significant Excursion                                                    | S OO S - S OO S - S OO S - S OO S - S OO S - S OO S - S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S                                                                                                                                                                                                                                                                                                                                                        | Monitoring Plans  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Excursion                |                |                |             |                  |             |
| 2005 2006 2007 2008 2007 2008 2010 2011 2012 2013 2014 2015 2016 2017 2019 2020 2021 2022 2022 2022 2024 2025 2026 2027 2028 2028                                            | S                                                                                                                                                                                                                                                                                                                                                                                                 | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - : : : : : : : : : : : : : : : : : : : | Excursion                        | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E Monitoring Plans  - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Execursion               | \$ 00 \$ - \$ 0.1 \$ 0.0 \$ - \$ 0.1 \$ 0.0 \$ 0.1 \$ 0.0 \$ 0.1 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Monitoring Plans  S - S - O.0  S - O.0  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Monitoring   Significant                                                              | S OO S - S OO S - S OO S - S OO S - S OO S - S OO S - S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S OO S                                                                                                                                                                                                                                                                                                                                                        | Monitoring Plans  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New   New                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Excursion                |                |                |             |                  |             |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2012<br>2014<br>2015<br>2016<br>2017<br>2019<br>2020<br>2021<br>2022<br>2022<br>2022<br>2024<br>2025<br>2028 | S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S                                                                         | Monitoring   Plans   M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - : : : : : : : : : : : : : : : : : : : | Caccursion                       | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E Monitoring Plans  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Execursion               | S 00 S - S 0.1 S 0.0 S - S 0.0 S - S 0.0 S - S 0.0 S 0.1 S 0.1 S 0.0 S 0.1 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.0 S 0.1 S 0.0 S 0.1 S 0.0 S 0.0 S 0.0 S 0.1 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0.0 S 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Monitoring Plans S - S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S - O.O S | Monitoring   Significant Excursion                                                    | S OO S S OO S S OO S S OO S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Monitoring   Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Membering   E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Excursion                |                |                |             |                  |             |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005. Detail may not add exactly to totals due to independent rounding. Ann - value of total amusilized at discount rate. Source: Derived from Exhibits J.2a through rr.

# Exhibit J.2cc Present Value of Total Costs at 7% Discount Rate, by System Size (Ground Water NTNCWSs)

|       |                  | <10              | <100 100-45          |                    |                  |                      |                       |               | 500-999              |                       |                  | 1,000-3,29           | 9                     |                  | 3,300-9,99           | 9                     |                  | 10,000-49,9          | 199                   |               | 50,000-99,9          | 999                   |               | 100,000-999          | ,999                  |               | 1,000,000            | 1+                    |
|-------|------------------|------------------|----------------------|--------------------|------------------|----------------------|-----------------------|---------------|----------------------|-----------------------|------------------|----------------------|-----------------------|------------------|----------------------|-----------------------|------------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|
|       |                  |                  | 0 Percen<br>dence Be |                    |                  |                      | ercent<br>ice Bound   |               |                      | ercent<br>nce Bound   |                  |                      | ercent<br>ce Bound    |                  |                      | ercent<br>nce Bound   |                  |                      | ercent<br>nce Bound   |               |                      | ercent<br>nce Bound   |               |                      | Percent<br>nce Bound  |               |                      | ercent<br>nce Bound   |
| Year  | Mean<br>Value    | Lowe<br>(5th %ti |                      | Upper<br>th %tile) | Mean<br>Value    | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value    | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value    | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value    | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) |
| 2005  | \$ -             | \$ -             | \$                   | -                  | \$ -             | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2006  | \$ 0.2           | \$ (             | 0.2 \$               | 0.2                | \$ 0.2           | \$ 0.2               | \$ 0.2                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2007  | \$ -             | \$ -             | \$                   |                    | \$ -             | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2008  | \$ -             | \$ -             | \$                   | -                  | \$ -             | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ -             | \$ -                 | \$ -                  | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2009  | \$ 0.4           | \$ (             | 0.4 \$               | 0.5                | \$ 0.5           | \$ 0.5               | \$ 0.6                | \$ 0.2        | \$ 0.2               | \$ 0.3                | \$ 0.1           | \$ 0.1               | \$ 0.2                | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2010  | \$ 0.5           | \$ (             | 0.4 \$               | 0.6                | \$ 0.7           | \$ 0.6               | \$ 0.8                | \$ 0.3        | \$ 0.3               | \$ 0.4                | \$ 0.2           | \$ 0.2               | \$ 0.3                | \$ 0.1           | \$ 0.0               | \$ 0.1                | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2011  | \$ 0.4           | \$ (             | 0.4 \$               | 0.5                | \$ 0.7           | \$ 0.6               | \$ 0.8                | \$ 0.3        | \$ 0.3               | \$ 0.4                | \$ 0.2           | \$ 0.2               | \$ 0.2                | \$ 0.1           | \$ 0.0               | \$ 0.1                | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2012  | \$ 0.5           | \$ (             | 0.4 \$               | 0.5                | \$ 0.7           | \$ 0.6               | \$ 0.8                | \$ 0.4        | \$ 0.4               | \$ 0.4                | \$ 0.2           | \$ 0.2               | \$ 0.3                | \$ 0.1           | \$ 0.0               | \$ 0.1                | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2013  | \$ 0.5           | \$ (             | 0.5 \$               | 0.6                | \$ 0.8           | \$ 0.7               | \$ 0.9                | \$ 0.5        | \$ 0.4               | \$ 0.5                | \$ 0.3           | \$ 0.2               | \$ 0.3                | \$ 0.1           | \$ 0.0               | \$ 0.1                | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2014  | \$ 0.4           | 1                | ).4 \$               |                    | \$ 0.5           | \$ 0.5               | \$ 0.6                |               | \$ 0.3               |                       | \$ 0.2           | \$ 0.2               | \$ 0.2                | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ 0.0           | \$ 0.0               |                       |               | \$ 0.0               | 1                     | \$ 0.0        |                      | 1                     | \$ -          | \$ -                 | \$ -                  |
| 2015  | \$ 0.2           |                  | 0.2 \$               |                    | \$ 0.3           | \$ 0.3               | \$ 0.3                |               | \$ 0.2               | \$ 0.2                | \$ 0.1           | \$ 0.1               | \$ 0.1                | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ 0.0           | \$ 0.0               | \$ 0.0                |               | \$ 0.0               | \$ 0.0                |               |                      |                       | \$ -          | \$ -                 | \$ -                  |
| 2016  | \$ 0.2           |                  | 0.2 \$               |                    | \$ 0.3           | \$ 0.3               | \$ 0.3                |               | \$ 0.2               | \$ 0.2                | \$ 0.1           | \$ 0.1               | \$ 0.1                | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ 0.0           | \$ 0.0               | \$ 0.0                |               | \$ 0.0               |                       |               |                      |                       | \$ -          | \$ -                 | \$ -                  |
| 2017  | \$ 0.2           | 1                | 0.2 \$               |                    | \$ 0.3           | \$ 0.2               | \$ 0.3                |               | \$ 0.2               |                       | \$ 0.1           | \$ 0.1               | \$ 0.1                | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ 0.0           | \$ 0.0               |                       |               | \$ 0.0               |                       |               | \$ 0.0               | 1                     | \$ -          | \$ -                 | \$ -                  |
| 2018  | \$ 0.2           |                  | 0.2 \$               |                    | \$ 0.2           | \$ 0.2               | \$ 0.3                |               | \$ 0.2               |                       | \$ 0.1           | \$ 0.1               | \$ 0.1                | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ 0.0           | \$ 0.0               |                       |               | \$ 0.0               | -                     |               | \$ 0.0               |                       | \$ -          | \$ -                 | \$ -                  |
| 2019  | \$ 0.2           |                  | 0.2 \$               |                    | \$ 0.2           | \$ 0.2               | \$ 0.2                |               | \$ 0.2               | \$ 0.2                | \$ 0.1           | \$ 0.1               | \$ 0.1                | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ 0.0           | \$ 0.0               | \$ 0.0                |               | \$ 0.0               | \$ 0.0                |               | \$ 0.0               |                       | \$ -          | \$ -                 | \$ -                  |
| 2020  | \$ 0.2           |                  | 0.2 \$               |                    | \$ 0.2           | \$ 0.2               | \$ 0.2                |               | \$ 0.1               | \$ 0.2                | \$ 0.1           | \$ 0.1               | \$ 0.1                | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ 0.0           | \$ 0.0               |                       |               | \$ 0.0               | -                     |               |                      |                       | \$ -          | \$ -                 | \$ -                  |
| 2021  | \$ 0.2           | 1                | 0.1 \$               |                    |                  | \$ 0.2<br>\$ 0.2     | \$ 0.2<br>\$ 0.2      |               | \$ 0.1               |                       | \$ 0.1<br>\$ 0.1 | \$ 0.1<br>\$ 0.1     | \$ 0.1<br>\$ 0.1      | \$ 0.0<br>\$ 0.0 | \$ 0.0<br>\$ 0.0     | \$ 0.0<br>\$ 0.0      | \$ 0.0           | \$ 0.0               |                       |               | \$ 0.0<br>\$ 0.0     |                       |               |                      | 1                     | \$ -<br>\$ -  | \$ -                 | \$ -                  |
| 2022  | \$ 0.1<br>\$ 0.1 | ,                | 0.1 \$<br>0.1 \$     |                    | \$ 0.2<br>\$ 0.2 | \$ 0.2<br>\$ 0.2     | \$ 0.2                |               | \$ 0.1               | \$ 0.1                | \$ 0.1           | \$ 0.1<br>\$ 0.1     | \$ 0.1<br>\$ 0.1      | \$ 0.0           | \$ 0.0<br>\$ 0.0     | \$ 0.0                | \$ 0.0<br>\$ 0.0 | \$ 0.0<br>\$ 0.0     | \$ 0.0<br>\$ 0.0      |               | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0<br>\$ 0.0     |                       | s -           | •                    |                       |
| 2023  | \$ 0.1           | Ĭ.               | 0.1 \$               |                    | \$ 0.2           | \$ 0.2               | \$ 0.2                |               | \$ 0.1               |                       | \$ 0.0           | \$ 0.0               | \$ 0.1                | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ 0.0           | \$ 0.0               | \$ 0.0                |               | \$ 0.0               |                       |               |                      |                       | s -           | •                    |                       |
| 2025  | \$ 0.1           |                  | 0.1 \$               |                    | \$ 0.2           | \$ 0.1               | \$ 0.2                |               | \$ 0.1               |                       | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ 0.0           | \$ 0.0               |                       |               | \$ 0.0               |                       |               |                      | 1                     | \$ -          | \$ -                 | s .                   |
| 2025  | \$ 0.1           |                  | 0.1 \$               |                    | \$ 0.2           | \$ 0.1               | \$ 0.2                |               | \$ 0.1               | · ·                   | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ 0.0           | \$ 0.0               |                       |               | \$ 0.0               | -                     | \$ 0.0        | \$ 0.0               |                       | s -           | s .                  | s .                   |
| 2027  | \$ 0.1           | ,                | 0.1 \$               |                    | \$ 0.1           | \$ 0.1               | \$ 0.1                | \$ 0.1        | \$ 0.1               | · ·                   | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ 0.0           | \$ 0.0               | \$ 0.0                |               | \$ 0.0               | \$ 0.0                |               |                      | 1                     | s -           | \$ -                 | s .                   |
| 2028  | \$ 0.1           |                  | 0.1 \$               |                    |                  | \$ 0.1               | \$ 0.1                |               | \$ 0.1               |                       | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ 0.0           |                      |                       | \$ 0.0           | \$ 0.0               |                       |               | \$ 0.0               |                       |               |                      |                       | s -           | s -                  | s -                   |
| 2029  | \$ 0.1           |                  | 0.1 \$               |                    | \$ 0.1           | \$ 0.1               | \$ 0.1                |               | \$ 0.1               |                       | \$ 0.0           | \$ 0.0               | \$ 0.0                | \$ 0.0           |                      |                       | 1                | \$ 0.0               |                       |               | \$ 0.0               |                       | 1             | \$ 0.0               | 1                     | \$ -          | \$ -                 | s -                   |
| Total | \$ 5.3           |                  | l.9 \$               | 5.7                | \$ 7.1           | \$ 6.4               | \$ 7.8                |               | \$ 3.9               |                       | \$ 2.1           | \$ 1,9               | \$ 2.3                | \$ 0.4           | \$ 0.3               |                       | \$ 0.2           | \$ 0.2               | \$ 0.2                |               | \$ 0.0               |                       | \$ 0.1        | \$ 0.0               |                       | s -           | s -                  | s -                   |
| Ann.  | \$ 0.5           |                  | ).4 S                | 0.5                | \$ 0.6           | \$ 0.5               | \$ 0.7                |               | \$ 0.3               | \$ 0.4                | \$ 0.2           | \$ 0.2               | \$ 0.2                | \$ 0.0           | \$ 0.0               |                       |                  | \$ 0.0               |                       |               | \$ 0.0               |                       |               |                      |                       | s -           | s -                  | s -                   |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

Source: Derived from Exhibits J.2a through rr.

J-96

#### Exhibit J.2cd Present Value of Capital Costs at 7% Discount Rate, by System Size (Ground Water NTNCWSs)

|       |               |        | <100                |                       |               | 100           | 0-499  |                       |               | 500-999              |                       |               | 1,000-3,29           | 9                     |               | 3,300-9,99           | 19                    |               | 10,000-49,999           |                      |               | 50,000-99,9          | 999                   |               | 100,000-999          | 999                   |               | 1,000,000            | +                     |
|-------|---------------|--------|---------------------|-----------------------|---------------|---------------|--------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|-------------------------|----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|
|       |               |        |                     | ercent<br>ice Bound   |               | Co            | 90 Per | rcent<br>ce Bound     |               |                      | ercent<br>nce Bound   |               | 90 Pe<br>Confiden    | ercent<br>ice Bound   |               |                      | ercent<br>nce Bound   |               | 90 Perce<br>Confidence  |                      |               |                      | ercent<br>nce Bound   |               |                      | ercent<br>nce Bound   |               |                      | ercent<br>nce Bound   |
| Year  | Mean<br>Value |        | Lower<br>5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lov<br>(5th % |        | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) (9 | Upper<br>95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) |
| 2005  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$            | -      | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | s -                   | \$ -          | s - s                   | -                    | \$ -          | s -                  | s -                   | \$ -          | \$ -                 | \$ -                  | \$ -          | s -                  | \$ -                  |
| 2006  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$            | -      | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | s -                   | \$ -          | s - s                   |                      | \$ -          | \$ -                 | s -                   | s -           | \$ -                 | \$ -                  | \$ -          | s -                  | \$ -                  |
| 2007  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$            | -      | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | s - s                   | -                    | \$ -          | \$ -                 | \$ -                  | s -           | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2008  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$            | -      | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | s - s                   | -                    | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2009  | \$ 0          | 0.2 \$ | 0.2                 | \$ 0.2                | \$ 0.3        | \$            | 0.3    | \$ 0.4                | \$ 0.2        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0 \$               | 0.0                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2010  | \$ 0          | 0.4 \$ | 0.3                 | \$ 0.5                | \$ 0.6        | \$            | 0.5    | \$ 0.7                | \$ 0.3        | \$ 0.3               | \$ 0.4                | \$ 0.2        | \$ 0.2               | \$ 0.2                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0 \$               | 0.0                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2011  | \$ 0          | 0.4 \$ | 0.3                 | \$ 0.4                | \$ 0.6        | \$            | 0.5    | \$ 0.7                | \$ 0.3        | \$ 0.2               | \$ 0.3                | \$ 0.2        | \$ 0.2               | \$ 0.2                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0 \$               | 0.0                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | s -                  | \$ -                  |
| 2012  | \$ 0          | 0.3 \$ | 0.3                 | \$ 0.4                | \$ 0.5        | \$            | 0.5    | \$ 0.6                | \$ 0.3        | \$ 0.2               | \$ 0.3                | \$ 0.2        | \$ 0.1               | \$ 0.2                | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0 \$               | 0.0                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2013  | \$ 0          | 0.3 \$ | 0.3                 | \$ 0.4                | \$ 0.5        | \$            | 0.4    | \$ 0.6                | \$ 0.3        | \$ 0.2               | \$ 0.3                | \$ 0.2        | \$ 0.1               | \$ 0.2                | \$ 0.0        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0 \$               | 0.0                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2014  | \$ 0          | 0.2 \$ | 0.1                 | \$ 0.2                | \$ 0.2        | \$            | 0.2    | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0 \$               | 0.0                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2015  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$            | -      | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | s - s                   | -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2016  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$            | -      | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ - \$                 | -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2017  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$            | -      | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | s - s                   | -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2018  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$            | -      | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ - \$                 | -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2019  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$            | -      | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | s - s                   | -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2020  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$            | -      | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | s - s                   | -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2021  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$            | -      | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | s - s                   | -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2022  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$            | -      | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ - \$                 | -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2023  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$            | -      | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ - \$                 | -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2024  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$            | -      | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | s - s                   | -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2025  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$            | -      | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ - \$                 | -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2026  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$            | -      | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | s - s                   | -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2027  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$            | -      | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ - \$                 | -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2028  | \$ -          | \$     | -                   | \$ -                  | \$ -          | \$            | -      | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | s - s                   | -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| 2029  | \$ -          | \$     |                     | \$ -                  | \$ -          | \$            | -      | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ - \$                 | -                    | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  |
| Total | \$ 1          | .8 \$  | 1.5                 | \$ 2.0                | \$ 2.9        | \$            | 2.4    | \$ 3.3                | \$ 1.4        | \$ 1.2               | \$ 1.6                | \$ 0.9        | \$ 0.7               | \$ 1.1                | \$ 0.3        | \$ 0.2               | \$ 0.3                | \$ 0.1        | \$ 0.0 \$               | 0.1                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| Ann.  | \$ 0          | 0.2 \$ | 0.1                 | \$ 0.2                | \$ 0.2        | \$            | 0.2    | \$ 0.3                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0 \$               | 0.0                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005. Detail may not add exactly to totals due to independent rounding. Ann = value of total annualized at discount rate. Source: Derived from Exhibits J2a through rr.

# Exhibit J.2ce Present Value of O&M Costs at 7% Discount Rate, by System Size (Ground Water NTNCWSs)

|       |               |       | <100                |                       |               | 100-49              | 9                   |                  |               | 500-999              |                       |               | 1,000-3,29           | 9                     |               | 3,300-9,99           | 19                    |               | 10,000-49,99         | 9                     |               | 50,000-99,9          | 99                    |               | 100,000-999          | .999                  |               | 1,000,000            | +                     |
|-------|---------------|-------|---------------------|-----------------------|---------------|---------------------|---------------------|------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|
|       |               |       | 90 Pe<br>Confidence |                       |               | 90                  | Percent<br>ence Bou |                  |               | 90 P                 | ercent<br>ice Bound   |               | 90 Pe                | ercent<br>ace Bound   |               | 90 P                 | ercent<br>nce Bound   |               | 90 Pe<br>Confiden    | rcent                 |               | 90 Pe                | ercent<br>ice Bound   |               | 90 P                 | ercent<br>nce Bound   |               | 90 P                 | ercent<br>nce Bound   |
| Year  | Mear<br>Value |       | Lower<br>h %tile)   | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile |                     | pper<br>n %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) |
| 2005  | \$ -          | \$    | -                   | s -                   | \$ -          | \$ -                | \$                  | - 5              | s -           | ş -                  | s -                   | \$ -          | \$ -                 | s -                   | \$ -          | s -                  | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | s -                   | \$ -          | \$ -                 | ş -                   |
| 2006  | \$ -          | \$    | -                   | \$ -                  | \$ -          | \$ -                | \$                  | - 5              | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | s -                   | \$ -          | \$ -                 | ş -                   |
| 2007  | \$ -          | \$    |                     | \$ -                  | \$ -          | \$ -                | \$                  | - :              | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | s -                   | \$ -          | \$ -                 | s -                   |
| 2008  | \$ -          | \$    |                     | \$ -                  | \$ -          | \$ -                | \$                  | - :              | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | s -                   | \$ -          | \$ -                 | s -                   |
| 2009  | \$ -          | \$    | -                   | \$ -                  | \$ -          | \$ -                | \$                  | - 3              | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -          | s -                  | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2010  | \$ 0          | .0 \$ | 0.0                 | \$ 0.0                | \$ 0.0        | \$ 0.               | \$                  | 0.0              | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2011  | \$ 0          | .1 \$ | 0.1                 | \$ 0.1                | \$ 0.1        | \$ 0.               | 1 \$                | 0.1              | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2012  | \$ 0          | .1 \$ | 0.1                 | \$ 0.1                | \$ 0.1        | \$ 0.               | 1 \$                | 0.2              | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | s -                   |
| 2013  | \$ 0          | .1 \$ | 0.1                 | \$ 0.1                | \$ 0.2        | \$ 0.               | 2 \$                | 0.2              | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | s -                   |
| 2014  | \$ 0          | .2 \$ | 0.1                 | \$ 0.2                | \$ 0.2        | \$ 0.               | 2 \$                | 0.2              | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | s -                   |
| 2015  | \$ 0          | .2 \$ | 0.1                 | \$ 0.2                | \$ 0.2        | \$ 0.               | 2 \$                | 0.3              | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | s -                   |
| 2016  | \$ 0          | .1 \$ | 0.1                 | \$ 0.2                | \$ 0.2        | \$ 0.               | 2 \$                | 0.2              | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2017  | \$ 0          | .1 \$ | 0.1                 | \$ 0.1                | \$ 0.2        | \$ 0.               | 2 \$                | 0.2              | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2018  | \$ 0          | .1 \$ | 0.1                 | \$ 0.1                | \$ 0.2        | \$ 0.               | 2 \$                | 0.2              | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2019  | \$ 0          | .1 \$ | 0.1                 | \$ 0.1                | \$ 0.2        | \$ 0.               | 2 \$                | 0.2              | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2020  | \$ 0          | .1 \$ | 0.1                 | \$ 0.1                | \$ 0.2        | \$ 0.               | 2 \$                | 0.2              | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2021  | \$ 0          | .1 \$ | 0.1                 | \$ 0.1                | \$ 0.2        | \$ 0.               | 1 \$                | 0.2              | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2022  | \$ 0          | .1 \$ | 0.1                 | \$ 0.1                | \$ 0.1        | \$ 0.               | 1 \$                | 0.2              | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2023  | \$ 0          | .1 \$ | 0.1                 | \$ 0.1                | \$ 0.1        | \$ 0.               | 1 \$                | 0.1              | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2024  | \$ 0          | .1 \$ | 0.1                 | \$ 0.1                | \$ 0.1        | \$ 0.               | 1 \$                | 0.1              | \$ 0.1        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | s -                   |
| 2025  | \$ 0          | .1 \$ | 0.1                 | \$ 0.1                | \$ 0.1        | \$ 0.               | 1 \$                | 0.1              | \$ 0.0        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2026  | \$ 0          | .1 \$ | 0.1                 | \$ 0.1                | \$ 0.1        | \$ 0.               | 1 \$                | 0.1              | \$ 0.0        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2027  | \$ 0          | .1 \$ | 0.1                 | \$ 0.1                | \$ 0.1        | \$ 0.               | 1 \$                | 0.1              | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2028  | \$ 0          | .1 \$ | 0.1                 | \$ 0.1                | \$ 0.1        | \$ 0.               | 1 \$                | 0.1              | \$ 0.0        | \$ 0.0               | 1                     | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        |                      |                       | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| 2029  | \$ (          | .1 \$ | 0.1                 | \$ 0.1                | \$ 0.1        | \$ 0.               | 1 \$                | 0.1              | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| Total | _             | .0 \$ | 1.8                 | \$ 2.1                | \$ 3.0        | \$ 2.               |                     | 3.2              |               | \$ 1.1               | \$ 1.3                | \$ 0.5        | \$ 0.5               | \$ 0.6                | \$ 0.1        | \$ 0.1               | \$ 0.1                |               | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               |                       |               | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |
| Ann.  | \$ 0          | .2 \$ | 0.2                 | \$ 0.2                | \$ 0.3        | \$ 0.               | 2 \$                | 0.3              | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ -          | \$ -                 | \$ -                  |

J-98

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

Source: Derived from Exhibits J.2a through rr.

August 2005

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

#### Exhibit J.2cf Present Value of Non-Treatment Costs at 7% Discount Rate, by System Size (Ground Water NTNCWSs)

|                                                                                                                                                                                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <100                                          |                                                   |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100-499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                                                              |                           | 500-999                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |                                                             |                                                        | 1,000-3,299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                                                              |               |                    | 3,300-9,999 |                  |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------|---------------|--------------------|-------------|------------------|-------------|
|                                                                                                                                                                                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Monitoring                                    |                                                   | Significant                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | Significant                                                  |                           | Monitoring                                                                                                                                                    | Sic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | gnificant                           |                                                             |                                                        | Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | Significant                                                  |               |                    | Monitoring  |                  | Significant |
| Year                                                                                                                                                                                 | Implementation                   | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Plans                                         | Monitoring                                        | Excursion                                                              | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monitoring                                       | Excursion                                                    | Implementation IDSE       | Plans                                                                                                                                                         | Monitoring Ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cursion                             | Implementation                                              | IDSE                                                   | Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring      | Excursion                                                    | Implementatio | n IDSE             | Plans       | Monitoring       | Excursion   |
| 2005<br>2006                                                                                                                                                                         | \$ -<br>\$ 0.2                   | s - s<br>s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                               | s -                                               | s -                                                                    | s -<br>s 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$ -<br>2 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s -                                              | s -                                                          | s - s -<br>s 0.1 s -      | s - s<br>s - s                                                                                                                                                | - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                                                             | s -<br>s -                                             | s - s<br>s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | s .                                                          | s             | - \$ -<br>0.0 \$ - | s -         | s -<br>s -       | s -         |
| 2006                                                                                                                                                                                 |                                  | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               | -                                                 | s -                                                                    | s 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s -                                              |                                                              | s 0.1 s -                 | s - s                                                                                                                                                         | - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                                                             |                                                        | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | •                                                            | s             |                    |             | s -<br>s -       |             |
| 2008                                                                                                                                                                                 | -                                | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                   | s -                                                                    | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s -                                              | -                                                            | s - s -                   | s - s                                                                                                                                                         | - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                                                             |                                                        | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | s -                                                          | s             | - s -              | -           | s -              | s -         |
| 2009                                                                                                                                                                                 | \$ 0.1                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1                                           | s -                                               | s -                                                                    | \$ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$ 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s -                                              | s -                                                          | s 0.0 s -                 | \$ 0.0 \$                                                                                                                                                     | - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                                                             |                                                        | \$ 0.0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -               | s -                                                          | \$            | 0.0 \$ -           | \$ 0.0      | s -              | s -         |
| 2010                                                                                                                                                                                 | \$ 0.1                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |                                                   | s -                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  | s -                                                          |                           | s - s                                                                                                                                                         | - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                                                             |                                                        | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | s -                                                          |               |                    |             |                  | s -         |
| 2011                                                                                                                                                                                 | \$ -                             | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                             | s -                                               | s -                                                                    | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s -                                              | s -                                                          | s - s -                   | s - s                                                                                                                                                         | - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                   | s -                                                         | s -                                                    | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -               | s -                                                          | s             | - s -              | s -         | s -              | s -         |
| 2012                                                                                                                                                                                 | s -                              | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                             | \$ 0.0                                            |                                                                        | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$ 0.0                                           | \$ -                                                         | s - s -                   | s - s                                                                                                                                                         | 0.1 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                   | s -                                                         | \$ -                                                   | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0             | s -                                                          | \$            | - s -              | s -         | \$ 0.0           | s -         |
| 2013                                                                                                                                                                                 | s -                              | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               | \$ 0.1                                            |                                                                        | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$ 0.1                                           |                                                              | s - s -                   | s - s                                                                                                                                                         | 0.1 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                   |                                                             |                                                        | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                                                              | \$            | - \$ -             |             | \$ 0.0           |             |
| 2014                                                                                                                                                                                 | \$ -                             | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               | \$ 0.1                                            |                                                                        | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ 0.1                                           |                                                              | s - s -                   | s - s                                                                                                                                                         | 0.1 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                                                             |                                                        | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                                                              | s             | - s -              |             | \$ 0.0           |             |
| 2015<br>2016                                                                                                                                                                         | s -                              | s - s<br>s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                               | \$ 0.1<br>\$ 0.1                                  |                                                                        | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$ 0.1<br>\$ 0.1                                 |                                                              | s - s -                   | s - s                                                                                                                                                         | 0.1 \$<br>0.1 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |                                                             |                                                        | s - s<br>s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                              | s             | - s -              |             | \$ 0.0<br>\$ 0.0 |             |
| 2016                                                                                                                                                                                 | *                                | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               | \$ 0.1                                            |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ 0.1                                           |                                                              |                           | s . s                                                                                                                                                         | 0.1 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | *                                                           | -                                                      | s . s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                                                              | s             | . s .              | -           | \$ 0.0           |             |
| 2018                                                                                                                                                                                 | s -                              | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               | \$ 0.1                                            |                                                                        | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S 0.1                                            |                                                              | s - s -                   | s - s                                                                                                                                                         | 0.1 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     | s .                                                         | \$ .                                                   | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                                                              | s             | - s -              |             | \$ 0.0           |             |
| 2019                                                                                                                                                                                 | -                                | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               | \$ 0.1                                            |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ 0.1                                           |                                                              |                           | s - s                                                                                                                                                         | 0.1 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                                                             |                                                        | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                                                              | s             | - s -              |             | \$ 0.0           |             |
| 2020                                                                                                                                                                                 | s -                              | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                             |                                                   | \$ -                                                                   | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$ 0.0                                           |                                                              | s - s -                   | s - s                                                                                                                                                         | 0.1 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                   | s -                                                         | s -                                                    | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0             | s -                                                          | \$            | s -                |             | \$ 0.0           |             |
| 2021                                                                                                                                                                                 | s -                              | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                             | \$ 0.1                                            | s -                                                                    | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$ 0.0                                           | s -                                                          | s - s -                   | s - s                                                                                                                                                         | 0.1 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                   | s -                                                         | s -                                                    | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0             | s -                                                          | s             | - s -              | s -         | \$ 0.0           | s -         |
| 2022                                                                                                                                                                                 | s -                              | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               | \$ 0.0                                            |                                                                        | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$ 0.0                                           | s -                                                          | *   *                     | s - s                                                                                                                                                         | 0.1 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                   |                                                             | -                                                      | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | s -                                                          | s             | - s -              |             | \$ 0.0           |             |
| 2023                                                                                                                                                                                 | \$ -                             | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               | \$ 0.0                                            |                                                                        | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$ 0.0                                           |                                                              | s - s -                   | s - s                                                                                                                                                         | 0.1 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                                                             |                                                        | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                                                              | s             |                    |             | \$ 0.0           |             |
| 2024                                                                                                                                                                                 |                                  | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               | \$ 0.0                                            |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 0.0                                           |                                                              |                           | s - s                                                                                                                                                         | 0.1 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                                                             |                                                        | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                                                              | \$            | - s -              |             | \$ 0.0           |             |
| 2025                                                                                                                                                                                 | \$ -                             | s - s<br>s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                               | \$ 0.0<br>\$ 0.0                                  |                                                                        | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$ 0.0<br>\$ 0.0                                 |                                                              | s - s -<br>s - s -        | s · s                                                                                                                                                         | 0.1 \$<br>0.1 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                   | s -                                                         | s .                                                    | s - s<br>s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                              | \$            | - s -              |             | \$ 0.0<br>\$ 0.0 |             |
| 2026<br>2027                                                                                                                                                                         |                                  | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                   | s -                                                                    | s .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$ 0.0<br>\$ 0.0                                 |                                                              | 5 - 5 -                   | s - s                                                                                                                                                         | 0.1 S<br>0.1 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                   |                                                             | s -                                                    | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                                                              |               |                    |             | \$ 0.0<br>\$ 0.0 |             |
| 2028                                                                                                                                                                                 | s .                              | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               | \$ 0.0                                            | s -                                                                    | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$ 0.0                                           |                                                              | s - s -                   | s - s                                                                                                                                                         | 0.0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | s .                                                         | ş -                                                    | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                                                              | s             | - s -              |             | \$ 0.0           |             |
| 2029                                                                                                                                                                                 | s -                              | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               | \$ 0.0                                            | \$ -                                                                   | \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$ 0.0                                           | s -                                                          | s - s -                   | s - s                                                                                                                                                         | 0.0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | s -                                                         | s -                                                    | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0             | s -                                                          | \$            | - s -              | s -         | \$ 0.0           |             |
| Total                                                                                                                                                                                | \$ 0.4                           | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1                                           | \$ 1.0                                            | ş -                                                                    | \$ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$ 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$ 0.8                                           | s -                                                          | \$ 0.1 \$ -               | \$ 0.0 \$                                                                                                                                                     | 1.5 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                   | \$ 0.0                                                      | s -                                                    | \$ 0.0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.6             | ş -                                                          | \$            | 0.0 \$ -           | \$ 0.0      | \$ 0.1           | s -         |
| Ann.                                                                                                                                                                                 | \$ 0.0                           | s - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                           | \$ 0.1                                            | s -                                                                    | \$ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .0 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$ 0.1                                           | s -                                                          | s 0.0 s -                 | \$ 0.0 \$                                                                                                                                                     | 0.1 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | s 0.0                                                       | s -                                                    | \$ 0.0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1             | s -                                                          | s             | 0.0 \$ -           | \$ 0.0      | \$ 0.0           | s -         |
|                                                                                                                                                                                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |                                                   | •                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                              |                           |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |                                                             |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                                                              |               |                    |             |                  |             |
|                                                                                                                                                                                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10,000-49,999                                 |                                                   | •                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50,000-99,999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                                                              |                           | 100,000-999,999                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |                                                             |                                                        | 1,000,000+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                                              |               |                    |             |                  |             |
| Year                                                                                                                                                                                 | Implementation                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10,000-49,999<br>Monitoring                   |                                                   |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50,000-99,999<br>Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                                                              |                           | 100,000-999,999<br>Monitoring                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     | Implementation                                              |                                                        | 1,000,000+<br>Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                                                              |               | •                  |             |                  |             |
| Year<br>2005                                                                                                                                                                         | Implementation                   | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10,000-49,999                                 | Monitoring<br>S -                                 | Significant<br>Excursion                                               | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50,000-99,999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  | Significant<br>Excursion                                     | Implementation IDSE       | 100,000-999,999<br>Monitoring                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gnificant<br>cursion                | Implementation                                              | IDSE                                                   | 1,000,000+<br>Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monitoring .    | Significant<br>Excursion                                     |               |                    |             |                  |             |
| Year 2005 2006                                                                                                                                                                       | Implementation \$ - \$ 0.0       | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10,000-49,999<br>Monitoring                   | Monitoring                                        | Significant<br>Excursion                                               | Implementation \$ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50,000-99,999<br>Monitoring<br>Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |                                                              |                           | 100,000-999,999<br>Monitoring                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     | Implementation                                              | IDSE                                                   | 1,000,000+<br>Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monitoring -    |                                                              |               |                    |             |                  |             |
| 2005                                                                                                                                                                                 |                                  | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10,000-49,999<br>Monitoring<br>Plans          | Monitoring S - S -                                | Significant<br>Excursion                                               | Implementation \$ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IDSE<br>0 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50,000-99,995 Monitoring Plans S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monitoring S - S -                               | Significant<br>Excursion                                     | Implementation            | 100,000-999,999  Monitoring Plans  \$ - \$                                                                                                                    | Monitoring Ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gnificant<br>cursion<br>-           | Implementation  \$ - \$ -                                   | IDSE                                                   | 1,000,000+  Monitoring Plans S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Monitoring<br>- | Significant<br>Excursion                                     |               |                    |             |                  |             |
| 2005<br>2006                                                                                                                                                                         |                                  | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10,000-49,999  Monitoring Plans  0.0          | Monitoring S - S - S - S -                        | Significant<br>Excursion<br>\$ -                                       | Implementation \$ 0. \$ - \$ - \$ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IDSE<br>0 \$ -<br>\$ -<br>\$ 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50,000-99,995 Monitoring Plans S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monitoring S - S -                               | Significant Excursion  S - S - S -                           | Implementation            | 100,000-999,999  Monitoring Plans  \$ - \$                                                                                                                    | Monitoring Ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gnificant<br>cursion<br>-<br>-      | Implementation \$ - \$ - \$ -                               | IDSE                                                   | 1,000,000+  Monitoring Plans  S - S S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monitoring -    | Significant<br>Excursion<br>S -<br>S -                       |               |                    |             |                  |             |
| 2005<br>2006<br>2007<br>2008<br>2009                                                                                                                                                 | \$ -<br>\$ -<br>\$ 0.0           | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10,000-49,999  Monitoring Plans               | Monitoring S - S - S - S - S -                    | Significant Excursion  \$ - \$ - \$ - \$ - \$ -                        | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IDSE   0   \$ -   \$ 0.0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0   \$ -   0 | 50,000-99,995  Monitoring Plans  S - S - S - S 0.0 S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Monitoring S - S - S - S - S -                   | Significant Excursion  S - S - S - S - S -                   | Implementation   IDSE     | 100,000-999,999  Monitoring Plans  S - S S - S S - S S 0.0 S S 0.0 S S - S                                                                                    | Monitoring Ex.  - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | gnificant<br>cursion<br>-<br>-<br>- | Implementation  \$ - \$ - \$ - \$ -                         | IDSE \$ - \$ - \$ - \$ - \$ -                          | 1,000,000+  Monitoring Plans  S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S | Monitoring      | Significant Excursion  S - S - S -                           |               |                    |             |                  |             |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010                                                                                                                                         | \$ -<br>\$ -<br>\$ 0.0<br>\$ 0.0 | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10,000-49,999  Monitoring Plans               | Monitoring S S S S S S S S S S S S S S S S S S S  | Significant Excursion  \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ | Implementation   \$ 0.   \$ -   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0.   \$ 0. | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50,000-99,995  Monitoring Plans  S - S - S - S 0.0 S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monitoring S - S - S - S - S - S -               | Significant Excursion  S - S - S - S - S - S -               | Implementation            | Monitoring   Plans                                                                                                                                            | Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur   Signatur  | gnificant<br>cursion                | Implementation \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - | IDSE \$ - \$ - \$ - \$ - \$ - \$ -                     | 1,000,000+  Monitoring Plans  S - S S - S S - S S - S S - S S - S S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring      | Significant Excursion  S . S . S . S . S .                   |               |                    |             |                  |             |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011                                                                                                                                 | \$ -<br>\$ -<br>\$ 0.0<br>\$ 0.0 | IDSE  \$ - \$ \$ \$ \$ 0.0 \$ \$ \$ 0.0 \$ \$ \$ \$ \$ \$ \$ \$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10,000-49,999  Monitoring Plans               | Monitoring S - S - S - S - S - S - S -            | Significant Excursion  \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ | Implementation \$ 0 \$ - \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50,000-99,995  Monitoring Plans  \$ - \$ - \$ - \$ 0.0 \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ - \$ \$ \$ \$ - \$ | Monitoring   S                                   | Significant Excursion  S - S - S - S - S - S - S - S - S - S | Implementation            | 100,000-999,999  Monitoring Plans  S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S                                              | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gnificant<br>cursion                | Implementation  S - S - S - S - S - S - S -                 | IDSE \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -      | 1,000,000+  Monitoring Plans  S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S - S S S S - S S S S - S S S S - S S S S - S S S S - S S S S - S S S S S - S S S S S - S S S S S S - S S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring      | Significant Excursion  S S S S S S S S S S S S S S S S S S   |               |                    |             |                  |             |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012                                                                                                                         | \$ -<br>\$ -<br>\$ 0.0<br>\$ 0.0 | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10,000-49,999<br>Monitoring<br>Plans  0.0 0.0 | Monitoring  S - S - S - S - S - S - S - S - S - S | Significant Excursion  \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ | Implementation \$ 0. \$ - \$ 0. \$ 0. \$ 0. \$ 0. \$ 0. \$ 0. \$ 0. \$ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50,000-99,996  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Monitoring                                       | Significant Excursion  S - S - S - S - S - S - S - S - S - S | Implementation            | 100,000-999,999  Monitoring Plans  S - S S - S S - O.0 S S - S S - S S - S S - S S - S S - S S - S S - S                                                      | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gnificant<br>cursion                | Implementation                                              | IDSE \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$   | 1,000,000+  Monitoring Plans  S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monitoring      | Significant Excursion  S . S . S . S . S .                   |               |                    |             |                  |             |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011                                                                                                                                 | \$                               | IDSE  \$ - \$ \$  \$ 0.0 \$  \$ 0.0 \$  \$ - \$  \$ - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ 5 - \$  \$ \$  \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10,000-49,999  Monitoring Plans               | Monitoring S - S - S - S - S - S - S -            | Significant Excursion  S SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS            | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50,000-99,996  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Monitoring   S                                   | Significant Excursion  S - S - S - S - S - S - S - S - S - S | Implementation   IDSE   S | 100,000-999,999  Monitoring Plans  S - S S - S S - O.0 S S - S S - S S - S S - S S - S S - S S - S S - S                                                      | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gnificant<br>cursion                | Implementation   S                                          | IDSE \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - | 1,000,000+  Monitoring Plans  S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monitoring      | Significant Excursion  S S S S S S S S S S S S S S S S S S   |               |                    |             |                  |             |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013                                                                                                                 | \$                               | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10,000-49,999  Monitoring Plans               | Monitoring  S - S - S - S - S - S - S - S - S - S | Significant Excursion  \$                                              | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50,000-99,996  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Monitoring                                       | Significant Excursion  S - S - S - S - S - S - S - S - S - S | Implementation   IDSE   S | 100,000-999,999    Monitoring   Plans                                                                                                                         | Monitoring Signary - S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | gnificant<br>cursion                | Implementation S - S - S - S - S - S - S - S - S - S -      | IDSE \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - | 1,000,000+    Monitoring   Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Monitoring      | Significant Excursion  S - S - S - S - S - S - S - S - S - S |               |                    |             |                  |             |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014                                                                                                         | \$                               | S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10,000-49,999  Monitoring Plans               | Monitoring  S - S - S - S - S - S - S - S - S - S | Significant Excursion  \$                                              | Implementation \$ 0, \$ - \$ - \$ 0, \$ 0, \$ 0, \$ 0, \$ 0, \$ 0, \$ 0, \$ 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50,000-99,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Monitoring   S                                   | Significant Excursion  S - S - S - S - S - S - S - S - S - S | Implementation   IDSE     | 100,000-999,999  Monitoring Plans  \$ - \$ \$ \$ . \$ \$ \$ . \$ \$ \$ . \$ \$ \$ . \$ \$ \$ \$ . \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Sign | gnificant<br>cursion                | Implementation  S - S - S - S - S - S - S - S - S - S       | IDSE                                                   | 1,000,000+    Monitoring   Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Monitoring      | Significant Excursion  S S S S S S S S S S S S S S S S S S   |               |                    |             |                  |             |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015                                                                                                 | \$                               | IDSE \$ - \$ \$ \$ - \$ \$ \$ 0.0 \$ \$ 0.0 \$ \$ 0.0 \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ 5 - \$ \$ | 10,000-49,999  Monitoring Plans               | Monitoring S - S - S - S - S - S - S - S - S - S  | Significant Excursion  S S S S S S S S S S S S S S S S S S             | Implementation \$ 0 \$ - \$ - \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50,000-99,999  Monitoring Plans  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Monitoring   S                                   | Significant Excursion  S - S - S - S - S - S - S - S - S - S | Implementation   IDSE     | 100,000-999,999    Monitoring   Plans   S                                                                                                                     | Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Sign | gnificant<br>cursion                | Implementation  S                                           | IDSE                                                   | 1,000,000+  Monitoring Plans  S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S S - S | Monitoring      | Significant Excursion  S S S S S S S S S S S S S S S S S S   |               |                    |             |                  |             |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2018                                                                         | \$                               | IDSE  \$ - \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10,000-49,999  Monktoring Plans               | Monitoring   S                                    | Significant   Exeursion                                                | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$0,000-99,995  Monitoring Pians  \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Monkoring   S                                    | Significant   Excursion                                      | Implementation   IOSE     | 100,000-999,999  Monkering Plans  5                                                                                                                           | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gnificant<br>cursion                | Implementation                                              | S - S - S - S - S - S - S - S - S - S -                | 1,000,000+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Monitoring      | Significant   Excursion                                      |               |                    |             |                  |             |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2018                                                                         | \$                               | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10,000-49,999  Monitoring Plans  0.0 0.0      | Monitoring   S                                    | Significant   Excursion                                                | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$0,000-99,996  Monitoring Plans  \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Monitoring   S                                   | Significant   Excursion                                      | Implementation   IDSE     | 100,000-999,999  Monitoring Plans  5                                                                                                                          | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gnificant<br>cursion                | Implementation S S S S S S S S S S S S S S S S S S S        | IDSE                                                   | 1,000,000+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Monitoring      | Significant   Excursion                                      |               |                    |             |                  |             |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2018<br>2019                                                                 | \$                               | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10,000-49,999 Monitoring Plans                | Monitoring   S                                    | Significant   Excursion                                                | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$0,000-99,995  Monitoring Plans \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring   S                                   | Significant   Execursion                                     | Implementation   IDSE     | 100,000-995,999  Monitoring Plans  5                                                                                                                          | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gnificant<br>cursion                | Implementation S - S - S - S - S - S - S - S - S - S        | IDSE                                                   | 1,000,000+  Monitoring Plans  S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitoring      | Significant   Excursion                                      |               |                    |             |                  |             |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2015<br>2016<br>2017<br>2018<br>2019<br>2020<br>2021                                                 | \$                               | S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10,000-49,999  Monitoring Plans               | Monkoring   S                                     | Significant   Excursion                                                | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$0,000-99,995  Monitoring Plans \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Monitoring S - S - S - S - S - S - S - S - S - S | Significant   Excursion                                      | Implementation   IDSE     | Monitoring   Plans                                                                                                                                            | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gnificant<br>cursion                | Implementation                                              | IDSE \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - | 1,000,000+  Monitoring Planes  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Monitoring      | Significant Excursion                                        |               |                    |             |                  |             |
| 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021                                                                                                 | \$                               | S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10,000-49,999 Monitoring Plans                | Monitoring   S                                    | Significant   Excursion                                                | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$0,000-99,996  Monitoring Plans  \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monitoring   S                                   | Significant   Excursion                                      | Implementation   IDSE     | 100,000-999,999  Monitoring Plans  5                                                                                                                          | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ynificant cursion                   | Implementation S                                            | IDSE  \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$  | 1,000,000+   Monhoring   Plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monitoring      | Significant   Excursion                                      |               |                    |             |                  |             |
| 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021                                                                                                 | \$                               | S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10,000-49,999  Monitoring Plans               | Monkering   S                                     | Significant   Excursion                                                | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$0,000-99,995  Monitoring Plans \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Monhoring   S                                    | Significant   Exercision                                     | Implementation   IDSE     | 100,000-995,999                                                                                                                                               | Monitoring SE SE SE SE SE SE SE SE SE SE SE SE SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | hypiticant cursion                  | Implementation                                              | IDSE                                                   | 1,000,000+   Monitoring   Plants   S   S   S   S   S   S   S   S   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitoring      | Significant Excursion                                        |               |                    |             |                  |             |
| 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021                                                                                                 | \$                               | S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10,000-49,999  Monitoring Plans               | Monitoring   S                                    | Significant   Excursion                                                | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$0,000-99,996  Monitoring Plans  \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monhoring   S                                    | Significant   Execursion                                     | Implementation   IDSE     | 100,000-999,999  Monitoring Plans  5                                                                                                                          | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | typilicant cursion                  | Implementation                                              | IDSE  S - S - S - S - S - S - S - S - S - S            | 1,000,000+   Monitoring   Plants   S   S   S   S   S   S   S   S   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitoring      | Significant Excursion                                        |               |                    |             |                  |             |
| 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023                                                                                       | \$                               | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10,000-49,999  Monitoring Plans               | Monitoring                                        | Significant Excursion                                                  | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IDSE  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$0,000-99,995  Monitoring Plans  \$ - \$ - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$ 5 - \$                                                                                                                                                                                                                                                                                                                                                                                                                          | Monitoring S - S - S - S - S - S - S - S - S - S | Significant   Execursion                                     | Implementation            | Monitoring   Plans                                                                                                                                            | Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Signature   Sign | ypilicant cursion                   | Implementation S                                            | IDSE  \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$  | 1,000,000+  Monitoring Planes  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Monitoring      | Significant   Excursion                                      |               |                    |             |                  |             |
| 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024                                                                                  | \$                               | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10,000-49,999  Monitoring Plans               | Monitoring   S                                    | Significant                                                            | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IDSE  S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$0,000-99,996  Monitoring Plans \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Monitoring                                       | Significant   Excursion                                      | Implementation            | Monitoring   Plans                                                                                                                                            | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ypilicant cursion                   | Implementation S                                            | IDSE  \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$  | 1,000,000+   Monhering   Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monitoring      | Significant   Execursion                                     |               |                    |             |                  |             |
| 2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014<br>2016<br>2017<br>2018<br>2019<br>2020<br>2021<br>2022<br>2023<br>2024<br>2025<br>2026<br>2027<br>2026 | \$                               | S - S - S - S - S - S - S - S - S - S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10,000-49,999  Monitoring Plans               | Monitoring                                        | Significant   Excursion                                                | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IDSE   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -   S -     S -   S -     S -     S -     S -     S -       S -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$0,000-99,995  Miconitoring Piane  \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring                                       | Significant   Execursion                                     | Implementation   IDSE     | Monitoring   Monitoring   Plants                                                                                                                              | Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect | ppilicant                           | Implementation S - S - S - S - S - S - S - S - S - S        | IDSE  S - S - S - S - S - S - S - S - S - S            | 1,000,000+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Monitoring      | Significant   Execursion                                     |               |                    |             |                  |             |
| 2005 2006 2007 2008 2009 2010 2011 2012 2014 2015 2016 2017 2020 2021 2022 2024 2025 2026 2029                                                                                       | S                                | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10,000-49,999  Monitoring Plans               | Monitoring   S                                    | Significant                                                            | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$0,000-99,995  Miconitoring Piane  \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Monhoring   S                                    | Significant                                                  | Implementation            | Monitoring   Plants                                                                                                                                           | Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect | ppilicant                           | Implementation S - S - S - S - S - S - S - S - S - S        | IDSE S - S - S - S - S - S - S - S - S - S -           | 1,000,000+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Monitoring      | Significant   Execursion                                     |               |                    |             |                  |             |
| 2005 2006 2007 2008 2010 2011 2012 2012 2016 2017 2016 2017 2020 2021 2023 2024 2025 2026                                                                                            | \$                               | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10,000-49,999  Monitoring Plans               | Monitoring                                        | Significant   Excursion                                                | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IDSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$ 0,000-99,996    Monitoring Plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring   S                                   | Significant                                                  | Implementation   IDSE     | Monitoring   Plans                                                                                                                                            | Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect | ppilicant                           | Implementation                                              | IDSE  S - S - S - S - S - S - S - S - S - S            | 1,000,000+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Monitoring      | Significant   Execursion                                     |               |                    |             |                  |             |

Ann. \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$ 0.0 | \$

# Section J.3 Cost Projections (Alternative 1)

## Exhibit J.3a Projections of Stage 2 DBPR PWS Costs

(All Surface Water CWSs)

## Alternative 1

|      | Treatn        | nent | Capita           | I Co | sts                |      | Trea          | tmen | t O&M          | Cos | sts                |    |               |      | N     | on-1 | Treatment C         | ost | s          |                        | All St        | age | 2 DBPR            | Cos | its                 |
|------|---------------|------|------------------|------|--------------------|------|---------------|------|----------------|-----|--------------------|----|---------------|------|-------|------|---------------------|-----|------------|------------------------|---------------|-----|-------------------|-----|---------------------|
|      |               | c    | 90 P<br>Confide  |      |                    |      |               | Co   | 90 Ponfider    |     |                    |    |               |      |       |      |                     |     |            |                        |               |     | 90 Pe<br>Confiden |     | -                   |
| Year | Mean<br>Value | _    | ower<br>n %tile) |      | Upper<br>th %tile) |      | lean<br>'alue | _    | ower<br>%tile) |     | Upper<br>th %tile) | ı  | mplementation | ı    | DSE   | M    | lonitoring<br>Plans |     | Monitoring | ignificant<br>xcursion | Mean<br>Value |     | Lower<br>h %tile) |     | Upper<br>5th %tile) |
| 2005 | \$<br>-       | \$   | -                | \$   | -                  | \$   | -             | \$   | -              | \$  | -                  | \$ | 0.69          | \$   | -     | \$   | -                   | \$  | -          | \$<br>-                | \$<br>0.69    | \$  | 0.69              | \$  | 0.69                |
| 2006 | \$<br>-       | \$   | -                | \$   | -                  | \$   | -             | \$   | -              | \$  | -                  | \$ | 1.34          | \$   | 8.46  | \$   | -                   | \$  | -          | \$<br>-                | \$<br>9.80    | \$  | 9.80              | \$  | 9.80                |
| 2007 | \$<br>-       | \$   | -                | \$   | -                  | \$   | -             | \$   | -              | \$  | -                  | \$ | -             | \$ : | 22.45 | \$   | 0.22                | \$  | -          | \$<br>-                | \$<br>22.67   | \$  | 22.67             | \$  | 22.67               |
| 2008 | \$<br>274.81  | \$   | 144.65           | \$   | 415.95             | \$   | -             | \$   | -              | \$  | -                  | \$ | 0.60          | \$   | 18.62 | \$   | 0.62                | \$  | -          | \$<br>-                | \$<br>294.65  | \$  | 164.49            | \$  | 435.78              |
| 2009 | \$<br>356.94  | \$   | 188.03           | \$   | 539.48             | \$   | 25.04         | \$   | 13.33          | \$  | 36.97              | \$ | 0.75          | \$   | -     | \$   | 0.88                | \$  | -          | \$<br>-                | \$<br>383.60  | \$  | 202.99            | \$  | 578.08              |
| 2010 | \$<br>414.70  | \$ : | 218.56           | \$   | 626.39             | \$   | 56.35         | \$   | 30.00          | \$  | 83.18              | \$ | 0.67          | \$   | -     | \$   | -                   | \$  | -          | \$<br>-                | \$<br>471.72  | \$  | 249.24            | \$  | 710.24              |
| 2011 | \$<br>414.70  | \$ : | 218.56           | \$   | 626.39             | \$   | 92.07         | \$   | 49.03          | \$  | 135.90             | \$ | -             | \$   | -     | \$   | -                   | \$  | 0.42       | \$<br>-                | \$<br>507.20  | \$  | 268.01            | \$  | 762.70              |
| 2012 | \$<br>414.70  | \$   | 218.56           | \$   | 626.39             | \$   | 127.80        | \$   | 68.05          | \$  | 188.61             | \$ | -             | \$   | -     | \$   | -                   | \$  | (0.77)     | \$<br>0.06             | \$<br>541.79  | \$  | 285.91            | \$  | 814.29              |
| 2013 | \$<br>139.89  | \$   | 73.91            | \$   | 210.44             | \$   | 163.52        | \$   | 87.08          | \$  | 241.33             | \$ | -             | \$   | -     | \$   | -                   | \$  | (2.07)     | \$<br>0.15             | \$<br>301.49  | \$  | 159.07            | \$  | 449.84              |
| 2014 | \$<br>57.77   | \$   | 30.54            | \$   | 86.91              | \$   | 174.21        | \$   | 92.77          | \$  | 257.07             | \$ | -             | \$   | -     | \$   | -                   | \$  | (2.07)     | \$<br>0.21             | \$<br>230.12  | \$  | 121.46            | \$  | 342.12              |
| 2015 | \$<br>-       | \$   | -                | \$   |                    | \$ 1 | 178.63        | \$   | 95.13          | \$  | 263.57             | \$ | -             | \$   | -     | \$   |                     | \$  | (2.07)     | \$<br>0.21             | \$<br>176.77  | \$  | 93.27             | \$  | 261.72              |
| 2016 | \$<br>-       | \$   | -                | \$   | -                  | \$ 1 | 178.63        | \$   | 95.13          | \$  | 263.57             | \$ | -             | \$   | -     | \$   | -                   | \$  | (2.07)     | \$<br>0.21             | \$<br>176.77  | \$  | 93.27             | \$  | 261.72              |
| 2017 | \$<br>-       | \$   | -                | \$   | -                  | \$ 1 | 178.63        | \$   | 95.13          | \$  | 263.57             | \$ | -             | \$   | -     | \$   | -                   | \$  | (2.07)     | \$<br>0.21             | \$<br>176.77  | \$  | 93.27             | \$  | 261.72              |
| 2018 | \$<br>-       | \$   | -                | \$   | -                  | \$ 1 | 178.63        | \$   | 95.13          | \$  | 263.57             | \$ | -             | \$   | -     | \$   | -                   | \$  | (2.07)     | \$<br>0.21             | \$<br>176.77  | \$  | 93.27             | \$  | 261.72              |
| 2019 | \$<br>-       | \$   | -                | \$   | -                  | \$ 1 | 178.63        | \$   | 95.13          | \$  | 263.57             | \$ | -             | \$   | -     | \$   | -                   | \$  | (2.07)     | \$<br>0.21             | \$<br>176.77  | \$  | 93.27             | \$  | 261.72              |
| 2020 | \$<br>-       | \$   | -                | \$   | -                  | \$ 1 | 178.63        | \$   | 95.13          | \$  | 263.57             | \$ | -             | \$   | -     | \$   | -                   | \$  | (2.07)     | \$<br>0.21             | \$<br>176.77  | \$  | 93.27             | \$  | 261.72              |
| 2021 | \$<br>-       | \$   | -                | \$   | -                  | \$ 1 | 178.63        | \$   | 95.13          | \$  | 263.57             | \$ | -             | \$   | -     | \$   | -                   | \$  | (2.07)     | \$<br>0.21             | \$<br>176.77  | \$  | 93.27             | \$  | 261.72              |
| 2022 | \$<br>-       | \$   | -                | \$   | -                  | \$ 1 | 178.63        | \$   | 95.13          | \$  | 263.57             | \$ | -             | \$   | -     | \$   | -                   | \$  | (2.07)     | \$<br>0.21             | \$<br>176.77  | \$  | 93.27             | \$  | 261.72              |
| 2023 | \$<br>-       | \$   | -                | \$   | -                  | \$ 1 | 178.63        | \$   | 95.13          | \$  | 263.57             | \$ | -             | \$   | -     | \$   | -                   | \$  | (2.07)     | \$<br>0.21             | \$<br>176.77  | \$  | 93.27             | \$  | 261.72              |
| 2024 | \$<br>-       | \$   | -                | \$   | -                  | \$ 1 | 178.63        | \$   | 95.13          | \$  | 263.57             | \$ | -             | \$   | -     | \$   | -                   | \$  | (2.07)     | \$<br>0.21             | \$<br>176.77  | \$  | 93.27             | \$  | 261.72              |
| 2025 | \$<br>-       | \$   | -                | \$   | -                  | \$ 1 | 178.63        | \$   | 95.13          | \$  | 263.57             | \$ | -             | \$   | -     | \$   | -                   | \$  | (2.07)     | \$<br>0.21             | \$<br>176.77  | \$  | 93.27             | \$  | 261.72              |
| 2026 | \$<br>-       | \$   | -                | \$   | -                  | \$ 1 | 178.63        | \$   | 95.13          | \$  | 263.57             | \$ | -             | \$   | -     | \$   | -                   | \$  | (2.07)     | \$<br>0.21             | \$<br>176.77  | \$  | 93.27             | \$  | 261.72              |
| 2027 | \$<br>-       | \$   | -                | \$   | -                  | \$ 1 | 178.63        | \$   | 95.13          | \$  | 263.57             | \$ | -             | \$   | -     | \$   | -                   | \$  | (2.07)     | \$<br>0.21             | \$<br>176.77  | \$  | 93.27             | \$  | 261.72              |
| 2028 | \$<br>-       | \$   | -                | \$   | -                  | \$ 1 | 178.63        | \$   | 95.13          | \$  | 263.57             | \$ | -             | \$   | -     | \$   | -                   | \$  | (2.07)     | \$<br>0.21             | \$<br>176.77  | \$  | 93.27             | \$  | 261.72              |
| 2029 | \$<br>-       | \$   | -                | \$   | -                  | \$ 1 | 178.63        | \$   | 95.13          | \$  | 263.57             | \$ | -             | \$   | -     | \$   | -                   | \$  | (2.07)     | \$<br>0.21             | \$<br>176.77  | \$  | 93.27             | \$  | 261.72              |

Note: All values in millions of year 2003 dollars.

## Exhibit J.3b Projections of Stage 2 DBPR PWS Costs

(All Surface Water NTNCWSs)

#### Alternative 1

|      | T  | reatme      | ent Capital             | Costs                  |              | Treati        | ment O&N                | /I Co | sts                    |                |    | N    | lon | -Treatment C        | osts | S          |    |                      | All St        | age | 2 DBPR            | Cost | ts                 |
|------|----|-------------|-------------------------|------------------------|--------------|---------------|-------------------------|-------|------------------------|----------------|----|------|-----|---------------------|------|------------|----|----------------------|---------------|-----|-------------------|------|--------------------|
|      |    |             | 90 Pe<br>Confiden       |                        |              |               | 90 Pe<br>Confiden       | ce E  | Bound                  |                |    |      |     |                     |      |            |    |                      |               | C   | 90 Pe<br>Confiden |      |                    |
| Year |    | ean<br>alue | Lower<br>(5th<br>%tile) | Uppe<br>(95th<br>%tile | <u>.</u>   1 | Mean<br>Value | Lower<br>(5th<br>%tile) | (9    | pper<br>95th<br>stile) | Implementation | ı  | DSE  | I   | Monitoring<br>Plans |      | Monitoring | •  | gnificant<br>cursion | Mean<br>Value | _   | Lower<br>h %tile) |      | Upper<br>th %tile) |
| 2005 | \$ | -           | \$ -                    | \$ -                   | \$           | \$ -          | \$ -                    | \$    | -                      | \$ 0.00        | \$ | -    | \$  | -                   | \$   | -          | \$ | -                    | \$<br>0.00    | \$  | 0.00              | \$   | 0.00               |
| 2006 | \$ | -           | \$ -                    | \$ -                   | \$           | \$ -          | \$ -                    | \$    | -                      | \$ 0.08        | \$ | 0.01 | \$  | -                   | \$   | -          | \$ | -                    | \$<br>0.09    | \$  | 0.09              | \$   | 0.09               |
| 2007 | \$ | -           | \$ -                    | \$ -                   | \$           | \$ -          | \$ -                    | \$    | -                      | \$ -           | \$ | 0.04 | \$  | 0.00                | \$   | -          | \$ | -                    | \$<br>0.04    | \$  | 0.04              | \$   | 0.04               |
| 2008 | \$ | 0.38        | \$ 0.20                 | \$ 0.5                 | 57 \$        | \$ -          | \$ -                    | \$    | -                      | \$ 0.00        | \$ | 0.02 | \$  | 0.00                | \$   | -          | \$ | -                    | \$<br>0.40    | \$  | 0.22              | \$   | 0.60               |
| 2009 | \$ | 2.02        | \$ 1.07                 | \$ 3.0                 | )4 \$        | \$ 0.03       | \$ 0.02                 | \$    | 0.05                   | \$ 0.04        | \$ | -    | \$  | 0.04                | \$   | -          | \$ | -                    | \$<br>2.13    | \$  | 1.16              | \$   | 3.17               |
| 2010 | \$ | 3.67        | \$ 1.94                 | \$ 5.5                 | 51 \$        | \$ 0.22       | \$ 0.12                 | \$    | 0.32                   | \$ 0.04        | \$ | -    | \$  | -                   | \$   | -          | \$ | -                    | \$<br>3.92    | \$  | 2.09              | \$   | 5.87               |
| 2011 | \$ | 3.67        | \$ 1.94                 | \$ 5.5                 | 51 \$        | \$ 0.55       | \$ 0.29                 | \$    | 0.81                   | \$ -           | \$ | -    | \$  | -                   | \$   | 0.00       | \$ | -                    | \$<br>4.22    | \$  | 2.23              | \$   | 6.33               |
| 2012 | \$ | 3.67        | \$ 1.94                 | \$ 5.5                 | 51 \$        | \$ 0.89       | \$ 0.47                 | \$    | 1.31                   | \$ -           | \$ | -    | \$  | -                   | \$   | 0.02       | \$ | -                    | \$<br>4.57    | \$  | 2.43              | \$   | 6.83               |
| 2013 | \$ | 3.29        | \$ 1.74                 | \$ 4.9                 | 3 \$         | \$ 1.22       | \$ 0.65                 | \$    | 1.80                   | \$ -           | \$ |      | \$  | -                   | \$   | 0.03       | \$ | -                    | \$<br>4.54    | \$  | 2.42              | \$   | 6.76               |
| 2014 | \$ | 1.64        | \$ 0.87                 | \$ 2.4                 | 7 \$         | \$ 1.53       | \$ 0.81                 | \$    | 2.25                   | \$ -           | \$ | -    | \$  | -                   | \$   | 0.03       | \$ | -                    | \$<br>3.20    | \$  | 1.71              | \$   | 4.74               |
| 2015 | \$ |             | \$ -                    | \$ -                   | \$           | \$ 1.68       | \$ 0.89                 | \$    | 2.47                   | \$ -           | \$ |      | \$  | -                   | \$   | 0.03       | \$ | -                    | \$<br>1.71    | \$  | 0.92              | \$   | 2.50               |
| 2016 | \$ | -           | \$ -                    | \$ -                   | \$           | \$ 1.68       | \$ 0.89                 | \$    | 2.47                   | \$ -           | \$ | -    | \$  | 1                   | \$   | 0.03       | \$ | -                    | \$<br>1.71    | \$  | 0.92              | \$   | 2.50               |
| 2017 | \$ | -           | \$ -                    | \$ -                   | \$           | \$ 1.68       | \$ 0.89                 | \$    | 2.47                   | \$ -           | \$ | -    | \$  | -                   | \$   | 0.03       | \$ | -                    | \$<br>1.71    | \$  | 0.92              | \$   | 2.50               |
| 2018 | \$ | -           | \$ -                    | \$ -                   | \$           | \$ 1.68       | \$ 0.89                 | \$    | 2.47                   | \$ -           | \$ | -    | \$  | -                   | \$   | 0.03       | \$ | -                    | \$<br>1.71    | \$  | 0.92              | \$   | 2.50               |
| 2019 | \$ | -           | \$ -                    | \$ -                   | \$           | \$ 1.68       | \$ 0.89                 | \$    | 2.47                   | \$ -           | \$ | -    | \$  | 1                   | \$   | 0.03       | \$ | -                    | \$<br>1.71    | \$  | 0.92              | \$   | 2.50               |
| 2020 | \$ | -           | \$ -                    | \$ -                   | \$           | \$ 1.68       | \$ 0.89                 | \$    | 2.47                   | \$ -           | \$ | -    | \$  | 1                   | \$   | 0.03       | \$ | -                    | \$<br>1.71    | \$  | 0.92              | \$   | 2.50               |
| 2021 | \$ | -           | \$ -                    | \$ -                   | \$           | \$ 1.68       | \$ 0.89                 | \$    | 2.47                   | \$ -           | \$ | -    | \$  |                     | \$   | 0.03       | \$ | -                    | \$<br>1.71    | \$  | 0.92              | \$   | 2.50               |
| 2022 | \$ | -           | \$ -                    | \$ -                   | \$           | \$ 1.68       | \$ 0.89                 | \$    | 2.47                   | \$ -           | \$ | -    | \$  | -                   | \$   | 0.03       | \$ | -                    | \$<br>1.71    | \$  | 0.92              | \$   | 2.50               |
| 2023 | \$ | -           | \$ -                    | \$ -                   | \$           | \$ 1.68       | \$ 0.89                 | \$    | 2.47                   | \$ -           | \$ | -    | \$  |                     | \$   | 0.03       | \$ | -                    | \$<br>1.71    | \$  | 0.92              | \$   | 2.50               |
| 2024 | \$ | -           | \$ -                    | \$ -                   | \$           | \$ 1.68       | \$ 0.89                 | \$    | 2.47                   | \$ -           | \$ | -    | \$  | -                   | \$   | 0.03       | \$ | -                    | \$<br>1.71    | \$  | 0.92              | \$   | 2.50               |
| 2025 | \$ | -           | \$ -                    | \$ -                   | \$           | \$ 1.68       | \$ 0.89                 | \$    | 2.47                   | \$ -           | \$ | -    | \$  | -                   | \$   | 0.03       | \$ | -                    | \$<br>1.71    | \$  | 0.92              | \$   | 2.50               |
| 2026 | \$ | -           | \$ -                    | \$ -                   | \$           | \$ 1.68       | \$ 0.89                 | \$    | 2.47                   | \$ -           | \$ | -    | \$  | -                   | \$   | 0.03       | \$ | -                    | \$<br>1.71    | \$  | 0.92              | \$   | 2.50               |
| 2027 | \$ | -           | \$ -                    | \$ -                   | \$           | \$ 1.68       | \$ 0.89                 | \$    | 2.47                   | \$ -           | \$ | -    | \$  | -                   | \$   | 0.03       | \$ | -                    | \$<br>1.71    | \$  | 0.92              | \$   | 2.50               |
| 2028 | \$ | -           | \$ -                    | \$ -                   | \$           | \$ 1.68       | \$ 0.89                 | \$    | 2.47                   | \$ -           | \$ | -    | \$  |                     | \$   | 0.03       | \$ | -                    | \$<br>1.71    | \$  | 0.92              | \$   | 2.50               |
| 2029 | \$ | -           | \$ -                    | \$ -                   | _            | \$ 1.68       | \$ 0.89                 | \$    | 2.47                   | \$ -           | \$ | -    | \$  | -                   | \$   | 0.03       | \$ | -                    | \$<br>1.71    | \$  | 0.92              | \$   | 2.50               |

Note: All values in millions of year 2003 dollars.

## Exhibit J.3c Projections of Stage 2 DBPR PWS Costs

(All Surface Water Systems)

## Alternative 1

|      | Treatn        | ner | nt Capital        | Со | sts                 | Treat         | ment O&M       | Costs                       |    |              | N           | lon- | Treatment Co        | sts | S          |                          | All S         | age | 2 DBPR             | Cos | ts                  |
|------|---------------|-----|-------------------|----|---------------------|---------------|----------------|-----------------------------|----|--------------|-------------|------|---------------------|-----|------------|--------------------------|---------------|-----|--------------------|-----|---------------------|
|      |               |     | 90 Po<br>Confider |    |                     |               |                | ercent<br>ce Bound<br>Upper |    |              |             |      |                     |     |            |                          |               |     | 90 Pe<br>Confiden  |     |                     |
| Year | Mean<br>/alue | (5  | Lower (th %tile)  | (9 | Upper<br>5th %tile) | Mean<br>Value | (5th<br>%tile) | (95th<br>%tile)             | lm | plementation | IDSE        | ľ    | Monitoring<br>Plans |     | Monitoring | Significant<br>Excursion | Mean<br>Value |     | Lower<br>th %tile) |     | Upper<br>ith %tile) |
| 2005 | \$<br>-       | \$  | -                 | \$ | -                   | \$<br>-       | \$ -           | \$ -                        | \$ | 0.69         | \$<br>-     | \$   | -                   | \$  | -          | \$<br>-                  | \$<br>0.69    | \$  | 0.69               | \$  | 0.69                |
| 2006 | \$<br>-       | \$  | -                 | \$ | -                   | \$<br>-       | \$ -           | \$ -                        | \$ | 1.42         | \$<br>8.48  | \$   | -                   | \$  | -          | \$<br>-                  | \$<br>9.90    | \$  | 9.90               | \$  | 9.90                |
| 2007 | \$<br>-       | \$  | -                 | \$ | -                   | \$<br>-       | \$ -           | \$ -                        | \$ | -            | \$<br>22.49 | \$   | 0.22                | \$  | -          | \$<br>-                  | \$<br>22.71   | \$  | 22.71              | \$  | 22.71               |
| 2008 | \$<br>275.19  | \$  | 144.85            | \$ | 416.52              | \$<br>-       | \$ -           | \$ -                        | \$ | 0.60         | \$<br>18.64 | \$   | 0.62                | \$  | -          | \$<br>-                  | \$<br>295.05  | \$  | 164.71             | \$  | 436.38              |
| 2009 | \$<br>358.96  | \$  | 189.09            | \$ | 542.52              | \$<br>25.07   | \$ 13.35       | \$ 37.02                    | \$ | 0.79         | \$<br>-     | \$   | 0.91                | \$  | -          | \$<br>-                  | \$<br>385.74  | \$  | 204.15             | \$  | 581.24              |
| 2010 | \$<br>418.37  | \$  | 220.50            | \$ | 631.90              | \$<br>56.56   | \$ 30.12       | \$ 83.50                    | \$ | 0.71         | \$<br>-     | \$   | -                   | \$  | -          | \$<br>-                  | \$<br>475.64  | \$  | 251.33             | \$  | 716.11              |
| 2011 | \$<br>418.37  | \$  | 220.50            | \$ | 631.90              | \$<br>92.63   | \$ 49.32       | \$ 136.71                   | \$ | -            | \$<br>-     | \$   | -                   | \$  | 0.42       | \$<br>-                  | \$<br>511.42  | \$  | 270.25             | \$  | 769.03              |
| 2012 | \$<br>418.37  | \$  | 220.50            | \$ | 631.90              | \$<br>128.69  | \$ 68.53       | \$ 189.92                   | \$ | -            | \$<br>-     | \$   | -                   | \$  | (0.75)     | \$<br>0.06               | \$<br>546.36  | \$  | 288.34             | \$  | 821.12              |
| 2013 | \$<br>143.17  | \$  | 75.65             | \$ | 215.37              | \$<br>164.75  | \$ 87.73       | \$ 243.13                   | \$ | -            | \$<br>-     | \$   | -                   | \$  | (2.04)     | \$<br>0.15               | \$<br>306.03  | \$  | 161.49             | \$  | 456.61              |
| 2014 | \$<br>59.41   | \$  | 31.41             | \$ | 89.38               | \$<br>175.74  | \$ 93.59       | \$ 259.32                   | \$ | -            | \$<br>-     | \$   | -                   | \$  | (2.04)     | \$<br>0.21               | \$<br>233.32  | \$  | 123.17             | \$  | 346.87              |
| 2015 | \$<br>-       | \$  | -                 | \$ | -                   | \$<br>180.30  | \$ 96.02       | \$ 266.04                   | \$ | -            | \$<br>-     | \$   | -                   | \$  | (2.04)     | \$<br>0.21               | \$<br>178.48  | \$  | 94.20              | \$  | 264.22              |
| 2016 | \$<br>-       | \$  | -                 | \$ | -                   | \$<br>180.30  | \$ 96.02       | \$ 266.04                   | \$ | -            | \$<br>-     | \$   | -                   | \$  | (2.04)     | \$<br>0.21               | \$<br>178.48  | \$  | 94.20              | \$  | 264.22              |
| 2017 | \$<br>-       | \$  | -                 | \$ | -                   | \$<br>180.30  | \$ 96.02       | \$ 266.04                   | \$ | -            | \$<br>-     | \$   | -                   | \$  | (2.04)     | \$<br>0.21               | \$<br>178.48  | \$  | 94.20              | \$  | 264.22              |
| 2018 | \$<br>-       | \$  | -                 | \$ | -                   | \$<br>180.30  | \$ 96.02       | \$ 266.04                   | \$ | -            | \$<br>-     | \$   | -                   | \$  | (2.04)     | \$<br>0.21               | \$<br>178.48  | \$  | 94.20              | \$  | 264.22              |
| 2019 | \$<br>-       | \$  | -                 | \$ |                     | \$<br>180.30  | \$ 96.02       | \$ 266.04                   | \$ | -            | \$<br>-     | \$   | -                   | \$  | (2.04)     | \$<br>0.21               | \$<br>178.48  | \$  | 94.20              | \$  | 264.22              |
| 2020 | \$<br>-       | \$  | -                 | \$ | -                   | \$<br>180.30  | \$ 96.02       | \$ 266.04                   | \$ | -            | \$<br>_     | \$   | -                   | \$  | (2.04)     | \$<br>0.21               | \$<br>178.48  | \$  | 94.20              | \$  | 264.22              |
| 2021 | \$<br>-       | \$  | -                 | \$ | -                   | \$<br>180.30  | \$ 96.02       | \$ 266.04                   | \$ | -            | \$<br>-     | \$   | -                   | \$  | (2.04)     | \$<br>0.21               | \$<br>178.48  | \$  | 94.20              | \$  | 264.22              |
| 2022 | \$<br>-       | \$  | -                 | \$ | -                   | \$<br>180.30  | \$ 96.02       | \$ 266.04                   | \$ | -            | \$<br>_     | \$   | -                   | \$  | (2.04)     | \$<br>0.21               | \$<br>178.48  | \$  | 94.20              | \$  | 264.22              |
| 2023 | \$<br>-       | \$  | -                 | \$ | -                   | \$<br>180.30  | \$ 96.02       | \$ 266.04                   | \$ | -            | \$<br>_     | \$   | -                   | \$  | (2.04)     | \$<br>0.21               | \$<br>178.48  | \$  | 94.20              | \$  | 264.22              |
| 2024 | \$<br>-       | \$  | -                 | \$ | -                   | \$<br>180.30  | \$ 96.02       | \$ 266.04                   | \$ | -            | \$<br>_     | \$   | -                   | \$  | (2.04)     | \$<br>0.21               | \$<br>178.48  | \$  | 94.20              | \$  | 264.22              |
| 2025 | \$<br>-       | \$  | -                 | \$ | -                   | \$<br>180.30  | \$ 96.02       | \$ 266.04                   | \$ | -            | \$<br>-     | \$   | -                   | \$  | (2.04)     | \$<br>0.21               | \$<br>178.48  | \$  | 94.20              | \$  | 264.22              |
| 2026 | \$<br>-       | \$  | -                 | \$ | -                   | \$<br>180.30  | \$ 96.02       | \$ 266.04                   | \$ | -            | \$<br>-     | \$   | -                   | \$  | (2.04)     | \$<br>0.21               | \$<br>178.48  | \$  | 94.20              | \$  | 264.22              |
| 2027 | \$<br>-       | \$  | -                 | \$ | -                   | \$<br>180.30  | \$ 96.02       | \$ 266.04                   | \$ | -            | \$<br>-     | \$   | -                   | \$  | (2.04)     | \$<br>0.21               | \$<br>178.48  | \$  | 94.20              | \$  | 264.22              |
| 2028 | \$<br>-       | \$  | -                 | \$ | -                   | \$<br>180.30  | \$ 96.02       | \$ 266.04                   | \$ | -            | \$<br>-     | \$   | -                   | \$  | (2.04)     | \$<br>0.21               | \$<br>178.48  | \$  | 94.20              | \$  | 264.22              |
| 2029 | \$<br>-       | \$  | -                 | \$ | -                   | \$<br>180.30  | \$ 96.02       | \$ 266.04                   | \$ | -            | \$<br>-     | \$   | -                   | \$  | (2.04)     | \$<br>0.21               | \$<br>178.48  | \$  | 94.20              | \$  | 264.22              |

Note: All values in millions of year 2003 dollars.

## Exhibit J.3d Projections of Stage 2 DBPR PWS Costs

(All Ground Water CWSs)

## Alternative 1

|      | Tre           | eatme | ent Capita              | l Co | osts                     | Treatr            | ment O&M                | Cos | sts                      |     |              | N          | on-T | reatment Cos        | sts |           |                       | All St        | age | 2 DBPR             | Cos | sts                 |
|------|---------------|-------|-------------------------|------|--------------------------|-------------------|-------------------------|-----|--------------------------|-----|--------------|------------|------|---------------------|-----|-----------|-----------------------|---------------|-----|--------------------|-----|---------------------|
|      |               |       | 90 Po                   | nce  | Bound                    |                   | 90 P<br>Confider        | ice | Bound                    |     |              |            |      |                     |     |           |                       |               |     | 90 Pe<br>Confiden  |     | -                   |
| Year | Mear<br>Value |       | Lower<br>(5th<br>%tile) |      | Upper<br>(95th<br>%tile) | <br>Mean<br>/alue | Lower<br>(5th<br>%tile) |     | Jpper<br>(95th<br>%tile) | la. | plementation | DSE        | r    | Monitoring<br>Plans | M   | onitorina | gnificant<br>ccursion | Mean<br>Value | (5  | Lower<br>th %tile) |     | Upper<br>5th %tile) |
| 2005 | \$            | _     | \$ -                    | \$   | _                        | \$<br>alue        | \$ -                    | \$  | -                        | \$  | 0.07         | \$<br>DSE  | \$   | rialis              | \$  | onitoring | \$<br>-               | \$<br>0.07    | \$  | 0.07               | \$  | 0.07                |
| 2006 | \$            | _     | \$ -                    | \$   |                          | \$<br>            | \$ -                    | \$  |                          | \$  | 3.42         | \$<br>0.09 | \$   |                     | \$  |           | \$<br>                | \$<br>3.51    | \$  | 3.51               | \$  | 3.51                |
| 2007 | \$            | _     | \$ -                    | \$   |                          | \$<br>            | \$ -                    | \$  |                          | \$  | 3.42         | \$<br>1.09 | \$   | 0.02                | \$  |           | \$<br>_               | \$<br>1.11    | \$  | 1.11               | \$  | 1.11                |
| 2008 |               | _     | \$ 20.12                | \$   | 26.37                    | \$<br>-           | \$ -                    | \$  |                          | \$  | 0.05         | \$<br>6.66 | \$   | 0.22                | \$  | -         | \$<br>_               | \$<br>30.16   | \$  | 27.04              | \$  | 33.29               |
| 2009 | _             |       | \$ 57.36                | \$   | 76.36                    | \$<br>2.50        | \$ 2.31                 | \$  | 2.70                     | \$  | 1.73         | \$<br>-    | \$   | 2.58                | \$  | _         | \$<br>_               | \$<br>73.66   | \$  | 63.98              | \$  | 83.37               |
| 2010 | \$ 106        |       | \$ 91.03                | Ť    | 121.69                   | \$<br>8.63        | \$ 7.98                 | \$  | 9.28                     | \$  | 1.71         | \$<br>-    | \$   |                     | \$  | -         | \$<br>-               | \$<br>116.68  | \$  | 100.73             | \$  | 132.68              |
| 2011 | \$ 106        | .33   | \$ 91.03                | \$   | 121.69                   | \$<br>17.99       | \$ 16.67                | \$  | 19.32                    | \$  | -            | \$<br>-    | \$   | -                   | \$  | 0.08      | \$<br>-               | \$<br>124.41  | \$  | 107.78             | \$  | 141.09              |
| 2012 | \$ 106        | .33   | \$ 91.03                | \$   | 121.69                   | \$<br>27.36       | \$ 25.35                | \$  | 29.36                    | \$  | -            | \$<br>-    | \$   | -                   | \$  | 2.95      | \$<br>-               | \$<br>136.64  | \$  | 119.34             | \$  | 154.00              |
| 2013 | \$ 83         | .09   | \$ 70.91                | \$   | 95.32                    | \$<br>36.72       | \$ 34.03                | \$  | 39.40                    | \$  | -            | \$<br>-    | \$   | -                   | \$  | 5.63      | \$<br>-               | \$<br>125.44  | \$  | 110.58             | \$  | 140.35              |
| 2014 | \$ 39         | .49   | \$ 33.67                | \$   | 45.33                    | \$<br>43.58       | \$ 40.41                | \$  | 46.74                    | \$  | -            | \$<br>-    | \$   | -                   | \$  | 5.63      | \$<br>-               | \$<br>88.69   | \$  | 79.71              | \$  | 97.70               |
| 2015 | \$            | -     | \$ -                    | \$   | -                        | \$<br>46.81       | \$ 43.42                | \$  | 50.20                    | \$  | -            | \$<br>-    | \$   |                     | \$  | 5.63      | \$<br>-               | \$<br>52.44   | \$  | 49.05              | \$  | 55.83               |
| 2016 | \$            | -     | \$ -                    | \$   | -                        | \$<br>46.81       | \$ 43.42                | \$  | 50.20                    | \$  | -            | \$<br>-    | \$   | -                   | \$  | 5.63      | \$<br>-               | \$<br>52.44   | \$  | 49.05              | \$  | 55.83               |
| 2017 | \$            | -     | \$ -                    | \$   | -                        | \$<br>46.81       | \$ 43.42                | \$  | 50.20                    | \$  | -            | \$<br>-    | \$   | -                   | \$  | 5.63      | \$<br>-               | \$<br>52.44   | \$  | 49.05              | \$  | 55.83               |
| 2018 | \$            | -     | \$ -                    | \$   | -                        | \$<br>46.81       | \$ 43.42                | \$  | 50.20                    | \$  | -            | \$<br>-    | \$   | -                   | \$  | 5.63      | \$<br>-               | \$<br>52.44   | \$  | 49.05              | \$  | 55.83               |
| 2019 | \$            | -     | \$ -                    | \$   | -                        | \$<br>46.81       | \$ 43.42                | \$  | 50.20                    | \$  | -            | \$<br>-    | \$   | -                   | \$  | 5.63      | \$<br>-               | \$<br>52.44   | \$  | 49.05              | \$  | 55.83               |
| 2020 | \$            | -     | \$ -                    | \$   | -                        | \$<br>46.81       | \$ 43.42                | \$  | 50.20                    | \$  | -            | \$<br>-    | \$   | -                   | \$  | 5.63      | \$<br>-               | \$<br>52.44   | \$  | 49.05              | \$  | 55.83               |
| 2021 | \$            | -     | \$ -                    | \$   | -                        | \$<br>46.81       | \$ 43.42                | \$  | 50.20                    | \$  | -            | \$<br>-    | \$   | -                   | \$  | 5.63      | \$<br>-               | \$<br>52.44   | \$  | 49.05              | \$  | 55.83               |
| 2022 | \$            | -     | \$ -                    | \$   | -                        | \$<br>46.81       | \$ 43.42                | \$  | 50.20                    | \$  | -            | \$<br>-    | \$   | -                   | \$  | 5.63      | \$<br>-               | \$<br>52.44   | \$  | 49.05              | \$  | 55.83               |
| 2023 | \$            | -     | \$ -                    | \$   | -                        | \$<br>46.81       | \$ 43.42                | \$  | 50.20                    | \$  | -            | \$<br>-    | \$   | -                   | \$  | 5.63      | \$<br>-               | \$<br>52.44   | \$  | 49.05              | \$  | 55.83               |
| 2024 | \$ .          | -     | \$ -                    | \$   | -                        | \$<br>46.81       | \$ 43.42                | \$  | 50.20                    | \$  | -            | \$<br>-    | \$   | -                   | \$  | 5.63      | \$<br>-               | \$<br>52.44   | \$  | 49.05              | \$  | 55.83               |
| 2025 | \$            | _     | \$ -                    | \$   | -                        | \$<br>46.81       | \$ 43.42                | \$  | 50.20                    | \$  | -            | \$<br>-    | \$   | -                   | \$  | 5.63      | \$<br>-               | \$<br>52.44   | \$  | 49.05              | \$  | 55.83               |
| 2026 | \$ .          |       | \$ -                    | \$   | -                        | \$<br>46.81       | \$ 43.42                | \$  | 50.20                    | \$  | -            | \$<br>-    | \$   | -                   | \$  | 5.63      | \$<br>-               | \$<br>52.44   | \$  | 49.05              | \$  | 55.83               |
| 2027 | \$            | _     | \$ -                    | \$   | -                        | \$<br>46.81       | \$ 43.42                | \$  | 50.20                    | \$  | -            | \$<br>-    | \$   | -                   | \$  | 5.63      | \$<br>-               | \$<br>52.44   | \$  | 49.05              | \$  | 55.83               |
| 2028 | \$            | _     | \$ -                    | \$   | -                        | \$<br>46.81       | \$ 43.42                | \$  | 50.20                    | \$  | -            | \$<br>-    | \$   | -                   | \$  | 5.63      | \$<br>-               | \$<br>52.44   | \$  | 49.05              | \$  | 55.83               |
| 2029 | \$            | -     | \$ -                    | \$   | -                        | \$<br>46.81       | \$ 43.42                | \$  | 50.20                    | \$  | -            | \$<br>-    | \$   | -                   | \$  | 5.63      | \$<br>-               | \$<br>52.44   | \$  | 49.05              | \$  | 55.83               |

Note: All values in millions of year 2003 dollars.

## Exhibit J.3e Projections of Stage 2 DBPR PWS Costs

(All Ground Water NTNCWSs)

## Alternative 1

|      | Treatm           | ent ( | Capital                               | Cos  | sts  | Treatn             | nent O                                | &M C | osts |         |                | I          | No | n-Treatment C       | osts      |     |                          | All St        | age 2 | 2 DBPR                                | Costs | s             |
|------|------------------|-------|---------------------------------------|------|------|--------------------|---------------------------------------|------|------|---------|----------------|------------|----|---------------------|-----------|-----|--------------------------|---------------|-------|---------------------------------------|-------|---------------|
| Year | <br>lean<br>alue | L     | 90 Pe<br>onfidend<br>ower<br>h %tile) | ce E |      | <br>flean<br>Value | 90<br>Confid<br>Lowe<br>(5th<br>%tile | er   |      | er<br>h | Implementation | IDSE       |    | Monitoring<br>Plans | Monitorir | ıg  | Significant<br>Excursion | Mean<br>Value | L     | 90 Pe<br>confiden<br>ower<br>n %tile) | ce Bo | ound<br>Jpper |
| 2005 | \$<br>-          | \$    | -                                     | \$   | -    | \$<br>-            | \$ -                                  | \$   | -    |         | \$ 0.00        | \$<br>-    | \$ | -                   | \$        |     | \$ -                     | \$<br>0.00    | \$    | 0.00                                  | \$    | 0.00          |
| 2006 | \$<br>-          | \$    | -                                     | \$   | -    | \$                 | \$ -                                  | \$   | -    |         | \$ 0.56        | \$<br>-    | \$ | -                   | \$        | -   | \$ -                     | \$<br>0.56    | \$    | 0.56                                  | \$    | 0.56          |
| 2007 | \$<br>-          | \$    | -                                     | \$   | -    | \$                 | \$ -                                  | \$   | -    |         | \$ -           | \$<br>0.00 | \$ | 0.00                | \$        | -   | \$ -                     | \$<br>0.00    | \$    | 0.00                                  | \$    | 0.00          |
| 2008 | \$<br>0.03       | \$    | 0.02                                  | \$   | 0.03 | \$<br>-            | \$ -                                  | \$   | -    |         | \$ 0.00        | \$<br>0.00 | \$ | 0.00                | \$        | -   | \$ -                     | \$<br>0.03    | \$    | 0.02                                  | \$    | 0.03          |
| 2009 | \$<br>1.72       | \$    | 1.47                                  | \$   | 1.98 | \$<br>0.00         | \$ 0.0                                | 0 \$ | 0.   | 00      | \$ 0.28        | \$<br>-    | \$ | 0.46                | \$        | -   | \$ -                     | \$<br>2.47    | \$    | 2.21                                  | \$    | 2.73          |
| 2010 | \$<br>3.42       | \$    | 2.91                                  | \$   | 3.93 | \$<br>0.17         | \$ 0.1                                | 6 \$ | 0.   | 18      | \$ 0.28        | \$<br>-    | \$ | -                   | \$        | -   | \$ -                     | \$<br>3.87    | \$    | 3.34                                  | \$    | 4.39          |
| 2011 | \$<br>3.42       | \$    | 2.91                                  | \$   | 3.93 | \$<br>0.50         | \$ 0.4                                | 7 \$ | 0.   | 54      | \$ -           | \$<br>-    | \$ | -                   | \$ 0      | .00 | \$ -                     | \$<br>3.92    | \$    | 3.37                                  | \$    | 4.47          |
| 2012 | \$<br>3.42       | \$    | 2.91                                  | \$   | 3.93 | \$<br>0.83         | \$ 0.7                                | 7 \$ | 0.   | 89      | \$ -           | \$         | \$ | -                   | \$ 0      | .37 | \$ -                     | \$<br>4.62    | \$    | 4.05                                  | \$    | 5.19          |
| 2013 | \$<br>3.39       | \$    | 2.88                                  | \$   | 3.90 | \$<br>1.16         | \$ 1.0                                | 8 \$ | 1.   | 25      | \$ -           | \$         | \$ | -                   | \$ 0      | .73 | \$ -                     | \$<br>5.28    | \$    | 4.69                                  | \$    | 5.87          |
| 2014 | \$<br>1.69       | \$    | 1.44                                  | \$   | 1.95 | \$<br>1.49         | \$ 1.3                                | 8 \$ | 1.   | 60      | \$ -           | \$         | \$ | -                   | \$ 0      | .73 | \$ -                     | \$<br>3.91    | \$    | 3.55                                  | \$    | 4.27          |
| 2015 | \$<br>-          | \$    | -                                     | \$   | -    | \$<br>1.66         | \$ 1.5                                | 4 \$ | 1.   | 77      | \$ -           | \$         | \$ | -                   | \$ 0      | .73 | \$ -                     | \$<br>2.39    | \$    | 2.27                                  | \$    | 2.50          |
| 2016 | \$<br>-          | \$    | -                                     | \$   | -    | \$<br>1.66         | \$ 1.5                                | 4 \$ | 1.   | 77      | \$ -           | \$<br>-    | \$ | -                   | \$ 0      | .73 | \$ -                     | \$<br>2.39    | \$    | 2.27                                  | \$    | 2.50          |
| 2017 | \$<br>-          | \$    | -                                     | \$   | -    | \$<br>1.66         | \$ 1.5                                | 4 \$ | 1.   | 77      | \$ -           | \$<br>-    | \$ | -                   | \$ 0      | .73 | \$ -                     | \$<br>2.39    | \$    | 2.27                                  | \$    | 2.50          |
| 2018 | \$<br>-          | \$    | -                                     | \$   | -    | \$<br>1.66         | \$ 1.5                                | 4 \$ | 1.   | 77      | \$ -           | \$<br>-    | \$ | -                   | \$ 0      | .73 | \$ -                     | \$<br>2.39    | \$    | 2.27                                  | \$    | 2.50          |
| 2019 | \$<br>-          | \$    | -                                     | \$   | -    | \$<br>1.66         | \$ 1.5                                | 4 \$ | 1.   | 77      | \$ -           | \$<br>-    | \$ | -                   | \$ 0      | .73 | \$ -                     | \$<br>2.39    | \$    | 2.27                                  | \$    | 2.50          |
| 2020 | \$<br>-          | \$    | -                                     | \$   | -    | \$<br>1.66         | \$ 1.5                                | 4 \$ | 1.   | 77      | \$ -           | \$<br>-    | \$ | -                   | \$ 0      | .73 | \$ -                     | \$<br>2.39    | \$    | 2.27                                  | \$    | 2.50          |
| 2021 | \$<br>-          | \$    | -                                     | \$   | -    | \$<br>1.66         | \$ 1.5                                | 4 \$ | 1.   | 77      | \$ -           | \$<br>-    | \$ | -                   | \$ 0      | .73 | \$ -                     | \$<br>2.39    | \$    | 2.27                                  | \$    | 2.50          |
| 2022 | \$<br>-          | \$    | -                                     | \$   | -    | \$<br>1.66         | \$ 1.5                                | 4 \$ | 1.   | 77      | \$ -           | \$<br>-    | \$ | -                   | \$ 0      | .73 | \$ -                     | \$<br>2.39    | \$    | 2.27                                  | \$    | 2.50          |
| 2023 | \$<br>-          | \$    | -                                     | \$   | -    | \$<br>1.66         | \$ 1.5                                | 4 \$ | 1.   | 77      | \$ -           | \$<br>-    | \$ | -                   | \$ 0      | .73 | \$ -                     | \$<br>2.39    | \$    | 2.27                                  | \$    | 2.50          |
| 2024 | \$<br>-          | \$    | -                                     | \$   | -    | \$<br>1.66         | \$ 1.5                                | 4 \$ | 1.   | 77      | \$ -           | \$<br>-    | \$ | -                   | \$ 0      | .73 | \$ -                     | \$<br>2.39    | \$    | 2.27                                  | \$    | 2.50          |
| 2025 | \$<br>-          | \$    | -                                     | \$   | -    | \$<br>1.66         | \$ 1.5                                | 4 \$ | 1.   | 77      | \$ -           | \$<br>-    | \$ | -                   | \$ 0      | .73 | \$ -                     | \$<br>2.39    | \$    | 2.27                                  | \$    | 2.50          |
| 2026 | \$<br>-          | \$    | -                                     | \$   | -    | \$<br>1.66         | \$ 1.5                                | 4 \$ | 1.   | 77      | \$ -           | \$<br>-    | \$ | -                   | \$ 0      | .73 | \$ -                     | \$<br>2.39    | \$    | 2.27                                  | \$    | 2.50          |
| 2027 | \$<br>-          | \$    | -                                     | \$   | -    | \$<br>1.66         | \$ 1.5                                | 4 \$ | 1.   | 77      | \$ -           | \$<br>-    | \$ | -                   | \$ 0      | .73 | \$ -                     | \$<br>2.39    | \$    | 2.27                                  | \$    | 2.50          |
| 2028 | \$<br>-          | \$    | -                                     | \$   | -    | \$<br>1.66         | \$ 1.5                                | 4 \$ | 1.   | 77      | \$ -           | \$<br>-    | \$ | -                   | \$ 0      | .73 | \$ -                     | \$<br>2.39    | \$    | 2.27                                  | \$    | 2.50          |
| 2029 | \$<br>-          | \$    | -                                     | \$   | -    | \$<br>1.66         | \$ 1.5                                | 4 \$ | 1.   | 77      | \$ -           | \$<br>-    | \$ | -                   | \$ 0      | .73 | \$ -                     | \$<br>2.39    | \$    | 2.27                                  | \$    | 2.50          |

Note: All values in millions of year 2003 dollars.

## Exhibit J.3f Projections of Stage 2 DBPR PWS Costs

(All Ground Water Systems)

## Alternative 1

|      | Treatm        | nent Capita          | l Costs                  | Trea          | tment O&M            | Costs               |       |               | No         | on-T | Treatment Cos       | its |          |                           | All St        | age | 2 DBPR             | Cos | its                 |
|------|---------------|----------------------|--------------------------|---------------|----------------------|---------------------|-------|---------------|------------|------|---------------------|-----|----------|---------------------------|---------------|-----|--------------------|-----|---------------------|
|      |               | 90 Pe<br>Confiden    | ce Bound                 |               |                      | ercent<br>nce Bound |       |               |            |      |                     |     |          |                           |               |     | 90 Pe<br>Confiden  |     |                     |
| Year | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th<br>%tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %til | e) In | nplementation | IDSE       | ı    | Monitoring<br>Plans | Mo  | nitoring | Siginificant<br>Excursion | Mean<br>Value |     | Lower<br>th %tile) |     | Upper<br>5th %tile) |
| 2005 | \$ -          | \$ -                 | \$ -                     | \$ -          | \$ -                 | \$ -                | \$    | 0.07          | \$<br>-    | \$   | -                   | \$  | -        | \$ -                      | \$<br>0.07    | \$  | 0.07               | \$  | 0.07                |
| 2006 | \$ -          | \$ -                 | \$ -                     | \$ -          | \$ -                 | \$ -                | \$    | 3.98          | \$<br>0.09 | \$   | -                   | \$  | -        | \$ -                      | \$<br>4.07    | \$  | 4.07               | \$  | 4.07                |
| 2007 | \$ -          | \$ -                 | \$ -                     | \$ -          | \$ -                 | \$ -                | \$    | -             | \$<br>1.09 | \$   | 0.02                | \$  | -        | \$ -                      | \$<br>1.11    | \$  | 1.11               | \$  | 1.11                |
| 2008 | \$ 23.27      | \$ 20.15             | \$ 26.40                 | \$ -          | \$ -                 | \$ -                | \$    | 0.05          | \$<br>6.66 | \$   | 0.22                | \$  | -        | \$ -                      | \$<br>30.19   | \$  | 27.07              | \$  | 33.32               |
| 2009 | \$ 68.57      | \$ 58.83             | \$ 78.34                 | \$ 2.51       | \$ 2.31              | \$ 2.70             | \$    | 2.01          | \$<br>-    | \$   | 3.04                | \$  | -        | \$ -                      | \$<br>76.13   | \$  | 66.19              | \$  | 86.10               |
| 2010 | \$ 109.75     | \$ 93.94             | \$ 125.61                | \$ 8.80       | \$ 8.14              | \$ 9.46             | 5 \$  | 1.99          | \$<br>-    | \$   | -                   | \$  | -        | \$ -                      | \$<br>120.54  | \$  | 104.07             | \$  | 137.07              |
| 2011 | \$ 109.75     | \$ 93.94             | \$ 125.61                | \$ 18.49      | \$ 17.13             | \$ 19.86            | 5 \$  | -             | \$<br>-    | \$   | -                   | \$  | 0.08     | \$ -                      | \$<br>128.33  | \$  | 111.15             | \$  | 145.55              |
| 2012 | \$ 109.75     | \$ 93.94             | \$ 125.61                | \$ 28.19      | \$ 26.12             | \$ 30.26            | 5 \$  | -             | \$<br>-    | \$   | -                   | \$  | 3.32     | \$ -                      | \$<br>141.26  | \$  | 123.38             | \$  | 159.19              |
| 2013 | \$ 86.48      | \$ 73.80             | \$ 99.22                 | \$ 37.88      | \$ 35.11             | \$ 40.65            | 5 \$  | -             | \$<br>-    | \$   | -                   | \$  | 6.36     | \$ -                      | \$<br>130.72  | \$  | 115.27             | \$  | 146.23              |
| 2014 | \$ 41.18      | \$ 35.11             | \$ 47.27                 | \$ 45.07      | \$ 41.80             | \$ 48.34            | 4 \$  | -             | \$<br>-    | \$   | -                   | \$  | 6.36     | \$ -                      | \$<br>92.61   | \$  | 83.27              | \$  | 101.97              |
| 2015 | \$ -          | \$ -                 | \$ -                     | \$ 48.47      | \$ 44.96             | \$ 51.98            | 3 \$  | -             | \$<br>-    | \$   | -                   | \$  | 6.36     | \$ -                      | \$<br>54.82   | \$  | 51.32              | \$  | 58.34               |
| 2016 | \$ -          | \$ -                 | \$ -                     | \$ 48.47      | \$ 44.96             | \$ 51.98            | 3 \$  | -             | \$<br>-    | \$   | -                   | \$  | 6.36     | \$ -                      | \$<br>54.82   | \$  | 51.32              | \$  | 58.34               |
| 2017 | \$ -          | \$ -                 | \$ -                     | \$ 48.47      | \$ 44.96             | \$ 51.98            | 3 \$  | -             | \$<br>-    | \$   | -                   | \$  | 6.36     | \$ -                      | \$<br>54.82   | \$  | 51.32              | \$  | 58.34               |
| 2018 | \$ -          | \$ -                 | \$ -                     | \$ 48.47      | \$ 44.96             | \$ 51.98            | 3 \$  | -             | \$<br>-    | \$   | -                   | \$  | 6.36     | \$ -                      | \$<br>54.82   | \$  | 51.32              | \$  | 58.34               |
| 2019 | \$ -          | \$ -                 | \$ -                     | \$ 48.47      | \$ 44.96             | \$ 51.98            | 3 \$  | -             | \$<br>-    | \$   | -                   | \$  | 6.36     | \$ -                      | \$<br>54.82   | \$  | 51.32              | \$  | 58.34               |
| 2020 | \$ -          | \$ -                 | \$ -                     | \$ 48.47      | \$ 44.96             | \$ 51.98            | 3 \$  | -             | \$<br>-    | \$   | -                   | \$  | 6.36     | \$ -                      | \$<br>54.82   | \$  | 51.32              | \$  | 58.34               |
| 2021 | \$ -          | \$ -                 | \$ -                     | \$ 48.47      | \$ 44.96             | \$ 51.98            | 3 \$  | -             | \$<br>-    | \$   | -                   | \$  | 6.36     | \$ -                      | \$<br>54.82   | \$  | 51.32              | \$  | 58.34               |
| 2022 | \$ -          | \$ -                 | \$ -                     | \$ 48.47      | \$ 44.96             | \$ 51.98            | 3 \$  | -             | \$<br>-    | \$   | -                   | \$  | 6.36     | \$ -                      | \$<br>54.82   | \$  | 51.32              | \$  | 58.34               |
| 2023 | \$ -          | \$ -                 | \$ -                     | \$ 48.47      | \$ 44.96             | \$ 51.98            | 3 \$  | -             | \$<br>-    | \$   | -                   | \$  | 6.36     | \$ -                      | \$<br>54.82   | \$  | 51.32              | \$  | 58.34               |
| 2024 | \$ -          | \$ -                 | \$ -                     | \$ 48.47      | \$ 44.96             | \$ 51.98            | 3 \$  | -             | \$<br>-    | \$   | -                   | \$  | 6.36     | \$ -                      | \$<br>54.82   | \$  | 51.32              | \$  | 58.34               |
| 2025 | \$ -          | \$ -                 | \$ -                     | \$ 48.47      | \$ 44.96             | \$ 51.98            | 3 \$  | -             | \$<br>-    | \$   | -                   | \$  | 6.36     | \$ -                      | \$<br>54.82   | \$  | 51.32              | \$  | 58.34               |
| 2026 | \$ -          | \$ -                 | \$ -                     | \$ 48.47      | \$ 44.96             | \$ 51.98            | 3 \$  | -             | \$<br>-    | \$   | -                   | \$  | 6.36     | \$ -                      | \$<br>54.82   | \$  | 51.32              | \$  | 58.34               |
| 2027 | \$ -          | \$ -                 | \$ -                     | \$ 48.47      | \$ 44.96             | \$ 51.98            | 3 \$  | -             | \$<br>-    | \$   |                     | \$  | 6.36     | \$ -                      | \$<br>54.82   | \$  | 51.32              | \$  | 58.34               |
| 2028 | \$ -          | \$ -                 | \$ -                     | \$ 48.47      | \$ 44.96             | \$ 51.98            | 3 \$  | -             | \$<br>-    | \$   | -                   | \$  | 6.36     | \$ -                      | \$<br>54.82   | \$  | 51.32              | \$  | 58.34               |
| 2029 | \$ -          | \$ -                 | \$ -                     | \$ 48.47      | \$ 44.96             | \$ 51.98            | 3 \$  | -             | \$<br>-    | \$   |                     | \$  | 6.36     | \$ -                      | \$<br>54.82   | \$  | 51.32              | \$  | 58.34               |

Note: All values in millions of year 2003 dollars.

## Exhibit J.3g Projections of Stage 2 DBPR PWS Costs

(All Systems)

## Alternative 1

| Aiternativ | Ī  | Treat         | mei | nt Capital         | Cos | sts                 |    | Treat         | men | t O&M            | Costs                    |    |               |    | N     | lon-T | reatment Co         | sts | 5          |                        | All Sta       | ge 2 | DBPR (             | ost | s                   |
|------------|----|---------------|-----|--------------------|-----|---------------------|----|---------------|-----|------------------|--------------------------|----|---------------|----|-------|-------|---------------------|-----|------------|------------------------|---------------|------|--------------------|-----|---------------------|
|            |    |               |     | 90 Pe<br>Confiden  |     |                     |    |               | C   |                  | ercent<br>ce Bound       |    |               |    |       |       |                     |     |            |                        |               |      | 90 Pe<br>Confiden  |     |                     |
| Year       |    | Mean<br>Value | (5  | Lower<br>th %tile) | (95 | Upper<br>5th %tile) | -  | Mean<br>Value |     | ower<br>1 %tile) | Upper<br>(95th<br>%tile) | ı  | mplementation | I  | DSE   | N     | Monitoring<br>Plans | ı   | Monitoring | ginificant<br>ccursion | Mean<br>Value |      | Lower<br>:h %tile) |     | Upper<br>5th %tile) |
| 2005       | \$ | -             | \$  | -                  | \$  | -                   | \$ | -             | \$  | -                | \$ -                     | \$ | 0.76          | \$ | -     | \$    | -                   | \$  | -          | \$<br>-                | \$<br>0.76    | \$   | 0.76               | \$  | 0.76                |
| 2006       | \$ | -             | \$  | -                  | \$  | -                   | \$ | -             | \$  | -                | \$ -                     | \$ | 5.40          | \$ | 8.56  | \$    | -                   | \$  | -          | \$<br>-                | \$<br>13.96   | \$   | 13.96              | \$  | 13.96               |
| 2007       | \$ | -             | \$  | -                  | \$  | -                   | \$ | -             | \$  | -                | \$ -                     | \$ | -             | \$ | 23.58 | \$    | 0.24                | \$  | -          | \$<br>-                | \$<br>23.81   | \$   | 23.81              | \$  | 23.81               |
| 2008       | \$ | 298.46        | \$  | 165.00             | \$  | 442.92              | \$ | -             | \$  | -                | \$ -                     | \$ | 0.65          | \$ | 25.30 | \$    | 0.83                | \$  | -          | \$<br>-                | \$<br>325.24  | \$   | 191.78             | \$  | 469.70              |
| 2009       | \$ | 427.53        | \$  | 247.92             | \$  | 620.86              | \$ | 27.58         | \$  | 15.66            | \$ 39.72                 | \$ | 2.81          | \$ | -     | \$    | 3.95                | \$  | -          | \$<br>-                | \$<br>461.87  | \$   | 270.34             | \$  | 667.34              |
| 2010       | \$ | 528.12        | \$  | 314.44             | \$  | 757.51              | \$ | 65.37         | \$  | 38.26            | \$ 92.96                 | \$ | 2.70          | \$ | -     | \$    | -                   | \$  | -          | \$<br>-                | \$<br>596.19  | \$   | 355.40             | \$  | 853.17              |
| 2011       | \$ | 528.12        | \$  | 314.44             | \$  | 757.51              | \$ | 111.12        | \$  | 66.45            | \$ 156.57                | \$ | -             | \$ | -     | \$    | -                   | \$  | 0.51       | \$<br>-                | \$<br>639.75  | \$   | 381.40             | \$  | 914.58              |
| 2012       | \$ | 528.12        | \$  | 314.44             | \$  | 757.51              | \$ | 156.87        | \$  | 94.65            | \$ 220.17                | \$ | -             | \$ | -     | \$    | -                   | \$  | 2.57       | \$<br>0.06             | \$<br>687.62  | \$   | 411.72             | \$  | 980.31              |
| 2013       | \$ | 229.66        | \$  | 149.45             | \$  | 314.59              | \$ | 202.63        | \$  | 122.84           | \$ 283.78                | \$ | -             | \$ | -     | \$    | -                   | \$  | 4.32       | \$<br>0.15             | \$<br>436.75  | \$   | 276.76             | \$  | 602.83              |
| 2014       | \$ | 100.59        | \$  | 66.52              | \$  | 136.65              | \$ | 220.80        | \$  | 135.39           | \$ 307.66                | \$ | -             | \$ | -     | \$    | -                   | \$  | 4.32       | \$<br>0.21             | \$<br>325.92  | \$   | 206.44             | \$  | 448.84              |
| 2015       | \$ | -             | \$  | -                  | \$  | -                   | \$ | 228.77        | \$  | 140.98           | \$ 318.02                | \$ | -             | \$ | -     | \$    | -                   | \$  | 4.32       | \$<br>0.21             | \$<br>233.30  | \$   | 145.51             | \$  | 322.55              |
| 2016       | \$ | -             | \$  | -                  | \$  | -                   | \$ | 228.77        | \$  | 140.98           | \$ 318.02                | \$ | -             | \$ | -     | \$    | -                   | \$  | 4.32       | \$<br>0.21             | \$<br>233.30  | \$   | 145.51             | \$  | 322.55              |
| 2017       | \$ | -             | \$  | -                  | \$  | -                   | \$ | 228.77        | \$  | 140.98           | \$ 318.02                | \$ | -             | \$ | -     | \$    | -                   | \$  | 4.32       | \$<br>0.21             | \$<br>233.30  | \$   | 145.51             | \$  | 322.55              |
| 2018       | \$ | -             | \$  | -                  | \$  | -                   | \$ | 228.77        | \$  | 140.98           | \$ 318.02                | \$ | -             | \$ | -     | \$    | -                   | \$  | 4.32       | \$<br>0.21             | \$<br>233.30  | \$   | 145.51             | \$  | 322.55              |
| 2019       | \$ | -             | \$  | -                  | \$  | -                   | \$ | 228.77        | \$  | 140.98           | \$ 318.02                | \$ | -             | \$ | -     | \$    | -                   | \$  | 4.32       | \$<br>0.21             | \$<br>233.30  | \$   | 145.51             | \$  | 322.55              |
| 2020       | \$ | -             | \$  | -                  | \$  | -                   | \$ | 228.77        | \$  | 140.98           | \$ 318.02                | \$ | -             | \$ | -     | \$    | -                   | \$  | 4.32       | \$<br>0.21             | \$<br>233.30  | \$   | 145.51             | \$  | 322.55              |
| 2021       | \$ | -             | \$  | -                  | \$  | -                   | \$ | 228.77        | \$  | 140.98           | \$ 318.02                | \$ | -             | \$ | -     | \$    | -                   | \$  | 4.32       | \$<br>0.21             | \$<br>233.30  | \$   | 145.51             | \$  | 322.55              |
| 2022       | \$ | -             | \$  | -                  | \$  | -                   | \$ | 228.77        | \$  | 140.98           | \$ 318.02                | \$ | -             | \$ | -     | \$    | -                   | \$  | 4.32       | \$<br>0.21             | \$<br>233.30  | \$   | 145.51             | \$  | 322.55              |
| 2023       | \$ | -             | \$  | -                  | \$  | -                   | \$ | 228.77        | \$  | 140.98           | \$ 318.02                | \$ | -             | \$ | -     | \$    | -                   | \$  | 4.32       | \$<br>0.21             | \$<br>233.30  | \$   | 145.51             | \$  | 322.55              |
| 2024       | \$ | -             | \$  | -                  | \$  | -                   | \$ | 228.77        | \$  | 140.98           | \$ 318.02                | \$ | -             | \$ | -     | \$    | -                   | \$  | 4.32       | \$<br>0.21             | \$<br>233.30  | \$   | 145.51             | \$  | 322.55              |
| 2025       | \$ | -             | \$  | -                  | \$  | -                   | \$ | 228.77        | \$  | 140.98           | \$ 318.02                | \$ | -             | \$ | -     | \$    | -                   | \$  | 4.32       | \$<br>0.21             | \$<br>233.30  | \$   | 145.51             | \$  | 322.55              |
| 2026       | \$ | -             | \$  | -                  | \$  | -                   | \$ | 228.77        | \$  | 140.98           | \$ 318.02                | \$ | -             | \$ | -     | \$    | -                   | \$  | 4.32       | \$<br>0.21             | \$<br>233.30  | \$   | 145.51             | \$  | 322.55              |
| 2027       | \$ | -             | \$  | -                  | \$  | -                   | \$ | 228.77        | \$  | 140.98           | \$ 318.02                | \$ | -             | \$ | -     | \$    | -                   | \$  | 4.32       | \$<br>0.21             | \$<br>233.30  | \$   | 145.51             | \$  | 322.55              |
| 2028       | \$ | -             | \$  | -                  | \$  | -                   | \$ | 228.77        | \$  | 140.98           | \$ 318.02                | \$ | -             | \$ | -     | \$    | -                   | \$  | 4.32       | \$<br>0.21             | \$<br>233.30  | \$   | 145.51             | \$  | 322.55              |
| 2029       | \$ | -             | \$  | -                  | \$  | -                   | \$ | 228.77        | \$  | 140.98           | \$ 318.02                | \$ | -             | \$ | -     | \$    | -                   | \$  | 4.32       | \$<br>0.21             | \$<br>233.30  | \$   | 145.51             | \$  | 322.55              |

Note: All values in millions of year 2003 dollars.

Exhibit J.3h Projections of Stage 2 DBPR Primacy Agency Costs

## Alternative 1

| Year | Implementation Costs | IDSE Costs | Monitoring Plan<br>Costs | Compliance<br>Monitoring Costs | Significant<br>Excursion<br>Report Costs |
|------|----------------------|------------|--------------------------|--------------------------------|------------------------------------------|
| 2005 | \$ 3.88              | \$ -       | \$ -                     | \$ -                           | \$ -                                     |
| 2006 | \$ 3.88              | \$ 0.04    | \$ -                     | \$ -                           | \$ -                                     |
| 2007 | \$ -                 | \$ 0.13    | \$ 0.02                  | \$ -                           | \$ -                                     |
| 2008 | \$ -                 | \$ 2.06    | \$ 0.06                  | \$ -                           | \$ -                                     |
| 2009 | \$ -                 | \$ -       | \$ 0.85                  | \$ -                           | \$ -                                     |
| 2010 | \$ -                 | \$ -       | \$ -                     | \$ -                           | \$ -                                     |
| 2011 | \$ -                 | \$ -       | \$ -                     | \$ 1.59                        | \$ 0.11                                  |
| 2012 | \$ -                 | \$ -       | \$ -                     | \$ 1.59                        | \$ 0.11                                  |
| 2013 | \$ -                 | \$ -       | \$ -                     | \$ 1.59                        | \$ 0.11                                  |
| 2014 | \$ -                 | \$ -       | \$ -                     | \$ 1.59                        | \$ 0.11                                  |
| 2015 | \$ -                 | \$ -       | \$ -                     | \$ 1.59                        | \$ 0.11                                  |
| 2016 | \$ -                 | \$ -       | \$ -                     | \$ 1.59                        | \$ 0.11                                  |
| 2017 | \$ -                 | \$ -       | \$ -                     | \$ 1.59                        | \$ 0.11                                  |
| 2018 | \$ -                 | \$ -       | \$ -                     | \$ 1.59                        | \$ 0.11                                  |
| 2019 | \$ -                 | \$ -       | \$ -                     | \$ 1.59                        | \$ 0.11                                  |
| 2020 | \$ -                 | \$ -       | \$ -                     | \$ 1.59                        | \$ 0.11                                  |
| 2021 | \$ -                 | \$ -       | \$ -                     | \$ 1.59                        | \$ 0.11                                  |
| 2022 | \$ -                 | \$ -       | \$ -                     | \$ 1.59                        | \$ 0.11                                  |
| 2023 | \$ -                 | \$ -       | \$ -                     | \$ 1.59                        | \$ 0.11                                  |
| 2024 | \$ -                 | \$ -       | \$ -                     | \$ 1.59                        | \$ 0.11                                  |
| 2025 | \$ -                 | \$ -       | \$ -                     | \$ 1.59                        | \$ 0.11                                  |
| 2026 | \$ -                 | \$ -       | \$ -                     | \$ 1.59                        | \$ 0.11                                  |
| 2027 | \$ -                 | \$ -       | \$ -                     | \$ 1.59                        | \$ 0.11                                  |
| 2028 | \$ -                 | \$ -       | \$ -                     | \$ 1.59                        | \$ 0.11                                  |
| 2029 | \$ -                 | \$ -       | \$ -                     | \$ 1.59                        | \$ 0.11                                  |

Note: All values in millions of year 2003 dollars. Source: Derived from Exhibits J.1h and D.7.

# Exhibit J.3i Present Value of Annual Cost Projections at 3% Discount Rate (All Systems and Primacy Agencies)

#### Alternative 1

|       | Su            | rface Wate | r CW | ıs                    | Surf           | ace Water N          | TNCWS                 | Disinfecti    | ng G | round W           | ater C\          | ws             | Disinfectin   | g Gro | ound Water          | r NTNCWS              | Primacy Agencies |               |       | Total                |                |                    |
|-------|---------------|------------|------|-----------------------|----------------|----------------------|-----------------------|---------------|------|-------------------|------------------|----------------|---------------|-------|---------------------|-----------------------|------------------|---------------|-------|----------------------|----------------|--------------------|
|       | -             |            |      | rcent<br>ce Bound     |                |                      | Percent<br>nce Bound  |               |      | 90 Po<br>Confider | ercent<br>nce Bo | und            | -             |       | 90 Pe<br>Confidence |                       |                  |               |       | 90 Pe<br>Confiden    | ercen<br>ce Bo |                    |
|       | Mean<br>Value | Lower      |      | Upper<br>(95th %tile) | /lean<br>/alue | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value |      | Lower<br>h %tile) |                  | oper<br>%tile) | Mean<br>Value |       | Lower<br>h %tile)   | Upper<br>(95th %tile) | Point Estimate   | Mean<br>Value |       | Lower<br>(5th %tile) |                | Upper<br>th %tile) |
| 2005  | \$<br>0.6     | \$         | 0.6  | \$ 0.6                | \$<br>0.0      | \$ 0.0               | \$ 0.0                | \$<br>0.1     | \$   | 0.1               | \$               | 0.1            | \$<br>0.0     | \$    | 0.0                 | \$ 0.0                | \$ 3.7           | \$            | .4 \$ | \$ 4.4               | \$             | 4.4                |
| 2006  | \$<br>9.0     | \$         | 9.0  | \$ 9.0                | \$<br>0.1      | \$ 0.1               | \$ 0.1                | \$<br>3.2     | \$   | 3.2               | \$               | 3.2            | \$<br>0.5     | \$    | 0.5                 | \$ 0.5                | \$ 3.6           | \$ 16         | .4    | \$ 16.4              | \$             | 16.4               |
| 2007  | \$<br>20.1    | \$ 2       | 0.1  | \$ 20.1               | \$<br>0.0      | \$ 0.0               | \$ 0.0                | \$<br>1.0     | \$   | 1.0               | \$               | 1.0            | \$<br>0.0     | \$    | 0.0                 | \$ 0.0                | \$ 0.1           | \$ 2          | .3    | \$ 21.3              | \$             | 21.3               |
| 2008  | \$<br>254.2   | \$ 14      | 1.9  | \$ 375.9              | \$<br>0.3      | \$ 0.2               | \$ 0.5                | \$<br>26.0    | \$   | 23.3              | \$               | 28.7           | \$<br>0.0     | \$    | 0.0                 | \$ 0.0                | \$ 1.8           | \$ 282        | .4    | \$ 167.2             | \$             | 407.0              |
| 2009  | \$<br>321.3   | \$ 17      | 0.0  | \$ 484.1              | \$<br>1.8      | \$ 1.0               | \$ 2.7                | \$<br>61.7    | \$   | 53.6              | \$               | 69.8           | \$<br>2.1     | \$    | 1.9                 | \$ 2.3                | \$ 0.7           | \$ 387        | .5 \$ | \$ 227.1             | \$             | 559.6              |
| 2010  | \$<br>383.6   | \$ 20      | 2.7  | \$ 577.5              | \$<br>3.2      | \$ 1.7               | \$ 4.8                | \$<br>94.9    | \$   | 81.9              | \$               | 107.9          | \$<br>3.1     | \$    | 2.7                 | \$ 3.6                | \$ -             | \$ 484        | .8 \$ | \$ 289.0             | \$             | 693.7              |
| 2011  | \$<br>400.4   | \$ 21      | 1.6  | \$ 602.1              | \$<br>3.3      | \$ 1.8               | \$ 5.0                | \$<br>98.2    | \$   | 85.1              | \$               | 111.4          | \$<br>3.1     | \$    | 2.7                 | \$ 3.5                | \$ 1.3           | \$ 506        | .4    | \$ 302.4             | \$             | 723.3              |
| 2012  | \$<br>415.2   | \$ 21      | 9.1  | \$ 624.1              | \$<br>3.5      | \$ 1.9               | \$ 5.2                | \$<br>104.7   | \$   | 91.5              | \$               | 118.0          | \$<br>3.5     | \$    | 3.1                 | \$ 4.0                | \$ 1.3           | \$ 528        | .3    | \$ 316.9             | \$             | 752.6              |
| 2013  | \$<br>224.3   | \$ 11      | 8.4  | \$ 334.7              | \$<br>3.4      | \$ 1.8               | \$ 5.0                | \$<br>93.3    | \$   | 82.3              | \$               | 104.4          | \$<br>3.9     | \$    | 3.5                 | \$ 4.4                | \$ 1.3           | \$ 326        | .3    | \$ 207.2             | \$             | 449.8              |
| 2014  | \$<br>166.2   | \$ 8       | 7.7  | \$ 247.2              | \$<br>2.3      | \$ 1.2               | \$ 3.4                | \$<br>64.1    | \$   | 57.6              | \$               | 70.6           | \$<br>2.8     | \$    | 2.6                 | \$ 3.1                | \$ 1.2           | \$ 236        | .7    | \$ 150.4             | \$             | 325.5              |
| 2015  | \$<br>124.0   | \$ 6       | 5.4  | \$ 183.6              | \$<br>1.2      | \$ 0.6               | \$ 1.8                | \$<br>36.8    | \$   | 34.4              | \$               | 39.2           | \$<br>1.7     | \$    | 1.6                 | \$ 1.8                | \$ 1.2           | \$ 164        | .8 \$ | \$ 103.3             | \$             | 227.4              |
| 2016  | \$<br>120.4   | \$ 6       | 3.5  | \$ 178.2              | \$<br>1.2      | \$ 0.6               | \$ 1.7                | \$<br>35.7    | \$   | 33.4              | \$               | 38.0           | \$<br>1.6     | \$    | 1.5                 | \$ 1.7                | \$ 1.2           | \$ 160        | .0 \$ | \$ 100.2             | \$             | 220.8              |
| 2017  | \$<br>116.9   | \$ 6       | 1.7  | \$ 173.0              | \$<br>1.1      | \$ 0.6               | \$ 1.7                | \$<br>34.7    | \$   | 32.4              | \$               | 36.9           | \$<br>1.6     | \$    | 1.5                 | \$ 1.7                | \$ 1.1           | \$ 155        | .4    | \$ 97.3              | \$             | 214.4              |
| 2018  | \$<br>113.5   | \$ 5       | 9.9  | \$ 168.0              | \$<br>1.1      | \$ 0.6               | \$ 1.6                | \$<br>33.7    | \$   | 31.5              | \$               | 35.8           | \$<br>1.5     | \$    | 1.5                 | \$ 1.6                | \$ 1.1           | \$ 150        | .8    | \$ 94.5              | \$             | 208.1              |
| 2019  | \$<br>110.2   | \$ 5       | 8.1  | \$ 163.1              | \$<br>1.1      | \$ 0.6               | \$ 1.6                | \$<br>32.7    | \$   | 30.6              | \$               | 34.8           | \$<br>1.5     | \$    | 1.4                 | \$ 1.6                | \$ 1.1           | \$ 146        | .4    | \$ 91.7              | \$             | 202.1              |
| 2020  | \$<br>106.9   | \$ 5       | 6.4  | \$ 158.3              | \$<br>1.0      | \$ 0.6               | \$ 1.5                | \$<br>31.7    | \$   | 29.7              | \$               | 33.8           | \$<br>1.4     | \$    | 1.4                 | \$ 1.5                | \$ 1.0           | \$ 142        | .2    | \$ 89.1              | \$             | 196.2              |
| 2021  | \$<br>103.8   | \$ 5       | 4.8  | \$ 153.7              | \$<br>1.0      | \$ 0.5               | \$ 1.5                | \$<br>30.8    | \$   | 28.8              | \$               | 32.8           | \$<br>1.4     | \$    | 1.3                 | \$ 1.5                | \$ 1.0           | \$ 138        | .0 \$ | \$ 86.5              | \$             | 190.5              |
| 2022  | \$<br>100.8   | \$ 5       | 3.2  | \$ 149.3              | \$<br>1.0      | \$ 0.5               | \$ 1.4                | \$<br>29.9    | \$   | 28.0              | \$               | 31.8           | \$<br>1.4     | \$    | 1.3                 | \$ 1.4                | \$ 1.0           | \$ 134        | .0 \$ | \$ 84.0              | \$             | 184.9              |
| 2023  | \$<br>97.9    | \$ 5       | 1.6  | \$ 144.9              | \$<br>0.9      | \$ 0.5               | \$ 1.4                | \$<br>29.0    | \$   | 27.2              | \$               | 30.9           | \$<br>1.3     | \$    | 1.3                 | \$ 1.4                | \$ 0.9           | \$ 130        | .1 \$ | \$ 81.5              | \$             | 179.5              |
| 2024  | \$<br>95.0    | \$ 5       | 0.1  | \$ 140.7              | \$<br>0.9      | \$ 0.5               | \$ 1.3                | \$<br>28.2    | \$   | 26.4              | \$               | 30.0           | \$<br>1.3     | \$    | 1.2                 | \$ 1.3                | \$ 0.9           | \$ 126        | .3    | \$ 79.1              | \$             | 174.3              |
| 2025  | \$<br>92.3    | \$ 4       | 8.7  | \$ 136.6              | \$<br>0.9      | \$ 0.5               | \$ 1.3                | \$<br>27.4    | \$   | 25.6              | \$               | 29.1           | \$<br>1.2     | \$    | 1.2                 | \$ 1.3                | \$ 0.9           | \$ 122        | .6    | \$ 76.8              | \$             | 169.2              |
| 2026  | \$<br>89.6    | \$ 4       | 7.3  | \$ 132.6              | \$<br>0.9      | \$ 0.5               | \$ 1.3                | \$<br>26.6    | \$   | 24.9              | \$               | 28.3           | \$<br>1.2     | \$    | 1.1                 | \$ 1.3                | \$ 0.9           | \$ 119        | .1 \$ | \$ 74.6              | \$             | 164.3              |
| 2027  | \$<br>87.0    | \$ 4       | 5.9  | \$ 128.7              | \$<br>0.8      | \$ 0.5               | \$ 1.2                | \$<br>25.8    | \$   | 24.1              | \$               | 27.5           | \$<br>1.2     | \$    | 1.1                 | \$ 1.2                | \$ 0.8           | \$ 115        | .6    | \$ 72.4              | \$             | 159.5              |
| 2028  | \$<br>84.4    | \$ 4       | 4.5  | \$ 125.0              | \$<br>0.8      | \$ 0.4               | \$ 1.2                | \$<br>25.0    | \$   | 23.4              | \$               | 26.7           | \$<br>1.1     | \$    | 1.1                 | \$ 1.2                | \$ 0.8           | \$ 112        | .2    | \$ 70.3              | \$             | 154.9              |
| 2029  | \$<br>82.0    | \$ 4       | 3.2  | \$ 121.4              | \$<br>0.8      | \$ 0.4               | \$ 1.2                | \$<br>24.3    | \$   | 22.7              | \$               | 25.9           | \$<br>1.1     | \$    | 1.1                 | \$ 1.2                | \$ 0.8           | \$ 109        | .0 \$ | \$ 68.3              | \$             | 150.4              |
| Total | \$<br>3,719.4 | \$ 1,98    | 5.5  | \$ 5,532.4            | \$<br>32.7     | \$ 17.6              | \$ 48.3               | \$<br>999.4   | \$   | 902.5             | \$ 1             | 1,096.6        | \$<br>39.7    | \$    | 36.5                | \$ 42.9               | \$ 29.8          | \$ 4,82       | .1 \$ | \$ 2,971.9           | \$             | 6,750.1            |
| Ann.  | \$<br>213.6   | \$ 11      | 4.0  | \$ 317.7              | \$<br>1.9      | \$ 1.0               | \$ 2.8                | \$<br>57.4    | \$   | 51.8              | \$               | 63.0           | \$<br>2.3     | \$    | 2.1                 | \$ 2.5                | \$ 1.7           | \$ 270        | .9 \$ | \$ 170.7             | \$             | 387.6              |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

# Exhibit J.3j Present Value of Annual Treatment Cost Projections at 3% Discount Rate (All Systems)

#### Alternative 1

|      | Sı            | ırfac | e Water CV         | vs |                     | Sur            | face W        | ater N        | INCWS            | ;             | Disinfe       | cting | Ground           | d Wa | ter CWS              | Disinfecti    | ng Gr | ound Wa          | ater NT | INCWS              |               | 1  | Total               |                    |
|------|---------------|-------|--------------------|----|---------------------|----------------|---------------|---------------|------------------|---------------|---------------|-------|------------------|------|----------------------|---------------|-------|------------------|---------|--------------------|---------------|----|---------------------|--------------------|
|      |               |       | 90 Pe<br>Confiden  |    |                     |                | Co            | 90 Ponfider   | ercent<br>ice Bo | und           |               |       |                  | Perd | cent<br>Bound        |               |       | 90 F<br>Confide  | Percen  |                    |               |    | 90 Pe<br>Confidence |                    |
|      | Mean<br>Value |       | Lower<br>th %tile) |    | Upper<br>ith %tile) | /lean<br>/alue | Lor<br>(5th % | wer<br>%tile) |                  | per<br>%tile) | Mean<br>Value |       | ower<br>1 %tile) | (    | Upper<br>95th %tile) | Mean<br>Value |       | ower<br>h %tile) |         | Upper<br>th %tile) | Mean<br>Value |    | Lower<br>h %tile)   | Upper<br>5th %tile |
| 2005 | \$<br>-       | \$    | -                  | \$ | -                   | \$<br>-        | \$            | -             | \$               | -             | \$<br>-       | \$    | -                | \$   | -                    | \$<br>-       | \$    | -                | \$      | -                  | \$<br>-       | \$ | -                   | \$<br>-            |
| 2006 | \$<br>-       | \$    | -                  | \$ | -                   | \$<br>-        | \$            | -             | \$               | -             | \$<br>-       | \$    | -                | \$   | -                    | \$<br>-       | \$    | -                | \$      | -                  | \$<br>-       | \$ | -                   | \$<br>-            |
| 2007 | \$<br>-       | \$    | -                  | \$ | -                   | \$<br>-        | \$            | -             | \$               | -             | \$<br>-       | \$    | -                | \$   | -                    | \$<br>-       | \$    | -                | \$      | -                  | \$<br>-       | \$ | -                   | \$<br>-            |
| 2008 | \$<br>237.1   | \$    | 124.8              | \$ | 358.8               | \$<br>0.3      | \$            | 0.2           | \$               | 0.5           | \$<br>20.1    | \$    | 17.4             | \$   | 22.7                 | \$<br>0.0     | \$    | 0.0              | \$      | 0.0                | \$<br>257.5   | \$ | 142.3               | \$<br>382          |
| 2009 | \$<br>298.9   | \$    | 157.5              | \$ | 451.8               | \$<br>1.7      | \$            | 0.9           | \$               | 2.5           | \$<br>56.0    | \$    | 48.0             | \$   | 63.9                 | \$<br>1.4     | \$    | 1.2              | \$      | 1.7                | \$<br>358.1   | \$ | 207.6               | \$<br>520          |
| 2010 | \$<br>337.2   | \$    | 177.7              | \$ | 509.3               | \$<br>3.0      | \$            | 1.6           | \$               | 4.5           | \$<br>86.5    | \$    | 74.0             | \$   | 98.9                 | \$<br>2.8     | \$    | 2.4              | \$      | 3.2                | \$<br>429.4   | \$ | 255.7               | \$<br>615          |
| 2011 | \$<br>327.4   | \$    | 172.5              | \$ | 494.5               | \$<br>2.9      | \$            | 1.5           | \$               | 4.3           | \$<br>83.9    | \$    | 71.9             | \$   | 96.1                 | \$<br>2.7     | \$    | 2.3              | \$      | 3.1                | \$<br>416.9   | \$ | 248.2               | \$<br>598          |
| 2012 | \$<br>317.8   | \$    | 167.5              | \$ | 480.1               | \$<br>2.8      | \$            | 1.5           | \$               | 4.2           | \$<br>81.5    | \$    | 69.8             | \$   | 93.3                 | \$<br>2.6     | \$    | 2.2              | \$      | 3.0                | \$<br>404.8   | \$ | 241.0               | \$<br>580          |
| 2013 | \$<br>104.1   | \$    | 55.0               | \$ | 156.6               | \$<br>2.4      | \$            | 1.3           | \$               | 3.7           | \$<br>61.8    | \$    | 52.8             | \$   | 70.9                 | \$<br>2.5     | \$    | 2.1              | \$      | 2.9                | \$<br>170.9   | \$ | 111.2               | \$<br>23           |
| 014  | \$<br>41.7    | \$    | 22.1               | \$ | 62.8                | \$<br>1.2      | \$            | 0.6           | \$               | 1.8           | \$<br>28.5    | \$    | 24.3             | \$   | 32.7                 | \$<br>1.2     | \$    | 1.0              | \$      | 1.4                | \$<br>72.7    | \$ | 48.1                | \$<br>9            |
| 015  | \$<br>-       | \$    | -                  | \$ | -                   | \$<br>-        | \$            | -             | \$               | -             | \$<br>-       | \$    | -                | \$   | -                    | \$<br>-       | \$    | -                | \$      | -                  | \$<br>-       | \$ | -                   | \$                 |
| 016  | \$<br>-       | \$    | -                  | \$ | -                   | \$<br>-        | \$            | -             | \$               | -             | \$<br>-       | \$    | -                | \$   | -                    | \$<br>-       | \$    | -                | \$      | -                  | \$<br>-       | \$ | -                   | \$                 |
| 017  | \$<br>-       | \$    | -                  | \$ | -                   | \$<br>-        | \$            | -             | \$               | -             | \$<br>-       | \$    | -                | \$   | -                    | \$<br>-       | \$    | -                | \$      | -                  | \$<br>-       | \$ | -                   | \$                 |
| 2018 | \$<br>-       | \$    | -                  | \$ | -                   | \$<br>-        | \$            | -             | \$               | -             | \$<br>-       | \$    | -                | \$   | -                    | \$<br>-       | \$    | -                | \$      | -                  | \$<br>-       | \$ | -                   | \$                 |
| 2019 | \$<br>-       | \$    | -                  | \$ | -                   | \$<br>-        | \$            | -             | \$               | -             | \$<br>-       | \$    | -                | \$   | -                    | \$<br>-       | \$    | -                | \$      | -                  | \$<br>-       | \$ | -                   | \$                 |
| 2020 | \$<br>-       | \$    | -                  | \$ | -                   | \$<br>-        | \$            | -             | \$               | -             | \$<br>-       | \$    | -                | \$   | -                    | \$<br>-       | \$    | -                | \$      | -                  | \$<br>-       | \$ | -                   | \$                 |
| 2021 | \$<br>-       | \$    | -                  | \$ | -                   | \$<br>-        | \$            | -             | \$               | -             | \$<br>-       | \$    | -                | \$   | -                    | \$<br>-       | \$    | -                | \$      | -                  | \$<br>-       | \$ | -                   | \$                 |
| 2022 | \$<br>-       | \$    | -                  | \$ | -                   | \$<br>-        | \$            | -             | \$               | -             | \$<br>-       | \$    | -                | \$   | -                    | \$<br>-       | \$    | -                | \$      | -                  | \$<br>-       | \$ | -                   | \$                 |
| 2023 | \$<br>-       | \$    | -                  | \$ | -                   | \$<br>-        | \$            | -             | \$               | -             | \$<br>-       | \$    | -                | \$   | -                    | \$<br>-       | \$    | -                | \$      | -                  | \$<br>-       | \$ | -                   | \$                 |
| 2024 | \$<br>-       | \$    | -                  | \$ | -                   | \$<br>-        | \$            | -             | \$               | -             | \$<br>-       | \$    | -                | \$   | -                    | \$<br>-       | \$    | -                | \$      | -                  | \$<br>-       | \$ | -                   | \$                 |
| 2025 | \$<br>-       | \$    | -                  | \$ | -                   | \$<br>-        | \$            | -             | \$               | -             | \$<br>-       | \$    | -                | \$   | -                    | \$<br>-       | \$    | -                | \$      | -                  | \$<br>-       | \$ | -                   | \$                 |
| 2026 | \$<br>-       | \$    | -                  | \$ | -                   | \$<br>-        | \$            | -             | \$               | -             | \$<br>-       | \$    | -                | \$   | -                    | \$<br>-       | \$    | -                | \$      | -                  | \$<br>-       | \$ | -                   | \$                 |
| 2027 | \$<br>-       | \$    | -                  | \$ | -                   | \$<br>-        | \$            | -             | \$               | -             | \$<br>-       | \$    | -                | \$   | -                    | \$<br>-       | \$    | -                | \$      | -                  | \$<br>-       | \$ | -                   | \$                 |
| 028  | \$<br>-       | \$    | -                  | \$ | -                   | \$<br>-        | \$            | -             | \$               | -             | \$<br>-       | \$    | -                | \$   | -                    | \$<br>-       | \$    | -                | \$      | -                  | \$<br>-       | \$ | -                   | \$                 |
| 029  | \$<br>-       | \$    | -                  | \$ | -                   | \$<br>-        | \$            | -             | \$               | -             | \$<br>-       | \$    | -                | \$   | -                    | \$<br>-       | \$    | -                | \$      | -                  | \$<br>-       | \$ | -                   | \$<br>             |
| otal | \$<br>1,664.2 | \$    | 877.1              | \$ | 2,513.8             | \$<br>14.3     | \$            | 7.6           | \$               | 21.5          | \$<br>418.3   | \$    | 358.1            | \$   | 478.6                | \$<br>13.3    | \$    | 11.3             | \$      | 15.3               | \$<br>2,110.1 | \$ | 1,254.1             | \$<br>3,02         |
| ۸nn. | \$<br>95.6    | \$    | 50.4               | \$ | 144.4               | \$<br>0.8      | \$            | 0.4           | \$               | 1.2           | \$<br>24.0    | \$    | 20.6             | \$   | 27.5                 | \$<br>0.8     | \$    | 0.7              | \$      | 0.9                | \$<br>121.2   | \$ | 72.0                | \$<br>17           |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

Exhibit J.3k Present Value of Annual Treatment Cost Projections at 3% Discount Rate (All Systems)

## Alternative 1

|       |                                                   | Surface Water CWS Surface Water NTNCWS |        |                   |    |         |    |               |    | :                | Disinfe           | ting C        | Ground       | Wat | er CWS          | Disinfectin | g Gro                | und Wate      | er NTI | NCWS              |    |                    | Total         |    |                      |                     |
|-------|---------------------------------------------------|----------------------------------------|--------|-------------------|----|---------|----|---------------|----|------------------|-------------------|---------------|--------------|-----|-----------------|-------------|----------------------|---------------|--------|-------------------|----|--------------------|---------------|----|----------------------|---------------------|
|       |                                                   |                                        |        | 90 Pe<br>Confiden |    | -       |    |               | C  | 90 Po<br>onfider | ercent<br>ice Boi | und           |              | ,   | 90 I<br>Confide | Perc        |                      |               |        | 90 Pe<br>Confiden |    | -                  |               |    | 90 Per<br>Confidence |                     |
|       | Mean Lower Upper<br>Value (5th %tile) (95th %tile |                                        |        |                   |    |         |    | lean<br>'alue |    | wer<br>%tile)    |                   | per<br>%tile) | lean<br>alue |     | ower<br>%tile)  | (9          | Upper<br>95th %tile) | Mean<br>Value |        | _ower<br>h %tile) |    | Upper<br>th %tile) | Mean<br>Value | (5 | Lower<br>ith %tile)  | Upper<br>ith %tile) |
| 2005  | \$                                                | -                                      | - \$ - |                   | \$ | -       | \$ | -             | \$ | -                | \$                | -             | \$<br>-      | \$  | -               | \$          | -                    | \$<br>-       | \$     | -                 | \$ | -                  | \$<br>-       | \$ | -                    | \$<br>-             |
| 2006  | \$                                                | -                                      | \$     | -                 | \$ | -       | \$ | -             | \$ | -                | \$                | -             | \$<br>-      | \$  | -               | \$          | -                    | \$<br>-       | \$     | -                 | \$ | -                  | \$<br>-       | \$ | -                    | \$<br>-             |
| 2007  | \$                                                | -                                      | *      |                   | \$ | -       | \$ | -             | \$ | -                | \$                | -             | \$<br>-      | \$  | -               | \$          | -                    | \$<br>-       | \$     | -                 | \$ | -                  | \$<br>-       | \$ | -                    | \$<br>-             |
| 2008  | \$                                                | -                                      | \$     | -                 | \$ | -       | \$ | -             | \$ | -                | \$                | -             | \$<br>-      | \$  | -               | \$          | -                    | \$<br>-       | \$     | -                 | \$ | -                  | \$<br>-       | \$ | -                    | \$<br>-             |
| 2009  | \$                                                | 21.0                                   | \$     | 11.2              | \$ | 31.0    | \$ | 0.0           | \$ | 0.0              | \$                | 0.0           | \$<br>2.1    | \$  | 1.9             | \$          | 2.3                  | \$<br>0.0     | \$     | 0.0               | \$ | 0.0                | \$<br>23.1    | \$ | 13.1                 | \$<br>33.3          |
| 2010  | \$                                                | 45.8                                   | \$     | 24.4              | \$ | 67.6    | \$ | 0.2           | \$ | 0.1              | \$                | 0.3           | \$<br>7.0    | \$  | 6.5             | \$          | 7.5                  | \$<br>0.1     | \$     | 0.1               | \$ | 0.1                | \$<br>53.1    | \$ | 31.1                 | \$<br>75.6          |
| 2011  | \$                                                | 72.7                                   | \$     | 38.7              | \$ | 107.3   | \$ | 0.4           | \$ | 0.2              | \$                | 0.6           | \$<br>14.2   | \$  | 13.2            | \$          | 15.3                 | \$<br>0.4     | \$     | 0.4               | \$ | 0.4                | \$<br>87.7    | \$ | 52.5                 | \$<br>123.6         |
| 2012  | \$                                                | 97.9                                   | \$     | 52.2              | \$ | 144.6   | \$ | 0.7           | \$ | 0.4              | \$                | 1.0           | \$<br>21.0   | \$  | 19.4            | \$          | 22.5                 | \$<br>0.6     | \$     | 0.6               | \$ | 0.7                | \$<br>120.2   | \$ | 72.5                 | \$<br>168.7         |
| 2013  | \$                                                | 121.7                                  | \$     | 64.8              | \$ | 179.6   | \$ | 0.9           | \$ | 0.5              | \$                | 1.3           | \$<br>27.3   | \$  | 25.3            | \$          | 29.3                 | \$<br>0.9     | \$     | 8.0               | \$ | 0.9                | \$<br>150.8   | \$ | 91.4                 | \$<br>211.2         |
| 2014  | \$                                                | 125.9                                  | \$     | 67.0              | \$ | 185.7   | \$ | 1.1           | \$ | 0.6              | \$                | 1.6           | \$<br>31.5   | \$  | 29.2            | \$          | 33.8                 | \$<br>1.1     | \$     | 1.0               | \$ | 1.2                | \$<br>159.5   | \$ | 97.8                 | \$<br>222.3         |
| 2015  | \$                                                | 125.3                                  | \$     | 66.7              | \$ | 184.9   | \$ | 1.2           | \$ | 0.6              | \$                | 1.7           | \$<br>32.8   | \$  | 30.5            | \$          | 35.2                 | \$<br>1.2     | \$     | 1.1               | \$ | 1.2                | \$<br>160.5   | \$ | 98.9                 | \$<br>223.1         |
| 2016  | \$                                                | 121.6                                  | \$     | 64.8              | \$ | 179.5   | \$ | 1.1           | \$ | 0.6              | \$                | 1.7           | \$<br>31.9   | \$  | 29.6            | \$          | 34.2                 | \$<br>1.1     | \$     | 1.0               | \$ | 1.2                | \$<br>155.8   | \$ | 96.0                 | \$<br>216.6         |
| 2017  | \$                                                | 118.1                                  | \$     | 62.9              | \$ | 174.3   | \$ | 1.1           | \$ | 0.6              | \$                | 1.6           | \$<br>30.9   | \$  | 28.7            | \$          | 33.2                 | \$<br>1.1     | \$     | 1.0               | \$ | 1.2                | \$<br>151.2   | \$ | 93.2                 | \$<br>210.3         |
| 2018  | \$                                                | 114.7                                  | \$     | 61.1              | \$ | 169.2   | \$ | 1.1           | \$ | 0.6              | \$                | 1.6           | \$<br>30.0   | \$  | 27.9            | \$          | 32.2                 | \$<br>1.1     | \$     | 1.0               | \$ | 1.1                | \$<br>146.8   | \$ | 90.5                 | \$<br>204.1         |
| 2019  | \$                                                | 111.3                                  | \$     | 59.3              | \$ | 164.2   | \$ | 1.0           | \$ | 0.6              | \$                | 1.5           | \$<br>29.2   | \$  | 27.1            | \$          | 31.3                 | \$<br>1.0     | \$     | 1.0               | \$ | 1.1                | \$<br>142.6   | \$ | 87.9                 | \$<br>198.2         |
| 2020  | \$                                                | 108.1                                  | \$     | 57.6              | \$ | 159.5   | \$ | 1.0           | \$ | 0.5              | \$                | 1.5           | \$<br>28.3   | \$  | 26.3            | \$          | 30.4                 | \$<br>1.0     | \$     | 0.9               | \$ | 1.1                | \$<br>138.4   | \$ | 85.3                 | \$<br>192.4         |
| 2021  | \$                                                | 104.9                                  | \$     | 55.9              | \$ | 154.8   | \$ | 1.0           | \$ | 0.5              | \$                | 1.5           | \$<br>27.5   | \$  | 25.5            | \$          | 29.5                 | \$<br>1.0     | \$     | 0.9               | \$ | 1.0                | \$<br>134.4   | \$ | 82.8                 | \$<br>186.8         |
| 2022  | \$                                                | 101.9                                  | \$     | 54.2              | \$ | 150.3   | \$ | 1.0           | \$ | 0.5              | \$                | 1.4           | \$<br>26.7   | \$  | 24.8            | \$          | 28.6                 | \$<br>0.9     | \$     | 0.9               | \$ | 1.0                | \$<br>130.5   | \$ | 80.4                 | \$<br>181.4         |
| 2023  | \$                                                | 98.9                                   | \$     | 52.7              | \$ | 145.9   | \$ | 0.9           | \$ | 0.5              | \$                | 1.4           | \$<br>25.9   | \$  | 24.0            | \$          | 27.8                 | \$<br>0.9     | \$     | 0.9               | \$ | 1.0                | \$<br>126.7   | \$ | 78.1                 | \$<br>176.1         |
| 2024  | \$                                                | 96.0                                   | \$     | 51.1              | \$ | 141.7   | \$ | 0.9           | \$ | 0.5              | \$                | 1.3           | \$<br>25.2   | \$  | 23.3            | \$          | 27.0                 | \$<br>0.9     | \$     | 0.8               | \$ | 1.0                | \$<br>123.0   | \$ | 75.8                 | \$<br>171.0         |
| 2025  | \$                                                | 93.2                                   | \$     | 49.6              | \$ | 137.6   | \$ | 0.9           | \$ | 0.5              | \$                | 1.3           | \$<br>24.4   | \$  | 22.7            | \$          | 26.2                 | \$<br>0.9     | \$     | 0.8               | \$ | 0.9                | \$<br>119.4   | \$ | 73.6                 | \$<br>166.0         |
| 2026  | \$                                                | 90.5                                   | \$     | 48.2              | \$ | 133.6   | \$ | 0.9           | \$ | 0.5              | \$                | 1.3           | \$<br>23.7   | \$  | 22.0            | \$          | 25.4                 | \$<br>0.8     | \$     | 0.8               | \$ | 0.9                | \$<br>115.9   | \$ | 71.4                 | \$<br>161.1         |
| 2027  | \$                                                | 87.9                                   | \$     | 46.8              | \$ | 129.7   | \$ | 8.0           | \$ | 0.4              | \$                | 1.2           | \$<br>23.0   | \$  | 21.4            | \$          | 24.7                 | \$<br>0.8     | \$     | 0.8               | \$ | 0.9                | \$<br>112.5   | \$ | 69.4                 | \$<br>156.4         |
| 2028  | \$                                                | 85.3                                   | \$     | 45.4              | \$ | 125.9   | \$ | 0.8           | \$ | 0.4              | \$                | 1.2           | \$<br>22.4   | \$  | 20.7            | \$          | 24.0                 | \$<br>0.8     | \$     | 0.7               | \$ | 0.8                | \$<br>109.3   | \$ | 67.3                 | \$<br>151.9         |
| 2029  | \$                                                | 82.8                                   | \$     | 44.1              | \$ | 122.2   | \$ | 8.0           | \$ | 0.4              | \$                | 1.1           | \$<br>21.7   | \$  | 20.1            | \$          | 23.3                 | \$<br>0.8     | \$     | 0.7               | \$ | 0.8                | \$<br>106.1   | \$ | 65.4                 | \$<br>147.5         |
| Total | \$                                                | 2,025.5                                | \$     | 1,078.6           | \$ | 2,988.8 | \$ | 17.8          | \$ | 9.5              | \$                | 26.2          | \$<br>506.8  | \$  | 470.0           | \$          | 543.6                | \$<br>17.4    | \$     | 16.1              | \$ | 18.6               | \$<br>2,567.4 | \$ | 1,574.3              | \$<br>3,577.3       |
| Ann.  | \$                                                | 116.3                                  | \$     | 61.9              | \$ | 171.6   | \$ | 1.0           | \$ | 0.5              | \$                | 1.5           | \$<br>29.1   | \$  | 27.0            | \$          | 31.2                 | \$<br>1.0     | \$     | 0.9               | \$ | 1.1                | \$<br>147.4   | \$ | 90.4                 | \$<br>205.4         |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

#### Exhibit J.3I Present Value of Annual Non-Treatment Cost Projections at 3% Discount Rate (All Systems)

#### Alternative 1

| 2012 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Alterna | itive 1 |      |      |              |       |            |           |                |          |             |          |           |           |                |          |           |            |            |           |           |          |        |                   |            |           |                |         |       |           |              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|------|------|--------------|-------|------------|-----------|----------------|----------|-------------|----------|-----------|-----------|----------------|----------|-----------|------------|------------|-----------|-----------|----------|--------|-------------------|------------|-----------|----------------|---------|-------|-----------|--------------|
| Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Mart                                                                                                                                                                                                                                                                                                                                                           |         |         |      |      | Surface Wate | r CWS |            |           |                | Su       | ırface Wate | r NTNCWS | 1         |           |                | Dis      | infecting | g Ground W | ater CWS   |           |           | Di       | sinfec | ting Ground Water | NTNCWS     |           |                |         | Total |           |              |
| Deck   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |         |      |      |              |       |            |           |                |          |             |          |           |           |                |          |           |            |            |           |           |          |        |                   |            |           |                |         |       |           | Siginificant |
| 2000   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |         |      |      | Plans        | M     | lonitoring | Excursion | Implementation | IDSE     | Plan        | s M      | onitoring | Excursion | Implementation | on IDS   | E         | Plans      | Monitoring | Excursion | Implement | ation ID | SE     | Plans             | Monitoring | Excursion | Implementation | IDSE    | Plans | Monitorin | Excursion    |
| 2008   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2005    | \$ 0.6  | 5 \$ | -    | \$ -         | \$    | -          | \$ -      | \$ 0.          | 0 \$ -   | \$          | - \$     | -         | \$ -      | \$ 0           | 0.1 \$ - | \$        | -          | \$ -       | \$ -      | \$        | 0.0 \$   | -      | \$ - 5            | \$ -       | s -       | \$ 0.7         | \$ -    | \$ -  | \$ -      | \$ -         |
| 2008   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2006    | \$ 1.2  | 2 \$ | 7.7  | \$ -         | \$    | -          | \$ -      | \$ 0.          | 1 \$ 0.0 | \$          | - \$     | -         | \$ -      | \$             | 3.1 \$ 0 | 1.1 \$    | -          | \$ -       | s -       | \$        | 0.5 \$   | -      | s - s             | \$ -       | \$ -      | \$ 4.9         | \$ 7.8  | \$ -  | \$ -      | \$ -         |
| 2000 S 0.0 S                                                                                                                                                                                                                                                                                                                                                         | 2007    | \$ -    | \$   | 19.9 | \$ 0         | 2 \$  | -          | \$ -      | s -            | \$ 0.0   | \$          | 0.0 \$   | -         | \$ -      | s -            | \$ 1     | .0 \$     | 0.0        | \$ -       | \$ -      | \$        | - \$     | 0.0    | \$ 0.0            | \$ -       | s -       | s -            | \$ 20.9 | \$ 0. | 2 \$ -    | \$ -         |
| 2010   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2008    | \$ 0.5  | 5 \$ | 16.1 | \$ 0         | .5 \$ | -          | \$ -      | \$ 0.          | 0.0      | \$          | 0.0 \$   | -         | \$ -      | \$ (           | 0.0 \$ 5 | .7 \$     | 0.2        | \$ -       | \$ -      | \$        | 0.0 \$   | 0.0    | \$ 0.0            | \$ -       | \$ -      | \$ 0.6         | \$ 21.8 | \$ 0. | 7 \$ -    | \$ -         |
| 2011 S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2009    | \$ 0.6  | 5 \$ | -    | \$ 0         | .7 \$ | -          | \$ -      | \$ 0.          | 0 \$ -   | \$          | 0.0 \$   | -         | \$ -      | \$             | 1.5 \$ - | \$        | 2.2        | \$ -       | \$ -      | \$        | 0.2 \$   | -      | \$ 0.4            | \$ -       | \$ -      | \$ 2.4         | \$ -    | \$ 3. | 3 \$ -    | \$ -         |
| 2012 S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2010    | \$ 0.5  | 5 \$ | -    | \$ -         | \$    | -          | \$ -      | \$ 0.          | 0 \$ -   | \$          | - \$     | -         | \$ -      | \$             | 1.4 \$ - | \$        | -          | \$ -       | s -       | \$        | 0.2 \$   | -      | \$ - 5            | \$ -       | s -       | \$ 2.2         | \$ -    | s -   | s -       | \$ -         |
| 2013 S - S - S - S - S (1.5) S - O. S - S - S - S (1.5) S - O. S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2011    | s -     | \$   |      | s -          | \$    | 0.3        | s -       | s -            | \$ -     | \$          | - \$     | 0.0       | \$ -      | \$ -           | \$ -     | \$        | -          | \$ 0.1     | s -       | \$        | - \$     | -      | s - s             | \$ 0.0     | \$ -      | s -            | \$ -    | s -   | \$ 0      | .4 \$ -      |
| 2014 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2012    | s -     | \$   | -    | \$ -         | \$    | (0.6)      | \$ 0.0    | s -            | s -      | \$          | - \$     | 0.0       | \$ -      | s -            | \$ -     | \$        | -          | \$ 2.3     | s -       | \$        | - \$     | -      | s - s             | \$ 0.3     | s -       | s -            | \$ -    | s -   | \$ 2      | .0 \$ 0.     |
| 2015 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2013    | s -     | \$   | -    | \$ -         | \$    | (1.5)      | \$ 0.1    | s -            | \$ -     | \$          | - \$     | 0.0       | \$ -      | \$ -           | \$ -     | \$        | -          | \$ 4.2     | s -       | \$        | - \$     | -      | s - s             | \$ 0.5     | s -       | s -            | \$ -    | s -   | \$ 3      | .2 \$ 0.     |
| 2016 S - S - S - S - S (1.4) S 0.1 S - S - S 0.0 S - S - S 0.0 S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2014    | s -     | \$   |      | s -          | \$    | (1.5)      | \$ 0.2    | s -            | \$ -     | \$          | - \$     | 0.0       | \$ -      | \$ -           | \$ -     | \$        | -          | \$ 4.1     | s -       | \$        | - \$     | -      | s - s             | \$ 0.5     | \$ -      | s -            | \$ -    | s -   | \$ 3      | .1 \$ 0.     |
| 2017 S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2015    | \$ -    | \$   | -    | s -          | s     | (1.5)      | \$ 0.1    | s -            | \$ -     | \$          | - \$     | 0.0       | \$ -      | s -            | s -      | \$        |            | \$ 3.9     | s -       | s         | - \$     | -      | s - s             | \$ 0.5     | s -       | s -            | s -     | s -   | \$ 3      | .0 \$ 0.     |
| 2018 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2016    | \$ -    | \$   | -    | s -          | s     | (1.4)      | \$ 0.1    | s -            | \$ -     | \$          | - \$     | 0.0       | \$ -      | s -            | s -      | \$        |            | \$ 3.8     | s -       | s         | - \$     | -      | s - s             | \$ 0.5     | s -       | s -            | s -     | s -   | \$ 2      | .9 \$ 0.     |
| 2019 S - S - S - S (1.3) S 0.1 S - S - S 0.0 S - S - S 0.0 S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2017    | s -     | \$   |      | s -          | s     | (1.4)      | \$ 0.1    | s -            | s -      | \$          | - \$     | 0.0       | \$ -      | \$ -           | s -      | \$        | -          | \$ 3.7     | s -       | \$        | - \$     | -      | s - s             | \$ 0.5     | s -       | s -            | \$ -    | s -   | \$ 2      | .9 \$ 0.     |
| 2020 S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2018    | \$ -    | \$   | -    | s -          | s     | (1.3)      | \$ 0.1    | s -            | \$ -     | \$          | - \$     | 0.0       | \$ -      | s -            | s -      | \$        |            | \$ 3.6     | s -       | s         | - \$     | -      | s - s             | \$ 0.5     | s -       | s -            | s -     | s -   | \$ 2      | .8 \$ 0.     |
| 2021 S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2019    | s -     | \$   | -    | \$ -         | s     | (1.3)      | \$ 0.1    | s -            | s -      | s           | - s      | 0.0       | \$ -      | s -            | s -      | \$        | -          | \$ 3.5     | s -       | s         | - s      | -      | s - s             | \$ 0.5     | s -       | s -            | s -     | s -   | \$ 2      | .7 \$ 0.     |
| 2022 S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2020    | s -     | \$   |      | s -          | s     | (1.3)      | \$ 0.1    | s -            | s -      | s           | - s      | 0.0       | s -       | s -            | s -      | \$        |            | \$ 3.4     | s -       | s         | - s      | -      | s - s             | \$ 0.4     | s -       | s -            | s -     | s -   | \$ 2      | .6 \$ 0.     |
| 2023 S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2021    | s -     | \$   |      | s -          | s     | (1.2)      | \$ 0.1    | s -            | s -      | s           | - s      | 0.0       | s -       | s -            | s -      | \$        |            | \$ 3.3     | s -       | s         | - s      | -      | s - s             | \$ 0.4     | s -       | s -            | s -     | s -   | \$ 2      | .5 \$ 0.     |
| 2024 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2022    | s -     | \$   |      | s -          | s     | (1.2)      | \$ 0.1    | s -            | s -      | s           | - s      | 0.0       | s -       | s -            | s -      | \$        |            | \$ 3.2     | s -       | s         | - s      | -      | s - s             | \$ 0.4     | s -       | s -            | s -     | s -   | \$ 2      | .5 \$ 0.     |
| 2024 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2023    | s -     | \$   | -    | s -          | s     | (1.1)      | \$ 0.1    | s -            | s -      | s           | - s      | 0.0       | s -       | s .            | s -      | \$        |            | \$ 3.1     | s -       | s         | - s      |        | s - s             | \$ 0.4     | s -       | s -            | s -     | s -   | \$ 2      | .4 \$ 0.     |
| 2025 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | s -     | \$   | -    | s -          | s     | (1.1)      | \$ 0.1    | s -            | s -      | s           | - s      |           | s -       | s .            | \$ -     | \$        |            |            | s -       | s         | - s      |        | s - s             |            |           | s -            | s -     | s -   |           | .3 \$ 0.     |
| 2026 S - S - S - S (1,0) S 0.1 S - S - S 0.0 S - S - S - S - S - S - S - S - S - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | s -     | \$   | -    | s -          | s     | (1.1)      | \$ 0.1    | s -            | s -      | s           | - s      |           | s -       | s .            | \$ -     | \$        |            |            | s -       | s         | - s      |        | s - s             |            |           | s -            | s -     | s -   |           | .3 \$ 0.     |
| 2027 S . S . S . S . S . S . S . S . S . S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | s -     | \$   | -    | s -          | s     |            |           | s -            | s -      | s           | - s      |           | s -       | s .            | \$ -     | \$        |            |            | s -       | s         | - s      |        | s - s             |            |           | s -            | s -     | s -   |           |              |
| 2028 \$ - \$ - \$ - \$ (1.0) \$ 0.1 \$ - \$ - \$ 0.0 \$ - \$ - \$ 0.0 \$ - \$ - \$ 0.0 \$ - \$ - \$ 0.0 \$ - \$ - \$ 0.0 \$ - \$ - \$ 0.0 \$ - \$ - \$ 0.0 \$ - \$ - \$ 0.0 \$ - \$ - \$ 0.0 \$ - \$ - \$ 0.0 \$ - \$ - \$ 0.0 \$ - \$ - \$ 0.0 \$ - \$ - \$ 0.0 \$ - \$ - \$ 0.0 \$ - \$ - \$ 0.0 \$ - \$ - \$ 0.0 \$ - \$ - \$ 0.0 \$ - \$ - \$ 0.0 \$ - \$ - \$ 0.0 \$ - \$ - \$ - \$ 0.0 \$ - \$ - \$ - \$ 0.0 \$ - \$ - \$ - \$ 0.0 \$ - \$ - \$ - \$ 0.0 \$ - \$ - \$ - \$ 0.0 \$ - \$ - \$ - \$ 0.0 \$ - \$ - \$ - \$ 0.0 \$ - \$ - \$ - \$ 0.0 \$ - \$ - \$ - \$ 0.0 \$ - \$ - \$ - \$ 0.0 \$ - \$ - \$ - \$ 0.0 \$ - \$ - \$ - \$ 0.0 \$ - \$ - \$ - \$ - \$ 0.0 \$ - \$ - \$ - \$ - \$ 0.0 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ 0.0 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | s -     | s    |      | s -          | s     | (1.0)      | S 0.1     | s -            | s -      | s           | - 8      |           | s -       | s -            | s -      | s         | _          |            | s -       | s         | - s      |        | s - !             |            |           | s -            | s -     | s -   |           | .1 \$ 0.     |
| 2029 \$ - \$ - \$ - \$ 1.0  \$ 0.1 \$ - \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ - \$ 0.0 \$ - \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ - \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ 0.0 \$ |         | s -     | s    |      | s            | s     |            |           |                | 1        | s           | - s      |           | s -       | s .            | · s -    | s         | _          |            |           | s         | - s      | -      | s - 5             |            |           | s -            | s       | s -   |           |              |
| Total S 3.8 S 43.8 S 1.5 S (21.1) S 2.1 S 0.1 S 0.0 S 0.3 S 0.5 S (21.1) S 2.1 S 0.1 S 0.0 S 0.3 S . S 6.8 S 2.4 S 50.1 S . S 1.0 S 0.0 S 0.4 S 7.6 S . S 10.8 S 50.6 S 4.2 S 45.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | s -     | s    |      | s -          | s     | ,          |           | -              | 1        | s           | 1        |           |           | s -            |          | s         |            |            |           | s         | - s      |        | s - s             |            |           | *              | s -     | *     |           |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | s 3.6   | s s  | 43.8 | S 1          | .5 S  | (21.1)     | \$ 2.1    | s 0.           | 1 \$ 0.1 | s           | 0.0 S    | 0.3       | s -       | s (            | 5.1 S 6  | .8 S      | 2.4        |            |           | s         | 1.0 S    | 0.0    | s 0.4 5           | \$ 7.6     | s -       | S 10.8         | \$ 50.6 | S 4.  | 2 \$ 45   | .9 \$ 2.     |
| Ann. s 0.2 s 2.5 s 0.1 s (1.2  s 0.1 s 0.0 s 0.0 s 0.0 s 0.0 s - s 0.3 s 0.4 s 0.1 s 3.4 s - s 0.1 s 0.0 s 0.0 s 0.4 s - s 0.6 s 2.9 s 0.2 s 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ann.    |         | 2 \$ |      |              | .1 \$ | (1.2)      |           | -              | -        | -           | 0.0 S    | 0.0       | *         |                | 0.3 S (  |           | 0.1        |            |           | s         | 0.1 \$   | 0.0    |                   |            |           | -              |         | -     |           | .6 \$ 0.     |

J-113

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005. Detail may not add exactly to totals due to independent rounding. Ann – value of total annualized at discount rate. Source: Derived from Exhibits J. 3a through h.

# Exhibit J.3m Present Value of Annual Cost Projections at 7% Discount Rate (All Systems and Primacy Agencies)

#### Alternative 1

|       | Surface Water CWS Surface Water NTNCWS Disinfecting Ground Water CWS |               | e Water ( | cws             | Surf                  | ace V         | Nater N | INCWS          | Dis                   | infe          | cting Ground V | Vater CWS            |                       | Disinfecti | ng Ground Wa  | ter l                | NTNCWS | Primacy Agencies      |                | Total         |                    |                    |
|-------|----------------------------------------------------------------------|---------------|-----------|-----------------|-----------------------|---------------|---------|----------------|-----------------------|---------------|----------------|----------------------|-----------------------|------------|---------------|----------------------|--------|-----------------------|----------------|---------------|--------------------|--------------------|
|       |                                                                      |               |           |                 | Percent<br>nce Bound  |               | С       |                | ercent<br>ice Bound   |               |                |                      | ercent<br>nce Bound   |            |               |                      |        | cent<br>e Bound       |                |               | 90 Pe<br>Confiden  |                    |
|       |                                                                      | Mean<br>Value |           | ower<br>(%tile) | Upper<br>(95th %tile) | Mean<br>Value |         | ower<br>%tile) | Upper<br>(95th %tile) | Mean<br>Value |                | Lower<br>(5th %tile) | Upper<br>(95th %tile) |            | Mean<br>Value | Lower<br>(5th %tile) |        | Upper<br>(95th %tile) | Point Estimate | Mean<br>Value | Lower<br>th %tile) | Upper<br>th %tile) |
| 2005  | \$                                                                   | 0.6           | \$        | 0.6             | \$ 0.6                | \$<br>0.0     | \$      | 0.0            | \$ 0.0                | \$ (          | ).1            | \$ 0.1               | \$ 0.                 | 1 \$       | 0.0           | \$ 0.                | .0     | \$ 0.0                | \$ 3.4         | \$<br>4.1     | \$<br>4.1          | \$<br>4.1          |
| 2006  | \$                                                                   | 8.0           | \$        | 8.0             | \$ 8.0                | \$<br>0.1     | \$      | 0.1            | \$ 0.1                | \$ 2          | 2.9            | \$ 2.9               | \$ 2.                 | 9 \$       | 0.5           | \$ 0.                | .5     | \$ 0.5                | \$ 3.2         | \$<br>14.6    | \$<br>14.6         | \$<br>14.6         |
| 2007  | \$                                                                   | 17.3          | \$        | 17.3            | \$ 17.3               | \$<br>0.0     | \$      | 0.0            | \$ 0.0                | \$ (          | 8.0            | \$ 0.8               | \$ 0.                 | 3 \$       | 0.0           | \$ 0.                | .0     | \$ 0.0                | \$ 0.1         | \$<br>18.3    | \$<br>18.3         | \$<br>18.3         |
| 2008  | \$                                                                   | 210.1         | \$        | 117.3           | \$ 310.7              | \$<br>0.3     | \$      | 0.2            | \$ 0.4                | \$ 2          | .5             | \$ 19.3              | \$ 23.                | 7 \$       | 0.0           | \$ 0.                | .0     | \$ 0.0                | \$ 1.5         | \$<br>233.4   | \$<br>138.2        | \$<br>336.4        |
| 2009  | \$                                                                   | 255.6         | \$        | 135.3           | \$ 385.2              | \$<br>1.4     | \$      | 0.8            | \$ 2.1                | \$ 49         | 9.1            | \$ 42.6              | \$ 55.                | 5 \$       | 1.6           | \$ 1.                | .5     | \$ 1.8                | \$ 0.6         | \$<br>308.3   | \$<br>180.7        | \$<br>445.2        |
| 2010  | \$                                                                   | 293.8         | \$        | 155.2           | \$ 442.3              | \$<br>2.4     | \$      | 1.3            | \$ 3.7                | \$ 72         | 2.7            | \$ 62.7              | \$ 82.                | 5 \$       | 2.4           | \$ 2.                | .1     | \$ 2.7                | \$ -           | \$<br>371.3   | \$<br>221.3        | \$<br>531.3        |
| 2011  | \$                                                                   | 295.2         | \$        | 156.0           | \$ 443.9              | \$<br>2.5     | \$      | 1.3            | \$ 3.7                | \$ 72         | 2.4            | \$ 62.7              | \$ 82.                | 1 \$       | 2.3           | \$ 2.                | .0     | \$ 2.6                | \$ -           | \$<br>373.3   | \$<br>223.0        | \$<br>533.3        |
| 2012  | \$                                                                   | 294.7         | \$        | 155.5           | \$ 442.9              | \$<br>2.5     | \$      | 1.3            | \$ 3.7                | \$ 74         | 1.3            | \$ 64.9              | \$ 83.                | 8 \$       | 2.5           | \$ 2.                | .2     | \$ 2.8                | \$ -           | \$<br>375.0   | \$<br>224.9        | \$<br>534.2        |
| 2013  | \$                                                                   | 153.3         | \$        | 80.9            | \$ 228.7              | \$<br>2.3     | \$      | 1.2            | \$ 3.4                | \$ 63         | 3.8            | \$ 56.2              | \$ 71.                | 3 \$       | 2.7           | \$ 2.                | .4     | \$ 3.0                | \$ -           | \$<br>222.9   | \$<br>141.6        | \$<br>307.3        |
| 2014  | \$                                                                   | 109.3         | \$        | 57.7            | \$ 162.5              | \$<br>1.5     | \$      | 0.8            | \$ 2.3                | \$ 42         | 2.1            | \$ 37.9              | \$ 46.                | 4 \$       | 1.9           | \$ 1.                | .7     | \$ 2.0                | \$ -           | \$<br>155.7   | \$<br>98.9         | \$<br>214.1        |
| 2015  | \$                                                                   | 78.5          | \$        | 41.4            | \$ 116.2              | \$<br>8.0     | \$      | 0.4            | \$ 1.1                | \$ 23         | 3.3            | \$ 21.8              | \$ 24.                | 8 \$       | 1.1           | \$ 1.                | .0     | \$ 1.1                | \$ -           | \$<br>104.3   | \$<br>65.4         | \$<br>144.0        |
| 2016  | \$                                                                   | 73.4          | \$        | 38.7            | \$ 108.6              | \$<br>0.7     | \$      | 0.4            | \$ 1.0                | \$ 2          | .8             | \$ 20.4              | \$ 23.                | 2 \$       | 1.0           | \$ 0.                | .9     | \$ 1.0                | \$ -           | \$<br>97.5    | \$<br>61.1         | \$<br>134.6        |
| 2017  | \$                                                                   | 68.6          | \$        | 36.2            | \$ 101.5              | \$<br>0.7     | \$      | 0.4            | \$ 1.0                | \$ 20         | 0.3            | \$ 19.0              | \$ 21.                | 7 \$       | 0.9           | \$ 0.                | .9     | \$ 1.0                | \$ -           | \$<br>91.1    | \$<br>57.1         | \$<br>125.8        |
| 2018  | \$                                                                   | 64.1          | \$        | 33.8            | \$ 94.9               | \$<br>0.6     | \$      | 0.3            | \$ 0.9                | \$ 19         | 9.0            | \$ 17.8              | \$ 20.                | 2 \$       | 0.9           | \$ 0.                | .8     | \$ 0.9                | \$ -           | \$<br>85.2    | \$<br>53.4         | \$<br>117.5        |
| 2019  | \$                                                                   | 59.9          | \$        | 31.6            | \$ 88.7               | \$<br>0.6     | \$      | 0.3            | \$ 0.8                | \$ 17         | 7.8            | \$ 16.6              | \$ 18.                | 9 \$       | 0.8           | \$ 0.                | .8     | \$ 0.8                | \$ -           | \$<br>79.6    | \$<br>49.9         | \$<br>109.8        |
| 2020  | \$                                                                   | 56.0          | \$        | 29.5            | \$ 82.9               | \$<br>0.5     | \$      | 0.3            | \$ 0.8                | \$ 16         | 6.6            | \$ 15.5              | \$ 17.                | 7 \$       | 0.8           | \$ 0.                | .7     | \$ 0.8                | \$ -           | \$<br>74.4    | \$<br>46.6         | \$<br>102.7        |
| 2021  | \$                                                                   | 52.3          | \$        | 27.6            | \$ 77.4               | \$<br>0.5     | \$      | 0.3            | \$ 0.7                | \$ 15         | 5.5            | \$ 14.5              | \$ 16.                | 5 \$       | 0.7           | \$ 0.                | .7     | \$ 0.7                | \$ -           | \$<br>69.5    | \$<br>43.6         | \$<br>95.9         |
| 2022  | \$                                                                   | 48.9          | \$        | 25.8            | \$ 72.4               | \$<br>0.5     | \$      | 0.3            | \$ 0.7                | \$ 14         | 1.5            | \$ 13.6              | \$ 15.                | 4 \$       | 0.7           | \$ 0.                | .6     | \$ 0.7                | \$ -           | \$<br>65.0    | \$<br>40.7         | \$<br>89.7         |
| 2023  | \$                                                                   | 45.7          | \$        | 24.1            | \$ 67.6               | \$<br>0.4     | \$      | 0.2            | \$ 0.6                | \$ 13         | 3.6            | \$ 12.7              | \$ 14.                | 4 \$       | 0.6           | \$ 0.                | .6     | \$ 0.6                | \$ -           | \$<br>60.7    | \$<br>38.0         | \$<br>83.8         |
| 2024  | \$                                                                   | 42.7          | \$        | 22.5            | \$ 63.2               | \$<br>0.4     | \$      | 0.2            | \$ 0.6                | \$ 12         | 2.7            | \$ 11.8              | \$ 13.                | 5 \$       | 0.6           | \$ 0.                | .5     | \$ 0.6                | \$ -           | \$<br>56.8    | \$<br>35.6         | \$<br>78.3         |
| 2025  | \$                                                                   | 39.9          | \$        | 21.1            | \$ 59.1               | \$<br>0.4     | \$      | 0.2            | \$ 0.6                | \$ 1          | .8             | \$ 11.1              | \$ 12.                | 5 \$       | 0.5           | \$ 0.                | .5     | \$ 0.6                | \$ -           | \$<br>53.0    | \$<br>33.2         | \$<br>73.2         |
| 2026  | \$                                                                   | 37.3          | \$        | 19.7            | \$ 55.2               | \$<br>0.4     | \$      | 0.2            | \$ 0.5                | \$ 1          | .1             | \$ 10.3              | \$ 11.                | 3 \$       | 0.5           | \$ 0.                | .5     | \$ 0.5                | \$ -           | \$<br>49.6    | \$<br>31.1         | \$<br>68.4         |
| 2027  | \$                                                                   | 34.8          | \$        | 18.4            | \$ 51.6               | \$<br>0.3     | \$      | 0.2            | \$ 0.5                | \$ 10         | 0.3            | \$ 9.7               | \$ 11.                | \$         | 0.5           | \$ 0.                | .4     | \$ 0.5                | \$ -           | \$<br>46.3    | \$<br>29.0         | \$<br>63.9         |
| 2028  | \$                                                                   | 32.6          | \$        | 17.2            | \$ 48.2               | \$<br>0.3     | \$      | 0.2            | \$ 0.5                | \$ 9          | 9.7            | \$ 9.0               | \$ 10.                | 3 \$       | 0.4           | \$ 0.                | .4     | \$ 0.5                | \$ -           | \$<br>43.3    | \$<br>27.1         | \$<br>59.7         |
| 2029  | \$                                                                   | 30.4          | \$        | 16.1            | \$ 45.1               | \$<br>0.3     | \$      | 0.2            | \$ 0.4                | \$ 9          | 0.0            | \$ 8.4               | \$ 9.                 | 5 \$       | 0.4           | \$ 0.                | .4     | \$ 0.4                | \$ -           | \$<br>40.5    | \$<br>25.4         | \$<br>55.8         |
| Total | \$                                                                   | 2,402.7       | \$ 1      | 1,287.3         | \$ 3,574.6            | \$<br>20.4    | \$      | 11.0           | \$ 30.2               | \$ 626        | 6.6            | \$ 562.4             | \$ 690.               | 9 \$       | 24.2          | \$ 22.               | .1     | \$ 26.3               | \$ 8.8         | \$<br>3,093.7 | \$<br>1,902.5      | \$<br>4,341.8      |
| Ann.  | \$                                                                   | 206.2         | \$        | 110.5           | \$ 306.7              | \$<br>1.8     | \$      | 0.9            | \$ 2.6                | \$ 53         | 3.8            | \$ 48.3              | \$ 59.                | 3 \$       | 2.1           | \$ 1.                | .9     | \$ 2.3                | \$ 0.8         | \$<br>265.5   | \$<br>163.3        | \$<br>372.6        |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

# Exhibit J.3n Present Value of Annual Treatment Cost Projections at 7% Discount Rate (All Systems)

#### Alternative 1

|       | Surface Water CWS Surface Water NTNCWS |               | vs                | Disinfect | ing (               | Ground W       | ater              | cws | Disinfectin        | g Gı          | round Wate | r NT               | NCWS |                    | Total         |    |                     |    |                     |               |                  |                 |                     |
|-------|----------------------------------------|---------------|-------------------|-----------|---------------------|----------------|-------------------|-----|--------------------|---------------|------------|--------------------|------|--------------------|---------------|----|---------------------|----|---------------------|---------------|------------------|-----------------|---------------------|
|       |                                        |               | 90 P<br>Confider  |           |                     |                | 90 Pe<br>Confiden |     |                    |               |            | 90 Pe<br>Confiden  |      |                    |               |    | 90 Pe<br>Confiden   |    |                     |               | 90 F<br>Confide  | Perce<br>ence E |                     |
|       |                                        | Mean<br>Value | _ower<br>h %tile) | (9        | Upper<br>5th %tile) | /lean<br>/alue | ₋ower<br>h %tile) |     | Upper<br>th %tile) | Mean<br>Value |            | Lower<br>th %tile) |      | Upper<br>th %tile) | Mean<br>Value | (5 | Lower<br>5th %tile) | (9 | Upper<br>5th %tile) | Mean<br>Value | ower<br>1 %tile) | (9              | Upper<br>5th %tile) |
| 2005  | \$                                     | -             | \$<br>-           | \$        | -                   | \$<br>-        | \$<br>-           | \$  | -                  | \$<br>-       | \$         | -                  | \$   | -                  | \$<br>-       | \$ | -                   | \$ | -                   | \$<br>-       | \$<br>-          | \$              | -                   |
| 2006  | \$                                     | -             | \$<br>-           | \$        | -                   | \$<br>-        | \$<br>-           | \$  | -                  | \$<br>-       | \$         | -                  | \$   | -                  | \$<br>-       | \$ | -                   | \$ | -                   | \$<br>-       | \$<br>-          | \$              | -                   |
| 2007  | \$                                     | -             | \$<br>-           | \$        | -                   | \$<br>-        | \$<br>-           | \$  | -                  | \$<br>-       | \$         | -                  | \$   | -                  | \$<br>-       | \$ | -                   | \$ | -                   | \$<br>-       | \$<br>-          | \$              | -                   |
| 2008  | \$                                     | 195.9         | \$<br>103.1       | \$        | 296.6               | \$<br>0.3      | \$<br>0.1         | \$  | 0.4                | \$<br>16.6    | \$         | 14.3               | \$   | 18.8               | \$<br>0.0     | \$ | 0.0                 | \$ | 0.0                 | \$<br>212.8   | \$<br>117.6      | \$              | 315.8               |
| 2009  | \$                                     | 237.8         | \$<br>125.3       | \$        | 359.5               | \$<br>1.3      | \$<br>0.7         | \$  | 2.0                | \$<br>44.5    | \$         | 38.2               | \$   | 50.9               | \$<br>1.1     | \$ | 1.0                 | \$ | 1.3                 | \$<br>284.9   | \$<br>165.2      | \$              | 413.7               |
| 2010  | \$                                     | 258.3         | \$<br>136.1       | \$        | 390.1               | \$<br>2.3      | \$<br>1.2         | \$  | 3.4                | \$<br>66.2    | \$         | 56.7               | \$   | 75.8               | \$<br>2.1     | \$ | 1.8                 | \$ | 2.4                 | \$<br>328.9   | \$<br>195.8      | \$              | 471.7               |
| 2011  | \$                                     | 241.4         | \$<br>127.2       | \$        | 364.6               | \$<br>2.1      | \$<br>1.1         | \$  | 3.2                | \$<br>61.9    | \$         | 53.0               | \$   | 70.8               | \$<br>2.0     | \$ | 1.7                 | \$ | 2.3                 | \$<br>307.4   | \$<br>183.0      | \$              | 440.9               |
| 2012  | \$                                     | 225.6         | \$<br>118.9       | \$        | 340.7               | \$<br>2.0      | \$<br>1.1         | \$  | 3.0                | \$<br>57.8    | \$         | 49.5               | \$   | 66.2               | \$<br>1.9     | \$ | 1.6                 | \$ | 2.1                 | \$<br>287.3   | \$<br>171.0      | \$              | 412.0               |
| 2013  | \$                                     | 71.1          | \$<br>37.6        | \$        | 107.0               | \$<br>1.7      | \$<br>0.9         | \$  | 2.5                | \$<br>42.2    | \$         | 36.0               | \$   | 48.5               | \$<br>1.7     | \$ | 1.5                 | \$ | 2.0                 | \$<br>116.7   | \$<br>76.0       | \$              | 159.9               |
| 2014  | \$                                     | 27.4          | \$<br>14.5        | \$        | 41.3                | \$<br>8.0      | \$<br>0.4         | \$  | 1.2                | \$<br>18.8    | \$         | 16.0               | \$   | 21.5               | \$<br>0.8     | \$ | 0.7                 | \$ | 0.9                 | \$<br>47.8    | \$<br>31.6       | \$              | 64.9                |
| 2015  | \$                                     | -             | \$<br>-           | \$        | -                   | \$<br>-        | \$<br>-           | \$  | -                  | \$<br>-       | \$         | -                  | \$   | -                  | \$<br>-       | \$ | -                   | \$ | -                   | \$<br>-       | \$<br>-          | \$              | -                   |
| 2016  | \$                                     | -             | \$<br>-           | \$        | -                   | \$<br>-        | \$<br>-           | \$  | -                  | \$<br>-       | \$         | -                  | \$   | -                  | \$<br>-       | \$ | -                   | \$ | -                   | \$<br>-       | \$<br>-          | \$              | -                   |
| 2017  | \$                                     | -             | \$<br>-           | \$        | -                   | \$<br>-        | \$<br>-           | \$  | -                  | \$<br>-       | \$         | -                  | \$   | -                  | \$<br>-       | \$ | -                   | \$ | -                   | \$<br>-       | \$<br>-          | \$              | -                   |
| 2018  | \$                                     | -             | \$<br>-           | \$        | -                   | \$<br>-        | \$<br>-           | \$  | -                  | \$<br>-       | \$         | -                  | \$   | -                  | \$<br>-       | \$ | -                   | \$ | -                   | \$<br>-       | \$<br>-          | \$              | -                   |
| 2019  | \$                                     | -             | \$<br>-           | \$        | -                   | \$<br>-        | \$<br>-           | \$  | -                  | \$<br>-       | \$         | -                  | \$   | -                  | \$<br>-       | \$ | -                   | \$ | -                   | \$<br>-       | \$<br>-          | \$              | -                   |
| 2020  | \$                                     | -             | \$<br>-           | \$        | -                   | \$<br>-        | \$<br>-           | \$  | -                  | \$<br>-       | \$         | -                  | \$   | -                  | \$<br>-       | \$ | -                   | \$ | -                   | \$<br>-       | \$<br>-          | \$              | -                   |
| 2021  | \$                                     | -             | \$<br>-           | \$        | -                   | \$<br>-        | \$<br>-           | \$  | -                  | \$<br>-       | \$         | -                  | \$   | -                  | \$<br>-       | \$ | -                   | \$ | -                   | \$<br>-       | \$<br>-          | \$              | -                   |
| 2022  | \$                                     | -             | \$<br>-           | \$        | -                   | \$<br>-        | \$<br>-           | \$  | -                  | \$<br>-       | \$         | -                  | \$   | -                  | \$<br>-       | \$ | -                   | \$ | -                   | \$<br>-       | \$<br>-          | \$              | -                   |
| 2023  | \$                                     | -             | \$<br>-           | \$        | -                   | \$<br>-        | \$<br>-           | \$  | -                  | \$<br>-       | \$         | -                  | \$   | -                  | \$<br>-       | \$ | -                   | \$ | -                   | \$<br>-       | \$<br>-          | \$              | -                   |
| 2024  | \$                                     | -             | \$<br>-           | \$        | -                   | \$<br>-        | \$<br>-           | \$  | -                  | \$<br>-       | \$         | -                  | \$   | -                  | \$<br>-       | \$ | -                   | \$ | -                   | \$<br>-       | \$<br>-          | \$              | -                   |
| 2025  | \$                                     | -             | \$<br>-           | \$        | -                   | \$<br>-        | \$<br>-           | \$  | -                  | \$<br>-       | \$         | -                  | \$   | -                  | \$<br>-       | \$ | -                   | \$ | -                   | \$<br>-       | \$<br>-          | \$              | -                   |
| 2026  | \$                                     | -             | \$<br>-           | \$        | -                   | \$<br>-        | \$<br>-           | \$  | -                  | \$<br>-       | \$         | -                  | \$   | -                  | \$<br>-       | \$ | -                   | \$ | -                   | \$<br>-       | \$<br>-          | \$              | -                   |
| 2027  | \$                                     | -             | \$<br>-           | \$        | -                   | \$<br>-        | \$<br>-           | \$  | -                  | \$<br>-       | \$         | -                  | \$   | -                  | \$<br>-       | \$ | -                   | \$ | -                   | \$<br>-       | \$<br>-          | \$              | -                   |
| 2028  | \$                                     | -             | \$<br>-           | \$        | -                   | \$<br>-        | \$<br>-           | \$  | -                  | \$<br>-       | \$         | -                  | \$   | -                  | \$<br>-       | \$ | -                   | \$ | -                   | \$<br>-       | \$<br>-          | \$              | -                   |
| 2029  | \$                                     | -             | \$<br>-           | \$        | -                   | \$<br>-        | \$<br>-           | \$  | -                  | \$<br>-       | \$         | -                  | \$   | -                  | \$<br>-       | \$ | -                   | \$ | -                   | \$<br>-       | \$<br>-          | \$              | -                   |
| Total | \$                                     | 1,257.5       | \$<br>662.7       | \$        | 1,899.7             | \$<br>10.5     | \$<br>5.5         | \$  | 15.8               | \$<br>308.1   | \$         | 263.8              | \$   | 352.5              | \$<br>9.7     | \$ | 8.2                 | \$ | 11.1                | \$<br>1,585.7 | \$<br>940.3      | \$              | 2,279.0             |
| Ann.  | \$                                     | 107.9         | \$<br>56.9        | \$        | 163.0               | \$<br>0.9      | \$<br>0.5         | \$  | 1.4                | \$<br>26.4    | \$         | 22.6               | \$   | 30.2               | \$<br>0.8     | \$ | 0.7                 | \$ | 1.0                 | \$<br>136.1   | \$<br>80.7       | \$              | 195.6               |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

# Exhibit J.3o Present Value of Annual Treatment Cost Projections at 7% Discount Rate (All Systems)

#### Alternative 1

|               |        | Sur             | face | Water C           | ws |                     |    | Sur          | face | Water N           | TNCW     | /S               |    | Disinfecti    | ng G | round V           | Vate | r CWS               |    | Disinfectin   | g G | round Wate          | er N     | rncws               |                    |    | Total              |     |                     |
|---------------|--------|-----------------|------|-------------------|----|---------------------|----|--------------|------|-------------------|----------|------------------|----|---------------|------|-------------------|------|---------------------|----|---------------|-----|---------------------|----------|---------------------|--------------------|----|--------------------|-----|---------------------|
|               |        |                 |      | 90 Po<br>Confider |    |                     |    |              |      | 90 Pe<br>Confiden | ercent   |                  |    |               | (    | 90 Po<br>Confider |      |                     |    |               |     | 90 Pe<br>Confiden   |          |                     |                    |    | 90 P<br>Confider   |     |                     |
|               |        | Mean<br>Value   |      | Lower<br>h %tile) |    | Upper<br>5th %tile) |    | lean<br>alue |      | ₋ower<br>h %tile) |          | pper<br>n %tile) |    | Mean<br>Value |      | ower<br>1 %tile)  | (9   | Upper<br>5th %tile) |    | Mean<br>Value | (   | Lower<br>5th %tile) | (9:      | Upper<br>5th %tile) | Mean<br>/alue      |    | Lower<br>th %tile) | (95 | Upper<br>5th %tile) |
| 2005          | \$     | -               | \$   | -                 | \$ | -                   | \$ | -            | \$   | -                 | \$       | -                | \$ | -             | \$   | -                 | \$   | -                   | \$ | -             | \$  | -                   | \$       | -                   | \$<br>-            | \$ | -                  | \$  | -                   |
| 2006          | \$     | -               | \$   | -                 | \$ | -                   | \$ | -            | \$   | -                 | \$       | -                | \$ | -             | \$   | -                 | \$   | -                   | \$ | -             | \$  | -                   | \$       | -                   | \$<br>-            | \$ | -                  | \$  | -                   |
| 2007          | \$     | -               | \$   | -                 | \$ | -                   | \$ | -            | \$   | -                 | \$       | -                | \$ | -             | \$   | -                 | \$   | -                   | \$ | -             | \$  | -                   | \$       | -                   | \$<br>-            | \$ | -                  | \$  | -                   |
| 2008          | \$     | -               | \$   | -                 | \$ | -                   | \$ | -            | \$   | -                 | \$       | -                | \$ | -             | \$   | -                 | \$   | -                   | \$ | -             | \$  | -                   | \$       | -                   | \$<br>-            | \$ | -                  | \$  | -                   |
| 2009          | \$     | 16.7            | \$   | 8.9               | \$ | 24.6                | \$ | 0.0          | \$   | 0.0               | \$       | 0.0              | \$ | 1.7           | \$   | 1.5               | \$   | 1.8                 | \$ | 0.0           | \$  | 0.0                 | \$       | 0.0                 | \$<br>18.4         | \$ | 10.4               | \$  | 26.5                |
| 2010          | \$     | 35.1            | \$   | 18.7              | \$ | 51.8                | \$ | 0.1          | \$   | 0.1               | \$       | 0.2              | \$ | 5.4           | \$   | 5.0               | \$   | 5.8                 | \$ | 0.1           | \$  | 0.1                 | \$       | 0.1                 | \$<br>40.7         | \$ | 23.8               | \$  | 57.9                |
| 2011          | \$     | 53.6            | \$   | 28.5              | \$ | 79.1                | \$ | 0.3          | \$   | 0.2               | \$       | 0.5              | \$ | 10.5          | \$   | 9.7               | \$   | 11.2                | \$ | 0.3           | \$  | 0.3                 | \$       | 0.3                 | \$<br>64.7         | \$ | 38.7               | \$  | 91.1                |
| 2012          | \$     | 69.5            | \$   | 37.0              | \$ | 102.6               | \$ | 0.5          | \$   | 0.3               | \$       | 0.7              | \$ | 14.9          | \$   | 13.8              | \$   | 16.0                | \$ | 0.5           | \$  | 0.4                 | \$       | 0.5                 | \$<br>85.3         | \$ | 51.5               | \$  | 119.8               |
| 2013          | \$     | 83.1            | \$   | 44.3              | \$ | 122.7               | \$ | 0.6          | \$   | 0.3               | \$       | 0.9              | \$ | 18.7          | \$   | 17.3              | \$   | 20.0                | \$ | 0.6           | \$  | 0.5                 | \$       | 0.6                 | \$<br>103.0        | \$ | 62.4               | \$  | 144.3               |
| 2014          | \$     | 82.8            | \$   | 44.1              | \$ | 122.1               | \$ | 0.7          | \$   | 0.4               | \$       | 1.1              | \$ | 20.7          | \$   | 19.2              | \$   | 22.2                | \$ | 0.7           | \$  | 0.7                 | \$       | 0.8                 | \$<br>104.9        | \$ | 64.3               | \$  | 146.2               |
| 2015          | \$     | 79.3            | \$   | 42.2              | \$ | 117.0               | \$ | 0.7          | \$   | 0.4               | \$       | 1.1              | \$ | 20.8          | \$   | 19.3              | \$   | 22.3                | \$ | 0.7           | \$  | 0.7                 | \$       | 0.8                 | \$<br>101.6        | \$ | 62.6               | \$  | 141.2               |
| 2016          | \$     | 74.1            | \$   | 39.5              | \$ | 109.4               | \$ | 0.7          | \$   | 0.4               | \$       | 1.0              | \$ | 19.4          | \$   | 18.0              | \$   | 20.8                | \$ | 0.7           | \$  | 0.6                 | \$       | 0.7                 | \$<br>94.9         | \$ | 58.5               | \$  | 132.0               |
| 2017          | \$     | 69.3            | \$   | 36.9              | \$ | 102.2               | \$ | 0.7          | \$   | 0.3               | \$       | 1.0              | \$ | 18.2          | \$   | 16.8              | \$   | 19.5                | \$ | 0.6           | \$  | 0.6                 | \$       |                     | \$<br>88.7         | \$ | 54.7               | \$  | 123.3               |
| 2018          | \$     | 64.7            | \$   | 34.5              | \$ | 95.5                | \$ | 0.6          | \$   |                   | \$       |                  | \$ | 17.0          | \$   | 15.7              | \$   | 18.2                | \$ | 0.6           | \$  |                     | \$       |                     | \$                 | \$ | 51.1               | \$  | 115.3               |
| 2019          | \$     | 60.5            | \$   | 32.2              | \$ | 89.3                | \$ | 0.6          | \$   |                   | \$       |                  | \$ | 15.9          | \$   | 14.7              | \$   | 17.0                | \$ | 0.6           | \$  | 0.5                 | \$       |                     | \$                 | \$ | 47.8               | \$  | 107.7               |
| 2020          | \$     | 56.5            | \$   | 30.1              | \$ | 83.4                | \$ | 0.5          | \$   | 0.3               | \$       | 0.8              | \$ | 14.8          | \$   | 13.7              | \$   | 15.9                | \$ | 0.5           | \$  | 0.5                 | \$       | 0.6                 | \$                 | \$ | 44.6               | \$  | 100.7               |
| 2021          | \$     | 52.8            | \$   | 28.1              | \$ | 78.0                | \$ | 0.5          | \$   |                   | \$       |                  | \$ | 13.8          | \$   | 12.8              | \$   | 14.9                | \$ | 0.5           | \$  |                     | \$       |                     | \$                 | \$ | 41.7               | \$  | 94.1                |
| 2022          | \$     | 49.4            | \$   | 26.3              | \$ | 72.9                | \$ | 0.5          | \$   |                   | \$       | 0.7              | \$ | 12.9          | \$   | 12.0              | \$   | 13.9                | \$ | 0.5           | \$  |                     | \$       | 0.5                 |                    | \$ | 39.0               | \$  | 87.9                |
| 2023          | \$     | 46.2            | \$   | 24.6              | \$ | 68.1                | \$ | 0.4          | \$   | 0.2               | \$       | 0.6              | \$ | 12.1          | \$   | 11.2              | '    | 13.0                | \$ | 0.4           | \$  | 0.4                 | \$       |                     | \$<br>59.1         | \$ | 36.4               | \$  | 82.2                |
| 2024          | \$     | 43.1            | \$   | 23.0              | \$ | 63.7                | \$ | 0.4          | \$   |                   | \$       |                  | \$ | 11.3          | \$   | 10.5              | \$   | 12.1                | \$ | 0.4           | \$  | 0.4                 | \$       | 0.4                 |                    | \$ | 34.0               | \$  | 76.8                |
| 2025          | \$     | 40.3            | \$   | 21.5              | \$ | 59.5                | \$ | 0.4          | \$   |                   | \$       |                  | \$ | 10.6          | \$   | 9.8               | \$   | 11.3                | \$ | 0.4           | \$  | 0.3                 |          | 0.4                 |                    | \$ | 31.8               | \$  | 71.8                |
| 2026          | \$     | 37.7            | \$   | 20.1              | \$ | 55.6                | \$ | 0.4          | \$   | 0.2               | \$       |                  | \$ | 9.9           | \$   | 9.2               | \$   | 10.6                | \$ | 0.3           | \$  |                     | \$       | 0.4                 |                    | \$ | 29.7               | \$  | 67.1                |
| 2027          | \$     | 35.2            | \$   | 18.8              | \$ | 52.0                | \$ | 0.3          | \$   | 0.2               | \$       | 0.5              | \$ | 9.2           | \$   | 8.6               | \$   | 9.9                 | \$ | 0.3           | \$  | 0.3                 | \$       |                     | \$<br>45.1         | \$ | 27.8               | \$  | 62.7                |
| 2028<br>2029  | \$     | 32.9<br>30.8    | \$   | 17.5              | \$ | 48.6                | \$ | 0.3          | \$   | 0.2               | \$       | 0.5<br>0.4       | \$ | 8.6<br>8.1    | \$   | 8.0               | \$   | 9.3<br>8.6          | \$ | 0.3           | \$  |                     | \$       | 0.3                 | \$<br>42.2<br>39.4 | \$ | 26.0               | \$  | 58.6<br>54.8        |
|               | ф<br>ф |                 | \$   | 16.4              | \$ | 45.4                | 9  | 0.3          | \$   |                   | \$<br>\$ |                  | 9  |               | \$   | 7.5               | \$   |                     | Ф  | 0.3           | \$  |                     | \$<br>\$ |                     | \$                 | Φ  | 24.3               | \$  |                     |
| Total<br>Ann. | \$     | 1,113.7<br>95.6 | \$   | 593.1<br>50.9     | \$ | 1,643.4<br>141.0    | \$ | 9.6          | \$   | 5.1<br>0.4        | \$       | 14.1             | \$ | 274.3         | \$   | 254.4<br>21.8     | -    | 294.3<br>25.3       | \$ | 9.3           | Ť   | 8.6<br>0.7          | \$       | 10.0<br>0.9         | \$<br>1,406.9      | \$ | 861.2<br>73.9      | \$  | 1,961.8<br>168.3    |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

#### Exhibit J.3p Present Value of Annual Cost Projections at 7% Discount Rate (All Systems)

| Alternative |  |
|-------------|--|
|             |  |

| Alterna | tive i         |       |      |         |            |        |        |              |        |           |       |     |                |            |              |    |                |            |              |           |     |              |                |           |                 |            |              |                |         |            |        |         |              |
|---------|----------------|-------|------|---------|------------|--------|--------|--------------|--------|-----------|-------|-----|----------------|------------|--------------|----|----------------|------------|--------------|-----------|-----|--------------|----------------|-----------|-----------------|------------|--------------|----------------|---------|------------|--------|---------|--------------|
|         |                |       | 5    | Surface | e Water CW | s      |        |              |        |           |       | Sur | face Water NTN | cws        |              |    |                | Disinfo    | cting Ground | Water CWS |     |              | 1              | Disinfect | ting Ground Wat | er NTNCWS  |              |                |         | Total      |        |         |              |
| ĺ       |                |       |      | Mo      | lonitoring |        |        | Siginificant |        |           |       |     | Monitoring     |            | Siginificant | t  |                |            | Monitoring   |           |     | Siginificant |                |           | Monitoring      |            | Siginificant |                |         | Monitoring | 1      |         | Siginificant |
|         | Implementation | n     | IDSE |         | Plans      | Monito | ring   | Excursion    | Implen | mentation | n ID  | SE  | Plans          | Monitoring | Excursion    | 4  | Implementation | IDSE       | Plans        | Monitori  | ng  | Excursion    | Implementation | IDSE      | Plans           | Monitoring | Excursion    | Implementation | IDSE    | Plans      | Monito | ring    | Excursion    |
| 2005    | \$ 0.          | .6 \$ | -    | \$      | -          | \$     | -      | \$ -         | \$     | 0.        | .0 \$ | -   | s -            | \$ -       | \$ -         | 9  | 0.1            | -          | \$ -         | \$        | - : | s -          | \$ 0.0         | \$ -      | s -             | s -        | s -          | \$ 0.7         | \$ -    | \$ -       | \$     | - \$    |              |
| 2006    | \$ 1.          | .1 \$ | 6.9  | \$      | -          | \$     | -      | \$ -         | \$     | 0.        | .1 \$ | 0.0 | \$ -           | \$ -       | \$ -         | 9  | \$ 2.8         | 0.1        | \$ -         | \$        | -   | \$ -         | \$ 0.5         | \$ -      | s -             | \$ -       | s -          | \$ 4.4         | \$ 7.0  | \$ -       | \$     | - \$    | <i>i</i> -   |
| 2007    | \$ -           | \$    | 17.1 | \$      | 0.2        | \$     | -      | \$ -         | \$     | -         | \$    | 0.0 | \$ 0.0         | \$ -       | \$ -         | \$ | s - s          | 0.8        | \$ 0.        | \$        | -   | \$ -         | S -            | \$ 0.0    | \$ 0.0          | \$ -       | s -          | s -            | \$ 18.0 | \$ 0       | 2 \$   | - \$    | <i>i</i> -   |
| 2008    | \$ 0.          | .4 \$ | 13.3 | \$      | 0.4        | \$     | -      | \$ -         | \$     | 0.        | .0 \$ | 0.0 | \$ 0.0         | \$ -       | \$ -         | 9  | 0.0            | 4.7        | \$ 0.3       | \$        | - : | \$ -         | \$ 0.0         | \$ 0.0    | \$ 0.0          | \$ -       | s -          | \$ 0.5         | \$ 18.0 | \$ 0       | 6 \$   | - \$    | · -          |
| 2009    | \$ 0.          | .5 \$ | -    | \$      | 0.6        | \$     | -      | \$ -         | \$     | 0.        | .0 \$ | -   | \$ 0.0         | \$ -       | \$ -         | 9  | \$ 1.2 \$      | <i>i</i> - | \$ 1.        | \$        | - : | \$ -         | \$ 0.2         | \$ -      | \$ 0.3          | \$ -       | s -          | \$ 1.9         | \$ -    | \$ 2       | 6 \$   | - \$    | <i>i</i> -   |
| 2010    | \$ 0.          | .4 \$ | -    | \$      | -          | \$     | -      | \$ -         | \$     | 0.        | .0 \$ | -   | s -            | \$ -       | s -          | 9  | 5 1.1 \$       | j -        | \$ -         | \$        | - : | s -          | \$ 0.2         | \$ -      | s -             | \$ -       | s -          | \$ 1.7         | \$ -    | \$ -       | \$     | - \$    | i -          |
| 2011    | \$ -           | \$    | -    | \$      | -          | \$     | 0.2    | \$ -         | \$     |           | \$    | -   | \$ -           | \$ 0.0     | s -          | \$ | - 5            | i -        | \$ -         | \$        | 0.0 | \$ -         | \$ -           | \$ -      | \$ -            | \$ 0.0     | s -          | \$ -           | \$ -    | \$ -       | \$     | 0.3 \$  | · -          |
| 2012    | \$ -           | \$    | -    | \$      | -          | \$     | (0.4)  | \$ 0.0       | \$     | -         | \$    | -   | s -            | \$ 0.0     | s -          | Ş  | s - s          | j -        | \$ -         | \$        | 1.6 | s -          | s - :          | \$ -      | s -             | \$ 0.2     | s -          | \$ -           | \$ -    | \$ -       | \$     | 1.4 \$  | 0.0          |
| 2013    | \$ -           | \$    | -    | \$      | -          | \$     | (1.1)  | \$ 0.1       | \$     | -         | \$    | -   | s -            | \$ 0.0     | s -          | \$ | s - s          | j -        | \$ -         | \$        | 2.9 | s -          | s -            | \$ -      | s -             | \$ 0.4     | s -          | \$ -           | \$ -    | s -        | \$     | 2.2 \$  | 0.1          |
| 2014    | \$ -           | \$    | -    | \$      | -          | \$     | (1.0)  | \$ 0.1       | \$     | -         | \$    | -   | s -            | \$ 0.0     | s -          | Ş  | s - s          | j -        | \$ -         | \$        | 2.7 | s -          | s - :          | \$ -      | s -             | \$ 0.3     | s -          | \$ -           | \$ -    | \$ -       | \$     | 2.1 \$  | 0.1          |
| 2015    | \$ -           | \$    | -    | \$      | -          | \$     | (0.9)  | \$ 0.1       | \$     | -         | \$    | -   | \$ -           | \$ 0.0     | s -          | \$ | s - s          | i -        | \$ -         | \$        | 2.5 | s -          | s - :          | \$ -      | s -             | \$ 0.3     | s -          | s -            | \$ -    | \$ -       | \$     | 1.9 \$  | 0.1          |
| 2016    | \$ -           | \$    | -    | \$      | -          | \$     | (0.9)  | \$ 0.1       | \$     | -         | \$    | -   | s -            | \$ 0.0     | s -          | \$ | s - s          | j -        | \$ -         | \$        | 2.3 | s -          | s -            | \$ -      | s -             | \$ 0.3     | s -          | \$ -           | \$ -    | s -        | \$     | 1.8 \$  | 0.1          |
| 2017    | \$ -           | \$    | -    | \$      | -          | \$     | (0.8)  | \$ 0.1       | \$     | -         | \$    | -   | s -            | \$ 0.0     | s -          | \$ | s - s          | j -        | \$ -         | \$        | 2.2 | s -          | s -            | \$ -      | s -             | \$ 0.3     | s -          | \$ -           | \$ -    | s -        | \$     | 1.7 \$  | 0.1          |
| 2018    | \$ -           | \$    | -    | \$      | -          | \$     | (0.7)  | \$ 0.1       | \$     | -         | \$    | -   | s -            | \$ 0.0     | s -          | Ş  | s - s          | j -        | \$ -         | \$        | 2.0 | s -          | s - :          | \$ -      | s -             | \$ 0.3     | s -          | \$ -           | \$ -    | \$ -       | \$     | 1.6 \$  | 0.1          |
| 2019    | \$ -           | \$    | -    | \$      | -          | \$     | (0.7)  | \$ 0.1       | \$     | -         | \$    | -   | s -            | \$ 0.0     | s -          | \$ | s - s          | j -        | \$ -         | \$        | 1.9 | s -          | s -            | \$ -      | s -             | \$ 0.2     | s -          | \$ -           | \$ -    | s -        | \$     | 1.5 \$  | 0.1          |
| 2020    | \$ -           | \$    | -    | \$      | -          | \$     | (0.7)  | \$ 0.1       | \$     | -         | \$    | -   | s -            | \$ 0.0     | s -          | Ş  | s - s          | j -        | \$ -         | \$        | 1.8 | s -          | s - :          | \$ -      | s -             | \$ 0.2     | s -          | \$ -           | \$ -    | \$ -       | \$     | 1.4 \$  | 0.1          |
| 2021    | \$ -           | \$    | -    | \$      | -          | \$     | (0.6)  | \$ 0.1       | \$     | -         | \$    | -   | \$ -           | \$ 0.0     | s -          | \$ | s - s          | i -        | \$ -         | \$        | 1.7 | s -          | s - :          | \$ -      | s -             | \$ 0.2     | s -          | s -            | \$ -    | \$ -       | \$     | 1.3 \$  | 0.1          |
| 2022    | \$ -           | \$    | -    | \$      | -          | \$     | (0.6)  | \$ 0.1       | \$     |           | \$    | -   | s -            | \$ 0.0     | s -          | ş  | s - s          | j -        | \$ -         | s         | 1.6 | s -          | s - :          | \$ -      | s -             | \$ 0.2     | s -          | s -            | \$ -    | \$ -       | \$     | 1.2 \$  | 0.1          |
| 2023    | \$ -           | \$    | -    | \$      | -          | \$     | (0.5)  | \$ 0.1       | \$     | -         | \$    | -   | \$ -           | \$ 0.0     | s -          | \$ | s - s          | i -        | \$ -         | \$        | 1.5 | s -          | s - :          | \$ -      | s -             | \$ 0.2     | s -          | s -            | \$ -    | \$ -       | \$     | 1.1 \$  | 0.1          |
| 2024    | \$ -           | \$    | -    | \$      | -          | \$     | (0.5)  | \$ 0.1       | \$     | -         | \$    | -   | s -            | \$ 0.0     | s -          | S  | s - s          | <i>i</i> - | \$ -         | s         | 1.4 | s -          | s -            | \$ -      | s -             | \$ 0.2     | s -          | s -            | \$ -    | s -        | \$     | 1.0 \$  | 0.1          |
| 2025    | \$ -           | \$    | -    | \$      | -          | \$     | (0.5)  | \$ 0.0       | \$     | -         | \$    | -   | ş -            | \$ 0.0     | s -          | \$ | s - s          | j -        | \$ -         | \$        | 1.3 | s -          | s -            | \$ -      | s -             | \$ 0.2     | s -          | s -            | \$ -    | s -        | \$     | 1.0 \$  | 0.0          |
| 2026    | \$ -           | \$    | -    | \$      | -          | \$     | (0.4)  | \$ 0.0       | \$     |           | \$    | -   | s -            | \$ 0.0     | s -          | ş  | s - s          | i -        | \$ -         | s         | 1.2 | s -          | s - :          | \$ -      | s -             | \$ 0.2     | s -          | s -            | \$ -    | \$ -       | \$     | 0.9 \$  | 0.0          |
| 2027    | \$ -           | \$    | -    | \$      | -          | \$     | (0.4)  | \$ 0.0       | \$     |           | \$    | -   | s -            | \$ 0.0     | s -          | ş  | s - s          | i -        | \$ -         | s         | 1.1 | s -          | s - :          | \$ -      | \$ -            | \$ 0.1     | s -          | s -            | \$ -    | \$ -       | \$     | 0.9 \$  | 0.0          |
| 2028    | \$ -           | \$    | -    | \$      | -          | \$     | (0.4)  | \$ 0.0       | \$     | -         | \$    | -   | s -            | \$ 0.0     | s -          | S  | s - s          | j -        | \$ -         | s         | 1.0 | s -          | s - :          | \$ -      | s -             | \$ 0.1     | s -          | s -            | \$ -    | s -        | \$     | 0.8 \$  | 0.0          |
| 2029    | \$ -           | \$    | -    | s       | -          | \$     | (0.4)  | \$ 0.0       | \$     |           | \$    | -   | s -            | \$ 0.0     | s -          | ş  | s - s          | <u>.</u>   | \$ -         | s         | 1.0 | ş -          | s - :          | \$ -      | s -             | \$ 0.1     | s -          | s -            | \$ -    | s -        | \$     | 0.7 \$  | 0.0          |
| Total   | \$ 3.          | .0 \$ | 37.3 | \$      | 1.2        | \$ (   | (11.2) | \$ 1.1       | \$     | 0.        | .1 \$ | 0.1 | \$ 0.0         | \$ 0.2     | \$ -         | \$ | 5.1 \$         | 5.6        | \$ 1.        | \$ 3      | 1.5 | \$ -         | \$ 0.8         | \$ 0.0    | \$ 0.3          | \$ 4.1     | s -          | \$ 9.1         | \$ 43.0 | \$ 3       | 4 \$   | 24.6 \$ | 1.1          |
| Ann.    | \$ 0.          | .3 \$ | 3.2  | \$      | 0.1        | \$     | (1.0)  | \$ 0.1       | \$     | 0.        | .0 \$ | 0.0 | \$ 0.0         | \$ 0.0     | s -          | \$ | \$ 0.4 \$      | 0.5        | \$ 0.        | \$        | 2.7 | ş -          | \$ 0.1         | \$ 0.0    | \$ 0.0          | \$ 0.3     | s -          | \$ 0.8         | \$ 3.7  | \$ 0       | .3 \$  | 2.1 \$  | 0.1          |

J-117

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

Source: Derived from Exhibits J.3a through h.

# Section J.4 Cost Projections (Alternative 2)

#### Exhibit J.4a Projections of Stage 2 DBPR PWS Costs

(All Surface Water CWSs)

#### Alternative 2

|      | Treat         | mer | nt Capital          | Cos | its                 | Treat         | men | t O&M (           | Cos | ts                  |    |               | N           | on-⊺ | Treatment Co        | osts |            |                          | All St         | age | 2 DBPR             | Cos  | ts                  |
|------|---------------|-----|---------------------|-----|---------------------|---------------|-----|-------------------|-----|---------------------|----|---------------|-------------|------|---------------------|------|------------|--------------------------|----------------|-----|--------------------|------|---------------------|
|      |               |     | 90 Pe<br>Confiden   |     |                     |               | 0   | 90 P<br>Confider  |     |                     |    |               |             |      |                     |      |            |                          |                |     | 90 Pe<br>Confiden  |      |                     |
| Year | Mean<br>Value | (5  | Lower<br>oth %tile) |     | Upper<br>5th %tile) | Mean<br>Value |     | Lower<br>h %tile) | (9  | Upper<br>5th %tile) | lı | mplementation | IDSE        | N    | Monitoring<br>Plans | N    | lonitoring | Significant<br>Excursion | Mean<br>Value  | (5  | Lower<br>th %tile) |      | Upper<br>5th %tile) |
| 2005 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>-       | \$  | -                 | \$  | -                   | \$ | 0.69          | \$<br>-     | \$   | -                   | \$   | -          | \$<br>-                  | \$<br>0.69     | \$  | 0.69               | \$   | 0.69                |
| 2006 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>-       | \$  | -                 | \$  | -                   | \$ | 1.34          | \$<br>8.46  | \$   | -                   | \$   | -          | \$<br>-                  | \$<br>9.80     | \$  | 9.80               | \$   | 9.80                |
| 2007 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>-       | \$  | -                 | \$  | -                   | \$ | -             | \$<br>22.45 | \$   | 0.22                | \$   | -          | \$<br>-                  | \$<br>22.67    | \$  | 22.67              | \$   | 22.67               |
| 2008 | \$<br>463.79  | \$  | 384.09              | \$  | 547.91              | \$<br>-       | \$  | -                 | \$  | -                   | \$ | 0.60          | \$<br>18.62 | \$   | 0.62                | \$   | -          | \$<br>-                  | \$<br>483.62   | \$  | 403.92             | \$   | 567.74              |
| 2009 | \$<br>694.08  | \$  | 574.54              | \$  | 820.65              | \$<br>26.85   | \$  | 22.67             | \$  | 31.13               | \$ | 0.75          | \$<br>-     | \$   | 0.88                | \$   | -          | \$<br>-                  | \$<br>722.56   | \$  | 598.85             | \$   | 853.41              |
| 2010 | \$<br>874.24  | \$  | 723.50              | \$  | 1,034.12            | \$<br>70.85   | \$  | 59.82             | \$  | 82.15               | \$ | 0.67          | \$<br>-     | \$   | -                   | \$   | -          | \$<br>-                  | \$<br>945.75   | \$  | 783.98             | \$ ′ | 1,116.94            |
| 2011 | \$<br>874.24  | \$  | 723.50              | \$  | 1,034.12            | \$<br>129.42  | \$  | 109.25            | \$  | 150.09              | \$ | -             | \$<br>-     | \$   | -                   | \$   | 0.42       | \$<br>-                  | \$<br>1,004.08 | \$  | 833.17             | \$ ′ | 1,184.63            |
| 2012 | \$<br>874.24  | \$  | 723.50              | \$  | 1,034.12            | \$<br>188.00  | \$  | 158.68            | \$  | 218.03              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (0.77)     | \$<br>0.06               | \$<br>1,061.53 | \$  | 881.47             | \$ ′ | 1,251.44            |
| 2013 | \$<br>410.45  | \$  | 339.41              | \$  | 486.21              | \$<br>246.57  | \$  | 208.12            | \$  | 285.97              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.07)     | \$<br>0.15               | \$<br>655.10   | \$  | 545.60             | \$   | 770.26              |
| 2014 | \$<br>180.16  | \$  | 148.95              | \$  | 213.47              | \$<br>278.29  | \$  | 234.87            | \$  | 322.78              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.07)     | \$<br>0.21               | \$<br>456.60   | \$  | 381.97             | \$   | 534.40              |
| 2015 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>292.87  | \$  | 247.17            | \$  | 339.70              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.07)     | \$<br>0.21               | \$<br>291.01   | \$  | 245.31             | \$   | 337.84              |
| 2016 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>292.87  | \$  | 247.17            | \$  | 339.70              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.07)     | \$<br>0.21               | \$<br>291.01   | \$  | 245.31             | \$   | 337.84              |
| 2017 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>292.87  | \$  | 247.17            | \$  | 339.70              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.07)     | \$<br>0.21               | \$<br>291.01   | \$  | 245.31             | \$   | 337.84              |
| 2018 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>292.87  | \$  | 247.17            | \$  | 339.70              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.07)     | \$<br>0.21               | \$<br>291.01   | \$  | 245.31             | \$   | 337.84              |
| 2019 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>292.87  | \$  | 247.17            | \$  | 339.70              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.07)     | \$<br>0.21               | \$<br>291.01   | \$  | 245.31             | \$   | 337.84              |
| 2020 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>292.87  | \$  | 247.17            | \$  | 339.70              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.07)     | \$<br>0.21               | \$<br>291.01   | \$  | 245.31             | \$   | 337.84              |
| 2021 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>292.87  | \$  | 247.17            | \$  | 339.70              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.07)     | \$<br>0.21               | \$<br>291.01   | \$  | 245.31             | \$   | 337.84              |
| 2022 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>292.87  | \$  | 247.17            | \$  | 339.70              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.07)     | \$<br>0.21               | \$<br>291.01   | \$  | 245.31             | \$   | 337.84              |
| 2023 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>292.87  | \$  | 247.17            | \$  | 339.70              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.07)     | \$<br>0.21               | \$<br>291.01   | \$  | 245.31             | \$   | 337.84              |
| 2024 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>292.87  | \$  | 247.17            | \$  | 339.70              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.07)     | \$<br>0.21               | \$<br>291.01   | \$  | 245.31             | \$   | 337.84              |
| 2025 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>292.87  | \$  | 247.17            | \$  | 339.70              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.07)     | \$<br>0.21               | \$<br>291.01   | \$  | 245.31             | \$   | 337.84              |
| 2026 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>292.87  | \$  | 247.17            | \$  | 339.70              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.07)     | \$<br>0.21               | \$<br>291.01   | \$  | 245.31             | \$   | 337.84              |
| 2027 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>292.87  | \$  | 247.17            | \$  | 339.70              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.07)     | \$<br>0.21               | \$<br>291.01   | \$  | 245.31             | \$   | 337.84              |
| 2028 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>292.87  | \$  | 247.17            | \$  | 339.70              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.07)     | \$<br>0.21               | \$<br>291.01   | \$  | 245.31             | \$   | 337.84              |
| 2029 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>292.87  | \$  | 247.17            | \$  | 339.70              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.07)     | \$<br>0.21               | \$<br>291.01   | \$  | 245.31             | \$   | 337.84              |

Note: All values in millions of year 2003 dollars.

#### Exhibit J.4b Projections of Stage 2 DBPR PWS Costs

(All Surface Water NTNCWSs)

#### Alternative 2

|      | 1  | Freatme      | ent Capital             | Costs                    | Treat         | ment O&M                | Costs                    |                | N       | Ion-Treatment Co    | osts       |                          | All St        | age 2 DBPR           | Costs                 |
|------|----|--------------|-------------------------|--------------------------|---------------|-------------------------|--------------------------|----------------|---------|---------------------|------------|--------------------------|---------------|----------------------|-----------------------|
|      |    |              | 90 Pe                   | ce Bound                 |               | Confiden                |                          |                |         |                     |            |                          |               | 90 Pe<br>Confiden    | ercent<br>ce Bound    |
| Year |    | lean<br>alue | Lower<br>(5th<br>%tile) | Upper<br>(95th<br>%tile) | Mean<br>Value | Lower<br>(5th<br>%tile) | Upper<br>(95th<br>%tile) | Implementation | IDSE    | Monitoring<br>Plans | Monitoring | Significant<br>Excursion | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) |
| 2005 | \$ | -            | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ 0.00        | \$ -    | \$ -                | \$ -       | \$ -                     | \$ 0.00       | \$ 0.00              | \$ 0.00               |
| 2006 | \$ | -            | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ 0.08        | \$ 0.01 | \$ -                | \$ -       | \$ -                     | \$ 0.09       | \$ 0.09              | \$ 0.09               |
| 2007 | \$ | -            | \$ -                    | \$ -                     | \$ -          | \$ -                    | \$ -                     | \$ -           | \$ 0.04 | \$ 0.00             | \$ -       | \$ -                     | \$ 0.04       | \$ 0.04              | \$ 0.04               |
| 2008 | \$ | 0.63         | \$ 0.52                 | \$ 0.75                  | \$ -          | \$ -                    | \$ -                     | \$ 0.00        | \$ 0.02 | \$ 0.00             | \$ -       | \$ -                     | \$ 0.66       | \$ 0.55              | \$ 0.77               |
| 2009 | \$ | 7.70         | \$ 6.37                 | \$ 9.13                  | \$ 0.03       | \$ 0.03                 | \$ 0.04                  | \$ 0.04        | \$ -    | \$ 0.04             | \$ -       | \$ -                     | \$ 7.81       | \$ 6.47              | \$ 9.25               |
| 2010 | \$ | 14.77        | \$ 12.21                | \$ 17.51                 | \$ 0.99       | \$ 0.83                 | \$ 1.15                  | \$ 0.04        | \$ -    | \$ -                | \$ -       | \$ -                     | \$ 15.80      | \$ 13.08             | \$ 18.70              |
| 2011 | \$ | 14.77        | \$ 12.21                | \$ 17.51                 | \$ 2.86       | \$ 2.41                 | \$ 3.32                  | \$ -           | \$ -    | \$ -                | \$ 0.00    | \$ -                     | \$ 17.63      | \$ 14.62             | \$ 20.84              |
| 2012 | \$ | 14.77        | \$ 12.21                | \$ 17.51                 | \$ 4.73       | \$ 3.98                 | \$ 5.50                  | \$ -           | \$ -    | \$ -                | \$ 0.02    | \$ -                     | \$ 19.52      | \$ 16.21             | \$ 23.03              |
| 2013 | \$ | 14.14        | \$ 11.69                | \$ 16.77                 | \$ 6.60       | \$ 5.56                 | \$ 7.68                  | \$ -           | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 20.77      | \$ 17.28             | \$ 24.47              |
| 2014 | \$ | 7.07         | \$ 5.84                 | \$ 8.38                  | \$ 8.44       | \$ 7.11                 | \$ 9.82                  | \$ -           | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 15.54      | \$ 12.98             | \$ 18.23              |
| 2015 | \$ | -            | \$ -                    | \$ -                     | \$ 9.36       | \$ 7.88                 | \$ 10.89                 | \$ -           | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 9.39       | \$ 7.91              | \$ 10.91              |
| 2016 | \$ | -            | \$ -                    | \$ -                     | \$ 9.36       | \$ 7.88                 | \$ 10.89                 | \$ -           | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 9.39       | \$ 7.91              | \$ 10.91              |
| 2017 | \$ | -            | \$ -                    | \$ -                     | \$ 9.36       | \$ 7.88                 | \$ 10.89                 | \$ -           | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 9.39       | \$ 7.91              | \$ 10.91              |
| 2018 | \$ | -            | \$ -                    | \$ -                     | \$ 9.36       | \$ 7.88                 | \$ 10.89                 | \$             | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 9.39       | \$ 7.91              | \$ 10.91              |
| 2019 | \$ | -            | \$ -                    | \$ -                     | \$ 9.36       | \$ 7.88                 | \$ 10.89                 | \$ -           | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 9.39       | \$ 7.91              | \$ 10.91              |
| 2020 | \$ | -            | \$ -                    | \$ -                     | \$ 9.36       | \$ 7.88                 | \$ 10.89                 | \$ -           | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 9.39       | \$ 7.91              | \$ 10.91              |
| 2021 | \$ | -            | \$ -                    | \$ -                     | \$ 9.36       | \$ 7.88                 | \$ 10.89                 | \$ -           | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 9.39       | \$ 7.91              | \$ 10.91              |
| 2022 | \$ | -            | \$ -                    | \$ -                     | \$ 9.36       | \$ 7.88                 | \$ 10.89                 | \$             | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 9.39       | \$ 7.91              | \$ 10.91              |
| 2023 | \$ | -            | \$ -                    | \$ -                     | \$ 9.36       | \$ 7.88                 | \$ 10.89                 | \$ -           | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 9.39       | \$ 7.91              | \$ 10.91              |
| 2024 | \$ | -            | \$ -                    | \$ -                     | \$ 9.36       | \$ 7.88                 | \$ 10.89                 | \$ -           | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 9.39       | \$ 7.91              | \$ 10.91              |
| 2025 | \$ | -            | \$ -                    | \$ -                     | \$ 9.36       | \$ 7.88                 | \$ 10.89                 | \$ -           | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 9.39       | \$ 7.91              | \$ 10.91              |
| 2026 | \$ | -            | \$ -                    | \$ -                     | \$ 9.36       | \$ 7.88                 | \$ 10.89                 | \$ -           | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 9.39       | \$ 7.91              | \$ 10.91              |
| 2027 | \$ | -            | \$ -                    | \$ -                     | \$ 9.36       | \$ 7.88                 | \$ 10.89                 | \$ -           | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 9.39       | \$ 7.91              | \$ 10.91              |
| 2028 | \$ | -            | \$ -                    | \$ -                     | \$ 9.36       | \$ 7.88                 | \$ 10.89                 | \$ -           | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 9.39       | \$ 7.91              | \$ 10.91              |
| 2029 | \$ | -            | \$ -                    | \$ -                     | \$ 9.36       | \$ 7.88                 | \$ 10.89                 | \$ -           | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 9.39       | \$ 7.91              | \$ 10.91              |

Note: All values in millions of year 2003 dollars.

#### Exhibit J.4c Projections of Stage 2 DBPR PWS Costs

(All Surface Water Systems)

#### Alternative 2

|      | Treatm        | nent | Capital C          | ost | s                   | Treat         | mer | nt O&M (         | Costs              |    |                |    | ı     | Non | n-Treatment Co      | osts | 3          |                          | All S          | tage 2 DBPR          | Cos  | sts    |                  |
|------|---------------|------|--------------------|-----|---------------------|---------------|-----|------------------|--------------------|----|----------------|----|-------|-----|---------------------|------|------------|--------------------------|----------------|----------------------|------|--------|------------------|
|      |               |      | 90 Pe<br>Confiden  |     |                     |               | С   | 90 Pe<br>onfiden | rcent<br>ce Bound  |    |                |    |       |     |                     |      |            |                          |                | 90 P<br>Confider     |      |        | ınd              |
| Year | Mean<br>Value |      | Lower<br>th %tile) |     | Upper<br>ith %tile) | Mean<br>Value | _   | ower<br>n %tile) | Upper<br>(95th %ti | e) | Implementation | ı  | DSE   |     | Monitoring<br>Plans |      | Monitoring | Significant<br>Excursion | Mean<br>Value  | Lower<br>(5th %tile) | (    |        | pper<br>h %tile) |
| 2005 | \$<br>-       | \$   | -                  | \$  | -                   | \$<br>-       | \$  | -                | \$ -               |    | \$ 0.69        | \$ | -     | \$  | -                   | \$   | -          | \$<br>-                  | \$<br>0.69     | \$ 0.6               | 9 \$ | \$     | 0.69             |
| 2006 | \$<br>-       | \$   | -                  | \$  | -                   | \$<br>-       | \$  | -                | \$ -               |    | \$ 1.42        | \$ | 8.48  | \$  | -                   | \$   | -          | \$<br>-                  | \$<br>9.90     | \$ 9.9               | ) {  | \$     | 9.90             |
| 2007 | \$<br>-       | \$   | -                  | \$  | -                   | \$<br>-       | \$  | -                | \$ -               |    | \$ -           | \$ | 22.49 | \$  | 0.22                | \$   | -          | \$<br>-                  | \$<br>22.71    | \$ 22.7              | 1 \$ | \$     | 22.71            |
| 2008 | \$<br>464.42  | \$   | 384.61             | \$  | 548.66              | \$<br>-       | \$  | -                | \$ -               |    | \$ 0.60        | \$ | 18.64 | \$  | 0.62                | \$   | -          | \$<br>-                  | \$<br>484.28   | \$ 404.4             | 7 \$ | \$ :   | 568.52           |
| 2009 | \$<br>701.78  | \$   | 580.91             | \$  | 829.78              | \$<br>26.88   | \$  | 22.70            | \$ 31.1            | 7  | \$ 0.79        | \$ | -     | \$  | 0.91                | \$   | -          | \$<br>-                  | \$<br>730.37   | \$ 605.3             | 2 \$ | \$ 1   | 862.65           |
| 2010 | \$<br>889.01  | \$   | 735.71             | \$  | 1,051.64            | \$<br>71.84   | \$  | 60.65            | \$ 83.3            | 0  | \$ 0.71        | \$ | -     | \$  | -                   | \$   | -          | \$<br>-                  | \$<br>961.55   | \$ 797.0             | 7 \$ | \$ 1,  | 135.64           |
| 2011 | \$<br>889.01  | \$   | 735.71             | \$  | 1,051.64            | \$<br>132.28  | \$  | 111.66           | \$ 153.4           | 1  | \$ -           | \$ | -     | \$  | -                   | \$   | 0.42       | \$<br>-                  | \$<br>1,021.71 | \$ 847.7             | 9 \$ | \$ 1,: | 205.47           |
| 2012 | \$<br>889.01  | \$   | 735.71             | \$  | 1,051.64            | \$<br>192.73  | \$  | 162.67           | \$ 223.5           | 3  | \$ -           | \$ | -     | \$  | -                   | \$   | (0.75)     | \$<br>0.06               | \$<br>1,081.04 | \$ 897.6             | 9 \$ | \$ 1,: | 274.48           |
| 2013 | \$<br>424.58  | \$   | 351.10             | \$  | 502.98              | \$<br>253.17  | \$  | 213.68           | \$ 293.6           | 5  | \$ -           | \$ | -     | \$  | -                   | \$   | (2.04)     | \$<br>0.15               | \$<br>675.87   | \$ 562.8             | 3 \$ | \$     | 794.73           |
| 2014 | \$<br>187.23  | \$   | 154.80             | \$  | 221.85              | \$<br>286.74  | \$  | 241.98           | \$ 332.6           | 0  | \$ -           | \$ | -     | \$  | =                   | \$   | (2.04)     | \$<br>0.21               | \$<br>472.14   | \$ 394.9             | 5 9  | \$ :   | 552.63           |
| 2015 | \$<br>-       | \$   | -                  | \$  | -                   | \$<br>302.23  | \$  | 255.05           | \$ 350.5           | 8  | \$ -           | \$ | -     | \$  | -                   | \$   | (2.04)     | \$<br>0.21               | \$<br>300.40   | \$ 253.2             | 2 9  | \$ :   | 348.76           |
| 2016 | \$<br>-       | \$   | -                  | \$  | -                   | \$<br>302.23  | \$  | 255.05           | \$ 350.5           | 8  | \$ -           | \$ | -     | \$  | -                   | \$   | (2.04)     | \$<br>0.21               | \$<br>300.40   | \$ 253.2             | 2 9  | \$ :   | 348.76           |
| 2017 | \$<br>-       | \$   | -                  | \$  | -                   | \$<br>302.23  | \$  | 255.05           | \$ 350.5           | 8  | \$ -           | \$ | -     | \$  | -                   | \$   | (2.04)     | \$<br>0.21               | \$<br>300.40   | \$ 253.2             | 2 9  | \$ :   | 348.76           |
| 2018 | \$<br>-       | \$   | -                  | \$  | -                   | \$<br>302.23  | \$  | 255.05           | \$ 350.5           | 8  | \$ -           | \$ | -     | \$  | -                   | \$   | (2.04)     | \$<br>0.21               | \$<br>300.40   | \$ 253.2             | 2 9  | \$ :   | 348.76           |
| 2019 | \$<br>-       | \$   | -                  | \$  | -                   | \$<br>302.23  | \$  | 255.05           | \$ 350.5           | 8  | \$ -           | \$ | -     | \$  | -                   | \$   | (2.04)     | \$<br>0.21               | \$<br>300.40   | \$ 253.2             | 2 \$ | \$ :   | 348.76           |
| 2020 | \$<br>-       | \$   | -                  | \$  | -                   | \$<br>302.23  | \$  | 255.05           | \$ 350.5           | 8  | \$ -           | \$ | -     | \$  | -                   | \$   | (2.04)     | \$<br>0.21               | \$<br>300.40   | \$ 253.2             | 2 \$ | \$ :   | 348.76           |
| 2021 | \$<br>-       | \$   | -                  | \$  | -                   | \$<br>302.23  | \$  | 255.05           | \$ 350.5           | 8  | \$ -           | \$ | -     | \$  | -                   | \$   | (2.04)     | \$<br>0.21               | \$<br>300.40   | \$ 253.2             | 2 9  | \$ :   | 348.76           |
| 2022 | \$<br>-       | \$   | -                  | \$  | -                   | \$<br>302.23  | \$  | 255.05           | \$ 350.5           | 8  | \$ -           | \$ | -     | \$  | -                   | \$   | (2.04)     | \$<br>0.21               | \$<br>300.40   | \$ 253.2             | 2 9  | \$ :   | 348.76           |
| 2023 | \$<br>-       | \$   | -                  | \$  | -                   | \$<br>302.23  | \$  | 255.05           | \$ 350.5           | 8  | \$ -           | \$ | -     | \$  | -                   | \$   | (2.04)     | \$<br>0.21               | \$<br>300.40   | \$ 253.2             | 2 9  | \$ :   | 348.76           |
| 2024 | \$<br>-       | \$   | -                  | \$  | -                   | \$<br>302.23  | \$  | 255.05           | \$ 350.5           | 8  | \$ -           | \$ | -     | \$  | -                   | \$   | (2.04)     | \$<br>0.21               | \$<br>300.40   | \$ 253.2             | 2 \$ | \$ :   | 348.76           |
| 2025 | \$<br>-       | \$   | -                  | \$  | -                   | \$<br>302.23  | \$  | 255.05           | \$ 350.5           | 8  | \$ -           | \$ | -     | \$  | -                   | \$   | (2.04)     | \$<br>0.21               | \$<br>300.40   | \$ 253.2             | 2 \$ | \$ :   | 348.76           |
| 2026 | \$<br>-       | \$   | -                  | \$  | -                   | \$<br>302.23  | \$  | 255.05           | \$ 350.5           | 8  | \$ -           | \$ | -     | \$  | -                   | \$   | (2.04)     | \$<br>0.21               | \$<br>300.40   | \$ 253.2             | 2 \$ | \$ :   | 348.76           |
| 2027 | \$<br>-       | \$   | -                  | \$  | -                   | \$<br>302.23  | \$  | 255.05           | \$ 350.5           | 8  | \$ -           | \$ | -     | \$  | -                   | \$   | (2.04)     | \$<br>0.21               | \$<br>300.40   | \$ 253.2             | 2 \$ | \$ :   | 348.76           |
| 2028 | \$<br>-       | \$   | -                  | \$  | -                   | \$<br>302.23  | \$  | 255.05           | \$ 350.5           | 8  | \$ -           | \$ | -     | \$  | -                   | \$   | (2.04)     | \$<br>0.21               | \$<br>300.40   | \$ 253.2             | 2 \$ | \$ :   | 348.76           |
| 2029 | \$<br>-       | \$   | -                  | \$  | -                   | \$<br>302.23  | \$  | 255.05           | \$ 350.5           | 8  | \$ -           | \$ | -     | \$  | -                   | \$   | (2.04)     | \$<br>0.21               | \$<br>300.40   | \$ 253.2             | 2 \$ | \$ :   | 348.76           |

Note: All values in millions of year 2003 dollars.

#### Exhibit J.4d Projections of Stage 2 DBPR PWS Costs

(All Ground Water CWSs)

#### Alternative 2

|      | Treatm         | ent Capita        | I Co | sts             | Treatr        | nen | t O&M          | Cos   | sts            |    |               |    | ļ    | No | n-Treatment C       | osi | ts         |                          | All St        | age | 2 DBPR             | Cos | its                 |
|------|----------------|-------------------|------|-----------------|---------------|-----|----------------|-------|----------------|----|---------------|----|------|----|---------------------|-----|------------|--------------------------|---------------|-----|--------------------|-----|---------------------|
|      |                | 90 Pe<br>Confiden | ice  |                 |               | _   | 90 Ponfider    | ice l |                |    |               |    |      |    |                     |     |            |                          |               |     | 90 Pe<br>Confiden  |     |                     |
| Year | /lean<br>/alue | (5th<br>%tile)    | (    | (95th<br>%tile) | Mean<br>Value | (   | (5th<br>6tile) | (     | 95th<br>6tile) | lr | mplementation | ı  | DSE  |    | Monitoring<br>Plans |     | Monitoring | Significant<br>Excursion | Mean<br>Value |     | Lower<br>th %tile) |     | Upper<br>5th %tile) |
| 2005 | \$<br>-        | \$ -              | \$   | -               | \$ -          | \$  | -              | \$    | -              | \$ | 0.07          | \$ | -    | \$ | -                   | \$  | -          | \$ -                     | \$<br>0.07    | \$  | 0.07               | \$  | 0.07                |
| 2006 | \$<br>-        | \$ -              | \$   | -               | \$ -          | \$  | -              | \$    | -              | \$ | 3.42          | \$ | 0.09 | \$ | -                   | \$  | -          | \$ -                     | \$<br>3.51    | \$  | 3.51               | \$  | 3.51                |
| 2007 | \$<br>-        | \$ -              | \$   | -               | \$ -          | \$  | -              | \$    | -              | \$ | -             | \$ | 1.09 | \$ | 0.02                | \$  | -          | \$ -                     | \$<br>1.11    | \$  | 1.11               | \$  | 1.11                |
| 2008 | \$<br>16.58    | \$ 14.40          | \$   | 18.77           | \$ -          | \$  | -              | \$    | -              | \$ | 0.05          | \$ | 6.66 | \$ | 0.22                | \$  | -          | \$ -                     | \$<br>23.50   | \$  | 21.31              | \$  | 25.69               |
| 2009 | \$<br>50.81    | \$ 44.04          | \$   | 57.56           | \$ 1.70       | \$  | 1.56           | \$    | 1.83           | \$ | 1.73          | \$ | -    | \$ | 2.58                | \$  | -          | \$ -                     | \$<br>56.82   | \$  | 49.92              | \$  | 63.70               |
| 2010 | \$<br>81.96    | \$ 71.01          | \$   | 92.89           | \$ 6.03       | \$  | 5.58           | \$    | 6.47           | \$ | 1.71          | \$ | -    | \$ | -                   | \$  | -          | \$ -                     | \$<br>89.70   | \$  | 78.30              | \$  | 101.08              |
| 2011 | \$<br>81.96    | \$ 71.01          | \$   | 92.89           | \$ 12.71      | \$  | 11.81          | \$    | 13.62          | \$ |               | \$ | -    | \$ | -                   | \$  | 0.08       | \$ -                     | \$<br>94.75   | \$  | 82.89              | \$  | 106.59              |
| 2012 | \$<br>81.96    | \$ 71.01          | \$   | 92.89           | \$ 19.40      | \$  | 18.03          | \$    | 20.77          | \$ |               | \$ | -    | \$ | -                   | \$  | 2.95       | \$ -                     | \$<br>104.31  | \$  | 91.99              | \$  | 116.61              |
| 2013 | \$<br>65.38    | \$ 56.61          | \$   | 74.12           | \$ 26.08      | \$  | 24.25          | \$    | 27.92          | \$ |               | \$ | -    | \$ | -                   | \$  | 5.63       | \$ -                     | \$<br>97.09   | \$  | 86.49              | \$  | 107.67              |
| 2014 | \$<br>31.16    | \$ 26.96          | \$   | 35.34           | \$ 31.07      | \$  | 28.91          | \$    | 33.23          | \$ | -             | \$ | -    | \$ | -                   | \$  | 5.63       | \$ -                     | \$<br>67.85   | \$  | 61.50              | \$  | 74.20               |
| 2015 | \$<br>-        | \$ -              | \$   | -               | \$ 33.42      | \$  | 31.11          | \$    | 35.74          | \$ | -             | \$ | -    | \$ | -                   | \$  | 5.63       | \$ -                     | \$<br>39.05   | \$  | 36.74              | \$  | 41.37               |
| 2016 | \$<br>-        | \$ -              | \$   | -               | \$ 33.42      | \$  | 31.11          | \$    | 35.74          | \$ | -             | \$ | -    | \$ | -                   | \$  | 5.63       | \$ -                     | \$<br>39.05   | \$  | 36.74              | \$  | 41.37               |
| 2017 | \$<br>-        | \$ -              | \$   | -               | \$ 33.42      | \$  | 31.11          | \$    | 35.74          | \$ | •             | \$ | -    | \$ | -                   | \$  | 5.63       | \$ -                     | \$<br>39.05   | \$  | 36.74              | \$  | 41.37               |
| 2018 | \$<br>-        | \$ -              | \$   | -               | \$ 33.42      | \$  | 31.11          | \$    | 35.74          | \$ |               | \$ | -    | \$ | -                   | \$  | 5.63       | \$ -                     | \$<br>39.05   | \$  | 36.74              | \$  | 41.37               |
| 2019 | \$<br>-        | \$ -              | \$   | -               | \$ 33.42      | \$  | 31.11          | \$    | 35.74          | \$ | -             | \$ | -    | \$ | -                   | \$  | 5.63       | \$ -                     | \$<br>39.05   | \$  | 36.74              | \$  | 41.37               |
| 2020 | \$<br>-        | \$ -              | \$   | -               | \$ 33.42      | \$  | 31.11          | \$    | 35.74          | \$ | -             | \$ | -    | \$ | -                   | \$  | 5.63       | \$ -                     | \$<br>39.05   | \$  | 36.74              | \$  | 41.37               |
| 2021 | \$<br>-        | \$ -              | \$   | -               | \$ 33.42      | \$  | 31.11          | \$    | 35.74          | \$ | -             | \$ | -    | \$ | -                   | \$  | 5.63       | \$ -                     | \$<br>39.05   | \$  | 36.74              | \$  | 41.37               |
| 2022 | \$<br>-        | \$ -              | \$   | -               | \$ 33.42      | \$  | 31.11          | \$    | 35.74          | \$ | -             | \$ | -    | \$ | -                   | \$  | 5.63       | \$ -                     | \$<br>39.05   | \$  | 36.74              | \$  | 41.37               |
| 2023 | \$<br>-        | \$ -              | \$   | -               | \$ 33.42      | \$  | 31.11          | \$    | 35.74          | \$ | -             | \$ | -    | \$ | -                   | \$  | 5.63       | \$ -                     | \$<br>39.05   | \$  | 36.74              | \$  | 41.37               |
| 2024 | \$<br>-        | \$ -              | \$   | -               | \$ 33.42      | \$  | 31.11          | \$    | 35.74          | \$ | -             | \$ | -    | \$ |                     | \$  | 5.63       | \$ -                     | \$<br>39.05   | \$  | 36.74              | \$  | 41.37               |
| 2025 | \$<br>-        | \$ -              | \$   | -               | \$ 33.42      | \$  | 31.11          | \$    | 35.74          | \$ | -             | \$ | -    | \$ | -                   | \$  | 5.63       | \$ -                     | \$<br>39.05   | \$  | 36.74              | \$  | 41.37               |
| 2026 | \$<br>-        | \$ -              | \$   | -               | \$ 33.42      | \$  | 31.11          | \$    | 35.74          | \$ | -             | \$ | -    | \$ | -                   | \$  | 5.63       | \$ -                     | \$<br>39.05   | \$  | 36.74              | \$  | 41.37               |
| 2027 | \$<br>-        | \$ -              | \$   | -               | \$ 33.42      | \$  | 31.11          | \$    | 35.74          | \$ | -             | \$ | -    | \$ | -                   | \$  | 5.63       | \$ -                     | \$<br>39.05   | \$  | 36.74              | \$  | 41.37               |
| 2028 | \$<br>-        | \$ -              | \$   | -               | \$ 33.42      | \$  | 31.11          | \$    | 35.74          | \$ | -             | \$ | -    | \$ | -                   | \$  | 5.63       | \$ -                     | \$<br>39.05   | \$  | 36.74              | \$  | 41.37               |
| 2029 | \$<br>-        | \$ -              | \$   | -               | \$ 33.42      | \$  | 31.11          | \$    | 35.74          | \$ | -             | \$ | -    | \$ | -                   | \$  | 5.63       | \$ -                     | \$<br>39.05   | \$  | 36.74              | \$  | 41.37               |

Note: All values in millions of year 2003 dollars.

#### Exhibit J.4e Projections of Stage 2 DBPR PWS Costs

(All Ground Water NTNCWSs)

#### Alternative 2

|      | -  | Freatme     | ent | Capital           | Cos | its            | Treatn        | nen | t O&M         | Co   | sts            |     |               |         | No | n-Treatment         | Cos | sts        |              |                          | All St        | age | 2 DBPR            | Cos | ts                  |
|------|----|-------------|-----|-------------------|-----|----------------|---------------|-----|---------------|------|----------------|-----|---------------|---------|----|---------------------|-----|------------|--------------|--------------------------|---------------|-----|-------------------|-----|---------------------|
|      |    |             | Co  | 90 Per            | e B | -              |               |     | 90 Ponfider   | ce l | nt<br>Bound    |     |               |         |    |                     |     |            |              |                          |               | (   | 90 Pe<br>Confiden |     |                     |
| Year |    | ean<br>alue | _   | Lower<br>h %tile) | (9  | 95th<br>Stile) | lean<br>'alue | (   | 5th<br>stile) | (    | 95th<br>6tile) | ln. | nplementation | IDSE    | N  | Monitoring<br>Plans |     | Monitorina |              | Significant<br>Excursion | Mean<br>Value | -   | Lower<br>h %tile) |     | Upper<br>ith %tile) |
| 2005 | \$ | aiue<br>-   | \$  | _                 | \$  | -              | \$<br>aiue    | \$  | -             | \$   | -              | \$  | 0.00          | \$ -    | \$ | rialis<br>-         | \$  | -          | \$           | _                        | \$<br>0.00    | \$  | 0.00              | \$  | 0.00                |
| 2006 | \$ |             | \$  |                   | \$  | -              | \$<br>        | \$  | _             | \$   |                | \$  | 0.56          | \$ -    | \$ |                     | \$  |            | \$           |                          | \$<br>0.56    | \$  | 0.56              | \$  | 0.56                |
| 2007 | \$ |             | \$  |                   | \$  | _              | \$<br>        | \$  | _             | \$   |                | \$  | - 0.50        | \$ 0.00 | \$ | 0.00                | \$  | -          | \$           | _                        | \$<br>0.00    | \$  | 0.00              | \$  | 0.00                |
| 2008 | \$ | 0.02        | \$  | 0.01              | \$  | 0.02           | \$<br>_       | \$  | _             | \$   |                | \$  | 0.00          | \$ 0.00 | \$ | 0.00                | \$  | _          | \$           | _                        | \$<br>0.02    | \$  | 0.02              | \$  | 0.02                |
| 2009 | \$ | 1.60        | \$  | 1.38              | \$  | 1.82           | \$<br>0.00    | •   | 0.00          | \$   | 0.00           | \$  | 0.28          | \$ -    | \$ | 0.46                | \$  | -          | \$           | -                        | \$<br>2.35    | \$  | 2.12              | \$  | 2.57                |
| 2010 | \$ | 3.18        | \$  | 2.74              | \$  | 3.62           | \$<br>0.13    | _   | 0.12          | \$   | 0.14           | \$  | 0.28          | \$ -    | \$ | -                   | \$  | -          | \$           | -                        | \$<br>3.59    | \$  | 3.14              | \$  | 4.04                |
| 2011 | \$ | 3.18        | \$  | 2.74              | \$  | 3.62           | \$<br>0.39    | \$  | 0.37          | \$   | 0.42           | \$  | -             | \$ -    | \$ | -                   | \$  | 0.00       | \$           | -                        | \$<br>3.58    | \$  | 3.11              | \$  | 4.04                |
| 2012 | \$ | 3.18        | \$  | 2.74              | \$  | 3.62           | \$<br>0.65    | \$  | 0.61          | \$   | 0.70           | \$  | -             | \$ -    | \$ | -                   | \$  | 0.37       | \$           | -                        | \$<br>4.20    | \$  | 3.72              | \$  | 4.68                |
| 2013 | \$ | 3.17        | \$  | 2.73              | \$  | 3.60           | \$<br>0.91    | \$  | 0.85          | \$   | 0.97           | \$  | -             | \$ -    | \$ | -                   | \$  | 0.73       | \$           | -                        | \$<br>4.81    | \$  | 4.31              | \$  | 5.30                |
| 2014 | \$ | 1.58        | \$  | 1.36              | \$  | 1.80           | \$<br>1.17    | \$  | 1.09          | \$   | 1.25           | \$  | -             | \$ -    | \$ | -                   | \$  | 0.73       | \$           | -                        | \$<br>3.48    | \$  | 3.18              | \$  | 3.78                |
| 2015 | \$ | -           | \$  | -                 | \$  | -              | \$<br>1.30    | \$  | 1.21          | \$   | 1.39           | \$  | -             | \$ -    | \$ | -                   | \$  | 0.73       | \$           | -                        | \$<br>2.03    | \$  | 1.94              | \$  | 2.12                |
| 2016 | \$ | -           | \$  | -                 | \$  | -              | \$<br>1.30    | \$  | 1.21          | \$   | 1.39           | \$  | -             | \$ -    | \$ | -                   | \$  | 0.73       | \$           | -                        | \$<br>2.03    | \$  | 1.94              | \$  | 2.12                |
| 2017 | \$ | -           | \$  | -                 | \$  | -              | \$<br>1.30    | \$  | 1.21          | \$   | 1.39           | \$  | -             | \$ -    | \$ | -                   | \$  | 0.73       | \$           | -                        | \$<br>2.03    | \$  | 1.94              | \$  | 2.12                |
| 2018 | \$ | -           | \$  | -                 | \$  | -              | \$<br>1.30    | \$  | 1.21          | \$   | 1.39           | \$  | -             | \$ -    | \$ | -                   | \$  | 0.73       | \$           | -                        | \$<br>2.03    | \$  | 1.94              | \$  | 2.12                |
| 2019 | \$ | -           | \$  | -                 | \$  | -              | \$<br>1.30    | \$  | 1.21          | \$   | 1.39           | \$  | -             | \$ -    | \$ | -                   | \$  | 0.73       | \$           | -                        | \$<br>2.03    | \$  | 1.94              | \$  | 2.12                |
| 2020 | \$ | -           | \$  | -                 | \$  | -              | \$<br>1.30    | \$  | 1.21          | \$   | 1.39           | \$  | -             | \$ -    | \$ | -                   | \$  | 0.73       | \$           | -                        | \$<br>2.03    | \$  | 1.94              | \$  | 2.12                |
| 2021 | \$ | -           | \$  | -                 | \$  | -              | \$<br>1.30    | \$  | 1.21          | \$   | 1.39           | \$  | -             | \$ -    | \$ | -                   | \$  | 0.73       | \$           | -                        | \$<br>2.03    | \$  | 1.94              | \$  | 2.12                |
| 2022 | \$ | -           | \$  | -                 | \$  | -              | \$<br>1.30    | \$  | 1.21          | \$   | 1.39           | \$  | -             | \$ -    | \$ | -                   | \$  | 0.73       | \$           | -                        | \$<br>2.03    | \$  | 1.94              | \$  | 2.12                |
| 2023 | \$ | -           | \$  | -                 | \$  | -              | \$<br>1.30    | \$  | 1.21          | \$   | 1.39           | \$  | -             | \$ -    | \$ | -                   | \$  | 0.73       | \$           | -                        | \$<br>2.03    | \$  | 1.94              | \$  | 2.12                |
| 2024 | \$ | -           | \$  | -                 | \$  | -              | \$<br>1.30    | _   | 1.21          | \$   | 1.39           | \$  | -             | \$ -    | \$ | -                   | \$  | 0.73       | \$           | -                        | \$<br>2.03    | \$  | 1.94              | \$  | 2.12                |
| 2025 | \$ | -           | \$  | -                 | \$  | -              | \$<br>1.30    | \$  | 1.21          | \$   | 1.39           | \$  | -             | \$ -    | \$ | -                   | \$  | 0.73       | \$           | -                        | \$<br>2.03    | \$  | 1.94              | \$  | 2.12                |
| 2026 | \$ | -           | \$  | -                 | \$  | -              | \$<br>1.30    | -   | 1.21          | \$   | 1.39           | \$  | -             | \$ -    | \$ | -                   | \$  | 0.73       | \$           | -                        | \$<br>2.03    | \$  | 1.94              | \$  | 2.12                |
| 2027 | \$ | -           | \$  | -                 | \$  | -              | \$<br>1.30    | _   | 1.21          | \$   | 1.39           | \$  | -             | \$ -    | \$ | -                   | \$  | 0.73       | <del>-</del> | -                        | \$<br>2.03    | \$  | 1.94              | \$  | 2.12                |
| 2028 | \$ | -           | \$  | -                 | \$  | -              | \$<br>1.30    | •   | 1.21          | \$   | 1.39           | \$  | -             | \$ -    | \$ | -                   | \$  | 0.73       | \$           | -                        | \$<br>2.03    | \$  | 1.94              | \$  | 2.12                |
| 2029 | \$ | -           | \$  | -                 | \$  | -              | \$<br>1.30    | \$  | 1.21          | \$   | 1.39           | \$  | -             | \$ -    | \$ | -                   | \$  | 0.73       | \$           | -                        | \$<br>2.03    | \$  | 1.94              | \$  | 2.12                |

Note: All values in millions of year 2003 dollars.

#### Exhibit J.4f Projections of Stage 2 DBPR PWS Costs

(All Ground Water Systems)

#### Alternative 2

|      |      | Treatm      | ent  | Capita         | l Cos | sts               | Treat         | meı | nt O&M           | Cos  | sts                      |                |    | No   | n-1 | Freatment Cos       | sts |            |                        | All S         | age | 2 DBPR            | Cos | sts                 |
|------|------|-------------|------|----------------|-------|-------------------|---------------|-----|------------------|------|--------------------------|----------------|----|------|-----|---------------------|-----|------------|------------------------|---------------|-----|-------------------|-----|---------------------|
|      |      |             | Co   | 90 Pe          |       |                   |               | C   | 90 Pe<br>onfiden | ce E | Bound                    |                |    |      |     |                     |     |            |                        |               | (   | 90 P<br>Confider  |     |                     |
| Year |      | ean<br>Ilue |      | ower<br>%tile) |       | lpper<br>h %tile) | Mean<br>Value | _   | ower<br>n %tile) | (    | Jpper<br>(95th<br>%tile) | Implementation | ı  | IDSE |     | Monitoring<br>Plans | N   | Monitoring | ginificant<br>xcursion | Mean<br>Value |     | Lower<br>h %tile) | (9  | Upper<br>5th %tile) |
| 2005 | \$   | -           | \$   | -              | \$    | -                 | \$ -          | \$  | -                | \$   | -                        | \$<br>0.07     | \$ | -    | \$  | -                   | \$  | -          | \$<br>-                | \$<br>0.07    | \$  | 0.07              | \$  | 0.07                |
| 2006 | \$   | -           | \$   | -              | \$    | -                 | \$ -          | \$  | -                | \$   | -                        | \$<br>3.98     | \$ | 0.09 | \$  | -                   | \$  | -          | \$<br>-                | \$<br>4.07    | \$  | 4.07              | \$  | 4.07                |
| 2007 | \$   | -           | \$   | -              | \$    | -                 | \$ -          | \$  | -                | \$   | -                        | \$<br>-        | \$ | 1.09 | \$  | 0.02                | \$  | -          | \$<br>-                | \$<br>1.11    | \$  | 1.11              | \$  | 1.11                |
| 2008 | \$ 1 | 16.60       | \$   | 14.41          | \$    | 18.79             | \$ -          | \$  | -                | \$   | -                        | \$<br>0.05     | \$ | 6.66 | \$  | 0.22                | \$  | -          | \$<br>-                | \$<br>23.52   | \$  | 21.33             | \$  | 25.71               |
| 2009 | \$ 5 | 52.41       | \$ - | 45.42          | \$    | 59.38             | \$ 1.70       | \$  | 1.56             | \$   | 1.83                     | \$<br>2.01     | \$ | -    | \$  | 3.04                | \$  | -          | \$<br>-                | \$<br>59.16   | \$  | 52.04             | \$  | 66.27               |
| 2010 | \$ 8 | 85.15       | \$   | 73.75          | \$    | 96.51             | \$ 6.16       | \$  | 5.71             | \$   | 6.61                     | \$<br>1.99     | \$ | -    | \$  | -                   | \$  | -          | \$<br>-                | \$<br>93.30   | \$  | 81.45             | \$  | 105.12              |
| 2011 | \$ 8 | 85.15       | \$   | 73.75          | \$    | 96.51             | \$ 13.11      | \$  | 12.17            | \$   | 14.04                    | \$<br>-        | \$ | -    | \$  | -                   | \$  | 0.08       | \$<br>-                | \$<br>98.33   | \$  | 86.00             | \$  | 110.63              |
| 2012 | \$ 8 | 85.15       | \$   | 73.75          | \$    | 96.51             | \$ 20.05      | \$  | 18.64            | \$   | 21.47                    | \$<br>-        | \$ | -    | \$  | -                   | \$  | 3.32       | \$<br>-                | \$<br>108.52  | \$  | 95.70             | \$  | 121.30              |
| 2013 | \$ 6 | 68.55       | \$   | 59.34          | \$    | 77.73             | \$ 26.99      | \$  | 25.10            | \$   | 28.89                    | \$<br>-        | \$ | -    | \$  | -                   | \$  | 6.36       | \$<br>-                | \$<br>101.90  | \$  | 90.80             | \$  | 112.98              |
| 2014 | \$ 3 | 32.74       | \$ : | 28.32          | \$    | 37.13             | \$ 32.24      | \$  | 30.00            | \$   | 34.48                    | \$<br>-        | \$ | -    | \$  | -                   | \$  | 6.36       | \$<br>-                | \$<br>71.33   | \$  | 64.68             | \$  | 77.98               |
| 2015 | \$   | -           | \$   | -              | \$    | -                 | \$ 34.72      | \$  | 32.32            | \$   | 37.13                    | \$<br>-        | \$ | -    | \$  | -                   | \$  | 6.36       | \$<br>-                | \$<br>41.08   | \$  | 38.68             | \$  | 43.49               |
| 2016 | \$   | -           | \$   | -              | \$    | -                 | \$ 34.72      | \$  | 32.32            | \$   | 37.13                    | \$<br>-        | \$ | -    | \$  | -                   | \$  | 6.36       | \$<br>-                | \$<br>41.08   | \$  | 38.68             | \$  | 43.49               |
| 2017 | \$   | -           | \$   | -              | \$    | -                 | \$ 34.72      | \$  | 32.32            | \$   | 37.13                    | \$<br>-        | \$ | -    | \$  | -                   | \$  | 6.36       | \$<br>-                | \$<br>41.08   | \$  | 38.68             | \$  | 43.49               |
| 2018 | \$   | -           | \$   | -              | \$    | -                 | \$ 34.72      | \$  | 32.32            | \$   | 37.13                    | \$<br>-        | \$ | -    | \$  | -                   | \$  | 6.36       | \$<br>-                | \$<br>41.08   | \$  | 38.68             | \$  | 43.49               |
| 2019 | \$   | -           | \$   | -              | \$    | -                 | \$ 34.72      | \$  | 32.32            | \$   | 37.13                    | \$<br>-        | \$ |      | \$  | -                   | \$  | 6.36       | \$<br>-                | \$<br>41.08   | \$  | 38.68             | \$  | 43.49               |
| 2020 | \$   | -           | \$   | -              | \$    | -                 | \$ 34.72      | \$  | 32.32            | \$   | 37.13                    | \$<br>-        | \$ | -    | \$  | -                   | \$  | 6.36       | \$<br>-                | \$<br>41.08   | \$  | 38.68             | \$  | 43.49               |
| 2021 | \$   | -           | \$   | -              | \$    | -                 | \$ 34.72      | \$  | 32.32            | \$   | 37.13                    | \$<br>-        | \$ | -    | \$  | -                   | \$  | 6.36       | \$<br>-                | \$<br>41.08   | \$  | 38.68             | \$  | 43.49               |
| 2022 | \$   | -           | \$   | -              | \$    | -                 | \$ 34.72      | \$  | 32.32            | \$   | 37.13                    | \$<br>-        | \$ | -    | \$  | -                   | \$  | 6.36       | \$<br>-                | \$<br>41.08   | \$  | 38.68             | \$  | 43.49               |
| 2023 | \$   | -           | \$   | -              | \$    | -                 | \$ 34.72      | \$  | 32.32            | \$   | 37.13                    | \$<br>-        | \$ | -    | \$  | -                   | \$  | 6.36       | \$<br>-                | \$<br>41.08   | \$  | 38.68             | \$  | 43.49               |
| 2024 | \$   | -           | \$   | -              | \$    | -                 | \$ 34.72      | \$  | 32.32            | \$   | 37.13                    | \$<br>-        | \$ | -    | \$  | -                   | \$  | 6.36       | \$<br>-                | \$<br>41.08   | \$  | 38.68             | \$  | 43.49               |
| 2025 | \$   |             | \$   | -              | \$    | -                 | \$ 34.72      | \$  | 32.32            | \$   | 37.13                    | \$<br>-        | \$ | -    | \$  | -                   | \$  | 6.36       | \$<br>-                | \$<br>41.08   | \$  | 38.68             | \$  | 43.49               |
| 2026 | \$   | -           | \$   | -              | \$    | -                 | \$ 34.72      | \$  | 32.32            | \$   | 37.13                    | \$<br>-        | \$ | -    | \$  | -                   | \$  | 6.36       | \$<br>-                | \$<br>41.08   | \$  | 38.68             | \$  | 43.49               |
| 2027 | \$   | -           | \$   | -              | \$    | -                 | \$ 34.72      | \$  | 32.32            | \$   | 37.13                    | \$<br>-        | \$ | -    | \$  | -                   | \$  | 6.36       | \$<br>-                | \$<br>41.08   | \$  | 38.68             | \$  | 43.49               |
| 2028 | \$   | -           | \$   | -              | \$    | -                 | \$ 34.72      | \$  | 32.32            | \$   | 37.13                    | \$<br>-        | \$ | -    | \$  | -                   | \$  | 6.36       | \$<br>-                | \$<br>41.08   | \$  | 38.68             | \$  | 43.49               |
| 2029 | \$   | -           | \$   | -              | \$    | -                 | \$ 34.72      | \$  | 32.32            | \$   | 37.13                    | \$<br>-        | \$ | -    | \$  | -                   | \$  | 6.36       | \$<br>-                | \$<br>41.08   | \$  | 38.68             | \$  | 43.49               |

Note: All values in millions of year 2003 dollars.

#### Exhibit J.4g Projections of Stage 2 DBPR PWS Costs

(All Systems)

#### Alternative 2

|      |    | Treat         | mer | nt Capital         | Co  | sts                 |            | Treat | ment | t O&M (        | Cost | s                 |    |               |    |       | N  | lon-Treatment       | Cos | sts        |                           | All S          | tage | 2 DBPR            | Cos   | ts                  |
|------|----|---------------|-----|--------------------|-----|---------------------|------------|-------|------|----------------|------|-------------------|----|---------------|----|-------|----|---------------------|-----|------------|---------------------------|----------------|------|-------------------|-------|---------------------|
|      |    |               |     | 90 Pe<br>Confiden  |     |                     |            | -     | Co   | 90 Pe          |      |                   |    |               |    |       |    |                     |     |            |                           |                |      | 90<br>Confide     | Perce |                     |
| Year | ı  | Mean<br>Value |     | Lower<br>th %tile) | (9: | Upper<br>5th %tile) | Mea<br>Val |       |      | ower<br>%tile) |      | Jpper<br>h %tile) | lr | nplementation | ı  | IDSE  |    | Monitoring<br>Plans |     | Monitoring | Siginificant<br>Excursion | Mean<br>Value  |      | Lower<br>h %tile) | (9    | Upper<br>5th %tile) |
| 2005 | \$ | -             | \$  | -                  | \$  | -                   | \$         | -     | \$   | -              | \$   | •                 | \$ | 0.76          | \$ | -     | \$ | -                   | \$  | -          | \$<br>-                   | \$<br>0.76     | \$   | 0.76              | \$    | 0.76                |
| 2006 | \$ | -             | \$  | -                  | \$  | -                   | \$         | -     | \$   | -              | \$   | -                 | \$ | 5.40          | \$ | 8.56  | \$ | -                   | \$  | -          | \$<br>-                   | \$<br>13.96    | \$   | 13.96             | \$    | 13.96               |
| 2007 | \$ | -             | \$  | -                  | \$  | -                   | \$         | -     | \$   | -              | \$   | -                 | \$ | -             | \$ | 23.58 | \$ | 0.24                | \$  | -          | \$<br>-                   | \$<br>23.81    | \$   | 23.81             | \$    | 23.81               |
| 2008 | \$ | 481.02        | \$  | 399.03             | \$  | 567.44              | \$         | -     | \$   | -              | \$   | -                 | \$ | 0.65          | \$ | 25.30 | \$ | 0.83                | \$  | -          | \$<br>-                   | \$<br>507.80   | \$   | 425.80            | \$    | 594.22              |
| 2009 | \$ | 754.19        | \$  | 626.34             | \$  | 889.16              | \$ 2       | 8.58  | \$   | 24.27          | \$   | 33.00             | \$ | 2.81          | \$ | -     | \$ | 3.95                | \$  | -          | \$<br>-                   | \$<br>789.53   | \$   | 657.36            | \$    | 928.92              |
| 2010 | \$ | 974.15        | \$  | 809.46             | \$  | 1,148.15            | \$ 7       | 8.00  | \$   | 66.36          | \$   | 89.91             | \$ | 2.70          | \$ | -     | \$ | -                   | \$  | -          | \$<br>-                   | \$<br>1,054.85 | \$   | 878.51            | \$    | 1,240.76            |
| 2011 | \$ | 974.15        | \$  | 809.46             | \$  | 1,148.15            | \$ 14      | 5.39  | \$ 1 | 123.83         | \$   | 167.45            | \$ | -             | \$ | -     | \$ | -                   | \$  | 0.51       | \$<br>-                   | \$<br>1,120.05 | \$   | 933.79            | \$    | 1,316.11            |
| 2012 | \$ | 974.15        | \$  | 809.46             | \$  | 1,148.15            | \$ 212     | 2.78  | \$ 1 | 181.30         | \$   | 245.00            | \$ | -             | \$ | -     | \$ | -                   | \$  | 2.57       | \$<br>0.06                | \$<br>1,189.56 | \$   | 993.39            | \$    | 1,395.77            |
| 2013 | \$ | 493.13        | \$  | 410.43             | \$  | 580.70              | \$ 28      | 0.17  | \$ 2 | 238.78         | \$   | 322.54            | \$ | -             | \$ | -     | \$ | -                   | \$  | 4.32       | \$<br>0.15                | \$<br>777.77   | \$   | 653.68            | \$    | 907.71              |
| 2014 | \$ | 219.96        | \$  | 183.12             | \$  | 258.99              | \$ 31      | 8.98  | \$ 2 | 271.98         | \$   | 367.08            | \$ | -             | \$ | -     | \$ | -                   | \$  | 4.32       | \$<br>0.21                | \$<br>543.47   | \$   | 459.64            | \$    | 630.60              |
| 2015 | \$ | -             | \$  | -                  | \$  | -                   | \$ 33      | 6.95  | \$ 2 | 287.37         | \$   | 387.71            | \$ | -             | \$ | -     | \$ | -                   | \$  | 4.32       | \$<br>0.21                | \$<br>341.48   | \$   | 291.90            | \$    | 392.25              |
| 2016 | \$ | -             | \$  | -                  | \$  | -                   | \$ 33      | 6.95  | \$ 2 | 287.37         | \$   | 387.71            | \$ | -             | \$ | -     | \$ | -                   | \$  | 4.32       | \$<br>0.21                | \$<br>341.48   | \$   | 291.90            | \$    | 392.25              |
| 2017 | \$ | -             | \$  | -                  | \$  | -                   | \$ 33      | 6.95  | \$ 2 | 287.37         | \$   | 387.71            | \$ | -             | \$ | -     | \$ | -                   | \$  | 4.32       | \$<br>0.21                | \$<br>341.48   | \$   | 291.90            | \$    | 392.25              |
| 2018 | \$ | -             | \$  | -                  | \$  | -                   | \$ 33      | 6.95  | \$ 2 | 287.37         | \$   | 387.71            | \$ | -             | \$ | -     | \$ | -                   | \$  | 4.32       | \$<br>0.21                | \$<br>341.48   | \$   | 291.90            | \$    | 392.25              |
| 2019 | \$ | -             | \$  | -                  | \$  | -                   | \$ 33      | 6.95  | \$ 2 | 287.37         | \$   | 387.71            | \$ | -             | \$ | -     | \$ | -                   | \$  | 4.32       | \$<br>0.21                | \$<br>341.48   | \$   | 291.90            | \$    | 392.25              |
| 2020 | \$ | -             | \$  | -                  | \$  | -                   | \$ 33      | 6.95  | \$ 2 | 287.37         | \$   | 387.71            | \$ | -             | \$ | -     | \$ | -                   | \$  | 4.32       | \$<br>0.21                | \$<br>341.48   | \$   | 291.90            | \$    | 392.25              |
| 2021 | \$ | -             | \$  | -                  | \$  | -                   | \$ 33      | 6.95  | \$ 2 | 287.37         | \$   | 387.71            | \$ | -             | \$ | -     | \$ | -                   | \$  | 4.32       | \$<br>0.21                | \$<br>341.48   | \$   | 291.90            | \$    | 392.25              |
| 2022 | \$ | -             | \$  | -                  | \$  | -                   | \$ 33      | 6.95  | \$ 2 | 287.37         | \$   | 387.71            | \$ | -             | \$ | -     | \$ | -                   | \$  | 4.32       | \$<br>0.21                | \$<br>341.48   | \$   | 291.90            | \$    | 392.25              |
| 2023 | \$ | -             | \$  | -                  | \$  | -                   | \$ 33      | 6.95  | \$ 2 | 287.37         | \$   | 387.71            | \$ | -             | \$ | -     | \$ | -                   | \$  | 4.32       | \$<br>0.21                | \$<br>341.48   | \$   | 291.90            | \$    | 392.25              |
| 2024 | \$ | -             | \$  | -                  | \$  |                     | \$ 33      | 6.95  | \$ 2 | 287.37         | \$   | 387.71            | \$ | -             | \$ | -     | \$ | -                   | \$  | 4.32       | \$<br>0.21                | \$<br>341.48   | \$   | 291.90            | \$    | 392.25              |
| 2025 | \$ | -             | \$  | -                  | \$  |                     | \$ 33      | 6.95  | \$ 2 | 287.37         | \$   | 387.71            | \$ | -             | \$ | -     | \$ | -                   | \$  | 4.32       | \$<br>0.21                | \$<br>341.48   | \$   | 291.90            | \$    | 392.25              |
| 2026 | \$ | -             | \$  | -                  | \$  | -                   | \$ 33      | 6.95  | \$ 2 | 287.37         | \$   | 387.71            | \$ | -             | \$ | -     | \$ | -                   | \$  | 4.32       | \$<br>0.21                | \$<br>341.48   | \$   | 291.90            | \$    | 392.25              |
| 2027 | \$ | -             | \$  | -                  | \$  | -                   | \$ 33      | 6.95  | \$ 2 | 287.37         | \$   | 387.71            | \$ | -             | \$ | -     | \$ | -                   | \$  | 4.32       | \$<br>0.21                | \$<br>341.48   | \$   | 291.90            | \$    | 392.25              |
| 2028 | \$ | -             | \$  | -                  | \$  | -                   | \$ 33      | 6.95  | \$ 2 | 287.37         | \$   | 387.71            | \$ | -             | \$ | -     | \$ | -                   | \$  | 4.32       | \$<br>0.21                | \$<br>341.48   | \$   | 291.90            | \$    | 392.25              |
| 2029 | \$ | -             | \$  | -                  | \$  | -                   | \$ 33      | 6.95  | \$ 2 | 287.37         | \$   | 387.71            | \$ | -             | \$ | -     | \$ | -                   | \$  | 4.32       | \$<br>0.21                | \$<br>341.48   | \$   | 291.90            | \$    | 392.25              |

Note: All values in millions of year 2003 dollars.

Exhibit J.4h Projections of Stage 2 DBPR Primacy Agency Costs

#### Alternative 2

| Year | Implementation Costs | IDSE Costs | Мо | onitoring Plan<br>Costs | Compliance<br>Monitoring Costs | Significant<br>Excursion<br>Report Costs |
|------|----------------------|------------|----|-------------------------|--------------------------------|------------------------------------------|
| 2005 | \$ 3.88              | \$ -       | \$ | -                       | \$ -                           | \$ -                                     |
| 2006 | \$ 3.88              | \$ 0.0     |    | -                       | \$                             | \$ -                                     |
| 2007 | -                    | \$ 0.1     |    | 0.02                    | \$ -                           | \$ -                                     |
| 2008 | -                    | \$ 2.0     |    | 0.06                    | \$                             | \$ -                                     |
| 2009 | \$ -                 | \$ -       | \$ | 0.85                    | \$                             | \$ -                                     |
| 2010 | -                    | \$ -       | \$ | -                       | \$                             | \$ -                                     |
| 2011 | \$ -                 | \$ -       | \$ | -                       | \$ 1.59                        | \$ 0.11                                  |
| 2012 | \$ -                 | \$ -       | \$ | -                       | \$ 1.59                        | \$ 0.11                                  |
| 2013 | \$ -                 | \$ -       | \$ | -                       | \$ 1.59                        | \$ 0.11                                  |
| 2014 | \$ -                 | \$ -       | \$ | -                       | \$ 1.59                        | \$ 0.11                                  |
| 2015 | \$ -                 | \$ -       | \$ | -                       | \$ 1.59                        | \$ 0.11                                  |
| 2016 | -                    | \$ -       | \$ | -                       | \$ 1.59                        | \$ 0.11                                  |
| 2017 | \$ -                 | \$ -       | \$ | -                       | \$ 1.59                        | \$ 0.11                                  |
| 2018 | \$ -                 | \$ -       | \$ | -                       | \$ 1.59                        | \$ 0.11                                  |
| 2019 | \$ -                 | \$ -       | \$ | -                       | \$ 1.59                        | \$ 0.11                                  |
| 2020 | -                    | \$ -       | \$ | -                       | \$ 1.59                        | \$ 0.11                                  |
| 2021 | -                    | \$ -       | \$ | -                       | \$ 1.59                        | \$ 0.11                                  |
| 2022 | -                    | \$ -       | \$ | 1                       | \$ 1.59                        | \$ 0.11                                  |
| 2023 | \$ -                 | \$ -       | \$ | -                       | \$ 1.59                        | \$ 0.11                                  |
| 2024 | \$ -                 | \$ -       | \$ | -                       | \$ 1.59                        | \$ 0.11                                  |
| 2025 | \$ -                 | \$ -       | \$ | -                       | \$ 1.59                        | \$ 0.11                                  |
| 2026 | \$ -                 | \$ -       | \$ | -                       | \$ 1.59                        | \$ 0.11                                  |
| 2027 | \$ -                 | \$ -       | \$ | -                       | \$ 1.59                        | \$ 0.11                                  |
| 2028 | \$ -                 | \$ -       | \$ | -                       | \$ 1.59                        | \$ 0.11                                  |
| 2029 | \$ -                 | \$ -       | \$ | -                       | \$ 1.59                        | \$ 0.11                                  |

Note: All values in millions of year 2003 dollars. Source: Derived from Exhibits J.1h and D.7.

Exhibit J.4i Present Value of Annual Cost Projections at 3% Discount Rate (All Systems and Primacy Agencies)

#### Alternative 2

|       | Su            | rface Water | CW | s                     | Surfa          | ace Wat       | er NTI | NCWS                  | Disinfect     | ing G | round V        | Vater CWS             |    | Disinfectin   | g Groui | nd Wate       | r NTNCWS              | Primacy Agencies |               | Т  | otal              |                  |                   |
|-------|---------------|-------------|----|-----------------------|----------------|---------------|--------|-----------------------|---------------|-------|----------------|-----------------------|----|---------------|---------|---------------|-----------------------|------------------|---------------|----|-------------------|------------------|-------------------|
|       | _             |             |    | cent<br>e Bound       | -              | Cor           |        | ercent<br>ce Bound    |               | С     |                | ercent<br>ce Bound    |    |               | С       |               | ercent<br>ce Bound    |                  |               |    | 90 Pe<br>Confiden | ercent<br>ice Bo |                   |
|       | Mean<br>Value | Lower       | ,  | Upper<br>(95th %tile) | /lean<br>/alue | Low<br>(5th % |        | Upper<br>(95th %tile) | Mean<br>Value |       | ower<br>%tile) | Upper<br>(95th %tile) | ,  | Mean<br>Value | -       | wer<br>%tile) | Upper<br>(95th %tile) | Point Estimate   | Mean<br>Value |    | ower<br>%tile)    |                  | Jpper<br>h %tile) |
| 2005  | \$<br>0.6     | \$ 0        | .6 | \$ 0.6                | \$<br>0.0      | \$            | 0.0    | \$ 0.0                | \$<br>0.1     | \$    | 0.1            | \$ 0.1                | \$ | 0.0           | \$      | 0.0           | \$ 0.0                | \$ 3.7           | \$ 4.4        | \$ | 4.4               | \$               | 4.4               |
| 2006  | \$<br>9.0     | \$ 9        | .0 | \$ 9.0                | \$<br>0.1      | \$            | 0.1    | \$ 0.1                | \$<br>3.2     | \$    | 3.2            | \$ 3.2                | \$ | 0.5           | \$      | 0.5           | \$ 0.5                | \$ 3.6           | \$ 16.4       | \$ | 16.4              | \$               | 16.4              |
| 2007  | \$<br>20.1    | \$ 20       | .1 | \$ 20.1               | \$<br>0.0      | \$            | 0.0    | \$ 0.0                | \$<br>1.0     | \$    | 1.0            | \$ 1.0                | \$ | 0.0           | \$      | 0.0           | \$ 0.0                | \$ 0.1           | \$ 21.3       | \$ | 21.3              | \$               | 21.3              |
| 2008  | \$<br>417.2   | \$ 348      | .4 | \$ 489.7              | \$<br>0.6      | \$            | 0.5    | \$ 0.7                | \$<br>20.3    | \$    | 18.4           | \$ 22.2               | \$ | 0.0           | \$      | 0.0           | \$ 0.0                | \$ 1.8           | \$ 439.9      | \$ | 369.1             | \$               | 514.4             |
| 2009  | \$<br>605.1   | \$ 501      | .5 | \$ 714.7              | \$<br>6.5      | \$            | 5.4    | \$ 7.7                | \$<br>47.6    | \$    | 41.8           | \$ 53.3               | \$ | 2.0           | \$      | 1.8           | \$ 2.1                | \$ 0.7           | \$ 661.9      | \$ | 551.2             | \$               | 778.7             |
| 2010  | \$<br>769.0   | \$ 637      | .5 | \$ 908.2              | \$<br>12.8     | \$            | 10.6   | \$ 15.2               | \$<br>72.9    | \$    | 63.7           | \$ 82.2               | \$ | 2.9           | \$      | 2.6           | \$ 3.3                | \$ -             | \$ 857.7      | \$ | 714.3             | \$               | 1,008.8           |
| 2011  | \$<br>792.6   | \$ 657      | .7 | \$ 935.2              | \$<br>13.9     | \$            | 11.5   | \$ 16.5               | \$<br>74.8    | \$    | 65.4           | \$ 84.1               | \$ | 2.8           | \$      | 2.5           | \$ 3.2                | \$ 1.3           | \$ 885.5      | \$ | 738.5             | \$               | 1,040.3           |
| 2012  | \$<br>813.6   | \$ 675      | .6 | \$ 959.1              | \$<br>15.0     | \$            | 12.4   | \$ 17.7               | \$<br>79.9    | \$    | 70.5           | \$ 89.4               | \$ | 3.2           | \$      | 2.8           | \$ 3.6                | \$ 1.3           | \$ 913.0      | \$ | 762.7             | \$               | 1,071.1           |
| 2013  | \$<br>487.5   | \$ 406      | .0 | \$ 573.1              | \$<br>15.5     | \$            | 12.9   | \$ 18.2               | \$<br>72.2    | \$    | 64.4           | \$ 80.1               | \$ | 3.6           | \$      | 3.2           | \$ 3.9                | \$ 1.3           | \$ 580.0      | \$ | 487.7             | \$               | 676.7             |
| 2014  | \$<br>329.9   | \$ 275      | .9 | \$ 386.1              | \$<br>11.2     | \$            | 9.4    | \$ 13.2               | \$<br>49.0    | \$    | 44.4           | \$ 53.6               | \$ | 2.5           | \$      | 2.3           | \$ 2.7                | \$ 1.2           | \$ 393.8      | \$ | 333.3             | \$               | 456.8             |
| 2015  | \$<br>204.1   | \$ 172      | .1 | \$ 237.0              | \$<br>6.6      | \$            | 5.5    | \$ 7.7                | \$<br>27.4    | \$    | 25.8           | \$ 29.0               | \$ | 1.4           | \$      | 1.4           | \$ 1.5                | \$ 1.2           | \$ 240.7      | \$ | 205.9             | \$               | 276.3             |
| 2016  | \$<br>198.2   | \$ 167      | .0 | \$ 230.1              | \$<br>6.4      | \$            | 5.4    | \$ 7.4                | \$<br>26.6    | \$    | 25.0           | \$ 28.2               | \$ | 1.4           | \$      | 1.3           | \$ 1.4                | \$ 1.2           | \$ 233.7      | \$ | 199.9             | \$               | 268.3             |
| 2017  | \$<br>192.4   | \$ 162      | .2 | \$ 223.4              | \$<br>6.2      | \$            | 5.2    | \$ 7.2                | \$<br>25.8    | \$    | 24.3           | \$ 27.4               | \$ | 1.3           | \$      | 1.3           | \$ 1.4                | \$ 1.1           | \$ 226.9      | \$ | 194.1             | \$               | 260.4             |
| 2018  | \$<br>186.8   | \$ 157      | .5 | \$ 216.8              | \$<br>6.0      | \$            | 5.1    | \$ 7.0                | \$<br>25.1    | \$    | 23.6           | \$ 26.6               | \$ | 1.3           | \$      | 1.2           | \$ 1.4                | \$ 1.1           | \$ 220.3      | \$ | 188.5             | \$               | 252.9             |
| 2019  | \$<br>181.3   | \$ 152      | .9 | \$ 210.5              | \$<br>5.9      | \$            | 4.9    | \$ 6.8                | \$<br>24.3    | \$    | 22.9           | \$ 25.8               | \$ | 1.3           | \$      | 1.2           | \$ 1.3                | \$ 1.1           | \$ 213.9      | \$ | 183.0             | \$               | 245.5             |
| 2020  | \$<br>176.1   | \$ 148      | .4 | \$ 204.4              | \$<br>5.7      | \$            | 4.8    | \$ 6.6                | \$<br>23.6    | \$    | 22.2           | \$ 25.0               | \$ | 1.2           | \$      | 1.2           | \$ 1.3                | \$ 1.0           | \$ 207.6      | \$ | 177.6             | \$               | 238.3             |
| 2021  | \$<br>170.9   | \$ 144      | .1 | \$ 198.4              | \$<br>5.5      | \$            | 4.6    | \$ 6.4                | \$<br>22.9    | \$    | 21.6           | \$ 24.3               | \$ | 1.2           | \$      | 1.1           | \$ 1.2                | \$ 1.0           | \$ 201.6      | \$ | 172.5             | \$               | 231.4             |
| 2022  | \$<br>166.0   | \$ 139      | .9 | \$ 192.7              | \$<br>5.4      | \$            | 4.5    | \$ 6.2                | \$<br>22.3    | \$    | 21.0           | \$ 23.6               | \$ | 1.2           | \$      | 1.1           | \$ 1.2                | \$ 1.0           | \$ 195.7      | \$ | 167.4             | \$               | 224.7             |
| 2023  | \$<br>161.1   | \$ 135      | .8 | \$ 187.1              | \$<br>5.2      | \$            | 4.4    | \$ 6.0                | \$<br>21.6    | \$    | 20.3           | \$ 22.9               | \$ | 1.1           | \$      | 1.1           | \$ 1.2                | \$ 0.9           | \$ 190.0      | \$ | 162.6             | \$               | 218.1             |
| 2024  | \$<br>156.4   | \$ 131      | .9 | \$ 181.6              | \$<br>5.0      | \$            | 4.3    | \$ 5.9                | \$<br>21.0    | \$    | 19.7           | \$ 22.2               | \$ | 1.1           | \$      | 1.0           | \$ 1.1                | \$ 0.9           | \$ 184.5      | \$ | 157.8             | \$               | 211.8             |
| 2025  | \$<br>151.9   | \$ 128      | .0 | \$ 176.3              | \$<br>4.9      | \$            | 4.1    | \$ 5.7                | \$<br>20.4    | \$    | 19.2           | \$ 21.6               | \$ | 1.1           | \$      | 1.0           | \$ 1.1                | \$ 0.9           | \$ 179.1      | \$ | 153.2             | \$               | 205.6             |
| 2026  | \$<br>147.5   | \$ 124      | .3 | \$ 171.2              | \$<br>4.8      | \$            | 4.0    | \$ 5.5                | \$<br>19.8    | \$    | 18.6           | \$ 21.0               | \$ | 1.0           | \$      | 1.0           | \$ 1.1                | \$ 0.9           | \$ 173.9      | \$ | 148.8             | \$               | 199.6             |
| 2027  | \$<br>143.2   | \$ 120      | .7 | \$ 166.2              | \$<br>4.6      | \$            | 3.9    | \$ 5.4                | \$<br>19.2    | \$    | 18.1           | \$ 20.4               | \$ | 1.0           | \$      | 1.0           | \$ 1.0                | \$ 0.8           | \$ 168.8      | \$ | 144.4             | \$               | 193.8             |
| 2028  | \$<br>139.0   | \$ 117      | .2 | \$ 161.4              | \$<br>4.5      | \$            | 3.8    | \$ 5.2                | \$<br>18.7    | \$    | 17.5           | \$ 19.8               | \$ | 1.0           | \$      | 0.9           | \$ 1.0                | \$ 0.8           | \$ 163.9      | \$ | 140.2             | \$               | 188.2             |
| 2029  | \$<br>134.9   | \$ 113      | .7 | \$ 156.7              | \$<br>4.4      | \$            | 3.7    | \$ 5.1                | \$<br>18.1    | \$    | 17.0           | \$ 19.2               | \$ | 0.9           | \$      | 0.9           | \$ 1.0                | \$ 0.8           | \$ 159.1      | \$ | 136.1             | \$               | 182.7             |
| Total | \$<br>6,754.3 | \$ 5,648    | .0 | \$ 7,909.5            | \$<br>156.6    | \$ 1          | 31.1   | \$ 183.3              | \$<br>757.9   | \$    | 689.7          | \$ 826.0              | \$ | 35.0          | \$      | 32.4          | \$ 37.7               | \$ 29.8          | \$ 7,733.7    | \$ | 6,530.9           | \$               | 8,986.3           |
| Ann.  | \$<br>387.9   | \$ 324      | .4 | \$ 454.2              | \$<br>9.0      | \$            | 7.5    | \$ 10.5               | \$<br>43.5    | \$    | 39.6           | \$ 47.4               | \$ | 2.0           | \$      | 1.9           | \$ 2.2                | \$ 1.7           | \$ 444.1      | \$ | 375.1             | \$               | 516.1             |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

## Exhibit J.4j Present Value of Annual Treatment Cost Projections at 3% Discount Rate (All Systems)

#### Alternative 2

|       | Sı                             | ırfac | ce Water CW         | vs |                    | Sur          | face | Water NT          | NCW    | s                 | Disinfe       | cting | g Ground         | w  | ater CWS              | Disinfectin   | g G | round Water          | NTN | icws                |               |    | Total              |    |                     |
|-------|--------------------------------|-------|---------------------|----|--------------------|--------------|------|-------------------|--------|-------------------|---------------|-------|------------------|----|-----------------------|---------------|-----|----------------------|-----|---------------------|---------------|----|--------------------|----|---------------------|
|       | 90 Percent<br>Confidence Bound |       |                     |    |                    |              |      | 90 Pe<br>Confiden | ercent |                   |               |       |                  |    | rcent<br>ce Bound     |               |     | 90 Pe<br>Confiden    |     |                     |               |    | 90 Pe<br>Confider  |    |                     |
|       | Mean<br>Value                  | (5    | Lower<br>5th %tile) |    | Upper<br>th %tile) | lean<br>alue |      | Lower<br>h %tile) |        | lpper<br>h %tile) | Mean<br>Value |       | ower<br>h %tile) |    | Upper<br>(95th %tile) | Mean<br>Value |     | Lower<br>(5th %tile) |     | Upper<br>5th %tile) | Mean<br>Value | (5 | Lower<br>th %tile) | (9 | Upper<br>5th %tile) |
| 2005  | \$<br>-                        | \$    | -                   | \$ | -                  | \$<br>-      | \$   | -                 | \$     | -                 | \$<br>-       | \$    | -                | \$ | -                     | \$<br>-       | \$  | -                    | \$  | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| 2006  | \$<br>-                        | \$    | -                   | \$ | -                  | \$<br>-      | \$   | -                 | \$     | -                 | \$<br>-       | \$    | -                | \$ | -                     | \$<br>-       | \$  | -                    | \$  | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| 2007  | \$<br>-                        | \$    | -                   | \$ | -                  | \$<br>-      | \$   | -                 | \$     | -                 | \$<br>-       | \$    | -                | \$ | -                     | \$<br>-       | \$  | -                    | \$  | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| 2008  | \$<br>400.1                    | \$    | 331.3               | \$ | 472.6              | \$<br>0.5    | \$   | 0.5               | \$     | 0.6               | \$<br>14.3    | \$    | 12.4             | \$ | 16.2                  | \$<br>0.0     | \$  | 0.0                  | \$  | 0.0                 | \$<br>414.9   | \$ | 344.2              | \$ | 489.5               |
| 2009  | \$<br>581.3                    | \$    | 481.2               | \$ | 687.3              | \$<br>6.5    | \$   | 5.3               | \$     | 7.6               | \$<br>42.6    | \$    | 36.9             | \$ | 48.2                  | \$<br>1.3     | \$  | 1.2                  | \$  | 1.5                 | \$<br>631.6   | \$ | 524.5              | \$ | 744.7               |
| 2010  | \$<br>710.8                    | \$    | 588.3               | \$ | 840.8              | \$<br>12.0   | \$   | 9.9               | \$     | 14.2              | \$<br>66.6    | \$    | 57.7             | \$ | 75.5                  | \$<br>2.6     | \$  | 2.2                  | \$  | 2.9                 | \$<br>792.1   | \$ | 658.2              | \$ | 933.6               |
| 2011  | \$<br>690.1                    | \$    | 571.1               | \$ | 816.3              | \$<br>11.7   | \$   | 9.6               | \$     | 13.8              | \$<br>64.7    | \$    | 56.1             | \$ | 73.3                  | \$<br>2.5     | \$  | 2.2                  | \$  | 2.9                 | \$<br>769.0   | \$ | 639.0              | \$ | 906.4               |
| 2012  | \$<br>670.0                    | \$    | 554.5               | \$ | 792.6              | \$<br>11.3   | \$   | 9.4               | \$     | 13.4              | \$<br>62.8    | \$    | 54.4             | \$ | 71.2                  | \$<br>2.4     | \$  | 2.1                  | \$  | 2.8                 | \$<br>746.6   | \$ | 620.4              | \$ | 880.0               |
| 2013  | \$<br>305.4                    | \$    | 252.6               | \$ | 361.8              | \$<br>10.5   | \$   | 8.7               | \$     | 12.5              | \$<br>48.6    | \$    | 42.1             | \$ | 55.2                  | \$<br>2.4     | \$  | 2.0                  | \$  | 2.7                 | \$<br>366.9   | \$ | 305.4              | \$ | 432.1               |
| 2014  | \$<br>130.2                    | \$    | 107.6               | \$ | 154.2              | \$<br>5.1    | \$   | 4.2               | \$     | 6.1               | \$<br>22.5    | \$    | 19.5             | \$ | 25.5                  | \$<br>1.1     | \$  | 1.0                  | \$  | 1.3                 | \$<br>158.9   | \$ | 132.3              | \$ | 187.1               |
| 2015  | \$<br>-                        | \$    | -                   | \$ | -                  | \$<br>-      | \$   | -                 | \$     | -                 | \$<br>-       | \$    | -                | \$ | -                     | \$<br>-       | \$  | -                    | \$  | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| 2016  | \$<br>-                        | \$    | -                   | \$ | -                  | \$<br>-      | \$   | -                 | \$     | -                 | \$<br>-       | \$    | -                | \$ | -                     | \$<br>-       | \$  | -                    | \$  | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| 2017  | \$<br>-                        | \$    | -                   | \$ | -                  | \$<br>-      | \$   | -                 | \$     | -                 | \$<br>-       | \$    | -                | \$ | -                     | \$<br>-       | \$  | -                    | \$  | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| 2018  | \$<br>-                        | \$    | -                   | \$ | -                  | \$<br>-      | \$   | -                 | \$     | -                 | \$<br>-       | \$    | -                | \$ | -                     | \$<br>-       | \$  | -                    | \$  | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| 2019  | \$<br>-                        | \$    | -                   | \$ | -                  | \$<br>-      | \$   | -                 | \$     | -                 | \$<br>-       | \$    | -                | \$ | -                     | \$<br>-       | \$  | -                    | \$  | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| 2020  | \$<br>-                        | \$    | -                   | \$ | -                  | \$<br>-      | \$   | -                 | \$     | -                 | \$<br>-       | \$    | -                | \$ | -                     | \$<br>-       | \$  | -                    | \$  | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| 2021  | \$<br>-                        | \$    | -                   | \$ | -                  | \$<br>-      | \$   | -                 | \$     | -                 | \$<br>-       | \$    | -                | \$ | -                     | \$<br>-       | \$  | -                    | \$  | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| 2022  | \$<br>-                        | \$    | -                   | \$ | -                  | \$<br>-      | \$   | -                 | \$     | -                 | \$<br>-       | \$    | -                | \$ | -                     | \$<br>-       | \$  | -                    | \$  | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| 2023  | \$<br>-                        | \$    | -                   | \$ | -                  | \$<br>-      | \$   | -                 | \$     | -                 | \$<br>-       | \$    | -                | \$ | -                     | \$<br>-       | \$  | -                    | \$  | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| 2024  | \$<br>-                        | \$    | -                   | \$ | -                  | \$<br>-      | \$   | -                 | \$     | -                 | \$<br>-       | \$    | -                | \$ | -                     | \$<br>-       | \$  | -                    | \$  | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| 2025  | \$<br>-                        | \$    | -                   | \$ | -                  | \$<br>-      | \$   | -                 | \$     | -                 | \$<br>-       | \$    | -                | \$ | -                     | \$<br>-       | \$  | -                    | \$  | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| 2026  | \$<br>-                        | \$    | -                   | \$ | -                  | \$<br>-      | \$   | -                 | \$     | -                 | \$<br>-       | \$    | -                | \$ | -                     | \$<br>-       | \$  | -                    | \$  | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| 2027  | \$<br>-                        | \$    | -                   | \$ | -                  | \$<br>-      | \$   | -                 | \$     | -                 | \$<br>-       | \$    | -                | \$ | -                     | \$<br>-       | \$  | -                    | \$  | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| 2028  | \$<br>-                        | \$    | -                   | \$ | -                  | \$<br>-      | \$   | -                 | \$     | -                 | \$<br>-       | \$    | -                | \$ | -                     | \$<br>-       | \$  | -                    | \$  | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| 2029  | \$<br>-                        | \$    | -                   | \$ | -                  | \$<br>-      | \$   | -                 | \$     | -                 | \$<br>-       | \$    | -                | \$ | -                     | \$<br>        | \$  | -                    | \$  | -                   | \$<br>-       | \$ | -                  | \$ | -                   |
| Total | \$<br>3,487.9                  | \$    | 2,886.6             | \$ | 4,125.7            | \$<br>57.6   | \$   | 47.6              | \$     | 68.3              | \$<br>322.2   | \$    | 279.1            | \$ | 365.1                 | \$<br>12.4    | \$  | 10.7                 | \$  | 14.1                | \$<br>3,880.1 | \$ | 3,224.0            | \$ | 4,573.2             |
| Ann.  | \$<br>200.3                    | \$    | 165.8               | \$ | 236.9              | \$<br>3.3    | \$   | 2.7               | \$     | 3.9               | \$<br>18.5    | \$    | 16.0             | \$ | 21.0                  | \$<br>0.7     | \$  | 0.6                  | \$  | 8.0                 | \$<br>222.8   | \$ | 185.1              | \$ | 262.6               |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

Exhibit J.4k Present Value of Annual Treatment Cost Projections at 3% Discount Rate (All Systems)

#### Alternative 2

|       | Surface Water CWS |                                |                     |    |                     | Surfa         | ce Water N           | TNC  | ws                   | Disinfe       | cting | Ground           | l Wa | ater CWS              | Disinfecting  | g G | round Wate          | er NT | ncws               |               |    | Total               |    |                      |
|-------|-------------------|--------------------------------|---------------------|----|---------------------|---------------|----------------------|------|----------------------|---------------|-------|------------------|------|-----------------------|---------------|-----|---------------------|-------|--------------------|---------------|----|---------------------|----|----------------------|
|       |                   | 90 Percent<br>Confidence Bound |                     |    |                     |               |                      | Perc | ent<br>Bound         |               |       |                  |      | cent<br>e Bound       |               |     | 90 Pe<br>Confiden   |       |                    |               |    | 90 Pe<br>Confider   |    |                      |
|       | Mean<br>Value     | (!                             | Lower<br>5th %tile) |    | Upper<br>5th %tile) | Mean<br>Value | Lower<br>(5th %tile) | (9   | Upper<br>95th %tile) | Mean<br>Value |       | ower<br>1 %tile) |      | Upper<br>(95th %tile) | Mean<br>Value | (!  | Lower<br>5th %tile) |       | Upper<br>th %tile) | Mean<br>Value | (! | Lower<br>5th %tile) | (9 | Upper<br>95th %tile) |
| 2005  | \$<br>-           | \$                             |                     | \$ | -                   | \$<br>-       | \$ -                 | \$   | -                    | \$            | \$    |                  | \$   |                       | \$            | \$  | -                   | \$    | -                  | \$<br>-       | \$ | -                   | \$ | -                    |
| 2006  | \$<br>-           | \$                             | -                   | \$ | -                   | \$<br>-       | \$ -                 | \$   | -                    | \$<br>-       | \$    | -                | \$   | -                     | \$<br>-       | \$  | -                   | \$    | -                  | \$<br>-       | \$ | -                   | \$ | -                    |
| 2007  | \$<br>-           | \$                             | -                   | \$ | -                   | \$<br>-       | \$ -                 | \$   | -                    | \$<br>-       | \$    | -                | \$   | -                     | \$<br>-       | \$  | -                   | \$    | -                  | \$<br>-       | \$ | -                   | \$ | -                    |
| 2008  | \$<br>-           | \$                             | -                   | \$ | -                   | \$<br>-       | \$ -                 | \$   | -                    | \$<br>-       | \$    | -                | \$   | -                     | \$<br>-       | \$  | -                   | \$    | -                  | \$<br>-       | \$ | -                   | \$ | -                    |
| 2009  | \$<br>22.5        | \$                             | 19.0                | \$ | 26.1                | \$<br>0.0     | \$ 0.0               | \$   | 0.0                  | \$<br>1.4     | \$    | 1.3              | \$   | 1.5                   | \$<br>0.0     | \$  | 0.0                 | \$    | 0.0                | \$<br>23.9    | \$ | 20.3                | \$ | 27.6                 |
| 2010  | \$<br>57.6        | \$                             | 48.6                | \$ | 66.8                | \$<br>0.8     | \$ 0.7               | \$   | 0.9                  | \$<br>4.9     | \$    | 4.5              | \$   | 5.3                   | \$<br>0.1     | \$  | 0.1                 | \$    | 0.1                | \$<br>63.4    | \$ | 54.0                | \$ | 73.1                 |
| 2011  | \$<br>102.2       | \$                             | 86.2                | \$ | 118.5               | \$<br>2.3     | \$ 1.9               | \$   | 2.6                  | \$<br>10.0    | \$    | 9.3              | \$   | 10.8                  | \$<br>0.3     | \$  | 0.3                 | \$    | 0.3                | \$<br>114.8   | \$ | 97.8                | \$ | 132.2                |
| 2012  | \$<br>144.1       | \$                             | 121.6               | \$ | 167.1               | \$<br>3.6     | \$ 3.1               | \$   | 4.2                  | \$<br>14.9    | \$    | 13.8             | \$   | 15.9                  | \$<br>0.5     | \$  | 0.5                 | \$    | 0.5                | \$<br>163.1   | \$ | 139.0               | \$ | 187.8                |
| 2013  | \$<br>183.5       | \$                             | 154.9               | \$ | 212.8               | \$<br>4.9     | \$ 4.1               | \$   | 5.7                  | \$<br>19.4    | \$    | 18.0             | \$   | 20.8                  | \$<br>0.7     | \$  | 0.6                 | \$    | 0.7                | \$<br>208.5   | \$ | 177.7               | \$ | 240.0                |
| 2014  | \$<br>201.0       | \$                             | 169.7               | \$ | 233.2               | \$<br>6.1     | \$ 5.1               | \$   | 7.1                  | \$<br>22.4    | \$    | 20.9             | \$   | 24.0                  | \$<br>0.8     | \$  | 0.8                 | \$    | 0.9                | \$<br>230.4   | \$ | 196.5               | \$ | 265.2                |
| 2015  | \$<br>205.4       | \$                             | 173.4               | \$ | 238.3               | \$<br>6.6     | \$ 5.5               | \$   | 7.6                  | \$<br>23.4    | \$    | 21.8             | \$   | 25.1                  | \$<br>0.9     | \$  | 0.9                 | \$    | 1.0                | \$<br>236.3   | \$ | 201.6               | \$ | 271.9                |
| 2016  | \$<br>199.4       | \$                             | 168.3               | \$ | 231.3               | \$<br>6.4     | \$ 5.4               | \$   | 7.4                  | \$<br>22.8    | \$    | 21.2             | \$   | 24.3                  | \$<br>0.9     | \$  | 0.8                 | \$    | 0.9                | \$<br>229.4   | \$ | 195.7               | \$ | 264.0                |
| 2017  | \$<br>193.6       | \$                             | 163.4               | \$ | 224.6               | \$<br>6.2     | \$ 5.2               | \$   | 7.2                  | \$<br>22.1    | \$    | 20.6             | \$   | 23.6                  | \$<br>0.9     | \$  | 0.8                 | \$    | 0.9                | \$<br>222.8   | \$ | 190.0               | \$ | 256.3                |
| 2018  | \$<br>188.0       | \$                             | 158.6               | \$ | 218.0               | \$<br>6.0     | \$ 5.1               | \$   | 7.0                  | \$<br>21.5    | \$    | 20.0             | \$   | 22.9                  | \$<br>0.8     | \$  | 0.8                 | \$    | 0.9                | \$<br>216.3   | \$ | 184.5               | \$ | 248.9                |
| 2019  | \$<br>182.5       | \$                             | 154.0               | \$ | 211.7               | \$<br>5.8     | \$ 4.9               | \$   | 6.8                  | \$<br>20.8    | \$    | 19.4             | \$   | 22.3                  | \$<br>0.8     | \$  | 0.8                 | \$    | 0.9                | \$<br>210.0   | \$ | 179.1               | \$ | 241.6                |
| 2020  | \$<br>177.2       | \$                             | 149.5               | \$ | 205.5               | \$<br>5.7     | \$ 4.8               | \$   | 6.6                  | \$<br>20.2    | \$    | 18.8             | \$   | 21.6                  | \$<br>0.8     | \$  | 0.7                 | \$    | 0.8                | \$<br>203.9   | \$ | 173.9               | \$ | 234.6                |
| 2021  | \$<br>172.0       | \$                             | 145.2               | \$ | 199.5               | \$<br>5.5     | \$ 4.6               | \$   | 6.4                  | \$<br>19.6    | \$    | 18.3             | \$   | 21.0                  | \$<br>0.8     | \$  | 0.7                 | \$    | 0.8                | \$<br>197.9   | \$ | 168.8               | \$ | 227.7                |
| 2022  | \$<br>167.0       | \$                             | 141.0               | \$ | 193.7               | \$<br>5.3     | \$ 4.5               | \$   | 6.2                  | \$<br>19.1    | \$    | 17.7             | \$   | 20.4                  | \$<br>0.7     | \$  | 0.7                 | \$    | 0.8                | \$<br>192.2   | \$ | 163.9               | \$ | 221.1                |
| 2023  | \$<br>162.2       | \$                             | 136.8               | \$ | 188.1               | \$<br>5.2     | \$ 4.4               | \$   | 6.0                  | \$<br>18.5    | \$    | 17.2             | \$   | 19.8                  | \$<br>0.7     | \$  | 0.7                 | \$    | 0.8                | \$<br>186.6   | \$ | 159.1               | \$ | 214.7                |
| 2024  | \$<br>157.4       | \$                             | 132.9               | \$ | 182.6               | \$<br>5.0     | \$ 4.2               | \$   | 5.9                  | \$<br>18.0    | \$    | 16.7             | \$   | 19.2                  | \$<br>0.7     | \$  | 0.7                 | \$    | 0.7                | \$<br>181.1   | \$ | 154.5               | \$ | 208.4                |
| 2025  | \$<br>152.8       | \$                             | 129.0               | \$ | 177.3               | \$<br>4.9     | \$ 4.1               | \$   | 5.7                  | \$<br>17.4    | \$    | 16.2             | \$   | 18.7                  | \$<br>0.7     | \$  | 0.6                 | \$    | 0.7                | \$<br>175.9   | \$ | 150.0               | \$ | 202.3                |
| 2026  | \$<br>148.4       | \$                             | 125.2               | \$ | 172.1               | \$<br>4.7     | \$ 4.0               | \$   | 5.5                  | \$<br>16.9    | \$    | 15.8             | \$   | 18.1                  | \$<br>0.7     | \$  | 0.6                 | \$    | 0.7                | \$<br>170.7   | \$ | 145.6               | \$ | 196.5                |
| 2027  | \$<br>144.1       | \$                             | 121.6               | \$ | 167.1               | \$<br>4.6     | \$ 3.9               | \$   | 5.4                  | \$<br>16.4    | \$    | 15.3             | \$   | 17.6                  | \$<br>0.6     | \$  | 0.6                 | \$    | 0.7                | \$<br>165.8   | \$ | 141.4               | \$ | 190.7                |
| 2028  | \$<br>139.9       | \$                             | 118.0               | \$ | 162.2               | \$<br>4.5     | \$ 3.8               | \$   | 5.2                  | \$<br>16.0    | \$    | 14.9             | \$   | 17.1                  | \$<br>0.6     | \$  | 0.6                 | \$    | 0.7                | \$<br>160.9   | \$ | 137.2               | \$ | 185.2                |
| 2029  | \$<br>135.8       | \$                             | 114.6               | \$ | 157.5               | \$<br>4.3     | \$ 3.7               | \$   | 5.0                  | \$<br>15.5    | \$    | 14.4             | \$   | 16.6                  | \$<br>0.6     | \$  | 0.6                 | \$    | 0.6                | \$<br>156.2   | \$ | 133.3               | \$ | 179.8                |
| Total | \$<br>3,236.6     | \$                             | 2,731.6             | \$ | 3,754.1             | \$<br>98.5    | \$ 82.9              | \$   | 114.5                | \$<br>361.3   | \$    | 336.2            | \$   | 386.5                 | \$<br>13.7    | \$  | 12.7                | \$    | 14.6               | \$<br>3,710.1 | \$ | 3,163.5             | \$ | 4,269.6              |
| Ann.  | \$<br>185.9       | \$                             | 156.9               | \$ | 215.6               | \$<br>5.7     | \$ 4.8               | \$   | 6.6                  | \$<br>20.8    | \$    | 19.3             | \$   | 22.2                  | \$<br>0.8     | \$  | 0.7                 | \$    | 0.8                | \$<br>213.1   | \$ | 181.7               | \$ | 245.2                |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

#### Exhibit J.4l Present Value of Annual Non-Treatment Cost Projections at 3% Discount Rate (All Systems)

Alternative 2

| Aiteine | tive 2         |        |      |       |             |            |              |                |        |                  |            |              |                |         |                |            |              |                |           |                         |              |                |         |            |            |              |
|---------|----------------|--------|------|-------|-------------|------------|--------------|----------------|--------|------------------|------------|--------------|----------------|---------|----------------|------------|--------------|----------------|-----------|-------------------------|--------------|----------------|---------|------------|------------|--------------|
|         |                |        |      | Surfa | ace Water C | ws         |              |                | Sui    | rface Water NTNO | cws        |              |                | Disinfe | cting Ground W | ater CWS   |              |                | Disinfect | ing Ground Water NTNCWS |              |                |         | Total      |            |              |
|         |                |        |      |       | lonitoring  |            | Siginificant |                |        | Monitoring       |            | Siginificant |                |         | Monitoring     |            | Siginificant |                |           | Monitoring              | Siginificant |                |         | Monitoring |            | Siginificant |
|         | Implementation |        | IDSE | +     | Plans       | Monitoring | Excursion    | Implementation | IDSE   | Plans            | Monitoring | Excursion    | Implementation | IDSE    | Plans          | Monitoring | Excursion    | Implementation | IDSE      | Plans Monitoring        | Excursion    | Implementation | IDSE    | Plans      | Monitoring | Excursion    |
| 2005    | \$ 0.          | 0.6 \$ | -    | \$    | -           | \$ -       | \$ -         | \$ 0.0         | \$ -   | s -              | \$ -       | \$ -         | \$ 0.1         | \$ -    | \$ -           | \$ -       | \$ -         | \$ 0.0         | \$ -      | s - s -                 | \$ -         | \$ 0.7         | \$ -    | \$ -       | \$ -       | \$ -         |
| 2006    | \$ 1.          | .2 \$  |      |       | -           | \$ -       | \$ -         | \$ 0.1         | \$ 0.0 | \$ -             | \$ -       | \$ -         | \$ 3.1         | \$ 0.1  | \$ -           | \$ -       | \$ -         | \$ 0.5         | \$ -      | \$ - \$ -               | s -          | \$ 4.9         | \$ 7.8  | \$ -       | s -        | \$ -         |
| 2007    | \$ -           | \$     | 19.  | 9 \$  | 0.2         | \$ -       | \$ -         | \$ -           | \$ 0.0 | \$ 0.0           | \$ -       | \$ -         | \$ -           | \$ 1.0  | \$ 0.0         | \$ -       | \$ -         | s -            | \$ 0.0    | \$ 0.0 \$ -             | s -          | \$ -           | \$ 20.9 | \$ 0.2     | s -        | \$ -         |
| 2008    | \$ 0.          | ).5 \$ | 16.  | 1 \$  | 0.5         | \$ -       | s -          | \$ 0.0         | \$ 0.0 | \$ 0.0           | \$ -       | \$ -         | \$ 0.0         | \$ 5.7  | \$ 0.2         | \$ -       | s -          | \$ 0.0         | \$ 0.0    | \$ 0.0 \$ -             | S -          | \$ 0.6         | \$ 21.8 | \$ 0.7     | \$ -       | \$ -         |
| 2009    | \$ 0.          | 0.6 \$ | -    | \$    | 0.7         | \$ -       | s -          | \$ 0.0         | \$ -   | \$ 0.0           | \$ -       | \$ -         | \$ 1.5         | \$ -    | \$ 2.2         | \$ -       | s -          | \$ 0.2         | \$ -      | \$ 0.4 \$ -             | S -          | \$ 2.4         | \$ -    | \$ 3.3     | \$ -       | \$ -         |
| 2010    | \$ 0.          | 0.5 \$ | -    | \$    | -           | \$ -       | \$ -         | \$ 0.0         | \$ -   | s -              | \$ -       | \$ -         | \$ 1.4         | \$ -    | \$ -           | \$ -       | \$ -         | \$ 0.2         | \$ -      | s - s -                 | s -          | \$ 2.2         | \$ -    | \$ -       | \$ -       | \$ -         |
| 2011    | \$ -           | \$     | -    | \$    | -           | \$ 0.3     | \$ -         | s -            | \$ -   | s -              | \$ 0.0     | \$ -         | \$ -           | \$ -    | \$ -           | \$ 0.1     | \$ -         | s -            | \$ -      | \$ - \$ 0.0             | \$ -         | s -            | \$ -    | \$ -       | \$ 0.4     | \$ -         |
| 2012    | \$ -           | \$     | -    | \$    | -           | \$ (0.6)   | \$ 0.0       | s -            | \$ -   | s -              | \$ 0.0     | s -          | s -            | \$ -    | \$ -           | \$ 2.3     | \$ -         | s -            | \$ -      | \$ - \$ 0.3             | s -          | s -            | \$ -    | s -        | \$ 2.0     | \$ 0.0       |
| 2013    | s -            | \$     | -    | \$    | -           | \$ (1.5)   | \$ 0.1       | s -            | s -    | s -              | \$ 0.0     | \$ -         | s -            | \$ -    | \$ -           | \$ 4.2     | s -          | s -            | \$ -      | \$ - \$ 0.5             | s -          | s -            | \$ -    | s -        | \$ 3.2     | \$ 0.1       |
| 2014    | s -            | \$     | -    | \$    | -           | \$ (1.5)   | \$ 0.2       | s -            | s -    | s -              | \$ 0.0     | \$ -         | s -            | \$ -    | \$ -           | \$ 4.1     | s -          | s -            | \$ -      | \$ - \$ 0.5             | s -          | s -            | \$ -    | s -        | \$ 3.1     | \$ 0.2       |
| 2015    | \$ -           | \$     | -    | \$    |             | \$ (1.5)   | \$ 0.1       | s -            | s -    | s -              | \$ 0.0     | s -          | \$ -           | \$ -    | s -            | \$ 3.9     | s -          | s -            | \$ -      | \$ - \$ 0.5             | s -          | s -            | \$ -    | s -        | \$ 3.0     | \$ 0.1       |
| 2016    | \$ -           | \$     | -    | \$    | -           | \$ (1.4)   | \$ 0.1       | s -            | s -    | s -              | \$ 0.0     | \$ -         | s -            | \$ -    | \$ -           | \$ 3.6     | \$ -         | s -            | \$ -      | \$ - \$ 0.5             | s -          | s -            | \$ -    | s -        | \$ 2.9     | \$ 0.1       |
| 2017    | \$ -           | \$     | -    | \$    |             | \$ (1.4)   | \$ 0.1       | s -            | s -    | s -              | \$ 0.0     | s -          | \$ -           | \$ -    | s -            | \$ 3.7     | s -          | s -            | \$ -      | \$ - \$ 0.5             | s -          | s -            | \$ -    | s -        | \$ 2.9     | \$ 0.1       |
| 2018    | \$ -           | \$     | -    | \$    |             | \$ (1.3)   | \$ 0.1       | s -            | s -    | s -              | \$ 0.0     | s -          | \$ -           | \$ -    | s -            | \$ 3.6     | s -          | s -            | \$ -      | \$ - \$ 0.5             | s -          | s -            | \$ -    | s -        | \$ 2.8     | \$ 0.1       |
| 2019    | \$ -           | \$     | -    | \$    |             | \$ (1.3)   | \$ 0.1       | s -            | s -    | s -              | \$ 0.0     | s -          | s -            | s -     | s -            | \$ 3.5     | s -          | s -            | \$ -      | \$ - \$ 0.5             | s -          | s -            | \$ -    | s -        | \$ 2.7     | \$ 0.1       |
| 2020    | s -            | \$     | -    | s     | -           | \$ (1.3)   | \$ 0.1       | s -            | s -    | s -              | \$ 0.0     | ş -          | s -            | \$ -    | \$ -           | \$ 3.4     | s -          | s -            | \$ -      | \$ - \$ 0.4             | s -          | s -            | \$ -    | s -        | \$ 2.6     | \$ 0.1       |
| 2021    | s -            | \$     | -    | s     | -           | \$ (1.2)   | \$ 0.1       | s -            | s -    | s -              | \$ 0.0     | ş -          | s -            | \$ -    | \$ -           | \$ 3.3     | s -          | s -            | \$ -      | \$ - \$ 0.4             | s -          | s -            | \$ -    | s -        | \$ 2.5     | \$ 0.1       |
| 2022    | s -            | \$     |      | s     |             | \$ (1.2)   | \$ 0.1       | s -            | s -    | s -              | \$ 0.0     | s -          | s -            | s -     | s -            | \$ 3.2     | s -          | s -            | \$ -      | \$ - \$ 0.4             | s -          | s -            | s -     | s -        | \$ 2.5     | \$ 0.1       |
| 2023    | \$ -           | \$     |      | s     | -           | \$ (1.1)   |              | s -            | \$ -   | s -              | \$ 0.0     | ş -          | s -            | \$ -    | s -            | \$ 3.1     |              | s -            | \$ -      | \$ - \$ 0.4             | s -          | s -            | \$ -    | s -        | \$ 2.4     |              |
| 2024    | s -            | \$     | -    | s     |             | \$ (1.1)   | \$ 0.1       | s -            | s -    | s -              | \$ 0.0     | s -          | s -            | s -     | s -            | \$ 3.0     | s -          | s -            | s -       | S - \$ 0.4              | s -          | s -            | s -     | s -        | \$ 2.3     | \$ 0.1       |
| 2025    | \$ -           | \$     |      | s     | -           | \$ (1.1)   |              |                | s -    | s -              | \$ 0.0     | s -          | s -            | \$ -    | s -            | \$ 2.9     |              | s -            | \$ -      | \$ - \$ 0.4             | s -          | s -            | \$ -    | s -        | \$ 2.3     |              |
| 2026    | s -            | s      |      | s     | _           | \$ (1.0)   | \$ 0.1       | s -            | s -    | s -              | \$ 0.0     | s -          | s -            | s -     | s -            | \$ 2.9     | s -          | s -            | s -       | s - s 0.4               | s -          | s -            | s -     | s -        | \$ 2.2     | S 0.1        |
| 2027    | s -            | \$     |      | s     |             | \$ (1.0)   |              |                | s -    | s -              | \$ 0.0     | s -          | s -            | s -     | s -            | \$ 2.8     |              | s -            | \$ -      | \$ - \$ 0.4             | 1            | s -            | s -     | s -        | \$ 2.1     |              |
| 2028    | s -            | s      |      | s     | _           | \$ (1.0)   |              |                | s -    | s -              | \$ 0.0     | s -          | s -            | s -     | s -            | \$ 2.7     |              | s -            | s -       | \$ - \$ 0.3             | s -          | s -            | s -     | s -        | \$ 2.1     |              |
| 2029    | s -            | s      |      | s     | _           | \$ (1.0)   |              |                | s -    | s -              | \$ 0.0     | s -          | s -            | s -     | s -            |            | s -          | s -            | s -       | s - s 0.3               |              | s -            | s -     | s -        | \$ 2.0     |              |
| Total   | s 3.           | .6 S   | 43.  | 8 S   | 1.5         |            | -            |                | S 0.1  | \$ 0.0           |            |              | \$ 6.1         | \$ 6.8  | \$ 2.4         |            |              | s 1.0          | \$ 0.0    |                         | s -          | \$ 10.8        | s 50.6  | \$ 4.2     |            |              |
| Ann.    |                | 1.2 \$ |      | 5 \$  | 0.1         |            |              |                | -      |                  |            | -            |                | \$ 0.4  | -              |            | \$ -         | \$ 0.1         |           |                         | -            | \$ 0.6         | -       | -          |            | <u> </u>     |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005. Detail may not add exactly to totals due to independent rounding. Arn = value of total annualized at discount rate. Source: Derived from Exhibits J.4a through h.

J-131

## Exhibit J.4m Present Value of Annual Cost Projections at 7% Discount Rate (All Systems and Primacy Agencies)

#### Alternative 2

|       | Sı            | urface Water C       | ws                    | Surf          | ace Water N7         | NCWS                  | Disinf        | ecting Ground \      | Water CWS             | Disinfecti    | ng Ground Water      | NTNCWS                | Primacy Agencies |               | Total                |                       |
|-------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|------------------|---------------|----------------------|-----------------------|
|       |               | 90 Pe<br>Confiden    | ercent<br>ce Bound    |               |                      | ercent<br>nce Bound   |               |                      | ercent<br>nce Bound   |               |                      | ercent<br>ce Bound    |                  |               |                      | ercent<br>nce Bound   |
|       | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Point Estimate   | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) |
| 2005  | \$<br>0.6     | \$ 0.6               | \$ 0.6                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 3.4           | \$ 4.1        | \$ 4.1               | \$ 4.1                |
| 2006  | \$<br>8.0     | \$ 8.0               | \$ 8.0                | \$ 0.1        | \$ 0.1               | \$ 0.1                | \$ 2.9        | \$ 2.9               | \$ 2.9                | \$ 0.5        | \$ 0.5               | \$ 0.5                | \$ 3.2           | \$ 14.6       | \$ 14.6              | \$ 14.6               |
| 2007  | \$<br>17.3    | \$ 17.3              | \$ 17.3               | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.8        | \$ 0.8               | \$ 0.8                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.1           | \$ 18.3       | \$ 18.3              | \$ 18.3               |
| 2008  | \$<br>344.8   | \$ 288.0             | \$ 404.8              | \$ 0.5        | \$ 0.4               | \$ 0.6                | \$ 16.8       | \$ 15.2              | \$ 18.3               | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 1.5           | \$ 363.6      | \$ 305.1             | \$ 425.2              |
| 2009  | \$<br>481.5   | \$ 399.0             | \$ 568.7              | \$ 5.2        | \$ 4.3               | \$ 6.2                | \$ 37.9       | \$ 33.3              | \$ 42.4               | \$ 1.6        | \$ 1.4               | \$ 1.7                | \$ 0.6           | \$ 526.7      | \$ 438.6             | \$ 619.5              |
| 2010  | \$<br>589.0   | \$ 488.2             | \$ 695.6              | \$ 9.8        | \$ 8.1               | \$ 11.6               | \$ 55.9       | \$ 48.8              | \$ 62.9               | \$ 2.2        | \$ 2.0               | \$ 2.5                | \$ -             | \$ 656.9      | \$ 547.1             | \$ 772.7              |
| 2011  | \$<br>584.4   | \$ 484.9             | \$ 689.5              | \$ 10.3       | \$ 8.5               | \$ 12.1               | \$ 55.1       | \$ 48.2              | \$ 62.0               | \$ 2.1        | \$ 1.8               | \$ 2.4                | \$ -             | \$ 652.9      | \$ 544.5             | \$ 767.0              |
| 2012  | \$<br>577.4   | \$ 479.5             | \$ 680.7              | \$ 10.6       | \$ 8.8               | \$ 12.5               | \$ 56.7       | \$ 50.0              | \$ 63.4               | \$ 2.3        | \$ 2.0               | \$ 2.5                | \$ -             | \$ 648.0      | \$ 541.3             | \$ 760.1              |
| 2013  | \$<br>333.0   | \$ 277.4             | \$ 391.6              | \$ 10.6       | \$ 8.8               | \$ 12.4               | \$ 49.4       | \$ 44.0              | \$ 54.7               | \$ 2.4        | \$ 2.2               | \$ 2.7                | \$ -             | \$ 396.2      | \$ 333.2             | \$ 462.3              |
| 2014  | \$<br>216.9   | \$ 181.5             | \$ 253.9              | \$ 7.4        | \$ 6.2               | \$ 8.7                | \$ 32.2       | \$ 29.2              | \$ 35.3               | \$ 1.7        | \$ 1.5               | \$ 1.8                | \$ -             | \$ 259.0      | \$ 219.2             | \$ 300.4              |
| 2015  | \$<br>129.2   | \$ 108.9             | \$ 150.0              | \$ 4.2        | \$ 3.5               | \$ 4.8                | \$ 17.3       | \$ 16.3              | \$ 18.4               | \$ 0.9        | \$ 0.9               | \$ 0.9                | \$ -             | \$ 152.4      | \$ 130.4             | \$ 174.9              |
| 2016  | \$<br>120.8   | \$ 101.8             | \$ 140.2              | \$ 3.9        | \$ 3.3               | \$ 4.5                | \$ 16.2       | \$ 15.2              | \$ 17.2               | \$ 0.8        | \$ 0.8               | \$ 0.9                | \$ -             | \$ 142.4      | \$ 121.8             | \$ 163.5              |
| 2017  | \$<br>112.9   | \$ 95.1              | \$ 131.0              | \$ 3.6        | \$ 3.1               | \$ 4.2                | \$ 15.1       | \$ 14.2              | \$ 16.0               | \$ 0.8        | \$ 0.8               | \$ 0.8                | \$ -             | \$ 133.1      | \$ 113.9             | \$ 152.8              |
| 2018  | \$<br>105.5   | \$ 88.9              | \$ 122.5              | \$ 3.4        | \$ 2.9               | \$ 4.0                | \$ 14.2       | \$ 13.3              | \$ 15.0               | \$ 0.7        | \$ 0.7               | \$ 0.8                | \$ -             | \$ 124.4      | \$ 106.4             | \$ 142.8              |
| 2019  | \$<br>98.6    | \$ 83.1              | \$ 114.4              | \$ 3.2        | \$ 2.7               | \$ 3.7                | \$ 13.2       | \$ 12.4              | \$ 14.0               | \$ 0.7        | \$ 0.7               | \$ 0.7                | \$ -             | \$ 116.3      | \$ 99.5              | \$ 133.4              |
| 2020  | \$<br>92.1    | \$ 77.7              | \$ 107.0              | \$ 3.0        | \$ 2.5               | \$ 3.5                | \$ 12.4       | \$ 11.6              | \$ 13.1               | \$ 0.6        | \$ 0.6               | \$ 0.7                | \$ -             | \$ 108.6      | \$ 92.9              | \$ 124.7              |
| 2021  | \$<br>86.1    | \$ 72.6              | \$ 100.0              | \$ 2.8        | \$ 2.3               | \$ 3.2                | \$ 11.6       | \$ 10.9              | \$ 12.2               | \$ 0.6        | \$ 0.6               | \$ 0.6                | \$ -             | \$ 101.5      | \$ 86.9              | \$ 116.6              |
| 2022  | \$<br>80.5    | \$ 67.8              | \$ 93.4               | \$ 2.6        | \$ 2.2               | \$ 3.0                | \$ 10.8       | \$ 10.2              | \$ 11.4               | \$ 0.6        | \$ 0.5               | \$ 0.6                | \$ -             | \$ 94.9       | \$ 81.2              | \$ 108.9              |
| 2023  | \$<br>75.2    | \$ 63.4              | \$ 87.3               | \$ 2.4        | \$ 2.0               | \$ 2.8                | \$ 10.1       | \$ 9.5               | \$ 10.7               | \$ 0.5        | \$ 0.5               | \$ 0.5                | \$ -             | \$ 88.7       | \$ 75.9              | \$ 101.8              |
| 2024  | \$<br>70.3    | \$ 59.2              | \$ 81.6               | \$ 2.3        | \$ 1.9               | \$ 2.6                | \$ 9.4        | \$ 8.9               | \$ 10.0               | \$ 0.5        | \$ 0.5               | \$ 0.5                | \$ -             | \$ 82.9       | \$ 70.9              | \$ 95.1               |
| 2025  | \$<br>65.7    | \$ 55.4              | \$ 76.3               | \$ 2.1        | \$ 1.8               | \$ 2.5                | \$ 8.8        | \$ 8.3               | \$ 9.3                | \$ 0.5        | \$ 0.4               | \$ 0.5                | \$ -             | \$ 77.5       | \$ 66.3              | \$ 88.9               |
| 2026  | \$<br>61.4    | \$ 51.7              | \$ 71.3               | \$ 2.0        | \$ 1.7               | \$ 2.3                | \$ 8.2        | \$ 7.7               | \$ 8.7                | \$ 0.4        | \$ 0.4               | \$ 0.4                | \$ -             | \$ 72.4       | \$ 61.9              | \$ 83.1               |
| 2027  | \$<br>57.4    | \$ 48.4              | \$ 66.6               | \$ 1.9        | \$ 1.6               | \$ 2.2                | \$ 7.7        | \$ 7.2               | \$ 8.2                | \$ 0.4        | \$ 0.4               | \$ 0.4                | \$ -             | \$ 67.7       | \$ 57.9              | \$ 77.7               |
| 2028  | \$<br>53.6    | \$ 45.2              | \$ 62.2               | \$ 1.7        | \$ 1.5               | \$ 2.0                | \$ 7.2        | \$ 6.8               | \$ 7.6                | \$ 0.4        | \$ 0.4               | \$ 0.4                | \$ -             | \$ 63.2       | \$ 54.1              | \$ 72.6               |
| 2029  | \$<br>50.1    | \$ 42.2              | \$ 58.2               | \$ 1.6        | \$ 1.4               | \$ 1.9                | \$ 6.7        | \$ 6.3               | \$ 7.1                | \$ 0.3        | \$ 0.3               | \$ 0.4                | \$ -             | \$ 59.1       | \$ 50.6              | \$ 67.8               |
| Total | \$<br>4,412.1 | \$ 3,685.8           | \$ 5,172.4            | \$ 95.1       | \$ 79.5              | \$ 111.5              | \$ 476.7      | \$ 431.4             | \$ 521.9              | \$ 21.5       | \$ 19.8              | \$ 23.2               | \$ 8.8           | \$ 5,025.2    | \$ 4,236.3           | \$ 5,848.8            |
| Ann.  | \$<br>378.6   | \$ 316.3             | \$ 443.8              | \$ 8.2        | \$ 6.8               | \$ 9.6                | \$ 40.9       | \$ 37.0              | \$ 44.8               | \$ 1.8        | \$ 1.7               | \$ 2.0                | \$ 0.8           | \$ 431.2      | \$ 363.5             | \$ 501.9              |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

## Exhibit J.4n Present Value of Annual Treatment Cost Projections at 7% Discount Rate (All Systems)

#### Alternative 2

|       | Surface Water CWS<br>90 Percent |        |    |                   |    |                     | Surf         | ace W | /ater N        | TNCW  | ıs                 | Disinfect     | ing ( | Fround V          | Vate | r CWS               | Disinfectin   | g G | round Wate          | r NT | NCWS               |               |    | Total              |    |                     |
|-------|---------------------------------|--------|----|-------------------|----|---------------------|--------------|-------|----------------|-------|--------------------|---------------|-------|-------------------|------|---------------------|---------------|-----|---------------------|------|--------------------|---------------|----|--------------------|----|---------------------|
|       |                                 | -      |    | 90 P<br>Confider  |    |                     |              | С     | 90 Poorfider   | ercen |                    |               |       | 90 Pe<br>Confider |      |                     |               |     | 90 Pe<br>Confiden   |      |                    |               |    | 90 P<br>Confider   |    |                     |
|       | Mea<br>Valu                     |        |    | Lower<br>h %tile) | (9 | Upper<br>5th %tile) | lean<br>alue |       | ower<br>%tile) |       | Jpper<br>th %tile) | Mean<br>Value |       | ₋ower<br>h %tile) | (9   | Upper<br>5th %tile) | Mean<br>Value | (   | Lower<br>5th %tile) |      | Upper<br>th %tile) | Mean<br>Value | (5 | Lower<br>th %tile) | (9 | Upper<br>5th %tile) |
| 2005  | \$                              | -      | \$ | -                 | \$ | -                   | \$<br>-      | \$    | -              | \$    | -                  | \$            | \$    | -                 | \$   | -                   | \$<br>-       | \$  | -                   | \$   | -                  | \$<br>-       | \$ | -                  | \$ | -                   |
| 2006  | \$                              | -      | \$ | -                 | \$ | -                   | \$<br>-      | \$    | -              | \$    | -                  | \$<br>-       | \$    | -                 | \$   | -                   | \$<br>-       | \$  | -                   | \$   | -                  | \$<br>-       | \$ | -                  | \$ | -                   |
| 2007  | \$                              | -      | \$ | -                 | \$ | -                   | \$<br>-      | \$    | -              | \$    | -                  | \$<br>-       | \$    | -                 | \$   | -                   | \$<br>-       | \$  | -                   | \$   | -                  | \$<br>-       | \$ | -                  | \$ | -                   |
| 2008  | \$                              | 330.7  | \$ | 273.9             | \$ | 390.7               | \$<br>0.5    | \$    | 0.4            | \$    | 0.5                | \$<br>11.8    | \$    | 10.3              | \$   | 13.4                | \$<br>0.0     | \$  | 0.0                 | \$   | 0.0                | \$<br>343.0   | \$ | 284.5              | \$ | 404.6               |
| 2009  | \$                              | 462.5  | \$ | 382.8             | \$ | 546.8               | \$<br>5.1    | \$    | 4.2            | \$    | 6.1                | \$<br>33.9    | \$    | 29.3              | \$   | 38.4                | \$<br>1.1     | \$  | 0.9                 | \$   | 1.2                | \$<br>502.5   | \$ | 417.4              | \$ | 592.5               |
| 2010  | \$                              | 544.4  | \$ | 450.6             | \$ | 644.0               | \$<br>9.2    | \$    | 7.6            | \$    | 10.9               | \$<br>51.0    | \$    | 44.2              | \$   | 57.8                | \$<br>2.0     | \$  | 1.7                 | \$   | 2.3                | \$<br>606.7   | \$ | 504.1              | \$ | 715.0               |
| 2011  | \$                              | 508.8  | \$ | 421.1             | \$ | 601.9               | \$<br>8.6    | \$    | 7.1            | \$    | 10.2               | \$<br>47.7    | \$    | 41.3              | \$   | 54.1                | \$<br>1.9     | \$  | 1.6                 | \$   | 2.1                | \$<br>567.0   | \$ | 471.1              | \$ | 668.2               |
| 2012  | \$                              | 475.5  | \$ | 393.5             | \$ | 562.5               | \$<br>8.0    | \$    | 6.6            | \$    | 9.5                | \$<br>44.6    | \$    | 38.6              | \$   | 50.5                | \$<br>1.7     | \$  | 1.5                 | \$   | 2.0                | \$<br>529.9   | \$ | 440.3              | \$ | 624.5               |
| 2013  | \$                              | 208.7  | \$ | 172.5             | \$ | 247.2               | \$<br>7.2    | \$    | 5.9            | \$    | 8.5                | \$<br>33.2    | \$    | 28.8              | \$   | 37.7                | \$<br>1.6     | \$  | 1.4                 | \$   | 1.8                | \$<br>250.7   | \$ | 208.6              | \$ | 295.2               |
| 2014  | \$                              | 85.6   | \$ | 70.8              | \$ | 101.4               | \$<br>3.4    | \$    | 2.8            | \$    | 4.0                | \$<br>14.8    | \$    | 12.8              | \$   | 16.8                | \$<br>0.8     | \$  | 0.6                 | \$   | 0.9                | \$<br>104.5   | \$ | 87.0               | \$ | 123.0               |
| 2015  | \$                              | -      | \$ | -                 | \$ | -                   | \$<br>-      | \$    | -              | \$    | -                  | \$<br>-       | \$    | -                 | \$   | -                   | \$<br>-       | \$  | -                   | \$   | -                  | \$<br>-       | \$ | -                  | \$ | -                   |
| 2016  | \$                              | -      | \$ | -                 | \$ | -                   | \$<br>-      | \$    | -              | \$    | -                  | \$<br>-       | \$    | -                 | \$   | -                   | \$<br>-       | \$  | -                   | \$   | -                  | \$<br>-       | \$ | -                  | \$ | -                   |
| 2017  | \$                              | -      | \$ | -                 | \$ | -                   | \$<br>-      | \$    | -              | \$    | -                  | \$<br>-       | \$    | -                 | \$   | -                   | \$<br>-       | \$  | -                   | \$   | -                  | \$<br>-       | \$ | -                  | \$ | -                   |
| 2018  | \$                              | -      | \$ | -                 | \$ | -                   | \$<br>-      | \$    | -              | \$    | -                  | \$<br>-       | \$    | -                 | \$   | -                   | \$<br>-       | \$  | -                   | \$   | -                  | \$<br>-       | \$ | -                  | \$ | -                   |
| 2019  | \$                              | -      | \$ | -                 | \$ | -                   | \$<br>-      | \$    | -              | \$    | -                  | \$<br>-       | \$    | -                 | \$   | -                   | \$<br>-       | \$  | -                   | \$   | -                  | \$<br>-       | \$ | -                  | \$ | -                   |
| 2020  | \$                              | -      | \$ | -                 | \$ | -                   | \$<br>-      | \$    | -              | \$    | -                  | \$<br>-       | \$    | -                 | \$   | -                   | \$<br>-       | \$  | -                   | \$   | -                  | \$<br>-       | \$ | -                  | \$ | -                   |
| 2021  | \$                              | -      | \$ | -                 | \$ | -                   | \$<br>-      | \$    | -              | \$    | -                  | \$<br>-       | \$    | -                 | \$   | -                   | \$<br>-       | \$  | -                   | \$   | -                  | \$<br>-       | \$ | -                  | \$ | -                   |
| 2022  | \$                              | -      | \$ | -                 | \$ | -                   | \$<br>-      | \$    | -              | \$    | -                  | \$<br>-       | \$    | -                 | \$   | -                   | \$<br>-       | \$  | -                   | \$   | -                  | \$<br>-       | \$ | -                  | \$ | -                   |
| 2023  | \$                              | -      | \$ | -                 | \$ | -                   | \$<br>-      | \$    | -              | \$    | -                  | \$<br>-       | \$    | -                 | \$   | -                   | \$<br>-       | \$  | -                   | \$   | -                  | \$<br>-       | \$ | -                  | \$ | -                   |
| 2024  | \$                              | -      | \$ | -                 | \$ | -                   | \$<br>-      | \$    | -              | \$    | -                  | \$<br>-       | \$    | -                 | \$   | -                   | \$<br>-       | \$  | -                   | \$   | -                  | \$<br>-       | \$ | -                  | \$ | -                   |
| 2025  | \$                              | -      | \$ | -                 | \$ | -                   | \$<br>-      | \$    | -              | \$    | -                  | \$<br>-       | \$    | -                 | \$   | -                   | \$<br>-       | \$  | -                   | \$   | -                  | \$<br>-       | \$ | -                  | \$ | -                   |
| 2026  | \$                              | -      | \$ | -                 | \$ | -                   | \$<br>-      | \$    | -              | \$    | -                  | \$<br>-       | \$    | -                 | \$   | -                   | \$<br>-       | \$  | -                   | \$   | -                  | \$<br>-       | \$ | -                  | \$ | -                   |
| 2027  | \$                              | -      | \$ | -                 | \$ | -                   | \$<br>-      | \$    | -              | \$    | -                  | \$<br>-       | \$    | -                 | \$   | -                   | \$<br>-       | \$  | -                   | \$   | -                  | \$<br>-       | \$ | -                  | \$ | -                   |
| 2028  | \$                              | -      | \$ | -                 | \$ | -                   | \$<br>-      | \$    | -              | \$    | -                  | \$<br>-       | \$    | -                 | \$   | -                   | \$<br>-       | \$  | -                   | \$   | -                  | \$<br>-       | \$ | -                  | \$ | -                   |
| 2029  | \$                              | -      | \$ | -                 | \$ | -                   | \$<br>-      | \$    | -              | \$    | -                  | \$<br>-       | \$    | -                 | \$   | -                   | \$<br>-       | \$  | -                   | \$   | -                  | \$<br>-       | \$ | -                  | \$ | -                   |
| Total | \$ 2                            | ,616.2 | \$ | 2,165.2           | \$ | 3,094.4             | \$<br>42.0   | \$    | 34.7           | \$    | 49.7               | \$<br>237.0   | \$    | 205.4             | \$   | 268.6               | \$<br>9.0     | \$  | 7.8                 | \$   | 10.2               | \$<br>2,904.2 | \$ | 2,413.0            | \$ | 3,423.1             |
| Ann.  | \$                              | 224.5  | \$ | 185.8             | \$ | 265.5               | \$<br>3.6    | \$    | 3.0            | \$    | 4.3                | \$<br>20.3    | \$    | 17.6              | \$   | 23.1                | \$<br>0.8     | \$  | 0.7                 | \$   | 0.9                | \$<br>249.2   | \$ | 207.1              | \$ | 293.7               |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

## Exhibit J.4o Present Value of Annual Treatment Cost Projections at 7% Discount Rate (All Systems)

#### Alternative 2

|       | S             | Surfa | ce Water CV         | NS |                      | Surf          | ace Wa        | ter N | TNCV           | vs                 | Disinfec      | ting | Ground            | Wat  | er CWS               | Disinfectin   | ıg G | round Wate          | r N | rncws               |               |    | Total               |    |                      |
|-------|---------------|-------|---------------------|----|----------------------|---------------|---------------|-------|----------------|--------------------|---------------|------|-------------------|------|----------------------|---------------|------|---------------------|-----|---------------------|---------------|----|---------------------|----|----------------------|
|       |               |       | 90 Pe<br>Confiden   |    |                      |               | Co            | 90 Po | ercen<br>nce B |                    |               |      | 90 I<br>Confide   | Perc | -                    |               |      | 90 Pe<br>Confiden   |     |                     |               |    | 90 Pe<br>Confiden   |    |                      |
|       | Mean<br>Value | (     | Lower<br>5th %tile) | (9 | Upper<br>95th %tile) | Mean<br>/alue | Lov<br>(5th % | -     |                | Jpper<br>th %tile) | Mean<br>Value |      | _ower<br>h %tile) | (9   | Upper<br>95th %tile) | Mean<br>Value | (:   | Lower<br>5th %tile) | (9  | Upper<br>5th %tile) | Mean<br>Value | (  | Lower<br>5th %tile) | (9 | Upper<br>95th %tile) |
| 2005  | \$<br>-       | \$    | -                   | \$ | -                    | \$<br>-       | \$            | -     | \$             |                    | \$<br>-       | \$   | -                 | \$   | -                    | \$<br>-       | \$   | -                   | \$  | -                   | \$<br>-       | \$ | -                   | \$ | -                    |
| 2006  | \$<br>-       | \$    | -                   | \$ | -                    | \$<br>-       | \$            | -     | \$             | -                  | \$<br>-       | \$   | -                 | \$   | -                    | \$<br>-       | \$   | -                   | \$  | -                   | \$<br>-       | \$ | -                   | \$ | -                    |
| 2007  | \$<br>-       | \$    | -                   | \$ | -                    | \$<br>-       | \$            | -     | \$             | -                  | \$<br>-       | \$   | -                 | \$   | -                    | \$<br>-       | \$   | -                   | \$  | -                   | \$<br>-       | \$ | -                   | \$ | -                    |
| 2008  | \$<br>-       | \$    | -                   | \$ | -                    | \$<br>-       | \$            | -     | \$             | -                  | \$<br>-       | \$   | -                 | \$   | -                    | \$<br>-       | \$   | -                   | \$  | -                   | \$<br>-       | \$ | -                   | \$ | -                    |
| 2009  | \$<br>17.9    | \$    | 15.1                | \$ | 20.7                 | \$<br>0.0     | \$            | 0.0   | \$             | 0.0                | \$<br>1.1     | \$   | 1.0               | \$   | 1.2                  | \$<br>0.0     | \$   | 0.0                 | \$  | 0.0                 | \$<br>19.0    | \$ | 16.2                | \$ | 22.0                 |
| 2010  | \$<br>44.1    | \$    | 37.3                | \$ | 51.2                 | \$<br>0.6     | \$            | 0.5   | \$             | 0.7                | \$<br>3.8     | \$   | 3.5               | \$   | 4.0                  | \$<br>0.1     | \$   | 0.1                 | \$  | 0.1                 | \$<br>48.6    | \$ | 41.3                | \$ | 56.0                 |
| 2011  | \$<br>75.3    | \$    | 63.6                | \$ | 87.4                 | \$<br>1.7     | \$            | 1.4   | \$             | 1.9                | \$<br>7.4     | \$   | 6.9               | \$   | 7.9                  | \$<br>0.2     | \$   | 0.2                 | \$  | 0.2                 | \$<br>84.6    | \$ | 72.1                | \$ | 97.5                 |
| 2012  | \$<br>102.3   | \$    | 86.3                | \$ | 118.6                | \$<br>2.6     | \$            | 2.2   | \$             | 3.0                | \$<br>10.6    | \$   | 9.8               | \$   | 11.3                 | \$<br>0.4     | \$   | 0.3                 | \$  | 0.4                 | \$<br>115.7   | \$ | 98.6                | \$ | 133.3                |
| 2013  | \$<br>125.3   | \$    | 105.8               | \$ | 145.4                | \$<br>3.4     | \$            | 2.8   | \$             | 3.9                | \$<br>13.3    | \$   | 12.3              | \$   | 14.2                 | \$<br>0.5     | \$   | 0.4                 | \$  | 0.5                 | \$<br>142.4   | \$ | 121.4               | \$ | 164.0                |
| 2014  | \$<br>132.2   | \$    | 111.6               | \$ | 153.4                | \$<br>4.0     | \$            | 3.4   | \$             | 4.7                | \$<br>14.8    | \$   | 13.7              | \$   | 15.8                 | \$<br>0.6     | \$   | 0.5                 | \$  | 0.6                 | \$<br>151.5   | \$ | 129.2               | \$ | 174.4                |
| 2015  | \$<br>130.0   | \$    | 109.7               | \$ | 150.8                | \$<br>4.2     | \$            | 3.5   | \$             | 4.8                | \$<br>14.8    | \$   | 13.8              | \$   | 15.9                 | \$<br>0.6     | \$   | 0.5                 | \$  | 0.6                 | \$<br>149.6   | \$ | 127.6               | \$ | 172.1                |
| 2016  | \$<br>121.5   | \$    | 102.6               | \$ | 141.0                | \$<br>3.9     | \$            | 3.3   | \$             | 4.5                | \$<br>13.9    | \$   | 12.9              | \$   | 14.8                 | \$<br>0.5     | \$   | 0.5                 | \$  | 0.6                 | \$<br>139.8   | \$ | 119.2               | \$ | 160.9                |
| 2017  | \$<br>113.6   | \$    | 95.9                | \$ | 131.7                | \$<br>3.6     | \$            | 3.1   | \$             | 4.2                | \$<br>13.0    | \$   | 12.1              | \$   | 13.9                 | \$<br>0.5     | \$   | 0.5                 | \$  | 0.5                 | \$<br>130.7   | \$ | 111.4               | \$ | 150.4                |
| 2018  | \$<br>106.1   | \$    | 89.6                | \$ | 123.1                | \$<br>3.4     | \$            | 2.9   | \$             | 3.9                | \$<br>12.1    | \$   | 11.3              | \$   | 13.0                 | \$<br>0.5     | \$   | 0.4                 | \$  | 0.5                 | \$<br>122.1   | \$ | 104.2               | \$ | 140.5                |
| 2019  | \$<br>99.2    | \$    | 83.7                | \$ | 115.1                | \$<br>3.2     | \$            | 2.7   | \$             | 3.7                | \$<br>11.3    | \$   | 10.5              | \$   | 12.1                 | \$<br>0.4     | \$   | 0.4                 | \$  | 0.5                 | \$<br>114.1   | \$ | 97.3                | \$ | 131.3                |
| 2020  | \$<br>92.7    | \$    | 78.2                | \$ | 107.5                | \$<br>3.0     | \$            | 2.5   | \$             | 3.4                | \$<br>10.6    | \$   | 9.8               | \$   | 11.3                 | \$<br>0.4     | \$   | 0.4                 | \$  | 0.4                 | \$<br>106.7   | \$ | 91.0                | \$ | 122.7                |
| 2021  | \$<br>86.6    | \$    | 73.1                | \$ | 100.5                | \$<br>2.8     | \$            | 2.3   | \$             | 3.2                | \$<br>9.9     | \$   | 9.2               | \$   | 10.6                 | \$<br>0.4     | \$   | 0.4                 | \$  | 0.4                 | \$<br>99.7    | \$ | 85.0                | \$ | 114.7                |
| 2022  | \$<br>81.0    | \$    | 68.3                | \$ | 93.9                 | \$<br>2.6     | \$            | 2.2   | \$             | 3.0                | \$<br>9.2     | \$   | 8.6               | \$   | 9.9                  | \$<br>0.4     | \$   | 0.3                 | \$  | 0.4                 | \$<br>93.2    | \$ | 79.5                | \$ | 107.2                |
| 2023  | \$<br>75.7    | \$    | 63.9                | \$ | 87.8                 | \$<br>2.4     | \$            | 2.0   | \$             | 2.8                | \$<br>8.6     | \$   | 8.0               | \$   | 9.2                  | \$<br>0.3     | \$   | 0.3                 | \$  | 0.4                 | \$<br>87.1    | \$ | 74.3                | \$ | 100.2                |
| 2024  | \$<br>70.7    | \$    | 59.7                | \$ | 82.0                 | \$<br>2.3     | \$            | 1.9   | \$             | 2.6                | \$<br>8.1     | \$   | 7.5               | \$   | 8.6                  | \$<br>0.3     | \$   | 0.3                 | \$  | 0.3                 | \$<br>81.4    | \$ | 69.4                | \$ | 93.6                 |
| 2025  | \$<br>66.1    | \$    | 55.8                | \$ | 76.7                 | \$<br>2.1     | \$            | 1.8   | \$             | 2.5                | \$<br>7.5     | \$   | 7.0               | \$   | 8.1                  | \$<br>0.3     | \$   | 0.3                 | \$  | 0.3                 | \$<br>76.1    | \$ | 64.9                | \$ | 87.5                 |
| 2026  | \$<br>61.8    | \$    | 52.1                | \$ | 71.7                 | \$<br>2.0     | \$            | 1.7   | \$             | 2.3                | \$<br>7.1     | \$   | 6.6               | \$   | 7.5                  | \$<br>0.3     | \$   | 0.3                 | \$  | 0.3                 | \$<br>71.1    | \$ | 60.6                | \$ | 81.8                 |
| 2027  | \$<br>57.7    | \$    | 48.7                | \$ | 67.0                 | \$<br>1.8     | \$            | 1.6   | \$             | 2.1                | \$<br>6.6     | \$   | 6.1               | \$   | 7.0                  | \$<br>0.3     | \$   | 0.2                 | \$  | 0.3                 | \$<br>66.4    | \$ | 56.7                | \$ | 76.4                 |
| 2028  | \$<br>54.0    | \$    | 45.5                | \$ | 62.6                 | \$<br>1.7     | \$            | 1.5   | \$             | 2.0                | \$<br>6.2     | \$   | 5.7               | \$   | 6.6                  | \$<br>0.2     | \$   | 0.2                 | \$  | 0.3                 | \$<br>62.1    | \$ | 52.9                | \$ | 71.4                 |
| 2029  | \$<br>50.4    | \$    | 42.6                | \$ | 58.5                 | \$<br>1.6     | \$            | 1.4   | \$             | 1.9                | \$<br>5.8     | \$   | 5.4               | \$   | 6.2                  | \$<br>0.2     | \$   | 0.2                 | \$  | 0.2                 | \$<br>58.0    | \$ | 49.5                | \$ | 66.8                 |
| Total | \$<br>1,764.4 | \$    | 1,489.2             | \$ | 2,046.5              | \$<br>52.8    | \$            | 44.4  | \$             | 61.3               | \$<br>195.5   | \$   | 181.9             | \$   | 209.1                | \$<br>7.3     | \$   | 6.8                 | \$  | 7.8                 | \$<br>2,020.0 | \$ | 1,722.2             | \$ | 2,324.7              |
| Ann.  | \$<br>151.4   | \$    | 127.8               | \$ | 175.6                | \$<br>4.5     | \$            | 3.8   | \$             | 5.3                | \$<br>16.8    | \$   | 15.6              | \$   | 17.9                 | \$<br>0.6     | \$   | 0.6                 | \$  | 0.7                 | \$<br>173.3   | \$ | 147.8               | \$ | 199.5                |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

#### Exhibit J.4p Present Value of Annual Cost Projections at 7% Discount Rate (All Systems)

| Alterna | tive 2         |       |      |         |           |        |        |              |          |         |        |              |           |        |             |          |        |        |            |         |            |              |        |           |          |               |            |       |         |                |         |      |          |            |              |
|---------|----------------|-------|------|---------|-----------|--------|--------|--------------|----------|---------|--------|--------------|-----------|--------|-------------|----------|--------|--------|------------|---------|------------|--------------|--------|-----------|----------|---------------|------------|-------|---------|----------------|---------|------|----------|------------|--------------|
|         |                |       | 8    | Surface | Water CV  | /S     |        |              |          |         | Sur    | face Water N | NCWS      |        |             |          |        | Disinf | ecting Gre | ound Wa | ter CWS    |              |        |           | Disinfec | ing Ground Wa | ter NTNCWS |       |         |                |         | 1    | Γotal    |            |              |
|         |                |       |      | Mo      | onitoring |        |        | Siginificant |          |         |        | Monitoring   |           | s      | iginificant |          |        |        | Monit      | oring   |            | Siginificant |        |           |          | Monitoring    |            | Sigin | ificant |                |         | Mon  | nitoring |            | Siginificant |
|         | Implementation | 1     | IDSE |         | Plans     | Monito | ring   | Excursion    | Implemen | ntation | IDSE   | Plans        | Monitorin | g E    | xcursion    | Implemen | tation | IDSE   | Pla        | ns      | Monitoring | Excursion    | Impler | mentation | IDSE     | Plans         | Monitoring | Excu  | rsion   | Implementation | IDSE    | P    | lans     | Monitoring | Excursion    |
| 2005    | \$ 0.          | .6 \$ | -    | \$      | -         | \$     | -      | \$ -         | \$       | 0.0     | \$ -   | \$ -         | \$ -      | \$     | -           | \$       | 0.1    | \$ -   | \$         | -       | \$ -       | \$ -         | \$     | 0.0       | \$ -     | \$ -          | \$ -       | \$    |         | \$ 0.7         | \$ -    | \$   | -        | \$ -       | \$ -         |
| 2006    | \$ 1.          | .1 \$ | 6.9  | \$      | -         | s      | -      | \$ -         | \$       | 0.1     | \$ 0.0 | \$ -         | \$ -      | \$     | -           | \$       | 2.8    | \$ 0.1 | \$         | -       | \$ -       | \$ -         | \$     | 0.5       | \$ -     | \$ -          | s -        | \$    | -       | \$ 4.4         | \$ 7.0  | \$   | -        | s -        | s -          |
| 2007    | \$ -           | \$    | 17.1 | \$      | 0.2       | \$     | -      | \$ -         | \$       | -       | \$ 0.0 | \$ 0.0       | \$ -      | \$     | -           | \$       | -      | \$ 0.8 | \$         | 0.0     | \$ -       | \$ -         | \$     | -         | \$ 0.0   | \$ 0.         | \$ -       | \$    | -       | \$ -           | \$ 18.0 | \$   | 0.2      | s -        | s -          |
| 2008    | \$ 0.          | .4 \$ | 13.3 | \$      | 0.4       | \$     | -      | \$ -         | \$       | 0.0     | \$ 0.0 | \$ 0.0       | \$ -      | \$     | -           | \$       | 0.0    | \$ 4.7 | \$         | 0.2     | \$ -       | \$ -         | \$     | 0.0       | \$ 0.0   | \$ 0.         | \$ -       | \$    | -       | \$ 0.5         | \$ 18.0 | \$   | 0.6      | s -        | s -          |
| 2009    | \$ 0.          | .5 \$ |      | \$      | 0.6       | \$     | -      | \$ -         | \$       | 0.0     | \$ -   | \$ 0.0       | \$ -      | \$     | -           | \$       | 1.2    | s -    | \$         | 1.7     | \$ -       | \$ -         | \$     | 0.2       | \$ -     | \$ 0.         | s -        | \$    | -       | \$ 1.9         | \$ -    | \$   | 2.6      | s -        | s -          |
| 2010    | \$ 0.          | 4 \$  | -    | s       | -         | s      | -      | s -          | \$       | 0.0     | \$ -   | \$ -         | \$ -      | \$     |             | \$       | 1.1    | \$ -   | \$         | -       | s -        | \$ -         | s      | 0.2       | \$ -     | s -           | s -        | s     | -       | \$ 1.7         | \$ -    | \$   | -        | s -        | s -          |
| 2011    | \$ -           | \$    | -    | s       | -         | s      | 0.2    | s -          | \$       | -       | \$ -   | \$ -         | \$ (      | 0.0 \$ |             | \$       | -      | \$ -   | \$         | -       | \$ 0.0     | \$ -         | \$     |           | \$ -     | s -           | \$ 0.0     | s     | -       | \$ -           | \$ -    | \$   | -        | \$ 0.3     | s -          |
| 2012    | \$ -           | \$    |      | \$      | -         | \$     | (0.4)  | \$ 0.0       | \$       | -       | \$ -   | \$ -         | \$ 0      | 0.0 \$ | -           | \$       | -      | \$ -   | \$         | -       | \$ 1.6     | \$ -         | \$     | -         | \$ -     | \$ -          | \$ 0.2     | \$    |         | s -            | \$ -    | \$   | -        | \$ 1.4     | \$ 0.0       |
| 2013    | \$ -           | \$    |      | \$      | -         | \$     | (1.1)  | \$ 0.1       | \$       | -       | \$ -   | \$ -         | \$ (      | 0.0 \$ | -           | \$       | -      | s -    | \$         | -       | \$ 2.9     | \$ -         | \$     | -         | \$ -     | \$ -          | \$ 0.4     | \$    | -       | \$ -           | \$ -    | \$   | -        | \$ 2.2     | \$ 0.1       |
| 2014    | \$ -           | \$    |      | \$      | -         | \$     | (1.0)  | \$ 0.1       | \$       | -       | \$ -   | \$ -         | \$ 0      | 0.0 \$ | -           | \$       | -      | \$ -   | \$         | -       | \$ 2.7     | \$ -         | \$     | -         | \$ -     | \$ -          | \$ 0.3     | \$    |         | s -            | \$ -    | \$   | -        | \$ 2.1     | \$ 0.1       |
| 2015    | \$ -           | \$    | -    | s       | -         | s      | (0.9)  | \$ 0.1       | \$       | -       | \$ -   | \$ -         | \$ (      | 0.0 \$ |             | \$       | -      | \$ -   | \$         | -       | \$ 2.5     | \$ -         | \$     |           | \$ -     | s -           | \$ 0.3     | s s   | -       | \$ -           | \$ -    | \$   | -        | \$ 1.9     | \$ 0.1       |
| 2016    | \$ -           | \$    |      | \$      | -         | \$     | (0.9)  | \$ 0.1       | \$       | -       | \$ -   | \$ -         | \$ 0      | 0.0 \$ | -           | \$       | -      | \$ -   | \$         | -       | \$ 2.3     | \$ -         | \$     | -         | \$ -     | \$ -          | \$ 0.3     | \$    |         | s -            | \$ -    | \$   | -        | \$ 1.8     | \$ 0.1       |
| 2017    | \$ -           | \$    |      | \$      | -         | \$     | (0.8)  | \$ 0.1       | \$       | -       | \$ -   | \$ -         | \$ 0      | 0.0 \$ | -           | \$       | -      | \$ -   | \$         | -       | \$ 2.2     | \$ -         | \$     | -         | \$ -     | \$ -          | \$ 0.3     | \$    |         | s -            | \$ -    | \$   | -        | \$ 1.7     | \$ 0.1       |
| 2018    | \$ -           | \$    |      | \$      | -         | \$     | (0.7)  | \$ 0.1       | \$       | -       | \$ -   | \$ -         | \$ (      | 0.0 \$ | -           | \$       | -      | s -    | \$         | -       | \$ 2.0     | \$ -         | \$     | -         | \$ -     | \$ -          | \$ 0.3     | s s   | -       | \$ -           | \$ -    | \$   | -        | \$ 1.6     | \$ 0.1       |
| 2019    | \$ -           | \$    | -    | s       | -         | s      | (0.7)  | \$ 0.1       | \$       | -       | \$ -   | \$ -         | \$ (      | 0.0 \$ |             | \$       | -      | \$ -   | \$         | -       | \$ 1.9     | \$ -         | \$     |           | \$ -     | s -           | \$ 0.3     | s .   | -       | \$ -           | \$ -    | \$   | -        | \$ 1.5     | \$ 0.1       |
| 2020    | \$ -           | \$    |      | \$      | -         | \$     | (0.7)  | \$ 0.1       | \$       | -       | \$ -   | \$ -         | \$ 0      | 0.0 \$ | -           | \$       | -      | \$ -   | \$         | -       | \$ 1.8     | \$ -         | \$     | -         | \$ -     | \$ -          | \$ 0.2     | \$    |         | s -            | \$ -    | \$   | -        | \$ 1.4     | \$ 0.1       |
| 2021    | \$ -           | \$    |      | \$      | -         | \$     | (0.6)  | \$ 0.1       | \$       | -       | \$ -   | \$ -         | \$ 0      | 0.0 \$ | -           | \$       | -      | \$ -   | \$         | -       | \$ 1.7     | \$ -         | \$     | -         | \$ -     | \$ -          | \$ 0.2     | \$    |         | s -            | \$ -    | \$   | -        | \$ 1.3     | \$ 0.1       |
| 2022    | \$ -           | \$    | -    | s       | -         | \$     | (0.6)  | \$ 0.1       | \$       | -       | s -    | s -          | \$ 0      | 0.0 \$ | -           | \$       | -      | s -    | \$         | -       | \$ 1.6     | s -          | \$     |           | \$ -     | s -           | \$ 0.3     | \$    | -       | \$ -           | \$ -    | \$   | -        | \$ 1.2     | \$ 0.1       |
| 2023    | \$ -           | \$    |      | \$      | -         | \$     | (0.5)  | \$ 0.1       | \$       | -       | \$ -   | \$ -         | \$ (      | 0.0 \$ |             | \$       | -      | s -    | \$         | -       | \$ 1.5     | \$ -         | \$     |           | \$ -     | \$ -          | \$ 0.2     | \$    | -       | s -            | \$ -    | \$   | -        | \$ 1.1     | \$ 0.1       |
| 2024    | \$ -           | \$    | -    | s       | -         | \$     | (0.5)  | \$ 0.1       | \$       | -       | s -    | s -          | \$ 0      | 0.0 \$ | -           | \$       | -      | s -    | \$         | -       | \$ 1.4     | s -          | \$     |           | \$ -     | s -           | \$ 0.3     | \$    | -       | \$ -           | \$ -    | \$   | -        | \$ 1.0     | \$ 0.1       |
| 2025    | \$ -           | \$    |      | \$      | -         | \$     | (0.5)  | \$ 0.0       | \$       | -       | \$ -   | \$ -         | \$ (      | 0.0 \$ |             | \$       | -      | s -    | \$         | -       | \$ 1.3     | \$ -         | \$     |           | \$ -     | \$ -          | \$ 0.2     | \$    | -       | s -            | \$ -    | \$   | -        | \$ 1.0     | \$ 0.0       |
| 2026    | \$ -           | \$    |      | \$      | -         | \$     | (0.4)  | \$ 0.0       | \$       | -       | \$ -   | \$ -         | \$ (      | 0.0 \$ |             | \$       | -      | s -    | \$         | -       | \$ 1.2     | \$ -         | \$     |           | \$ -     | s -           | \$ 0.2     | \$    | -       | s -            | \$ -    | \$   | -        | \$ 0.9     | \$ 0.0       |
| 2027    | \$ -           | \$    |      | \$      | -         | \$     | (0.4)  | \$ 0.0       | \$       | -       | \$ -   | \$ -         | \$ (      | 0.0 \$ | -           | \$       | -      | \$ -   | \$         | -       | \$ 1.1     | \$ -         | \$     | -         | \$ -     | \$ -          | \$ 0.      | \$    |         | s -            | \$ -    | \$   | -        | \$ 0.9     | \$ 0.0       |
| 2028    | \$ -           | \$    |      | \$      | -         | \$     | (0.4)  | \$ 0.0       | \$       | -       | \$ -   | \$ -         | \$ (      | 0.0 \$ |             | \$       | -      | s -    | \$         | -       | \$ 1.0     | \$ -         | \$     |           | \$ -     | s -           | \$ 0.      | \$    | -       | s -            | \$ -    | \$   | -        | \$ 0.8     | \$ 0.0       |
| 2029    | \$ -           | s     |      | \$      | -         | \$     | (0.4)  | \$ 0.0       | \$       | -       | s -    | s -          | \$ (      | 0.0 \$ |             | \$       | -      | s -    | \$         | -       | \$ 1.0     | \$ -         | \$     |           | \$ -     | s -           | \$ 0.      | \$    |         | s -            | \$ -    | \$   | -        | \$ 0.7     | \$ 0.0       |
| Total   | \$ 3.          | .0 \$ | 37.3 | \$      | 1.2       | \$ (   | (11.2) | \$ 1.1       | \$       | 0.1     | \$ 0.1 | \$ 0.0       | \$ (      | 0.2 \$ | -           | \$       | 5.1    | \$ 5.6 | \$         | 1.9     | \$ 31.5    | \$ -         | \$     | 0.8       | \$ 0.0   | \$ 0.         | \$ 4.      | \$    |         | \$ 9.1         | \$ 43.0 | \$   | 3.4      | \$ 24.6    | \$ 1.1       |
| Ann.    | \$ 0.          | .3 \$ | 3.2  | \$      | 0.1       | \$     | (1.0)  | \$ 0.1       | \$       | 0.0     | \$ 0.0 | \$ 0.0       | \$ (      | 0.0 \$ | -           | \$       | 0.4    | \$ 0.5 | \$         | 0.2     | \$ 2.7     | \$ -         | \$     | 0.1       | \$ 0.0   | \$ 0.         | \$ 0.:     | \$    | -       | \$ 0.8         | \$ 3.7  | 7 \$ | 0.3      | \$ 2.1     | \$ 0.1       |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005. Detail may not add exactly to totals due to independent rounding. Ann = value of total annualized at discount rate. Source: Derived from Exhibits J. 4de through h.

## Section J.5 Cost Projections (Alternative 3)

#### Exhibit J.5a Projections of Stage 2 DBPR PWS Costs

(All Surface Water CWSs)

#### Alternative 3

|      | Treat         | tment Capital        | Costs                 | Treat         | ment O&M C           | osts                  |                | N        | on-Treatment C      | osts       |                          | All St        | age 2 DBPR C         | Costs                 |
|------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|----------------|----------|---------------------|------------|--------------------------|---------------|----------------------|-----------------------|
|      |               |                      | ercent<br>nce Bound   |               | 90 Pe<br>Confiden    |                       |                |          |                     |            |                          |               | 90 Pe<br>Confiden    | ercent<br>ce Bound    |
| Year | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Implementation | IDSE     | Monitoring<br>Plans | Monitoring | Significant<br>Excursion | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) |
| 2005 | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ 0.69        | \$ -     | \$ -                | \$ -       | \$ -                     | \$ 0.69       | \$ 0.69              | \$ 0.69               |
| 2006 | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ 1.34        | \$ 8.46  | \$ -                | \$ -       | \$ -                     | \$ 9.80       | \$ 9.80              | \$ 9.80               |
| 2007 | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -           | \$ 22.45 | \$ 0.22             | \$ -       | \$ -                     | \$ 22.67      | \$ 22.67             | \$ 22.67              |
| 2008 | \$ 751.61     | \$ 614.14            | \$ 896.73             | \$ -          | \$ -                 | \$ -                  | \$ 0.60        | \$ 18.62 | \$ 0.62             | \$ -       | \$ -                     | \$ 771.44     | \$ 633.97            | \$ 916.56             |
| 2009 | \$ 1,103.45   | \$ 900.53            | \$ 1,318.20           | \$ 40.64      | \$ 33.78             | \$ 47.61              | \$ 0.75        | \$ -     | \$ 0.88             | \$ -       | \$ -                     | \$ 1,145.72   | \$ 935.95            | \$ 1,367.44           |
| 2010 | \$ 1,374.75   | \$ 1,121.29          | \$ 1,643.38           | \$ 107.18     | \$ 89.06             | \$ 125.65             | \$ 0.67        | \$ -     | \$ -                | \$ -       | \$ -                     | \$ 1,482.59   | \$ 1,211.02          | \$ 1,769.70           |
| 2011 | \$ 1,374.75   | \$ 1,121.29          | \$ 1,643.38           | \$ 195.72     | \$ 162.60            | \$ 229.55             | \$ -           | \$ -     | \$ -                | \$ 0.42    | \$ -                     | \$ 1,570.88   | \$ 1,284.31          | \$ 1,873.34           |
| 2012 | \$ 1,374.75   | \$ 1,121.29          | \$ 1,643.38           | \$ 284.26     | \$ 236.13            | \$ 333.44             | \$ -           | \$ -     | \$ -                | \$ (0.77)  | \$ 0.06                  | \$ 1,658.30   | \$ 1,356.72          | \$ 1,976.11           |
| 2013 | \$ 623.14     | \$ 507.16            | \$ 746.65             | \$ 372.80     | \$ 309.66            | \$ 437.33             | \$ -           | \$ -     | \$ -                | \$ (2.07)  | \$ 0.15                  | \$ 994.02     | \$ 814.90            | \$ 1,182.06           |
| 2014 | \$ 271.29     | \$ 220.76            | \$ 325.18             | \$ 420.70     | \$ 349.41            | \$ 493.62             | \$ -           | \$ -     | \$ -                | \$ (2.07)  | \$ 0.21                  | \$ 690.14     | \$ 568.32            | \$ 816.94             |
| 2015 | \$ -          | \$ -                 | \$ -                  | \$ 442.70     | \$ 367.67            | \$ 519.47             | \$ -           | \$ -     | \$ -                | \$ (2.07)  | \$ 0.21                  | \$ 440.85     | \$ 365.81            | \$ 517.62             |
| 2016 | \$ -          | \$ -                 | \$ -                  | \$ 442.70     | \$ 367.67            | \$ 519.47             | \$ -           | \$ -     | \$ -                | \$ (2.07)  | \$ 0.21                  | \$ 440.85     | \$ 365.81            | \$ 517.62             |
| 2017 | \$ -          | \$ -                 | \$ -                  | \$ 442.70     | \$ 367.67            | \$ 519.47             | \$ -           | \$ -     | \$ -                | \$ (2.07)  | \$ 0.21                  | \$ 440.85     | \$ 365.81            | \$ 517.62             |
| 2018 | \$ -          | \$ -                 | \$ -                  | \$ 442.70     | \$ 367.67            | \$ 519.47             | \$ -           | \$ -     | \$ -                | \$ (2.07)  | \$ 0.21                  | \$ 440.85     | \$ 365.81            | \$ 517.62             |
| 2019 | \$ -          | \$ -                 | \$ -                  | \$ 442.70     | \$ 367.67            | \$ 519.47             | \$ -           | \$ -     | \$ -                | \$ (2.07)  | \$ 0.21                  | \$ 440.85     | \$ 365.81            | \$ 517.62             |
| 2020 | \$ -          | \$ -                 | \$ -                  | \$ 442.70     | \$ 367.67            | \$ 519.47             | \$ -           | \$ -     | \$ -                | \$ (2.07)  | \$ 0.21                  | \$ 440.85     | \$ 365.81            | \$ 517.62             |
| 2021 | \$ -          | \$ -                 | \$ -                  | \$ 442.70     | \$ 367.67            | \$ 519.47             | \$ -           | \$ -     | \$ -                | \$ (2.07)  | \$ 0.21                  | \$ 440.85     | \$ 365.81            | \$ 517.62             |
| 2022 | \$ -          | \$ -                 | \$ -                  | \$ 442.70     | \$ 367.67            | \$ 519.47             | \$ -           | \$ -     | \$ -                | \$ (2.07)  | \$ 0.21                  | \$ 440.85     | \$ 365.81            | \$ 517.62             |
| 2023 | \$ -          | \$ -                 | \$ -                  | \$ 442.70     | \$ 367.67            | \$ 519.47             | \$ -           | \$ -     | \$ -                | \$ (2.07)  | \$ 0.21                  | \$ 440.85     | \$ 365.81            | \$ 517.62             |
| 2024 | \$ -          | \$ -                 | \$ -                  | \$ 442.70     | \$ 367.67            | \$ 519.47             | \$ -           | \$ -     | \$ -                | \$ (2.07)  | \$ 0.21                  | \$ 440.85     | \$ 365.81            | \$ 517.62             |
| 2025 | \$ -          | \$ -                 | \$ -                  | \$ 442.70     | \$ 367.67            | \$ 519.47             | \$ -           | \$ -     | \$ -                | \$ (2.07)  | \$ 0.21                  | \$ 440.85     | \$ 365.81            | \$ 517.62             |
| 2026 | \$ -          | \$ -                 | \$ -                  | \$ 442.70     | \$ 367.67            | \$ 519.47             | \$ -           | \$ -     | \$ -                | \$ (2.07)  | \$ 0.21                  | \$ 440.85     | \$ 365.81            | \$ 517.62             |
| 2027 | \$ -          | \$ -                 | \$ -                  | \$ 442.70     | \$ 367.67            | \$ 519.47             | \$ -           | \$ -     | \$ -                | \$ (2.07)  | \$ 0.21                  | \$ 440.85     | \$ 365.81            | \$ 517.62             |
| 2028 | \$ -          | \$ -                 | \$ -                  | \$ 442.70     | \$ 367.67            | \$ 519.47             | \$ -           | \$ -     | \$ -                | \$ (2.07)  | \$ 0.21                  | \$ 440.85     | \$ 365.81            | \$ 517.62             |
| 2029 | \$ -          | \$ -                 | \$ -                  | \$ 442.70     | \$ 367.67            | \$ 519.47             | \$ -           | \$ -     | \$ -                | \$ (2.07)  | \$ 0.21                  | \$ 440.85     | \$ 365.81            | \$ 517.62             |

Note: All values in millions of year 2003 dollars.

#### Exhibit J.5b Projections of Stage 2 DBPR PWS Costs

(All Surface Water NTNCWSs)

#### Alternative 3

|      | Treatme       | ent Capital | Costs                                          | Treat         | ment O&M | l Costs                                        |                | N       | on-Treatment Co     | osts       |                          | All St        | age 2 DBPR       | Costs                                       |
|------|---------------|-------------|------------------------------------------------|---------------|----------|------------------------------------------------|----------------|---------|---------------------|------------|--------------------------|---------------|------------------|---------------------------------------------|
| Year | Mean<br>Value |             | ercent<br>ce Bound<br>Upper<br>(95th<br>%tile) | Mean<br>Value |          | ercent<br>ce Bound<br>Upper<br>(95th<br>%tile) | Implementation | IDSE    | Monitoring<br>Plans | Monitoring | Significant<br>Excursion | Mean<br>Value | Confidence Lower | ercent<br>ce Bound<br>Upper<br>(95th %tile) |
| 2005 | \$ -          | \$ -        | \$ -                                           | \$ -          | \$ -     | \$ -                                           | \$ 0.00        | \$ -    | \$ -                | \$ -       | \$ -                     | \$ 0.00       | \$ 0.00          | \$ 0.00                                     |
| 2006 | \$ -          | \$ -        | \$ -                                           | \$ -          | \$ -     | \$ -                                           | \$ 0.08        | \$ 0.01 | \$ -                | \$ -       | \$ -                     | \$ 0.09       | \$ 0.09          | \$ 0.09                                     |
| 2007 | \$ -          | \$ -        | \$ -                                           | \$ -          | \$ -     | \$ -                                           | \$ -           | \$ 0.04 | \$ 0.00             | \$ -       | \$ -                     | \$ 0.04       | \$ 0.04          | \$ 0.04                                     |
| 2008 | \$ 1.03       | \$ 0.84     | \$ 1.22                                        | \$ -          | \$ -     | \$ -                                           | \$ 0.00        | \$ 0.02 | \$ 0.00             | \$ -       | \$ -                     | \$ 1.05       | \$ 0.86          | \$ 1.25                                     |
| 2009 | \$ 11.11      | \$ 9.05     | \$ 13.31                                       | \$ 0.05       | \$ 0.04  | \$ 0.06                                        | \$ 0.04        | \$ -    | \$ 0.04             | \$ -       | \$ -                     | \$ 11.24      | \$ 9.17          | \$ 13.45                                    |
| 2010 | \$ 21.19      | \$ 17.27    | \$ 25.40                                       | \$ 1.50       | \$ 1.24  | \$ 1.77                                        | \$ 0.04        | \$ -    | \$ -                | \$ -       | \$ -                     | \$ 22.73      | \$ 18.56         | \$ 27.21                                    |
| 2011 | \$ 21.19      | \$ 17.27    | \$ 25.40                                       | \$ 4.35       | \$ 3.61  | \$ 5.12                                        | \$ -           | \$ -    | \$ -                | \$ 0.00    | \$ -                     | \$ 25.54      | \$ 20.88         | \$ 30.52                                    |
| 2012 | \$ 21.19      | \$ 17.27    | \$ 25.40                                       | \$ 7.20       | \$ 5.97  | \$ 8.47                                        | \$ -           | \$ -    | \$ -                | \$ 0.02    | \$ -                     | \$ 28.41      | \$ 23.25         | \$ 33.89                                    |
| 2013 | \$ 20.16      | \$ 16.43    | \$ 24.18                                       | \$ 10.05      | \$ 8.33  | \$ 11.83                                       | \$ -           | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 30.24      | \$ 24.79         | \$ 36.03                                    |
| 2014 | \$ 10.08      | \$ 8.22     | \$ 12.09                                       | \$ 12.85      | \$ 10.65 | \$ 15.12                                       | \$ -           | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 22.96      | \$ 18.89         | \$ 27.24                                    |
| 2015 | \$ -          | \$ -        | \$ -                                           | \$ 14.25      | \$ 11.81 | \$ 16.77                                       | \$ -           | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 14.28      | \$ 11.83         | \$ 16.80                                    |
| 2016 | \$ -          | \$ -        | \$ -                                           | \$ 14.25      | \$ 11.81 | \$ 16.77                                       | \$ -           | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 14.28      | \$ 11.83         | \$ 16.80                                    |
| 2017 | \$ -          | \$ -        | \$ -                                           | \$ 14.25      | \$ 11.81 | \$ 16.77                                       | \$ -           | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 14.28      | \$ 11.83         | \$ 16.80                                    |
| 2018 | \$ -          | \$ -        | \$ -                                           | \$ 14.25      | \$ 11.81 | \$ 16.77                                       | \$ -           | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 14.28      | \$ 11.83         | \$ 16.80                                    |
| 2019 | \$ -          | \$ -        | \$ -                                           | \$ 14.25      | \$ 11.81 | \$ 16.77                                       | \$ -           | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 14.28      | \$ 11.83         | \$ 16.80                                    |
| 2020 | \$ -          | \$ -        | \$ -                                           | \$ 14.25      | \$ 11.81 | \$ 16.77                                       | \$ -           | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 14.28      | \$ 11.83         | \$ 16.80                                    |
| 2021 | \$ -          | \$ -        | \$ -                                           | \$ 14.25      | \$ 11.81 | \$ 16.77                                       | \$ -           | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 14.28      | \$ 11.83         | \$ 16.80                                    |
| 2022 | \$ -          | \$ -        | \$ -                                           | \$ 14.25      | \$ 11.81 | \$ 16.77                                       | \$ -           | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 14.28      | \$ 11.83         | \$ 16.80                                    |
| 2023 | \$ -          | \$ -        | \$ -                                           | \$ 14.25      | \$ 11.81 | \$ 16.77                                       | \$ -           | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 14.28      | \$ 11.83         | \$ 16.80                                    |
| 2024 | \$ -          | \$ -        | \$ -                                           | \$ 14.25      | \$ 11.81 | \$ 16.77                                       | \$ -           | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 14.28      | \$ 11.83         | \$ 16.80                                    |
| 2025 | \$ -          | \$ -        | \$ -                                           | \$ 14.25      | \$ 11.81 | \$ 16.77                                       | \$ -           | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 14.28      | \$ 11.83         | \$ 16.80                                    |
| 2026 | \$ -          | \$ -        | \$ -                                           | \$ 14.25      | \$ 11.81 | \$ 16.77                                       | \$ -           | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 14.28      | \$ 11.83         | \$ 16.80                                    |
| 2027 | \$ -          | \$ -        | \$ -                                           | \$ 14.25      | \$ 11.81 | \$ 16.77                                       | \$ -           | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 14.28      | \$ 11.83         | \$ 16.80                                    |
| 2028 | \$ -          | \$ -        | \$ -                                           | \$ 14.25      | \$ 11.81 | \$ 16.77                                       | \$ -           | \$ -    | \$ -                |            | \$ -                     | \$ 14.28      | \$ 11.83         | \$ 16.80                                    |
| 2029 | \$ -          | \$ -        | \$ -                                           | \$ 14.25      | \$ 11.81 | \$ 16.77                                       | \$ -           | \$ -    | \$ -                | \$ 0.03    | \$ -                     | \$ 14.28      | \$ 11.83         | \$ 16.80                                    |

Note: All values in millions of year 2003 dollars.

#### Exhibit J.5c Projections of Stage 2 DBPR PWS Costs

(All Surface Water Systems)

#### Alternative 3

|      | Treat         | ment Capital         | Costs                 | Trea          | tment O&M            | Costs                 |                | No       | on-Treatment Co     | osts       |                          | All S         | tage 2 DBPR (        | Costs                 |
|------|---------------|----------------------|-----------------------|---------------|----------------------|-----------------------|----------------|----------|---------------------|------------|--------------------------|---------------|----------------------|-----------------------|
|      |               |                      | ercent<br>ce Bound    | •             | 90 Pe<br>Confiden    | rcent<br>ce Bound     |                |          |                     |            |                          |               | 90 Pe<br>Confidence  |                       |
| Year | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Implementation | IDSE     | Monitoring<br>Plans | Monitoring | Significant<br>Excursion | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) |
| 2005 | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ 0.69        | \$ -     | \$ -                | \$ -       | \$ -                     | \$ 0.69       | \$ 0.69              | \$ 0.69               |
| 2006 | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ 1.42        | \$ 8.48  | \$ -                | \$ -       | \$ -                     | \$ 9.90       | \$ 9.90              | \$ 9.90               |
| 2007 | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                  | \$ -           | \$ 22.49 | \$ 0.22             | \$ -       | \$ -                     | \$ 22.71      | \$ 22.71             | \$ 22.71              |
| 2008 | \$ 752.63     | \$ 614.97            | \$ 897.95             | \$ -          | \$ -                 | \$ -                  | \$ 0.60        | \$ 18.64 | \$ 0.62             | \$ -       | \$ -                     | \$ 772.49     | \$ 634.83            | \$ 917.81             |
| 2009 | \$ 1,114.56   | \$ 909.59            | \$ 1,331.51           | \$ 40.69      | \$ 33.82             | \$ 47.67              | \$ 0.79        | \$ -     | \$ 0.91             | \$ -       | \$ -                     | \$ 1,156.96   | \$ 945.12            | \$ 1,380.89           |
| 2010 | \$ 1,395.93   | \$ 1,138.56          | \$ 1,668.78           | \$ 108.68     | \$ 90.31             | \$ 127.42             | \$ 0.71        | \$ -     | \$ -                | \$ -       | \$ -                     | \$ 1,505.32   | \$ 1,229.58          | \$ 1,796.90           |
| 2011 | \$ 1,395.93   | \$ 1,138.56          | \$ 1,668.78           | \$ 200.07     | \$ 166.20            | \$ 234.67             | \$ -           | \$ -     | \$ -                | \$ 0.42    | \$ -                     | \$ 1,596.43   | \$ 1,305.19          | \$ 1,903.87           |
| 2012 | \$ 1,395.93   | \$ 1,138.56          | \$ 1,668.78           | \$ 291.46     | \$ 242.10            | \$ 341.91             | \$ -           | \$ -     | \$ -                | \$ (0.75)  | \$ 0.06                  | \$ 1,686.70   | \$ 1,379.97          | \$ 2,010.00           |
| 2013 | \$ 643.30     | \$ 523.59            | \$ 770.83             | \$ 382.85     | \$ 317.99            | \$ 449.16             | \$ -           | \$ -     | \$ -                | \$ (2.04)  | \$ 0.15                  | \$ 1,024.26   | \$ 839.69            | \$ 1,218.10           |
| 2014 | \$ 281.37     | \$ 228.98            | \$ 337.26             | \$ 433.55     | \$ 360.06            | \$ 508.74             | \$ -           | \$ -     | \$ -                | \$ (2.04)  | \$ 0.21                  | \$ 713.10     | \$ 587.21            | \$ 844.18             |
| 2015 | \$ -          | \$                   | \$ -                  | \$ 456.95     | \$ 379.47            | \$ 536.24             | \$ -           | \$ -     | \$ -                | \$ (2.04)  | \$ 0.21                  | \$ 455.13     | \$ 377.65            | \$ 534.42             |
| 2016 | \$ -          | \$ -                 | \$ -                  | \$ 456.95     | \$ 379.47            | \$ 536.24             | \$ -           | \$ -     | \$ -                | \$ (2.04)  | \$ 0.21                  | \$ 455.13     | \$ 377.65            | \$ 534.42             |
| 2017 | \$ -          | \$                   | \$ -                  | \$ 456.95     | \$ 379.47            | \$ 536.24             | \$ -           | \$ -     | \$ -                | \$ (2.04)  | \$ 0.21                  | \$ 455.13     | \$ 377.65            | \$ 534.42             |
| 2018 | \$ -          | \$                   | \$ -                  | \$ 456.95     | \$ 379.47            | \$ 536.24             | \$ -           | \$ -     | \$ -                | \$ (2.04)  | \$ 0.21                  | \$ 455.13     | \$ 377.65            | \$ 534.42             |
| 2019 | \$ -          | \$ -                 | \$ -                  | \$ 456.95     | \$ 379.47            | \$ 536.24             | \$ -           | \$ -     | \$ -                | \$ (2.04)  | \$ 0.21                  | \$ 455.13     | \$ 377.65            | \$ 534.42             |
| 2020 | \$ -          | \$                   | \$ -                  | \$ 456.95     | \$ 379.47            | \$ 536.24             | \$ -           | \$ -     | \$ -                | \$ (2.04)  | \$ 0.21                  | \$ 455.13     | \$ 377.65            | \$ 534.42             |
| 2021 | \$ -          | \$ -                 | \$ -                  | \$ 456.95     | \$ 379.47            | \$ 536.24             | \$ -           | \$ -     | \$ -                | \$ (2.04)  | \$ 0.21                  | \$ 455.13     | \$ 377.65            | \$ 534.42             |
| 2022 | \$ -          | \$                   | \$ -                  | \$ 456.95     | \$ 379.47            | \$ 536.24             | \$ -           | \$ -     | \$ -                | \$ (2.04)  | \$ 0.21                  | \$ 455.13     | \$ 377.65            | \$ 534.42             |
| 2023 | \$ -          | \$                   | \$ -                  | \$ 456.95     | \$ 379.47            | \$ 536.24             | \$ -           | \$ -     | \$ -                | \$ (2.04)  | \$ 0.21                  | \$ 455.13     | \$ 377.65            | \$ 534.42             |
| 2024 | \$ -          | \$ -                 | \$ -                  | \$ 456.95     | \$ 379.47            | \$ 536.24             | \$ -           | \$ -     | \$ -                | \$ (2.04)  | \$ 0.21                  | \$ 455.13     | \$ 377.65            | \$ 534.42             |
| 2025 | \$ -          | \$ -                 | \$ -                  | \$ 456.95     | \$ 379.47            | \$ 536.24             | \$ -           | \$ -     | \$ -                | \$ (2.04)  | \$ 0.21                  | \$ 455.13     | \$ 377.65            | \$ 534.42             |
| 2026 | \$ -          | \$ -                 | \$ -                  | \$ 456.95     | \$ 379.47            | \$ 536.24             | \$ -           | \$ -     | \$ -                | \$ (2.04)  | \$ 0.21                  | \$ 455.13     | \$ 377.65            | \$ 534.42             |
| 2027 | \$ -          | \$ -                 | \$ -                  | \$ 456.95     | \$ 379.47            | \$ 536.24             | \$ -           | \$ -     | \$ -                | \$ (2.04)  | \$ 0.21                  | \$ 455.13     | \$ 377.65            | \$ 534.42             |
| 2028 | \$ -          | \$ -                 | \$ -                  | \$ 456.95     | \$ 379.47            | \$ 536.24             | \$ -           | \$ -     | \$ -                | \$ (2.04)  | \$ 0.21                  | \$ 455.13     | \$ 377.65            | \$ 534.42             |
| 2029 | \$ -          | \$ -                 | \$ -                  | \$ 456.95     | \$ 379.47            | \$ 536.24             | \$ -           | \$ -     | \$ -                | \$ (2.04)  | \$ 0.21                  | \$ 455.13     | \$ 377.65            | \$ 534.42             |

Note: All values in millions of year 2003 dollars.

#### Exhibit J.5d Projections of Stage 2 DBPR PWS Costs

(All Ground Water CWSs)

#### Alternative 3

|      | Treatme     | ent Capital   | Costs          | Treat    | ment O&M      | Costs               |                | N       | Non-Treatment C | osts       |             | All S     | age 2 DBPR Costs               |
|------|-------------|---------------|----------------|----------|---------------|---------------------|----------------|---------|-----------------|------------|-------------|-----------|--------------------------------|
|      |             | 90 Pe         | ce Bound       |          | Confiden      | ercent<br>ice Bound |                |         |                 |            |             |           | 90 Percent<br>Confidence Bound |
|      | lean        | Lower<br>(5th | Upper<br>(95th | Mean     | Lower<br>(5th | Upper<br>(95th      |                |         | Monitoring      |            | Significant | Mean      | Lower Upper                    |
| Year | alue        | %tile)        | %tile)         | Value    | %tile)        | %tile)              | Implementation | IDSE    | Plans           | Monitoring | Excursion   | Value     | (5th %tile) (95th %ti          |
| 2005 | \$<br>-     | \$ -          | \$ -           | \$ -     | \$ -          | \$ -                | \$ 0.07        | \$ -    | \$ -            | \$ -       | \$ -        | \$ 0.07   | \$ 0.07 \$ 0.0                 |
| 2006 | \$<br>-     | \$ -          | \$ -           | \$ -     | \$ -          | \$ -                | \$ 3.42        | \$ 0.09 | \$ -            | \$ -       | \$ -        | \$ 3.51   | \$ 3.51 \$ 3.5                 |
| 2007 | \$<br>-     | \$ -          | \$ -           | \$ -     | \$ -          | \$ -                | \$ -           | \$ 1.09 | \$ 0.02         | \$ -       | \$ -        | \$ 1.11   | \$ 1.11 \$ 1.1                 |
| 2008 | \$<br>19.20 | \$ 16.63      | \$ 21.76       | \$ -     | \$ -          | \$ -                | \$ 0.05        | \$ 6.66 | \$ 0.22         | \$ -       | \$ -        | \$ 26.12  | \$ 23.55 \$ 28.6               |
| 2009 | \$<br>55.25 | \$ 47.64      | \$ 62.88       | \$ 1.85  | \$ 1.70       | \$ 1.99             | \$ 1.73        | \$ -    | \$ 2.58         | \$ -       | \$ -        | \$ 61.41  | \$ 53.65 \$ 69.7               |
| 2010 | \$<br>87.74 | \$ 75.54      | \$ 99.97       | \$ 6.50  | \$ 6.01       | \$ 6.98             | \$ 1.71        | \$ -    | \$ -            | \$ -       | \$ -        | \$ 95.94  | \$ 83.27 \$ 108.6              |
| 2011 | \$<br>87.74 | \$ 75.54      | \$ 99.97       | \$ 13.65 | \$ 12.65      | \$ 14.65            | \$ -           | \$ -    | \$ -            | \$ 0.08    | \$ -        | \$ 101.46 | \$ 88.28 \$ 114.7              |
| 2012 | \$<br>87.74 | \$ 75.54      | \$ 99.97       | \$ 20.80 | \$ 19.29      | \$ 22.31            | \$ -           | \$ -    | \$ -            | \$ 2.95    | \$ -        | \$ 111.49 | \$ 97.79 \$ 125.2              |
| 2013 | \$<br>68.54 | \$ 58.92      | \$ 78.22       | \$ 27.95 | \$ 25.94      | \$ 29.98            | \$ -           | \$ -    | \$ -            | \$ 5.63    | \$ -        | \$ 102.12 | \$ 90.48 \$ 113.8              |
| 2014 | \$<br>32.48 | \$ 27.91      | \$ 37.09       | \$ 33.26 | \$ 30.88      | \$ 35.65            | \$ -           | \$ -    | \$ -            | \$ 5.63    | \$ -        | \$ 71.37  | \$ 64.41 \$ 78.3               |
| 2015 | \$<br>-     | \$ -          | \$ -           | \$ 35.76 | \$ 33.20      | \$ 38.32            | \$ -           | \$ -    | \$ -            | \$ 5.63    | \$ -        | \$ 41.39  | \$ 38.83 \$ 43.9               |
| 2016 | \$<br>-     | \$ -          | \$ -           | \$ 35.76 | \$ 33.20      | \$ 38.32            | \$ -           | \$ -    | \$ -            | \$ 5.63    | \$ -        | \$ 41.39  | \$ 38.83 \$ 43.9               |
| 2017 | \$<br>-     | \$ -          | \$ -           | \$ 35.76 | \$ 33.20      | \$ 38.32            | \$ -           | \$ -    | \$ -            | \$ 5.63    | \$ -        | \$ 41.39  | \$ 38.83 \$ 43.9               |
| 2018 | \$<br>-     | \$ -          | \$ -           | \$ 35.76 | \$ 33.20      | \$ 38.32            | \$ -           | \$ -    | \$ -            | \$ 5.63    | \$ -        | \$ 41.39  | \$ 38.83 \$ 43.9               |
| 2019 | \$<br>-     | \$ -          | \$ -           | \$ 35.76 | \$ 33.20      | \$ 38.32            | \$ -           | \$ -    | \$ -            | \$ 5.63    | \$ -        | \$ 41.39  | \$ 38.83 \$ 43.9               |
| 2020 | \$<br>-     | \$ -          | \$ -           | \$ 35.76 | \$ 33.20      | \$ 38.32            | \$ -           | \$ -    | \$ -            | \$ 5.63    | \$ -        | \$ 41.39  | \$ 38.83 \$ 43.9               |
| 2021 | \$<br>-     | \$ -          | \$ -           | \$ 35.76 | \$ 33.20      | \$ 38.32            | \$ -           | \$ -    | \$ -            | \$ 5.63    | \$ -        | \$ 41.39  | \$ 38.83 \$ 43.9               |
| 2022 | \$<br>-     | \$ -          | \$ -           | \$ 35.76 | \$ 33.20      | \$ 38.32            | \$ -           | \$ -    | \$ -            | \$ 5.63    | \$ -        | \$ 41.39  | \$ 38.83 \$ 43.9               |
| 2023 | \$<br>-     | \$ -          | \$ -           | \$ 35.76 | \$ 33.20      | \$ 38.32            | \$ -           | \$ -    | \$ -            | \$ 5.63    | \$ -        | \$ 41.39  | \$ 38.83 \$ 43.9               |
| 2024 | \$<br>-     | \$ -          | \$ -           | \$ 35.76 | \$ 33.20      | \$ 38.32            | \$ -           | \$ -    | \$ -            | \$ 5.63    | \$ -        | \$ 41.39  | \$ 38.83 \$ 43.9               |
| 2025 | \$<br>-     | \$ -          | \$ -           | \$ 35.76 | \$ 33.20      | \$ 38.32            | \$ -           | \$ -    | \$ -            | \$ 5.63    | \$ -        | \$ 41.39  | \$ 38.83 \$ 43.9               |
| 2026 | \$<br>-     | \$ -          | \$ -           | \$ 35.76 | \$ 33.20      | \$ 38.32            | \$ -           | \$ -    | \$ -            | \$ 5.63    | \$ -        | \$ 41.39  | \$ 38.83 \$ 43.9               |
| 2027 | \$<br>-     | \$ -          | \$ -           | \$ 35.76 | \$ 33.20      | \$ 38.32            | \$ -           | \$ -    | \$ -            | \$ 5.63    | \$ -        | \$ 41.39  | \$ 38.83 \$ 43.9               |
| 2028 | \$<br>-     | \$ -          | \$ -           | \$ 35.76 | \$ 33.20      | \$ 38.32            | \$ -           | \$ -    | \$ -            | \$ 5.63    | \$ -        | \$ 41.39  | \$ 38.83 \$ 43.9               |
| 2029 | \$<br>-     | \$ -          | \$ -           | \$ 35.76 | \$ 33.20      | \$ 38.32            | \$ -           | \$ -    | \$ -            | \$ 5.63    | \$ -        | \$ 41.39  | \$ 38.83 \$ 43.9               |

Note: All values in millions of year 2003 dollars.

#### Exhibit J.5e Projections of Stage 2 DBPR PWS Costs

(All Ground Water NTNCWSs)

#### Alternative 3

|      | -  | Γreatme | ent C | Capital | Cos  | sts                  |    | Treatn        | nent C               | &M      | Cos              | ts                  |    |               | No               | on-T | reatment Co | sts |          |    |            |    | All St        | age | 2 DBPR            | Cos  | ts             |
|------|----|---------|-------|---------|------|----------------------|----|---------------|----------------------|---------|------------------|---------------------|----|---------------|------------------|------|-------------|-----|----------|----|------------|----|---------------|-----|-------------------|------|----------------|
|      | M  | ean     | L     | 90 Pe   | Ce B | ound<br>pper<br>95th | N  | <b>l</b> lean | Confi<br>Low<br>(5tl | er<br>1 | Ce B<br>Up<br>(9 | ound<br>oper<br>5th |    |               |                  | М    | onitoring   |     |          |    | ignificant | -  | <b>/</b> lean | ı   | 90 Pe<br>Confiden | ce B | Bound<br>Upper |
| Year | V  | alue    | (5th  | %tile)  | %    | tile)                | ٧  | alue          | %til                 | e)      | %i               | tile)               | In | nplementation | IDSE             |      | Plans       | Moi | nitoring | E  | xcursion   | \  | /alue         | (5t | h %tile)          | (95  | th %tile)      |
| 2005 | \$ | -       | \$    | -       | \$   | -                    | \$ | -             | \$ -                 |         | \$               | -                   | \$ | 0.00          | \$<br>; -        | \$   | -           | \$  | -        | \$ | -          | \$ | 0.00          | \$  | 0.00              | \$   | 0.00           |
| 2006 | \$ | -       | \$    | -       | \$   | -                    | \$ | -             | \$ -                 |         | \$               | -                   | \$ | 0.56          | \$<br>; -        | \$   | -           | \$  | -        | \$ | -          | \$ | 0.56          | \$  | 0.56              | \$   | 0.56           |
| 2007 | \$ | -       | \$    | -       | \$   | -                    | \$ | -             | \$ -                 |         | \$               | -                   | \$ | -             | \$<br>0.00       | \$   | 0.00        | \$  | -        | \$ | -          | \$ | 0.00          | \$  | 0.00              | \$   | 0.00           |
| 2008 | \$ | 0.02    | \$    | 0.02    | \$   | 0.02                 | \$ | -             | \$ -                 |         | \$               | -                   | \$ | 0.00          | \$<br>0.00       | \$   | 0.00        | \$  | -        | \$ | -          | \$ | 0.02          | \$  | 0.02              | \$   | 0.02           |
| 2009 | \$ | 1.43    | \$    | 1.22    | \$   | 1.63                 | \$ | 0.00          | \$ 0.                | 00      | \$               | 0.00                | \$ | 0.28          | \$<br><b>;</b> - | \$   | 0.46        | \$  | -        | \$ | -          | \$ | 2.17          | \$  | 1.96              | \$   | 2.38           |
| 2010 | \$ | 2.83    | \$    | 2.42    | \$   | 3.24                 | \$ | 0.13          | \$ 0.                | 12      | \$               | 0.14                | \$ | 0.28          | \$<br><b>;</b> - | \$   | -           | \$  | -        | \$ | -          | \$ | 3.24          | \$  | 2.82              | \$   | 3.66           |
| 2011 | \$ | 2.83    | \$    | 2.42    | \$   | 3.24                 | \$ | 0.38          | \$ 0.                | 36      | \$               | 0.41                | \$ | -             | \$<br><b>;</b> - | \$   | -           | \$  | 0.00     | \$ | -          | \$ | 3.22          | \$  | 2.78              | \$   | 3.66           |
| 2012 | \$ | 2.83    | \$    | 2.42    | \$   | 3.24                 | \$ | 0.64          | \$ 0.                | 59      | \$               | 0.69                | \$ | -             | \$<br>; -        | \$   | -           | \$  | 0.37     | \$ | -          | \$ | 3.84          | \$  | 3.38              | \$   | 4.29           |
| 2013 | \$ | 2.81    | \$    | 2.40    | \$   | 3.22                 | \$ | 0.89          | \$ 0.                | 83      | \$               | 0.96                | \$ | -             | \$<br>; -        | \$   | -           | \$  | 0.73     | \$ | -          | \$ | 4.43          | \$  | 3.96              | \$   | 4.90           |
| 2014 | \$ | 1.40    | \$    | 1.20    | \$   | 1.61                 | \$ | 1.15          | \$ 1.                | 06      | \$               | 1.23                | \$ | -             | \$<br>; -        | \$   | -           | \$  | 0.73     | \$ | -          | \$ | 3.28          | \$  | 2.99              | \$   | 3.56           |
| 2015 | \$ | -       | \$    | -       | \$   | -                    | \$ | 1.27          | \$ 1.                | 18      | \$               | 1.36                | \$ | -             | \$<br>; -        | \$   | -           | \$  | 0.73     | \$ | -          | \$ | 2.00          | \$  | 1.91              | \$   | 2.09           |
| 2016 | \$ | -       | \$    | -       | \$   | -                    | \$ | 1.27          | \$ 1.                | 18      | \$               | 1.36                | \$ | -             | \$<br>; -        | \$   | -           | \$  | 0.73     | \$ | -          | \$ | 2.00          | \$  | 1.91              | \$   | 2.09           |
| 2017 | \$ | -       | \$    | -       | \$   | -                    | \$ | 1.27          | \$ 1.                | 18      | \$               | 1.36                | \$ | -             | \$<br>; -        | \$   | -           | \$  | 0.73     | \$ | -          | \$ | 2.00          | \$  | 1.91              | \$   | 2.09           |
| 2018 | \$ | -       | \$    | -       | \$   | -                    | \$ | 1.27          | \$ 1.                | 18      | \$               | 1.36                | \$ | -             | \$<br>; -        | \$   | -           | \$  | 0.73     | \$ | -          | \$ | 2.00          | \$  | 1.91              | \$   | 2.09           |
| 2019 | \$ | -       | \$    | -       | \$   | -                    | \$ | 1.27          | \$ 1.                | 18      | \$               | 1.36                | \$ | -             | \$<br>; -        | \$   | -           | \$  | 0.73     | \$ | -          | \$ | 2.00          | \$  | 1.91              | \$   | 2.09           |
| 2020 | \$ | -       | \$    | -       | \$   | -                    | \$ | 1.27          | \$ 1.                | 18      | \$               | 1.36                | \$ | -             | \$<br><b>;</b> - | \$   | -           | \$  | 0.73     | \$ | -          | \$ | 2.00          | \$  | 1.91              | \$   | 2.09           |
| 2021 | \$ | -       | \$    | -       | \$   | -                    | \$ | 1.27          | \$ 1.                | 18      | \$               | 1.36                | \$ | -             | \$<br><b>;</b> - | \$   | -           | \$  | 0.73     | \$ | -          | \$ | 2.00          | \$  | 1.91              | \$   | 2.09           |
| 2022 | \$ | -       | \$    | -       | \$   | -                    | \$ | 1.27          | \$ 1.                | 18      | \$               | 1.36                | \$ | -             | \$<br>; -        | \$   | -           | \$  | 0.73     | \$ | -          | \$ | 2.00          | \$  | 1.91              | \$   | 2.09           |
| 2023 | \$ | -       | \$    | -       | \$   | -                    | \$ | 1.27          | \$ 1.                | 18      | \$               | 1.36                | \$ | -             | \$<br>; -        | \$   | -           | \$  | 0.73     | \$ | -          | \$ | 2.00          | \$  | 1.91              | \$   | 2.09           |
| 2024 | \$ | -       | \$    | -       | \$   | -                    | \$ | 1.27          | \$ 1.                | 18      | \$               | 1.36                | \$ | -             | \$<br>; -        | \$   | -           | \$  | 0.73     | \$ | -          | \$ | 2.00          | \$  | 1.91              | \$   | 2.09           |
| 2025 | \$ | -       | \$    | -       | \$   | -                    | \$ | 1.27          | \$ 1.                | 18      | \$               | 1.36                | \$ | -             | \$<br>; -        | \$   | -           | \$  | 0.73     | \$ | -          | \$ | 2.00          | \$  | 1.91              | \$   | 2.09           |
| 2026 | \$ | -       | \$    | -       | \$   | -                    | \$ | 1.27          | \$ 1.                | 18      | \$               | 1.36                | \$ | -             | \$<br>; -        | \$   | -           | \$  | 0.73     | \$ | -          | \$ | 2.00          | \$  | 1.91              | \$   | 2.09           |
| 2027 | \$ | -       | \$    | -       | \$   | -                    | \$ | 1.27          | \$ 1.                | 18      | \$               | 1.36                | \$ | -             | \$<br>; -        | \$   | -           | \$  | 0.73     | \$ | -          | \$ | 2.00          | \$  | 1.91              | \$   | 2.09           |
| 2028 | \$ | -       | \$    | -       | \$   | -                    | \$ | 1.27          | \$ 1.                | 18      | \$               | 1.36                | \$ | -             | \$<br>; -        | \$   | -           | \$  | 0.73     | \$ | -          | \$ | 2.00          | \$  | 1.91              | \$   | 2.09           |
| 2029 | \$ | -       | \$    | -       | \$   | -                    | \$ | 1.27          | \$ 1.                | 18      | \$               | 1.36                | \$ | -             | \$<br>; -        | \$   | -           | \$  | 0.73     | \$ | -          | \$ | 2.00          | \$  | 1.91              | \$   | 2.09           |

Note: All values in millions of year 2003 dollars.

#### Exhibit J.5f Projections of Stage 2 DBPR PWS Costs

(All Ground Water Systems)

#### Alternative 3

|      | Trea          | tment Capita         | al Costs                 | Treat         | ment O&M             | Costs                    |                |    | N    | lon- | Treatment Co        | sts        |                           | Al            | l Sta | ge 2 DBPR            | Cos | ts                  |
|------|---------------|----------------------|--------------------------|---------------|----------------------|--------------------------|----------------|----|------|------|---------------------|------------|---------------------------|---------------|-------|----------------------|-----|---------------------|
|      |               |                      | ercent<br>nce Bound      |               |                      | ercent<br>ce Bound       |                |    |      |      |                     |            |                           |               |       | 90 Pe<br>Confiden    |     |                     |
| Year | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th<br>%tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th<br>%tile) | Implementation | ı  | IDSE |      | Monitoring<br>Plans | Monitoring | Siginificant<br>Excursion | Mean<br>Value |       | Lower<br>(5th %tile) |     | Upper<br>5th %tile) |
| 2005 | \$ -          | \$ -                 | \$ -                     | \$ -          | \$ -                 | \$ -                     | \$ 0.07        | \$ | -    | \$   | -                   | \$ -       | \$ -                      | \$ 0.         | 07    | \$ 0.07              | \$  | 0.07                |
| 2006 | \$ -          | \$ -                 | \$ -                     | \$ -          | \$ -                 | \$ -                     | \$ 3.98        | \$ | 0.09 | \$   | -                   | \$ -       | \$ -                      | \$ 4.         | 07    | \$ 4.07              | \$  | 4.07                |
| 2007 | \$ -          | \$ -                 | \$ -                     | \$ -          | \$ -                 | \$ -                     | \$ -           | \$ | 1.09 | \$   | 0.02                | \$ -       | \$ -                      | \$ 1.         | 11    | \$ 1.11              | \$  | 1.11                |
| 2008 | \$ 19.22      | \$ 16.65             | \$ 21.78                 | \$ -          | \$ -                 | \$ -                     | \$ 0.05        | \$ | 6.66 | \$   | 0.22                | \$ -       | \$ -                      | \$ 26.        | 14    | \$ 23.57             | \$  | 28.70               |
| 2009 | \$ 56.68      | \$ 48.86             | \$ 64.52                 | \$ 1.85       | \$ 1.70              | \$ 1.99                  | \$ 2.01        | \$ | -    | \$   | 3.04                | \$ -       | \$ -                      | \$ 63.        | 58    | \$ 55.61             | \$  | 71.56               |
| 2010 | \$ 90.57      | \$ 77.96             | \$ 103.21                | \$ 6.63       | \$ 6.13              | \$ 7.12                  | \$ 1.99        | \$ | -    | \$   | -                   | \$ -       | \$ -                      | \$ 99.        | 19    | \$ 86.09             | \$  | 112.33              |
| 2011 | \$ 90.57      | \$ 77.96             | \$ 103.21                | \$ 14.03      | \$ 13.01             | \$ 15.06                 | \$ -           | \$ | -    | \$   | -                   | \$ 0.08    | \$ -                      | \$ 104.       | 86    | \$ 91.05             | \$  | 118.36              |
| 2012 | \$ 90.57      | \$ 77.96             | \$ 103.21                | \$ 21.44      | \$ 19.89             | \$ 23.00                 | \$ -           | \$ | -    | \$   | -                   | \$ 3.32    | \$ -                      | \$ 115.       | 33    | \$ 101.17            | \$  | 129.53              |
| 2013 | \$ 71.35      | \$ 61.32             | \$ 81.44                 | \$ 28.85      | \$ 26.76             | \$ 30.93                 | \$ -           | \$ | -    | \$   | -                   | \$ 6.36    | \$ -                      | \$ 106.       | 56    | \$ 94.44             | \$  | 118.73              |
| 2014 | \$ 33.89      | \$ 29.10             | \$ 38.70                 | \$ 34.41      | \$ 31.94             | \$ 36.88                 | \$ -           | \$ | -    | \$   | -                   | \$ 6.36    | \$ -                      | \$ 74.        | 35    | \$ 67.40             | \$  | 81.93               |
| 2015 | \$ -          | \$ -                 | \$ -                     | \$ 37.03      | \$ 34.38             | \$ 39.69                 | \$ -           | \$ | -    | \$   | -                   | \$ 6.36    | \$ -                      | \$ 43.        | 39    | \$ 40.74             | \$  | 46.04               |
| 2016 | \$ -          | \$ -                 | \$ -                     | \$ 37.03      | \$ 34.38             | \$ 39.69                 | \$ -           | \$ | -    | \$   | -                   | \$ 6.36    | \$ -                      | \$ 43.        | 39    | \$ 40.74             | \$  | 46.04               |
| 2017 | \$ -          | \$ -                 | \$ -                     | \$ 37.03      | \$ 34.38             | \$ 39.69                 | \$ -           | \$ | -    | \$   | -                   | \$ 6.36    | \$ -                      | \$ 43.        | 39    | \$ 40.74             | \$  | 46.04               |
| 2018 | \$ -          | \$ -                 | \$ -                     | \$ 37.03      | \$ 34.38             | \$ 39.69                 | \$ -           | \$ | -    | \$   | -                   | \$ 6.36    | \$ -                      | \$ 43.        | 39    | \$ 40.74             | \$  | 46.04               |
| 2019 | \$ -          | \$ -                 | \$ -                     | \$ 37.03      | \$ 34.38             | \$ 39.69                 | \$ -           | \$ | -    | \$   | -                   | \$ 6.36    | \$ -                      | \$ 43.        | 39    | \$ 40.74             | \$  | 46.04               |
| 2020 | \$ -          | \$ -                 | \$ -                     | \$ 37.03      | \$ 34.38             | \$ 39.69                 | \$ -           | \$ | -    | \$   | -                   | \$ 6.36    | \$ -                      | \$ 43.        | 39    | \$ 40.74             | \$  | 46.04               |
| 2021 | \$ -          | \$ -                 | \$ -                     | \$ 37.03      | \$ 34.38             | \$ 39.69                 | \$ -           | \$ | -    | \$   | -                   | \$ 6.36    | \$ -                      | \$ 43.        | 39    | \$ 40.74             | \$  | 46.04               |
| 2022 | \$ -          | \$ -                 | \$ -                     | \$ 37.03      | \$ 34.38             | \$ 39.69                 | \$ -           | \$ | -    | \$   | -                   | \$ 6.36    | \$ -                      | \$ 43.        | 39    | \$ 40.74             | \$  | 46.04               |
| 2023 | \$ -          | \$ -                 | \$ -                     | \$ 37.03      | \$ 34.38             | \$ 39.69                 | \$ -           | \$ | -    | \$   | -                   | \$ 6.36    | \$ -                      | \$ 43.        | 39    | \$ 40.74             | \$  | 46.04               |
| 2024 | \$ -          | \$ -                 | \$ -                     | \$ 37.03      | \$ 34.38             | \$ 39.69                 | \$ -           | \$ | -    | \$   | -                   | \$ 6.36    | \$ -                      | \$ 43.        | 39    | \$ 40.74             | \$  | 46.04               |
| 2025 | \$ -          | \$ -                 | \$ -                     | \$ 37.03      | \$ 34.38             | \$ 39.69                 | \$ -           | \$ | -    | \$   | -                   | \$ 6.36    | \$ -                      | \$ 43.        | 39    | \$ 40.74             | \$  | 46.04               |
| 2026 | \$ -          | \$ -                 | \$ -                     | \$ 37.03      | \$ 34.38             | \$ 39.69                 | \$ -           | \$ | -    | \$   | -                   | \$ 6.36    | \$ -                      | \$ 43.        | 39    | \$ 40.74             | \$  | 46.04               |
| 2027 | \$ -          | \$ -                 | \$ -                     | \$ 37.03      | \$ 34.38             | \$ 39.69                 | \$ -           | \$ | -    | \$   | -                   | \$ 6.36    | \$ -                      | \$ 43.        | 39    | \$ 40.74             | \$  | 46.04               |
| 2028 | \$ -          | \$ -                 | \$ -                     | \$ 37.03      | \$ 34.38             | \$ 39.69                 | \$ -           | \$ | -    | \$   | -                   | \$ 6.36    | \$ -                      | \$ 43.        | 39    | \$ 40.74             | \$  | 46.04               |
| 2029 | \$ -          | \$ -                 | \$ -                     | \$ 37.03      | \$ 34.38             | \$ 39.69                 | \$ -           | \$ | -    | \$   | -                   | \$ 6.36    |                           | \$ 43.        | 39    | \$ 40.74             | \$  | 46.04               |

Note: All values in millions of year 2003 dollars.

#### Exhibit J.5g Projections of Stage 2 DBPR PWS Costs

(All Systems)

#### Alternative 3

|      | Treat         | ment Capital         | Costs                 | Treat         | ment O&M (           | Costs                    |                | N        | on-Treatment Co     | osts       |                           | All Sta       | ige 2 DBPR C         | osts                  |
|------|---------------|----------------------|-----------------------|---------------|----------------------|--------------------------|----------------|----------|---------------------|------------|---------------------------|---------------|----------------------|-----------------------|
|      |               |                      | ercent<br>ice Bound   |               | 90 Pe<br>Confiden    |                          |                |          |                     |            |                           |               | 90 Pe<br>Confidenc   |                       |
| Year | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th<br>%tile) | Implementation | IDSE     | Monitoring<br>Plans | Monitoring | Siginificant<br>Excursion | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) |
| 2005 | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                     | \$ 0.76        | \$ -     | \$ -                | \$ -       | \$ -                      | \$ 0.76       | \$ 0.76              | \$ 0.76               |
| 2006 | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                     | \$ 5.40        | \$ 8.56  | \$ -                | \$ -       | \$ -                      | \$ 13.96      | \$ 13.96             | \$ 13.96              |
| 2007 | \$ -          | \$ -                 | \$ -                  | \$ -          | \$ -                 | \$ -                     | \$ -           | \$ 23.58 | \$ 0.24             | \$ -       | \$ -                      | \$ 23.81      | \$ 23.81             | \$ 23.81              |
| 2008 | \$ 771.85     | \$ 631.62            | \$ 919.73             | \$ -          | \$ -                 | \$ -                     | \$ 0.65        | \$ 25.30 | \$ 0.83             | \$ -       | \$ -                      | \$ 798.63     | \$ 658.40            | \$ 946.51             |
| 2009 | \$ 1,171.24   | \$ 958.45            | \$ 1,396.03           | \$ 42.54      | \$ 35.53             | \$ 49.67                 | \$ 2.81        | \$ -     | \$ 3.95             | \$ -       | \$ -                      | \$ 1,220.54   | \$ 1,000.73          | \$ 1,452.46           |
| 2010 | \$ 1,486.50   | \$ 1,216.53          | \$ 1,771.99           | \$ 115.31     | \$ 96.44             | \$ 134.54                | \$ 2.70        | \$ -     | \$ -                | \$ -       | \$ -                      | \$ 1,604.51   | \$ 1,315.67          | \$ 1,909.23           |
| 2011 | \$ 1,486.50   | \$ 1,216.53          | \$ 1,771.99           | \$ 214.10     | \$ 179.21            | \$ 249.73                | \$ -           | \$ -     | \$ -                | \$ 0.51    | \$ -                      | \$ 1,701.11   | \$ 1,396.24          | \$ 2,022.22           |
| 2012 | \$ 1,486.50   | \$ 1,216.53          | \$ 1,771.99           | \$ 312.90     | \$ 261.98            | \$ 364.91                | \$ -           | \$ -     | \$ -                | \$ 2.57    | \$ 0.06                   | \$ 1,802.03   | \$ 1,481.14          | \$ 2,139.53           |
| 2013 | \$ 714.65     | \$ 584.91            | \$ 852.26             | \$ 411.70     | \$ 344.75            | \$ 480.10                | \$ -           | \$ -     | \$ -                | \$ 4.32    | \$ 0.15                   | \$ 1,130.81   | \$ 934.13            | \$ 1,336.83           |
| 2014 | \$ 315.26     | \$ 258.08            | \$ 375.96             | \$ 467.96     | \$ 392.00            | \$ 545.62                | \$ -           | \$ -     | \$ -                | \$ 4.32    | \$ 0.21                   | \$ 787.75     | \$ 654.61            | \$ 926.11             |
| 2015 | \$ -          | \$ -                 | \$ -                  | \$ 493.99     | \$ 413.85            | \$ 575.93                | \$ -           | \$ -     | \$ -                | \$ 4.32    | \$ 0.21                   | \$ 498.52     | \$ 418.39            | \$ 580.46             |
| 2016 | \$ -          | \$ -                 | \$ -                  | \$ 493.99     | \$ 413.85            | \$ 575.93                | \$ -           | \$ -     | \$ -                | \$ 4.32    | \$ 0.21                   | \$ 498.52     | \$ 418.39            | \$ 580.46             |
| 2017 | \$ -          | \$ -                 | \$ -                  | \$ 493.99     | \$ 413.85            | \$ 575.93                | \$ -           | \$ -     | \$ -                | \$ 4.32    | \$ 0.21                   | \$ 498.52     | \$ 418.39            | \$ 580.46             |
| 2018 | \$ -          | \$ -                 | \$ -                  | \$ 493.99     | \$ 413.85            | \$ 575.93                | \$ -           | \$ -     | \$ -                | \$ 4.32    | \$ 0.21                   | \$ 498.52     | \$ 418.39            | \$ 580.46             |
| 2019 | \$ -          | \$ -                 | \$ -                  | \$ 493.99     | \$ 413.85            | \$ 575.93                | \$ -           | \$ -     | \$ -                | \$ 4.32    | \$ 0.21                   | \$ 498.52     | \$ 418.39            | \$ 580.46             |
| 2020 | \$ -          | \$ -                 | \$ -                  | \$ 493.99     | \$ 413.85            | \$ 575.93                | \$ -           | \$ -     | \$ -                | \$ 4.32    | \$ 0.21                   | \$ 498.52     | \$ 418.39            | \$ 580.46             |
| 2021 | \$ -          | \$ -                 | \$ -                  | \$ 493.99     | \$ 413.85            | \$ 575.93                | \$ -           | \$ -     | \$ -                | \$ 4.32    | \$ 0.21                   | \$ 498.52     | \$ 418.39            | \$ 580.46             |
| 2022 | \$ -          | \$ -                 | \$ -                  | \$ 493.99     | \$ 413.85            | \$ 575.93                | \$ -           | \$ -     | \$ -                | \$ 4.32    | \$ 0.21                   | \$ 498.52     | \$ 418.39            | \$ 580.46             |
| 2023 | \$ -          | \$ -                 | \$ -                  | \$ 493.99     | \$ 413.85            | \$ 575.93                | \$ -           | \$ -     | \$ -                | \$ 4.32    | \$ 0.21                   | \$ 498.52     | \$ 418.39            | \$ 580.46             |
| 2024 | \$ -          | \$ -                 | \$ -                  | \$ 493.99     | \$ 413.85            | \$ 575.93                | \$ -           | \$ -     | \$ -                | \$ 4.32    | \$ 0.21                   | \$ 498.52     | \$ 418.39            | \$ 580.46             |
| 2025 | \$ -          | \$ -                 | \$ -                  | \$ 493.99     | \$ 413.85            | \$ 575.93                | \$ -           | \$ -     | \$ -                | \$ 4.32    | \$ 0.21                   | \$ 498.52     | \$ 418.39            | \$ 580.46             |
| 2026 | \$ -          | \$ -                 | \$ -                  | \$ 493.99     | \$ 413.85            | \$ 575.93                | \$ -           | \$ -     | \$ -                | \$ 4.32    | \$ 0.21                   | \$ 498.52     | \$ 418.39            | \$ 580.46             |
| 2027 | \$ -          | \$ -                 | \$ -                  | \$ 493.99     | \$ 413.85            | \$ 575.93                | \$ -           | \$ -     | \$ -                | \$ 4.32    | \$ 0.21                   | \$ 498.52     | \$ 418.39            | \$ 580.46             |
| 2028 | \$ -          | \$ -                 | \$ -                  | \$ 493.99     | \$ 413.85            | \$ 575.93                | \$ -           | \$ -     | \$ -                | \$ 4.32    | \$ 0.21                   | \$ 498.52     | \$ 418.39            | \$ 580.46             |
| 2029 | \$ -          | \$ -                 | \$ -                  | \$ 493.99     | \$ 413.85            | \$ 575.93                | \$ -           | \$ -     | \$ -                | \$ 4.32    | \$ 0.21                   | \$ 498.52     | \$ 418.39            | \$ 580.46             |

Note: All values in millions of year 2003 dollars.

Exhibit J.5h Projections of Stage 2 DBPR Primacy Agency Costs

Alternative 3

| Year | Implementation Costs | 11 | DSE Costs | Mo | nitoring Plan<br>Costs | Мо | mpliance<br>onitoring<br>Costs | Ex | Inificant<br>cursion<br>ort Costs |
|------|----------------------|----|-----------|----|------------------------|----|--------------------------------|----|-----------------------------------|
| 2005 | \$ 3.88              |    | -         | \$ | -                      | \$ | -                              | \$ | -                                 |
| 2006 | \$ 3.88              |    | 0.04      | \$ | -                      | \$ | -                              | \$ | -                                 |
| 2007 | \$ -                 | \$ | 0.13      | \$ | 0.02                   | \$ | -                              | \$ | -                                 |
| 2008 | -                    | \$ | 2.06      | \$ | 0.06                   | \$ | -                              | \$ | -                                 |
| 2009 | -                    | \$ | -         | \$ | 0.85                   | \$ | -                              | \$ | -                                 |
| 2010 | \$ -                 | \$ | -         | \$ | -                      | \$ | -                              | \$ | -                                 |
| 2011 | -                    | \$ | -         | \$ | -                      | \$ | 1.59                           | \$ | 0.11                              |
| 2012 | -                    | \$ | -         | \$ | -                      | \$ | 1.59                           | \$ | 0.11                              |
| 2013 | -                    | \$ | -         | \$ | -                      | \$ | 1.59                           | \$ | 0.11                              |
| 2014 | -                    | \$ | -         | \$ | -                      | \$ | 1.59                           | \$ | 0.11                              |
| 2015 | -                    | \$ | -         | \$ | -                      | \$ | 1.59                           | \$ | 0.11                              |
| 2016 | -                    | \$ | -         | \$ | -                      | \$ | 1.59                           | \$ | 0.11                              |
| 2017 | \$ -                 | \$ | -         | \$ | -                      | \$ | 1.59                           | \$ | 0.11                              |
| 2018 | -                    | \$ | -         | \$ | -                      | \$ | 1.59                           | \$ | 0.11                              |
| 2019 | -                    | \$ | -         | \$ | -                      | \$ | 1.59                           | \$ | 0.11                              |
| 2020 | -                    | \$ | -         | \$ | -                      | \$ | 1.59                           | \$ | 0.11                              |
| 2021 | -                    | \$ | -         | \$ | -                      | \$ | 1.59                           | \$ | 0.11                              |
| 2022 | -                    | \$ | -         | \$ | -                      | \$ | 1.59                           | \$ | 0.11                              |
| 2023 | \$ -                 | \$ | -         | \$ | -                      | \$ | 1.59                           | \$ | 0.11                              |
| 2024 | \$ -                 | \$ | -         | \$ | -                      | \$ | 1.59                           | \$ | 0.11                              |
| 2025 | \$ -                 | \$ | -         | \$ | -                      | \$ | 1.59                           | \$ | 0.11                              |
| 2026 | \$ -                 | \$ | -         | \$ | -                      | \$ | 1.59                           | \$ | 0.11                              |
| 2027 | \$ -                 | \$ | -         | \$ | -                      | \$ | 1.59                           | \$ | 0.11                              |
| 2028 | \$ -                 | \$ | -         | \$ | -                      | \$ | 1.59                           | \$ | 0.11                              |
| 2029 | \$ -                 | \$ | -         | \$ | -                      | \$ | 1.59                           | \$ | 0.11                              |

Note: All values in millions of year 2003 dollars. Source: Derived from Exhibits J.1h and D.7.

## Exhibit J.5i Present Value of Annual Cost Projections at 3% Discount Rate (All Systems and Primacy Agencies)

#### Alternative 3

|       | Su             | rface Water C        | ws                    | Sui           | face \ | Water NT          | NCWS                  | Di | isinfect    | ing Ground          | Water CV            | ws            | Disinfectin   | g Ground Wat         | er NTNC           | ws             | Primacy Agencies |               | Total              |                |                     |
|-------|----------------|----------------------|-----------------------|---------------|--------|-------------------|-----------------------|----|-------------|---------------------|---------------------|---------------|---------------|----------------------|-------------------|----------------|------------------|---------------|--------------------|----------------|---------------------|
|       | -              |                      | ercent<br>nce Bound   |               |        |                   | ercent<br>nce Bound   |    |             |                     | Percent<br>ence Bou | ınd           |               |                      | ercent<br>nce Bou | nd             |                  |               | 90 Pe<br>Confiden  | ercen<br>ce Bo | -                   |
|       | Mean<br>Value  | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value |        | Lower<br>h %tile) | Upper<br>(95th %tile) |    | ean<br>ilue | Lower<br>(5th %tile |                     | per<br>%tile) | Mean<br>Value | Lower<br>(5th %tile) |                   | oper<br>%tile) | Point Estimate   | Mean<br>Value | Lower<br>th %tile) |                | Upper<br>ith %tile) |
| 2005  | \$<br>0.6      | \$ 0.6               | \$ 0.6                | \$ 0.0        | \$     | 0.0               | \$ 0.0                | \$ | 0.1         | \$ 0.               | \$                  | 0.1           | \$<br>0.0     | \$ 0.0               | \$                | 0.0            | \$ 3.7           | \$ 4.4        | \$<br>4.4          | \$             | 4.4                 |
| 2006  | \$<br>9.0      | \$ 9.0               | \$ 9.0                | \$ 0.1        | \$     | 0.1               | \$ 0.1                | \$ | 3.2         | \$ 3.               | 2 \$                | 3.2           | \$<br>0.5     | \$ 0.5               | \$                | 0.5            | \$ 3.6           | \$ 16.4       | \$<br>16.4         | \$             | 16.4                |
| 2007  | \$<br>20.1     | \$ 20.1              | \$ 20.1               | \$ 0.0        | \$     | 0.0               | \$ 0.0                | \$ | 1.0         | \$ 1.               | \$                  | 1.0           | \$<br>0.0     | \$ 0.0               | \$                | 0.0            | \$ 0.1           | \$ 21.3       | \$<br>21.3         | \$             | 21.3                |
| 2008  | \$<br>665.5    | \$ 546.9             | \$ 790.6              | \$ 0.9        | \$     | 0.7               | \$ 1.1                | \$ | 22.5        | \$ 20.              | 3 \$                | 24.7          | \$<br>0.0     | \$ 0.0               | \$                | 0.0            | \$ 1.8           | \$ 690.7      | \$<br>569.8        | \$             | 818.3               |
| 2009  | \$<br>959.5    | \$ 783.8             | \$ 1,145.2            | \$ 9.4        | \$     | 7.7               | \$ 11.3               | \$ | 51.4        | \$ 44.              | \$                  | 57.9          | \$<br>1.8     | \$ 1.6               | \$                | 2.0            | \$ 0.7           | \$ 1,022.9    | \$<br>838.8        | \$             | 1,217.1             |
| 2010  | \$<br>1,205.5  | \$ 984.7             | \$ 1,438.9            | \$ 18.5       | \$     | 15.1              | \$ 22.1               | \$ | 78.0        | \$ 67.              | \$                  | 88.4          | \$<br>2.6     | \$ 2.3               | \$                | 3.0            | \$ -             | \$ 1,304.6    | \$<br>1,069.8      | \$             | 1,552.4             |
| 2011  | \$<br>1,240.1  | \$ 1,013.8           | \$ 1,478.8            | \$ 20.2       | \$     | 16.5              | \$ 24.1               | \$ | 80.1        | \$ 69.              | \$                  | 90.5          | \$<br>2.5     | \$ 2.2               | \$                | 2.9            | \$ 1.3           | \$ 1,344.2    | \$<br>1,103.6      | \$             | 1,597.7             |
| 2012  | \$<br>1,270.9  | \$ 1,039.8           | \$ 1,514.5            | \$ 21.8       | \$     | 17.8              | \$ 26.0               | \$ | 85.4        | \$ 74.              | \$                  | 96.0          | \$<br>2.9     | \$ 2.6               | \$                | 3.3            | \$ 1.3           | \$ 1,382.4    | \$<br>1,136.5      | \$             | 1,641.1             |
| 2013  | \$<br>739.6    | \$ 606.4             | \$ 879.6              | \$ 22.5       | \$     | 18.4              | \$ 26.8               | \$ | 76.0        | \$ 67.              | 3 \$                | 84.7          | \$<br>3.3     | \$ 2.9               | \$                | 3.6            | \$ 1.3           | \$ 842.7      | \$<br>696.3        | \$             | 996.0               |
| 2014  | \$<br>498.6    | \$ 410.6             | \$ 590.2              | \$ 16.6       | \$     | 13.6              | \$ 19.7               | \$ | 51.6        | \$ 46.              | 5 \$                | 56.6          | \$<br>2.4     | \$ 2.2               | \$                | 2.6            | \$ 1.2           | \$ 570.3      | \$<br>474.1        | \$             | 670.3               |
| 2015  | \$<br>309.2    | \$ 256.6             | \$ 363.0              | \$ 10.0       | \$     | 8.3               | \$ 11.8               | \$ | 29.0        | \$ 27.              | 2 \$                | 30.8          | \$<br>1.4     | \$ 1.3               | \$                | 1.5            | \$ 1.2           | \$ 350.8      | \$<br>294.6        | \$             | 408.3               |
| 2016  | \$<br>300.2    | \$ 249.1             | \$ 352.5              | \$ 9.7        | \$     | 8.1               | \$ 11.4               | \$ | 28.2        | \$ 26.              | \$                  | 29.9          | \$<br>1.4     | \$ 1.3               | \$                | 1.4            | \$ 1.2           | \$ 340.6      | \$<br>286.1        | \$             | 396.4               |
| 2017  | \$<br>291.5    | \$ 241.8             | \$ 342.2              | \$ 9.4        | \$     | 7.8               | \$ 11.1               | \$ | 27.4        | \$ 25.              | \$                  | 29.1          | \$<br>1.3     | \$ 1.3               | \$                | 1.4            | \$ 1.1           | \$ 330.7      | \$<br>277.7        | \$             | 384.9               |
| 2018  | \$<br>283.0    | \$ 234.8             | \$ 332.2              | \$ 9.2        | \$     | 7.6               | \$ 10.8               | \$ | 26.6        | \$ 24.              | \$                  | 28.2          | \$<br>1.3     | \$ 1.2               | \$                | 1.3            | \$ 1.1           | \$ 321.1      | \$<br>269.6        | \$             | 373.7               |
| 2019  | \$<br>274.7    | \$ 228.0             | \$ 322.6              | \$ 8.9        | \$     | 7.4               | \$ 10.5               | \$ | 25.8        | \$ 24.              | 2 \$                | 27.4          | \$<br>1.2     | \$ 1.2               | \$                | 1.3            | \$ 1.1           | \$ 311.7      | \$<br>261.8        | \$             | 362.8               |
| 2020  | \$<br>266.7    | \$ 221.3             | \$ 313.2              | \$ 8.6        | \$     | 7.2               | \$ 10.2               | \$ | 25.0        | \$ 23.              | 5 \$                | 26.6          | \$<br>1.2     | \$ 1.2               | \$                | 1.3            | \$ 1.0           | \$ 302.6      | \$<br>254.2        | \$             | 352.2               |
| 2021  | \$<br>259.0    | \$ 214.9             | \$ 304.0              | \$ 8.4        | \$     | 7.0               | \$ 9.9                | \$ | 24.3        | \$ 22.              | 3 \$                | 25.8          | \$<br>1.2     | \$ 1.1               | \$                | 1.2            | \$ 1.0           | \$ 293.8      | \$<br>246.8        | \$             | 342.0               |
| 2022  | \$<br>251.4    | \$ 208.6             | \$ 295.2              | \$ 8.1        | \$     | 6.7               | \$ 9.6                | \$ | 23.6        | \$ 22.              | \$                  | 25.1          | \$<br>1.1     | \$ 1.1               | \$                | 1.2            | \$ 1.0           | \$ 285.3      | \$<br>239.6        | \$             | 332.0               |
| 2023  | \$<br>244.1    | \$ 202.5             | \$ 286.6              | \$ 7.9        | \$     | 6.6               | \$ 9.3                | \$ | 22.9        | \$ 21.              | 5 \$                | 24.3          | \$<br>1.1     | \$ 1.1               | \$                | 1.2            | \$ 0.9           | \$ 277.0      | \$<br>232.6        | \$             | 322.3               |
| 2024  | \$<br>237.0    | \$ 196.6             | \$ 278.2              | \$ 7.7        | \$     | 6.4               | \$ 9.0                | \$ | 22.2        | \$ 20.              | \$                  | 23.6          | \$<br>1.1     | \$ 1.0               | \$                | 1.1            | \$ 0.9           | \$ 268.9      | \$<br>225.8        | \$             | 312.9               |
| 2025  | \$<br>230.1    | \$ 190.9             | \$ 270.1              | \$ 7.5        | \$     | 6.2               | \$ 8.8                | \$ | 21.6        | \$ 20.              | 3 \$                | 22.9          | \$<br>1.0     | \$ 1.0               | \$                | 1.1            | \$ 0.9           | \$ 261.1      | \$<br>219.2        | \$             | 303.8               |
| 2026  | \$<br>223.4    | \$ 185.4             | \$ 262.3              | \$ 7.2        | \$     | 6.0               | \$ 8.5                | \$ | 21.0        | \$ 19.              | \$                  | 22.3          | \$<br>1.0     | \$ 1.0               | \$                | 1.1            | \$ 0.9           | \$ 253.5      | \$<br>212.9        | \$             | 295.0               |
| 2027  | \$<br>216.9    | \$ 180.0             | \$ 254.6              | \$ 7.0        | \$     | 5.8               | \$ 8.3                | \$ | 20.4        | \$ 19.              | \$                  | 21.6          | \$<br>1.0     | \$ 0.9               | \$                | 1.0            | \$ 0.8           | \$ 246.1      | \$<br>206.7        | \$             | 286.4               |
| 2028  | \$<br>210.6    | \$ 174.7             | \$ 247.2              | \$ 6.8        | \$     | 5.7               | \$ 8.0                | \$ | 19.8        | \$ 18.              | 5 \$                | 21.0          | \$<br>1.0     | \$ 0.9               | \$                | 1.0            | \$ 0.8           | \$ 238.9      | \$<br>200.6        | \$             | 278.0               |
| 2029  | \$<br>204.4    | \$ 169.6             | \$ 240.0              | \$ 6.6        | \$     | 5.5               | \$ 7.8                | \$ | 19.2        | \$ 18.              | \$                  | 20.4          | \$<br>0.9     | \$ 0.9               | \$                | 1.0            | \$ 0.8           | \$ 232.0      | \$<br>194.8        | \$             | 269.9               |
| Total | \$<br>10,411.4 | \$ 8,570.6           | \$ 12,331.7           | \$ 233.1      | \$     | 192.1             | \$ 276.0              | \$ | 806.3       | \$ 730.             | \$                  | 882.2         | \$<br>33.4    | \$ 30.8              | \$                | 35.9           | \$ 29.8          | \$ 11,514.0   | \$<br>9,553.9      | \$             | 13,555.6            |
| Ann.  | \$<br>597.9    | \$ 492.2             | \$ 708.2              | \$ 13.4       | \$     | 11.0              | \$ 15.9               | \$ | 46.3        | \$ 42.              | \$                  | 50.7          | \$<br>1.9     | \$ 1.8               | \$                | 2.1            | \$ 1.7           | \$ 661.2      | \$<br>548.7        | \$             | 778.5               |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

## Exhibit J.5j Present Value of Annual Treatment Cost Projections at 3% Discount Rate (All Systems)

#### Alternative 3

|       | Surface Water CWS |               |    |                     |    |                     | Surf         | ace W | ater N        | INCW           | ıs                | Disinfect      | ing ( | Ground V          | Vater | cws                | Disinfecting  | g G | round Wat           | er NT | NCWS              |               | Tota             | al    |        |                     |
|-------|-------------------|---------------|----|---------------------|----|---------------------|--------------|-------|---------------|----------------|-------------------|----------------|-------|-------------------|-------|--------------------|---------------|-----|---------------------|-------|-------------------|---------------|------------------|-------|--------|---------------------|
|       |                   |               |    | 90 Pe<br>Confiden   |    |                     |              | C     | 90 Po         | ercen<br>nce B |                   |                | ,     | 90 Pe<br>Confiden |       |                    |               |     | 90 Pe               |       |                   |               | Coi              | 90 Pe | ercent |                     |
|       |                   | Mean<br>Value | (5 | Lower<br>5th %tile) |    | Upper<br>5th %tile) | lean<br>alue |       | wer<br>%tile) |                | Jpper<br>h %tile) | /lean<br>/alue |       | ower<br>h %tile)  |       | Upper<br>th %tile) | Mean<br>Value | (!  | Lower<br>5th %tile) |       | Jpper<br>h %tile) | Mean<br>Value | Lowe<br>(5th %ti |       | (9     | Upper<br>5th %tile) |
| 2005  | \$                | -             | \$ | -                   | \$ | -                   | \$<br>-      | \$    | -             | \$             | -                 | \$<br>-        | \$    | -                 | \$    | -                  | \$<br>-       | \$  | -                   | \$    | -                 | \$<br>-       | \$               | -     | \$     | -                   |
| 2006  | \$                | -             | \$ | -                   | \$ | -                   | \$<br>-      | \$    | -             | \$             | -                 | \$<br>-        | \$    | -                 | \$    | -                  | \$<br>-       | \$  | -                   | \$    | -                 | \$<br>-       | \$               | -     | \$     | -                   |
| 2007  | \$                | -             | \$ | -                   | \$ | -                   | \$<br>-      | \$    | -             | \$             | -                 | \$<br>-        | \$    | -                 | \$    | -                  | \$<br>-       | \$  | -                   | \$    | -                 | \$<br>-       | \$               | -     | \$     | -                   |
| 2008  | \$                | 648.3         | \$ | 529.8               | \$ | 773.5               | \$<br>0.9    | \$    | 0.7           | \$             | 1.1               | \$<br>16.6     | \$    | 14.3              | \$    | 18.8               | \$<br>0.0     | \$  | 0.0                 | \$    | 0.0               | \$<br>665.8   | \$ 5             | 544.8 | \$     | 793.4               |
| 2009  | \$                | 924.1         | \$ | 754.2               | \$ | 1,104.0             | \$<br>9.3    | \$    | 7.6           | \$             | 11.1              | \$<br>46.3     | \$    | 39.9              | \$    | 52.7               | \$<br>1.2     | \$  | 1.0                 | \$    | 1.4               | \$<br>980.9   | \$ 8             | 302.7 | \$     | 1,169.2             |
| 2010  | \$                | 1,117.8       | \$ | 911.7               | \$ | 1,336.2             | \$<br>17.2   | \$    | 14.0          | \$             | 20.7              | \$<br>71.3     | \$    | 61.4              | \$    | 81.3               | \$<br>2.3     | \$  | 2.0                 | \$    | 2.6               | \$<br>1,208.7 | \$ 9             | 989.1 | \$     | 1,440.8             |
| 2011  | \$                | 1,085.2       | \$ | 885.2               | \$ | 1,297.3             | \$<br>16.7   | \$    | 13.6          | \$             | 20.0              | \$<br>69.3     | \$    | 59.6              | \$    | 78.9               | \$<br>2.2     | \$  | 1.9                 | \$    | 2.6               | \$<br>1,173.5 | \$ 9             | 960.3 | \$     | 1,398.8             |
| 2012  | \$                | 1,053.6       | \$ | 859.4               | \$ | 1,259.5             | \$<br>16.2   | \$    | 13.2          | \$             | 19.5              | \$<br>67.2     | \$    | 57.9              | \$    | 76.6               | \$<br>2.2     | \$  | 1.9                 | \$    | 2.5               | \$<br>1,139.3 | \$ 9             | 932.4 | \$     | 1,358.1             |
| 2013  | \$                | 463.7         | \$ | 377.4               | \$ | 555.6               | \$<br>15.0   | \$    | 12.2          | \$             | 18.0              | \$<br>51.0     | \$    | 43.8              | \$    | 58.2               | \$<br>2.1     | \$  | 1.8                 | \$    | 2.4               | \$<br>531.8   | \$ 4             | 135.2 | \$     | 634.2               |
| 2014  | \$                | 196.0         | \$ | 159.5               | \$ | 234.9               | \$<br>7.3    | \$    | 5.9           | \$             | 8.7               | \$<br>23.5     | \$    | 20.2              | \$    | 26.8               | \$<br>1.0     | \$  | 0.9                 | \$    | 1.2               | \$<br>227.7   | \$ 1             | 186.4 | \$     | 271.6               |
| 2015  | \$                | -             | \$ | -                   | \$ | -                   | \$<br>-      | \$    | -             | \$             | -                 | \$<br>-        | \$    | -                 | \$    | -                  | \$<br>-       | \$  | -                   | \$    | -                 | \$<br>-       | \$               | -     | \$     | -                   |
| 2016  | \$                | -             | \$ | -                   | \$ | -                   | \$<br>-      | \$    | -             | \$             | -                 | \$<br>-        | \$    | -                 | \$    | -                  | \$<br>-       | \$  | -                   | \$    | -                 | \$<br>-       | \$               | -     | \$     | -                   |
| 2017  | \$                | -             | \$ | -                   | \$ | -                   | \$<br>-      | \$    | -             | \$             | -                 | \$<br>-        | \$    | -                 | \$    | -                  | \$<br>-       | \$  | -                   | \$    | -                 | \$<br>-       | \$               | -     | \$     | -                   |
| 2018  | \$                | -             | \$ | -                   | \$ | -                   | \$<br>-      | \$    | -             | \$             | -                 | \$<br>-        | \$    | -                 | \$    | -                  | \$<br>-       | \$  | -                   | \$    | -                 | \$<br>-       | \$               | -     | \$     | -                   |
| 2019  | \$                | -             | \$ | -                   | \$ | -                   | \$<br>-      | \$    | -             | \$             | -                 | \$<br>-        | \$    | -                 | \$    | -                  | \$<br>-       | \$  | -                   | \$    | -                 | \$<br>-       | \$               | -     | \$     | -                   |
| 2020  | \$                | -             | \$ | -                   | \$ | -                   | \$<br>-      | \$    | -             | \$             | -                 | \$<br>-        | \$    | -                 | \$    | -                  | \$<br>-       | \$  | -                   | \$    | -                 | \$<br>-       | \$               | -     | \$     | -                   |
| 2021  | \$                | -             | \$ | -                   | \$ | -                   | \$<br>-      | \$    | -             | \$             | -                 | \$<br>-        | \$    | -                 | \$    | -                  | \$<br>-       | \$  | -                   | \$    | -                 | \$<br>-       | \$               | -     | \$     | -                   |
| 2022  | \$                | -             | \$ | -                   | \$ | -                   | \$<br>-      | \$    | -             | \$             | -                 | \$<br>-        | \$    | -                 | \$    | -                  | \$<br>-       | \$  | -                   | \$    | -                 | \$<br>-       | \$               | -     | \$     | -                   |
| 2023  | \$                | -             | \$ | -                   | \$ | -                   | \$<br>-      | \$    | -             | \$             | -                 | \$<br>-        | \$    | -                 | \$    | -                  | \$<br>-       | \$  | -                   | \$    | -                 | \$<br>-       | \$               | -     | \$     | -                   |
| 2024  | \$                | -             | \$ | -                   | \$ | -                   | \$<br>-      | \$    | -             | \$             | -                 | \$<br>-        | \$    | -                 | \$    | -                  | \$<br>-       | \$  | -                   | \$    | -                 | \$<br>-       | \$               | -     | \$     | -                   |
| 2025  | \$                | -             | \$ | -                   | \$ | -                   | \$<br>-      | \$    | -             | \$             | -                 | \$<br>-        | \$    | -                 | \$    | -                  | \$<br>-       | \$  | -                   | \$    | -                 | \$<br>-       | \$               | -     | \$     | -                   |
| 2026  | \$                | -             | \$ | -                   | \$ | -                   | \$<br>-      | \$    | -             | \$             | -                 | \$<br>-        | \$    | -                 | \$    | -                  | \$<br>-       | \$  | -                   | \$    | -                 | \$<br>-       | \$               | -     | \$     | -                   |
| 2027  | \$                | -             | \$ | -                   | \$ | -                   | \$<br>-      | \$    | -             | \$             | -                 | \$<br>-        | \$    | -                 | \$    | -                  | \$<br>-       | \$  | -                   | \$    | -                 | \$<br>-       | \$               | -     | \$     | -                   |
| 2028  | \$                | -             | \$ | -                   | \$ | -                   | \$<br>-      | \$    | -             | \$             | -                 | \$<br>-        | \$    | -                 | \$    | -                  | \$<br>-       | \$  | -                   | \$    | -                 | \$<br>-       | \$               | -     | \$     | -                   |
| 2029  | \$                | -             | \$ | -                   | \$ | -                   | \$<br>-      | \$    | -             | \$             | -                 | \$<br>-        | \$    | -                 | \$    | -                  | \$<br>-       | \$  | -                   | \$    | -                 | \$<br>-       | \$               | -     | \$     | -                   |
| Total | \$                | 5,488.8       | \$ | 4,477.0             | \$ | 6,561.0             | \$<br>82.7   | \$    | 67.4          | \$             | 99.1              | \$<br>345.1    | \$    | 297.2             | \$    | 393.3              | \$<br>11.0    | \$  | 9.4                 | \$    | 12.6              | \$<br>5,927.6 | \$ 4,8           | 351.0 | \$     | 7,066.0             |
| Ann.  | \$                | 315.2         | \$ | 257.1               | \$ | 376.8               | \$<br>4.7    | \$    | 3.9           | \$             | 5.7               | \$<br>19.8     | \$    | 17.1              | \$    | 22.6               | \$<br>0.6     | \$  | 0.5                 | \$    | 0.7               | \$<br>340.4   | \$ 2             | 278.6 | \$     | 405.8               |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

## Exhibit J.5k Present Value of Annual Treatment Cost Projections at 3% Discount Rate (All Systems)

#### Alternative 3

|       | Surface Water CWS |               |                      | vs                   |       | Surfa         | ace Water N7         | NCW    | s                  | Disinfed      | ting Grou           | nd V | Water CWS             | Disinfecting  | g Gr | ound Wate          | r NTNCWS              |    |               | Total               |       |                    |        |
|-------|-------------------|---------------|----------------------|----------------------|-------|---------------|----------------------|--------|--------------------|---------------|---------------------|------|-----------------------|---------------|------|--------------------|-----------------------|----|---------------|---------------------|-------|--------------------|--------|
|       |                   |               |                      | ercent<br>ce Bound   |       |               | 90 F<br>Confide      | ercen  |                    |               |                     |      | ercent<br>nce Bound   |               |      | 90 Pe<br>Confiden  |                       |    |               |                     |       | ercent<br>ce Bound |        |
|       |                   |               | Connuer              | Ce Bound             |       |               | Connide              | lice B | ound               |               | Com                 | luei | ice Boulla            |               |      | Comident           | e Bound               | 1  |               | Com                 | ideii | e Bound            |        |
|       |                   | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile | ,     | Mean<br>Value | Lower<br>(5th %tile) |        | Upper<br>th %tile) | Mean<br>Value | Lower<br>(5th %tile | e)   | Upper<br>(95th %tile) | Mean<br>Value |      | Lower<br>th %tile) | Upper<br>(95th %tile) |    | Mean<br>Value | Lower<br>(5th %tile | e)    | Uppe<br>(95th %t   |        |
| 2005  | \$                | -             | \$ -                 | \$ -                 | \$    | -             | \$ -                 | \$     | -                  | \$<br>-       | \$ -                |      | \$ -                  | \$<br>-       | \$   | -                  | \$ -                  | \$ | -             | \$                  | -     | \$                 | -      |
| 2006  | \$                | -             | \$ -                 | \$ -                 | \$    | -             | \$ -                 | \$     | -                  | \$<br>-       | \$ -                |      | \$ -                  | \$<br>-       | \$   | -                  | \$ -                  | \$ | -             | \$                  | -     | \$                 | -      |
| 2007  | \$                | -             | \$ -                 | \$ -                 | \$    | -             | \$ -                 | \$     | -                  | \$<br>-       | \$ -                |      | \$ -                  | \$<br>-       | \$   | -                  | \$ -                  | \$ | -             | \$                  | -     | \$                 | -      |
| 2008  | \$                | -             | \$ -                 | \$ -                 | \$    | -             | \$ -                 | \$     | -                  | \$<br>-       | \$ -                |      | \$ -                  | \$<br>-       | \$   | -                  | \$ -                  | \$ | -             | \$                  | -     | \$                 | -      |
| 2009  | \$                | 34.0          | \$ 28.3              | \$ 39                | .9 \$ | 0.0           | \$ 0.0               | \$     | 0.1                | \$<br>1.5     | \$ 1                | .4   | \$ 1.7                | \$<br>0.0     | \$   | 0.0                | \$ 0.0                | \$ | 35.6          | \$ 2                | 9.8   | \$                 | 41.6   |
| 2010  | \$                | 87.1          | \$ 72.4              | \$ 102               | .2 \$ | 1.2           | \$ 1.0               | \$     | 1.4                | \$<br>5.3     | \$ 4                | .9   | \$ 5.7                | \$<br>0.1     | \$   | 0.1                | \$ 0.1                | \$ | 93.8          | \$ 7                | 8.4   | \$                 | 109.4  |
| 2011  | \$                | 154.5         | \$ 128.4             | \$ 181               | 2 \$  | 3.4           | \$ 2.8               | \$     | 4.0                | \$<br>10.8    | \$ 10               | .0   | \$ 11.6               | \$<br>0.3     | \$   | 0.3                | \$ 0.3                | \$ | 169.0         | \$ 14               | 1.5   | \$                 | 197.1  |
| 2012  | \$                | 217.9         | \$ 181.0             | \$ 255               | .6 \$ | 5.5           | \$ 4.6               | \$     | 6.5                | \$<br>15.9    | \$ 14               | .8   | \$ 17.1               | \$<br>0.5     | \$   | 0.5                | \$ 0.5                | \$ | 239.8         | \$ 20               | 8.0   | \$                 | 279.7  |
| 2013  | \$                | 277.4         | \$ 230.4             | \$ 325               | 4 \$  | 7.5           | \$ 6.2               | \$     | 8.8                | \$<br>20.8    | \$ 19               | .3   | \$ 22.3               | \$<br>0.7     | \$   | 0.6                | \$ 0.7                | \$ | 306.3         | \$ 25               | 6.5   | \$                 | 357.2  |
| 2014  | \$                | 303.9         | \$ 252.4             | \$ 356               | .6 \$ | 9.3           | \$ 7.7               | \$     | 10.9               | \$<br>24.0    | \$ 22               | .3   | \$ 25.8               | \$<br>0.8     | \$   | 0.8                | \$ 0.9                | \$ | 338.1         | \$ 28               | 3.2   | \$                 | 394.2  |
| 2015  | \$                | 310.5         | \$ 257.9             | \$ 364               | .3 \$ | 10.0          | \$ 8.3               | \$     | 11.8               | \$<br>25.1    | \$ 23               | .3   | \$ 26.9               | \$<br>0.9     | \$   | 0.8                | \$ 1.0                | \$ | 346.5         | \$ 29               | 0.3   | \$                 | 403.9  |
| 2016  | \$                | 301.5         | \$ 250.4             | \$ 353               | 7 \$  | 9.7           | \$ 8.0               | \$     | 11.4               | \$<br>24.4    | \$ 22               | .6   | \$ 26.1               | \$<br>0.9     | \$   | 0.8                | \$ 0.9                | \$ | 336.4         | \$ 28               | 1.8   | \$                 | 392.2  |
| 2017  | \$                | 292.7         | \$ 243.1             | \$ 343               | 4 \$  | 9.4           | \$ 7.8               | \$     | 11.1               | \$<br>23.6    | \$ 22               | .0   | \$ 25.3               | \$<br>0.8     | \$   | 0.8                | \$ 0.9                | \$ | 326.6         | \$ 27               | 3.6   | \$                 | 380.8  |
| 2018  | \$                | 284.2         | \$ 236.0             | \$ 333               | 4 \$  | 9.1           | \$ 7.6               | \$     | 10.8               | \$<br>23.0    | \$ 21               | .3   | \$ 24.6               | \$<br>0.8     | \$   | 0.8                | \$ 0.9                | \$ | 317.1         | \$ 26               | 5.6   | \$                 | 369.7  |
| 2019  | \$                | 275.9         | \$ 229.1             | \$ 323               | .7 \$ | 8.9           | \$ 7.4               | \$     | 10.5               | \$<br>22.3    | \$ 20               | .7   | \$ 23.9               | \$<br>0.8     | \$   | 0.7                | \$ 0.8                | \$ | 307.8         | \$ 25               | 7.9   | \$                 | 358.9  |
| 2020  | \$                | 267.8         | \$ 222.4             | \$ 314               | .3 \$ | 8.6           | \$ 7.1               | \$     | 10.1               | \$<br>21.6    | \$ 20               | .1   | \$ 23.2               | \$<br>0.8     | \$   | 0.7                | \$ 0.8                | \$ | 298.9         | \$ 25               | 0.4   | \$                 | 348.4  |
| 2021  | \$                | 260.0         | \$ 216.0             | \$ 305               | .1 \$ | 8.4           | \$ 6.9               | \$     | 9.9                | \$<br>21.0    | \$ 19               | .5   | \$ 22.5               | \$<br>0.7     | \$   | 0.7                | \$ 0.8                | \$ | 290.2         | \$ 24               | 3.1   | \$                 | 338.3  |
| 2022  | \$                | 252.5         | \$ 209.7             | \$ 296               | 2 \$  | 8.1           | \$ 6.7               | \$     | 9.6                | \$<br>20.4    | \$ 18               | .9   | \$ 21.9               | \$<br>0.7     | \$   | 0.7                | \$ 0.8                | \$ | 281.7         | \$ 23               | 6.0   | \$                 | 328.4  |
| 2023  | \$                | 245.1         | \$ 203.6             | \$ 287               | .6 \$ | 7.9           | \$ 6.5               | \$     | 9.3                | \$<br>19.8    | \$ 18               | .4   | \$ 21.2               | \$<br>0.7     | \$   | 0.7                | \$ 0.8                | \$ | 273.5         | \$ 22               | 9.1   | \$                 | 318.9  |
| 2024  | \$                | 238.0         | \$ 197.6             | \$ 279               | 2 \$  | 7.7           | \$ 6.3               | \$     | 9.0                | \$<br>19.2    | \$ 17               | .8   | \$ 20.6               | \$<br>0.7     | \$   | 0.6                | \$ 0.7                | \$ | 265.5         | \$ 22               | 2.5   | \$                 | 309.6  |
| 2025  | \$                | 231.0         | \$ 191.9             | \$ 271               | .1 \$ | 7.4           | \$ 6.2               | \$     | 8.8                | \$<br>18.7    | \$ 17               | .3   | \$ 20.0               | \$<br>0.7     | \$   | 0.6                | \$ 0.7                | \$ | 257.8         | \$ 21               | 6.0   | \$                 | 300.6  |
| 2026  | \$                | 224.3         | \$ 186.3             | \$ 263               | 2 \$  | 7.2           | \$ 6.0               | \$     | 8.5                | \$<br>18.1    | \$ 16               | .8   | \$ 19.4               | \$<br>0.6     | \$   | 0.6                | \$ 0.7                | \$ | 250.3         | \$ 20               | 9.7   | \$                 | 291.8  |
| 2027  | \$                | 217.8         | \$ 180.9             | \$ 255               | .5 \$ | 7.0           | \$ 5.8               | \$     | 8.2                | \$<br>17.6    | \$ 16               | .3   | \$ 18.9               | \$<br>0.6     | \$   | 0.6                | \$ 0.7                | \$ | 243.0         | \$ 20               | 3.6   | \$                 | 283.3  |
| 2028  | \$                | 211.4         | \$ 175.6             | \$ 248               | .1 \$ | 6.8           | \$ 5.6               | \$     | 8.0                | \$<br>17.1    | \$ 15               | .9   | \$ 18.3               | \$<br>0.6     | \$   | 0.6                | \$ 0.7                | \$ | 235.9         | \$ 19               | 7.7   | \$                 | 275.1  |
| 2029  | \$                | 205.3         | \$ 170.5             | \$ 240               | .9 \$ | 6.6           | \$ 5.5               | \$     | 7.8                | \$<br>16.6    | \$ 15               | .4   | \$ 17.8               | \$<br>0.6     | \$   | 0.5                | \$ 0.6                | \$ | 229.1         | \$ 19               | 1.9   | \$                 | 267.1  |
| Total | \$                | 4,892.8       | \$ 4,063.7           | \$ 5,740             | .9 \$ | 149.9         | \$ 124.2             | \$     | 176.4              | \$<br>386.8   | \$ 359              | .1   | \$ 414.6              | \$<br>13.4    | \$   | 12.4               | \$ 14.3               | \$ | 5,442.9       | \$ 4,55             | 9.3   | \$ 6,              | ,346.1 |
| Ann.  | \$                | 281.0         | \$ 233.4             | \$ 329               | 7 \$  | 8.6           | \$ 7.1               | \$     | 10.1               | \$<br>22.2    | \$ 20               | .6   | \$ 23.8               | \$<br>0.8     | \$   | 0.7                | \$ 0.8                | \$ | 312.6         | \$ 26               | 1.8   | \$                 | 364.4  |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

#### Exhibit J.5I Present Value of Annual Non-Treatment Cost Projections at 3% Discount Rate (All Systems)

|       | ntive 3        |    |      |             |        |            |              |                |        |               |            |              |                |        |                 |            |              |                |           |                |            |              |                |         |            |            |              |
|-------|----------------|----|------|-------------|--------|------------|--------------|----------------|--------|---------------|------------|--------------|----------------|--------|-----------------|------------|--------------|----------------|-----------|----------------|------------|--------------|----------------|---------|------------|------------|--------------|
|       |                |    |      | Surface Wat | ter CV | ws         |              |                | Surf   | ace Water NTN | cws        |              |                | Disin  | ecting Ground V | ater CWS   |              |                | Disinfect | ting Ground Wa | ter NTNCWS |              |                |         | Total      |            |              |
|       |                |    |      | Monitori    |        |            | Siginificant |                |        | Monitoring    |            | Siginificant |                |        | Monitoring      |            | Siginificant |                |           | Monitoring     |            | Siginificant |                |         | Monitoring |            | Siginificant |
|       | Implementation |    | DSE  | Plans       | -      | Monitoring | Excursion    | Implementation | IDSE   | Plans         | Monitoring | Excursion    | Implementation | IDSE   | Plans           | Monitoring | Excursion    | Implementation |           | Plans          | Monitoring | Excursion    | Implementation | IDSE    | Plans      | Monitoring | Excursion    |
| 2005  | \$ 0.6         | \$ | -    | \$          | - :    | \$ -       | \$ -         | \$ 0.0         | \$ -   | \$ -          | \$ -       | s -          | \$ 0.1         |        | \$ -            | s -        | \$ -         | \$ 0.0         | \$ -      | \$ -           | \$ -       | s -          | \$ 0.7         | \$ -    | \$ -       | \$ -       | s -          |
| 2006  | \$ 1.2         | \$ | 7.7  |             | - :    | \$ -       | \$ -         | \$ 0.1         | \$ 0.0 | s -           | \$ -       | \$ -         | \$ 3.1         | \$ 0.1 | \$ -            | \$ -       | \$ -         | \$ 0.5         | \$ -      | \$ -           | \$ -       | s -          | \$ 4.9         | \$ 7.8  | \$ -       | \$ -       | \$ -         |
| 2007  | \$ -           | \$ | 19.9 |             | 0.2    | \$ -       | \$ -         | \$ -           | \$ 0.0 |               | 1          | \$ -         |                | \$ 1.0 |                 |            | \$ -         | s -            |           | \$ 0.0         | 1          | s -          | \$ -           | \$ 20.9 |            |            | \$ -         |
| 2008  | \$ 0.5         | \$ | 16.1 | \$          | 0.5    | \$ -       | \$ -         | \$ 0.0         | \$ 0.0 | \$ 0.0        | s -        | \$ -         | \$ 0.0         | \$ 5.7 | \$ 0.2          | \$ -       | \$ -         | \$ 0.0         | \$ 0.0    | \$ 0.0         | \$ -       | \$ -         | \$ 0.6         | \$ 21.8 | \$ 0.7     | \$ -       | \$ -         |
| 2009  | \$ 0.6         | 1. | -    | \$          | 0.7    | \$ -       | \$ -         | \$ 0.0         | \$ -   | \$ 0.0        | \$ -       | \$ -         | \$ 1.5         | \$ -   | \$ 2.2          | s -        | \$ -         | \$ 0.2         | \$ -      | \$ 0.4         | \$ -       | \$ -         | \$ 2.4         | \$ -    | \$ 3.3     | \$ -       | \$ -         |
| 2010  | \$ 0.5         | \$ | -    | \$          | - :    | s -        | \$ -         | \$ 0.0         | \$ -   | \$ -          | s -        | s -          | \$ 1.4         | \$ -   | \$ -            | \$ -       | \$ -         | \$ 0.2         | \$ -      | \$ -           | \$ -       | s -          | \$ 2.2         | \$ -    | s -        | \$ -       | s -          |
| 2011  | s -            | \$ | -    | \$          | - :    | \$ 0.3     | \$ -         | s -            | \$ -   | s -           | \$ 0.0     | \$ -         | s -            | \$ -   | \$ -            | \$ 0.1     | \$ -         | s -            | \$ -      | \$ -           | \$ 0.0     | \$ -         | s -            | \$ -    | s -        | \$ 0.4     | \$ -         |
| 2012  | \$ -           | \$ | -    | \$          | - :    | \$ (0.6)   | \$ 0.0       | \$ -           | \$ -   | s -           | \$ 0.0     | \$ -         | \$ -           | \$ -   | \$ -            | \$ 2.3     | s -          | \$ -           | \$ -      | \$ -           | \$ 0.3     | \$ -         | \$ -           | \$ -    | s -        | \$ 2.0     | \$ 0.0       |
| 2013  | \$ -           | \$ | -    | \$          | - :    | \$ (1.5)   | \$ 0.1       | \$ -           | \$ -   | s -           | \$ 0.0     | \$ -         | \$ -           | \$ -   | \$ -            | \$ 4.2     | s -          | \$ -           | \$ -      | \$ -           | \$ 0.5     | \$ -         | \$ -           | \$ -    | s -        | \$ 3.2     | \$ 0.1       |
| 2014  | \$ -           | \$ | -    | \$          | - :    | \$ (1.5)   | \$ 0.2       | \$ -           | \$ -   | s -           | \$ 0.0     | \$ -         | \$ -           | \$ -   | \$ -            | \$ 4.1     | \$ -         | \$ -           | \$ -      | \$ -           | \$ 0.5     | s -          | \$ -           | \$ -    | s -        | \$ 3.1     | \$ 0.2       |
| 2015  | s -            | \$ | -    | \$          | - :    | \$ (1.5)   | \$ 0.1       | s -            | \$ -   | s -           | \$ 0.0     | s -          | \$ -           | \$ -   | \$ -            | \$ 3.9     | \$ -         | s -            | s -       | \$ -           | \$ 0.5     | s -          | s -            | \$ -    | s -        | \$ 3.0     | \$ 0.1       |
| 2016  | s -            | \$ | -    | \$          | - :    | \$ (1.4)   | \$ 0.1       | s -            | \$ -   | s -           | \$ 0.0     | s -          | \$ -           | \$ -   | \$ -            | \$ 3.8     | \$ -         | s -            | s -       | \$ -           | \$ 0.5     | s -          | s -            | \$ -    | s -        | \$ 2.9     | \$ 0.1       |
| 2017  | s -            | \$ | -    | \$          | - :    | \$ (1.4)   | \$ 0.1       | s -            | \$ -   | s -           | \$ 0.0     | s -          | \$ -           | \$ -   | \$ -            | \$ 3.7     | \$ -         | s -            | s -       | \$ -           | \$ 0.5     | s -          | s -            | \$ -    | s -        | \$ 2.9     | \$ 0.1       |
| 2018  | s -            | \$ | -    | \$          | - :    | \$ (1.3)   | \$ 0.1       | s -            | \$ -   | s -           | \$ 0.0     | s -          | \$ -           | \$ -   | \$ -            | \$ 3.6     | \$ -         | s -            | s -       | \$ -           | \$ 0.5     | s -          | s -            | \$ -    | s -        | \$ 2.8     | \$ 0.1       |
| 2019  | \$ -           | \$ | -    | \$          | - :    | \$ (1.3)   | \$ 0.1       | s -            | \$ -   | s -           | \$ 0.0     | s -          | \$ -           | \$ -   | s -             | \$ 3.5     | s -          | s -            | s -       | \$ -           | \$ 0.5     | s -          | s -            | s -     | s -        | \$ 2.7     | \$ 0.1       |
| 2020  | \$ -           | \$ | -    | \$          | - :    | \$ (1.3)   | \$ 0.1       | s -            | \$ -   | s -           | \$ 0.0     | s -          | \$ -           | \$ -   | s -             | \$ 3.4     | s -          | s -            | s -       | \$ -           | \$ 0.4     | s -          | s -            | s -     | s -        | \$ 2.6     | \$ 0.1       |
| 2021  | \$ -           | \$ | -    | \$          | - :    | \$ (1.2)   | \$ 0.1       | s -            | \$ -   | s -           | \$ 0.0     | s -          | \$ -           | \$ -   | s -             | \$ 3.3     | s -          | s -            | s -       | \$ -           | \$ 0.4     | s -          | s -            | s -     | s -        | \$ 2.5     | \$ 0.1       |
| 2022  | \$ -           | \$ | -    | \$          | - :    | \$ (1.2)   | \$ 0.1       | \$ -           | \$ -   | s -           | \$ 0.0     | s -          | s -            | \$ -   | \$ -            | \$ 3.2     | \$ -         | s -            | \$ -      | \$ -           | \$ 0.4     | s -          | s -            | \$ -    | s -        | \$ 2.5     | \$ 0.1       |
| 2023  | \$ -           | \$ |      | \$          | - :    | \$ (1.1)   | \$ 0.1       | s -            | \$ -   | s -           | \$ 0.0     | s -          | \$ -           | \$ -   | \$ -            | \$ 3.1     | \$ -         | s -            | s -       | \$ -           | \$ 0.4     | \$ -         | s -            | \$ -    | s -        | \$ 2.4     | \$ 0.1       |
| 2024  | \$ -           | \$ |      | \$          | - :    | \$ (1.1)   | \$ 0.1       | s -            | \$ -   | s -           | \$ 0.0     | s -          | \$ -           | \$ -   | \$ -            | \$ 3.0     | \$ -         | s -            | s -       | \$ -           | \$ 0.4     | s -          | s -            | \$ -    | s -        | \$ 2.3     | \$ 0.1       |
| 2025  | \$ -           | \$ |      | \$          | - :    | \$ (1.1)   | \$ 0.1       | s -            | \$ -   | s -           | \$ 0.0     | s -          | \$ -           | \$ -   | \$ -            | \$ 2.9     | \$ -         | s -            | s -       | \$ -           | \$ 0.4     | s -          | s -            | \$ -    | s -        | \$ 2.3     | \$ 0.1       |
| 2026  | \$ -           | \$ |      | \$          | - :    | \$ (1.0)   | \$ 0.1       | s -            | \$ -   | s -           | \$ 0.0     | s -          | s -            | \$ -   | \$ -            | \$ 2.9     | \$ -         | s -            | s -       | \$ -           | \$ 0.4     | s -          | s -            | \$ -    | s -        | \$ 2.2     | \$ 0.1       |
| 2027  | s -            | \$ | -    | s           | -      | \$ (1.0)   | \$ 0.1       | s -            | s -    | s -           | \$ 0.0     | s -          | s -            | \$ -   | s -             | \$ 2.8     | s -          | s -            | s -       | s -            | \$ 0.4     | s -          | s -            | s -     | s -        | \$ 2.1     | \$ 0.1       |
| 2028  | \$ -           | \$ | -    | s           | -      | \$ (1.0)   | \$ 0.1       | s -            | s -    | s -           | \$ 0.0     | s -          | s -            | \$ -   | s -             | \$ 2.7     |              | s -            | s -       | \$ -           | \$ 0.3     | s -          | s -            | s -     | s -        | \$ 2.1     |              |
| 2029  | \$ -           | \$ |      | \$          | - :    | \$ (1.0)   | \$ 0.1       | \$ -           | \$ -   | s -           | \$ 0.0     | s -          | s -            | \$ -   | \$ -            | \$ 2.6     |              | s -            | s -       | \$ -           | \$ 0.3     | \$ -         | s -            | \$ -    | s -        | \$ 2.0     |              |
| Total | \$ 3.6         | \$ | 43.8 | \$          | 1.5    | \$ (21.1)  | \$ 2.1       | \$ 0.1         | \$ 0.1 | \$ 0.0        | \$ 0.3     | ş -          | \$ 6.1         | \$ 6.8 | \$ 2.4          | \$ 59.1    | s -          | \$ 1.0         | \$ 0.0    | \$ 0.4         | \$ 7.6     | s -          | \$ 10.8        | \$ 50.6 | \$ 4.2     | \$ 45.9    | \$ 2.1       |
| Ann.  | \$ 0.2         | +- | 2.5  | •           | 0.1    |            |              |                | \$ 0.0 |               |            |              |                | \$ 0.4 |                 |            | · -          | -              | \$ 0.0    | 1              |            | -            | \$ 0.6         |         | -          |            |              |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005. Detail may not add exactly to totals due to independent rounding. Ann – value of total annualized at discount rate. Source: Derived from Exhibits J. 5st through h.

## Exhibit J.5m Present Value of Annual Cost Projections at 7% Discount Rate (All Systems and Primacy Agencies)

#### Alternative 3

|       | Sı            | ırface Wat      | ter CW | S                     | Surf          | ace V | Nater NT          | NCWS               |     | Disinfe       | ecting Gr     | ound W | ater CWS              | Disinfect     | ing Ground Water     | NTNCWS                | Primacy Agencies |               | Total                |                 |                     |
|-------|---------------|-----------------|--------|-----------------------|---------------|-------|-------------------|--------------------|-----|---------------|---------------|--------|-----------------------|---------------|----------------------|-----------------------|------------------|---------------|----------------------|-----------------|---------------------|
|       |               |                 | 90 Per | rcent<br>e Bound      |               |       |                   | ercent<br>ce Bound |     |               | C             |        | ercent<br>ce Bound    |               |                      | ercent<br>ice Bound   |                  |               | 90 Pe<br>Confider    | ercent<br>ce Bo |                     |
|       | Mean<br>Value | Lowe<br>(5th %t |        | Upper<br>(95th %tile) | Mean<br>Value |       | Lower<br>h %tile) | Upper<br>(95th %ti |     | Mean<br>Value | Low<br>(5th % |        | Upper<br>(95th %tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Point Estimate   | lean<br>alue  | Lower<br>(5th %tile) |                 | Upper<br>5th %tile) |
| 2005  | \$<br>0.6     | \$              | 0.6    | \$ 0.6                | \$ 0.0        | \$    | 0.0               | \$                 | 0.0 | \$ 0.1        | \$            | 0.1    | \$ 0.1                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 3.4           | \$<br>4.1     | \$ 4.1               | \$              | 4.1                 |
| 2006  | \$<br>8.0     | \$              | 8.0    | \$ 8.0                | \$ 0.1        | \$    | 0.1               | \$                 | 0.1 | \$ 2.9        | \$            | 2.9    | \$ 2.9                | \$ 0.5        | \$ 0.5               | \$ 0.5                | \$ 3.2           | \$<br>14.6    | \$ 14.6              | \$              | 14.6                |
| 2007  | \$<br>17.3    | \$              | 17.3   | \$ 17.3               | \$ 0.0        | \$    | 0.0               | \$                 | 0.0 | \$ 0.8        | \$            | 8.0    | \$ 0.8                | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 0.1           | \$<br>18.3    | \$ 18.3              | \$              | 18.3                |
| 2008  | \$<br>550.0   | \$ 4            | 152.0  | \$ 653.5              | \$ 0.7        | \$    | 0.6               | \$                 | 0.9 | \$ 18.6       | \$            | 16.8   | \$ 20.4               | \$ 0.0        | \$ 0.0               | \$ 0.0                | \$ 1.5           | \$<br>570.9   | \$ 470.9             | \$              | 676.4               |
| 2009  | \$<br>763.4   | \$ 6            | 523.7  | \$ 911.2              | \$ 7.5        | \$    | 6.1               | \$                 | 9.0 | \$ 40.9       | \$            | 35.7   | \$ 46.1               | \$ 1.4        | \$ 1.3               | \$ 1.6                | \$ 0.6           | \$<br>813.9   | \$ 667.4             | \$              | 968.4               |
| 2010  | \$<br>923.3   | \$ 7            | 754.2  | \$ 1,102.1            | \$ 14.2       | \$    | 11.6              | \$ 1               | 6.9 | \$ 59.7       | \$            | 51.9   | \$ 67.7               | \$ 2.0        | \$ 1.8               | \$ 2.3                | \$ -             | \$<br>999.2   | \$ 819.3             | \$              | 1,189.0             |
| 2011  | \$<br>914.3   | \$ 7            | 747.5  | \$ 1,090.3            | \$ 14.9       | \$    | 12.2              | \$ 1               | 7.8 | \$ 59.1       | \$            | 51.4   | \$ 66.8               | \$ 1.9        | \$ 1.6               | \$ 2.1                | \$ -             | \$<br>991.1   | \$ 813.6             | \$              | 1,177.9             |
| 2012  | \$<br>902.0   | \$ 7            | 738.0  | \$ 1,074.9            | \$ 15.5       | \$    | 12.6              | \$ 1               | 8.4 | \$ 60.6       | \$            | 53.2   | \$ 68.1               | \$ 2.1        | \$ 1.8               | \$ 2.3                | \$ -             | \$<br>981.1   | \$ 806.6             | \$              | 1,164.7             |
| 2013  | \$<br>505.3   | \$ 4            | 114.3  | \$ 600.9              | \$ 15.4       | \$    | 12.6              | \$ 1               | 8.3 | \$ 51.9       | \$            | 46.0   | \$ 57.9               | \$ 2.3        | \$ 2.0               | \$ 2.5                | \$ -             | \$<br>575.7   | \$ 475.7             | \$              | 680.4               |
| 2014  | \$<br>327.9   | \$ 2            | 270.0  | \$ 388.1              | \$ 10.9       | \$    | 9.0               | \$ 1               | 2.9 | \$ 33.9       | \$            | 30.6   | \$ 37.2               | \$ 1.6        | \$ 1.4               | \$ 1.7                | \$ -             | \$<br>375.1   | \$ 311.8             | \$              | 440.8               |
| 2015  | \$<br>195.7   | \$ 1            | 162.4  | \$ 229.8              | \$ 6.3        | \$    | 5.3               | \$                 | 7.5 | \$ 18.4       | \$            | 17.2   | \$ 19.5               | \$ 0.9        | \$ 0.8               | \$ 0.9                | \$ -             | \$<br>222.1   | \$ 186.5             | \$              | 258.5               |
| 2016  | \$<br>182.9   | \$ 1            | 151.8  | \$ 214.8              | \$ 5.9        | \$    | 4.9               | \$                 | 7.0 | \$ 17.2       | \$            | 16.1   | \$ 18.2               | \$ 0.8        | \$ 0.8               | \$ 0.9                | \$ -             | \$<br>207.6   | \$ 174.3             | \$              | 241.6               |
| 2017  | \$<br>171.0   | \$ 1            | 141.9  | \$ 200.7              | \$ 5.5        | \$    | 4.6               | \$                 | 6.5 | \$ 16.1       | \$            | 15.1   | \$ 17.0               | \$ 0.8        | \$ 0.7               | \$ 0.8                | \$ -             | \$<br>194.0   | \$ 162.9             | \$              | 225.8               |
| 2018  | \$<br>159.8   | \$ 1            | 132.6  | \$ 187.6              | \$ 5.2        | \$    | 4.3               | \$                 | 6.1 | \$ 15.0       | \$            | 14.1   | \$ 15.9               | \$ 0.7        | \$ 0.7               | \$ 0.8                | \$ -             | \$<br>181.3   | \$ 152.3             | \$              | 211.0               |
| 2019  | \$<br>149.3   | \$ 1            | 123.9  | \$ 175.3              | \$ 4.8        | \$    | 4.0               | \$                 | 5.7 | \$ 14.0       | \$            | 13.2   | \$ 14.9               | \$ 0.7        | \$ 0.6               | \$ 0.7                | \$ -             | \$<br>169.4   | \$ 142.3             | \$              | 197.2               |
| 2020  | \$<br>139.6   | \$ 1            | 115.8  | \$ 163.9              | \$ 4.5        | \$    | 3.7               | \$                 | 5.3 | \$ 13.1       | \$            | 12.3   | \$ 13.9               | \$ 0.6        | \$ 0.6               | \$ 0.7                | \$ -             | \$<br>158.4   | \$ 133.0             | \$              | 184.3               |
| 2021  | \$<br>130.4   | \$ 1            | 108.2  | \$ 153.1              | \$ 4.2        | \$    | 3.5               | \$                 | 5.0 | \$ 12.2       | \$            | 11.5   | \$ 13.0               | \$ 0.6        | \$ 0.6               | \$ 0.6                | \$ -             | \$<br>148.0   | \$ 124.3             | \$              | 172.2               |
| 2022  | \$<br>121.9   | \$ 1            | 101.1  | \$ 143.1              | \$ 3.9        | \$    | 3.3               | \$                 | 4.6 | \$ 11.4       | \$            | 10.7   | \$ 12.2               | \$ 0.6        | \$ 0.5               | \$ 0.6                | \$ -             | \$<br>138.3   | \$ 116.2             | \$              | 161.0               |
| 2023  | \$<br>113.9   | \$              | 94.5   | \$ 133.8              | \$ 3.7        | \$    | 3.1               | \$                 | 4.3 | \$ 10.7       | \$            | 10.0   | \$ 11.4               | \$ 0.5        | \$ 0.5               | \$ 0.5                | \$ -             | \$<br>129.3   | \$ 108.6             | \$              | 150.4               |
| 2024  | \$<br>106.5   | \$              | 88.3   | \$ 125.0              | \$ 3.4        | \$    | 2.9               | \$                 | 4.1 | \$ 10.0       | \$            | 9.4    | \$ 10.6               | \$ 0.5        | \$ 0.5               | \$ 0.5                | \$ -             | \$<br>120.8   | \$ 101.5             | \$              | 140.6               |
| 2025  | \$<br>99.5    | \$              | 82.6   | \$ 116.8              | \$ 3.2        | \$    | 2.7               | \$                 | 3.8 | \$ 9.3        | \$            | 8.8    | \$ 9.9                | \$ 0.5        | \$ 0.4               | \$ 0.5                | \$ -             | \$<br>112.9   | \$ 94.8              | \$              | 131.4               |
| 2026  | \$<br>93.0    | \$              | 77.2   | \$ 109.2              | \$ 3.0        | \$    | 2.5               | \$                 | 3.5 | \$ 8.7        | \$            | 8.2    | \$ 9.3                | \$ 0.4        | \$ 0.4               | \$ 0.4                | \$ -             | \$<br>105.5   | \$ 88.6              | \$              | 122.8               |
| 2027  | \$<br>86.9    | \$              | 72.1   | \$ 102.0              | \$ 2.8        | \$    | 2.3               | \$                 | 3.3 | \$ 8.2        | \$            | 7.7    | \$ 8.7                | \$ 0.4        | \$ 0.4               | \$ 0.4                | \$ -             | \$<br>98.6    | \$ 82.8              | \$              | 114.8               |
| 2028  | \$<br>81.2    | \$              | 67.4   | \$ 95.4               | \$ 2.6        | \$    | 2.2               | \$                 | 3.1 | \$ 7.6        | \$            | 7.2    | \$ 8.1                | \$ 0.4        | \$ 0.4               | \$ 0.4                | \$ -             | \$<br>92.2    | \$ 77.4              | \$              | 107.3               |
| 2029  | \$<br>75.9    | \$              | 63.0   | \$ 89.1               | \$ 2.5        | \$    | 2.0               | \$                 | 2.9 | \$ 7.1        | \$            | 6.7    | \$ 7.6                | \$ 0.3        | \$ 0.3               | \$ 0.4                | \$ -             | \$<br>86.1    | \$ 72.3              | \$              | 100.2               |
| Total | \$<br>6,819.7 | \$ 5,6          | 608.3  | \$ 8,086.6            | \$ 140.9      | \$    | 116.0             | \$ 16              | 7.0 | \$ 507.7      | \$            | 457.4  | \$ 558.1              | \$ 20.4       | \$ 18.7              | \$ 22.0               | \$ 8.8           | \$<br>7,508.4 | \$ 6,220.1           | \$              | 8,853.6             |
| Ann.  | \$<br>585.2   | \$ 4            | 181.3  | \$ 693.9              | \$ 12.1       | \$    | 10.0              | \$ 1               | 4.3 | \$ 43.6       | \$            | 39.2   | \$ 47.9               | \$ 1.7        | \$ 1.6               | \$ 1.9                | \$ 0.8           | \$<br>644.3   | \$ 533.8             | \$              | 759.7               |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

## Exhibit J.5n Present Value of Annual Treatment Cost Projections at 7% Discount Rate (All Systems)

#### Alternative 3

|       | Sı            | urfac | e Water CV          | vs |                     | Surf         | ace V | /ater N          | TNCW            | ıs                | Disinfecti    | ng Gı | round V          | Vate | r CWS               | Disinfectin   | ıg C | Ground Wate          | r NT | NCWS                |               | Total              |               |                     |
|-------|---------------|-------|---------------------|----|---------------------|--------------|-------|------------------|-----------------|-------------------|---------------|-------|------------------|------|---------------------|---------------|------|----------------------|------|---------------------|---------------|--------------------|---------------|---------------------|
|       |               |       | 90 Pe<br>Confiden   |    |                     |              | С     | 90 Po<br>onfider | ercen<br>nce Bo |                   |               | c     | 90 P<br>Confider |      |                     |               |      | 90 Pe<br>Confiden    |      |                     |               | 90 P<br>Confide    | erce<br>nce E |                     |
|       | Mean<br>Value |       | Lower<br>5th %tile) |    | Upper<br>ith %tile) | lean<br>alue |       | wer<br>%tile)    |                 | Ipper<br>h %tile) | Mean<br>Value |       | ower<br>1 %tile) |      | Upper<br>5th %tile) | Mean<br>Value |      | Lower<br>(5th %tile) |      | Upper<br>5th %tile) | Mean<br>Value | Lower<br>th %tile) | (9            | Upper<br>5th %tile) |
| 2005  | \$<br>-       | \$    | -                   | \$ | -                   | \$<br>-      | \$    | -                | \$              | -                 | \$<br>-       | \$    | -                | \$   | -                   | \$<br>-       | \$   | -                    | \$   | -                   | \$<br>-       | \$<br>-            | \$            | -                   |
| 2006  | \$<br>-       | \$    | -                   | \$ | -                   | \$<br>-      | \$    | -                | \$              | -                 | \$<br>-       | \$    | -                | \$   | -                   | \$<br>-       | \$   | -                    | \$   | -                   | \$<br>-       | \$<br>-            | \$            | -                   |
| 2007  | \$<br>-       | \$    | -                   | \$ | -                   | \$<br>-      | \$    | -                | \$              | -                 | \$<br>-       | \$    | -                | \$   | -                   | \$<br>-       | \$   | -                    | \$   | -                   | \$<br>-       | \$<br>-            | \$            | -                   |
| 2008  | \$<br>535.9   | \$    | 437.9               | \$ | 639.4               | \$<br>0.7    | \$    | 0.6              | \$              | 0.9               | \$<br>13.7    | \$    | 11.9             | \$   | 15.5                | \$<br>0.0     | \$   | 0.0                  | \$   | 0.0                 | \$<br>550.3   | \$<br>450.3        | \$            | 655.8               |
| 2009  | \$<br>735.3   | \$    | 600.1               | \$ | 878.4               | \$<br>7.4    | \$    | 6.0              | \$              | 8.9               | \$<br>36.8    | \$    | 31.7             | \$   | 41.9                | \$<br>1.0     | \$   | 0.8                  | \$   | 1.1                 | \$<br>780.4   | \$<br>638.7        | \$            | 930.2               |
| 2010  | \$<br>856.1   | \$    | 698.3               | \$ | 1,023.4             | \$<br>13.2   | \$    | 10.8             | \$              | 15.8              | \$<br>54.6    | \$    | 47.0             | \$   | 62.3                | \$<br>1.8     | \$   | 1.5                  | \$   | 2.0                 | \$<br>925.7   | \$<br>757.6        | \$            | 1,103.5             |
| 2011  | \$<br>800.1   | \$    | 652.6               | \$ | 956.5               | \$<br>12.3   | \$    | 10.1             | \$              | 14.8              | \$<br>51.1    | \$    | 44.0             | \$   | 58.2                | \$<br>1.6     | \$   | 1.4                  | \$   | 1.9                 | \$<br>865.2   | \$<br>708.0        | \$            | 1,031.3             |
| 2012  | \$<br>747.8   | \$    | 609.9               | \$ | 893.9               | \$<br>11.5   | \$    | 9.4              | \$              | 13.8              | \$<br>47.7    | \$    | 41.1             | \$   | 54.4                | \$<br>1.5     | \$   | 1.3                  | \$   | 1.8                 | \$<br>808.6   | \$<br>661.7        | \$            | 963.8               |
| 2013  | \$<br>316.8   | \$    | 257.8               | \$ | 379.6               | \$<br>10.2   | \$    | 8.4              | \$              | 12.3              | \$<br>34.8    | \$    | 29.9             | \$   | 39.8                | \$<br>1.4     | \$   | 1.2                  | \$   | 1.6                 | \$<br>363.3   | \$<br>297.3        | \$            | 433.2               |
| 2014  | \$<br>128.9   | \$    | 104.9               | \$ | 154.5               | \$<br>4.8    | \$    | 3.9              | \$              | 5.7               | \$<br>15.4    | \$    | 13.3             | \$   | 17.6                | \$<br>0.7     | \$   | 0.6                  | \$   | 0.8                 | \$<br>149.8   | \$<br>122.6        | \$            | 178.6               |
| 2015  | \$<br>-       | \$    | -                   | \$ | -                   | \$<br>-      | \$    | -                | \$              | -                 | \$<br>-       | \$    | -                | \$   | -                   | \$<br>-       | \$   | -                    | \$   | -                   | \$<br>-       | \$<br>-            | \$            | -                   |
| 2016  | \$<br>-       | \$    | -                   | \$ | -                   | \$<br>-      | \$    | -                | \$              | -                 | \$<br>-       | \$    | -                | \$   | -                   | \$<br>-       | \$   | -                    | \$   | -                   | \$<br>-       | \$<br>-            | \$            | -                   |
| 2017  | \$<br>-       | \$    | -                   | \$ | -                   | \$<br>-      | \$    | -                | \$              | -                 | \$<br>-       | \$    | -                | \$   | -                   | \$<br>-       | \$   | -                    | \$   | -                   | \$<br>-       | \$<br>-            | \$            | -                   |
| 2018  | \$<br>-       | \$    | -                   | \$ | -                   | \$<br>-      | \$    | -                | \$              | -                 | \$<br>-       | \$    | -                | \$   | -                   | \$<br>-       | \$   | -                    | \$   | -                   | \$<br>-       | \$<br>-            | \$            | -                   |
| 2019  | \$<br>-       | \$    | -                   | \$ | -                   | \$<br>-      | \$    | -                | \$              | -                 | \$<br>-       | \$    | -                | \$   | -                   | \$<br>-       | \$   | -                    | \$   | -                   | \$<br>-       | \$<br>-            | \$            | -                   |
| 2020  | \$<br>-       | \$    | -                   | \$ | -                   | \$<br>-      | \$    | -                | \$              | -                 | \$<br>-       | \$    | -                | \$   | -                   | \$<br>-       | \$   | -                    | \$   | -                   | \$<br>-       | \$<br>-            | \$            | -                   |
| 2021  | \$<br>-       | \$    | -                   | \$ | -                   | \$<br>-      | \$    | -                | \$              | -                 | \$<br>-       | \$    | -                | \$   | -                   | \$<br>-       | \$   | -                    | \$   | -                   | \$<br>-       | \$<br>-            | \$            | -                   |
| 2022  | \$<br>-       | \$    | -                   | \$ | -                   | \$<br>-      | \$    | -                | \$              | -                 | \$<br>-       | \$    | -                | \$   | -                   | \$<br>-       | \$   | -                    | \$   | -                   | \$<br>-       | \$<br>-            | \$            | -                   |
| 2023  | \$<br>-       | \$    | -                   | \$ | -                   | \$<br>-      | \$    | -                | \$              | -                 | \$<br>-       | \$    | -                | \$   | -                   | \$<br>-       | \$   | -                    | \$   | -                   | \$<br>-       | \$<br>-            | \$            | -                   |
| 2024  | \$<br>-       | \$    | -                   | \$ | -                   | \$<br>-      | \$    | -                | \$              | -                 | \$<br>-       | \$    | -                | \$   | -                   | \$<br>-       | \$   | -                    | \$   | -                   | \$<br>-       | \$<br>-            | \$            | -                   |
| 2025  | \$<br>-       | \$    | -                   | \$ | -                   | \$<br>-      | \$    | -                | \$              | -                 | \$<br>-       | \$    | -                | \$   | -                   | \$<br>-       | \$   | -                    | \$   | -                   | \$<br>-       | \$<br>-            | \$            | -                   |
| 2026  | \$<br>-       | \$    | -                   | \$ | -                   | \$<br>-      | \$    | -                | \$              | -                 | \$<br>-       | \$    | -                | \$   | -                   | \$<br>-       | \$   | -                    | \$   | -                   | \$<br>-       | \$<br>-            | \$            | -                   |
| 2027  | \$<br>-       | \$    | -                   | \$ | -                   | \$<br>-      | \$    | -                | \$              | -                 | \$<br>-       | \$    | -                | \$   | -                   | \$<br>-       | \$   | -                    | \$   | -                   | \$<br>-       | \$<br>-            | \$            | -                   |
| 2028  | \$<br>-       | \$    | -                   | \$ | -                   | \$<br>-      | \$    | -                | \$              | -                 | \$<br>-       | \$    | -                | \$   | -                   | \$<br>-       | \$   | -                    | \$   | -                   | \$<br>-       | \$<br>-            | \$            | -                   |
| 2029  | \$<br>-       | \$    | -                   | \$ | -                   | \$<br>-      | \$    | -                | \$              | -                 | \$<br>-       | \$    | -                | \$   | -                   | \$<br>-       | \$   | -                    | \$   | -                   | \$<br>-       | \$<br>-            | \$            | -                   |
| Total | \$<br>4,120.8 | \$    | 3,361.4             | \$ | 4,925.5             | \$<br>60.2   | \$    | 49.1             | \$              | 72.2              | \$<br>254.2   | \$    | 218.9            | \$   | 289.6               | \$<br>8.0     | \$   | 6.8                  | \$   | 9.2                 | \$<br>4,443.3 | \$<br>3,636.3      | \$            | 5,296.5             |
| Ann.  | \$<br>353.6   | \$    | 288.4               | \$ | 422.7               | \$<br>5.2    | \$    | 4.2              | \$              | 6.2               | \$<br>21.8    | \$    | 18.8             | \$   | 24.9                | \$<br>0.7     | \$   | 0.6                  | \$   | 0.8                 | \$<br>381.3   | \$<br>312.0        | \$            | 454.5               |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

## Exhibit J.50 Present Value of Annual Treatment Cost Projections at 7% Discount Rate (All Systems)

#### Alternative 3

|       | Surface Water |       |    |                   | s  |                   | Surfa       | ace Water          | NTI | NCWS                  | Disinfectin   | ng Gr | ound W           | ate | r CWS                | Disinfectin   | g G | round Wate          | er NT | ncws                |               |    | Total               |    |                      |
|-------|---------------|-------|----|-------------------|----|-------------------|-------------|--------------------|-----|-----------------------|---------------|-------|------------------|-----|----------------------|---------------|-----|---------------------|-------|---------------------|---------------|----|---------------------|----|----------------------|
|       |               |       | (  | 90 Pe<br>Confiden |    | und               |             |                    |     | rcent<br>ce Bound     |               |       | 90 P<br>Confide  |     |                      |               |     | 90 Pe<br>Confiden   |       |                     |               |    | 90 Pe<br>Confiden   |    |                      |
|       | Mean<br>Value |       |    | ower<br>%tile)    |    | Jpper<br>h %tile) | ean<br>alue | Lower<br>(5th %til |     | Upper<br>(95th %tile) | Mean<br>Value |       | ower<br>1 %tile) | (9  | Upper<br>95th %tile) | Mean<br>Value | (!  | Lower<br>5th %tile) | (95   | Upper<br>5th %tile) | Mean<br>Value | (5 | Lower<br>ith %tile) | (9 | Upper<br>95th %tile) |
| 2005  | \$            | -     | \$ | -                 | \$ | -                 | \$<br>-     | \$ -               |     | \$ -                  | \$            | \$    | -                | \$  |                      | \$<br>-       | \$  | -                   | \$    | -                   | \$            | \$ | -                   | \$ | -                    |
| 2006  | \$            | -     | \$ | -                 | \$ | -                 | \$<br>-     | \$ -               |     | \$ -                  | \$<br>-       | \$    | -                | \$  | -                    | \$<br>        | \$  | -                   | \$    | -                   | \$<br>-       | \$ | -                   | \$ | -                    |
| 2007  | \$            | -     | \$ | -                 | \$ | -                 | \$<br>-     | \$ -               |     | \$ -                  | \$<br>-       | \$    | -                | \$  | -                    | \$<br>-       | \$  | -                   | \$    | -                   | \$<br>-       | \$ | -                   | \$ | -                    |
| 2008  | \$            | -     | \$ | -                 | \$ | -                 | \$<br>-     | \$ -               |     | \$ -                  | \$<br>-       | \$    | -                | \$  | -                    | \$<br>-       | \$  | -                   | \$    | -                   | \$<br>-       | \$ | -                   | \$ | -                    |
| 2009  | \$            | 27.1  | \$ | 22.5              | \$ | 31.7              | \$<br>0.0   | \$ 0               | .0  | \$ 0.0                | \$<br>1.2     | \$    | 1.1              | \$  | 1.3                  | \$<br>0.0     | \$  | 0.0                 | \$    | 0.0                 | \$<br>28.3    | \$ | 23.7                | \$ | 33.1                 |
| 2010  | \$            | 66.7  | \$ | 55.5              | \$ | 78.2              | \$<br>0.9   | \$ 0               | .8  | \$ 1.1                | \$<br>4.0     | \$    | 3.7              | \$  | 4.3                  | \$<br>0.1     | \$  | 0.1                 | \$    | 0.1                 | \$<br>71.8    | \$ | 60.1                | \$ | 83.8                 |
| 2011  | \$ 1          | 13.9  | \$ | 94.6              | \$ | 133.6             | \$<br>2.5   | \$ 2               | .1  | \$ 3.0                | \$<br>7.9     | \$    | 7.4              | \$  | 8.5                  | \$<br>0.2     | \$  | 0.2                 | \$    | 0.2                 | \$<br>124.6   | \$ | 104.3               | \$ | 145.3                |
| 2012  | \$ 1          | 54.6  | \$ | 128.4             | \$ | 181.4             | \$<br>3.9   | \$ 3               | .2  | \$ 4.6                | \$<br>11.3    | \$    | 10.5             | \$  | 12.1                 | \$<br>0.3     | \$  | 0.3                 | \$    | 0.4                 | \$<br>170.2   | \$ | 142.5               | \$ | 198.5                |
| 2013  | \$ 1          | 89.5  | \$ | 157.4             | \$ | 222.3             | \$<br>5.1   | \$ 4               | .2  | \$ 6.0                | \$<br>14.2    | \$    | 13.2             | \$  | 15.2                 | \$<br>0.5     | \$  | 0.4                 | \$    | 0.5                 | \$<br>209.3   | \$ | 175.3               | \$ | 244.1                |
| 2014  | \$ 1          | 99.9  | \$ | 166.0             | \$ | 234.5             | \$<br>6.1   | \$ 5               | .1  | \$ 7.2                | \$<br>15.8    | \$    | 14.7             | \$  | 16.9                 | \$<br>0.5     | \$  | 0.5                 | \$    | 0.6                 | \$<br>222.3   | \$ | 186.2               | \$ | 259.2                |
| 2015  | \$ 1          | 96.6  | \$ | 163.2             | \$ | 230.7             | \$<br>6.3   | \$ 5               | .2  | \$ 7.4                | \$<br>15.9    | \$    | 14.7             | \$  | 17.0                 | \$<br>0.6     | \$  | 0.5                 | \$    | 0.6                 | \$<br>219.3   | \$ | 183.8               | \$ | 255.7                |
| 2016  | \$ 1          | 83.7  | \$ | 152.6             | \$ | 215.6             | \$<br>5.9   | \$ 4               | .9  | \$ 7.0                | \$<br>14.8    | \$    | 13.8             | \$  | 15.9                 | \$<br>0.5     | \$  | 0.5                 | \$    | 0.6                 | \$<br>205.0   | \$ | 171.7               | \$ | 239.0                |
| 2017  | \$ 1          | 71.7  | \$ | 142.6             | \$ | 201.5             | \$<br>5.5   | \$ 4               | .6  | \$ 6.5                | \$<br>13.9    | \$    | 12.9             | \$  | 14.9                 | \$<br>0.5     | \$  | 0.5                 | \$    | 0.5                 | \$<br>191.6   | \$ | 160.5               | \$ | 223.4                |
| 2018  | \$ 1          | 60.5  | \$ | 133.3             | \$ | 188.3             | \$<br>5.2   | \$ 4               | .3  | \$ 6.1                | \$<br>13.0    | \$    | 12.0             | \$  | 13.9                 | \$<br>0.5     | \$  | 0.4                 | \$    | 0.5                 | \$<br>179.0   | \$ | 150.0               | \$ | 208.7                |
| 2019  | \$ 1          | 50.0  | \$ | 124.5             | \$ | 176.0             | \$<br>4.8   | \$ 4               | .0  | \$ 5.7                | \$<br>12.1    | \$    | 11.2             | \$  | 13.0                 | \$<br>0.4     | \$  | 0.4                 | \$    | 0.5                 | \$<br>167.3   | \$ | 140.2               | \$ | 195.1                |
| 2020  | \$ 1          | 40.1  | \$ | 116.4             | \$ | 164.5             | \$<br>4.5   | \$ 3               | .7  | \$ 5.3                | \$<br>11.3    | \$    | 10.5             | \$  | 12.1                 | \$<br>0.4     | \$  | 0.4                 | \$    | 0.4                 | \$<br>156.4   | \$ | 131.0               | \$ | 182.3                |
| 2021  | \$ 1          | 31.0  | \$ | 108.8             | \$ | 153.7             | \$<br>4.2   | \$ 3               | .5  | \$ 5.0                | \$<br>10.6    | \$    | 9.8              | \$  | 11.3                 | \$<br>0.4     | \$  | 0.3                 | \$    | 0.4                 | \$<br>146.2   | \$ | 122.4               | \$ | 170.4                |
| 2022  | \$ 1          | 22.4  | \$ | 101.7             | \$ | 143.6             | \$<br>3.9   | \$ 3               | .3  | \$ 4.6                | \$<br>9.9     | \$    | 9.2              | \$  | 10.6                 | \$<br>0.4     | \$  | 0.3                 | \$    | 0.4                 | \$<br>136.6   | \$ | 114.4               | \$ | 159.2                |
| 2023  | \$ 1          | 14.4  | \$ | 95.0              | \$ | 134.2             | \$<br>3.7   | \$ 3               | .1  | \$ 4.3                | \$<br>9.2     | \$    | 8.6              | \$  | 9.9                  | \$<br>0.3     | \$  | 0.3                 | \$    | 0.4                 | \$<br>127.7   | \$ | 106.9               | \$ | 148.8                |
| 2024  | \$ 1          | 06.9  | \$ | 88.8              | \$ | 125.5             | \$<br>3.4   | \$ 2               | .9  | \$ 4.1                | \$<br>8.6     | \$    | 8.0              | \$  | 9.3                  | \$<br>0.3     | \$  | 0.3                 | \$    | 0.3                 | \$<br>119.3   | \$ | 100.0               | \$ | 139.1                |
| 2025  | \$            | 99.9  | \$ | 83.0              | \$ | 117.3             | \$<br>3.2   | \$ 2               | .7  | \$ 3.8                | \$<br>8.1     | \$    | 7.5              | \$  | 8.6                  | \$<br>0.3     | \$  | 0.3                 | \$    | 0.3                 | \$<br>111.5   | \$ | 93.4                | \$ | 130.0                |
| 2026  | \$            | 93.4  | \$ | 77.6              | \$ | 109.6             | \$<br>3.0   | \$ 2               | .5  | \$ 3.5                | \$<br>7.5     | \$    | 7.0              | \$  | 8.1                  | \$<br>0.3     | \$  | 0.2                 | \$    | 0.3                 | \$<br>104.2   | \$ | 87.3                | \$ | 121.5                |
| 2027  | \$            | 87.3  | \$ | 72.5              | \$ | 102.4             | \$<br>2.8   | \$ 2               | .3  | \$ 3.3                | \$<br>7.1     | \$    | 6.5              | \$  | 7.6                  | \$<br>0.3     | \$  | 0.2                 | \$    | 0.3                 | \$<br>97.4    | \$ | 81.6                | \$ | 113.5                |
| 2028  | \$            | 81.6  | \$ | 67.7              | \$ | 95.7              | \$<br>2.6   | \$ 2               | .2  | \$ 3.1                | \$<br>6.6     | \$    | 6.1              | \$  | 7.1                  | \$<br>0.2     | \$  | 0.2                 | \$    | 0.3                 | \$<br>91.0    | \$ | 76.3                | \$ | 106.1                |
| 2029  | \$            | 76.2  | \$ | 63.3              | \$ | 89.5              | \$<br>2.5   | \$ 2               | .0  | \$ 2.9                | \$<br>6.2     | \$    | 5.7              | \$  | 6.6                  | \$<br>0.2     | \$  | 0.2                 | \$    | 0.2                 | \$<br>85.1    | \$ | 71.3                | \$ | 99.2                 |
| Total | \$ 2,6        | 67.4  | \$ | 2,215.4           | \$ | 3,129.6           | \$<br>80.3  | \$ 66              | .5  | \$ 94.5               | \$<br>209.3   | \$    | 194.3            | \$  | 224.3                | \$<br>7.2     | \$  | 6.6                 | \$    | 7.7                 | \$<br>2,964.1 | \$ | 2,482.8             | \$ | 3,456.1              |
| Ann.  | \$ 2          | 228.9 | \$ | 190.1             | \$ | 268.6             | \$<br>6.9   | \$ 5               | .7  | \$ 8.1                | \$<br>18.0    | \$    | 16.7             | \$  | 19.3                 | \$<br>0.6     | \$  | 0.6                 | \$    | 0.7                 | \$<br>254.4   | \$ | 213.1               | \$ | 296.6                |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

#### Exhibit J.5p Present Value of Annual Cost Projections at 7% Discount Rate (All Systems)

Alternative 3

| Altern | ative | 3            |      |     |                |     |          |              |         |          |      |        |               |            |              |    |                |        |              |         |           |              |                |            |                  |            |              |                |      |         |            |            |              |
|--------|-------|--------------|------|-----|----------------|-----|----------|--------------|---------|----------|------|--------|---------------|------------|--------------|----|----------------|--------|--------------|---------|-----------|--------------|----------------|------------|------------------|------------|--------------|----------------|------|---------|------------|------------|--------------|
|        |       |              |      | Su  | rface Water CV | ws  |          |              |         |          |      | Surfac | ce Water NTNO | cws        |              |    |                | Disinf | ecting Groun | d Water | cws       |              |                | Disinfecti | ing Ground Water | NTNCWS     |              |                |      |         | Total      |            |              |
|        |       |              |      |     | Monitoring     |     |          | Siginificant |         |          |      |        | Monitoring    |            | Siginificant |    |                |        | Monitori     |         |           | Siginificant |                |            | Monitoring       |            | Siginificant |                |      |         | Monitoring |            | Siginificant |
|        | lmp   | elementation | IDS  | -   | Plans          | Mo  | nitoring | Excursion    | Impleme | entation | IDSE |        | Plans         | Monitoring | Excursion    |    | Implementation | IDSE   | Plans        | М       | onitoring | Excursion    | Implementation | IDSE       | Plans            | Monitoring | Excursion    | Implementation |      | بة      | Plans      | Monitoring | Excursion    |
| 2005   | \$    | 0.6          | \$ - |     | \$ -           | \$  | -        | \$ -         | \$      | 0.0      | \$ - | \$     | -             | \$ -       | \$ -         | \$ | 0.1            | \$ -   | \$           | - \$    | -         | \$ -         | \$ 0.0         | \$ -       | \$ -             | s -        | \$ -         | \$ 0.7         | \$ - | - \$    | -          | \$ -       | \$ -         |
| 2006   | \$    | 1.1          | \$   | 5.9 | \$ -           | \$  | -        | \$ -         | \$      | 0.1      | \$ 0 | .0 \$  | -             | \$ -       | \$ -         | \$ | 2.8            | \$ 0.1 | \$           | - \$    | -         | \$ -         | \$ 0.5         | \$ -       | \$ -             | \$ -       | s -          | \$ 4.4         |      | 7.0 \$  | -          | \$ -       | s -          |
| 2007   | \$    | -            | \$ 1 | 7.1 | \$ 0.2         | \$  | -        | \$ -         | \$      | -        | \$ 0 | .0 \$  | 0.0           | \$ -       | \$ -         | \$ | -              | \$ 0.8 | \$           | 0.0     | -         | \$ -         | s -            | \$ 0.0     | \$ 0.0           | \$ -       | s -          | s -            | \$ 1 | 8.0 \$  | 0.2        | \$ -       | s -          |
| 2008   | \$    | 0.4          | \$ 1 | 3.3 | \$ 0.4         | \$  | -        | \$ -         | \$      | 0.0      | \$ 0 | .0 \$  | 0.0           | \$ -       | \$ -         | \$ | 0.0            | \$ 4.7 | \$           | 0.2 \$  | -         | \$ -         | \$ 0.0         | \$ 0.0     | \$ 0.0           | \$ -       | \$ -         | \$ 0.5         | \$ 1 | 8.0 \$  | 0.6        | \$ -       | s -          |
| 2009   | \$    | 0.5          | \$ - |     | \$ 0.6         | \$  | -        | \$ -         | \$      | 0.0      | \$ - | \$     | 0.0           | \$ -       | \$ -         | \$ | 1.2            | \$ -   | \$           | 1.7 \$  | -         | \$ -         | \$ 0.2         | \$ -       | \$ 0.3           | \$ -       | \$ -         | \$ 1.9         | \$ - | - \$    | 2.6        | \$ -       | s -          |
| 2010   | \$    | 0.4          | \$ - |     | \$ -           | \$  | -        | \$ -         | \$      | 0.0      | \$ - | \$     | -             | s -        | \$ -         | \$ | 1.1            | \$ -   | \$           | - \$    | -         | \$ -         | \$ 0.2         | \$ -       | \$ -             | s -        | s -          | \$ 1.7         | \$ - | - \$    | -          | \$ -       | \$ -         |
| 2011   | \$    |              | \$ - |     | \$ -           | \$  | 0.2      | \$ -         | \$      | -        | \$ - | \$     | -             | \$ 0.0     | \$ -         | \$ | -              | \$ -   | \$           | - \$    | 0.0       | \$ -         | \$ -           | s -        | \$ -             | \$ 0.0     | s -          | \$ -           | \$ - | - \$    | -          | \$ 0.3     | \$ -         |
| 2012   | s     | -            | \$ - |     | \$ -           | \$  | (0.4)    | \$ 0.0       | \$      | -        | s -  | \$     | -             | \$ 0.0     | s -          | \$ | -              | \$ -   | \$           | - \$    | 1.6       | \$ -         | s -            | s -        | \$ -             | \$ 0.2     | s -          | s -            | \$ - | - \$    | -          | \$ 1.4     | \$ 0.0       |
| 2013   | \$    | -            | \$ - |     | \$ -           | \$  | (1.1)    | \$ 0.1       | \$      | -        | \$ - | \$     | -             | \$ 0.0     | \$ -         | \$ | -              | \$ -   | \$           | - \$    | 2.9       | \$ -         | s -            | s -        | \$ -             | \$ 0.4     | s -          | s -            | \$ - | - \$    |            | \$ 2.2     | \$ 0.1       |
| 2014   | \$    | -            | \$ - |     | \$ -           | \$  | (1.0)    | \$ 0.1       | \$      | -        | \$ - | \$     | -             | \$ 0.0     | \$ -         | \$ | -              | \$ -   | \$           | - \$    | 2.7       | \$ -         | s -            | s -        | \$ -             | \$ 0.3     | s -          | s -            | \$ - | - \$    | -          | \$ 2.1     | \$ 0.1       |
| 2015   | \$    |              | \$ - |     | \$ -           | \$  | (0.9)    | \$ 0.1       | \$      |          | s -  | \$     | -             | \$ 0.0     | \$ -         | \$ | -              | \$ -   | \$           | - \$    | 2.5       | \$ -         | s -            | s -        | \$ -             | \$ 0.3     | s -          | s -            | \$ - | - \$    |            | \$ 1.9     | \$ 0.1       |
| 2016   | \$    |              | \$ - |     | \$ -           | \$  | (0.9)    | \$ 0.1       | \$      |          | s -  | \$     | -             | \$ 0.0     | \$ -         | \$ | -              | \$ -   | \$           | - \$    | 2.3       | \$ -         | s -            | s -        | \$ -             | \$ 0.3     | s -          | s -            | \$ - | - \$    |            | \$ 1.8     | \$ 0.1       |
| 2017   | \$    | -            | \$ - |     | \$ -           | \$  | (0.8)    | \$ 0.1       | \$      | -        | \$ - | \$     | -             | \$ 0.0     | s -          | \$ | -              | s -    | \$           | - \$    | 2.2       | \$ -         | s -            | s -        | s -              | \$ 0.3     | s -          | s -            | \$ - | - \$    |            | \$ 1.7     | \$ 0.1       |
| 2018   | \$    |              | \$ - |     | \$ -           | \$  | (0.7)    | \$ 0.1       | \$      |          | s -  | \$     | -             | \$ 0.0     | \$ -         | \$ | -              | \$ -   | \$           | - \$    | 2.0       | \$ -         | s -            | s -        | \$ -             | \$ 0.3     | s -          | s -            | \$ - | - \$    |            | \$ 1.6     | \$ 0.1       |
| 2019   | \$    | -            | \$ - |     | \$ -           | \$  | (0.7)    | \$ 0.1       | \$      | -        | \$ - | \$     | -             | \$ 0.0     | s -          | \$ | -              | s -    | \$           | - \$    | 1.9       | \$ -         | s -            | s -        | s -              | \$ 0.2     | s -          | s -            | \$ - | - \$    |            | \$ 1.5     | \$ 0.1       |
| 2020   | \$    |              | \$ - |     | \$ -           | \$  | (0.7)    | \$ 0.1       | \$      |          | s -  | \$     | -             | \$ 0.0     | \$ -         | \$ | -              | \$ -   | \$           | - \$    | 1.8       | \$ -         | s -            | s -        | \$ -             | \$ 0.2     | s -          | s -            | \$ - | - \$    |            | \$ 1.4     | \$ 0.1       |
| 2021   | \$    | -            | \$ - |     | \$ -           | \$  | (0.6)    | \$ 0.1       | \$      | -        | \$ - | \$     | -             | \$ 0.0     | s -          | \$ | -              | s -    | \$           | - \$    | 1.7       | \$ -         | s -            | s -        | s -              | \$ 0.2     | s -          | s -            | \$ - | - \$    |            | \$ 1.3     | \$ 0.1       |
| 2022   | s     | -            | \$ - |     | s -            | s   | (0.6)    | \$ 0.1       | s       |          | s -  | s      | -             | \$ 0.0     | s -          | \$ |                | s -    | \$           | - s     | 1.6       | s -          | s -            | s -        | s -              | \$ 0.2     | s -          | s -            | \$ - | - \$    |            | \$ 1.2     | \$ 0.1       |
| 2023   | s     | -            | \$ - |     | s -            | s   | (0.5)    | \$ 0.1       | s       |          | s -  | s      | -             | \$ 0.0     | s -          | \$ |                | s -    | \$           | - s     | 1.5       | s -          | s -            | s -        | s -              | \$ 0.2     | s -          | s -            | \$ - | - \$    |            | \$ 1.1     | \$ 0.1       |
| 2024   | s     |              | \$ - |     | s -            | s   | (0.5)    | \$ 0.1       | s       |          | s -  | s      |               | \$ 0.0     | s -          | \$ |                | s -    | s            | - s     | 1.4       | s -          | s -            | s -        | s -              | \$ 0.2     | s -          | s -            | \$ - | - \$    |            | \$ 1.0     | \$ 0.1       |
| 2025   | s     |              | \$ - |     | ·<br>\$ -      | \$  | (0.5)    |              | s       |          | s -  | s      |               | \$ 0.0     | s -          | \$ |                | s -    | s            | - s     | 1.3       | s -          | s -            | s -        | \$ -             | \$ 0.2     |              | \$ -           | \$ - | - 9     |            | \$ 1.0     | \$ 0.0       |
| 2026   | s     | -            | s .  |     | s -            | s   | (0.4)    | \$ 0.0       | s       |          | s -  | s      | _             | s 0.0      | s -          | s  |                | s -    | s            | - s     | 1.2       | s -          | s -            | s -        | s -              | \$ 0.2     | s -          | s -            | s .  | - 9     |            | S 0.9      | s 0.0        |
| 2027   | s     |              | \$ - |     | ·<br>\$ -      | \$  | (0.4)    |              |         |          | s -  | \$     |               | \$ 0.0     |              | \$ |                | s -    | s            | - s     | 1.1       | *            | s -            | s -        | s -              | \$ 0.1     | s -          | s -            | \$   | - 8     |            |            | \$ 0.0       |
| 2028   | s     | -            | s -  |     | s -            | s   | (0.4)    |              | s       |          | s -  | s      | _             | s 0.0      | s -          | s  |                | s -    | s            | - s     | 1.0       |              | s -            | s -        | s -              | S 0.1      | s -          | s -            | s .  | - 9     |            | S 0.8      | s 0.0        |
| 2029   | s     |              | \$   |     | \$ -           | s   | (0.4)    |              | 1       |          | s -  | s      |               | \$ 0.0     |              | s  |                | s -    | s            | - s     | 1.0       |              | s -            | s -        | s -              | \$ 0.1     | s -          | s -            | \$   | - 9     |            |            | \$ 0.0       |
| Total  | s     | 3.0          | \$ 3 | 7.3 | \$ 1.2         | s   | (11.2)   |              | s       | 0.1      | s 0  | 1 \$   | 0.0           | \$ 0.2     |              | s  | 5.1            | \$ 5.6 | s            | 1.9 \$  | 31.5      |              | \$ 0.8         | s 0.0      | \$ 0.3           |            |              | \$ 9.1         | s 4  | 13.0 \$ | 3.4        |            |              |
| Ann.   | s     | 0.3          | _    | 3.2 |                | i - | (1.0)    |              | \$      | 0.0      |      | .0 \$  | 0.0           | \$ 0.0     |              | s  | 0.4            |        | -            | 0.2 \$  | 2.7       |              | 1              | \$ 0.0     |                  |            |              |                |      | 3.7 \$  |            |            | -            |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005. Detail may not add exactly to totals due to independent rounding. Ann = value of total annualized at discount rate. Source: Derived from Exhibits J, Sid through h.

# Section J.6 Cost Projections Preferred Alternative, 20% Safety Margin

### Exhibit J.6a Projections of Stage 2 DBPR PWS Costs

(All Surface Water CWSs)

Preferred Alternative, 20% Safety Margin

|      | Trea          | tme | nt Capital          | Cos | sts                 | Treati         | men | t O&M (          | Cost | ts                |                |                | N        | on-T | Treatment C         | ost | s          |                         | All Sta       | ige 2 | DBPR (            | Cost | ts                  |
|------|---------------|-----|---------------------|-----|---------------------|----------------|-----|------------------|------|-------------------|----------------|----------------|----------|------|---------------------|-----|------------|-------------------------|---------------|-------|-------------------|------|---------------------|
|      |               |     | 90 Pe<br>Confiden   |     | -                   |                | С   | 90 Po<br>onfider |      |                   |                |                |          |      |                     |     |            |                         |               | C     | 90 Pe<br>Confiden |      |                     |
| Year | Mean<br>Value | (5  | Lower<br>ith %tile) |     | Upper<br>5th %tile) | /lean<br>/alue |     | ower<br>1 %tile) |      | Upper<br>th %tile | <del>-</del> ) | Implementation | IDSE     | N    | Ionitoring<br>Plans |     | Monitoring | ignificant<br>excursion | Mean<br>Value |       | ower<br>1 %tile)  |      | Upper<br>5th %tile) |
| 2005 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>-        | \$  | -                | \$   | -                 | \$             | 0.69           | \$ -     | \$   | -                   | \$  | -          | \$<br>-                 | \$<br>0.69    | \$    | 0.69              | \$   | 0.69                |
| 2006 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>-        | \$  | -                | \$   | -                 | \$             | 1.34           | \$ 8.46  | \$   | -                   | \$  | -          | \$<br>-                 | \$<br>9.80    | \$    | 9.80              | \$   | 9.80                |
| 2007 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>-        | \$  | -                | \$   | -                 | \$             | -              | \$ 22.45 | \$   | 0.22                | \$  | -          | \$<br>-                 | \$<br>22.67   | \$    | 22.67             | \$   | 22.67               |
| 2008 | \$<br>60.05   | \$  | 30.86               | \$  | 91.03               | \$<br>-        | \$  | -                | \$   | -                 | \$             | 0.60           | \$ 18.62 | \$   | 0.62                | \$  | -          | \$<br>-                 | \$<br>79.88   | \$    | 50.69             | \$   | 110.86              |
| 2009 | \$<br>88.76   | \$  | 45.67               | \$  | 134.49              | \$<br>3.58     | \$  | 1.86             | \$   | 5.32              | \$             | 0.75           | \$ -     | \$   | 0.88                | \$  | -          | \$<br>-                 | \$<br>93.97   | \$    | 49.16             | \$   | 141.44              |
| 2010 | \$<br>110.63  | \$  | 56.96               | \$  | 167.64              | \$<br>9.36     | \$  | 4.86             | \$   | 13.90             | \$             | 0.67           | \$ -     | \$   | -                   | \$  | -          | \$<br>-                 | \$<br>120.67  | \$    | 62.49             | \$   | 182.21              |
| 2011 | \$<br>110.63  | \$  | 56.96               | \$  | 167.64              | \$<br>16.96    | \$  | 8.81             | \$   | 25.17             | \$             | -              | \$ -     | \$   | -                   | \$  | 0.42       | \$<br>-                 | \$<br>128.01  | \$    | 66.19             | \$   | 193.23              |
| 2012 | \$<br>110.63  | \$  | 56.96               | \$  | 167.64              | \$<br>24.55    | \$  | 12.75            | \$   | 36.44             | \$             | -              | \$ -     | \$   | -                   | \$  | (0.77)     | \$<br>0.06              | \$<br>134.48  | \$    | 69.01             | \$   | 203.38              |
| 2013 | \$<br>50.59   | \$  | 26.10               | \$  | 76.61               | \$<br>32.14    | \$  | 16.69            | \$   | 47.72             | \$             | -              | \$ -     | \$   | -                   | \$  | (2.07)     | \$<br>0.15              | \$<br>80.80   | \$    | 40.87             | \$   | 122.41              |
| 2014 | \$<br>21.88   | \$  | 11.29               | \$  | 33.14               | \$<br>36.15    | \$  | 18.78            | \$   | 53.67             | \$             | -              | \$ -     | \$   | -                   | \$  | (2.07)     | \$<br>0.21              | \$<br>56.17   | \$    | 28.21             | \$   | 84.96               |
| 2015 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>37.96    | \$  | 19.72            | \$   | 56.36             | \$             | -              | \$ -     | \$   | -                   | \$  | (2.07)     | \$<br>0.21              | \$<br>36.10   | \$    | 17.86             | \$   | 54.50               |
| 2016 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>37.96    | \$  | 19.72            | \$   | 56.36             | \$             | -              | \$ -     | \$   | -                   | \$  | (2.07)     | \$<br>0.21              | \$<br>36.10   | \$    | 17.86             | \$   | 54.50               |
| 2017 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>37.96    | \$  | 19.72            | \$   | 56.36             | \$             | -              | \$ -     | \$   | -                   | \$  | (2.07)     | \$<br>0.21              | \$<br>36.10   | \$    | 17.86             | \$   | 54.50               |
| 2018 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>37.96    | \$  | 19.72            | \$   | 56.36             | \$             | -              | \$ -     | \$   | -                   | \$  | (2.07)     | \$<br>0.21              | \$<br>36.10   | \$    | 17.86             | \$   | 54.50               |
| 2019 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>37.96    | \$  | 19.72            | \$   | 56.36             | \$             | -              | \$ -     | \$   | -                   | \$  | (2.07)     | \$<br>0.21              | \$<br>36.10   | \$    | 17.86             | \$   | 54.50               |
| 2020 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>37.96    | \$  | 19.72            | \$   | 56.36             | \$             | -              | \$ -     | \$   | -                   | \$  | (2.07)     | \$<br>0.21              | \$<br>36.10   | \$    | 17.86             | \$   | 54.50               |
| 2021 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>37.96    | \$  | 19.72            | \$   | 56.36             | \$             | -              | \$ -     | \$   | -                   | \$  | (2.07)     | \$<br>0.21              | \$<br>36.10   | \$    | 17.86             | \$   | 54.50               |
| 2022 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>37.96    | \$  | 19.72            | \$   | 56.36             | \$             | -              | \$ -     | \$   | -                   | \$  | (2.07)     | \$<br>0.21              | \$<br>36.10   | \$    | 17.86             | \$   | 54.50               |
| 2023 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>37.96    | \$  | 19.72            | \$   | 56.36             | \$             | -              | \$ -     | \$   | -                   | \$  | (2.07)     | \$<br>0.21              | \$<br>36.10   | \$    | 17.86             | \$   | 54.50               |
| 2024 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>37.96    | \$  | 19.72            | \$   | 56.36             | \$             | -              | \$ -     | \$   | -                   | \$  | (2.07)     | \$<br>0.21              | \$<br>36.10   | \$    | 17.86             | \$   | 54.50               |
| 2025 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>37.96    | \$  | 19.72            | \$   | 56.36             | \$             | -              | \$ -     | \$   | -                   | \$  | (2.07)     | \$<br>0.21              | \$<br>36.10   | \$    | 17.86             | \$   | 54.50               |
| 2026 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>37.96    | \$  | 19.72            | \$   | 56.36             | \$             | -              | \$ -     | \$   | -                   | \$  | (2.07)     | \$<br>0.21              | \$<br>36.10   | \$    | 17.86             | \$   | 54.50               |
| 2027 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>37.96    | \$  | 19.72            | \$   | 56.36             | \$             | -              | \$ -     | \$   | -                   | \$  | (2.07)     | \$<br>0.21              | \$<br>36.10   | \$    | 17.86             | \$   | 54.50               |
| 2028 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>37.96    | \$  | 19.72            | \$   | 56.36             | \$             | -              | \$ -     | \$   | -                   | \$  | (2.07)     | \$<br>0.21              | \$<br>36.10   | \$    | 17.86             | \$   | 54.50               |
| 2029 | \$<br>-       | \$  | -                   | \$  | -                   | \$<br>37.96    | \$  | 19.72            | \$   | 56.36             | \$             | -              | \$ -     | \$   | -                   | \$  | (2.07)     | \$<br>0.21              | \$<br>36.10   | \$    | 17.86             | \$   | 54.50               |

Note: All values in millions of year 2003 dollars.

# Exhibit J.6b Projections of Stage 2 DBPR PWS Costs

(All Surface Water NTNCWSs)

Preferred Alternative, 20% Safety Margin

| T referred t |             | ent Capita              |                          | Ū  |              | men | t O&M                 | Co | sts                    |    |               |    | N    | on | -Treatment Co       | sts | 3          |                          |    | All St        | age | 2 DBPR            | Cost | s                  |
|--------------|-------------|-------------------------|--------------------------|----|--------------|-----|-----------------------|----|------------------------|----|---------------|----|------|----|---------------------|-----|------------|--------------------------|----|---------------|-----|-------------------|------|--------------------|
|              |             | 90 F<br>Confide         | <br>                     |    |              | Co  | 90 Pe                 |    |                        |    |               |    |      |    |                     |     |            |                          |    |               | (   | 90 P€<br>Confiden |      |                    |
| Year         | ean<br>Ilue | Lower<br>(5th<br>%tile) | Upper<br>(95th<br>%tile) |    | lean<br>alue | (   | ower<br>5th<br>stile) | (9 | pper<br>95th<br>stile) | In | nplementation | ı  | DSE  |    | Monitoring<br>Plans |     | Monitoring | Significant<br>Excursion | _  | Mean<br>/alue | -   | _ower<br>h %tile) |      | Jpper<br>:h %tile) |
| 2005         | \$<br>-     | \$ -                    | \$<br>-                  | \$ | -            | \$  | -                     | \$ | -                      | \$ | 0.00          | \$ | -    | \$ | -                   | \$  | -          | \$ -                     | \$ | 0.00          | \$  | 0.00              | \$   | 0.00               |
| 2006         | \$<br>-     | \$ -                    | \$<br>-                  | \$ | -            | \$  | -                     | \$ | -                      | \$ | 0.08          | \$ | 0.01 | \$ | -                   | \$  | -          | \$ -                     | \$ | 0.09          | \$  | 0.09              | \$   | 0.09               |
| 2007         | \$<br>-     | \$ -                    | \$<br>-                  | \$ | -            | \$  | -                     | \$ | -                      | \$ | -             | \$ | 0.04 | \$ | 0.00                | \$  | -          | \$ -                     | \$ | 0.04          | \$  | 0.04              | \$   | 0.04               |
| 2008         | \$<br>0.08  | \$ 0.04                 | \$<br>0.12               | \$ | -            | \$  | -                     | \$ | -                      | \$ | 0.00          | \$ | 0.02 | \$ | 0.00                | \$  | -          | \$ -                     | \$ | 0.11          | \$  | 0.07              | \$   | 0.15               |
| 2009         | 0.80        | \$ 0.41                 | \$                       | \$ | 0.00         | \$  | 0.00                  | \$ | 0.01                   | \$ | 0.04          | \$ | -    | \$ | 0.04                | \$  | -          | \$ -                     | \$ | 0.88          | \$  | 0.49              | \$   | 1.31               |
| 2010         | \$<br>1.51  | \$ 0.77                 | \$<br>2.33               | \$ | 0.12         | \$  | 0.06                  | \$ | 0.17                   | \$ | 0.04          | \$ | -    | \$ | -                   | \$  |            | \$ -                     | \$ | 1.67          | \$  | 0.88              | \$   | 2.54               |
| 2011         | \$<br>1.51  | \$ 0.77                 | \$<br>2.33               | \$ | 0.34         | \$  | 0.18                  | \$ | 0.50                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.00       | \$ -                     | \$ | 1.86          | \$  | 0.95              | \$   | 2.83               |
| 2012         | \$<br>1.51  | \$ 0.77                 | \$<br>2.33               | \$ | 0.56         | \$  | 0.29                  | \$ | 0.83                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.02       | \$ -                     | \$ | 2.09          | \$  | 1.08              | \$   | 3.18               |
| 2013         | \$<br>1.43  | \$ 0.73                 | \$<br>2.20               | \$ | 0.78         | \$  | 0.40                  | \$ | 1.16                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$ | 2.24          | \$  | 1.17              | \$   | 3.39               |
| 2014         | \$<br>0.72  | \$ 0.37                 | \$<br>1.10               | \$ | 1.00         | \$  | 0.52                  | \$ | 1.48                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$ | 1.74          | \$  | 0.91              | \$   | 2.61               |
| 2015         | \$<br>-     | \$ -                    | \$<br>-                  | \$ | 1.10         | \$  | 0.57                  | \$ | 1.64                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$ | 1.13          | \$  | 0.60              | \$   | 1.67               |
| 2016         | \$<br>-     | \$ -                    | \$<br>-                  | \$ | 1.10         | \$  | 0.57                  | \$ | 1.64                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$ | 1.13          | \$  | 0.60              | \$   | 1.67               |
| 2017         | \$<br>-     | \$ -                    | \$<br>-                  | \$ | 1.10         | \$  | 0.57                  | \$ | 1.64                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$ | 1.13          | \$  | 0.60              | \$   | 1.67               |
| 2018         | \$<br>-     | \$ -                    | \$<br>-                  | \$ | 1.10         | \$  | 0.57                  | \$ | 1.64                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$ | 1.13          | \$  | 0.60              | \$   | 1.67               |
| 2019         | \$<br>-     | \$ -                    | \$<br>-                  | \$ | 1.10         | \$  | 0.57                  | \$ | 1.64                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$ | 1.13          | \$  | 0.60              | \$   | 1.67               |
| 2020         | \$<br>-     | \$ -                    | \$<br>-                  | \$ | 1.10         | \$  | 0.57                  | \$ | 1.64                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$ | 1.13          | \$  | 0.60              | \$   | 1.67               |
| 2021         | \$<br>-     | \$ -                    | \$<br>-                  | \$ | 1.10         | \$  | 0.57                  | \$ | 1.64                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$ | 1.13          | \$  | 0.60              | \$   | 1.67               |
| 2022         | \$<br>-     | \$ -                    | \$<br>-                  | \$ | 1.10         | \$  | 0.57                  | \$ | 1.64                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$ | 1.13          | \$  | 0.60              | \$   | 1.67               |
| 2023         | \$<br>-     | \$ -                    | \$<br>-                  | \$ | 1.10         | \$  | 0.57                  | \$ | 1.64                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$ | 1.13          | \$  | 0.60              | \$   | 1.67               |
| 2024         | \$<br>-     | \$ -                    | \$<br>-                  | \$ | 1.10         | \$  | 0.57                  | \$ | 1.64                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$ | 1.13          | \$  | 0.60              | \$   | 1.67               |
| 2025         | \$<br>-     | \$ -                    | \$<br>-                  | \$ | 1.10         | \$  | 0.57                  | \$ | 1.64                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$ | 1.13          | \$  | 0.60              | \$   | 1.67               |
| 2026         | \$<br>-     | \$ -                    | \$<br>-                  | \$ | 1.10         | \$  | 0.57                  | \$ | 1.64                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$ | 1.13          | \$  | 0.60              | \$   | 1.67               |
| 2027         | \$<br>-     | \$ -                    | \$<br>-                  | \$ | 1.10         | \$  | 0.57                  | \$ | 1.64                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$ | 1.13          | \$  | 0.60              | \$   | 1.67               |
| 2028         | \$<br>-     | \$ -                    | \$<br>-                  | \$ | 1.10         | \$  | 0.57                  | \$ | 1.64                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$ | 1.13          | \$  | 0.60              | \$   | 1.67               |
| 2029         | \$<br>-     | \$ -                    | \$<br>-                  | \$ | 1.10         | \$  | 0.57                  | \$ | 1.64                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$ | 1.13          | \$  | 0.60              | \$   | 1.67               |

Note: All values in millions of year 2003 dollars.

### Exhibit J.6c Projections of Stage 2 DBPR PWS Costs

(All Surface Water Systems)

Preferred Alternative, 20% Safety Margin

|      | Treat         | tmen | nt Capital        | Cos | sts                 | Treat         | tme | nt O&M            | Cos | ts                 |    |               | No          | n-T | reatment Co         | osts | 3          |    |                        | All St        | age : | 2 DBPR            | Cos | ts                 |
|------|---------------|------|-------------------|-----|---------------------|---------------|-----|-------------------|-----|--------------------|----|---------------|-------------|-----|---------------------|------|------------|----|------------------------|---------------|-------|-------------------|-----|--------------------|
|      |               |      | 90 Pe<br>Confiden |     |                     |               | C   | 90 Pe<br>Confiden |     |                    |    |               |             |     |                     |      |            |    |                        |               | C     | 90 Pe<br>confiden |     |                    |
| Year | Mean<br>Value |      | Lower<br>h %tile) |     | Upper<br>5th %tile) | Mean<br>/alue |     | Lower<br>h %tile) |     | Upper<br>th %tile) | lr | nplementation | IDSE        | N   | Monitoring<br>Plans |      | Monitoring |    | ignificant<br>xcursion | Mean<br>∕alue |       | ower<br>1 %tile)  |     | Upper<br>th %tile) |
| 2005 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>-       | \$  | -                 | \$  | -                  | \$ | 0.69          | \$<br>-     | \$  | -                   | \$   | -          | \$ | -                      | \$<br>0.69    | \$    | 0.69              | \$  | 0.69               |
| 2006 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>-       | \$  | -                 | \$  | -                  | \$ | 1.42          | \$<br>8.48  | \$  | -                   | \$   | -          | \$ | -                      | \$<br>9.90    | \$    | 9.90              | \$  | 9.90               |
| 2007 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>-       | \$  | -                 | \$  | -                  | \$ | -             | \$<br>22.49 | \$  | 0.22                | \$   | -          | \$ | -                      | \$<br>22.71   | \$    | 22.71             | \$  | 22.71              |
| 2008 | \$<br>60.13   | \$   | 30.90             | \$  | 91.15               | \$<br>-       | \$  | -                 | \$  | -                  | \$ | 0.60          | \$<br>18.64 | \$  | 0.62                | \$   | -          | \$ | -                      | \$<br>79.99   | \$    | 50.76             | \$  | 111.01             |
| 2009 | \$<br>89.56   | \$   | 46.08             | \$  | 135.72              | \$<br>3.59    | \$  | 1.86              | \$  | 5.32               | \$ | 0.79          | \$<br>-     | \$  | 0.91                | \$   | -          | \$ | -                      | \$<br>94.85   | \$    | 49.65             | \$  | 142.75             |
| 2010 | \$<br>112.15  | \$   | 57.74             | \$  | 169.97              | \$<br>9.48    | \$  | 4.92              | \$  | 14.08              | \$ | 0.71          | \$<br>-     | \$  | -                   | \$   | -          | \$ | -                      | \$<br>122.34  | \$    | 63.37             | \$  | 184.75             |
| 2011 | \$<br>112.15  | \$   | 57.74             | \$  | 169.97              | \$<br>17.29   | \$  | 8.98              | \$  | 25.68              | \$ | -             | \$<br>-     | \$  | -                   | \$   | 0.42       | \$ | -                      | \$<br>129.87  | \$    | 67.14             | \$  | 196.07             |
| 2012 | \$<br>112.15  | \$   | 57.74             | \$  | 169.97              | \$<br>25.11   | \$  | 13.04             | \$  | 37.28              | \$ | -             | \$<br>-     | \$  | -                   | \$   | (0.75)     | \$ | 0.06                   | \$<br>136.57  | \$    | 70.09             | \$  | 206.55             |
| 2013 | \$<br>52.02   | \$   | 26.83             | \$  | 78.81               | \$<br>32.92   | \$  | 17.10             | \$  | 48.88              | \$ | -             | \$<br>-     | \$  | -                   | \$   | (2.04)     | \$ | 0.15                   | \$<br>83.05   | \$    | 42.04             | \$  | 125.80             |
| 2014 | \$<br>22.59   | \$   | 11.66             | \$  | 34.25               | \$<br>37.14   | \$  | 19.29             | \$  | 55.15              | \$ | -             | \$<br>-     | \$  | -                   | \$   | (2.04)     | \$ | 0.21                   | \$<br>57.91   | \$    | 29.12             | \$  | 87.57              |
| 2015 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>39.06   | \$  | 20.29             | \$  | 58.00              | \$ | -             | \$<br>-     | \$  | -                   | \$   | (2.04)     | \$ | 0.21                   | \$<br>37.24   | \$    | 18.46             | \$  | 56.17              |
| 2016 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>39.06   | \$  | 20.29             | \$  | 58.00              | \$ | -             | \$<br>-     | \$  | -                   | \$   | (2.04)     | \$ | 0.21                   | \$<br>37.24   | \$    | 18.46             | \$  | 56.17              |
| 2017 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>39.06   | \$  | 20.29             | \$  | 58.00              | \$ | -             | \$<br>-     | \$  | -                   | \$   | (2.04)     | \$ | 0.21                   | \$<br>37.24   | \$    | 18.46             | \$  | 56.17              |
| 2018 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>39.06   | \$  | 20.29             | \$  | 58.00              | \$ | -             | \$<br>-     | \$  | -                   | \$   | (2.04)     | \$ | 0.21                   | \$<br>37.24   | \$    | 18.46             | \$  | 56.17              |
| 2019 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>39.06   | \$  | 20.29             | \$  | 58.00              | \$ | -             | \$<br>-     | \$  | -                   | \$   | (2.04)     | \$ | 0.21                   | \$<br>37.24   | \$    | 18.46             | \$  | 56.17              |
| 2020 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>39.06   | \$  | 20.29             | \$  | 58.00              | \$ | -             | \$<br>-     | \$  | -                   | \$   | (2.04)     | \$ | 0.21                   | \$<br>37.24   | \$    | 18.46             | \$  | 56.17              |
| 2021 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>39.06   | \$  | 20.29             | \$  | 58.00              | \$ | -             | \$<br>-     | \$  | -                   | \$   | (2.04)     | \$ | 0.21                   | \$<br>37.24   | \$    | 18.46             | \$  | 56.17              |
| 2022 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>39.06   | \$  | 20.29             | \$  | 58.00              | \$ | -             | \$<br>-     | \$  | -                   | \$   | (2.04)     | \$ | 0.21                   | \$<br>37.24   | \$    | 18.46             | \$  | 56.17              |
| 2023 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>39.06   | \$  | 20.29             | \$  | 58.00              | \$ | -             | \$<br>-     | \$  | -                   | \$   | (2.04)     | _  | 0.21                   | \$<br>37.24   | \$    | 18.46             | \$  | 56.17              |
| 2024 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>39.06   | \$  | 20.29             | \$  | 58.00              | \$ | -             | \$<br>-     | \$  | -                   | \$   | (2.04)     | \$ | 0.21                   | \$<br>37.24   | \$    | 18.46             | \$  | 56.17              |
| 2025 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>39.06   | \$  | 20.29             | \$  | 58.00              | \$ | -             | \$<br>-     | \$  | -                   | \$   | (2.04)     | \$ | 0.21                   | \$<br>37.24   | \$    | 18.46             | \$  | 56.17              |
| 2026 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>39.06   | \$  | 20.29             | \$  | 58.00              | \$ | -             | \$<br>-     | \$  | -                   | \$   | (2.04)     | \$ | 0.21                   | \$<br>37.24   | \$    | 18.46             | \$  | 56.17              |
| 2027 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>39.06   | \$  | 20.29             | \$  | 58.00              | \$ | -             | \$<br>-     | \$  | -                   | \$   | (2.04)     | \$ | 0.21                   | \$<br>37.24   | \$    | 18.46             | \$  | 56.17              |
| 2028 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>39.06   | \$  | 20.29             | \$  | 58.00              | \$ | -             | \$<br>-     | \$  | -                   | \$   | (2.04)     | \$ | 0.21                   | \$<br>37.24   | \$    | 18.46             | \$  | 56.17              |
| 2029 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>39.06   | \$  | 20.29             | \$  | 58.00              | \$ | -             | \$<br>-     | \$  | -                   | \$   | (2.04)     | \$ | 0.21                   | \$<br>37.24   | \$    | 18.46             | \$  | 56.17              |

Note: All values in millions of year 2003 dollars.

# Exhibit J.6d Projections of Stage 2 DBPR PWS Costs

(All Ground Water CWSs)

Preferred Alternative, 20% Safety Margin

|      | Treatm         | ent Capita                       | al Co | sts    | Treatr             | nen | t O&M                           | Cos  | ts     |    |               |    | ı    | lon- | -Treatment Co       | sts | 3          |    |            | All St        | age | 2 DBPR                     | Cos  | its                 |
|------|----------------|----------------------------------|-------|--------|--------------------|-----|---------------------------------|------|--------|----|---------------|----|------|------|---------------------|-----|------------|----|------------|---------------|-----|----------------------------|------|---------------------|
|      |                | 90 P<br>Confide<br>Lower<br>(5th | nce l |        | _                  | L   | 90 Pe<br>onfiden<br>ower<br>5th | ce E |        |    |               |    |      |      |                     |     |            | •  | ignificant |               |     | 90 Pe<br>Confiden<br>Lower | ce E |                     |
| Year | /lean<br>/alue | %tile)                           |       | %tile) | <br>Vlean<br>/alue | •   | tile)                           | •    | 6tile) | lm | nplementation | ı  | IDSE |      | Monitoring<br>Plans | N   | Monitoring |    | xcursion   | Mean<br>Value |     | th %tile)                  |      | opper<br>5th %tile) |
| 2005 | \$<br>-        | \$ -                             | \$    | -      | \$<br>-            | \$  | -                               | \$   | -      | \$ | 0.07          | \$ | -    | \$   | -                   | \$  | -          | \$ | -          | \$<br>0.07    | \$  | 0.07                       | \$   | 0.07                |
| 2006 | \$<br>-        | \$ -                             | \$    | -      | \$<br>-            | \$  | -                               | \$   | -      | \$ | 3.42          | \$ | 0.09 | \$   | -                   | \$  | -          | \$ | -          | \$<br>3.51    | \$  | 3.51                       | \$   | 3.51                |
| 2007 | \$<br>-        | \$ -                             | \$    | -      | \$<br>-            | \$  | -                               | \$   | -      | \$ | -             | \$ | 1.09 | \$   | 0.02                | \$  | -          | \$ | -          | \$<br>1.11    | \$  | 1.11                       | \$   | 1.11                |
| 2008 | \$<br>8.11     | \$ 7.22                          | \$    | 9.00   | \$<br>-            | \$  | -                               | \$   | -      | \$ | 0.05          | \$ | 6.66 | \$   | 0.22                | \$  | -          | \$ | -          | \$<br>15.03   | \$  | 14.14                      | \$   | 15.92               |
| 2009 | \$<br>32.23    | \$ 27.71                         | \$    | 36.76  | \$<br>0.78         | \$  | 0.73                            | \$   | 0.83   | \$ | 1.73          | \$ | -    | \$   | 2.58                | \$  | -          | \$ | -          | \$<br>37.32   | \$  | 32.75                      | \$   | 41.91               |
| 2010 | \$<br>54.86    | \$ 46.87                         | \$    | 62.87  | \$<br>3.35         | \$  | 3.11                            | \$   | 3.58   | \$ | 1.71          | \$ | -    | \$   | -                   | \$  | -          | \$ | -          | \$<br>59.91   | \$  | 51.69                      | \$   | 68.16               |
| 2011 | \$<br>54.86    | \$ 46.87                         | \$    | 62.87  | \$<br>7.57         | \$  | 7.03                            | \$   | 8.11   | \$ | -             | \$ | -    | \$   | -                   | \$  | 0.08       | \$ | -          | \$<br>62.50   | \$  | 53.98                      | \$   | 71.06               |
| 2012 | \$<br>54.86    | \$ 46.87                         | \$    | 62.87  | \$<br>11.79        | \$  | 10.95                           | \$   | 12.63  | \$ | -             | \$ | -    | \$   | -                   | \$  | 2.95       | \$ | -          | \$<br>69.60   | \$  | 60.77                      | \$   | 78.46               |
| 2013 | \$<br>46.75    | \$ 39.65                         | \$    | 53.87  | \$<br>16.01        | \$  | 14.87                           | \$   | 17.16  | \$ | -             | \$ | -    | \$   | -                   | \$  | 5.63       | \$ | -          | \$<br>68.39   | \$  | 60.15                      | \$   | 76.66               |
| 2014 | \$<br>22.63    | \$ 19.16                         | \$    | 26.11  | \$<br>19.46        | \$  | 18.06                           | \$   | 20.85  | \$ | -             | \$ | -    | \$   | -                   | \$  | 5.63       | \$ | -          | \$<br>47.71   | \$  | 42.85                      | \$   | 52.59               |
| 2015 | \$<br>-        | \$ -                             | \$    | -      | \$<br>21.11        | \$  | 19.60                           | \$   | 22.63  | \$ | -             | \$ | -    | \$   | -                   | \$  | 5.63       | \$ | -          | \$<br>26.74   | \$  | 25.23                      | \$   | 28.26               |
| 2016 | \$<br>-        | \$ -                             | \$    | -      | \$<br>21.11        | \$  | 19.60                           | \$   | 22.63  | \$ | -             | \$ | -    | \$   | -                   | \$  | 5.63       | \$ | -          | \$<br>26.74   | \$  | 25.23                      | \$   | 28.26               |
| 2017 | \$<br>-        | \$ -                             | \$    | -      | \$<br>21.11        | \$  | 19.60                           | \$   | 22.63  | \$ | -             | \$ | -    | \$   | -                   | \$  | 5.63       | \$ | -          | \$<br>26.74   | \$  | 25.23                      | \$   | 28.26               |
| 2018 | \$<br>-        | \$ -                             | \$    | -      | \$<br>21.11        | \$  | 19.60                           | \$   | 22.63  | \$ | -             | \$ | -    | \$   | -                   | \$  | 5.63       | \$ | -          | \$<br>26.74   | \$  | 25.23                      | \$   | 28.26               |
| 2019 | \$<br>-        | \$ -                             | \$    | -      | \$<br>21.11        | \$  | 19.60                           | \$   | 22.63  | \$ | -             | \$ | -    | \$   | -                   | \$  | 5.63       | \$ | -          | \$<br>26.74   | \$  | 25.23                      | \$   | 28.26               |
| 2020 | \$<br>-        | \$ -                             | \$    | -      | \$<br>21.11        | \$  | 19.60                           | \$   | 22.63  | \$ | -             | \$ | -    | \$   | -                   | \$  | 5.63       | \$ | -          | \$<br>26.74   | \$  | 25.23                      | \$   | 28.26               |
| 2021 | \$<br>-        | \$ -                             | \$    | -      | \$<br>21.11        | \$  | 19.60                           | \$   | 22.63  | \$ | -             | \$ | -    | \$   | -                   | \$  | 5.63       | \$ | -          | \$<br>26.74   | \$  | 25.23                      | \$   | 28.26               |
| 2022 | \$<br>-        | \$ -                             | \$    | -      | \$<br>21.11        | \$  | 19.60                           | \$   | 22.63  | \$ | -             | \$ | -    | \$   | -                   | \$  | 5.63       | \$ | -          | \$<br>26.74   | \$  | 25.23                      | \$   | 28.26               |
| 2023 | \$<br>-        | \$ -                             | \$    | -      | \$<br>21.11        | \$  | 19.60                           | \$   | 22.63  | \$ | -             | \$ | -    | \$   | -                   | \$  | 5.63       | \$ | -          | \$<br>26.74   | \$  | 25.23                      | \$   | 28.26               |
| 2024 | \$<br>-        | \$ -                             | \$    | -      | \$<br>21.11        | \$  | 19.60                           | \$   | 22.63  | \$ | -             | \$ | -    | \$   | -                   | \$  | 5.63       | \$ | -          | \$<br>26.74   | \$  | 25.23                      | \$   | 28.26               |
| 2025 | \$<br>-        | \$ -                             | \$    | -      | \$<br>21.11        | \$  | 19.60                           | \$   | 22.63  | \$ | -             | \$ | -    | \$   | -                   | \$  | 5.63       | \$ | -          | \$<br>26.74   | \$  | 25.23                      | \$   | 28.26               |
| 2026 | \$<br>-        | \$ -                             | \$    | -      | \$<br>21.11        | \$  | 19.60                           | \$   | 22.63  | \$ | -             | \$ | -    | \$   | -                   | \$  | 5.63       | \$ | -          | \$<br>26.74   | \$  | 25.23                      | \$   | 28.26               |
| 2027 | \$<br>-        | \$ -                             | \$    | -      | \$<br>21.11        | \$  | 19.60                           | \$   | 22.63  | \$ | -             | \$ | -    | \$   | -                   | \$  | 5.63       | \$ | -          | \$<br>26.74   | \$  | 25.23                      | \$   | 28.26               |
| 2028 | \$<br>-        | \$ -                             | \$    | -      | \$<br>21.11        | \$  | 19.60                           | \$   | 22.63  | \$ | -             | \$ | -    | \$   | -                   | \$  | 5.63       | \$ | -          | \$<br>26.74   | \$  | 25.23                      | \$   | 28.26               |
| 2029 | \$<br>-        | \$ -                             | \$    | -      | \$<br>21.11        | \$  | 19.60                           | \$   | 22.63  | \$ | -             | \$ | -    | \$   | -                   | \$  | 5.63       | \$ | -          | \$<br>26.74   | \$  | 25.23                      | \$   | 28.26               |

Note: All values in millions of year 2003 dollars.

# Exhibit J.6e Projections of Stage 2 DBPR PWS Costs

(All Ground Water NTNCWSs)

Preferred Alternative, 20% Safety Margin

|      | Treatm         | ent C | Capital         | Costs                  |    | Treatn          | nent O&         | И Со | sts                      |    |              |         | lon- | Treatment Co        | sts |          |                          |     | All St        | age 2 | DBPR             | Costs | ;                |
|------|----------------|-------|-----------------|------------------------|----|-----------------|-----------------|------|--------------------------|----|--------------|---------|------|---------------------|-----|----------|--------------------------|-----|---------------|-------|------------------|-------|------------------|
|      |                | Co    | 90 Pe<br>nfiden | ce Bou                 | _  |                 | 90 I<br>Confide | _    | Bound                    |    |              |         |      |                     |     |          |                          |     |               | С     | 90 Pe<br>onfiden |       |                  |
| Year | /lean<br>/alue | _     | ower<br>%tile)  | Uppe<br>(95tl<br>%tile | h  | <br>ean<br>alue | (5th<br>%tile)  | (    | Jpper<br>(95th<br>%tile) | lm | plementation | IDSE    | ı    | Monitoring<br>Plans | Моі | nitoring | Significant<br>Excursion | 1 - | Mean<br>/alue |       | ower<br>%tile)   |       | pper<br>1 %tile) |
| 2005 | \$<br>-        | \$    | -               | \$ -                   |    | \$<br>-         | \$ -            | \$   | -                        | \$ | 0.00         | \$ -    | \$   | -                   | \$  | -        | \$ -                     | \$  | 0.00          | \$    | 0.00             | \$    | 0.00             |
| 2006 | \$<br>-        | \$    | -               | \$ -                   |    | \$<br>-         | \$ -            | \$   | -                        | \$ | 0.56         | \$ -    | \$   | -                   | \$  | -        | \$ -                     | \$  | 0.56          | \$    | 0.56             | \$    | 0.56             |
| 2007 | \$<br>-        | \$    | -               | \$ -                   |    | \$<br>-         | \$ -            | \$   | -                        | \$ | -            | \$ 0.00 | \$   | 0.00                | \$  | -        | \$ -                     | \$  | 0.00          | \$    | 0.00             | \$    | 0.00             |
| 2008 | \$<br>0.01     | \$    | 0.01            | \$ 0.0                 | 01 | \$<br>-         | \$ -            | \$   | -                        | \$ | 0.00         | \$ 0.00 | \$   | 0.00                | \$  | -        | \$ -                     | \$  | 0.01          | \$    | 0.01             | \$    | 0.01             |
| 2009 | \$<br>1.30     | \$    | 1.09            | \$ 1.                  | 50 | \$<br>0.00      | \$ 0.00         | \$   | 0.00                     | \$ | 0.28         | \$ -    | \$   | 0.46                | \$  | -        | \$ -                     | \$  | 2.04          | \$    | 1.84             | \$    | 2.24             |
| 2010 | \$<br>2.58     | \$    | 2.18            | \$ 2.                  | 99 | \$<br>0.12      | \$ 0.11         | \$   | 0.13                     | \$ | 0.28         | \$ -    | \$   | -                   | \$  | -        | \$ -                     | \$  | 2.99          | \$    | 2.57             | \$    | 3.40             |
| 2011 | \$<br>2.58     | \$    | 2.18            | \$ 2.                  | 99 | \$<br>0.37      | \$ 0.34         | \$   | 0.40                     | \$ | -            | \$ -    | \$   | -                   | \$  | 0.00     | \$ -                     | \$  | 2.96          | \$    | 2.52             | \$    | 3.39             |
| 2012 | \$<br>2.58     | \$    | 2.18            | \$ 2.                  | 99 | \$<br>0.61      | \$ 0.57         | \$   | 0.66                     | \$ | -            | \$ -    | \$   | -                   | \$  | 0.37     | \$ -                     | \$  | 3.56          | \$    | 3.11             | \$    | 4.01             |
| 2013 | \$<br>2.58     | \$    | 2.17            | \$ 2.9                 | 98 | \$<br>0.86      | \$ 0.79         | \$   | 0.93                     | \$ | -            | \$ -    | \$   | -                   | \$  | 0.73     | \$ -                     | \$  | 4.16          | \$    | 3.69             | \$    | 4.63             |
| 2014 | \$<br>1.29     | \$    | 1.08            | \$ 1.4                 | 49 | \$<br>1.10      | \$ 1.02         | \$   | 1.19                     | \$ | -            | \$ -    | \$   | -                   | \$  | 0.73     | \$ -                     | \$  | 3.12          | \$    | 2.83             | \$    | 3.40             |
| 2015 | \$<br>-        | \$    | -               | \$ -                   |    | \$<br>1.23      | \$ 1.13         | \$   | 1.32                     | \$ | -            | \$ -    | \$   | -                   | \$  | 0.73     | \$ -                     | \$  | 1.95          | \$    | 1.86             | \$    | 2.05             |
| 2016 | \$<br>-        | \$    | -               | \$ -                   |    | \$<br>1.23      | \$ 1.13         | \$   | 1.32                     | \$ | -            | \$ -    | \$   | -                   | \$  | 0.73     | \$ -                     | \$  | 1.95          | \$    | 1.86             | \$    | 2.05             |
| 2017 | \$<br>-        | \$    | -               | \$ -                   |    | \$<br>1.23      | \$ 1.13         | \$   | 1.32                     | \$ | -            | \$ -    | \$   | -                   | \$  | 0.73     | \$ -                     | \$  | 1.95          | \$    | 1.86             | \$    | 2.05             |
| 2018 | \$<br>-        | \$    | -               | \$ -                   |    | \$<br>1.23      | \$ 1.13         | \$   | 1.32                     | \$ | -            | \$ -    | \$   | -                   | \$  | 0.73     | \$ -                     | \$  | 1.95          | \$    | 1.86             | \$    | 2.05             |
| 2019 | \$<br>-        | \$    | -               | \$ -                   |    | \$<br>1.23      | \$ 1.13         | \$   | 1.32                     | \$ | -            | \$ -    | \$   | -                   | \$  | 0.73     | \$ -                     | \$  | 1.95          | \$    | 1.86             | \$    | 2.05             |
| 2020 | \$<br>-        | \$    | -               | \$ -                   |    | \$<br>1.23      | \$ 1.13         | \$   | 1.32                     | \$ | -            | \$ -    | \$   | -                   | \$  | 0.73     | \$ -                     | \$  | 1.95          | \$    | 1.86             | \$    | 2.05             |
| 2021 | \$<br>-        | \$    | -               | \$ -                   |    | \$<br>1.23      | \$ 1.13         | \$   | 1.32                     | \$ | -            | \$ -    | \$   | -                   | \$  | 0.73     | \$ -                     | \$  | 1.95          | \$    | 1.86             | \$    | 2.05             |
| 2022 | \$<br>-        | \$    | -               | \$ -                   |    | \$<br>1.23      | \$ 1.13         | \$   | 1.32                     | \$ | -            | \$ -    | \$   | -                   | \$  | 0.73     | \$ -                     | \$  | 1.95          | \$    | 1.86             | \$    | 2.05             |
| 2023 | \$<br>-        | \$    | -               | \$ -                   |    | \$<br>1.23      | \$ 1.13         | \$   | 1.32                     | \$ | -            | \$ -    | \$   | -                   | \$  | 0.73     | \$ -                     | \$  | 1.95          | \$    | 1.86             | \$    | 2.05             |
| 2024 | \$<br>-        | \$    | -               | \$ -                   |    | \$<br>1.23      | \$ 1.13         | \$   | 1.32                     | \$ | -            | \$ -    | \$   | -                   | \$  | 0.73     | \$ -                     | \$  | 1.95          | \$    | 1.86             | \$    | 2.05             |
| 2025 | \$<br>-        | \$    | -               | \$ -                   |    | \$<br>1.23      | \$ 1.13         | \$   | 1.32                     | \$ | -            | \$ -    | \$   | -                   | \$  | 0.73     | \$ -                     | \$  | 1.95          | \$    | 1.86             | \$    | 2.05             |
| 2026 | \$<br>-        | \$    | -               | \$ -                   |    | \$<br>1.23      | \$ 1.13         | \$   | 1.32                     | \$ | -            | \$ -    | \$   | -                   | \$  | 0.73     | \$ -                     | \$  | 1.95          | \$    | 1.86             | \$    | 2.05             |
| 2027 | \$<br>-        | \$    | -               | \$ -                   |    | \$<br>1.23      | \$ 1.13         | \$   | 1.32                     | \$ | -            | \$ -    | \$   | -                   | \$  | 0.73     | \$ -                     | \$  | 1.95          | \$    | 1.86             | \$    | 2.05             |
| 2028 | \$<br>-        | \$    | -               | \$ -                   |    | \$<br>1.23      | \$ 1.13         | \$   | 1.32                     | \$ | -            | \$ -    | \$   | -                   | \$  | 0.73     | \$ -                     | \$  | 1.95          | \$    | 1.86             | \$    | 2.05             |
| 2029 | \$<br>-        | \$    | -               | \$ -                   |    | \$<br>1.23      | \$ 1.13         | \$   | 1.32                     | \$ | -            | \$ -    | \$   | _                   | \$  | 0.73     | \$ -                     | \$  | 1.95          | \$    | 1.86             | \$    | 2.05             |

Note: All values in millions of year 2003 dollars.

# Exhibit J.6f Projections of Stage 2 DBPR PWS Costs

(All Ground Water Systems)

Preferred Alternative, 20% Safety Margin

|      | Treat         | ment Capita          | l Costs                  | Treat         | ment O&M             | Costs                    |                | N          | lon-Tr | eatment Co         | sts |         |                        | All St        | age | 2 DBPR            | Cost | s                  |
|------|---------------|----------------------|--------------------------|---------------|----------------------|--------------------------|----------------|------------|--------|--------------------|-----|---------|------------------------|---------------|-----|-------------------|------|--------------------|
|      |               |                      | ercent<br>ice Bound      |               |                      | ercent<br>ce Bound       |                |            |        |                    |     | 1       |                        |               | (   | 90 Pe<br>Confiden |      |                    |
| Year | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th<br>%tile) | Mean<br>Value | Lower<br>(5th %tile) | Upper<br>(95th<br>%tile) | Implementation | IDSE       |        | onitoring<br>Plans | Mon | itoring | Siginificant Excursion | Mean<br>Value |     | Lower<br>h %tile) |      | Upper<br>th %tile) |
| 2005 | \$ -          | \$ -                 | \$ -                     | \$ -          | \$ -                 | \$ -                     | \$ 0.07        | \$<br>-    | \$     | -                  | \$  | -       | \$ -                   | \$<br>0.07    | \$  | 0.07              | \$   | 0.07               |
| 2006 | \$ -          | \$ -                 | \$ -                     | \$ -          | \$ -                 | \$ -                     | \$ 3.98        | \$<br>0.09 | \$     | -                  | \$  | -       | \$ -                   | \$<br>4.07    | \$  | 4.07              | \$   | 4.07               |
| 2007 | \$ -          | \$ -                 | \$ -                     | \$ -          | \$ -                 | \$ -                     | \$ -           | \$<br>1.09 | \$     | 0.02               | \$  | -       | \$ -                   | \$<br>1.11    | \$  | 1.11              | \$   | 1.11               |
| 2008 | \$ 8.12       | \$ 7.23              | \$ 9.01                  | \$ -          | \$ -                 | \$ -                     | \$ 0.05        | \$<br>6.66 | \$     | 0.22               | \$  | -       | \$ -                   | \$<br>15.04   | \$  | 14.15             | \$   | 15.93              |
| 2009 | \$ 33.53      | \$ 28.81             | \$ 38.26                 | \$ 0.78       | \$ 0.73              | \$ 0.83                  | \$ 2.01        | \$<br>-    | \$     | 3.04               | \$  | -       | \$ -                   | \$<br>39.36   | \$  | 34.59             | \$   | 44.15              |
| 2010 | \$ 57.44      | \$ 49.05             | \$ 65.86                 | \$ 3.47       | \$ 3.22              | \$ 3.71                  | \$ 1.99        | \$<br>-    | \$     | -                  | \$  | -       | \$ -                   | \$<br>62.90   | \$  | 54.26             | \$   | 71.56              |
| 2011 | \$ 57.44      | \$ 49.05             | \$ 65.86                 | \$ 7.94       | \$ 7.37              | \$ 8.51                  | \$ -           | \$<br>-    | \$     |                    | \$  | 0.08    | \$ -                   | \$<br>65.46   | \$  | 56.50             | \$   | 74.45              |
| 2012 | \$ 57.44      | \$ 49.05             | \$ 65.86                 | \$ 12.40      | \$ 11.52             | \$ 13.30                 | \$ -           | \$<br>-    | \$     | -                  | \$  | 3.32    | \$ -                   | \$<br>73.17   | \$  | 63.88             | \$   | 82.47              |
| 2013 | \$ 49.32      | \$ 41.82             | \$ 56.85                 | \$ 16.87      | \$ 15.66             | \$ 18.09                 | \$ -           | \$<br>-    | \$     | -                  | \$  | 6.36    | \$ -                   | \$<br>72.55   | \$  | 63.84             | \$   | 81.29              |
| 2014 | \$ 23.91      | \$ 20.24             | \$ 27.60                 | \$ 20.56      | \$ 19.08             | \$ 22.04                 | \$ -           | \$<br>-    | \$     | -                  | \$  | 6.36    | \$ -                   | \$<br>50.83   | \$  | 45.68             | \$   | 56.00              |
| 2015 | \$ -          | \$ -                 | \$ -                     | \$ 22.34      | \$ 20.73             | \$ 23.95                 | \$ -           | \$<br>-    | \$     | -                  | \$  | 6.36    | \$ -                   | \$<br>28.70   | \$  | 27.09             | \$   | 30.31              |
| 2016 | \$ -          | \$ -                 | \$ -                     | \$ 22.34      | \$ 20.73             | \$ 23.95                 | \$ -           | \$<br>-    | \$     | -                  | \$  | 6.36    | \$ -                   | \$<br>28.70   | \$  | 27.09             | \$   | 30.31              |
| 2017 | \$ -          | \$ -                 | \$ -                     | \$ 22.34      | \$ 20.73             | \$ 23.95                 | \$ -           | \$<br>-    | \$     | -                  | \$  | 6.36    | \$ -                   | \$<br>28.70   | \$  | 27.09             | \$   | 30.31              |
| 2018 | \$ -          | \$ -                 | \$ -                     | \$ 22.34      | \$ 20.73             | \$ 23.95                 | \$ -           | \$<br>-    | \$     | -                  | \$  | 6.36    | \$ -                   | \$<br>28.70   | \$  | 27.09             | \$   | 30.31              |
| 2019 | \$ -          | \$ -                 | \$ -                     | \$ 22.34      | \$ 20.73             | \$ 23.95                 | \$ -           | \$<br>-    | \$     | -                  | \$  | 6.36    | \$ -                   | \$<br>28.70   | \$  | 27.09             | \$   | 30.31              |
| 2020 | \$ -          | \$ -                 | \$ -                     | \$ 22.34      | \$ 20.73             | \$ 23.95                 | \$ -           | \$<br>-    | \$     | -                  | \$  | 6.36    | \$ -                   | \$<br>28.70   | \$  | 27.09             | \$   | 30.31              |
| 2021 | \$ -          | \$ -                 | \$ -                     | \$ 22.34      | \$ 20.73             | \$ 23.95                 | \$ -           | \$<br>-    | \$     | -                  | \$  | 6.36    | \$ -                   | \$<br>28.70   | \$  | 27.09             | \$   | 30.31              |
| 2022 | \$ -          | \$ -                 | \$ -                     | \$ 22.34      | \$ 20.73             | \$ 23.95                 | \$ -           | \$<br>-    | \$     | -                  | \$  | 6.36    | \$ -                   | \$<br>28.70   | \$  | 27.09             | \$   | 30.31              |
| 2023 | \$ -          | \$ -                 | \$ -                     | \$ 22.34      | \$ 20.73             | \$ 23.95                 | \$ -           | \$<br>-    | \$     | -                  | \$  | 6.36    | \$ -                   | \$<br>28.70   | \$  | 27.09             | \$   | 30.31              |
| 2024 | \$ -          | \$ -                 | \$ -                     | \$ 22.34      | \$ 20.73             | \$ 23.95                 | \$ -           | \$<br>-    | \$     | -                  | \$  | 6.36    | \$ -                   | \$<br>28.70   | \$  | 27.09             | \$   | 30.31              |
| 2025 | \$ -          | \$ -                 | \$ -                     | \$ 22.34      | \$ 20.73             | \$ 23.95                 | \$ -           | \$<br>-    | \$     | -                  | \$  | 6.36    | \$ -                   | \$<br>28.70   | \$  | 27.09             | \$   | 30.31              |
| 2026 | \$ -          | \$ -                 | \$ -                     | \$ 22.34      | \$ 20.73             | \$ 23.95                 | \$ -           | \$<br>-    | \$     | -                  | \$  | 6.36    | \$ -                   | \$<br>28.70   | \$  | 27.09             | \$   | 30.31              |
| 2027 | \$ -          | \$ -                 | \$ -                     | \$ 22.34      | \$ 20.73             | \$ 23.95                 | \$ -           | \$<br>-    | \$     | -                  | \$  | 6.36    | \$ -                   | \$<br>28.70   | \$  | 27.09             | \$   | 30.31              |
| 2028 | \$ -          | \$ -                 | \$ -                     | \$ 22.34      | \$ 20.73             | \$ 23.95                 | \$ -           | \$<br>-    | \$     | -                  | \$  | 6.36    | \$ -                   | \$<br>28.70   | \$  | 27.09             | \$   | 30.31              |
| 2029 | \$ -          | \$ -                 | \$ -                     | \$ 22.34      | \$ 20.73             | \$ 23.95                 | \$ -           | \$<br>-    | \$     | -                  | \$  | 6.36    | \$ -                   | \$<br>28.70   | \$  | 27.09             | \$   | 30.31              |

Note: All values in millions of year 2003 dollars.

### Exhibit J.6g Projections of Stage 2 DBPR PWS Costs

(All Systems)

### Preferred Alternative, 20% Safety Margin

|      | Treat         | me | nt Capital          | Cos | sts                 | Treat         | mer | nt O&M (          | Cost | s                        |                |    | N     | on-Treatment C      | osi | ts         |                           | All Sta       | ge 2 | DBPR C            | ost | :s                  |
|------|---------------|----|---------------------|-----|---------------------|---------------|-----|-------------------|------|--------------------------|----------------|----|-------|---------------------|-----|------------|---------------------------|---------------|------|-------------------|-----|---------------------|
|      |               |    | 90 Pe<br>Confiden   |     |                     |               | C   | 90 Pe             |      |                          |                |    |       |                     |     |            |                           |               |      | 90 Pe<br>Confider |     |                     |
| Year | Mean<br>Value | (5 | Lower<br>5th %tile) |     | Upper<br>5th %tile) | Mean<br>Value |     | _ower<br>h %tile) | (    | Jpper<br>(95th<br>%tile) | Implementation | ı  | DSE   | Monitoring<br>Plans |     | Monitoring | Siginificant<br>Excursion | Mean<br>Value |      | Lower<br>h %tile) |     | Upper<br>5th %tile) |
| 2005 | \$<br>-       | \$ | -                   | \$  | -                   | \$<br>-       | \$  | -                 | \$   | -                        | \$<br>0.76     | \$ | -     | \$ -                | \$  | \$ -       | \$ -                      | \$<br>0.76    | \$   | 0.76              | \$  | 0.76                |
| 2006 | \$<br>-       | \$ | -                   | \$  | -                   | \$<br>-       | \$  | -                 | \$   | -                        | \$<br>5.40     | \$ | 8.56  | \$ -                | \$  | \$ -       | \$ -                      | \$<br>13.96   | \$   | 13.96             | \$  | 13.96               |
| 2007 | \$<br>-       | \$ | -                   | \$  | -                   | \$<br>-       | \$  | -                 | \$   | -                        | \$<br>-        | \$ | 23.58 | \$ 0.24             | \$  | \$ -       | \$ -                      | \$<br>23.81   | \$   | 23.81             | \$  | 23.81               |
| 2008 | \$<br>68.25   | \$ | 38.13               | \$  | 100.16              | \$<br>-       | \$  | -                 | \$   | -                        | \$<br>0.65     | \$ | 25.30 | \$ 0.83             | \$  | \$ -       | \$ -                      | \$<br>95.03   | \$   | 64.91             | \$  | 126.94              |
| 2009 | \$<br>123.09  | \$ | 74.89               | \$  | 173.98              | \$<br>4.37    | \$  | 2.59              | \$   | 6.16                     | \$<br>2.81     | \$ | -     | \$ 3.95             | \$  | \$ -       | \$ -                      | \$<br>134.21  | \$   | 84.24             | \$  | 186.90              |
| 2010 | \$<br>169.59  | \$ | 106.78              | \$  | 235.82              | \$<br>12.95   | \$  | 8.15              | \$   | 17.79                    | \$<br>2.70     | \$ | -     | \$ -                | \$  | \$ -       | \$ -                      | \$<br>185.24  | \$   | 117.63            | \$  | 256.31              |
| 2011 | \$<br>169.59  | \$ | 106.78              | \$  | 235.82              | \$<br>25.23   | \$  | 16.35             | \$   | 34.18                    | \$<br>-        | \$ | -     | \$ -                | \$  |            | \$ -                      | \$<br>195.33  | \$   | 123.64            | \$  | 270.51              |
| 2012 | \$<br>169.59  | \$ | 106.78              | \$  | 235.82              | \$<br>37.51   | \$  | 24.56             | \$   | 50.57                    | \$<br>-        | \$ | -     | \$ -                | \$  | \$ 2.57    | \$ 0.06                   | \$<br>209.73  | \$   | 133.97            | \$  | 289.03              |
| 2013 | \$<br>101.34  | \$ | 68.66               | \$  | 135.66              | \$<br>49.79   | \$  | 32.76             | \$   | 66.96                    | \$<br>-        | \$ | -     | \$ -                | \$  | \$ 4.32    | \$ 0.15                   | \$<br>155.60  | \$   | 105.88            | \$  | 207.09              |
| 2014 | \$<br>46.50   | \$ | 31.90               | \$  | 61.84               | \$<br>57.70   | \$  | 38.37             | \$   | 77.19                    | \$<br>-        | \$ | -     | \$ -                | \$  | \$ 4.32    | \$ 0.21                   | \$<br>108.74  | \$   | 74.80             | \$  | 143.57              |
| 2015 | \$<br>-       | \$ | -                   | \$  | -                   | \$<br>61.40   | \$  | 41.02             | \$   | 81.95                    | \$<br>-        | \$ | -     | \$ -                | \$  | \$ 4.32    | \$ 0.21                   | \$<br>65.93   | \$   | 45.55             | \$  | 86.49               |
| 2016 | \$<br>-       | \$ | -                   | \$  | -                   | \$<br>61.40   | \$  | 41.02             | \$   | 81.95                    | \$<br>-        | \$ | -     | \$ -                | \$  | \$ 4.32    | \$ 0.21                   | \$<br>65.93   | \$   | 45.55             | \$  | 86.49               |
| 2017 | \$<br>-       | \$ | -                   | \$  | -                   | \$<br>61.40   | \$  | 41.02             | \$   | 81.95                    | \$<br>-        | \$ | -     | \$ -                | \$  | \$ 4.32    | \$ 0.21                   | \$<br>65.93   | \$   | 45.55             | \$  | 86.49               |
| 2018 | \$<br>-       | \$ | -                   | \$  | -                   | \$<br>61.40   | \$  | 41.02             | \$   | 81.95                    | \$<br>-        | \$ | -     | \$ -                | \$  | \$ 4.32    | \$ 0.21                   | \$<br>65.93   | \$   | 45.55             | \$  | 86.49               |
| 2019 | \$<br>-       | \$ | -                   | \$  | -                   | \$<br>61.40   | \$  | 41.02             | \$   | 81.95                    | \$<br>-        | \$ | -     | \$ -                | \$  | \$ 4.32    | \$ 0.21                   | \$<br>65.93   | \$   | 45.55             | \$  | 86.49               |
| 2020 | \$<br>-       | \$ | -                   | \$  | -                   | \$<br>61.40   | \$  | 41.02             | \$   | 81.95                    | \$<br>-        | \$ | -     | \$ -                | \$  | \$ 4.32    | \$ 0.21                   | \$<br>65.93   | \$   | 45.55             | \$  | 86.49               |
| 2021 | \$<br>-       | \$ | -                   | \$  | -                   | \$<br>61.40   | \$  | 41.02             | \$   | 81.95                    | \$<br>-        | \$ | -     | \$ -                | \$  | \$ 4.32    | \$ 0.21                   | \$<br>65.93   | \$   | 45.55             | \$  | 86.49               |
| 2022 | \$<br>-       | \$ | -                   | \$  | -                   | \$<br>61.40   | \$  | 41.02             | \$   | 81.95                    | \$<br>-        | \$ | -     | \$ -                | \$  | \$ 4.32    | \$ 0.21                   | \$<br>65.93   | \$   | 45.55             | \$  | 86.49               |
| 2023 | \$<br>-       | \$ | -                   | \$  | -                   | \$<br>61.40   | \$  | 41.02             | \$   | 81.95                    | \$<br>-        | \$ | -     | \$ -                | \$  | \$ 4.32    | \$ 0.21                   | \$<br>65.93   | \$   | 45.55             | \$  | 86.49               |
| 2024 | \$<br>-       | \$ | -                   | \$  | -                   | \$<br>61.40   | \$  | 41.02             | \$   | 81.95                    | \$<br>-        | \$ | -     | \$ -                | \$  | \$ 4.32    | \$ 0.21                   | \$<br>65.93   | \$   | 45.55             | \$  | 86.49               |
| 2025 | \$<br>-       | \$ | -                   | \$  | -                   | \$<br>61.40   | \$  | 41.02             | \$   | 81.95                    | \$<br>-        | \$ | -     | \$ -                | \$  | \$ 4.32    | \$ 0.21                   | \$<br>65.93   | \$   | 45.55             | \$  | 86.49               |
| 2026 | \$<br>-       | \$ | -                   | \$  | -                   | \$<br>61.40   | \$  | 41.02             | \$   | 81.95                    | \$<br>-        | \$ | -     | \$ -                | \$  | \$ 4.32    | \$ 0.21                   | \$<br>65.93   | \$   | 45.55             | \$  | 86.49               |
| 2027 | \$<br>-       | \$ | -                   | \$  | -                   | \$<br>61.40   | \$  | 41.02             | \$   | 81.95                    | \$<br>-        | \$ | -     | \$ -                | \$  | \$ 4.32    | \$ 0.21                   | \$<br>65.93   | \$   | 45.55             | \$  | 86.49               |
| 2028 | \$<br>-       | \$ | -                   | \$  | -                   | \$<br>61.40   | \$  | 41.02             | \$   | 81.95                    | \$<br>-        | \$ | -     | \$ -                | 9   | \$ 4.32    | \$ 0.21                   | \$<br>65.93   | \$   | 45.55             | \$  | 86.49               |
| 2029 | \$<br>-       | \$ | -                   | \$  | -                   | \$<br>61.40   | \$  | 41.02             | \$   | 81.95                    | \$<br>-        | \$ | -     | \$ -                | 9   | \$ 4.32    | \$ 0.21                   | \$<br>65.93   | \$   | 45.55             | \$  | 86.49               |

Note: All values in millions of year 2003 dollars.

Exhibit J.6h Projections of Stage 2 DBPR Primacy Agency Costs

Preferred Alternative, 20% Safety Margin

| Year | Implementation Costs | IDSE Costs |       | onitoring Plan<br>Costs | Compliance<br>Monitoring<br>Costs | Significant<br>Excursion<br>Report Costs |
|------|----------------------|------------|-------|-------------------------|-----------------------------------|------------------------------------------|
| 2005 | \$ 3.88              | \$ -       | \$    | -                       | \$ -                              | \$ -                                     |
| 2006 | \$ 3.88              | \$ 0.      | 04 \$ | -                       | \$ -                              | \$ -                                     |
| 2007 | \$ -                 | \$ 0.      | 13 \$ | 0.02                    | \$ -                              | \$ -                                     |
| 2008 | \$ -                 | \$ 2.      | 06 \$ | 0.06                    | \$ -                              | \$ -                                     |
| 2009 | \$ -                 | \$ -       | \$    | 0.85                    | \$ -                              | \$ -                                     |
| 2010 | \$ -                 | \$ -       | \$    | -                       | \$ -                              | \$ -                                     |
| 2011 | \$ -                 | \$ -       | Ψ     | -                       | \$ 1.59                           | \$ 0.11                                  |
| 2012 | \$ -                 | \$ -       | \$    | -                       | \$ 1.59                           | \$ 0.11                                  |
| 2013 | -                    | \$ -       | Ψ     | -                       | \$ 1.59                           | \$ 0.11                                  |
| 2014 | -                    | \$ -       | \$    | -                       | \$ 1.59                           | \$ 0.11                                  |
| 2015 | -                    | \$ -       | Ψ     | -                       | \$ 1.59                           | \$ 0.11                                  |
| 2016 | -                    | \$ -       | \$    | -                       | \$ 1.59                           | \$ 0.11                                  |
| 2017 | -                    | \$ -       | Ψ     | -                       | \$ 1.59                           | \$ 0.11                                  |
| 2018 | \$ -                 | \$ -       | Ψ     | -                       | \$ 1.59                           | \$ 0.11                                  |
| 2019 | -                    | \$ -       | Ψ     | -                       | \$ 1.59                           | \$ 0.11                                  |
| 2020 | -                    | \$ -       | ¥     | -                       | \$ 1.59                           | \$ 0.11                                  |
| 2021 | -                    | \$ -       | Ψ     | -                       | \$ 1.59                           | \$ 0.11                                  |
| 2022 | -                    | \$ -       | \$    | -                       | \$ 1.59                           | \$ 0.11                                  |
| 2023 | -                    | \$ -       | Ψ     | -                       | \$ 1.59                           | \$ 0.11                                  |
| 2024 | \$ -                 | \$ -       | Ψ     | -                       | \$ 1.59                           | \$ 0.11                                  |
| 2025 | \$ -                 | \$ -       | Ψ     | -                       | \$ 1.59                           | \$ 0.11                                  |
| 2026 | \$ -                 | \$ -       | \$    | -                       | \$ 1.59                           | \$ 0.11                                  |
| 2027 | \$ -                 | \$ -       | Ψ     | -                       | \$ 1.59                           | \$ 0.11                                  |
| 2028 | -                    | \$ -       | Ψ     | -                       | \$ 1.59                           | \$ 0.11                                  |
| 2029 | -                    | \$ -       | \$    | -                       | \$ 1.59                           | \$ 0.11                                  |

Note: All values in millions of year 2003 dollars. Source: Derived from Exhibits J.1h and D.7.

# Exhibit J.6i Present Value of Annual Cost Projections at 3% Discount Rate (All Systems and Primacy Agencies)

Preferred Alternative, 20% Safety Margin

|       | Sui            | face Water CV        | vs                    |             | Surfa | ce Water N           | INCWS                 | Disinfecti    | ing Gr | ound W        | ater CWS              | Disinfectin   | ng G | Ground Wate          | r NTNCWS              | Primacy Agencies |               |      | Total            |                  |                    |
|-------|----------------|----------------------|-----------------------|-------------|-------|----------------------|-----------------------|---------------|--------|---------------|-----------------------|---------------|------|----------------------|-----------------------|------------------|---------------|------|------------------|------------------|--------------------|
|       |                | 90 Pe<br>Confiden    | ercent<br>ce Bound    |             |       |                      | Percent<br>nce Bound  |               | C      |               | ercent<br>ce Bound    |               |      |                      | ercent<br>ce Bound    |                  |               |      | 90 P<br>Confider | ercent<br>ice Bo |                    |
|       | /lean<br>/alue | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mea<br>Valu |       | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Mean<br>Value |        | wer<br>%tile) | Upper<br>(95th %tile) | Mean<br>Value | (    | Lower<br>(5th %tile) | Upper<br>(95th %tile) | Point Estimate   | Mean<br>Value | (5   | Lower            |                  | Upper<br>th %tile) |
| 2005  | \$<br>0.6      | \$ 0.6               | \$ 0.6                | \$          | 0.0   | \$ 0.0               | \$ 0.0                | \$<br>0.1     | \$     | 0.1           | \$ 0.1                | \$<br>0.0     | \$   | 0.0                  | \$ 0.0                | \$ 3.7           | \$ 4.4        | \$   | 4.4              | \$               | 4.4                |
| 2006  | \$<br>9.0      | \$ 9.0               | \$ 9.0                | \$          | 0.1   | \$ 0.1               | \$ 0.1                | \$<br>3.2     | \$     | 3.2           | \$ 3.2                | \$<br>0.5     | \$   | 0.5                  | \$ 0.5                | \$ 3.6           | \$ 16.4       | \$   | 16.4             | \$               | 16.4               |
| 2007  | \$<br>20.1     | \$ 20.1              | \$ 20.1               | \$          | 0.0   | \$ 0.0               | \$ 0.0                | \$<br>1.0     | \$     | 1.0           | \$ 1.0                | \$<br>0.0     | \$   | 0.0                  | \$ 0.0                | \$ 0.1           | \$ 21.3       | \$   | 21.3             | \$               | 21.3               |
| 2008  | \$<br>68.9     | \$ 43.7              | \$ 95.6               | \$          | 0.1   | \$ 0.1               | \$ 0.1                | \$<br>13.0    | \$     | 12.2          | \$ 13.7               | \$<br>0.0     | \$   | 0.0                  | \$ 0.0                | \$ 1.8           | \$ 83.8       | 3 \$ | 57.8             | \$               | 111.3              |
| 2009  | \$<br>78.7     | \$ 41.2              | \$ 118.5              | \$          | 0.7   | \$ 0.4               | \$ 1.1                | \$<br>31.3    | \$     | 27.4          | \$ 35.1               | \$<br>1.7     | \$   | 1.5                  | \$ 1.9                | \$ 0.7           | \$ 113.1      | \$   | 71.3             | \$               | 157.2              |
| 2010  | \$<br>98.1     | \$ 50.8              | \$ 148.2              | \$          | 1.4   | \$ 0.7               | \$ 2.1                | \$<br>48.7    | \$     | 42.0          | \$ 55.4               | \$<br>2.4     | \$   | 2.1                  | \$ 2.8                | \$ -             | \$ 150.6      | \$   | 95.6             | \$               | 208.4              |
| 2011  | \$<br>101.1    | \$ 52.3              | \$ 152.5              | \$          | 1.5   | \$ 0.8               | \$ 2.2                | \$<br>49.3    | \$     | 42.6          | \$ 56.1               | \$<br>2.3     | \$   | 2.0                  | \$ 2.7                | \$ 1.3           | \$ 155.5      | \$   | 99.0             | \$               | 214.9              |
| 2012  | \$<br>103.1    | \$ 52.9              | \$ 155.9              | \$          | 1.6   | \$ 0.8               | \$ 2.4                | \$<br>53.3    | \$     | 46.6          | \$ 60.1               | \$<br>2.7     | \$   | 2.4                  | \$ 3.1                | \$ 1.3           | \$ 162.1      | \$   | 104.0            | \$               | 222.8              |
| 2013  | \$<br>60.1     | \$ 30.4              | \$ 91.1               | \$          | 1.7   | \$ 0.9               | \$ 2.5                | \$<br>50.9    | \$     | 44.8          | \$ 57.0               | \$<br>3.1     | \$   | 2.7                  | \$ 3.4                | \$ 1.3           | \$ 117.1      | \$   | 80.1             | \$               | 155.4              |
| 2014  | \$<br>40.6     | \$ 20.4              | \$ 61.4               | \$          | 1.3   | \$ 0.7               | \$ 1.9                | \$<br>34.5    | \$     | 31.0          | \$ 38.0               | \$<br>2.3     | \$   | 2.0                  | \$ 2.5                | \$ 1.2           | \$ 79.8       | \$   | 55.3             | \$               | 104.9              |
| 2015  | \$<br>25.3     | \$ 12.5              | \$ 38.2               | \$          | 8.0   | \$ 0.4               | \$ 1.2                | \$<br>18.8    | \$     | 17.7          | \$ 19.8               | \$<br>1.4     | \$   | 1.3                  | \$ 1.4                | \$ 1.2           | \$ 47.4       | \$   | 33.1             | \$               | 61.9               |
| 2016  | \$<br>24.6     | \$ 12.2              | \$ 37.1               | \$          | 8.0   | \$ 0.4               | \$ 1.1                | \$<br>18.2    | \$     | 17.2          | \$ 19.2               | \$<br>1.3     | \$   | 1.3                  | \$ 1.4                | \$ 1.2           | \$ 46.1       | \$   | 32.2             | \$               | 60.1               |
| 2017  | \$<br>23.9     | \$ 11.8              | \$ 36.0               | \$          | 0.7   | \$ 0.4               | \$ 1.1                | \$<br>17.7    | \$     | 16.7          | \$ 18.7               | \$<br>1.3     | \$   | 1.2                  | \$ 1.4                | \$ 1.1           | \$ 44.7       | \$   | 31.2             | \$               | 58.3               |
| 2018  | \$<br>23.2     | \$ 11.5              | \$ 35.0               | \$          | 0.7   | \$ 0.4               | \$ 1.1                | \$<br>17.2    | \$     | 16.2          | \$ 18.1               | \$<br>1.3     | \$   | 1.2                  | \$ 1.3                | \$ 1.1           | \$ 43.4       | \$   | 30.3             | \$               | 56.6               |
| 2019  | \$<br>22.5     | \$ 11.1              | \$ 34.0               | \$          | 0.7   | \$ 0.4               | \$ 1.0                | \$<br>16.7    | \$     | 15.7          | \$ 17.6               | \$<br>1.2     | \$   | 1.2                  | \$ 1.3                | \$ 1.1           | \$ 42.2       | 2 \$ | 29.4             | \$               | 55.0               |
| 2020  | \$<br>21.8     | \$ 10.8              | \$ 33.0               | \$          | 0.7   | \$ 0.4               | \$ 1.0                | \$<br>16.2    | \$     | 15.3          | \$ 17.1               | \$<br>1.2     | \$   | 1.1                  | \$ 1.2                | \$ 1.0           | \$ 40.9       | \$   | 28.6             | \$               | 53.4               |
| 2021  | \$<br>21.2     | \$ 10.5              | \$ 32.0               | \$          | 0.7   | \$ 0.4               | \$ 1.0                | \$<br>15.7    | \$     | 14.8          | \$ 16.6               | \$<br>1.1     | \$   | 1.1                  | \$ 1.2                | \$ 1.0           | \$ 39.7       | \$   | 27.8             | \$               | 51.8               |
| 2022  | \$<br>20.6     | \$ 10.2              | \$ 31.1               | \$          | 0.6   | \$ 0.3               | \$ 1.0                | \$<br>15.3    | \$     | 14.4          | \$ 16.1               | \$<br>1.1     | \$   | 1.1                  | \$ 1.2                | \$ 1.0           | \$ 38.6       | \$   | 27.0             | \$               | 50.3               |
| 2023  | \$<br>20.0     | \$ 9.9               | \$ 30.2               | \$          | 0.6   | \$ 0.3               | \$ 0.9                | \$<br>14.8    | \$     | 14.0          | \$ 15.6               | \$<br>1.1     | \$   | 1.0                  | \$ 1.1                | \$ 0.9           | \$ 37.5       | 5 \$ | 26.2             | \$               | 48.8               |
| 2024  | \$<br>19.4     | \$ 9.6               | \$ 29.3               | \$          | 0.6   | \$ 0.3               | \$ 0.9                | \$<br>14.4    | \$     | 13.6          | \$ 15.2               | \$<br>1.1     | \$   | 1.0                  | \$ 1.1                | \$ 0.9           | \$ 36.4       | \$   | 25.4             | \$               | 47.4               |
| 2025  | \$<br>18.8     | \$ 9.3               | \$ 28.4               | \$          | 0.6   | \$ 0.3               | \$ 0.9                | \$<br>14.0    | \$     | 13.2          | \$ 14.7               | \$<br>1.0     | \$   | 1.0                  | \$ 1.1                | \$ 0.9           | \$ 35.3       | \$   | 24.7             | \$               | 46.0               |
| 2026  | \$<br>18.3     | \$ 9.0               | \$ 27.6               | \$          | 0.6   | \$ 0.3               | \$ 0.8                | \$<br>13.6    | \$     | 12.8          | \$ 14.3               | \$<br>1.0     | \$   | 0.9                  | \$ 1.0                | \$ 0.9           | \$ 34.3       | \$   | 23.9             | \$               | 44.7               |
| 2027  | \$<br>17.8     | \$ 8.8               | \$ 26.8               | \$          | 0.6   | \$ 0.3               | \$ 0.8                | \$<br>13.2    | \$     | 12.4          | \$ 13.9               | \$<br>1.0     | \$   | 0.9                  | \$ 1.0                | \$ 0.8           | \$ 33.3       | \$   | 23.2             | \$               | 43.4               |
| 2028  | \$<br>17.2     | \$ 8.5               | \$ 26.0               | \$          | 0.5   | \$ 0.3               | \$ 0.8                | \$<br>12.8    | \$     | 12.0          | \$ 13.5               | \$<br>0.9     | \$   | 0.9                  | \$ 1.0                | \$ 0.8           | \$ 32.3       | \$   | 22.6             | \$               | 42.1               |
| 2029  | \$<br>16.7     | \$ 8.3               | \$ 25.3               | \$          | 0.5   | \$ 0.3               | \$ 0.8                | \$<br>12.4    | \$     | 11.7          | \$ 13.1               | \$<br>0.9     | \$   | 0.9                  | \$ 0.9                | \$ 0.8           | \$ 31.4       | \$   | 21.9             | \$               | 40.9               |
| Total | \$<br>891.7    | \$ 475.4             | \$ 1,322.9            | \$ 1        | 8.1   | \$ 9.6               | \$ 26.9               | \$<br>515.9   | \$     | 468.4         | \$ 563.5              | \$<br>31.9    | \$   | 29.3                 | \$ 34.5               | \$ 29.8          | \$ 1,487.3    | \$   | 1,012.6          | \$               | 1,977.6            |
| Ann.  | \$<br>51.2     | \$ 27.3              | \$ 76.0               | \$          | 1.0   | \$ 0.6               | \$ 1.5                | \$<br>29.6    | \$     | 26.9          | \$ 32.4               | \$<br>1.8     | \$   | 1.7                  | \$ 2.0                | \$ 1.7           | \$ 85.4       | \$   | 58.2             | \$               | 113.6              |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

Source: Derived from Exhibits J.6a through h.

# Section J.7 Cost Projections Preferred Alternative, 25% Safety Margin

### Exhibit J.7a Projections of Stage 2 DBPR PWS Costs

(All Surface Water CWSs)

Preferred Alternative, 25% Safety Margin

|      | Trea          | tme | nt Capital         | Cos | sts                 |    | Treati        | men | t O&M            | Cos | ts                |      |              | N        | on-T | reatment C         | osts | s          |                       | All Sta       | ige 2 | DBPR (           | Cost | ts                  |
|------|---------------|-----|--------------------|-----|---------------------|----|---------------|-----|------------------|-----|-------------------|------|--------------|----------|------|--------------------|------|------------|-----------------------|---------------|-------|------------------|------|---------------------|
|      |               |     | 90 Pe<br>Confiden  |     |                     |    |               | С   | 90 P<br>onfider  |     |                   |      |              |          |      |                    |      |            |                       |               | c     | 90 Pe<br>onfiden |      |                     |
| Year | Mean<br>Value |     | Lower<br>th %tile) |     | Upper<br>5th %tile) | -  | Mean<br>/alue | _   | ower<br>1 %tile) |     | Upper<br>th %tile | ) Im | plementation | IDSE     | М    | onitoring<br>Plans | I    | Monitoring | gnificant<br>ccursion | Mean<br>Value |       | ower<br>n %tile) |      | Upper<br>5th %tile) |
| 2005 | \$<br>-       | \$  | -                  | \$  | -                   | \$ | -             | \$  | -                | \$  | -                 | \$   | 0.69         | \$ -     | \$   | -                  | \$   | -          | \$<br>-               | \$<br>0.69    | \$    | 0.69             | \$   | 0.69                |
| 2006 | \$<br>-       | \$  | -                  | \$  | -                   | \$ | -             | \$  | -                | \$  | -                 | \$   | 1.34         | \$ 8.46  | \$   | -                  | \$   | -          | \$<br>-               | \$<br>9.80    | \$    | 9.80             | \$   | 9.80                |
| 2007 | \$<br>-       | \$  | -                  | \$  | -                   | \$ | -             | \$  | -                | \$  | -                 | \$   | -            | \$ 22.45 | \$   | 0.22               | \$   | -          | \$<br>-               | \$<br>22.67   | \$    | 22.67            | \$   | 22.67               |
| 2008 | \$<br>73.10   | \$  | 47.73              | \$  | 100.80              | \$ | -             | \$  | -                | \$  | -                 | \$   | 0.60         | \$ 18.62 | \$   | 0.62               | \$   | -          | \$<br>-               | \$<br>92.93   | \$    | 67.56            | \$   | 120.63              |
| 2009 | \$<br>104.74  | \$  | 66.91              | \$  | 145.81              | \$ | 2.90          | \$  | 1.92             | \$  | 3.90              | \$   | 0.75         | \$ -     | \$   | 0.88               | \$   | -          | \$<br>-               | \$<br>109.26  | \$    | 70.46            | \$   | 151.34              |
| 2010 | \$<br>128.44  | \$  | 80.91              | \$  | 179.89              | \$ | 7.92          | \$  | 5.10             | \$  | 10.82             | \$   | 0.67         | \$ -     | \$   | -                  | \$   | -          | \$<br>-               | \$<br>137.03  | \$    | 86.68            | \$   | 191.38              |
| 2011 | \$<br>128.44  | \$  | 80.91              | \$  | 179.89              | \$ | 14.72         | \$  | 9.29             | \$  | 20.27             | \$   | -            | \$ -     | \$   | -                  | \$   | 0.42       | \$<br>-               | \$<br>143.58  | \$    | 90.62            | \$   | 200.58              |
| 2012 | \$<br>128.44  | \$  | 80.91              | \$  | 179.89              | \$ | 21.52         | \$  | 13.48            | \$  | 29.72             | \$   | -            | \$ -     | \$   | -                  | \$   | (0.77)     | \$<br>0.06            | \$<br>149.25  | \$    | 93.68            | \$   | 208.91              |
| 2013 | \$<br>55.34   | \$  | 33.18              | \$  | 79.09               | \$ | 28.32         | \$  | 17.67            | \$  | 39.18             | \$   | -            | \$ -     | \$   | -                  | \$   | (2.07)     | \$<br>0.15            | \$<br>81.74   | \$    | 48.93            | \$   | 116.35              |
| 2014 | \$<br>23.70   | \$  | 14.00              | \$  | 34.08               | \$ | 32.23         | \$  | 19.93            | \$  | 44.73             | \$   | -            | \$ -     | \$   | -                  | \$   | (2.07)     | \$<br>0.21            | \$<br>54.07   | \$    | 32.08            | \$   | 76.95               |
| 2015 | \$<br>-       | \$  | -                  | \$  | -                   | \$ | 34.00         | \$  | 20.95            | \$  | 47.26             | \$   | -            | \$ -     | \$   | -                  | \$   | (2.07)     | \$<br>0.21            | \$<br>32.14   | \$    | 19.09            | \$   | 45.41               |
| 2016 | \$<br>-       | \$  | -                  | \$  | -                   | \$ | 34.00         | \$  | 20.95            | \$  | 47.26             | \$   | -            | \$ -     | \$   | -                  | \$   | (2.07)     | \$<br>0.21            | \$<br>32.14   | \$    | 19.09            | \$   | 45.41               |
| 2017 | \$<br>-       | \$  |                    | \$  | -                   | \$ | 34.00         | \$  | 20.95            | \$  | 47.26             | \$   | 1            | \$ -     | \$   | -                  | \$   | (2.07)     | \$<br>0.21            | \$<br>32.14   | \$    | 19.09            | \$   | 45.41               |
| 2018 | \$<br>-       | \$  | -                  | \$  | -                   | \$ | 34.00         | \$  | 20.95            | \$  | 47.26             | \$   | -            | \$ -     | \$   | -                  | \$   | (2.07)     | \$<br>0.21            | \$<br>32.14   | \$    | 19.09            | \$   | 45.41               |
| 2019 | \$<br>-       | \$  | -                  | \$  | -                   | \$ | 34.00         | \$  | 20.95            | \$  | 47.26             | \$   | -            | \$ -     | \$   | -                  | \$   | (2.07)     | \$<br>0.21            | \$<br>32.14   | \$    | 19.09            | \$   | 45.41               |
| 2020 | \$<br>-       | \$  | -                  | \$  | -                   | \$ | 34.00         | \$  | 20.95            | \$  | 47.26             | \$   | -            | \$ -     | \$   | -                  | \$   | (2.07)     | \$<br>0.21            | \$<br>32.14   | \$    | 19.09            | \$   | 45.41               |
| 2021 | \$<br>-       | \$  |                    | \$  | -                   | \$ | 34.00         | \$  | 20.95            | \$  | 47.26             | \$   | 1            | \$ -     | \$   | -                  | \$   | (2.07)     | \$<br>0.21            | \$<br>32.14   | \$    | 19.09            | \$   | 45.41               |
| 2022 | \$<br>-       | \$  | -                  | \$  | -                   | \$ | 34.00         | \$  | 20.95            | \$  | 47.26             | \$   | -            | \$ -     | \$   | -                  | \$   | (2.07)     | \$<br>0.21            | \$<br>32.14   | \$    | 19.09            | \$   | 45.41               |
| 2023 | \$<br>-       | \$  | -                  | \$  | -                   | \$ | 34.00         | \$  | 20.95            | \$  | 47.26             | \$   | -            | \$ -     | \$   | -                  | \$   | (2.07)     | \$<br>0.21            | \$<br>32.14   | \$    | 19.09            | \$   | 45.41               |
| 2024 | \$<br>-       | \$  | -                  | \$  | -                   | \$ | 34.00         | \$  | 20.95            | \$  | 47.26             | \$   | -            | \$ -     | \$   | -                  | \$   | (2.07)     | \$<br>0.21            | \$<br>32.14   | \$    | 19.09            | \$   | 45.41               |
| 2025 | \$<br>-       | \$  | -                  | \$  | -                   | \$ | 34.00         | \$  | 20.95            | \$  | 47.26             | \$   | -            | \$ -     | \$   | -                  | \$   | (2.07)     | \$<br>0.21            | \$<br>32.14   | \$    | 19.09            | \$   | 45.41               |
| 2026 | \$<br>-       | \$  | -                  | \$  | -                   | \$ | 34.00         | \$  | 20.95            | \$  | 47.26             | \$   | -            | \$ -     | \$   | -                  | \$   | (2.07)     | \$<br>0.21            | \$<br>32.14   | \$    | 19.09            | \$   | 45.41               |
| 2027 | \$<br>-       | \$  | -                  | \$  | -                   | \$ | 34.00         | \$  | 20.95            | \$  | 47.26             | \$   | -            | \$ -     | \$   | -                  | \$   | (2.07)     | \$<br>0.21            | \$<br>32.14   | \$    | 19.09            | \$   | 45.41               |
| 2028 | \$<br>-       | \$  | -                  | \$  | -                   | \$ | 34.00         | \$  | 20.95            | \$  | 47.26             | \$   | -            | \$ -     | \$   | -                  | \$   | (2.07)     | \$<br>0.21            | \$<br>32.14   | \$    | 19.09            | \$   | 45.41               |
| 2029 | \$<br>-       | \$  | -                  | \$  | -                   | \$ | 34.00         | \$  | 20.95            | \$  | 47.26             | \$   | -            | \$ -     | \$   | _                  | \$   | (2.07)     | \$<br>0.21            | \$<br>32.14   | \$    | 19.09            | \$   | 45.41               |

Note: All values in millions of year 2003 dollars.

# Exhibit J.7b Projections of Stage 2 DBPR PWS Costs

(All Surface Water NTNCWSs)

# Preferred Alternative, 25% Safety Margin

| T referred 2 |              | _  | Capita                  |    | _                       |                    | mer | nt O&N                 | l Co | sts                    |    |               |    | N    | on | -Treatment Co       | sts | S          |                          | All St        | age | 2 DBPR            | Cost | ts                 |
|--------------|--------------|----|-------------------------|----|-------------------------|--------------------|-----|------------------------|------|------------------------|----|---------------|----|------|----|---------------------|-----|------------|--------------------------|---------------|-----|-------------------|------|--------------------|
|              |              | C  | 90 Pe                   |    |                         |                    | Co  | 90 Pe                  |      |                        |    |               |    |      |    |                     |     |            |                          |               | C   | 90 Pe<br>Confiden |      |                    |
| Year         | lean<br>alue |    | Lower<br>(5th<br>%tile) | (  | Ipper<br>95th<br>6tile) | <br>/lean<br>/alue | (   | ower<br>(5th<br>6tile) | (    | pper<br>95th<br>stile) | In | nplementation | ı  | DSE  |    | Monitoring<br>Plans |     | Monitoring | Significant<br>Excursion | Mean<br>Value | -   | _ower<br>h %tile) |      | Upper<br>th %tile) |
| 2005         | \$<br>-      | \$ | -                       | \$ | -                       | \$<br>-            | \$  | -                      | \$   | -                      | \$ | 0.00          | \$ | -    | \$ | -                   | \$  | -          | \$ -                     | \$<br>0.00    | \$  | 0.00              | \$   | 0.00               |
| 2006         | \$<br>-      | \$ | -                       | \$ | -                       | \$<br>-            | \$  | -                      | \$   | -                      | \$ | 0.08          | \$ | 0.01 | \$ | -                   | \$  | -          | \$ -                     | \$<br>0.09    | \$  | 0.09              | \$   | 0.09               |
| 2007         | \$<br>-      | \$ | -                       | \$ | -                       | \$<br>-            | \$  | -                      | \$   | -                      | \$ | -             | \$ | 0.04 | \$ | 0.00                | \$  | -          | \$ -                     | \$<br>0.04    | \$  | 0.04              | \$   | 0.04               |
| 2008         | \$<br>0.10   | \$ | 0.06                    | \$ | 0.13                    | \$<br>-            | \$  | -                      | \$   | -                      | \$ | 0.00          | \$ | 0.02 | \$ | 0.00                | \$  | -          | \$ -                     | \$<br>0.12    | \$  | 0.09              | \$   | 0.16               |
| 2009         | \$<br>0.82   | \$ | 0.44                    | \$ | 1.24                    | \$<br>0.00         | \$  | 0.00                   | \$   | 0.00                   | \$ | 0.04          | \$ | -    | \$ | 0.04                | \$  | -          | \$ -                     | \$<br>0.90    | \$  | 0.52              | \$   | 1.32               |
| 2010         | \$<br>1.55   | \$ | 0.82                    | \$ | 2.35                    | \$<br>0.12         | \$  | 0.06                   | \$   | 0.17                   | \$ | 0.04          | \$ | -    | \$ | -                   | \$  | -          | \$ -                     | \$<br>1.70    | \$  | 0.92              | \$   | 2.56               |
| 2011         | \$<br>1.55   | \$ | 0.82                    | \$ | 2.35                    | \$<br>0.33         | \$  | 0.18                   | \$   | 0.49                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.00       | \$ -                     | \$<br>1.89    | \$  | 1.00              | \$   | 2.85               |
| 2012         | \$<br>1.55   | \$ | 0.82                    | \$ | 2.35                    | \$<br>0.55         | \$  | 0.29                   | \$   | 0.82                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.02       | \$ -                     | \$<br>2.12    | \$  | 1.13              | \$   | 3.18               |
| 2013         | \$<br>1.45   | \$ | 0.76                    | \$ | 2.21                    | \$<br>0.77         | \$  | 0.41                   | \$   | 1.14                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$<br>2.25    | \$  | 1.19              | \$   | 3.39               |
| 2014         | \$<br>0.72   | \$ | 0.38                    | \$ | 1.11                    | \$<br>0.99         | \$  | 0.52                   | \$   | 1.46                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$<br>1.74    | \$  | 0.93              | \$   | 2.60               |
| 2015         | \$<br>-      | \$ | -                       | \$ | -                       | \$<br>1.10         | \$  | 0.58                   | \$   | 1.62                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$<br>1.13    | \$  | 0.61              | \$   | 1.65               |
| 2016         | \$<br>-      | \$ | -                       | \$ | -                       | \$<br>1.10         | \$  | 0.58                   | \$   | 1.62                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$<br>1.13    | \$  | 0.61              | \$   | 1.65               |
| 2017         | \$<br>-      | \$ | -                       | \$ | -                       | \$<br>1.10         | \$  | 0.58                   | \$   | 1.62                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$<br>1.13    | \$  | 0.61              | \$   | 1.65               |
| 2018         | \$<br>-      | \$ | -                       | \$ | -                       | \$<br>1.10         | \$  | 0.58                   | \$   | 1.62                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$<br>1.13    | \$  | 0.61              | \$   | 1.65               |
| 2019         | \$<br>-      | \$ | -                       | \$ | -                       | \$<br>1.10         | \$  | 0.58                   | \$   | 1.62                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$<br>1.13    | \$  | 0.61              | \$   | 1.65               |
| 2020         | \$<br>-      | \$ | -                       | \$ | -                       | \$<br>1.10         | \$  | 0.58                   | \$   | 1.62                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$<br>1.13    | \$  | 0.61              | \$   | 1.65               |
| 2021         | \$<br>-      | \$ | -                       | \$ | -                       | \$<br>1.10         | \$  | 0.58                   | \$   | 1.62                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$<br>1.13    | \$  | 0.61              | \$   | 1.65               |
| 2022         | \$<br>-      | \$ | -                       | \$ | -                       | \$<br>1.10         | \$  | 0.58                   | \$   | 1.62                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$<br>1.13    | \$  | 0.61              | \$   | 1.65               |
| 2023         | \$<br>-      | \$ | -                       | \$ | -                       | \$<br>1.10         | \$  | 0.58                   | \$   | 1.62                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$<br>1.13    | \$  | 0.61              | \$   | 1.65               |
| 2024         | \$<br>-      | \$ | -                       | \$ | -                       | \$<br>1.10         | \$  | 0.58                   | \$   | 1.62                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$<br>1.13    | \$  | 0.61              | \$   | 1.65               |
| 2025         | \$<br>-      | \$ | -                       | \$ | -                       | \$<br>1.10         | \$  | 0.58                   | \$   | 1.62                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$<br>1.13    | \$  | 0.61              | \$   | 1.65               |
| 2026         | \$<br>-      | \$ | -                       | \$ | -                       | \$<br>1.10         | \$  | 0.58                   | \$   | 1.62                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$<br>1.13    | \$  | 0.61              | \$   | 1.65               |
| 2027         | \$<br>-      | \$ | -                       | \$ | -                       | \$<br>1.10         | \$  | 0.58                   | \$   | 1.62                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$<br>1.13    | \$  | 0.61              | \$   | 1.65               |
| 2028         | \$<br>-      | \$ | -                       | \$ | -                       | \$<br>1.10         | \$  | 0.58                   | \$   | 1.62                   | \$ | -             | \$ | -    | \$ | -                   | \$  | 0.03       | \$ -                     | \$<br>1.13    | \$  | 0.61              | \$   | 1.65               |
| 2029         | \$<br>-      | \$ | -                       | \$ | -                       | \$<br>1.10         | \$  | 0.58                   | \$   | 1.62                   | \$ | -             | \$ | -    | 9  | <b>-</b>            | \$  |            | \$ -                     | \$<br>1.13    | \$  | 0.61              | \$   | 1.65               |

Note: All values in millions of year 2003 dollars.

### Exhibit J.7c Projections of Stage 2 DBPR PWS Costs

(All Surface Water Systems)

Preferred Alternative, 25% Safety Margin

|      | Treat         | tmen | nt Capital        | Cos | sts                 | Trea          | tme | nt O&M            | Cos | its                |    |               | No          | on-T | reatment Co         | osts | 3          |                        | All St        | age | 2 DBPR            | Cos | ts                 |
|------|---------------|------|-------------------|-----|---------------------|---------------|-----|-------------------|-----|--------------------|----|---------------|-------------|------|---------------------|------|------------|------------------------|---------------|-----|-------------------|-----|--------------------|
|      |               |      | 90 Pe<br>Confiden |     |                     |               | C   | 90 Pe<br>Confiden |     |                    |    |               |             |      |                     |      |            |                        |               | C   | 90 Pe<br>Confiden |     |                    |
| Year | Mean<br>Value |      | Lower<br>h %tile) |     | Upper<br>5th %tile) | Mean<br>/alue |     | Lower<br>h %tile) |     | Upper<br>th %tile) | In | nplementation | IDSE        | N    | Monitoring<br>Plans |      | Monitoring | ignificant<br>xcursion | Mean<br>∕alue |     | ower<br>h %tile)  |     | Upper<br>th %tile) |
| 2005 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>-       | \$  | -                 | \$  | -                  | \$ | 0.69          | \$<br>-     | \$   | -                   | \$   | -          | \$<br>-                | \$<br>0.69    | \$  | 0.69              | \$  | 0.69               |
| 2006 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>-       | \$  | -                 | \$  | -                  | \$ | 1.42          | \$<br>8.48  | \$   |                     | \$   | -          | \$<br>-                | \$<br>9.90    | \$  | 9.90              | \$  | 9.90               |
| 2007 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>-       | \$  | -                 | \$  | -                  | \$ | -             | \$<br>22.49 | \$   | 0.22                | \$   | -          | \$<br>-                | \$<br>22.71   | \$  | 22.71             | \$  | 22.71              |
| 2008 | \$<br>73.19   | \$   | 47.79             | \$  | 100.93              | \$<br>-       | \$  | -                 | \$  | -                  | \$ | 0.60          | \$<br>18.64 | \$   | 0.62                | \$   | -          | \$<br>-                | \$<br>93.05   | \$  | 67.65             | \$  | 120.79             |
| 2009 | \$<br>105.56  | \$   | 67.35             | \$  | 147.05              | \$<br>2.90    | \$  | 1.93              | \$  | 3.91               | \$ | 0.79          | \$<br>-     | \$   | 0.91                | \$   | -          | \$<br>-                | \$<br>110.17  | \$  | 70.98             | \$  | 152.67             |
| 2010 | \$<br>129.98  | \$   | 81.73             | \$  | 182.24              | \$<br>8.04    | \$  | 5.16              | \$  | 10.99              | \$ | 0.71          | \$<br>-     | \$   | -                   | \$   | -          | \$<br>-                | \$<br>138.73  | \$  | 87.60             | \$  | 193.94             |
| 2011 | \$<br>129.98  | \$   | 81.73             | \$  | 182.24              | \$<br>15.06   | \$  | 9.46              | \$  | 20.76              | \$ | -             | \$<br>-     | \$   | -                   | \$   | 0.42       | \$<br>-                | \$<br>145.47  | \$  | 91.62             | \$  | 203.43             |
| 2012 | \$<br>129.98  | \$   | 81.73             | \$  | 182.24              | \$<br>22.08   | \$  | 13.77             | \$  | 30.54              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (0.75)     | \$<br>0.06             | \$<br>151.37  | \$  | 94.81             | \$  | 212.09             |
| 2013 | \$<br>56.79   | \$   | 33.94             | \$  | 81.31               | \$<br>29.10   | \$  | 18.07             | \$  | 40.32              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.04)     | \$<br>0.15             | \$<br>83.99   | \$  | 50.12             | \$  | 119.73             |
| 2014 | \$<br>24.42   | \$   | 14.38             | \$  | 35.19               | \$<br>33.21   | \$  | 20.45             | \$  | 46.19              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.04)     | \$<br>0.21             | \$<br>55.81   | \$  | 33.01             | \$  | 79.55              |
| 2015 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>35.09   | \$  | 21.52             | \$  | 48.89              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.04)     | \$<br>0.21             | \$<br>33.27   | \$  | 19.70             | \$  | 47.06              |
| 2016 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>35.09   | \$  | 21.52             | \$  | 48.89              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.04)     | \$<br>0.21             | \$<br>33.27   | \$  | 19.70             | \$  | 47.06              |
| 2017 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>35.09   | \$  | 21.52             | \$  | 48.89              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.04)     | \$<br>0.21             | \$<br>33.27   | \$  | 19.70             | \$  | 47.06              |
| 2018 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>35.09   | \$  | 21.52             | \$  | 48.89              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.04)     | \$<br>0.21             | \$<br>33.27   | \$  | 19.70             | \$  | 47.06              |
| 2019 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>35.09   | \$  | 21.52             | \$  | 48.89              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.04)     | \$<br>0.21             | \$<br>33.27   | \$  | 19.70             | \$  | 47.06              |
| 2020 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>35.09   | \$  | 21.52             | \$  | 48.89              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.04)     | \$<br>0.21             | \$<br>33.27   | \$  | 19.70             | \$  | 47.06              |
| 2021 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>35.09   | \$  | 21.52             | \$  | 48.89              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.04)     | \$<br>0.21             | \$<br>33.27   | \$  | 19.70             | \$  | 47.06              |
| 2022 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>35.09   | \$  | 21.52             | \$  | 48.89              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.04)     | \$<br>0.21             | \$<br>33.27   | \$  | 19.70             | \$  | 47.06              |
| 2023 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>35.09   | \$  | 21.52             | \$  | 48.89              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.04)     | \$<br>0.21             | \$<br>33.27   | \$  | 19.70             | \$  | 47.06              |
| 2024 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>35.09   | \$  | 21.52             | \$  | 48.89              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.04)     | \$<br>0.21             | \$<br>33.27   | \$  | 19.70             | \$  | 47.06              |
| 2025 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>35.09   | \$  | 21.52             | \$  | 48.89              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.04)     | \$<br>0.21             | \$<br>33.27   | \$  | 19.70             | \$  | 47.06              |
| 2026 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>35.09   | \$  | 21.52             | \$  | 48.89              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.04)     | \$<br>0.21             | \$<br>33.27   | \$  | 19.70             | \$  | 47.06              |
| 2027 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>35.09   | \$  | 21.52             | \$  | 48.89              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.04)     | \$<br>0.21             | \$<br>33.27   | \$  | 19.70             | \$  | 47.06              |
| 2028 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>35.09   | \$  | 21.52             | \$  | 48.89              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.04)     | \$<br>0.21             | \$<br>33.27   | \$  | 19.70             | \$  | 47.06              |
| 2029 | \$<br>-       | \$   | -                 | \$  | -                   | \$<br>35.09   | \$  | 21.52             | \$  | 48.89              | \$ | -             | \$<br>-     | \$   | -                   | \$   | (2.04)     | \$<br>0.21             | \$<br>33.27   | \$  | 19.70             | \$  | 47.06              |

Note: All values in millions of year 2003 dollars.

# Exhibit J.7d Projections of Stage 2 DBPR PWS Costs

(All Ground Water CWSs)

Preferred Alternative, 25% Safety Margin

|      |    | Treatm        | ent Capita                       | al Co | osts   |    | Treatr | nent | t O&M                           | Cos  | ts    |    |              |    | ľ    | lon- | -Treatment Co | osts | 1          |    |           |    | All St | age | 2 DBPR                     | Cost | is        |
|------|----|---------------|----------------------------------|-------|--------|----|--------|------|---------------------------------|------|-------|----|--------------|----|------|------|---------------|------|------------|----|-----------|----|--------|-----|----------------------------|------|-----------|
|      |    | <i>l</i> lean | 90 F<br>Confide<br>Lower<br>(5th | nce   |        | N  | Mean   | Lo   | 90 Pe<br>onfiden<br>ower<br>5th | ce E |       | -  |              |    |      |      | Monitoring    |      |            | Si | gnificant |    | Mean   |     | 90 Pe<br>Confiden<br>Lower | ce B |           |
| Year | ٧  | 'alue         | %tile)                           | •     | %tile) | ٧  | /alue  | %    | tile)                           | %    | tile) | lm | plementation | ı  | DSE  |      | Plans         | N    | Monitoring | Ex | ccursion  | ,  | Value  | (5t | h %tile)                   | (95  | th %tile) |
| 2005 | \$ | -             | \$ -                             | \$    | -      | \$ | -      | \$   | -                               | \$   | -     | \$ | 0.07         | \$ | -    | \$   | -             | \$   | -          | \$ | -         | \$ | 0.07   | \$  | 0.07                       | \$   | 0.07      |
| 2006 | \$ | -             | \$ -                             | \$    | -      | \$ | -      | \$   | -                               | \$   | -     | \$ | 3.42         | \$ | 0.09 | \$   | -             | \$   | -          | \$ | -         | \$ | 3.51   | \$  | 3.51                       | \$   | 3.51      |
| 2007 | \$ | -             | \$ -                             | \$    | -      | \$ | -      | \$   | -                               | \$   | -     | \$ | -            | \$ | 1.09 | \$   | 0.02          | \$   | -          | \$ | -         | \$ | 1.11   | \$  | 1.11                       | \$   | 1.11      |
| 2008 | \$ | 8.11          | \$ 7.22                          | \$    | 9.00   | \$ | -      | \$   | -                               | \$   | -     | \$ | 0.05         | \$ | 6.66 | \$   | 0.22          | \$   | -          | \$ | -         | \$ | 15.03  | \$  | 14.14                      | \$   | 15.92     |
| 2009 | \$ | 32.23         | \$ 27.71                         | \$    | 36.76  | \$ | 0.78   | \$   | 0.73                            | \$   | 0.83  | \$ | 1.73         | \$ | -    | \$   | 2.58          | \$   | -          | \$ | -         | \$ | 37.32  | \$  | 32.75                      | \$   | 41.91     |
| 2010 | \$ | 54.86         | \$ 46.87                         | \$    | 62.87  | \$ | 3.35   | \$   | 3.11                            | \$   | 3.58  | \$ | 1.71         | \$ | -    | \$   | -             | \$   | -          | \$ | -         | \$ | 59.91  | \$  | 51.69                      | \$   | 68.16     |
| 2011 | \$ | 54.86         | \$ 46.87                         | \$    | 62.87  | \$ | 7.57   | \$   | 7.03                            | \$   | 8.11  | \$ | -            | \$ | -    | \$   | -             | \$   | 0.08       | \$ | -         | \$ | 62.50  | \$  | 53.98                      | \$   | 71.06     |
| 2012 | \$ | 54.86         | \$ 46.87                         | \$    | 62.87  | \$ | 11.79  | \$   | 10.95                           | \$   | 12.63 | \$ | -            | \$ | -    | \$   | -             | \$   | 2.95       | \$ | -         | \$ | 69.60  | \$  | 60.77                      | \$   | 78.46     |
| 2013 | \$ | 46.75         | \$ 39.65                         | \$    | 53.87  | \$ | 16.01  | \$   | 14.87                           | \$   | 17.16 | \$ | -            | \$ | -    | \$   | -             | \$   | 5.63       | \$ | -         | \$ | 68.39  | \$  | 60.15                      | \$   | 76.66     |
| 2014 | \$ | 22.63         | \$ 19.16                         | \$    | 26.11  | \$ | 19.46  | \$   | 18.06                           | \$   | 20.85 | \$ | -            | \$ | -    | \$   | -             | \$   | 5.63       | \$ | -         | \$ | 47.71  | \$  | 42.85                      | \$   | 52.59     |
| 2015 | \$ | -             | \$ -                             | \$    | -      | \$ | 21.11  | \$   | 19.60                           | \$   | 22.63 | \$ | -            | \$ | -    | \$   | -             | \$   | 5.63       | \$ | -         | \$ | 26.74  | \$  | 25.23                      | \$   | 28.26     |
| 2016 | \$ | -             | \$ -                             | \$    | -      | \$ | 21.11  | \$   | 19.60                           | \$   | 22.63 | \$ | -            | \$ | -    | \$   | -             | \$   | 5.63       | \$ | -         | \$ | 26.74  | \$  | 25.23                      | \$   | 28.26     |
| 2017 | \$ | -             | \$ -                             | \$    | -      | \$ | 21.11  | \$   | 19.60                           | \$   | 22.63 | \$ | -            | \$ | -    | \$   | -             | \$   | 5.63       | \$ | -         | \$ | 26.74  | \$  | 25.23                      | \$   | 28.26     |
| 2018 | \$ | -             | \$ -                             | \$    | -      | \$ | 21.11  | \$   | 19.60                           | \$   | 22.63 | \$ | -            | \$ | -    | \$   | -             | \$   | 5.63       | \$ | -         | \$ | 26.74  | \$  | 25.23                      | \$   | 28.26     |
| 2019 | \$ | -             | \$ -                             | \$    | -      | \$ | 21.11  | \$   | 19.60                           | \$   | 22.63 | \$ | -            | \$ | -    | \$   | -             | \$   | 5.63       | \$ | -         | \$ | 26.74  | \$  | 25.23                      | \$   | 28.26     |
| 2020 | \$ | -             | \$ -                             | \$    | -      | \$ | 21.11  | \$   | 19.60                           | \$   | 22.63 | \$ | -            | \$ | -    | \$   | -             | \$   | 5.63       | \$ | -         | \$ | 26.74  | \$  | 25.23                      | \$   | 28.26     |
| 2021 | \$ | -             | \$ -                             | \$    | -      | \$ | 21.11  | \$   | 19.60                           | \$   | 22.63 | \$ | -            | \$ | -    | \$   | -             | \$   | 5.63       | \$ | -         | \$ | 26.74  | \$  | 25.23                      | \$   | 28.26     |
| 2022 | \$ | -             | \$ -                             | \$    | -      | \$ | 21.11  | \$   | 19.60                           | \$   | 22.63 | \$ | -            | \$ | -    | \$   | -             | \$   | 5.63       | \$ | -         | \$ | 26.74  | \$  | 25.23                      | \$   | 28.26     |
| 2023 | \$ | -             | \$ -                             | \$    | -      | \$ | 21.11  | \$   | 19.60                           | \$   | 22.63 | \$ | -            | \$ | -    | \$   | -             | \$   | 5.63       | \$ | -         | \$ | 26.74  | \$  | 25.23                      | \$   | 28.26     |
| 2024 | \$ | -             | \$ -                             | \$    | -      | \$ | 21.11  | \$   | 19.60                           | \$   | 22.63 | \$ | -            | \$ | -    | \$   | -             | \$   | 5.63       | \$ | -         | \$ | 26.74  | \$  | 25.23                      | \$   | 28.26     |
| 2025 | \$ | -             | \$ -                             | \$    | -      | \$ | 21.11  | \$   | 19.60                           | \$   | 22.63 | \$ | -            | \$ | -    | \$   | -             | \$   | 5.63       | \$ | -         | \$ | 26.74  | \$  | 25.23                      | \$   | 28.26     |
| 2026 | \$ | -             | \$ -                             | \$    | -      | \$ | 21.11  | \$   | 19.60                           | \$   | 22.63 | \$ | -            | \$ | -    | \$   | -             | \$   | 5.63       | \$ | -         | \$ | 26.74  | \$  | 25.23                      | \$   | 28.26     |
| 2027 | \$ | -             | \$ -                             | \$    | -      | \$ | 21.11  | \$   | 19.60                           | \$   | 22.63 | \$ | -            | \$ | -    | \$   | -             | \$   | 5.63       | \$ | -         | \$ | 26.74  | \$  | 25.23                      | \$   | 28.26     |
| 2028 | \$ | -             | \$ -                             | \$    | -      | \$ | 21.11  | \$   | 19.60                           | \$   | 22.63 | \$ | -            | \$ | -    | \$   | -             | \$   | 5.63       | \$ | -         | \$ | 26.74  | \$  | 25.23                      | \$   | 28.26     |
| 2029 | \$ | -             | \$ -                             | \$    | -      | \$ | 21.11  | \$   | 19.60                           | \$   | 22.63 | \$ | -            | \$ | -    | \$   | -             | \$   | 5.63       | \$ | -         | \$ | 26.74  | \$  | 25.23                      | \$   | 28.26     |

Note: All values in millions of year 2003 dollars.

# Exhibit J.7e Projections of Stage 2 DBPR PWS Costs

(All Ground Water NTNCWSs)

# Preferred Alternative, 25% Safety Margin

|      | 7  | Treatme | ent C | apital       | Cos  | its                  | Treatn           | nent (             | O&M      | Cos                          | ts                  |    |               |    | No   | on-T | reatment Co | sts |          |            | All St       | age | ge 2 DBPR Costs |      |               |  |  |  |  |  |
|------|----|---------|-------|--------------|------|----------------------|------------------|--------------------|----------|------------------------------|---------------------|----|---------------|----|------|------|-------------|-----|----------|------------|--------------|-----|-----------------|------|---------------|--|--|--|--|--|
| .,   |    | ean     | L     | 90 Penfidenc | U (9 | ound<br>pper<br>95th | <br><b>l</b> ean | Conf<br>Lov<br>(5t | ver<br>h | ce B<br>U <sub>l</sub><br>(9 | ound<br>pper<br>5th |    |               |    |      | М    | onitoring   |     |          | ignificant | <b>M</b> ean | ı   | 90 Pe           | ce B | ound<br>Upper |  |  |  |  |  |
| Year |    | alue    | •     | %tile)       |      | tile)                | alue             | %ti                | ie)      |                              | tile)               | _  | nplementation |    | IDSE |      | Plans       |     | nitoring | xcursion   | /alue        | •   | h %tile)        | •    |               |  |  |  |  |  |
| 2005 | \$ | -       | \$    | -            | \$   | -                    | \$<br>-          | \$                 | -        | \$                           | -                   | \$ | 0.00          | \$ |      | \$   | -           | \$  | -        | \$<br>-    | \$<br>0.00   | \$  | 0.00            | \$   | 0.00          |  |  |  |  |  |
| 2006 | \$ | -       | \$    | -            | \$   | -                    | \$<br>-          | \$                 | -        | \$                           | -                   | \$ | 0.56          | \$ |      | \$   | -           | \$  | -        | \$<br>-    | \$<br>0.56   | \$  | 0.56            | \$   | 0.56          |  |  |  |  |  |
| 2007 | \$ | -       | \$    | -            | \$   | -                    | \$<br>-          | \$                 | -        | \$                           | -                   | \$ | -             | _  |      | \$   | 0.00        | \$  | -        | \$<br>-    | \$<br>0.00   | \$  | 0.00            | \$   | 0.00          |  |  |  |  |  |
| 2008 | \$ | 0.01    | \$    | 0.01         | \$   | 0.01                 | \$<br>-          | \$                 | -        | \$                           | -                   | \$ | 0.00          | ÷  |      | \$   | 0.00        | \$  | -        | \$<br>-    | \$<br>0.01   | \$  | 0.01            | \$   | 0.01          |  |  |  |  |  |
| 2009 | \$ | 1.30    | \$    | 1.09         | \$   | 1.50                 | \$<br>0.00       | _                  | .00      | \$                           | 0.00                | \$ | 0.28          | \$ |      | \$   | 0.46        | \$  | -        | \$<br>-    | \$<br>2.04   |     | 1.84            | \$   | 2.24          |  |  |  |  |  |
| 2010 | \$ | 2.58    | \$    | 2.18         | \$   | 2.99                 | \$<br>0.12       | , ,                | .11      | \$                           | 0.13                | \$ | 0.28          | \$ |      | \$   | -           | \$  | -        | \$<br>-    | \$<br>2.99   | \$  | 2.57            | \$   | 3.40          |  |  |  |  |  |
| 2011 | \$ | 2.58    | \$    | 2.18         | \$   | 2.99                 | \$<br>0.37       |                    | .34      | \$                           | 0.40                | \$ | -             | \$ |      | \$   | -           | \$  | 0.00     | \$<br>-    | \$<br>2.96   | \$  | 2.52            | \$   | 3.39          |  |  |  |  |  |
| 2012 | \$ | 2.58    | \$    | 2.18         | \$   | 2.99                 | \$<br>0.61       | \$ 0               | .57      | \$                           | 0.66                | \$ | -             | \$ |      | \$   | -           | \$  | 0.37     | \$<br>-    | \$<br>3.56   | \$  | 3.11            | \$   | 4.01          |  |  |  |  |  |
| 2013 | \$ | 2.58    | \$    | 2.17         | \$   | 2.98                 | \$<br>0.86       | \$ 0               | .79      | \$                           | 0.93                | \$ | -             | \$ |      | \$   | -           | \$  | 0.73     | \$<br>-    | \$<br>4.16   | \$  | 3.69            | \$   | 4.63          |  |  |  |  |  |
| 2014 | \$ | 1.29    | \$    | 1.08         | \$   | 1.49                 | \$<br>1.10       | \$ 1               | .02      | \$                           | 1.19                | \$ | -             | \$ | -    | \$   | -           | \$  | 0.73     | \$<br>-    | \$<br>3.12   | \$  | 2.83            | \$   | 3.40          |  |  |  |  |  |
| 2015 | \$ | -       | \$    | -            | \$   | -                    | \$<br>1.23       | \$ 1               | .13      | \$                           | 1.32                | \$ | -             | \$ |      | \$   | -           | \$  |          | \$<br>-    | \$<br>1.95   | \$  | 1.86            | \$   | 2.05          |  |  |  |  |  |
| 2016 | \$ | -       | \$    | -            | \$   | -                    | \$<br>1.23       | \$ 1               | .13      | \$                           | 1.32                | \$ | -             | \$ |      | \$   | -           | \$  | 0.73     | \$<br>-    | \$<br>1.95   | \$  | 1.86            | \$   | 2.05          |  |  |  |  |  |
| 2017 | \$ | -       | \$    | -            | \$   | -                    | \$<br>1.23       | \$ 1               | .13      | \$                           | 1.32                | \$ | -             | \$ | -    | \$   | -           | \$  | 0.73     | \$<br>-    | \$<br>1.95   | \$  | 1.86            | \$   | 2.05          |  |  |  |  |  |
| 2018 | \$ | -       | \$    | -            | \$   | -                    | \$<br>1.23       | \$ 1               | .13      | \$                           | 1.32                | \$ | -             | \$ | -    | \$   | -           | \$  | 0.73     | \$<br>-    | \$<br>1.95   | \$  | 1.86            | \$   | 2.05          |  |  |  |  |  |
| 2019 | \$ | -       | \$    | -            | \$   | -                    | \$<br>1.23       | \$ 1               | .13      | \$                           | 1.32                | \$ | -             | \$ | -    | \$   | -           | \$  | 0.73     | \$<br>-    | \$<br>1.95   | \$  | 1.86            | \$   | 2.05          |  |  |  |  |  |
| 2020 | \$ | -       | \$    | -            | \$   | -                    | \$<br>1.23       |                    | .13      | \$                           | 1.32                | \$ | -             | \$ |      | \$   | -           | \$  | 0.73     | \$<br>-    | \$<br>1.95   | \$  | 1.86            | \$   | 2.05          |  |  |  |  |  |
| 2021 | \$ | -       | \$    | -            | \$   | -                    | \$<br>1.23       |                    | .13      | \$                           | 1.32                | \$ | -             | \$ |      | \$   | -           | \$  | 0.73     | \$<br>-    | \$<br>1.95   | \$  | 1.86            | \$   | 2.05          |  |  |  |  |  |
| 2022 | \$ | -       | \$    | -            | \$   | -                    | \$<br>1.23       |                    | .13      | \$                           | 1.32                | \$ | -             | \$ |      | \$   | -           | \$  | 0.73     | \$<br>-    | \$<br>1.95   | \$  | 1.86            | \$   | 2.05          |  |  |  |  |  |
| 2023 | \$ | -       | \$    | -            | \$   | -                    | \$<br>1.23       | \$ 1               | .13      | \$                           | 1.32                | \$ | -             | \$ | -    | \$   | -           | \$  | 0.73     | \$<br>-    | \$<br>1.95   | \$  | 1.86            | \$   | 2.05          |  |  |  |  |  |
| 2024 | \$ | -       | \$    | -            | \$   | -                    | \$<br>1.23       | \$ 1               | .13      | \$                           | 1.32                | \$ | -             | \$ | -    | \$   | -           | \$  | 0.73     | \$<br>-    | \$<br>1.95   | \$  | 1.86            | \$   | 2.05          |  |  |  |  |  |
| 2025 | \$ | -       | \$    | -            | \$   | -                    | \$<br>1.23       | \$ 1               | .13      | \$                           | 1.32                | \$ | -             | \$ | -    | \$   | -           | \$  | 0.73     | \$<br>-    | \$<br>1.95   | \$  | 1.86            | \$   | 2.05          |  |  |  |  |  |
| 2026 | \$ | -       | \$    | -            | \$   | -                    | \$<br>1.23       | \$ 1               | .13      | \$                           | 1.32                | \$ | -             | \$ | -    | \$   | -           | \$  | 0.73     | \$<br>-    | \$<br>1.95   | \$  | 1.86            | \$   | 2.05          |  |  |  |  |  |
| 2027 | \$ | -       | \$    | -            | \$   | -                    | \$<br>1.23       | \$ 1               | .13      | \$                           | 1.32                | \$ | -             | \$ | -    | \$   | -           | \$  | 0.73     | \$<br>-    | \$<br>1.95   | \$  | 1.86            | \$   | 2.05          |  |  |  |  |  |
| 2028 | \$ | -       | \$    | -            | \$   | -                    | \$<br>1.23       | \$ 1               | .13      | \$                           | 1.32                | \$ | -             | \$ | -    | \$   | -           | \$  | 0.73     | \$<br>-    | \$<br>1.95   | \$  | 1.86            | \$   | 2.05          |  |  |  |  |  |
| 2029 | \$ | -       | \$    | -            | \$   | -                    | \$<br>1.23       | \$ 1               | .13      | \$                           | 1.32                | \$ | -             | \$ | -    | \$   | -           | \$  | 0.73     | \$<br>-    | \$<br>1.95   | \$  | 1.86            | \$   | 2.05          |  |  |  |  |  |

Note: All values in millions of year 2003 dollars.

# Exhibit J.7f Projections of Stage 2 DBPR PWS Costs

(All Ground Water Systems)

Preferred Alternative, 25% Safety Margin

|      | Treatr         | nei | nt Capita          | l Co | sts                |    | Treat         | me | nt O&M            | Cos  | sts                      |    |               |    | N    | on- | Treatment Co        | sts |            |                         | All St        | age      | 2 DBPR             | Cos | ts                 |
|------|----------------|-----|--------------------|------|--------------------|----|---------------|----|-------------------|------|--------------------------|----|---------------|----|------|-----|---------------------|-----|------------|-------------------------|---------------|----------|--------------------|-----|--------------------|
|      |                | _ ( | 90 Pe<br>Confiden  |      |                    |    |               | С  | 90 Pe<br>onfiden  | ce I | Bound                    |    |               |    |      |     |                     |     |            |                         |               | <u>_</u> | 90 Po<br>Confider  |     |                    |
| Year | /lean<br>/alue | (5  | Lower<br>th %tile) |      | Upper<br>th %tile) |    | Mean<br>Value | _  | ₋ower<br>h %tile) | (    | Jpper<br>(95th<br>%tile) | ı  | mplementation | I  | IDSE |     | Monitoring<br>Plans | N   | lonitoring | iginificant<br>xcursion | Mean<br>Value |          | Lower<br>th %tile) |     | Upper<br>th %tile) |
| 2005 | \$<br>-        | \$  | -                  | \$   | -                  | \$ | -             | \$ | -                 | \$   | -                        | \$ | 0.07          | \$ | -    | \$  | -                   | \$  | -          | \$<br>-                 | \$<br>0.07    | \$       | 0.07               | \$  | 0.07               |
| 2006 | \$<br>-        | \$  | -                  | \$   | -                  | \$ | -             | \$ | -                 | \$   | -                        | \$ | 3.98          | \$ | 0.09 | \$  | -                   | \$  | -          | \$<br>-                 | \$<br>4.07    | \$       | 4.07               | \$  | 4.07               |
| 2007 | \$<br>-        | \$  | -                  | \$   | -                  | \$ | -             | \$ | -                 | \$   | -                        | \$ | -             | \$ | 1.09 | \$  | 0.02                | \$  | -          | \$<br>-                 | \$<br>1.11    | \$       | 1.11               | \$  | 1.11               |
| 2008 | \$<br>8.12     | \$  | 7.23               | \$   | 9.01               | \$ | -             | \$ | -                 | \$   | -                        | \$ | 0.05          | \$ | 6.66 | \$  | 0.22                | \$  | -          | \$<br>-                 | \$<br>15.04   | \$       | 14.15              | \$  | 15.93              |
| 2009 | \$<br>33.53    | \$  | 28.81              | \$   | 38.26              | \$ | 0.78          | \$ | 0.73              | \$   | 0.83                     | \$ | 2.01          | \$ | -    | \$  | 3.04                | \$  | -          | \$<br>-                 | \$<br>39.36   | \$       | 34.59              | \$  | 44.15              |
| 2010 | \$<br>57.44    | \$  | 49.05              | \$   | 65.86              | \$ | 3.47          | \$ | 3.22              | \$   | 3.71                     | \$ | 1.99          | \$ | -    | \$  | -                   | \$  | -          | \$<br>-                 | \$<br>62.90   | \$       | 54.26              | \$  | 71.56              |
| 2011 | \$<br>57.44    | \$  | 49.05              | \$   | 65.86              | \$ | 7.94          | \$ | 7.37              | \$   | 8.51                     | \$ | -             | \$ | -    | \$  | -                   | \$  | 0.08       | \$<br>-                 | \$<br>65.46   | \$       | 56.50              | \$  | 74.45              |
| 2012 | \$<br>57.44    | \$  | 49.05              | \$   | 65.86              | \$ | 12.40         | \$ | 11.52             | \$   | 13.30                    | \$ | -             | \$ | -    | \$  | -                   | \$  | 3.32       | \$<br>-                 | \$<br>73.17   | \$       | 63.88              | \$  | 82.47              |
| 2013 | \$<br>49.32    | \$  | 41.82              | \$   | 56.85              | \$ | 16.87         | \$ | 15.66             | \$   | 18.09                    | \$ | -             | \$ | -    | \$  | -                   | \$  | 6.36       | \$<br>-                 | \$<br>72.55   | \$       | 63.84              | \$  | 81.29              |
| 2014 | \$<br>23.91    | \$  | 20.24              | \$   | 27.60              | \$ | 20.56         | \$ | 19.08             | \$   | 22.04                    | \$ | -             | \$ | -    | \$  | -                   | \$  | 6.36       | \$<br>-                 | \$<br>50.83   | \$       | 45.68              | \$  | 56.00              |
| 2015 | \$<br>-        | \$  | -                  | \$   | -                  | \$ | 22.34         | \$ | 20.73             | \$   | 23.95                    | \$ | -             | \$ | -    | \$  | -                   | \$  | 6.36       | \$<br>-                 | \$<br>28.70   | \$       | 27.09              | \$  | 30.31              |
| 2016 | \$<br>-        | \$  | -                  | \$   | -                  | \$ | 22.34         | \$ | 20.73             | \$   | 23.95                    | \$ | -             | \$ | -    | \$  | -                   | \$  | 6.36       | \$<br>-                 | \$<br>28.70   | \$       | 27.09              | \$  | 30.31              |
| 2017 | \$<br>-        | \$  | -                  | \$   | -                  | \$ | 22.34         | \$ | 20.73             | \$   | 23.95                    | \$ | -             | \$ | -    | \$  | -                   | \$  | 6.36       | \$<br>-                 | \$<br>28.70   | \$       | 27.09              | \$  | 30.31              |
| 2018 | \$<br>-        | \$  | -                  | \$   | -                  | \$ | 22.34         | \$ | 20.73             | \$   | 23.95                    | \$ | -             | \$ | -    | \$  | -                   | \$  | 6.36       | \$<br>-                 | \$<br>28.70   | \$       | 27.09              | \$  | 30.31              |
| 2019 | \$<br>-        | \$  | -                  | \$   | -                  | \$ | 22.34         | \$ | 20.73             | \$   | 23.95                    | \$ | -             | \$ | -    | \$  | -                   | \$  | 6.36       | \$<br>-                 | \$<br>28.70   | \$       | 27.09              | \$  | 30.31              |
| 2020 | \$<br>-        | \$  | -                  | \$   | -                  | \$ | 22.34         | \$ | 20.73             | \$   | 23.95                    | \$ | -             | \$ | -    | \$  | -                   | \$  | 6.36       | \$<br>-                 | \$<br>28.70   | \$       | 27.09              | \$  | 30.31              |
| 2021 | \$<br>-        | \$  |                    | \$   | -                  | -  | 22.34         | \$ | 20.73             | \$   | 23.95                    | \$ |               | \$ | -    | \$  | -                   | \$  | 6.36       | \$<br>-                 | \$<br>28.70   | \$       | 27.09              | \$  | 30.31              |
| 2022 | \$<br>-        | \$  | -                  | \$   | -                  | _  |               | \$ | 20.73             | \$   | 23.95                    | \$ |               | \$ | -    | \$  | -                   | \$  | 6.36       | \$<br>-                 | \$<br>28.70   | \$       | 27.09              | \$  | 30.31              |
| 2023 | \$<br>-        | \$  | -                  | \$   | -                  | \$ |               | \$ | 20.73             | \$   | 23.95                    | \$ |               | \$ | -    | \$  | -                   | \$  | 6.36       | \$<br>-                 | \$<br>28.70   | \$       | 27.09              | \$  | 30.31              |
| 2024 | \$<br>-        | \$  | -                  | \$   | -                  | ÷  | 22.34         | \$ | 20.73             | \$   | 23.95                    | \$ |               | \$ | -    | \$  | -                   | \$  | 6.36       | \$<br>-                 | \$<br>28.70   | \$       | 27.09              | \$  | 30.31              |
| 2025 | \$<br>-        | \$  |                    | \$   | -                  | ÷  | 22.34         | \$ | 20.73             | \$   | 23.95                    | \$ |               | \$ | -    | \$  | -                   | \$  | 6.36       | \$                      | \$<br>28.70   | \$       | 27.09              | \$  | 30.31              |
| 2026 | \$<br>-        | \$  | -                  | \$   | -                  | \$ |               | \$ | 20.73             | \$   | 23.95                    | \$ |               | \$ | -    | \$  | -                   | \$  | 6.36       | \$<br>-                 | \$<br>28.70   | \$       | 27.09              | \$  | 30.31              |
| 2027 | \$<br>-        | \$  | -                  | \$   | -                  | \$ | 22.34         | \$ | 20.73             | \$   | 23.95                    | \$ | -             | \$ | -    | \$  | -                   | \$  | 6.36       | \$<br>-                 | \$<br>28.70   | \$       | 27.09              | \$  | 30.31              |
| 2028 | \$<br>-        | \$  | -                  | \$   | -                  | \$ | 22.34         | \$ | 20.73             | \$   | 23.95                    | \$ | -             | \$ | -    | \$  | -                   | \$  | 6.36       | \$<br>-                 | \$<br>28.70   | \$       | 27.09              | \$  | 30.31              |
| 2029 | \$<br>-        | \$  | -                  | \$   | -                  | \$ | 22.34         | \$ | 20.73             | \$   | 23.95                    | \$ | -             | \$ | -    | \$  | -                   | \$  | 6.36       | \$<br>-                 | \$<br>28.70   | \$       | 27.09              | \$  | 30.31              |

Note: All values in millions of year 2003 dollars.

### Exhibit J.7g Projections of Stage 2 DBPR PWS Costs

(All Systems)

### Preferred Alternative, 25% Safety Margin

| - roioirou |               |    | ent Capital         |                     | Treat         | tmer | nt O&M (          | Cost | s                        |                |    | N     | on-Treatment Co     | osts       |                           | All Sta       | ge 2 | DBPR C            | ost | s                   |
|------------|---------------|----|---------------------|---------------------|---------------|------|-------------------|------|--------------------------|----------------|----|-------|---------------------|------------|---------------------------|---------------|------|-------------------|-----|---------------------|
|            |               |    | 90 Pe<br>Confiden   |                     |               | C    | 90 Pe<br>Confiden |      |                          |                |    |       |                     |            |                           |               | (    | 90 Pe<br>Confiden |     |                     |
| Year       | Mean<br>Value | (5 | Lower<br>5th %tile) | Upper<br>5th %tile) | Mean<br>Value |      | Lower<br>h %tile) | (    | Upper<br>(95th<br>%tile) | Implementation | ı  | DSE   | Monitoring<br>Plans | Monitoring | Siginificant<br>Excursion | Mean<br>Value |      | Lower<br>h %tile) |     | Upper<br>5th %tile) |
| 2005       | \$<br>-       | \$ | -                   | \$<br>-             | \$<br>-       | \$   | -                 | \$   | -                        | \$<br>0.76     | \$ | -     | \$ -                | \$ -       | \$ -                      | \$<br>0.76    | \$   | 0.76              | \$  | 0.76                |
| 2006       | \$<br>-       | \$ | -                   | \$<br>-             | \$<br>-       | \$   | -                 | \$   | -                        | \$<br>5.40     | \$ | 8.56  | \$ -                | \$ -       | \$ -                      | \$<br>13.96   | \$   | 13.96             | \$  | 13.96               |
| 2007       | \$<br>-       | \$ | -                   | \$<br>-             | \$<br>-       | \$   | -                 | \$   | -                        | \$<br>-        | \$ | 23.58 | \$ 0.24             | \$ -       | \$ -                      | \$<br>23.81   | \$   | 23.81             | \$  | 23.81               |
| 2008       | \$<br>81.31   | \$ | 55.02               | \$<br>109.95        | \$<br>-       | \$   | -                 | \$   | -                        | \$<br>0.65     | \$ | 25.30 | \$ 0.83             | \$ -       | \$ -                      | \$<br>108.09  | \$   | 81.80             | \$  | 136.72              |
| 2009       | \$<br>139.09  | \$ | 96.16               | \$<br>185.32        | \$<br>3.68    | \$   | 2.65              | \$   | 4.74                     | \$<br>2.81     | \$ | -     | \$ 3.95             | \$ -       | \$ -                      | \$<br>149.53  | \$   | 105.57            | \$  | 196.82              |
| 2010       | \$<br>187.43  | \$ | 130.78              | \$<br>248.10        | \$<br>11.51   | \$   | 8.38              | \$   | 14.70                    | \$<br>2.70     | \$ | -     | \$ -                | \$ -       | \$ -                      | \$<br>201.63  | \$   | 141.86            | \$  | 265.50              |
| 2011       | \$<br>187.43  | \$ | 130.78              | \$<br>248.10        | \$<br>23.00   | \$   | 16.83             | \$   | 29.27                    | \$<br>-        | \$ | -     | \$ -                | \$ 0.51    | \$ -                      | \$<br>210.93  | \$   | 148.12            | \$  | 277.88              |
| 2012       | \$<br>187.43  | \$ | 130.78              | \$<br>248.10        | \$<br>34.48   | \$   | 25.28             | \$   | 43.84                    | \$<br>-        | \$ | -     | \$ -                | \$ 2.57    | \$ 0.06                   | \$<br>224.54  | \$   | 158.69            | \$  | 294.57              |
| 2013       | \$<br>106.11  | \$ | 75.76               | \$<br>138.15        | \$<br>45.97   | \$   | 33.73             | \$   | 58.41                    | \$<br>-        | \$ | -     | \$ -                | \$ 4.32    | \$ 0.15                   | \$<br>156.55  | \$   | 113.96            | \$  | 201.03              |
| 2014       | \$<br>48.34   | \$ | 34.62               | \$<br>62.78         | \$<br>53.77   | \$   | 39.53             | \$   | 68.23                    | \$<br>-        | \$ | -     | \$ -                | \$ 4.32    | \$ 0.21                   | \$<br>106.64  | \$   | 78.69             | \$  | 135.55              |
| 2015       | \$<br>-       | \$ | -                   | \$<br>-             | \$<br>57.43   | \$   | 42.25             | \$   | 72.84                    | \$<br>-        | \$ | -     | \$ -                | \$ 4.32    | \$ 0.21                   | \$<br>61.96   | \$   | 46.78             | \$  | 77.37               |
| 2016       | \$<br>-       | \$ | -                   | \$<br>-             | \$<br>57.43   | \$   | 42.25             | \$   | 72.84                    | \$<br>-        | \$ | -     | \$ -                | \$ 4.32    | \$ 0.21                   | \$<br>61.96   | \$   | 46.78             | \$  | 77.37               |
| 2017       | \$<br>-       | \$ | -                   | \$<br>-             | \$<br>57.43   | \$   | 42.25             | \$   | 72.84                    | \$<br>-        | \$ | -     | \$ -                | \$ 4.32    | \$ 0.21                   | \$<br>61.96   | \$   | 46.78             | \$  | 77.37               |
| 2018       | \$<br>-       | \$ | -                   | \$<br>-             | \$<br>57.43   | \$   | 42.25             | \$   | 72.84                    | \$<br>-        | \$ | -     | \$ -                | \$ 4.32    | \$ 0.21                   | \$<br>61.96   | \$   | 46.78             | \$  | 77.37               |
| 2019       | \$<br>-       | \$ | -                   | \$<br>-             | \$<br>57.43   | \$   | 42.25             | \$   | 72.84                    | \$<br>-        | \$ | -     | \$ -                | \$ 4.32    | \$ 0.21                   | \$<br>61.96   | \$   | 46.78             | \$  | 77.37               |
| 2020       | \$<br>-       | \$ | -                   | \$<br>-             | \$<br>57.43   | \$   | 42.25             | \$   | 72.84                    | \$<br>-        | \$ | -     | \$ -                | \$ 4.32    | \$ 0.21                   | \$<br>61.96   | \$   | 46.78             | \$  | 77.37               |
| 2021       | \$<br>-       | \$ | -                   | \$<br>-             | \$<br>57.43   | \$   | 42.25             | \$   | 72.84                    | \$<br>-        | \$ | -     | \$ -                | \$ 4.32    | \$ 0.21                   | \$<br>61.96   | \$   | 46.78             | \$  | 77.37               |
| 2022       | \$<br>-       | \$ | -                   | \$<br>-             | \$<br>57.43   | \$   | 42.25             | \$   | 72.84                    | \$<br>-        | \$ | -     | \$ -                | \$ 4.32    | \$ 0.21                   | \$<br>61.96   | \$   | 46.78             | \$  | 77.37               |
| 2023       | \$<br>-       | \$ | -                   | \$<br>-             | \$<br>57.43   | \$   | 42.25             | \$   | 72.84                    | \$<br>-        | \$ | -     | \$ -                | \$ 4.32    | \$ 0.21                   | \$<br>61.96   | \$   | 46.78             | \$  | 77.37               |
| 2024       | \$<br>-       | \$ | -                   | \$<br>-             | \$<br>57.43   | \$   | 42.25             | \$   | 72.84                    | \$<br>-        | \$ | -     | \$ -                | \$ 4.32    | \$ 0.21                   | \$<br>61.96   | \$   | 46.78             | \$  | 77.37               |
| 2025       | \$<br>-       | \$ | -                   | \$<br>-             | \$<br>57.43   | \$   | 42.25             | \$   | 72.84                    | \$<br>-        | \$ | -     | \$ -                | \$ 4.32    | \$ 0.21                   | \$<br>61.96   | \$   | 46.78             | \$  | 77.37               |
| 2026       | \$<br>-       | \$ | -                   | \$<br>-             | \$<br>57.43   | \$   | 42.25             | \$   | 72.84                    | \$<br>-        | \$ | -     | \$ -                | \$ 4.32    | \$ 0.21                   | \$<br>61.96   | \$   | 46.78             | \$  | 77.37               |
| 2027       | \$<br>-       | \$ | -                   | \$<br>-             | \$<br>57.43   | \$   | 42.25             | \$   | 72.84                    | \$<br>-        | \$ | -     | \$ -                | \$ 4.32    | \$ 0.21                   | \$<br>61.96   | \$   | 46.78             | \$  | 77.37               |
| 2028       | \$<br>-       | \$ | -                   | \$<br>-             | \$<br>57.43   | \$   | 42.25             | \$   | 72.84                    | \$<br>-        | \$ | -     | \$ -                | \$ 4.32    | \$ 0.21                   | \$<br>61.96   | \$   | 46.78             | \$  | 77.37               |
| 2029       | \$<br>-       | \$ | -                   | \$<br>-             | \$<br>57.43   | \$   | 42.25             | \$   | 72.84                    | \$<br>-        | \$ | -     | \$ -                | \$ 4.32    | \$ 0.21                   | \$<br>61.96   | \$   | 46.78             | \$  | 77.37               |

Note: All values in millions of year 2003 dollars.

Exhibit J.7h Projections of Stage 2 DBPR Primacy Agency Costs

Preferred Alternative, 25% Safety Margin

| Year | Implementation Costs | IDSE Costs | Monitoring Plan<br>Costs | Compliance<br>Monitoring<br>Costs | Significant<br>Excursion<br>Report Costs |
|------|----------------------|------------|--------------------------|-----------------------------------|------------------------------------------|
| 2005 | \$ 3.88              | \$ -       | \$ -                     | \$ -                              | \$ -                                     |
| 2006 | \$ 3.88              | \$ 0.04    | \$ -                     | \$ -                              | \$ -                                     |
| 2007 | \$ -                 | \$ 0.13    | \$ 0.02                  | \$ -                              | \$ -                                     |
| 2008 | \$ -                 | \$ 2.06    | \$ 0.06                  | \$ -                              | \$ -                                     |
| 2009 | \$ -                 | \$ -       | \$ 0.85                  | \$ -                              | \$ -                                     |
| 2010 | \$ -                 | \$ -       | \$ -                     | \$ -                              | \$ -                                     |
| 2011 | \$ -                 | \$ -       | \$ -                     | \$ 1.59                           | \$ 0.11                                  |
| 2012 | \$ -                 | \$ -       | \$ -                     | \$ 1.59                           | \$ 0.11                                  |
| 2013 | -                    | \$ -       | \$ -                     | \$ 1.59                           | \$ 0.11                                  |
| 2014 | -                    | \$ -       | \$ -                     | \$ 1.59                           | \$ 0.11                                  |
| 2015 | -                    | \$ -       | \$ -                     | \$ 1.59                           | \$ 0.11                                  |
| 2016 | -                    | \$ -       | \$ -                     | \$ 1.59                           | \$ 0.11                                  |
| 2017 | -                    | \$ -       | \$ -                     | \$ 1.59                           | \$ 0.11                                  |
| 2018 | \$ -                 | \$ -       | \$ -                     | \$ 1.59                           | \$ 0.11                                  |
| 2019 | -                    | \$ -       | \$ -                     | \$ 1.59                           | \$ 0.11                                  |
| 2020 | -                    | \$ -       | \$ -                     | \$ 1.59                           | \$ 0.11                                  |
| 2021 | -                    | \$ -       | \$ -                     | \$ 1.59                           | \$ 0.11                                  |
| 2022 | -                    | \$ -       | \$ -                     | \$ 1.59                           | \$ 0.11                                  |
| 2023 | -                    | \$ -       | \$ -                     | \$ 1.59                           | \$ 0.11                                  |
| 2024 | -                    | \$ -       | \$ -                     | \$ 1.59                           | \$ 0.11                                  |
| 2025 | -                    | \$ -       | \$ -                     | \$ 1.59                           | \$ 0.11                                  |
| 2026 | -                    | \$ -       | \$ -                     | \$ 1.59                           | \$ 0.11                                  |
| 2027 | \$ -                 | \$ -       | \$ -                     | \$ 1.59                           | \$ 0.11                                  |
| 2028 | \$ -                 | \$ -       | \$ -                     | \$ 1.59                           | \$ 0.11                                  |
| 2029 | \$ -                 | \$ -       | \$ -                     | \$ 1.59                           | \$ 0.11                                  |

Note: All values in millions of year 2003 dollars. Source: Derived from Exhibits J.1h and D.7.

# Exhibit J.7i Present Value of Annual Cost Projections at 3% Discount Rate (All Systems and Primacy Agencies)

Preferred Alternative, 25% Safety Margin

|       |               | Surfa | ace Water CW         | vs.                   |      | Surfa         | ace Wa | ater NT       | NCWS                  | D  | isinfecti   | ng Grou | nd W | later CWS             | Disinfectin   | ng G | Fround Wate         | r NTNCWS              | Primacy Agencies |               | Total             |                 |                    |
|-------|---------------|-------|----------------------|-----------------------|------|---------------|--------|---------------|-----------------------|----|-------------|---------|------|-----------------------|---------------|------|---------------------|-----------------------|------------------|---------------|-------------------|-----------------|--------------------|
|       |               |       | 90 Pe<br>Confiden    |                       |      |               | C      |               | ercent<br>ice Bound   |    |             |         |      | ercent<br>ce Bound    |               |      | 90 Pe<br>Confiden   |                       |                  |               | 90 Pe<br>Confiden | ercent<br>ce Bo |                    |
|       | Mean<br>Value | (     | Lower<br>(5th %tile) | Upper<br>(95th %tile) | ,    | Mean<br>Value |        | wer<br>%tile) | Upper<br>(95th %tile) |    | ean<br>alue | Lowe    |      | Upper<br>(95th %tile) | Mean<br>Value | (!   | Lower<br>5th %tile) | Upper<br>(95th %tile) | Point Estimate   | Mean<br>Value | _ower<br>h %tile) |                 | Upper<br>th %tile) |
| 2005  | \$ 0.         | 6 \$  | 0.6                  | \$ 0.                 | 6 \$ | \$ 0.0        | \$     | 0.0           | \$ 0.0                | \$ | 0.1         | \$      | 0.1  | \$ 0.1                | \$<br>0.0     | \$   | 0.0                 | \$ 0.0                | \$ 3.7           | \$<br>4.4     | \$<br>4.4         | \$              | 4.4                |
| 2006  | \$ 9.         | \$    | 9.0                  | \$ 9.                 | 0 \$ | \$ 0.1        | \$     | 0.1           | \$ 0.1                | \$ | 3.2         | \$      | 3.2  | \$ 3.2                | \$<br>0.5     | \$   | 0.5                 | \$ 0.5                | \$ 3.6           | \$<br>16.4    | \$<br>16.4        | \$              | 16.4               |
| 2007  | \$ 20.        | 1 \$  | 20.1                 | \$ 20.                | 1 \$ | 0.0           | \$     | 0.0           | \$ 0.0                | \$ | 1.0         | \$      | 1.0  | \$ 1.0                | \$<br>0.0     | \$   | 0.0                 | \$ 0.0                | \$ 0.1           | \$<br>21.3    | \$<br>21.3        | \$              | 21.3               |
| 2008  | \$ 80.        | 2 \$  | 58.3                 | \$ 104.               | 1 \$ | 0.1           | \$     | 0.1           | \$ 0.1                | \$ | 13.0        | \$ 1    | 2.2  | \$ 13.7               | \$<br>0.0     | \$   | 0.0                 | \$ 0.0                | \$ 1.8           | \$<br>95.1    | \$<br>72.4        | \$              | 119.8              |
| 2009  | \$ 91.        | 5 \$  | 59.0                 | \$ 126.               | 7 \$ | \$ 0.8        | \$     | 0.4           | \$ 1.1                | \$ | 31.3        | \$ 2    | 7.4  | \$ 35.1               | \$<br>1.7     | \$   | 1.5                 | \$ 1.9                | \$ 0.7           | \$<br>125.9   | \$<br>89.1        | \$              | 165.5              |
| 2010  | \$ 111.       | 4 \$  | 70.5                 | \$ 155.               | 6 \$ | \$ 1.4        | \$     | 0.8           | \$ 2.1                | \$ | 48.7        | \$ 4    | 2.0  | \$ 55.4               | \$<br>2.4     | \$   | 2.1                 | \$ 2.8                | \$ -             | \$<br>163.9   | \$<br>115.3       | \$              | 215.9              |
| 2011  | \$ 113.       | 3 \$  | 71.5                 | \$ 158.               | 3 \$ | 1.5           | \$     | 0.8           | \$ 2.2                | \$ | 49.3        | \$ 4    | 2.6  | \$ 56.1               | \$<br>2.3     | \$   | 2.0                 | \$ 2.7                | \$ 1.3           | \$<br>167.9   | \$<br>118.3       | \$              | 220.7              |
| 2012  | \$ 114.       | 4 \$  | 71.8                 | \$ 160.               | 1 \$ | 1.6           | \$     | 0.9           | \$ 2.4                | \$ | 53.3        | \$ 4    | 6.6  | \$ 60.1               | \$<br>2.7     | \$   | 2.4                 | \$ 3.1                | \$ 1.3           | \$<br>173.4   | \$<br>122.9       | \$              | 227.1              |
| 2013  | \$ 60.        | 8 \$  | 36.4                 | \$ 86.                | 6 \$ | \$ 1.7        | \$     | 0.9           | \$ 2.5                | \$ | 50.9        | \$ 4    | 4.8  | \$ 57.0               | \$<br>3.1     | \$   | 2.7                 | \$ 3.4                | \$ 1.3           | \$<br>117.8   | \$<br>86.1        | \$              | 150.9              |
| 2014  | \$ 39.        | 1 \$  | 23.2                 | \$ 55.                | 6 \$ | 1.3           | \$     | 0.7           | \$ 1.9                | \$ | 34.5        | \$ 3    | 1.0  | \$ 38.0               | \$<br>2.3     | \$   | 2.0                 | \$ 2.5                | \$ 1.2           | \$<br>78.3    | \$<br>58.1        | \$              | 99.2               |
| 2015  | \$ 22.        | 5 \$  | 13.4                 | \$ 31.                | 8 \$ | \$ 0.8        | \$     | 0.4           | \$ 1.2                | \$ | 18.8        | \$ 1    | 7.7  | \$ 19.8               | \$<br>1.4     | \$   | 1.3                 | \$ 1.4                | \$ 1.2           | \$<br>44.7    | \$<br>34.0        | \$              | 55.5               |
| 2016  | \$ 21.        | 9 \$  | 13.0                 | \$ 30.                | 9 \$ | \$ 0.8        | \$     | 0.4           | \$ 1.1                | \$ | 18.2        | \$ 1    | 7.2  | \$ 19.2               | \$<br>1.3     | \$   | 1.3                 | \$ 1.4                | \$ 1.2           | \$<br>43.4    | \$<br>33.0        | \$              | 53.8               |
| 2017  | \$ 21.        | 2 \$  | 12.6                 | \$ 30.                | 0 \$ | \$ 0.7        | \$     | 0.4           | \$ 1.1                | \$ | 17.7        | \$ 1    | 6.7  | \$ 18.7               | \$<br>1.3     | \$   | 1.2                 | \$ 1.4                | \$ 1.1           | \$<br>42.1    | \$<br>32.1        | \$              | 52.3               |
| 2018  | \$ 20.        | 6 \$  | 12.3                 | \$ 29.                | 1 \$ | \$ 0.7        | \$     | 0.4           | \$ 1.1                | \$ | 17.2        | \$ 1    | 6.2  | \$ 18.1               | \$<br>1.3     | \$   | 1.2                 | \$ 1.3                | \$ 1.1           | \$<br>40.9    | \$<br>31.1        | \$              | 50.8               |
| 2019  | \$ 20.        | 5 \$  | 11.9                 | \$ 28.                | 3 \$ | \$ 0.7        | \$     | 0.4           | \$ 1.0                | \$ | 16.7        | \$ 1    | 5.7  | \$ 17.6               | \$<br>1.2     | \$   | 1.2                 | \$ 1.3                | \$ 1.1           | \$<br>39.7    | \$<br>30.2        | \$              | 49.3               |
| 2020  | \$ 19.        | 4 \$  | 11.6                 | \$ 27.                | 5 \$ | \$ 0.7        | \$     | 0.4           | \$ 1.0                | \$ | 16.2        | \$ 1    | 5.3  | \$ 17.1               | \$<br>1.2     | \$   | 1.1                 | \$ 1.2                | \$ 1.0           | \$<br>38.5    | \$<br>29.3        | \$              | 47.8               |
| 2021  | \$ 18.        | 9 \$  | 11.2                 | \$ 26.                | 7 \$ | \$ 0.7        | \$     | 0.4           | \$ 1.0                | \$ | 15.7        | \$ 1    | 4.8  | \$ 16.6               | \$<br>1.1     | \$   | 1.1                 | \$ 1.2                | \$ 1.0           | \$<br>37.4    | \$<br>28.5        | \$              | 46.5               |
| 2022  | \$ 18.        | 3 \$  | 10.9                 | \$ 25.                | 9 \$ | \$ 0.6        | \$     | 0.3           | \$ 0.9                | \$ | 15.3        | \$ 1    | 4.4  | \$ 16.1               | \$<br>1.1     | \$   | 1.1                 | \$ 1.2                | \$ 1.0           | \$<br>36.3    | \$<br>27.7        | \$              | 45.1               |
| 2023  | \$ 17.        | 8 \$  | 10.6                 | \$ 25.                | 1 \$ | \$ 0.6        | \$     | 0.3           | \$ 0.9                | \$ | 14.8        | \$ 1    | 4.0  | \$ 15.6               | \$<br>1.1     | \$   | 1.0                 | \$ 1.1                | \$ 0.9           | \$<br>35.3    | \$<br>26.8        | \$              | 43.8               |
| 2024  | \$ 17.        | 3 \$  | 10.3                 | \$ 24.                | 4 \$ | \$ 0.6        | \$     | 0.3           | \$ 0.9                | \$ | 14.4        | \$ 1    | 3.6  | \$ 15.2               | \$<br>1.1     | \$   | 1.0                 | \$ 1.1                | \$ 0.9           | \$<br>34.2    | \$<br>26.1        | \$              | 42.5               |
| 2025  | \$ 16.        | 8 \$  | 10.0                 | \$ 23.                | 7 \$ | \$ 0.6        | \$     | 0.3           | \$ 0.9                | \$ | 14.0        | \$ 1    | 3.2  | \$ 14.7               | \$<br>1.0     | \$   | 1.0                 | \$ 1.1                | \$ 0.9           | \$<br>33.2    | \$<br>25.3        | \$              | 41.3               |
| 2026  | \$ 16.        | 3 \$  | 9.7                  | \$ 23.                | 0 \$ | \$ 0.6        | \$     | 0.3           | \$ 0.8                | \$ | 13.6        | \$ 1    | 2.8  | \$ 14.3               | \$<br>1.0     | \$   | 0.9                 | \$ 1.0                | \$ 0.9           | \$<br>32.3    | \$<br>24.6        | \$              | 40.1               |
| 2027  | \$ 15.        | 8 \$  | 9.4                  | \$ 22.                | 3 \$ | \$ 0.6        | \$     | 0.3           | \$ 0.8                | \$ | 13.2        | \$ 1    | 2.4  | \$ 13.9               | \$<br>1.0     | \$   | 0.9                 | \$ 1.0                | \$ 0.8           | \$<br>31.3    | \$<br>23.9        | \$              | 38.9               |
| 2028  | \$ 15.        | 4 \$  | 9.1                  | \$ 21.                | 7 \$ | \$ 0.5        | \$     | 0.3           | \$ 0.8                | \$ | 12.8        | \$ 1    | 2.0  | \$ 13.5               | \$<br>0.9     | \$   | 0.9                 | \$ 1.0                | \$ 0.8           | \$<br>30.4    | \$<br>23.2        | \$              | 37.8               |
| 2029  | \$ 14.        | 9 \$  | 8.9                  | \$ 21.                | 1 \$ | \$ 0.5        | \$     | 0.3           | \$ 0.8                | \$ | 12.4        | \$ 1    | 1.7  | \$ 13.1               | \$<br>0.9     | \$   | 0.9                 | \$ 0.9                | \$ 0.8           | \$<br>29.5    | \$<br>22.5        | \$              | 36.7               |
| Total | \$ 917.       | 7 \$  | 585.1                | \$ 1,268.             | 4 \$ | \$ 18.1       | \$     | 9.8           | \$ 26.8               | \$ | 515.9       | \$ 46   | 8.4  | \$ 563.5              | \$<br>31.9    | \$   | 29.3                | \$ 34.5               | \$ 29.8          | \$<br>1,513.4 | \$<br>1,122.4     | \$              | 1,923.0            |
| Ann.  | \$ 52.        | 7 \$  | 33.6                 | \$ 72.                | 8 \$ | \$ 1.0        | \$     | 0.6           | \$ 1.5                | \$ | 29.6        | \$ 2    | 6.9  | \$ 32.4               | \$<br>1.8     | \$   | 1.7                 | \$ 2.0                | \$ 1.7           | \$<br>86.9    | \$<br>64.5        | \$              | 110.4              |

Notes: Present values in millions of 2003 dollars. Estimates are discounted to 2005.

Detail may not add exactly to totals due to independent rounding.

Ann = value of total annualized at discount rate.

Source: Derived from Exhibits J.7a through h.

# **Appendix K**

Description of Stage 2
Cost and Benefits
Models

# Appendix K Description of Stage 2 Cost and Benefits Models

### K.1 Summary

This appendix describes the SAS cost and benefits models used for the Stage 2 DBPR. A detailed description of the non-treatment cost model is provided in Appendix H of this document, and is therefore not included in this Appendix.

An overview flowchart is provided for each of the components of the cost and benefits models, followed by a detailed description of the input and output files used in each component. [Note to EPA: descriptions of the input and output files for CreateInput2.sas, TreatmentCostModelEndingTechnology.sas, and SmallPlantsAffordability.sas will be provided in the next draft.] This appendix is organized as follows:

| Exhibit K.1   | Flowchart of Stage 2 Cost Model                                        |
|---------------|------------------------------------------------------------------------|
| Exhibit K.2a  | Flowchart of prog1.sas                                                 |
| Exhibit K.2b  | Input/Output Files for prog1.sas                                       |
| Exhibit K.2c  | Description of Inputs to prog1.sas                                     |
| Exhibit K.3a  | Flowchart of CreateInput1.sas                                          |
| Exhibit K.3b  | Input/Output Files for CreateInput1.sas                                |
| Exhibit K.3c  | Description of Inputs to CreateInput1.sas                              |
| Exhibit K.4a  | Flowchart of Treatment Cost Model.sas                                  |
| Exhibit K.4b  | Input/Output Files for Treatment Cost Model.sas                        |
| Exhibit K.5a  | Flowchart of CreateInput2.sas                                          |
| Exhibit K.5b  | Input/Output Files for CreateInput2.sas                                |
| Exhibit K.6a  | Flowchart of HH.sas (Household Model)                                  |
| Exhibit K.6b  | Input/Output Files for HH.sas (Household Model)                        |
| Exhibit K.7a  | Flowchart of SmallPlants.sas                                           |
| Exhibit K.7b  | Input/Output Files for SmallPlants.sas                                 |
| Exhibit K.8a  | Flowchart of Discounting.sas                                           |
| Exhibit K.8b  | Input/Output Files for Discounting.sas                                 |
| Exhibit K.9a  | Flowchart of TreatmentCostModelEndingTechnology.sas                    |
| Exhibit K.9b  | $Input/Output\ Files\ for\ Treatment CostModel Ending Technology. sas$ |
| Exhibit K.10a | Flowchart of CreateInput1Afford.sas                                    |
| Exhibit K.10b | Input/Output Files for CreateInput1Afford.sas                          |
| Exhibit K.11  | Flowchart of Stage2Benefits_CasesAvoided.sas                           |

Exhibit K.1 Flowchart of Stage 2 Cost Model



# Exhibit K.2a Flowchart of prog1.sas



### Exhibit K.2b Input/Output Files for prog1.sas

# **INPUT**

Labor Rates.xls

Stage 2 Cost Summary\_bag Filter.xls

Stage 2 Cost Summary\_cartridge Filter.xls

Stage 2 Cost Summary\_bci\_history.xls

Stage 2 Cost Summary\_cci\_history.xls

Stage 2 Cost Summary\_capital\_cost\_indices.xls

Stage 2 Cost Summary\_technology\_cost\_base\_year.xls

Stage 2 Cost Summary\_convert\_to\_chloramines\_0.55NH3\_dose.xls

Stage 2 Cost Summary\_convert\_to\_chloramines\_0.15NH3\_dose.xls

Stage 2 Cost Summary\_GAC\_EBCT\_20\_d240.xls

Stage 2 Cost Summary\_GAC\_EBCT\_20\_d90.xls

Stage 2 Cost Summary\_GAC\_EBCT\_10\_d360.xls

Stage 2 Cost Summary\_nanofiltration.xls

Stage 2 Cost Summary\_microfiltration.xls

Stage 2 Cost Summary\_chlorinedioxide.xls

Stage 2 Cost Summary\_Ozone\_0\_5log.xls

Stage 2 Cost Summary\_Ozone\_1log.xls

Stage 2 Cost Summary\_Ozone\_2log.xls

Stage 2 Cost Summary\_UV40MJ\_CM2.xls

(see Exhibit K-1c for a description of input files to prog1.sas)

#### prog1.sas

This program uses data from various excel inputs and recalculates and re-creates outputs originally provided in the various input sheets. The program recreates the Stage 2 Cost Summary spreadsheets using SAS, and produces input files used by CreateInput1.sas

### **OUTPUT**

Capital and O&M costs based on average and design flows are calculated and saved as the following files:

Unit Cost\_BAG\_FILTER.xls

Unit Cost\_CARTRIDGE\_FILTER.xls

Unit Cost\_TECHNOLOGY\_COST\_BASE\_YEAR.xls

Unit Cost\_convert\_to\_chloramine\_055NH3.xls

Unit Cost\_convert\_to\_chloramine\_015NH3.xls

Unit Cost\_GAC\_EBCT\_20\_240d.xls

Unit Cost\_GAC\_EBCT\_20\_90d.xls

Unit Cost\_GAC\_EBCT\_10\_360d.xls

UnitCost\_NANOFILTRATION.xls

Unit Cost\_MICROFILTRATION.xls

Unit Cost\_CHLORINEDIOXIDE.xls

Unit Cost\_OZONE\_0\_5LOG.xls

Unit Cost\_OZONE\_1LOG.xls

Unit Cost\_OZONE\_2LOG.xls

Unit Cost\_.UV40mJ\_CM2.xls

Unit Cost\_UV2X200MJ\_CM2.xls

# Exhibit K.2c Description of Inputs to prog1.sas

| Description of Inputs (                                      | ı                                                                                                                                                                                                                         |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name of Input File                                           | Description of Input File                                                                                                                                                                                                 |
| Labor Rates.xls                                              | Provides technical and managerial labor rates corresponding to average and design flow for the nine size categories.                                                                                                      |
| Stage 2 Cost Summary_bag Filter.xls                          | Provides useful life and costs associated with bag filters corresponding to design and average flows.                                                                                                                     |
| Stage 2 Cost Summary_cartridge Filter.xls                    | Provides useful life and costs associated with cartridge filters corresponding to design and average flows.                                                                                                               |
| Stage 2 Cost Summary_bci_history.xls                         | Provides monthly and annual BCI from 1915-2003.                                                                                                                                                                           |
| Stage 2 Cost Summary_cci_history.xls                         | Provides monthly and annual CCI from 1915-2002. Only January CCI provided for 2003.                                                                                                                                       |
| Stage 2 Cost Summary_capital_cost_indices.xls                | Provides capital cost indices – month (annual), year (2003)                                                                                                                                                               |
| Stage 2 Cost Summary_technology_cost_base_year.xls           | Provides month and year that costs were developed in for nine technologies                                                                                                                                                |
| Stage 2 Cost Summary_convert_to_chloramines_0.55NH3_dose.xls | Provides useful life and equations to figure out system chemical feed and various costs based on parameter values and average and design flow provided in spreadsheet.                                                    |
| Stage 2 Cost Summary_convert_to_chloramines_0.15NH3_dose.xls | Provides useful life and equations to figure out system chemical feed and various costs based on parameter values and average and design flow provided in spreadsheet.                                                    |
| Stage 2 Cost Summary_GAC_EBCT_20_d240.xls                    | Provides useful life, operator training, and number of GAC contactors in use corresponding to average and design flow.                                                                                                    |
| Stage 2 Cost Summary_GAC_EBCT_20_d90.xls                     | Provides useful life, operator training, and number of GAC contactors in use corresponding to average and design flow.                                                                                                    |
| Stage 2 Cost Summary_GAC_EBCT_10_d360.xls                    | Provides useful life, operator training, and number of GAC contactors in use corresponding to average and design flow.                                                                                                    |
| Stage 2 Cost Summary_nanofiltration.xls                      | Provides useful life and various parameter values corresponding to average and design flow.                                                                                                                               |
| Stage 2 Cost Summary_microfiltration.xls                     | Provides useful life and various parameter values corresponding to average and design flow.                                                                                                                               |
| Stage 2 Cost Summary_chlorinedioxide.xls                     | Provides useful life and various parameter values corresponding to average and design flow.                                                                                                                               |
| Stage 2 Cost Summary_Ozone_0_5log.xls                        | Provides average and maximum dose transferred, useful life, and various parameter values corresponding to average and design flow.                                                                                        |
| Stage 2 Cost Summary_Ozone_1log.xls                          | Provides average and maximum dose transferred, useful life, and various parameter values corresponding to average and design flow.                                                                                        |
| Stage 2 Cost Summary_Ozone_2log.xls                          | Provides average and maximum dose transferred, useful life, and various parameter values corresponding to average and design flow.                                                                                        |
| Stage 2 Cost Summary_UV40MJ_CM2.xls                          | Provides number and size of reactors, and equations to figure out number of reactors, footprint, electrical costs, and various other costs based on parameter values and average and design flow provided in spreadsheet. |

# Exhibit K.3a Flowchart of CreateInput1.sas



# Exhibit K.3b Input/Output Files for CreateInput1.sas

#### **INPUT**

SDWIS Inventory.mdb

Common cost inputs\_Percent Mixed Systems.xls

Common cost inputs\_Other cost inputs.xls

Common cost inputs\_Plants per System Treatment.xls

Common cost inputs\_Percent Disinfecting.xls

Common cost inputs\_Common Household Numbers.xls

(see Exhibit K-3c for a description of input files to CreateInput1.sas)

#### CreateInput1.sas

This program used the Stage2 input data files to produce intermediate data files used for the following models -

- Treatment Cost Model
- Household Cost Model
- Small Plant Model
- Discounting Model
- Treatment Cost Model-Ending Technologies
- CreateInput1Affordability Model

### **OUTPUT** [Description of files to be provided]

Stage 2 Treatment Cost Model\_Numbers of Plants.xls

Stage 2 Drivers Plantbaseline.xls

Stage 2 Drivers\_Percentage\_PublicPrivate.xls

Stage 2 Drivers\_Households.xls

Stage 2 Flows.xls

CLM\_GW\_CWS\_convert\_to\_chloramine\_015nh3.xls

CLM\_GW\_CWS\_flows.xls

CLM\_GW\_NTNCWS\_convert\_to\_chloramine\_015nh3.xls

CLM\_GW\_NTNCWS\_flows.xls

CLM\_SW\_CWS\_convert\_to\_chloramine\_055nh3.xls

CLM\_SW\_CWS\_flows.xls

CLM\_SW\_NTNCWS\_convert\_to\_chloramine\_055nh3.xls

CLM\_SW\_NTNCWS\_flows.xls

CLX\_SW\_CWS\_chlorinedioxide.xls

CLX\_SW\_CWS\_flows.xls

CLX\_SW\_NTNCWS\_chlorinedioxide.xls

CLX\_SW\_NTNCWS\_flows.xls

GAC10\_SW\_CWS\_GAC\_EBCT\_10\_360d.xls

GAC10\_SW\_NTNCWS\_flows.xls

GAC10\_SW\_NTNCWS\_GAC\_EBCT\_10\_360d.xls

GAC20\_GW\_CWS\_flows.xls

GAC20\_GW\_CWS\_GAC\_EBCT\_20\_240d.xls

GAC20\_GW\_NTNCWS\_flows.xls

GAC20\_GW\_NTNCWS\_GAC\_EBCT\_20\_240d.xls

GAC20\_SW\_CWS\_flows.xls

GAC20\_SW\_CWS\_GAC\_EBCT\_20\_90d.xls

GAC20\_SW\_NTNCWS\_flows.xls

GAC20\_SW\_NTNCWS\_GAC\_EBCT\_20\_90d.xls

Membranes\_GW\_CWS\_flows.xls Membranes\_GW\_CWS\_nanofiltration.xls Membranes\_GW\_NTNCWS\_flows.xls Membranes\_GW\_NTNCWS\_nanofiltration.xls

Membranes\_SW\_CWS\_flows.xls Membranes\_SW\_CWS\_nanofiltration.xls

Membranes\_SW\_NTNCWS\_flows.xls Membranes\_SW\_NTNCWS\_nanofiltration.xls

MF\_UF\_SW\_CWS\_flows.xls MF\_UF\_SW\_CWS\_microfiltration.xls

MF\_UF\_SW\_NTNCWS\_flows.xls

MF\_UF\_SW\_NTNCWS\_microfiltration.xls

O3\_GW\_CWS\_flows.xls

O3\_GW\_CWS\_Ozone\_0\_5log.xls

O3\_GW\_NTNCWS\_flows.xls

O3\_GW\_NTNCWS\_Ozone\_0\_5log.xls

O3\_SW\_CWS\_flows.xls

O3\_SW\_CWS\_Ozone\_0\_5log.xls

O3\_SW\_NTNCWS\_flows.xls

O3\_SW\_NTNCWS\_Ozone\_0\_5log.xls

Unit Cost\_BAG\_FILTER.xls

Unit Cost\_BCI\_HISTORY.xls

Unit Cost\_CAPITAL\_COST\_INDICES.xls

Unit Cost\_CARTRIDGE\_FILTER.xls

Unit Cost\_CCI\_HISTORY.xls

Unit Cost\_CFP\_COSTS.xls

Unit Cost\_CHLORINEDIOXIDE.xls

Unit Cost\_convert\_to\_chloramine\_015NH3.xls Unit Cost\_convert\_to\_chloramine\_055NH3.xls

Unit Cost\_COST\_FACTOR\_SUMMARY.xls

Unit Cost\_GAC\_EBCT\_10\_360d.xls

Unit Cost\_GAC\_EBCT\_20\_90d.xls

Unit Cost\_GAC\_EBCT\_20\_240d.xls

Unit Cost\_MICROFILTRATION.xls

Unit Cost\_NANOFILTRATION.xls

Unit Cost\_OZONE\_0\_5LOG.xls

Unit Cost\_OZONE\_1LOG.xls

Unit Cost\_OZONE\_2LOG.xls

Unit Cost\_TECHNOLOGY\_COST\_BASE\_YEAR.xls Unit Cost\_TWG\_COSTS.xls

Unit Cost\_UV2X200MJ\_CM2.xls

Unit Cost\_UV40MJ\_CM2.xls

UV\_GW\_CWS\_flows.xls

UV\_GW\_CWS\_UV2X200MJ\_CM2.xls

UV\_GW\_NTNCWS\_flows.xls

UV\_GW\_NTNCWS\_UV2X200MJ\_CM2.xls

UV\_SW\_CWS\_flows.xls

UV\_SW\_CWS\_UV40MJ\_CM2.xls

UV\_SW\_NTNCWS\_flows.xls

UV\_SW\_NTNCWS\_UV40MJ\_CM2.xls

Stage 2 Treatment Cost Model\_Unit Costs Forecast.xls

Stage 2 Treatment Cost Model\_HH Annual.xls

# Exhibit K.3c Description of Inputs to CreatInput1.sas

| Name of Input File                                 | Description of Input File                                                                                                                                                     |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SDWIS Inventory.mdb                                | Access DB providing system and population inventory, size categories, sellers with linked populations, purchasers with largest end seller, and purchasers to link to sellers. |
| Common cost inputs_Percent Mixed Systems.xls       | Provides percent of surface water systems that are primarily groundwater for the nine size categories, split out by CWS and NTNCWS.                                           |
| Common cost inputs_Other cost inputs.xls           | Provides value, source, and spreadsheet source for labor rates, projection period, bounds on capital and O&M costs, people per household, and discount rates.                 |
| Common cost inputs_Plants per System Treatment.xls | Provides LT2 and Stage 2 plants per system for filtered and unfiltered CWS, TNCWS, and NTNCWS for the nine system categories.                                                 |
| Common cost inputs_Percent Disinfecting.xls        | Provides percent of groundwater and surface water CWS and NTNCWSs that disinfect, split out by the nine size categories.                                                      |
| Common cost inputs_Common Household Numbers.xls    | Provides public and private discount rates, and household usage rates for CWSs in the nine size size categories.                                                              |

### Exhibit K.4a Flowchart of TreatmentCostModel.sas



### Exhibit K.4b Input/Output Files for TreatmentCostModel.sas

#### INPUT

Stage 2 Treatment Cost Model\_SW Compliance.xls

Stage 2 Treatment Cost Model\_GW Compliance.xls

Stage 2 Treatment Cost Model\_Unit Cost Forecast.xls

Stage 2 Treatment\_Numbers of Plants.xls

(see Exhibit K-4c for a description of input files to TreatmentCostModel.sas)

#### TreatmentCostModel.sas

This program uses various inputs, including those created by CreateInput1.sas to generate the following for each alternative:

- unit costs for technologies used for Stage 2 compliance, and
- net number of plants using each technology.

### **OUTPUT** [Description of files to be provided]

Cost Uncertainty Results\_(##MONYR)\_Totals-Alternative 1.xls

Cost Uncertainty Results\_(##MONYR)\_Totals-Alternative 2.xls

Cost Uncertainty Results\_(##MONYR)\_Totals-Alternative 3.xls

Cost Uncertainty Results\_(##MONYR)\_Totals-Preferred Option.xls

Cost Uncertainty Results\_(##MONYR)\_Sensitivity Run- 20-Alternative 4.xls

Cost Uncertainty Results\_(##MONYR)\_Sensitivity Run- 25-Alternative 5.xls

Number Uncertainty Results\_(##MONYR)\_Totals-Alternative 1

Number Uncertainty Results\_(##MONYR)\_Totals-Alternative 2

Number Uncertainty Results\_(##MONYR)\_Totals-Alternative 3

Number Uncertainty Results\_(##MONYR)\_Totals-Preferred Option

Number Uncertainty Results\_(##MONYR)\_Sensitivity Run- 20 Alternative 4.xls

Number Uncertainty Results\_(##MONYR)\_Sensitivity Run- 25 Alternative 5.xks

### Exhibit K.5a Flowchart of CreateInput2.sas



# Exhibit K.5a Flowchart of CreateInput2.sas (cont'd)



# Exhibit K.5b Input/Output Files for CreateInput2.sas

#### **INPUT**

Stage 2 Drivers\_Households.xls

Stage 2 Drivers\_Percentage\_PublicPrivate.xls

Stage 2 Treatment Cost Model\_Numbers of Plants.xls

Stage 2 Treatment Cost Model\_Unit Cost Forecast.xls

(see Exhibit K-5c for a description of input files to CreateInput2.sas)

#### CreateInput2.sas

This program uses various inputs, including those created by the Treatment Cost Model to generate the number of households and the number plants making treatment changes. Results of provided for SW and GW systems, sorted by system type.

### **OUTPUT** [Description of files to be provided]

Stage 2 Treatment Cost Model\_HHCosts\_SW.xls

Stage 2 Treatment Cost Model\_HHCosts\_GW.xls

Stage 2 Treatment Cost Model\_NOPlants\_GW.xls

Stage 2 Treatment Cost Model\_NOPlants\_SW.xls

# Exhibit K.6a Flowchart of HH.sas (Household Model)



# Exhibit K.6b Input/Output Files for HH.sas (Household Model)

#### INPUT

Stage 2 Treatment Cost Model\_HH Costs\_GW\_CWS.xls

Stage 2 Treatment Cost Model\_HH Annual Cost.xls

Stage 2 Treatment Cost Model\_HHCosts\_SW.xls

Stage 2 Treatment Cost Model\_Non-Treatment HH Costs.xls

(see Exhibit K-6c for a description of input files to HH.sas)

#### HH.sas

This program uses various input files, including those created by CreateInput2.sas and TreatmentCostModel.sas to generate unit costs and total costs for small and large systems sorted by ownership (public/private), source water (SW/GW), system type (CWS/NTNCWS), and size category (small/large). Costs are separately reported for households that are part of systems making treatment changes (affected households).

### **OUTPUT** [Description of files to be provided]

HH Results\_(##MONYR)HH\_AllHouseholds\_Affectedxls

HH Results\_(##MONYR)HH\_AllHouseholdsxls

HH Results\_(##MONYR)HH\_GW\_All\_Affectedxls

HH Results\_(##MONYR)HH\_GW\_Allxls

HH Results\_(##MONYR)HH\_GW\_q10K\_Affectedxls

HH Results\_(##MONYR)HH\_GW\_g10Kxls

HH Results\_(##MONYR)HH\_GW\_I10K\_Affectedxls

HH Results\_(##MONYR)HH\_GW\_I10Kxls

HH Results\_(##MONYR)HH\_SW\_All\_Affectedxls

HH Results\_(##MONYR)HH\_SW\_Allxls

HH Results\_(##MONYR)HH\_SW\_g10K\_Affectedxls

HH Results\_(##MONYR)HH\_SW\_g10Kxls

HH Results\_(##MONYR)HH\_SW\_I10K\_Affectedxls

HH Results\_(##MONYR)HH\_SW\_I10Kxls

### Exhibit K.7a Flowchart of SmallPlants.sas



# Exhibit K.7b Input/Output Files for SmallPlants.sas



## Exhibit K.8a Flowchart of Discounting.sas



**Exhibit K.8a Flowchart of Discounting.sas** (cont'd) Projections of Stage 2 DBPR PWS Costs, for SW CWS, SW NTNCWS, GW CWS, GW NTNCWS MACRO RESULT Systems for each of the 9 population categories 1. Run for each alternative 0 (Preferred), 1, 2, 3, 4, and 5 Projections of the Stage 2 DBPR PWS costs for ALL SW CWS, ALL SW NTNCWS, ALL GW CWS, ALL **GW NTNCWS** Projections of Stage 2 DBPR PWS Costs for ALL SW, ALL GW MACRO RESULT 2. Produces the following spreadsheets by merging Produces GRAND TOTAL Present Value Spreadsheets for 3% and 7% discount rates for GW and SW (A), (B), (C), (D), (E), (F), and (G) systems as Alt&alt.J.2as\_Grandtotal\_PV\_3.xls and Alt&alt.J.2aw\_Grandtotal\_PV\_7.xls where &alt can be 0, 1, 2, or 3 Produces Present Value Spreadsheets for CAPITAL and O&M costs using discount rates of 3% and 7% for GW and SW systems as Alt&alt.J.2at\_Grandtotal\_Capital\_PV\_3.xls Alt&alt.J.2ax\_Grandtotal\_Capital\_PV\_7.xls Alt&alt.J.2aw\_Grandtotal\_OM\_PV\_3.xls Alt&alt.J.2ay\_Grandtotal\_OM\_PV\_7.xls Produces, using discount rates of 3% and 7% present value spreadsheets for non-treatment costs as Alt&alt.J.2av\_Grandtotal\_Non-Treat\_3.xls Alt&alt.J.2az\_Grandtotal\_Non-Treat\_7.xls Produces Present Value Spreadsheets using discount rates of 3% and 7% for SW CWS, SW NTNCWS, GW CWS, and GW NTNCWS options as Alt&alt.J.2ba\_SW\_CWS\_PV\_bysize\_3.xls Alt&alt.J.2be\_SW\_NTNCWS\_PV\_bysize\_3.xls Alt&alt.J.2bi\_GW\_CWS\_PV\_bysize\_3.xls Alt&alt.J.2bmGW\_NTNCWS\_PV\_bysize\_3.xls Alt&alt.J.2bqSW\_CWS\_PV\_bysize\_7.xls Alt&alt.J.2buSW\_NTNCWS\_PV\_bysize\_7.xls Alt&alt.J.2by\_GW\_CWS\_PV\_bysize\_7.xls Alt&alt.J.2cc\_GW\_NTNCWS\_PV\_bysize\_7.xls Create SW/GW CWS/NTNCWS Capital/O&M cost present value spreadsheets using 3% and 7% discount Generate Present value spreadsheets for ALL systems for rates as Total/Capital/O&M/Non-treatment costs, using discounted Alt&alt.J.2bb\_SW\_CWS\_PV\_Cap\_3.xls Alt&alt.J.2ca.GW\_CWS\_PV\_OM\_7.xls rates of 3% and 7%. Spreadsheets are: Alt&alt.J.2bf\_SW\_NTNCWS\_PV\_Cap\_3.xls Alt&alt.J.2.ce.GW\_NTNCWS\_PV\_OM\_7.xls Alt&alt.J.41\_All\_PV\_bysize\_3.xls Alt&alt.J.2bj\_GW\_CWS\_PV\_Cap\_3.xls Alt&alt.J.42\_All\_PV\_bysize\_7.xls Alt&alt.J.2bn\_GW\_NTNCWS\_PV\_Cap\_3.xls Alt&alt.J.4k\_All\_PV\_bysize\_capital\_3.xls Alt&alt.J.2bp\_SW\_CWS\_PV\_Cap\_7.xls Alt&alt.J.4k\_All\_PV\_bysize\_capital\_7.xls Alt&alt.J.2bv\_SW\_NTNCWS\_PV\_Cap\_7.xls Alt&alt.J4k\_All\_PV\_bysize\_OM\_3.xls Alt&alt.J.2bz\_GW\_CWS\_PV\_Cap\_7.xls Alt&alt.J4k\_All\_PV\_bysize\_OM\_7.xls Alt&alt.J.2cd\_GW\_NTNCWS\_PV\_Cap\_7.xls Alt&alt.J4k\_All\_PV\_bysize\_Non-Trt\_3.xls Alt&alt.J.2bc\_SW\_CWS\_PV\_OM\_3.xls Alt&alt.J4k\_All\_PV\_bysize\_Non-Trt\_7.xls Alt&alt.J.2bg\_SW\_NTNCWS\_PV\_OM\_3.xls Alt&alt.J.2bk\_GW\_CWS\_PV\_OM\_3.xls Alt&alt.J.2bo\_GW\_NTNCWS\_PV\_OM\_3.xls Economic Analysis for the Stage 2 DBPR August 2005 Alt&alt.J.2bs\_SW\_CWS\_PV\_OM\_7.xls OMB Draft for Discussion Only, Do Not Quote or Cite Alt&alt.J.2bw\_SW\_NTNCWS\_PV\_OM\_7.xls

# Exhibit K.8b Input/Output Files for Discounting.sas

#### **INPUT**

Primary Agency Costs.xls
Stage 2 Rule Activity Schedule\_Primary Agency Schedule.xls
Stage2 Non-Treatment Cost Model\_cost.xls
Cost Uncertainty Results\_(##MONYR)\_totals-Preferred Option.xls
Cost Uncertainty Results\_(##MONYR)\_Totals-Alternative 1.xls
Cost Uncertainty Results\_(##MONYR)\_Totals-Alternative 2.xls
Cost Uncertainty Results\_(##MONYR)\_Totals-Alternative 3.xls
Cost Uncertainty Results\_(##MONYR)\_Totals-Alternative 3.xls
Stage 2 Rule Activity Schedule\_Cap SW Schedule.xls
Stage 2 Rule Activity Schedule\_OM SW Schedule.xls
Stage 2 Rule Activity Schedule\_OM SW Schedule.xls
Stage 2 Rule Activity Schedule\_OM GW Schedule.xls

Stage 2 Rule Activity Schedule\_PWS SW Schedule.xls Stage 2 Rule Activity Schedule\_PWS GW Schedule.xls Stage 2 Rule Activity Schedule\_PWS SW Schedule IDSE.xls Stage 2 Rule Activity Schedule\_PWS GW Schedule IDSE.xls

Stage 2 Rule Activity Schedule\_PWS SW Schedule Monitoring.xls Stage 2 Rule Activity Schedule\_PWS GW Schedule Monitoring.xls

Stage 2 Rule Activity Schedule\_PWS SW Schedule Mon Plan.xls

Stage 2 Rule Activity Schedule\_PWS GW Schedule Mon Plan.xls

Stage 2 Rule Activity Schedule\_PWS SW Schedule Sig Excursion.xls

Stage 2 Rule Activity Schedule\_PWS GW Schedule Sig Excursion.xls

(see Exhibit K-8c for a description of input files to Discounting.sas)

### Discounting.sas

This program uses results from the non-treatment cost model, the rule activity schedule, and the treatment cost model to generate system and primacy agency costs. Cost summaries and projections are sorted by source water (SW/GW), system type (CWS/NTNCWS), size category, and discount rate (3% and 7%).

**OUTPUT** [Description of files to be provided]

# Exhibit K.9a Flowchart of TreatmentCostModelEndingTechnology.sas



# Exhibit K.9b Input/Output Files for TreatmentCostModelEndingTechnology.sas



# Exhibit K.10a Flowchart of CreateInput1Afford.sas



# Exhibit K.10b Input/Output Files for CreateInput1Afford.sas



#### Exhibit K.11 Flow Chart of Stage2Benefits CasesAvoided.sas **Bladder Cancer Cases Avoided Inputs.txt DATA STEP** 1. Create dataset slopes 2. For each iteration, calculate par-slope Population Data by Age Groups (Populations data by 101 Ages.xls) **SQL STEP** Parameters for Pareto and Weibul distributions 1. Create dataset Params 1 for Bladder 1. Params pareto bladder 2. Params\_pareto\_lung 3. Params\_weibul\_bladder 4. Params weibul lung **DBP Occurrence Inputs** SQL STEP for baseline, Alternatives 1, 2, 3, 1. Import lung parameters into Params1. 2. Create dataset Params 2 and Sensitivity Runs (20% and 25%) Macro Begin process 1. Separate runs for baseline, Alternatives 1, 2, 3, and sensitivity runs 20% and 25%. = 0 indicates baseline = 1, 2, 3 indicates Alternatives 1, 2, 3 = 4.53. Reads in dbp reduction data, preprocesses it. 4. Creates a permanent dataset for each option (i.e., Alt = 0, 1, 2, 3, 4, 5) Smoking\_Lung\_Cases\_0.xls a) Param\_set\_runs\_0 Smoking Lung Cases 1.xls b) Param\_set\_runs\_1 Smoking Lung Cases 2.xls c) Param\_set\_runs\_2 Smoking Lung Cases 3.xls d) Param\_set\_runs\_3 Smoking Lung Cases 4.xls e) Param set runs 4 Smoking\_Lung\_Cases\_5.xls f) Param\_set\_runs\_5 5. Modifies permanent dataset for each option to calculate the following: Smoking\_Bladder\_Cases\_0.xls Smoking\_Bladder\_Cases\_1.xls a) Background\_cases = [multiply population by age groups WITH Incidence Rates] b) oddsratio = [exp (par\_slope \* age)] Smoking\_Bladder\_Cases\_2.xls $[(ePE^*(or-1))/(1+(ePE^*(or-1))]$ where PE = population exposed c) PAR = Smoking\_Bladder\_Cases\_3.xls d) Cases Attributed (CAtt\_Age) = [background \_cases\*par] Smoking\_Bladder\_Cases\_4.xls e) CAVSIMax Age tthm = [Att\_age\*s1\_tthm where s1\_tthm - State 1 reduction for TTHM] Smoking\_Bladder\_Cases\_5.xls e2) CAVSIMax\_Age\_HAA5 = [Att\_age\*s1\_haa5 where s1\_haa5 - State 1 reduction for HAA5] f) Choose randomly between 20% and 25% safety runs for Alt = 0, Arsenic\_Bladder\_Cases\_0.xls For Alternative 4, always use 20% Arsenic\_Bladder\_Cases\_1.xls For Alternative 5, always use 25% Arsenic Bladder Cases 2.xls For Alternatives 1, 2, 3, 20% and 25% are same. Arsenic\_Bladder\_Cases\_3.xls g) Calculate Stage 2 reductions using appropriate values from min, max at a uniform distribution Arsenic\_Bladder\_Cases\_4.xls h) Invoke macro Cesslag. Arsenic\_Bladder\_Cases\_5.xls i) Cesslag has 3 runs for each option: Run = 1 for Smoking lung Run = 2 for Smoking bladder Run = 3 for Arsenic bladder j) Cesslag calculates Cases Avoided for years after rule (1 to 100) for TTHM and HAA5. k) Process outputs and transposes them, apportions the cases avoided between SW/GW, <10K/≥10K

# Appendix L Quality Assurance Supplemental Information

Appendix L

**Quality Assurance Supplemental Information** 

| 3 | Existing Data Source                              | Use for the Stage 2 DBPR Regulatory Development Effort                                                                                                                                                                                                                                                                             | Level 1 | QA Plan? <sup>2</sup> | Peer<br>Reviewed? <sup>2</sup> |
|---|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------|--------------------------------|
| 1 | Information     Collection Rule     (ICR)         | Used to characterize occurrence of disinfectants, disinfection byproducts (DBPs), and DBP precursors (e.g., total organic carbon [TOC]) in large surface water (SW) and ground water (GW) systems. Used as input to SWAT and the ICR Ground Water Delphi process.                                                                  | 2       | Yes                   | Yes                            |
| 5 | 2. ICR Supplemental Survey                        | Used to compare TOC occurrence in small, medium and large SW systems.                                                                                                                                                                                                                                                              | 1       | Yes                   | Yes                            |
| 6 | 3. National Rural Water Association (NRWA) Survey | Used to characterize operational characteristics, disinfection practices, DBP occurrence and occurrence of DBP precursors (e.g., TOC) for small SW systems. DBP and DBP precursor data were compared to that of large systems. Used to assess variability in TTHM and HAA5 occurrence in distribution systems of small SW systems. | 1       | Yes                   | No                             |
| , | 4. Water Utility Survey (WATER:\STATS database)   | Used to compare operational characteristics, disinfection practices, DBP occurrence, and DBP precursor occurrence of medium and large SW systems and medium and large ground water GW systems                                                                                                                                      | 1       | Yes                   | Yes                            |
|   | 5. Ground Water<br>Supply Survey                  | Used to compare TOC occurrence between small, medium, and large GW systems                                                                                                                                                                                                                                                         | 1       | Yes                   | No                             |
| ) | 6. State Data                                     | Used to compare TTHM occurrence on small GW systems to occurrence in large GW systems.                                                                                                                                                                                                                                             | 1       | No                    | No                             |

Notes:

13

2

<sup>1.</sup> Level 1 data are those data that provide background information or context for a particular assessment or discussion, but are not deemed to be influential in EPA's decision-making process. Level 2 data are those data that are deemed to be highly important or influential in EPA's decision-making process.

EPA's decision-making process. Level 2 data are those data that are deemed to be highly important or influential in EPA's decision-making process.

2. See Sections 1.4 and 1.5 in the Stage 2 DBPR Occurrence Document (USEPA 2005k) for a description of QA plans and/or peer review processes for each

existing data source shown.

# **Appendix M**

Ground Water Systems Adding Disinfection Under the Ground Water Rule

# 

## 

# Appendix M

# **Ground Water Systems adding Disinfection under the Ground Water Rule**

# M.1 Introduction

This appendix presents an analysis of the potential increased risks caused by ground water systems that are adding disinfection under the Ground Water Rule (GWR). When a system moves from no disinfection to performing disinfection including chlorination or chloramination, there will be an increase in chlorination disinfection byproducts (DBPs). Based on analyses in this EA, this increase in DBPs may lead to a small increase in bladder cancer incidence. Exhibit M.1 shows the number of ground water systems estimated to be adding disinfection under the GWR that are being considered in this analysis and Exhibit M.2 presents the population who have the potential to be newly exposed to DBPs as the system adds disinfection.

**Exhibit M.1 Ground Water Systems Increasing Disinfection under the GWR** 

| System Size     | Baseline<br>Number of<br>Systems | GWR<br><b>B</b> | Increasing | Entry Points<br>Adding<br>Disinfection<br>for the<br>GWR<br>D | Entry<br>Points Per<br>System<br>E | Systems Increasing Disinfectant Dose for GWR F = C/E | Systems Adding Disinfectant for GWR G = D/E |
|-----------------|----------------------------------|-----------------|------------|---------------------------------------------------------------|------------------------------------|------------------------------------------------------|---------------------------------------------|
| Community Wat   | er Systems<br>11.900             | (CWSs)<br>53%   | 250        | 590                                                           | 1.3                                | 190                                                  | 450                                         |
| 100-499         | 14,728                           | 78%             | 475        | 560                                                           | 1.5                                | 291                                                  | 343                                         |
| 500-999         | 4,836                            | 84%             | 155        | 167                                                           | 2.0                                | 79                                                   | 86                                          |
| 1,000-3,299     | 5,869                            | 80%             | 213        | 259                                                           | 2.4                                | 88                                                   | 107                                         |
| 3,300-9,999     | 2,661                            | 87%             | 124        | 143                                                           | 3.2                                | 39                                                   | 44                                          |
| 10,000-49,999   | 1,280                            | 97%             | 128        | 48                                                            | 5.6                                | 23                                                   | 8                                           |
| 50,000-99,999   | 142                              | 86%             | 14         | 25                                                            | 11.3                               | 1                                                    | 2                                           |
| 100,000-999,999 | 65                               | 96%             | 27         | 22                                                            | 12.4                               | 2                                                    | 2                                           |
| 1,000,000+      | 3                                | 100%            | 0          | 0                                                             | 11.4                               | 0                                                    | 0                                           |
| Total           | 41,484                           |                 | 1,385      | 1,814                                                         |                                    | 713                                                  | 1,042                                       |
| Nontransient No | ncommunity                       | y Water Syste   | ms (NTNCW  | Ss)                                                           |                                    |                                                      |                                             |
| <100            | 8,596                            | 29%             | 192        | 579                                                           | 1                                  | 192                                                  | 579                                         |
| 100-499         | 7,341                            | 29%             | _          | 662                                                           | 1                                  | 137                                                  | 662                                         |
| 500-999         | 2,032                            | 29%             | 38         | 191                                                           | 1                                  | 38                                                   | 191                                         |
| 1,000-3,299     | 852                              | 29%             |            | 69                                                            | 1                                  | 14                                                   | 69                                          |
| 3,300-9,999     | 74                               | 29%             |            | 7                                                             | 1                                  | 1                                                    | 7                                           |
| 10,000-49,999   | 11                               | 29%             | 0          | 1                                                             | 1                                  | 0                                                    | 1                                           |
| 50,000-99,999   | 1                                | 29%             | 0          | 0                                                             | 1                                  | 0                                                    | 0                                           |
| 100,000-999,999 | 1                                | 29%             | 0          | 0                                                             | 1                                  | 0                                                    | 0                                           |
| 1,000,000+      | 0                                | 29%             | _          | 0                                                             | 1                                  | 0                                                    | 0                                           |
| Total           | 18,908                           |                 | 383        | 1,510                                                         |                                    | 383                                                  | 1,510                                       |

# Exhibit M.2 Population exposed to DBPs from Increased Disinfection under the GWR

|                                |             |              |            | Population | Population   |  |
|--------------------------------|-------------|--------------|------------|------------|--------------|--|
|                                |             | Disinfecting | Population | Increasing | Adding       |  |
|                                | Baseline    | Population   | per Entry  | Dose for   | Disinfection |  |
|                                | Population  | (Pre-GWR)    | Point      | GWR        | for GWR      |  |
| System Size                    | Α           | В            | С          | D          | E            |  |
| Community Water Systems (CWSs) |             |              |            |            |              |  |
| <100                           | 694,081     | 367,234      | 44         | 11,106     | 26,229       |  |
| 100-499                        | 3,464,186   | 2,717,762    | 144        | 68,488     | 80,733       |  |
| 500-999                        | 3,443,379   | 2,892,438    | 364        | 56,421     | 61,039       |  |
| 1,000-3,299                    | 10,792,045  | 8,729,622    | 758        | 161,520    | 195,878      |  |
| 3,300-9,999                    | 14,986,715  | 13,807,155   | 1,750      | 217,099    | 250,290      |  |
| 10,000-49,999                  | 26,328,792  | 27,997,663   | 3,662      | 467,547    | 174,774      |  |
| 50,000-99,999                  | 9,234,271   | 9,593,384    | 5,758      | 82,900     | 146,697      |  |
| 100,000-999,999                | 13,471,072  | 23,627,588   | 16,727     | 444,645    | 369,287      |  |
| 1,000,000+                     | 3,933,533   | 3,933,533    | 115,450    | 0          | 0            |  |
| Total                          | 86,348,074  | 93,666,379   |            | 1,509,726  | 1,304,927    |  |
| Nontransient No                | oncommunity | Water Syste  | ms (NTNCWS | Ss)        |              |  |
| <100                           | 433,616     | 125,749      | 50         | 9,669      | 29,220       |  |
| 100-499                        | 1,659,474   | 481,247      | 226        | 30,967     | 149,610      |  |
| 500-999                        | 1,366,981   | 396,424      | 673        | 25,827     | 128,546      |  |
| 1,000-3,299                    | 1,322,365   | 383,486      | 1,552      | 22,495     | 107,486      |  |
| 3,300-9,999                    | 381,348     | 110,591      | 5,153      | 7,626      | 37,145       |  |
| 10,000-49,999                  | 228,408     | 66,238       | 20,764     | 4,209      | 25,495       |  |
| 50,000-99,999                  | 66,000      | 19,140       | 66,000     | 1,338      | 5,258        |  |
| 100,000-999,999                | 110,000     | 31,900       | 110,000    | 2,230      | 13,033       |  |
| 1,000,000+                     | 0           | 0            | 0          | 0          | 0            |  |
| Total                          | 5,568,192   | 1,614,776    |            | 104,360    | 495,793      |  |

# M.2 Current Risk per lifetime per μg DBPs

In order to quantify the potential increase in bladder cancer incidence from the addition of disinfection from the GWR, it is necessary to quantify the current risk of bladder cancer per unit of DBPs in the drinking water. Based on the primary analysis in this EA, the estimated annual Pre-Stage 1 bladder cancer cases from all sources is 56,506, the cases attributable to DBPs are 10,159, and the cases attributable to other sources are 46,347 (by subtraction). The cases attributable to DBPs reflect the Pre-Stage 1 average Population Attributable Risk (PAR) value of 18% obtained from the Monte Carlo simulation of the Odds Ratios (ORs) from the Villanueva et al. (2003) study. As described in Chapter 6 and Appendix E, the average 18% PAR value is derived from the fixed OR value of 1.2.

Two annual bladder cancer risk factors are computed using the Pre-Stage 1 bladder cancer cases information and the total population served by disinfecting systems. The annual risk from DBPs is:

 $10,159 / 263,024,518 = 3.86 \times 10^{-5}$  annual cases per person.

1 2

The annual risk from all other sources is:

 $46,347/263,024,518 = 1.76 \times 10^{-4}$  annual cases per person.

 The DBP risk factor can be expressed in terms of DBP concentration (represented by TTHMs) by dividing by the Pre-Stage 1 average TTHM concentration (38.04  $\mu$ g/L) to arrive at value expressed in the units of annual cases per person per  $\mu$ g/L.

 $3.86 \times 10^{-5} / 38.04 = 1.02 \times 10^{-6}$  annual cases per person per µg/L.

This value can be interpreted as the Pre-Stage 1 unit risk from exposure to DBPs. Since there is no specific factor to relate to the unit risk from all causes, for this group, the risk is expressed in only cases per person  $(1.76 \times 10^{-4})$ .

# M.3 Additional risk for GW populations adding disinfection

To estimate the potential added risk, the unit risk calculated in Section M.2 can applied to the population newly exposed from the addition of disinfection from the GWR. The number of people potentially newly exposed is 1,304,927 (in CWSs only) and the estimated Post Stage 2 DBP concentration (as represented by TTHM) is 13.75  $\mu$ g/L. The annual cases of bladder cancer from DBPs can be calculated as follows:

$$1.02 \times 10^{-6} \times 13.75 \times 1.304.927 =$$
**18.22** cases.

The annual cases of bladder cancer from other causes can be calculated as follows:

$$1.76 \times 10^{-4} \times 1,304,927 = 230$$
 cases.

The total number of estimated cases in the newly exposed group at a steady-state is the sum of these two (248.22 cases). This total sum of cases from DBPs and from other causes is necessary in order to calculate a PAR for this newly exposed group. PAR is calculated as the number of cases attributable to DBPs divided by the total number of cases:

$$18.22 / 248.22 = 7.34\%$$

Without consideration of latency, the annual cancer cases attributable to DBPs from ground water systems adding disinfection under the GWR is 18.22. This would to be the "steady-state" annual value, achieved once those individuals served by these systems have spent their entire lives consuming water with these DBP levels present.

# M.4 Accounting for latency

To account for latency, and the lower number of attributable cases per year in the period after disinfection begins, it is necessary to use exposure duration information from Villanueva et al. (2003) together with the PAR calculated in Section M.3. EPA assumes that the PAR for this group is the value attained at steady state, which in this analysis is assumed to be 100 years after rule promulgation. In order to calculate the rate at which risk increases with exposure duration, the following equation was used:

$$PAR_{i} = \frac{P_{e}(e^{slope \times year} - 1)}{[P_{e}(e^{slope \times year} - 1)] + 1}$$
(Equation M.1)

 $P_e$  is equal to 1, since this equation is now being applied to a subpopulation, all who will be drinking the newly disinfected drinking water. Using the PAR of 7.34 % at 100 years from Section M.3 and  $P_e = 1$ , the slope is calculated as  $7.62 \times 10^{-4}$ , by rearranging Equation M.1 as:

$$slope = \frac{\ln\left(\frac{1}{1 - 0.0734}\right)}{100}$$

Using this slope, the cases attributable to DBPs and the year-based PARs can be calculated using Equation M.1. As shown in Exhibit M.3, after consideration of latency, for the first 25 years following rule promulgation, the cases per year range from 0.18 to 4.43, for an average of approximately 2 cases per year.

# M.5 Conclusions

EPA believes that though there is a potential for increased risk from these systems, this risk is not significant. The addition of 2 cases per year will not have a significant effect on the benefits analysis performed in this economic analysis. This is less than half a percent of the pre-Stage 1 baseline of approximately 10,000 cases attributable to DBPs, and falls well within the 90% confidence interval of cases potentially avoided by the Stage 2 DBPR. For these reasons, EPA does not quantify this additional risk as part of the Stage 2 economic analysis.

| Years after  |        | Cases |       | Years after  |        | Cases |       |
|--------------|--------|-------|-------|--------------|--------|-------|-------|
| Rule         | Total  | from  |       | Rule         | Total  | from  |       |
| Promulgation | Cases  | DBPs  | PAR   | Promulgation | Cases  | DBPs  | PAR   |
| 0            | 229.94 | 0.00  | 0.00% | 51           | 239.06 | 9.12  | 3.81% |
| 1            | 230.11 | 0.18  | 0.08% | 52           | 239.24 | 9.30  | 3.89% |
| 2            | 230.29 | 0.35  | 0.15% | 53           | 239.42 | 9.48  | 3.96% |
| 3            | 230.46 | 0.53  | 0.23% | 54           | 239.60 | 9.67  | 4.03% |
| 4            | 230.64 | 0.70  | 0.30% | 55           | 239.79 | 9.85  | 4.11% |
| 5            | 230.82 | 0.88  | 0.38% | 56           | 239.97 | 10.03 | 4.18% |
| 6            | 230.99 | 1.05  | 0.46% | 57           | 240.15 | 10.21 | 4.25% |
| 7            | 231.17 | 1.23  | 0.53% | 58           | 240.34 | 10.40 | 4.33% |
| 8            | 231.35 | 1.41  | 0.61% | 59           | 240.52 | 10.58 | 4.40% |
| 9            | 231.52 | 1.58  | 0.68% | 60           | 240.70 | 10.76 | 4.47% |
| 10           | 231.70 | 1.76  | 0.76% | 61           | 240.89 | 10.95 | 4.54% |
| 11           | 231.87 | 1.94  | 0.84% | 62           | 241.07 | 11.13 | 4.62% |
| 12           | 232.05 | 2.11  | 0.91% | 63           | 241.25 | 11.31 | 4.69% |
| 13           | 232.23 | 2.29  | 0.99% | 64           | 241.44 | 11.50 | 4.76% |
| 14           | 232.41 | 2.47  | 1.06% | 65           | 241.62 | 11.68 | 4.84% |
| 15           | 232.58 | 2.64  | 1.14% | 66           | 241.81 | 11.87 | 4.91% |
| 16           | 232.76 | 2.82  | 1.21% | 67           | 241.99 | 12.05 | 4.98% |
| 17           | 232.94 | 3.00  | 1.29% | 68           | 242.17 | 12.24 | 5.05% |
| 18           | 233.12 | 3.18  | 1.36% | 69           | 242.36 | 12.42 | 5.13% |
| 19           | 233.29 | 3.36  | 1.44% | 70           | 242.54 | 12.61 | 5.20% |
| 20           | 233.47 | 3.53  | 1.51% | 71           | 242.73 | 12.79 | 5.27% |
| 21           | 233.65 | 3.71  | 1.59% | 72           | 242.91 | 12.98 | 5.34% |
| 22           | 233.83 | 3.89  | 1.66% | 73           | 243.10 | 13.16 | 5.41% |
| 23           | 234.01 | 4.07  | 1.74% | 74           | 243.29 | 13.35 | 5.49% |
| 24           | 234.18 | 4.25  | 1.81% | 75           | 243.47 | 13.53 | 5.56% |
| 25           | 234.36 | 4.43  | 1.89% | 76           | 243.66 | 13.72 | 5.63% |
| 26           | 234.54 | 4.60  | 1.96% | 77           | 243.84 | 13.90 | 5.70% |
| 27           | 234.72 | 4.78  | 2.04% | 78           | 244.03 | 14.09 | 5.77% |
| 28           | 234.90 | 4.96  | 2.11% | 79           | 244.21 | 14.28 | 5.85% |
| 29           | 235.08 | 5.14  | 2.19% | 80           | 244.40 | 14.46 | 5.92% |
| 30           | 235.26 | 5.32  | 2.26% | 81           | 244.59 | 14.65 | 5.99% |
| 31           | 235.44 | 5.50  | 2.34% | 82           | 244.77 | 14.84 | 6.06% |
| 32           | 235.62 | 5.68  | 2.41% | 83           | 244.96 | 15.02 | 6.13% |
| 33           | 235.80 | 5.86  | 2.48% | 84           | 245.15 | 15.21 | 6.20% |
| 34           | 235.98 | 6.04  | 2.56% | 85           | 245.33 | 15.40 | 6.28% |
| 35           | 236.16 | 6.22  | 2.63% | 86           | 245.52 | 15.58 | 6.35% |
| 36           | 236.34 | 6.40  | 2.71% | 87           | 245.71 | 15.77 | 6.42% |
| 37           | 236.52 | 6.58  | 2.78% | 88           | 245.90 | 15.96 | 6.49% |
| 38           | 236.70 | 6.76  | 2.86% | 89           | 246.08 | 16.15 | 6.56% |
| 39           | 236.88 | 6.94  | 2.93% | 90           | 246.27 | 16.33 | 6.63% |
| 40           | 237.06 | 7.12  | 3.00% | 91           | 246.46 | 16.52 | 6.70% |
| 41           | 237.24 | 7.30  | 3.08% | 92           | 246.65 | 16.71 | 6.77% |
| 42           | 237.42 | 7.48  | 3.15% | 93           | 246.84 | 16.90 | 6.85% |
| 43           | 237.60 | 7.66  | 3.23% | 94           | 247.02 | 17.09 | 6.92% |
| 44           | 237.78 | 7.85  | 3.30% | 95           | 247.21 | 17.27 | 6.99% |
| 45           | 237.96 | 8.03  | 3.37% | 96           | 247.40 | 17.46 | 7.06% |
| 46           | 238.15 | 8.21  | 3.45% | 97           | 247.59 | 17.65 | 7.13% |
| 47           | 238.33 | 8.39  | 3.52% | 98           | 247.78 | 17.84 | 7.20% |
| 48           | 238.51 | 8.57  | 3.59% | 99           | 247.97 | 18.03 | 7.27% |
| 49           | 238.69 | 8.75  | 3.67% | 100          | 248.16 | 18.22 | 7.34% |
| 50           | 238.87 | 8.94  | 3.74% | Steady State | 248.16 | 18.22 | 7.34% |